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Abstract
This paper develops several methods to estimate a future volatility of a stock in order

to correctly price corresponding stock options. The pricing model known as Black-Scholes-

Merton is presented with a constant volatility parameter and compares it to stochastic

volatility models. It mathematically describes the probability distribution of the underlying

stock price changes implied by the models and the consequences. Arbitrage opportunities

between stock options of various maturities or strike prices are explained from the volatility

smile and volatility term structure.
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Chapter 1
Introduction

Derivative instruments have existed since the eighteenth century in the United States

of America but until recently, derivative contracts were not standardized, the markets were

not regulated, and market participants had trouble buying and selling the contracts from

the over-the-counter market on another more active secondary market.

The CBOE, Chicago Board Options Exchange, in 1973 decided to create an exchange

for derivative options where the financial instruments started being traded with standard-

ized strike prices and maturity dates. Derivatives traders could now engage or close out an

option position at anytime, with lower transaction fees than before, to take their profits or

limit their losses. The Options Clearing Corporation (OCC), acting as a third party in a

derivative transaction, was created the same year in order to provide stability and financial

integrity in the marketplace by ensuring that the obligations of the contracts are fulfilled.

The exchange, providing liquidity and more opportunities for derivatives traders became a

real success and similar markets quickly appeared around the world.

The multiplication of option exchanges and the increasing volatility in the financial

markets encouraged traders to manage their portfolio’s risks. Interest rate risks, currency

risks, and movements in financial instrument prices became a real concern to financial

institutions, hedge funds, proprietary trading firms and other market participants, who

still nowadays, spend a major time of their trading activities in managing their different

market risk exposures. Risk management has become very sophisticated since then due to

the apparition of the derivative products. A financial asset is called a derivative if its value

is dependent on another financial asset’s price, which is called the underlying asset.
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Many derivative products appeared to hedge the rising volatilities in the underlying

markets. Financial institutions and market participants came up with new derivative in-

struments like futures and forward contracts, swaps, warrants, options on stocks, on futures,

on currencies, on stock indices, on commodities, and even more sophisticated contracts like

credit default swaps (CDS), collateralized debt obligations (CDO), mortgage-backed secu-

rities (MBS)... These financial innovations were an answer to the increasing risks in the

underlying markets and offer market participants to reach their risk/profit ratio goals at

lower costs.

This paper is focusing on one main derivative instrument: the stock options. Pricing

stock options has become an important problem in the financial sphere and has attracted

a lot of economists and mathematicians.

In 1900, Louis Bachelier suggested a stock option pricing formula in ”the theory of

speculation”, the bases of which is the true assumption that stochastic process is followed

by the stock prices. He assumed that Brownian motion is followed by the underlying stock

having a drift rate equal to zero. However, his pricing formula was not really representing

very well the real world of the stock option derivative markets. His model was giving the

possibility of negative stock prices and the derivative options could price more than the

underlying asset which is in theory not possible (see section 2.c. Arbitrage opportunities).

Samuelson (1965) tried to improve Bachelier’s model by considering a geometric Brow-

nian motion and computing the price of an option as the expected payoff actualized at a

continuous rate, the drift of the option.

Then, Myron S. Scholes, Robert C. Merton and Fischer Black used the Itô’s lemma (a

famous equation discovered by Kiyosi Itô in the 1940’s and 1950’s to model a continuous

stochastic process) to solve the problem of option pricing on an underlying stock which

is non-dividend paying. The pricing formula presented by Black-Scholes-Merton in 1973,

drastically altered the financial world and is still nowadays used by traders and financial
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institutions to correctly price a stock option derivative contract.

Based on more or less realistic assumptions (see section 4.p. The Black-Scholes-Merton

model’s assumption), the model known as Black-Scholes-Merton has become popular due

to the quick and easy computations that the model implies to generate a theoretical stock

option price. The famous formula also introduced stochastic computations to the financial

sphere to price derivative products. Nowadays, market participants use the model to value

a stock option but also to determine the instantaneous implied volatility now, at a given

point in time t, pricing an option at time t+ ∆t.

Devising a model to price derivative contracts has become a major challenge of the fi-

nancial world and market participants are still waiting on the next pricing model that will

be as easy as the Black-Scholes-Merton one but even more precise to the reality of the mar-

kets. In the past few years, many mathematicians and physicians have worked to improve

the Black-Scholes-Merton model to make it more realistic to the financial markets. Under-

lying stock market’s jump-diffusion process, stochastic volatility of the underlying asset, a

risk-free stochastic interest rate and other assumptions have been studied to enhance the

model but always resulting in more complex mathematics and longer computations. With

many complex models, is it really necessary to develop even more complex models for the

purpose of representing the financial market’s trend in an improved way? In accordance

with Stix and his book “A calculus of risk” (1998), 20% of losses that a trader suffers in

the derivatives markets are due to a wrong estimation of parameters and pricing evalua-

tion of the derivative products. This is the reason why mathematicians focus on finding a

better model that will substitute the Black-Scholes-Merton one and will enable traders and

financial institutions to lower the percentage of losses due to the mispricing estimations.
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Despite the fact that the Black-Scholes-Merton model is the most popular nowadays,

some market participants may use a different model or the Black-Scholes-Merton model

maybe employed differently from what it was originally intended. This is the reason why

it is very difficult to come up with a pricing model that can be used overtime. In fact,

a valid pricing model today might not be working under the different market conditions

tomorrow.

Derivatives traders and market participants are not all using the same model and have

different estimations about future prices. This is why traders, market makers, financial in-

stitutions and other market participants have different bids and asks for financial products.

The outcome of all the bids is the quoted market price whereas the ask prices entered in

the book order of the derivative contracts.

The best model will be the one that best represents the behavior of the derivatives

markets and will last over time under all market conditions. Theoretical prices can be

calculated quickly and easily with the least assumptions to be made and parameters to

estimate. The quickness of the computation is really important in finance, as many traders

must take decisions in real time. This is the reason why the Black-Scholes-Merton model,

based on some more or less realistic assumptions, is such a success. The precision of the

model is also an important factor as the amount of money traded in the derivatives markets

is consequent. According to a study by marketwatch.com, there is between $630 trillion

and $1.2 quadrillion ($1,200,000,000,000,000,000) invested in derivatives alone between the

over-the-counter market and worldwide exchanges.

To get a theoretical option price on a stock that pays no dividends, if the traders

use the model of Black-Scholes-Merton, they must implements some inputs in the pricing

formula: the stock price underlying the option, the time taken before the option’s maturity

date, option’s strike price to value, an interest rate which is risk free and constant, and

underlying stock’s constant volatility over the option’s life span. The first four parameters
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can be observed in the financial markets and therefore are known from traders. The only

unknown parameter of the underlying stock that a trader must estimate is the future (or

expected) volatility that will occur until expiration of the option.

A constant volatility level is assumed by the Black-Scholes-Merton model over the life

of the option which is obviously not a realistic assumption but enables the computations of

the model to be quick and easy. However, the model fails to explain many characteristics of

the option derivatives markets such as the volatility smile. In fact, there are good reasons

to believe that the underlying stock’s volatility is stochastic and derivatives markets to be

more complex than Black, Scholes and Merton believe it to be.

Using a stochastic volatility model to price option contracts enables to have a more

realistic representation of the underlying stock returns as a stochastic process involves

the skewness and the kurtosis of a probability distribution. The lognormal distribution

is assumed by Black-Scholes-Merton model for the underlying stock returns, which is not

necessarily representing the real probability of the stock returns. In fact, the lognormal

distribution has a tendency to underestimate a big positive or negative stock return while

overestimating a small positive or negative return. However, with a stochastic volatility

model, a trader can build a probability distribution for the underlying stock returns that

better fits the reality of the underlying stock market as he can use an asymmetric distribu-

tion, with lower or higher tails and with a lower or a higher peak. The trader, when using

a stochastic volatility model, is also able to explain the volatility smile, which is not the

case for a trader using the Black-Scholes-Merton model.

Therefore, as compared to the Black-Scholes-Merton model, stochastic volatility mod-

els are more realistic as they describe the volatility smiles observed in the option derivatives

markets in a more clear way. However, this type of models require more input estimations

from a trader and therefore a higher chance for errors in pricing stock options. Stochastic

volatility models as compared to the Black-Scholes-Merton model also require more as-
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sumptions and are less time efficient.

This paper’s objective is to be able to determine and forecast T -month option’s future

volatility with strike price K from historical data and implied volatilities to correctly value

a stock option and then be able to find arbitrage opportunities between options with dif-

ferent strike prices and maturity dates.

This paper includes six chapters where chapter 1 and chapter 8 are the introduction

and conclusion of the thesis respectively.

Chapter 2 is an introduction to the characteristics and the language of options. It de-

scribes briefly some inequalities that a call option price must respect at anytime otherwise

arbitrage opportunities appear in the option derivatives markets.

Chapter 3 is a description of the different volatilities that a trader must take into con-

sideration when pricing options and a discussion that to predict the future volatility which

volatility is the most appropriate to use.

Chapter 4 consists in building the Black-Scholes-Merton differential equation through a

procedure studied which is led by stock price. Black-Scholes-Merton pricing formula proof

and the put-call parity is given. Moreover, the Black-Scholes-Merton model applying to

only European calls and puts on stocks that pay no dividends, a discussion on how to mod-

ify the model to price American call furthermore put options on stocks paying dividends

or not is included. Finally, the section ends up on a review of Black-Scholes-Merton model

assumptions explaining why a stochastic volatility model might better reflect the reality of

the option derivatives markets, since it is able to describe the volatility smile of the option

contracts.
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Chapter 5 talks about the Greek letters and how a trader can hedge his option portfolio

to different market risks.

Chapter 6 is a presentation on how traders can estimate the future volatility from

historical data and how they can determine the implied volatilities of the market. The

volatility surface, volatility term structure, and volatility smile are then discussed in order

to find arbitrage opportunities and determine the probability distributions of the under-

lying stock returns associated with the volatility smiles. Different schemes to name a few

the EWMA model, the GARCH(1,1) model and ARCH(m) model to estimate the future

volatility of an underlying stock are presented.

Finally, chapter 7 is a presentation of the stochastic volatility models and the Monte

Carlo simulation.
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Chapter 2
Characteristics of an option contract

2.1 Option contract specifications

An option can be defined as a financial derivative mechanism which gives the right to

the investor to purchase or sell an underlying asset’s particular quantity at a future date

which is pre-determined (called as the option’s maturity date) at a particular price (known

as strike price or exercise price), but is not an obligation on the investor to do so. The

buyer of the option, in other terms, who is long the option, has the right to exercise the

option when the maturity date is reached only if this one enables the investor to make a

profit by exercising it. If this is not the case and exercising the option results in a loss

for the long position, the buyer of the option will let the financial instrument expire and

will lose the amount of money spent to purchase the derivative (called the premium of an

option).

Now the other party, the option’s seller, who is short the option, will be forced to supply

the underlying asset to the buyer if he decides to exercise the option at the maturity date.

Thus, in case of a European option, the short position is totally dependent of the decision of

the buyer and needs to be prepared to any possible scenarios at expiration of the derivative

contract.

In American option case, the long position at any time earlier than the maturity date

can exercise the option hence giving buyer more chances to show a profit on the contract

overtime. This implies that at any time in the option’s life the short position should be

ready to hand over the underlying asset as soon as it is decided by the long position to

exercise the contract. Therefore, an American option as compared to European option
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grants more power to the long position and less to the short position where to exercise

the option or not is decided by the buyer only at the contract’s pre-determined maturity

date. Hence, the premium of a European option should be lower than the premium of an

American option having similar features.

Nowadays, majority of the options traded over-the-counter are European options how-

ever, majority of the options that are traded publicly on exchanges are American options.

Throughout this paper, we will implicitly consider all options to be European unless said

otherwise.

There exists two types of options: a put option and a call option. A put option does

not oblige but gives the right to sell a particular quantity of underlying asset at the ma-

turity date at the exercise price. A call option does not oblige but gives the right to buy

a particular quantity of the underlying asset at the strike price at the maturity date. The

underlying asset of an option can vary. This can be a simple stock of a firm traded on an

exchange, an index, a currency, a commodity or a future.

Options have become a popular financial instrument preventing investors from further

losses in order to hedge a stock portfolio or by using these contracts as a real speculating

investment by adding some leverage to an investment. No matter what way the investor

purchases an option for, options are great tools to manage the risk of a portfolio and any

investor must consider these types of contracts to get the best risk/reward ratio possible

on an investment strategy.

2.2 Factors affecting the premium of an option

The premium of an option is dependent upon the volatility and the price of the un-

derlying asset, the maturity date, the strike price and the risk-free interest rate which is

equivalent to the similar time duration of the option’s life. For example, an investor will
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use the 90-day Treasury bill rate in order to determine the premium of a 3-month call/put

option.

2.2.1 Underlying asset price

An option’s premium can be seen as follow:

Premium option = Intrinsic value+ Time value

The intrinsic value is the value of an option if the contract would be exercised immediately.

The option’s intrinsic value cannot be negative it can only be equal to zero or positive.

Such as, a December 90 call for any prices of the underlying asset strictly above $90 will

have a positive intrinsic value and an intrinsic value equal to zero for any prices equal to

$90 or less. If we look at a June $50 put with the Facebook stock as the underlying asset,

the option will have a positive intrinsic value for any Facebook stock prices strictly under

$50, and equal to 0 if the stock price of the social media is $50 or more.

A call option and a put option with a positive intrinsic value are considered in-the-

money. A put and a call are considered out-of-the-money if they have intrinsic value equals

zero. A put and a call option where the price of the underlying asset is equal to the strike

price of the derivative contract are considered at-the-money.

More generally, it is possible to come up with a formula for a put and a call intrinsic

value.

intrinsic value for a put option : [K − S]+

intrinsic value for a call option : [S −K]+

where S represents the underlying stock price and K represents the option’s strike price.

The graphs below show the intrinsic value (or payoff) and the profit & loss (“P&L”) curves

for a long call, long put, short call and a short put option.
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Figure 2.1: Intrinsic value and P&L from an option position at expiration

An option’s time value is characterized by the time quantity left earlier than option’s expi-

ration and the probability that the contract will be in-the-money at maturity. The investor

is willing to pay an additional cost to hold the contract as far there is a chance for him

to make a profit by exercising the option. Thus, an option which is intensely out-of-the-

money or intensely in-the-money will have a time value close to zero. The maximum time

value of an option is achieved as at-the-money option. Indeed, there is a 50% chance to

have a positive intrinsic value (K > S for a put, S > K for a call) and a 50% chance to

have no intrinsic value (K < S for a put, S < K for a call). The time value, hence, of a

financial derivative option is progressively growing as the option contract gets closer and

closer at-the-money.
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It is interesting to see that a call option which is in-the-money, the decreasing under-

lying asset price gets closer to the option’s strike price, will have more time value but will

also lose intrinsic value in the same time. On the other side, an in-the-money put option,

the underlying asset price is increasing to get closer to the option’s strike price, would have

more time value but will lose intrinsic value in the same time. In fact, as the call or put

option is moving more towards in-the-money, there is a bigger chance for the option to

be exercised at maturity and therefore it is not the willingness of the investors to pay the

option’s time value where it would be more beneficial for them to straight away sell or

purchase on exchange the underlying asset.

The price of an option, as observed from above, is a tradeoff involving time value and

intrinsic value. A deeply in-the-money option will have as a result nearly zero time value

and a positive intrinsic value. The option has little chance to be worthless before expira-

tion and therefore does not hold any more time value. An deeply out-of-the-money option

will have no intrinsic value and a premium which is low and equal to the time value. An

at-the-money option premium will only hold an important time value.

2.2.2 Risk-free interest rate

As being long a call option involves paying a premium which is significantly less than

buying directly the underlying asset, an investor can invest at the risk-free rate the dif-

ference amount, through the option’s lifetime. This implies that if the risk-free rate is

greater, it is better to buy the derivative option over the underlying asset and therefore

the premium will increase.

Mathematically, the difference among the buying of the underlying asset and the ac-

tualized call option strike price S − Ke−r(T−t) will get bigger as the risk free rate will

increase.
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When buying a put option, the buyer of the option will get from the sale of the under-

lying asset the profits by using the put option at maturity instead of cashing out the sale

of the underlying asset right away. A rational investor could invest the amount of the sale

of the underlying asset at interest rate which is risk-free through the option’s life which is

not possible for a buyer of the derivative instrument as he will have to pay a premium and

wait until maturity to get money back. Thus, a put option represented by Ke−r(T−t) − S

will decrease in value as the risk-free rate will increase.

2.2.3 Lifetime of an option

When investing in option derivatives, the further the date of maturity of the option

there is a greater chance that the long position will have to exercise his contract. In fact,

the underlying asset price variations rises and the chances that the option will be exercised

increases as the expiration date of the option is far in the future. The relationship between

the maturity date and the price of a derivative contract is not linear. As time goes, the

derivative instrument loses time value. At maturity, the option is only worth its intrinsic

value or zero, but no time value is remaining in the option price.

2.2.4 Strike price of the option

If the strike price of a call option is low it has a better chance to be in-the-money at the

time of maturity. Conversely, the higher the strike price, the lesser the probability for the

call option to be exercised at expiration. However, for a put option, as the exercise price

rises, the option has a greater probability to be in-the-money at expiration. The higher the

strike price for a put option, the greater the chances that the put option will be exercised

at expiration.

13



2.2.5 Volatility

The standard deviation of percentage change in the underlying asset prices calculated

annually is called as the volatility. The long position of a call or a put is speculating on

an increase or decrease in the underlying asset price. The higher premium is willingly

paid by the trader while the volatility of the underlying asset is important as the option

contract has better chances to be in-the-money at expiration. Thus, the more important

the volatility, the higher the probability for the option to have some intrinsic value or being

out-of-the-money, the higher the premium is.

The risk-free interest rate, the date of maturity, the strike price of an option and the

underlying asset price are four factors that are used to determine the option’s premium by

the investors in the financial markets. Then again, underlying asset volatility is unknown

by investors as it implies for a trader to compute the underlying asset’s future volatility in

the derivative contract’s life. Unfortunately, no one is able to forecast and predict the future

and especially a future volatility of an underlying asset during a certain period of time of

an underlying asset. This means traders need to use a fundamental and technical approach

by using charts and graphs to best estimate the underlying asset’s future volatility.

It is very difficult to approximate the future volatility and requires traders to be as

precise as possible. In fact, a wrong estimation of volatility will produce wrong option

prices whose traders will not be able to take advantage of mispriced options.

With a total of five different factors, a trader is able to plug in the data in a theo-

retical pricing model and estimate the right price of an option. The fact that traders get

different prices for the same option contract is due to the volatility of the underlying asset

that each trader must estimate. If a trader believes the financial markets are strongly

efficient and reflect all public, private and inside information, “the best predictor of the

future volatility ought to be the implied volatility. Just how good a predictor of future
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volatility is implied volatility?” (Natenberg, 1994, p295). But a trader who agrees with

the strong efficiency of the markets is not able to find any investment opportunities as

he believes that options are correctly priced. Only traders with different opinions on the

underlying asset’s volatility as compared to what the marketplace implies about volatility

think options are mispriced. Traders are looking for mispriced opportunities between op-

tions to sell the overvalued options and buy the undervalued ones. Therefore, traders are

trying to come up with better volatility estimates than the implied volatility to implement

in the pricing models and decide a trading strategy according to the mispriced instruments.

2.3 Arbitrage opportunities

Arbitrage is an operation which involves no cash outlay by the trader and will result

in a sure profit for him. Arbitrage is inconsistent with the hypothesis of a strong efficient

market as no sure profit or abnormal return is possible in this type of market when no risk

is involved. In strong efficient markets, news are incorporated into prices right away and

therefore no profitable arbitrage strategies are possible as the assets are instantaneously

correctly priced. However, nowadays, arbitrage is frequently used by derivatives traders

while searching for mispriced derivative instruments related to underlying assets or mis-

priced derivative instruments between them.

To be able to find an arbitrage opportunity with a sure profit and no risk involved,

an option must verify several conditions. The scenario where no dividend is paid by the

underlying asset, a call option must satisfy all these conditions:

1. An option is a derivative financial instrument with limited risk. The maximum loss

that a buyer of such instrument can endure is equal to the option value the investor

paid for. Thus, an option premium cannot be negative: c ≥ 0.

2. At maturity, if the option’s strike price K is below the underlying asset price ST , the

trader exercises the call option and is worth an intrinsic value of ST −K. Though, if

the strike price of the contract at maturity is above or equal underlying asset price,
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the option has no intrinsic value and is worth zero: c = max(0, ST −K).

3. For a given time period τ , a call premium with strike price K1 must always be lower

than a call premium with strike price K2 if K1 > K2 : c(S, τ,K1) < c(S, τ,K2).

4. A call option premium cannot be greater in worth as compared to the price of the

underlying asset. If it was so then the trader would have bought the underlying asset

and not the derivative contract: c(S, τ,K) ≤ S. As negative premium of an option

is not possible, the option will also be worth nothing if the price of the underlying

asset is zero: c(0, τ,K) = 0.

5. c(S, τ,K) ≥ S − Ke−rτwhere τ is the elapse time between today and the date of

maturity of the option and Ke−rτ is the actualized call option strike price. This

inequality holds because a portfolio with a European call and a loan of amount K at

maturity, the call strike price, is no less than the portfolio amount with one underlying

asset at maturity.

These conditions also hold for underlying assets paying dividends but one modification

must be done on the last condition number 5. Paying a dividend usually implies a decrease

in price in the underlying asset by the same amount (at least in a strongly efficient market).

If we suppose that investors know when the dividends are being paid, the last condition

becomes c(S, τ,K) ≥ S −Ke−rτ −Div. This inequality can be proved as follow: consider

2 portfolios, one with a call c and a loan of amount K at maturity, the other with one

underlying asset and a loan equal to the dividend amount. At any time between the

present moment and call option expiry date, the call option with the loan of amount K at

option expiration date portfolio is worth the same or more than the second portfolio.

16



Chapter 3
Volatility

Volatility can be described as the percentage changes underlying contract prices. The

parameter for the volatility can be seen as a mix of negative and positive rates of return.

In mathematical terms, the volatility of an instrument is characterized by the standard

deviation and gives no information about the direction of the movement.

When computing the theoretical option value using the Black-Scholes-Merton model,

we take volatility as an input which is unknown and therefore traders must estimate this

data. Volatility is an important factor, if not the most important, in price determination for

the option. The well-known theoretical pricing model, Black-Scholes-Merton, takes volatil-

ity as a constant which implies the underlying asset will have the same volatility during

the entire life of the option but in reality, it is more appropriate to describe volatility as

a stochastic process. The constant volatility assumption over the life of the option is for

simplicity and quick computation of theoretical values.

To best estimate the volatility of an option, traders use the historical volatility and the

implied volatility given by the marketplace. The volatility factor is the hardest factor to

estimate but the more crucial in evaluating option theoretical values, as these derivative

contracts change quickly with changes in volatility. Commonly this is known as the volatil-

ity input that each trader uses in the model, which gives the trader an idea if the option is

overvalued or undervalued.

A trader who anticipates a higher volatility than the implied volatility will buy the

options that he believes are undervalued, hoping the marketplace will match the trader’s
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volatility estimate before the expiration of the options. The trader will therefore profit by

selling back the options once the implied volatilities are equal to his estimations. In the

case where a trader anticipates a lower volatility than the implied volatility, the trader will

find out that options are overvalued and will start selling options. The trader will realize a

profit if the implied volatility starts declining to reach out the trader’s volatility estimate

before the expiration of the options. This is why nowadays, traders in the pit at the Chicago

Board Options Exchange (CBOE) do not talk about buying or selling options anymore but

buying or selling volatility instead. Thus, traders find overvalued and undervalued options

as they come up with different volatility estimations than the ones in the marketplace to

then buy and sell the volatility. The more precise the estimation of the volatility, the better

the evaluation of the theoretical value of the option.

3.1 The different types of volatilities to consider

3.1.1 Future volatility

The volatility that each trader is interested in knowing since this information helps the

traders to decipher and get a theoretical price for the option is the future volatility. The

future volatility represents the price changes of the underlying contract in the future till

the option expiration date is reached. Future volatility is not known by any trader but

they all try to best estimate it.

3.1.2 Historical volatility

Derivatives traders also commonly call historical volatility as realized volatility. When

traders try to best guess the future volatility, one possibility is to refer to historical data

and see the different price changes of the underlying market in the past. No trader can

assume that past volatility will be identically reproduced in the future but this is a great

way to start estimating the future volatility. In fact, suppose volatility of an underlying

contract for the last five years, has been in the range [10%, 30%] constantly. An estimation
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for the future volatility of the underlying contract out of this range would hardly make

sense. An approximation in the past years range of 10% and 30% is more likely to be true

even though it has the exact same probability for the future volatility to be within the

defined interval or not.

To calculate the historical volatility of an underlying contract, various ways can be

employed but each way depends on two parameters: the past time span over which to

compute the volatility and the elapsed time among consecutive movements in price. For

example, a trader can analyze the 10-day underlying asset’s return during a period of five

years or a 6-month underlying asset’s return during a period of ten years.

Longer periods give an average of the past volatility while shorter periods reveal un-

usual and extreme characteristics about the past volatility. Thus, to fully examine the

past volatility, a trader must compare wide variety of scenarios with different time periods

and intervals between data. Surprisingly, the interval chosen by the trader does not seem

to impact a lot the final result about the historical volatility. In fact,“a contract which

is volatile from day to day is likely to be equally volatile from week to week, or month

to month” (Natenberg, 1994, p70) but at the end the different data seem to exhibit one

general volatility trend and level.

The historical volatility is given by the standard deviation of the return of the un-

derlying asset prior to the option contract issuance. Suppose we omit the dividends, the

underlying asset’s return can be computed as follow

RT =
ST − St
St

=
dS

S

where t < T . The instantaneous asset’s return follows a Brownian geometric movement
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such as

dS

S
= µdt+ σdv

where dv is a Wiener process. This means the variable dv is following a normal law with

variance dt and mean equal to zero. This is equivalent to say that RT is following a

lognormal law or ln(1 + RT ) follows a normal law. A major assumption of the Black-

Scholes-Merton model is this, where “price percentage changes are assumed to be normally

distributed, the continuous compounding of these price changes will cause the prices at

maturity to be lognormally distributed” (Natenberg, 1994, p62-63). Further explanations

about the Brownian motion of the underlying asset instantaneous return which is geometric

in nature and the lognormally property are given in section 3.b. The process for a stock

price, and 3.d. The lognormal properties of stock prices.

This gives the reason why lesser strike price option is cheaper than an option with a

higher strike price, where both strike prices are an equal amount away from the underlying

instrument price. For example, assume trading is done at $100 for an underlying contract

and presume the prices of the underlying contract are normally distributed. As a result,

the 90 put and 110 call should have theoretical values which are equal as the two are being

out-of-the-money by 10%. Yet, with a lognormal distribution assumption in the Black-

Scholes-Merton model, the 90 put will be less expensive as compared to the 110 call. From

this observation it can be concluded that a higher upside price movement is allowed by the

lognormal distribution as compared to the downside price movement hence there is better

chance for 110 call to be in-the-money than the 90 put.

The historical volatility in reality, is not constant as the Black-Scholes-Merton model

supposes so, but rather follows a stochastic process. In fact, the historical volatilities of one

underlying asset are going to be more or less important at moment t, varying over time,

but the Black-Scholes-Merton model will use one volatility constant which best describes

the historical movements of the underlying asset.

20



3.1.3 Forecast volatility

Forecast volatility is an attempt to estimate for an underlying contract the future

volatility in the options life span. Common options have expiration dates in 3, 6 or 9

months. Some services, technicians, proprietary trading firms or hedge funds try to fore-

cast volatility for periods similar to common options in the marketplace.

3.1.4 Implied volatility

Establishing upon underlying contract historical volatility and then computing the fu-

ture volatility has been criticized and every investor is aware that past figures do not predict

future figures. This is why traders must use the historical volatility of an underlying con-

tract as a constructive technical indicator. In fact, traders do not blindly and exclusively

use this tool to make trade decisions but they do use it to help them make trade decisions

combined with other factors, such as implied volatility and news catalyst.

Traders analyze option prices in the marketplace and deduce the volatility which is

employed by the theoretical pricing model known as Black-Scholes-Merton by iterating the

pricing formula. The volatility determined by the marketplace is called implied volatility. In

other words “the implied volatility is the volatility we must feed into our theoretical pricing

model to yield a theoretical value identical to the price of the option in the marketplace”

(Natenberg, 1994, p72). As the implied volatility is based on the present value of the

market, it is a better estimator than the historical volatility. The main idea is that the

base for the implied volatility is the options present prices which include future events. It

should be noted that implied volatility is subject to change overtime as option prices in

the marketplace and market conditions are constantly changing.
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Implied volatility has a major drawback that it assumes a diffusion process of the

underlying contract. This diffusion process for the underlying asset, in the case of the

Black-Scholes-Merton model, is Brownian geometric which does not really well represent

the reality. A diffusion process implies price changes are continuous and smooth, with no

gaps between consecutive prices. A good example to describe a diffusion process is the

temperatures in one location. The temperature might increase from 70F to 73F but for a

very small period of time in the middle, the temperature reached 71F and 72F. However,

is a diffusion process really representing well price changes in the marketplace? In fact,

prices might also follow a jump process. This means prices can jump to new prices overtime

without reaching intermediate values.

Most of the theoretical pricing models, whose Black-Scholes-Merton one, assume that

prices follow a diffusion process which can be pretty accurate when we look at the trading

sessions, prices change with no gaps. However, between two trading sessions, it is common

that an underlying contract closes at a particular price and opens at another price the next

morning. Even during the trading sessions, an illiquid underlying contract can be subject to

a jump process. Thus, the diffusion process assumed by the models make them convenient

and easy to use but these models do not truly correspond to the reality as financial markets

rather follow a jump-diffusion process.

Few pricing models have been developed assuming a jump-diffusion process in the

financial markets but they are not very used by traders due to the fact that they are math-

ematically more complex and require more inputs, which means more estimations to do

and therefore more chances to make mistakes in evaluating the parameters.

Traders do rely on the implied volatility given by the marketplace and particularly

pay more attention to the options which are at-the-money as they respond more quickly

to volatility changes than any other options (highest vegas are owned by at-the-money

options) hence they are better predictor of the future volatility. This method using implied
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volatilities to forecast volatilities of underlying contracts is the most commonly used among

traders. They use numerical schemes and programs (like the Newton-Rhapson algorithm

or by interpolation) to revert the pricing models and deduce implied volatilities and predict

future volatilities.

In the literal sense premium is the option price, traders among each other use the word

“premium” for referring to implied volatility. This makes more sense as the option price

is primarily dependent on the underlying contract volatility characteristics. Thus, traders

might say premiums are high meaning the implied volatility is high which is equivalent to

a high price for the corresponding option.

For example, suppose a 105 call with $0.96 as the theoretical value and a price of $1.34

in the marketplace. The basis for the theoretical value is 16% volatility (the volatility

estimate by the trader) whereas the basis for the price is 18.5% volatility (which is the

implied volatility). It will be mentioned by the traders that the option being overpriced in

terms of volatility rather than dollar value. Thus, traders rather see the 105 call option as

being 2.5% overpriced than $0.38 overpriced.

Once a trader is able to find out by iterating the Black-Scholes-Merton model the

implied volatilities, a comparison can be drawn between the implied volatilities and the

forecast volatilities to deduce if options are overvalued or undervalued. If implied volatil-

ities are low with respect to forecast volatilities, the trader will prefer to buy options as

they will appear to be underpriced. If implied volatilities are high with respect to forecast

volatilities, the trader will prefer to sell options as they will look overvalued. Thus, the

intelligent trader will take an appropriate trading strategy to play the overpriced and un-

derpriced options by remaining delta neutral during the time of his investment.
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3.1.5 Seasonal volatility

Another volatility kind that traders must take into consideration when investing: the

seasonal volatility. This particularly affects commodity traders but also other investors

dealing with stocks, futures and other instruments. For example, stocks and futures can be

very sensitive to volatility factors coming from the season of companies’ results. However,

the most subject to seasonal volatility are commodities like soybean, gold, wheat, corn

where price changes can vary by a lot due to extreme weather conditions. This is why

some commodity traders assign higher volatilities during certain time of the year due to

events sharply affecting commodity prices and rising price movements.

3.2 Volatility revisited

As we have seen several interpretations for volatility done by the traders, theoretically

speaking, the option value primarily depends on the underlying contract volatility which

occurs over the option’s life span. Some important characteristics about volatility are worth

to be notifying.

Volatility, just like prices of the underlying contract, can rise and fall. In fact, if we

look at the volatility index (also called the fear index or the VIX) traded on the CBOE,

Chicago Board Options Exchange, the VIX quoted 13.96 on April 26,2016, then reached

16.05 on May 4 2016, to then decreased to 13.63 on May 10, 2016. But unlike underlying

contract prices, which are apparently not bounded and can move in either direction freely,

it is likely to have “an equilibrium to which the volatility always returns” (Natenberg, 1994,

p273). Indeed, volatility seems to be bounded and fluctuates into a defined interval. Thus,

volatility always seems to reverse and erase previous rise or fall. Therefore, one way to

estimate volatility of an underlying asset may be finding a volatility equilibrium which has

variations below and above in comparable amounts around this equilibrium. In this case,

we say that volatility is mean reverting.
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This means that if the volatility is higher than the volatility average, the trader can

safely assume that it will go down to its mean value, and if the volatility is below the mean

volatility, it is safe to assume by the trader that it will go up to its mean value. Hence

volatility fluctuates around its mean value.

Volatility also expresses some trend characteristics. For example, there was an upward

trend in the VIX during the month of April 2016 or a downward trend during the period

February-March 2016. Moreover, during these major trends, the volatility showed some

small fluctuations since volatility decreased and increased in shorter time spans.

As volatility forecast remains a difficult exercise and are often incorrect, traders might

approach the problem differently and take a more general approach. Rather than trying to

figure out the correct future volatility, a trader may look at the volatility environment in

the financial markets and try to find the right strategies corresponding to current volatility

climate. For this, a trader must be able to answer several questions like what is the

historical trend regarding volatility and historical implied volatility?, what is the stability

of the volatility?, what is the underlying contract volatility long-term mean?

Consider for instance that a trader wants to invest in a 3-month to expiration option

and tries to coordinate an appropriate volatility strategy. The trader will look at historical

volatilities and historical implied volatilities over the past 3-month to determine a coherent

strategy. If the historical volatility is declining and is higher as compared to the mean

in the long-term, or there is a rise in the historical volatility and is under the long-term

historical mean, the trader has some good basis to assume that the volatility eventually

reach the long-term historical volatility mean at one point by either rising or falling. At

the same time, if the historical implied volatility has a similar trend than the historical

volatility, all indicators seem to perfectly indicate a path for the future volatility.

Scenarios are not always this simple in the real life. Historical volatility trends might

be in contradiction with historical implied volatilities and this is pretty frequently that a
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trader needs to face situations where the historical volatility is higher than the long-term

historical mean and falling whereas the historical implied volatility is increasing, or his-

torical volatility is higher (or lower) as compared to the long-term mean furthermore it

is increasing (or decreasing). In these situations, the trader is unlikely to have a strong

degree of confidence in his volatility estimation as some indicators point out one kind of

strategy and the others point to a different type of strategy.

Let’s look at a concrete example on how a trader could deal in this type of situation.

Suppose a 6-week option and a 19-week option are available in the marketplace. Both the

historical volatility and implied volatility for the 6-week option are well above the long-

term mean volatility and seem to keep increasing. In the case of the 19-week option, the

current implied volatility is higher as compared to the historical volatility which is greater

than the mean for the long-term volatility. A trader might get confused by having these

kind of contradictory signals as to whether one should sell or purchase the volatility for

both options. Nevertheless, a much more acceptable risky strategy called time spread will

be devised by the trader. In this case, there is more probability that the volatility for the

19-week option will revert to its mean than the 6-week option therefore the trader would

rather short the volatility in the 19-week option than the short-term option. At the same

time, the trader could long the 6-week option and would therefore be hedged along a rising

volatility continuously over the next 6 weeks of the underlying contract.

By selling the long-term option and purchasing the short-term option, the trader is

taking a position with acceptable risk characteristics. The trader’s position will not be

without risk as if historical volatility falls below its long-term mean or reaches it and im-

plied volatility remains high, the position will show a substantial negative theoretical edge.

However, the trader attempted to pick a right strategy that fits his market conditions with

an acceptable margin for error and tried to get the best risk/theoretical edge ratio possible.
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3.3 Implied vs historical volatility

Implied volatility reflects a consensus volatility among all market participants con-

cerning the underlying contract future volatility in the option remaining life span. As

traders expect more fluctuations in the underlying contract, the implied volatility rises;

as traders expect fewer fluctuations in the underlying contract, the implied volatility de-

creases. Market traders assume that the historical volatility is a good data to predict what

will happen in the future and therefore a changing historical volatility in the underlying as-

set will conduct traders to modify the implied volatility. “However, fluctuations in implied

volatility are usually less than fluctuations in historical volatility” (Natenberg, 1994, p290).

Moreover, the further the expiration of the option, the more likely the underlying

contract volatility will move back to its mean value. This explains why long-term options

have forecast volatilities closer to their long-term historical volatility means than short-term

options where the forecast volatilities can sometimes be quite different from the long-term

mean depending on the market conditions. Thus, as long-term options have a stronger

mean reverting characteristic of volatility compared to short-term options, the short-term

options implied volatility will rise more as compared to the implied volatility of long-term

options. In the same case, if historical volatility falls, the implied volatility of short-term

options will decline more as compared to the long-term options implied volatility. Hence,

it can be concluded that the main factor affecting long-term option implied volatility is the

historical volatility of the underlying contract while significant events and news, affecting

the underlying contract to become more volatile, will play a bigger role in the short-term

options implied volatility. This is why for short-term options, it is not rare to see an

implied volatility which is less correlated to the historical volatility. In some cases, the

implied volatility and historical volatility can even give contradictory results to the market

traders.
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For example, if the marketplace is aware of chances that some important events will

take place in the future, there can be an increase in the implied volatility even though

historical volatility may have been low comparatively. This is a reason why traders see the

implied volatility to drastically drop after an event has happened as all the uncertainty

about the event has been removed from the market.

3.4 Implied vs future volatility

As truly believed by several traders, all the information available which affects the

underlying asset value is reflected by the price and therefore traders believe that the implied

volatility of options should be the best estimation of the future volatilities. But how good

is the implied volatility of an option predicting the future volatility?

Once options have expired, traders may look back to the historical implied volatili-

ties and compare them with the real volatilities that actually occurred over the option’s

life span to assess how accurately the implied volatility of an option estimates the future

volatility. By doing this experience several times, traders have come up to a conclusion.

When expiration of the option is relatively far in the future, the future volatility is much

more stable than it is with few days remaining before expiration of the derivative contract.

“This is logical as if we recall the mean reverting characteristics of volatility are much less

certain over short periods of time than over long periods” (Natenberg, 1994, p295). In

fact, with less days left until expiration a major change in the underlying contract will lead

to volatility rising sharply while on the other hand, a quiet underlying asset which sits

still in the last few days before expiration in life of an option will cause a sharp drop in

volatility. Thus, a trader will act differently according to the amount of time remaining to

the option’s life.

The trader is aware that volatility is more stable when considering a longer period of

time and therefore implied volatility is relatively stable. As expiration approaches, the
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volatility of an underlying asset can become very unstable and the implied volatility can

be subject to a lot of fluctuations. The main idea here is that market traders try to avoid

short-term bad luck.

With a considerable time remaining to expiration, a trader is aware that many events

which can affect the underlying asset’s volatility differently will compensate between each

other giving as a result a relatively stable implied volatility for an option expiring in a long

period of time. However, with few days left before expiration, only a limited number of

future events affect the implied volatility of the derivative contract giving the restricted

number of events an important impact on the implied volatility of the option. One impor-

tant negative event with few days left to expiration of the option will dangerously impact

the trader’s strategy as the volatility will move in the opposite direction of the trader’s

estimation: this is short-term bad luck.

3.5 Conclusion

A trader who has been involved in investing in stocks at the beginning of his career

might wonder why the volatility factor is so important in option trading. He probably has

been trading and betting on the direction of stock prices and indexes where volatility was

not as much a consideration as in option trading. The stock trader is aware that he can

pursue some directional strategies in the option market (by being long or short delta) and

questions why traders bother with volatility rather than the direction of option premiums.

This is due to the fact that traders find simpler to predict volatility rather than forecast

market directions.

Moreover, volatility strategies can offer substantial profits and offer a better risk/reward

ratio than directional strategies by reducing the trader’s risk exposure.

Changing a volatility assumption can lead to drastic effects on options value. In fact,

at-the-money options will suffer the highest variation in terms of dollar amount while the
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most quickly responding to a change in volatility assumption in terms of percentage change

will be the out-of-the-money options.

Given the importance of a good estimation of the volatility, traders spend a considerable

amount of time determining the volatility. Gathering all information from the different

volatilities previously seen, the intelligent trader will be able to take a smart decision on

his final volatility estimation.

The trader will look for option trading strategies with high risk/reward ratio, and

which do not result in a catastrophic loss if his volatility estimation is wrong. A trader

must always consider the possibility of error and because predicting volatility remains a

difficult task, the trader will pick strategies having margin for error higher as compared to

rest. It is not possible for a trader to carry on for a long time if his positive theoretical

edge disappears when the volatility turns out to be slightly different from his volatility

estimations.

Finally, every market has its own volatility characteristics and a trader must not gen-

eralize any of these characteristics and apply them blindly to each market. An intelligent

trader will mix the technical characteristics of volatility with each feature of volatility of

a given market (foreign currencies, interest rates, commodities, futures, stocks) to take a

final decision.
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Chapter 4
The Black-Scholes-Merton model

4.1 Introduction to generalized Wiener processes

A stochastic process can be defined as changes in value of a variable in an unpredictable

way over time. Stock prices in the financial markets are following discrete-variable, discrete-

time stochastic processes as they can take discrete values only (since stock prices are given

in cent multiples), and price changes can occur only during trading hours on the exchange.

However, it can be very practical for many purposes to assume that stock prices follow

a continuous-variable (within a defined interval the stock price may assume any value),

continuous-time (the stock price can change in value at any time) stochastic process. In

fact, this process can be useful to understand the pricing of options and other derivatives

instruments.

A Markov process is a stochastic process type in which for future value prediction, only

the current value of variable is required. The variable’s past values and how the present

value has emerged is deduced using the past values is not of interest. Markov process is

followed by stock prices. For instance, let the price of Apple stock be $97. A stock trader

who tries to predict the future direction for the Apple stock should not consider the past

prices of the Apple stock that occurred in past one week, month or year but should rather

focus only on one relevant information which is the current stock price $97.

As the stock trader cannot be certain about his future stock price predictions, he

must express a probability percentage for each predicted possible outcome. As future stock

prices are independent from past prices, the Markov process is the most realistic probability

distribution for stock prices as it implies no relationship between past and future data.
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A special type of Markov stochastic process is called Wiener process which has a vari-

ance rate of 1 per year and mean change of zero. A Wiener process is followed by variable

v if:

• the change ∆v during a small time period ∆t is ∆v = ε
√

∆t

• the values of ∆v for any two different intervals of time, ∆t, are independent

Hence using the Wiener process definition, the variable ∆v has a normal distribution with

mean of ∆v = 0

variance of ∆v = ∆t

and Markov process is followed by it.

Take into consideration the change variable value v over long period of time T =

v(T ) − v(0). It can be observed as the aggregate of variable value changes in N small

intervals each having a length of ∆t where

N =
T

∆t

v(T )− v(0) =
N∑
i=1

εi
√

∆t

where εi (i=1, 2,..., N) are distributed φ(0,1) and are independent between each other

(definition of a Wiener process). Obviously, the smaller ∆t, the more precise the variable

value v changes can be observed. Saying other way round, as ∆t→0, the more intervals N

we have and a better detailed representation of the changes in variable v value is achieved.
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Hence, the time period T = v(T )− v(0) has a normal distribution with

mean of [v(T )− v(0)] = 0

variance of [v(T )− v(0)] = N∆t = T

For example, suppose a variable v that follows a Wiener process. Assume that t0 = 25

years. This means that at the year 1 end, the variable v value is distributed normally

having a variance of 1 and a mean of 25. At 10 years end, it is still distributed normally

with a variance of 10 and a mean of 25.

A stochastic process can be defined by a variance rate and a drift rate. The variance

rate is the variance per unit of time whereas drift rate is the mean change per unit of time.

A Wiener process dv = adt in stochastic calculus is equivalent to ∆v = a∆t in the limit as

∆t→0. Explored uptill now, the Wiener process dv has a variance rate of 1 and a drift rate

of zero. A zero drift rate implies that at any future time, the variable v expected value is

equal to the current value which is zero. The meaning of variance rate equal 1 is that in

a time interval T, the variance for the variable v is equivalent to T. A Wiener process, in

general form, for a given variable x in terms of dv is presented as

dx = adt+ bdv (4.1)

where a and b are constants.

Let’s focus on the equation (4.1) of Wiener process in a general form. The variable x

has an expected drift rate given by a per unit of time is shown by the term adt. Thus, the

variable x rises by the quantity aT in a period of time T. To add the effect of variations

or noise to the trajectory of variable x, the bdv term is added. Thus, the noise present is
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equal to the product of b and the Wiener process dv. Wiener process dv has the variance

rate per unit time equals 1, hence, bdv has a variance rate b2 per unit of time. Change in

value of the variable x, is given by ∆x, over a small interval of time ∆t

∆x = a∆t+ bε
√

∆t

where ε has a standard normal distribution and ∆x has a normal distribution with

∆x mean = a∆t

∆x variance = b2∆t

An Itô process is classified as a general form of Wiener process in where the parameters a

and b are functions of time t and the underlying variable x. This implies that the Itô process

variance rate and expected drift rate are subject to change over time. Mathematically, we

can write an Itô process as below

dx = a(x, t)dt+ b(x, t)dv

This Itô process can be classified as a Markov process since the changes at a given time

t in variable x are dependent solely on the value of x at that particular time t, and does

not use the value of x at previous times. In a small interval of time from t to t + ∆t, the

change in variable x is given from x to x+ ∆x where

∆x = a(x, t)∆t+ b(x, t)ε
√

∆t (4.2)

4.2 The stock price process

A stock price does not follow the general form of Wiener process which has constant

variance rate and expected drift rate as it fails to take into account stock prices’ one
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important element. The missing element is known as the expected required rate of return

which is not dependent on price of stock.

For example, if expected return per year required by a trader is 12% when the stock

prices $15, the same rate of return will be required when the stock price increases to $50

given the market conditions remain the same. Therefore, the assumption that expected

drift rate is constant is not correct, a better assumption is that the expected return is

constant which equals the expected drift rate ratio stock price.

Let S be the stock price at a given time t, the expected drift rate in S can be seen as µS

where µ is the expected rate of return parameter which is constant. Hence, in a small time

duration ∆t, the increase expected in S equals µS∆t. Let’s assume there is no uncertainty

or variability about the expected return (b = 0), the generalized Wiener process equation

becomes

∆S = µS∆t

In the limit, as ∆t→0

dS = µSdt

which is equivalent to

dS

S
= µdt

Integrating above equation with limits given by time 0 and time T , the following equation

is derived

ST = S0e
µT

where the stock price at time 0 and time T are given by S0 and ST respectively. Thus,

with no uncertainty, the continuously compounded growth rate for stock price is µ per unit

of time. There is some uncertainty in reality. It is right to assume that the variation in

percentage return over a short time duration ∆t is same independent of the stock price.
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Hence this implies that the uncertainty level is the same for the investor regarding the

percentage return with stock price being either $15 or $50. Thus, the change in percentage

return standard deviation should be proportionate to the stock price so that the model can

be written as

dS = µSdt+ σSdv (4.3)

or

dS

S
= µdt+ σdv (4.4)

where the variable µ represents the expected rate of return of annualized stock and the

variable σ represents the stock price volatility.

As a rational investor, the more risk a trader is willing to take, the higher return he is

expecting. Thus, the value µ should depend on the risk taken by the trader but also on

the interest rates level in the country. As a matter of fact, the expected return increases

on any given stock as the interest rates rise in the economy. The variable µ is equal to the

r which is the risk-free rate in a world that is risk-neutral. Luckily, the derivative price

which is dependent on a stock is not dependent on the parameter µ. Yet, the parameter σ,

which represents the volatility of the stock price, plays an important role in price of any

derivatives.

The model of the stock price behavior in equation (4.4), known as geometric Brownian

motion, is a representation of the process of the stock price in the real world. The version

of the model in discrete-time is

∆S

S
= µ∆t+ σε

√
∆t (4.5)

where the term ∆S represents the stock price S change over a short time duration ∆t, ε

follows a standard normal distribution, the parameter σ represents the stock price volatility

and the parameter µ represents the expected rate of return of the stock per unit of time.
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The left-hand side of the equation represents the stock’s rate of return over a short

time duration ∆t. The expected rate of return is given by the term µ∆t. The term σε
√

∆t

is the return’s stochastic component. The stochastic component variance, hence the rate

of return of whole stock is σ2∆t. Finally, the discrete-time version of the model shows that

∆S/S is distributed normally having a mean µ∆t and standard deviation σ
√

∆t

∆S

S
∼ φ(µ∆t, σ2∆t) (4.6)

For example, consider a non-dividend paying stock with continuously compounding

expected return of 10% per year and a 20% volatility per year. The stock price process is

given by

dS

S
= 0.10dt+ 0.20dv

If at a particular time stock price is given by S and stock price increase is given as ∆S in

the next short time duration ∆t

∆S

S
= 0.10∆t+ 0.20ε

√
∆t

Suppose a time interval of 1 week such that ∆t = 0.0192 years, we have

∆S = 0.00192S + 0.0277Sε (4.7)

4.3 Itô’s lemma

The stock option price is a function of time and price of the underlying stock. Gener-

ally speaking, derivative instrument price is a function of time and a stochastic variables

underlying contract.

Assume the variable x value follows an Itô process given in equation (4.2)

dx = a(x, t)dt+ b(x, t)dv
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In this equation, a and b are functions of x and t and dv is a Wiener process. The drift

rate is a and the variance of the variable x is b2. It is shown by Itô’s lemma that a function

G of variable x and time t follows the process

dG = (
∂G

∂x
a+

∂G

∂t
+

1

2

∂2G

∂x2
b2)dt+

∂G

∂x
bdv (4.8)

where dv is a Wiener process similar to the Itô process in above equation. Hence an Itô

process is followed by G with a drift rate as

∂G

∂x
a+

∂G

∂t
+

1

2

∂2G

∂x2
b2

and a rate of variance given by

(
∂G

∂x
)2b2

From Itô’s lemma (4.8) and equation (4.3) of the stock price behavior model, we can

deduce the process followed by the function G of S and t

dG = (
∂G

∂S
µS +

∂G

∂t
+

1

2

∂2G

∂S2
σ2S2)dt+

∂G

∂S
σSdv (4.9)

4.4 The lognormal property of stock prices

Let’s use for the derivation of the process, the Itô’s lemma followed by lnS where

process in equation (4.3) is followed by S. Defining G = lnS, the process followed by G of

S and t becomes

dG = (µ− σ2

2
)dt+ σdv (4.10)

Since in the above equation σ and µ are constant, a generalized Wiener process is followed

by G = lnS with drift rate given as µ − σ2/2 and variance rate σ2 both of which are

constants. Between time 0 and time T , the change in G follows a normal distribution with

38



variance σ2T and mean (µ− σ2/2)T . In other words, we have

lnST − lnS0 ∼ φ[(µ− σ2

2
)T , σ2T ]

or

ln
ST
S0

∼ φ[(µ− σ2

2
)T , σ2T ] (4.11)

which is equivalent to

lnST ∼ φ[lnS0 + (µ− σ2

2
)T , σ2T ] (4.12)

where stock prices at time 0 and T are given by S0 and ST respectively and normal distri-

bution is represented by φ.

The equation (4.12) shows that lnST is normally distributed and therefore it implies

that a price of stock at time T , given today’s price, follows a lognormal distribution with

σ
√
T as the standard deviation. Based on the assumption of geometric Brownian motion,

the Black-Scholes-Merton model supposes that the percentage changes are continuously

compounding in stock price which are lognormally distributed.

Let’s take as an example a stock having an initial price of $30, a volatility rate of 23%

annually and an expected return per annum of 18%. Hence the stock price ST probability

distribution in 6 months is given by equation (4.12)

lnST ∼ φ[ln 30 + (0.18− 0.232/2)× 0.5, 0.232 × 0.5]

lnST ∼ φ[3.478, 0.02645]

According to the normal distribution table, 1.96 is the approximate value of the 97.5

percentile and hence, the probability that a normal distribution variable has a value lying

in 1.96 standard deviations of its mean is 95%

3.478− 1.96
√

0.02645 < lnST < 3.478 + 1.96
√

0.02645
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23.55 < ST < 44.56

Hence the chances that the stock price will be in the interval [23.55 , 44.56] in a period of

6 months are 95%.

The stock price ST follows a lognormal distribution and therefore can assume values

from zero till infinity. The lognormal distribution unlike the normal distribution is posi-

tively skewed and the variance V ar(ST ) and the expected value E(ST ) is as follow

E(ST ) = S0e
µT

V ar(ST ) = S2
0e

2µT (eσ
2T − 1)

Suppose a stock price of $25, with volatility rate of 35% annually and expected rate of

return 15% per annum. The expected price of stock and its variance in 1 year will equal

E(ST ) = 25e0.15×1 = $29.05

V ar(ST ) = 252e2×0.15×1(e0.352×1 − 1) = 109.95

Thus, the stock price standard deviation in 1 year is
√

109.95 = 10.49.

4.5 The continuously compounded rate of return distribution

The stock prices which are lognormally distributed at time T can give useful infor-

mation regarding the probability distribution of the rate of return, which is continuously

compounded, earned on a stock from time 0 to time T . Let the continuously compounded

annual rate of return on a stock between 0 and T be defined as x. We have

ST = S0e
xT
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such that

x =
1

T
ln
ST
S0

(4.13)

and therefore

x ∼ φ(µ− σ2

2
,
σ2

T
) (4.14)

Hence the annualized rate of return continuously compounded follows a normal distribu-

tion with standard deviation σ/
√
T and mean µ − σ2/2. As there is a rise in T , there is

a decrease in standard deviation of x. In fact, the longer the time duration T , the more

certain we are about the average rate of return per year for a stock price.

Let’s take for example a stock with annual expected rate of return of 15% and annual

volatility of 18%. The probability can be calculated for the average rate of return com-

pounded continuously realized over a time period of 4 years is distributed normally with

mean equal to

0.15− 0.182

2
= 0.1338

or 13.38% per annum and a standard deviation given by

√
0.182

4
= 0.09

or 9% per annum. The chances that a variable following normal distribution lies within an

interval of 1.96 standard deviations of its mean is 95%, we have

13.38− 1.96× 9 < x < 13.38 + 1.96× 9

or

−4.26% < x < +31.02%
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4.6 The annualized expected rate of return parameter µ

The expected return for a stock is given by the parameter µ and is required by an

investor depends on the risk associated with the stock but also with the economy’s interest

rates. The greater the interest rates and the risk, the more will be the expected return. It

can be seen that stock option value, if written in terms of the underlying contract value, is

not dependent on the expected return µ at all. However, it is important to notice that µ∆t

is the percentage change expected in the stock price over a small time duration ∆t but µ

is not the stock’s expected return compounded continuously. The annualized continuously

compounded return over time duration T is the given variable x in equation (4.13)

x =
1

T
ln
ST
S0

with expected value

E(x) = µ− σ2

2

The difference between the expected continuously compounded return x from µ is

important. Let’s take huge number of time duration ∆t and let Si be the stock price

reached by the end of the ith interval. Now, the stock price returns mean in each interval

is a near approximation to µ and this is why µ∆t is a good approximation of the arithmetic

mean of the ratio given by ∆Si/Si. However, over the whole period of time T , the expected

return is stated using a compounding interval ∆t which is close to µ− σ2/2 and not close

to µ.

Mathematically, we have seen previously that the expected value of a lognormal distri-

bution is

E(ST ) = S0e
µT

Taking logarithms, we get

ln[E(ST )] = ln(S0) + µT
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Now, the fact that ln is a nonlinear function means that ln[E(ST )] > E[ln(ST )] so this

leads to

E[lnST ]− lnS0 < µT

as S0 is known, lnS0 = E[lnS0] and we obtain

E[ln
ST
S0

] < µT

which can be written as

E(x) = µ− σ2

2
< µ

4.7 The volatility parameter σ

The uncertainty measure about the rates of return of the stock is the volatility param-

eter σ of a stock. Commonly volatility of a stock can be defined as standard deviation

of the stock returns compounded continuously. From the equation (4.6) of the percentage

changes in price of the stock over a small time duration, we have

∆S

S
∼ φ(µ∆t, σ2∆t)

Thus, when ∆t, the period of time is small, σ2∆t nearly approximates the variance

of the stock price percentage change over the time duration ∆t. This implies that σ
√

∆t

nearly approximates the standard deviation of the stock price percentage change over time

period ∆t.

Suppose that stock price currently is $40 and σ = 20% annually. The standard devia-

tion of the stock price percentage change in 1 week is close to

20

√
1

52
= 2.77%
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Move in the stock price by 1-standard deviation in 1 week is given as 40×0.0277 = 1.1094.

Future stock price uncertainty which is computed using the standard deviation will

increase nearly by the same proportion as the square root of how long the time period in

future we consider. For instance, the stock price standard deviation in 16 weeks is nearly

equal to four times the standard deviation attained in 1 week.

4.8 The Black-Scholes-Merton differential equation: the idea un-

derlying

The differential equation used in the Black-Scholes-Merton model is an equation which

shows the relation between the derivative price and the non-dividend paying stock price.

Consider a portfolio which is riskless having a single position in a derivative contract and

other single position in the underlying contract. If arbitrage opportunities are nonexistent,

the portfolio returns should equal interest rate r which is risk-free. This portfolio is possible

to set up since the same uncertainty affects the derivative price and the underlying contract:

the stock price fluctuations. When an appropriate portfolio with a derivative contract and

one stock is made, the loss or gain by the stock position is mostly counterbalanced by the

loss or gain from the derivative position. By the trading day end, the portfolio value is

known without any uncertainty.

Let’s assume that a stock price change given by ∆S results in change in the price of a

European call option given by ∆c such that

∆c = 0.3∆S

This implies that the riskless portfolio must contain:

• 0.3 shares in long position

• In one European call option, a short position
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Hence, if the price of stock of the option increases by 20 cents, the call option price will

increase by 6 cents and therefore, the 0.3 × 20 = 6 cents gain on the shares will be com-

pensated by the 6 cents loss on the short option position.

In the Black-Scholes-Merton model, the portfolio is only riskless for instantly small

time duration and it should be frequently adjusted by traders.

For example, the relationship between ∆c and ∆S is subject to change over time and

in our example, the equation ∆c = 0.3∆S today might become ∆c = 0.5∆S in 2 weeks.

This means that to retain a portfolio which is riskless, a trader must now own a short

position in a European call option and a long position in 0.5 shares. Thus, for portfolio’s

every short call option, the trader must long an extra 0.2 shares.

Finally, one key element of the pricing formula of Black-Scholes-Merton model is that

the return obtained is the interest rate which is risk-free got by riskless portfolio in a very

short time duration.

4.9 The Black-Scholes-Merton differential equation: derivation

Take the process of the stock price process to follow equation (4.3) that we have de-

veloped earlier

dS = µSdt+ σSdv

Now, assuming that c is the call option or some other derivative instruments with

underlying price S. The variable c can be defined as function of the time t and S represented

in the equation (4.9)

dc = (
∂c

∂S
µS +

∂c

∂t
+

1

2

∂2c

∂S2
σ2S2)dt+

∂c

∂S
σSdv (4.15)
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The discrete version of the two previous equations (4.3) and (4.15) are

∆S = µS∆t+ σS∆v (4.16)

and

∆c = (
∂c

∂S
µS +

∂c

∂t
+

1

2

∂2c

∂S2
σ2S2)∆t+

∂c

∂S
σS∆v (4.17)

where ∆S and ∆c are the changes in variable S and c over a small time duration ∆t.

Now, we have seen that the Wiener processes underlying c and S in the two previous

equations, the ∆v(= ε
√

∆t), are the same and therefore can be eliminated by constructing

the following portfolio

−1 : derivative and + ∂c/∂S : shares

The trader holding the given portfolio is long ∂c/∂S of shares and short one derivative

contract. Define Π as the value of the portfolio of the trader. Thus, we have

Π = −c+
∂c

∂S
S (4.18)

The change ∆Π in portfolio value in the time period ∆t is given by

∆Π = −∆c+
∂c

∂S
∆S (4.19)

Now into the above equation (4.19) substitute equations (4.16) and (4.17) to get

∆Π = (−∂c
∂t
− 1

2

∂2c

∂S2
σ2S2)∆t (4.20)

The above equation does not contain a Wiener process ∆v, the portfolio is riskless during
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the period ∆t. Moreover, one of the assumptions is that the riskless portfolio yields the

return similar to other risk-free securities which are short-term. If this is not the case,

possible arbitrage opportunities appear for the trader. Thus, we have

∆Π = rΠ∆t (4.21)

where risk-free interest rate is given by r.

Substituing into the above equation (4.21), the equations (4.18) and (4.20), we have

(
∂c

∂t
+

1

2

∂2c

∂S2
σ2S2)∆t = r(c− ∂c

∂S
S)∆t

so that

∂c

∂t
+ rS

∂c

∂S
+

1

2
σ2S2 ∂

2c

∂S2
= rc (4.22)

The above equation is the Black-Scholes-Merton differential equation and corresponding to

the various derivatives it has many solutions that can be defined with underlying variable

S. The solution of the Black-Scholes-Merton differential equation given as a function c(S, t)

represents the derivative instrument’s theoretical price.

The portfolio used Black-Scholes-Merton differential equation derivation is not risk-

free permanently. It is risk-free for an infinitesimally small time duration and needs to

be rebalanced as S and t change. The comparative proportions of the underlying stock

and the derivative contract need to be frequently adjusted to maintain the riskless portfolio.

4.10 Risk neutral valuation

In pricing of derivatives a very essential instrument is the risk-neutral valuation. In the

Black-Scholes-Merton differential equation (4.22), no variables are impacted by investors

showing the risk aversion. As a matter of fact, the variables that show in the differential
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equation are the stock price volatility, the current stock price, the risk-free rate of interest

and the time. None of these variables are dependent on risk preferences of investors.

If the variable µ, the annualized expected return of a stock which does depend on the

level of risk taken, were to be appearing in the differential equation, the Black-Scholes-

Merton model would be dependent on risk preferences of investors. The variable µ drops

out while doing the derivation for the differential equation which brings up an important

point. As the level of risk µ does not enter the equation, when evaluating c any combination

of risk preferences can be used. Hence leading us to assume that investors are risk neutral.

Taking the scenario with risk neutral behavior of investors, the expected return yielded

is the risk-free rate r on each and every investment assets. Furthermore, the future cash

flows can be discounted at risk-free interest rate. Hence this assumption that the world is

risk neutral reasonably simplifies the derivatives analysis.

Consider a derivative paying off at some time in future. In a world that is risk neutral,

we can value the derivative as follow:

• The underlying asset expected rate of return is the risk-free rate r (i.e. µ = r)

• Use the derivative to calculate the expected payoff

• Expected payoff should be discounted at the risk-free interest rate

It should be noted here that evaluation that are risk-neutral is not a real tool for Black-

Scholes-Merton differential equation solutions. Yet, the solutions are applicable in every

kind of worlds, whether risk neutral or not.

When considering a risk-averse world, two steps out of three from the procedure to

value a derivative change. Firstly, the underlying contract’s expected return is unequal to

the interest rate that is risk-free but equal to a rate r∗ where r∗ > r. Secondly, the discount

rate is the expected rate of return r∗ and no more the risk-free rate r. Apparently these
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two changes exactly offset the effect of each other in this procedure.

4.11 The Black-Scholes-Merton pricing formulas

The most famous Black-Scholes-Merton differential equation solutions are the pric-

ing formulas of Black-Scholes-Merton model for European put and call options. In the

book ”Pricing Derivatives: The Financial Concepts Underlying the Mathematics of Pricing

Derivatives”, Ambar Sengupta provides a clear and easy proof of the Black-Scholes-Merton

pricing formulas.

Let ST be the price of stock at time T , and let K be the European call option strike

price. Define QT , the pricing probability measure when the numeraire is unit cash at time

T , and Q∗T , the pricing probability measure when the numeraire is the asset itself at time

T . The maturity of a call option at time T has two possible situations:

• ST < K : means out-of-the-money call and hence option is worthless

• ST > K : the trader receives one underlying asset worth ST by paying K

The forward priced in time T cash of the European call option is given by

EQT (ST )Q∗T [ST > K]−KQT [ST > K]

or

S0e
rTQ∗T [ST > K]−KQT [ST > K]

which is equivalent to

(FST ) (Q∗T [ST > K])︸ ︷︷ ︸
units of the underlying asset at time T

−K (QT [ST > K])︸ ︷︷ ︸
in time T cash
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where (FST ) is the underlying stock’s forward price at a given time T , which is the call

option expiration date.

The European call premium equivalent present value is therefore equal to

(FST )e−rTQ∗T [ST > K]−Ke−rTQT [ST > K]

or

S0Q
∗
T [ST > K]−Ke−rTQT [ST > K] (4.23)

Assume the percentage price changes in the underlying asset are normally distributed.

Thus, the continuous compounding of the percentage price changes cause the price ST to

be lognormally distributed with respect to the forward pricing measure QT . Then, we have

ST = eYT (4.24)

where YT is a Gaussian random variable with respect to the measure QT . The random

variable YT has an expected value equal to

EQT (eYT ) = e
EQT (YT )+ 1

2
σ2
YT (4.25)

Substituting equation (4.24) into the above equation (4.25), we have

EQT (ST ) = e
EQT (ST )+ 1

2
σ2
lnST

where σ2
lnST

= EQT [YT − EQT (YT )]2 is the variance of the random variable YT . Now,

EQT (ST ) represents the underlying asset forward price in time T cash. Thus, we have

EQT (ST ) = e
EQT (YT )+ 1

2
σ2
lnST
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or

ln(FST ) = EQT (YT ) +
1

2
σ2

lnST

which is equivalent to

EQT (YT ) = ln(erTS0)− 1

2
σ2

lnST

Suppose vYS is the exchange rate between S and Y and consider a financial instrument

IB such that:

IB =

 1 unit of numeraire S if event B occurs

0 if event B does not occur

Thus, IB is worth:

IB =

 QS(B) units of S

QS(B)vYSEQY units of Y

From the point of view of Y , IB is worth EQY (vYS 1B) units of Y. Then, we have the

following equality

QS(B)EQY v
Y
S = EQY (vYS 1B)

which is equivalent to

QS(B) =
EQY (vYS 1B)

EQY v
Y
S

We know that YT is a random variable from Gaussian distribution with mean m and

variance σ2 with respect to the probability measure QT . Thus, we have

Q∗T (B) =
EQT (eYT 1B)

EQT (eYT )
for all events B

which is equivalent to

Q∗T (B) =

∫
feYT dQT

EQT (eYT )
=

∫
fdQ∗T (4.26)
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Now, substituing f = ewYT in the equation (4.26), we obtain

∫
ewYT dQ∗T =

∫
ewYT eYT dQT

EQT (eYT )

or ∫
ewYT dQ∗T =

EQT (eYT (w+1))

EQT (eYT )
= EQ∗

T
(ewYT )

where we have

EQ∗
T
(ewYT ) = e(w+1)E(YT )+

(w+1)2σ2YT
2 EQT (e−YT )

or

EQ∗
T
(ewYT ) = e(w+1)E(YT )+

(w+1)2σ2YT
2

−EQT (YT )−
σ2YT
2

which is equivalent to

EQ∗
T
(ewYT ) = e

w(EQT (YT )+σ2
YT

)+ 1
2
σ2
YT
w2

Therefore, YT is a Gaussian random variable with respect to Q∗T with mean EQT (YT ) +σ2
YT

and variance σ2
YT

= σ2
lnST

.

Let’s recall the equation (4.23) of the European call option present value given by

S0Q
∗
T [ST > K]−Ke−rTQT [ST > K]

Now, as we know that YT = lnST and the variable YT is Gaussian with mean EQT (YT ) and

variance σ2
lnST

, we have

QT [ST > K] = QT [YT > lnK] = QT [z <
EQT (YT )− lnK

σlnST

]
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or

QT [ST > K] = QT [z <
ln(FST )− 1

2
σ2
YT
− lnK

σYT
] = QT [z <

1

σYT
ln(

FST
K

)− 1

2
σYT ]

In this equation z is a standard normal Gaussian variable with mean 0 and variance 1.

So QT [ST > K] = N(d2) where

d2 =
ln(FST

K
)

σYT
− 1

2
σYT

Let’s apply the same process to express Q∗T [ST > K]. The variable YT is Gaussian with

mean EQT (YT ) + σ2
lnSt

and variance σ2
lnST

with respect to Q∗T . We have

Q∗T [ST > K] = Q∗T [YT > lnK] = Q∗T [z <
EQT (YT ) + σ2

lnST
− lnK

σlnST

]

or

Q∗T [ST > K] = Q∗T [z <
ln(FST )− 1

2
σ2
YT

+ σ2
YT
− lnK

σYT
] = Q∗T [z <

ln(FST
K

) + 1
2
σ2
YT

σYT
]

where z is a standard normal Gaussian variable having variance = 1 and mean = 0.

So Q∗T [ST > K] = N(d1) where

d1 =
ln(FST

K
)

σYT
+

1

2
σYT

Substituting Q∗T [ST > K] and QT [ST > K] into equation (4.23) leads to the pricing

formula for the Black-Scholes-Merton model for a European call option

c = S0N(d1)−Ke−rTN(d2) (4.27)
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where

d1 =
ln( e

rTS0

K
)

σ
√
T

+
1

2
σ
√
T (4.28)

and

d2 =
ln( e

rTS0

K
)

σ
√
T
− 1

2
σ
√
T (4.29)

Similarly, we can prove the pricing formula for Black-Scholes-Merton for a European

put option which is given by

p = Ke−rTN(d1)− S0N(d2) (4.30)

where N(x) represents a cumulative probability distribution function for a standard normal

distribution having the parameters φ(0, 1). The variables p and c are the European put

and European call price respectively, K is the strike price, S0 is the stock price at time

zero, σ is the stock price volatility, T is the time to maturity of the option and r is the

continuously compounded risk-free rate.

Since it is never a good option to exercise early before the maturity date an American

call option on a stock that is non-dividend paying (see section 4.o. American options and

the Black-Scholes-Merton pricing formulas), the pricing formula for Black-Scholes-Merton

model for a European call option also applies for this type of options. However, no exact

pricing formulas have been found for American put and call options on stocks which are

dividend-paying as these options can be candidate to early exercise.

The Black-Scholes-Merton formula makes use of interest rate r which is theoretically

speaking the zero coupon risk-free rate interest rate for a maturity T . r is a function of

time and is stochastic under the assumption that at a given time T the stock price ST

follows a lognormal distribution and the volatility σ is estimated appropriately.

Finally, time is normally measured and is calculated as the quantity of trading days

remaining in the option’s life divided by 252, which are the total trading days in a year.
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4.12 Properties of the Black-Scholes-Merton pricing formulas

We now want to have a closer look at the Black-Scholes-Merton formulas. As there

is an increase in stock price S0, it is almost certain that the European call option will be

in-the-money and so it should be exercised. In this situation call option is very like the

forward contract where the underlying stock will be delivered at maturity with price K of

delivery. It is hence expected that the call price equals

S0 −Ke−rT

as d1 and d2 increase by large amounts and the functions N(d1) and N(d2) approach to 1.

Conversely, as there is an increase in stock price S0, it is almost certain that the Euro-

pean put option p will be out-of-the-money and therefore the derivative price p approaches

zero. This is consistent with N(d1) and N(d2) function which approach to zero here.

As the volatility parameter σ approaches zero, the underlying stock becomes riskless

and the stock price will grow at rate r to be equal to S0e
rT at a given time T. The payoff

from the European call option at time T is given by

max(S0e
rT −K, 0)

The call option’s present value is therefore

e−rTmax(S0e
rT −K, 0) = max(S0 −Ke−rT , 0)

which equals the condition #2 from section 2.c. Arbitrage opportunities.

To show that these results are consistent with the Black-Scholes-Merton pricing formu-

las, take the case one where S0 > Ke−rT . It is implied by this ln(S0/K) + rT > 0. As the
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volatility parameter σ approaches zero, d1 and d2 approach +∞ such that the functions

N(d1) and N(d2) approach 1. The Black-Scholes-Merton call option formula then becomes

c = S0 −Ke−rT

In the case S0 < Ke−rT , we have ln(S0/K) + rT < 0. As the volatility parameter σ

approaches zero, d1 and d2 approach −∞ so that the functions N(d1) and N(d2) approach

zero. Thus, the Black-Scholes-Merton pricing equation gives a zero price for the call option.

The price European call option, as a result, is always max(S0−Ke−rT , 0) as the volatil-

ity parameter σ approaches zero. A similar proof can be shown for a European put option

price such that as σ tends to zero, the price is always max(Ke−rT − S0, 0).

4.13 The Black-Scholes-Merton formulas and paying dividend

stocks

We have assumed so far that no dividends are paid by the underlying contracts dur-

ing the derivative instruments’ lifetime. We now try to adjust the pricing formulas of the

Black-Scholes-Merton to consider dividends paid by the underlying contracts. We assume

that the dividend amounts and ex dividend dates are known with certainty. For short-life

options, these assumptions are reasonable whereas for long-life options, not so much and

this is the reason why we would rather assume the dividend yields to be known instead of

the cash dividend amounts.

Assume that a price of a stock is addition of the two components: a component that

is riskless corresponding to the dividends that are known during the European option

lifetime and a second component that is risky. The component that is riskless is the known

dividends’ present value during the options lifetime discounted at the risk-free rate from

the various past ex-dividend dates to the present date. At the time of maturity, the stock

has payed the dividends and this would finish the riskless component. If S0 is equal to the
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stock price risky component and risky component follows the volatility parameter σ of the

process then the Black-Scholes-Merton formula will be correct .

In terms of being operational, this implies that the Black-Scholes-Merton pricing for-

mulas can be brought into use by lowering the stock price S0 by all of the dividends present

value paid during the option’s life. The dividends are discounted at the risk-free rate using

the ex-dividend dates to the present time.

4.14 The Put-Call parity

In the book “Pricing Derivatives: The Financial Concepts Underlying the Mathematics

of Pricing Derivatives”, Ambar Sengupta quickly proves the put-call parity as follow.

As the payoff resulting from a call option is [ST − K]+ where ST represents the un-

derlying stock price at time T , the call option maturity time, and K is the option’s strike

price. The call option forward price is therefore

EQT ([ST −K]+)

The price of call at time 0 is given as

c = e−rTEQT ([ST −K]+)

or

c = EQ0(e
−rT [ST −K]+) (4.31)

Similarly, the payoff resulting from a put option is [K − ST ]+ where ST is the underlying

stock price at time T , the put option maturity time, and K is the option’s strike price.

The put option forward price is given by

EQT ([K − ST ]+)
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The price of put at time 0 is therefore

p = e−rTEQT ([K − ST ]+)

or

p = EQ0(e
−rT [K − ST ]+) (4.32)

Subtracting the equation (4.32) of a put price at time 0 to the equation (4.31), the call

price at time 0, we have

c− p = EQ0(e
−rT [ST −K]+)− EQ0(e

−rT [K − ST ]+)

or

c− p = EQ0(e
−rT ([ST −K]+ − [K − ST ]+))

which is equivalent to

c− p = EQ0(e
−rT [ST −K])

and

c− p = EQ0(e
−rTST )− EQ0(e

−rTK) = S0 − e−rTK (4.33)

Thus, we obtain the following put-call parity

c+ e−rTK = p+ S0 (4.34)

The above equation giving the put-call parity helps in finding out the put option price

using a theoretical price of call option having same date of maturity and strike price, or

the call option price using a theoretical price of put option having same date of maturity

and strike price.
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In case where put-call parity does not hold, an arbitrage opportunity is possible and a

trader can make a sure profit with a $0 investment.

If the right hand side of the equation (4.34) is bigger than the left hand side, the Eu-

ropean put option is apparently overvalued while the European call option is undervalued.

A trader can then long the call, short the put, short the underlying stock and invest until

expiration of the option contracts, a dollar amount such that his entire position does not

require any cash outlay at time now.

However, if the the right hand side of (4.34) is smaller than the left hand side, the

European put option is underpriced whereas the European call option is overpriced. A

trader can then short the call, long the put, long the underlying stock and borrow until

expiration of the option contracts, a dollar amount such that his entire position does not

require any cash outlay at time now.

In both cases, the trader will close out his position once financial instruments are priced

correctly and the put-call parity holds again. He will have realized a profit equal to the

synthetic market, which is the absolute value of the figure calculated by subtracting the

put price and call price given by equation (4.33).

4.15 American options and the Black-Scholes-Merton pricing for-

mulas

The put-call parity only applies to European options but a pretty similar formula can

be obtain for American option prices when no dividends are involved

S0 −K ≤ cAmerican − pAmerican ≤ S0 −Ke−rT

This inequality puts some lower and upper boundaries for the American options’ prices

and in case any of American options prices were not respecting it, arbitrage opportunities

would appear.
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4.15.1 American calls on a non-dividend paying stock

The objective of this section is to show why it is not an optimal choice to exercise an

American call option before the date of maturity on a non-dividend paying stock. Let’s

recall the condition #5 from section 2.c. Arbitrage opportunities, for the European call

options on a stock which is non-dividend paying, the lower bound is given as

cEuropean ≥ St −Ke−rT

As an American call option has more chances than a European call option to be exercised,

the American call option premium must be equal or greater than a European call option.

Thus we have

cAmerican ≥ cEuropean ≥ St −Ke−rT

Consider at T > 0, the risk-free interest rate given as r > 0. We have

cAmerican > St −K

This means that the American call option premium is at all times higher than the call

option intrinsic value before expiration and this is due to the fact that the call option

remains some time value which equals the difference among the intrinsic value of option

and the premium. Thus, a trader has no reason to exercise early an American call option

since it would not be wise to lose the option’s time value.

Finally, if the idea to exercise earlier the American call option was optimal, the intrinsic

value of option would have been equal to its premium such that cAmerican = St − K and

therefore the American call option would not retain anymore time value.

To summarize, there exist two reasons for a trader to not exercise early an American

call option.
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Firstly, the call option provides insurance to the trader against any downside price

movements in the underlying contract. In case the trader decides to early exercise the

option and the trader owns the underlying stock, the trader is not insured anymore against

a decrease in the stock price.

Second of all, if a trader exercises a call option early, he loses the time value of the call

option that he should not give up.

Because American call options are never exercised early when no dividends are involved

in the underlying contract, they are similar to European call options and we obtain therefore

the following inequality

max(St −Ke−rT , 0) ≤ cAmerican, cEuropean ≤ St

4.15.2 American calls on a dividend paying stock

As we have seen previously, an American call option on a stock that is non-dividend

paying should never be exercised early. However, in case of a dividend-paying stock, exer-

cising an American call option could be optimal only at a certain time in the option’s life

with the condition that it is earlier than the going of underlying stock ex-dividend.

Assume that n dividends, denoted D1, D2, ...Dn, are anticipated during the option’s

life at the ex-dividend dates t1, t2,...tn. One possibility is to exercise the American call

option just early to the final date of ex-dividend, that is at time tn, and hence, the investor

gets

S(tn)−K

In case of not exercising the call option at time tn, the price of stock would drop to

S(tn)−Dn. The value of the call option then becomes

S(tn)−Dn −Ke−r(T−tn)
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where T is the date of maturity of the call option. This leads to if

S(tn)−Dn −Ke−r(T−tn) ≥ S(tn)−K

that is

Dn ≤ K[1− e−r(T−tn)] (4.35)

it will not be an optimal choice of exercising the option at time tn.

However conversely, if

Dn > K[1− e−r(T−tn)]

Then it is best to exercise the option at time tn for a value of S(tn) which is sufficiently

high. This case occurs most likely when the date of final ex-dividend tn is very close to the

option’s maturity date and the amount of cash dividend Dn is significant.

Let’s look at the situation of exercising the American call option at time tn−1. In the

given scenario, the amount S(tn−1)−K is received by the investor. In case of not exercising

the option at time tn−1, there is a fall in the stock price to the level given by S(tn−1)−Dn−1

and the initial time the investor will consider exercising the option again will be at time tn,

the next ex-dividend date. Hence, this sets option price a lower bound if it is not exercised

at time tn−1 which is

S(tn−1)−Dn−1 −Ke−r(tn−tn−1)

It is lead from here that given that

S(tn−1)−Dn−1 −Ke−r(tn−tn−1) ≥ S(tn−1)−K
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or

Dn−1 ≤ K[1− e−r(tn−tn−1)]

Exercising the option immediately prior to time tn−1 is not an optimal choice. Likewise,

for any i < n, if

Di ≤ K[1− e−r(ti+1−ti)] (4.36)

then exercising just before time ti is not an optimal choice. The inequality (4.36) is ap-

proximately equivalent to

Di ≤ Kr(ti+1 − ti)

Supposing that K is very near to the present stock price, this inequality is satisfied when

the risk-free interest rate is more than earning of the dividend on the stock which in reality

often happens.

In conclusion, the most likely time an American call option is subject to exercising

early is just before the final ex-dividend date given by tn. Finally, if inequalities (4.35) and

(4.36) hold, a trader is certain it is not optimal to exercise early.

4.15.3 American puts on a non-dividend paying stock

The early exercise case is different for American put options on stocks which are non-

dividend paying. As a matter of fact, in a specific situation, the early exercise of the put

options can be optimal. Any American put options should be early exercised, if they are

deeply in-the-money during their lifetimes.

A put option, like a call option, is witnessed as giving insurance to the long position

against the underlying contract falling below certain price. However, it is optimal for the

long position of a put option to give up the insurance and realize the strike price early,

which is as seen previously, not the case for American call options.
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Finally, exercising an American put option early seems more striking when the price

or volatility of the underlying contract reduce and there is a rise in the risk-free interest rate.

The minimal and maximal value for a European put option on an underlying stock

contract which is non-dividend paying are

max(Ke−rT − St, 0) ≤ pEuropean ≤ Ke−rT

As an American put option is subject to early exercise at anytime when deeply in-the-

money, and the American option premium cannot be of greater worth than the strike

price, we have

max(K − St, 0) ≤ pAmerican ≤ K

As the early exercise of American put options is favorable under some circumstances,

American put options should always have a higher premium than the corresponding Eu-

ropean put options. Moreover, as American put options are sometimes worth less than

their intrinsic values, European put options can therefore sometimes trade less than their

intrinsic values.

4.16 The assumptions of the Black-Scholes-Merton model

Commonly used by derivatives traders and financial market technicians is the Black-

Scholes-Merton model (1973) because of its easy, quick computations and efficiency. How-

ever, the pricing model lies on more or less realistic assumptions.

4.16.1 Markets are frictionless

The Black-Scholes-Merton model assumes that markets are frictionless but obviously

they are not. First of all, the model assumes that the underlying asset can be freely sold

or bought freely without any restrictions. However, there may be preventions against the
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sale of stock in the stock market. In the case where short sales are authorized, it might be

with certain restrictions on when short selling can be made.

To give an example of a restriction is the uptick rule. Selling stocks is more difficult

than buying stocks. While the United States does not completely prohibits it, as done in

many markets, there is an uptick rule for traders who want to sell short. Yet it is not

guaranteed that an uptick will be present in a single stock.

Second of all, the model assumes that every market participants can lend and borrow

money easily, and a single interest rate is applicable to every transactions.

The assumption of lending and borrowing money freely by a trader is a big weakness

in the pricing models. Supposing that a trader has funds that are enough for a trade

initiation, it is possible that at some point in time later on he may find that he is required

to have more funds in the form of margin requirements being increased. Assuming that

money was available freely, margin should not have been a problem. Money for the margin

could be borrowed by the trader and deposited with the Options Clearing Corporation.

As we assume that rate of borrowing and lending rate are equivalent, and since interest is

paid on the margin deposit by the Options Clearing Corporation, obtaining margin money

should not be a problem; neither any cost will be associated with it.

Traders have a limited borrowing capacity in reality. A trader might be compelled

to liquidate a position before the expiration date if he cannot meet a margin requirement.

Supposing that a trader has unbounded capacity for borrowing, the reality is that borrowing

and lending rates, for most traders are not the same, this can also lead to problems with

model generated values strategies. Borrowing margin money at a specific rate by the trader

would most likely be deposited at a lower rate with the OCC. The loss due to this difference

between the borrowing and lending rates is something of which is ignored by this model.

As this difference between borrowing and lending rates increases, the values generated by

the model become less reliable.
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A major drawback is assuming there are no transaction costs in the frictionless markets

hypothesis. This assumption is not very realistic, as every time a trader wants to buy or

sell financial instruments, transaction costs have to be endured. These costs can take the

form of clearing fees, an exchange membership or brokerage fees. If these transaction costs

are high, adjusting too much to maintain a riskless portfolio can affect the theoretical edge

of the initial position.

4.16.2 Interest rates are constant over an option’s life

It is assumed by the Black-Scholes-Merton model that the risk-free interest rate is

constant but this input is obviously a variable which is stochastic and randomly fluctuating

over the life of the derivative instruments.

Is the assumption of a fixed and risk-free rate by the model a major concern? While

interest rate change will lead to the value of an option position of the trader to change,

usually interest rates do not change such that it significantly impacts value of an option,

for the the short-term at least. Drastic changes in interest rates are needed to have an

impact on any but the most deeply in-the-money options. Interest rates need to be altered

by various percentage points to have a significant impact over short time duration.

4.16.3 Volatility is constant over the option’s life

It is assumed by the Black-Scholes-Merton model that the underlying contract volatility

is a constant parameter over the option’s life. Hence, as the volatility input is fed into the

pricing model by the trader, he gives his best estimation of the amount of change in price

which is expected over the option’s life.

“The model assumes that occurrences of each particular magnitude will be evenly

distributed over the life of the option” (Natenberg, 1994, p390). However, in reality, large

price changes occurring during the beginning part or the latter part of the option’s life

will affect differently the volatility of the underlying contract. In fact, a trader is going to
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encounter moments of high volatilities and other moments of low volatilities rather than

an even volatility distribution that the model assumes. Thus, the Black-Scholes-Merton

model is unable to differentiate moments of high and low volatilities over the option’s life

since it supposes that volatility is constant where prices changes are evenly distributed.

Through experience, traders have concluded that order of volatility is important, in

particular for options which are at-the-money since they have the greatest gammas. A

high volatility period near options expiration will impact at-the-money option more than

when the similar high volatility occurs when there is more time in maturity date of option.

Traders have concluded that the Black-Scholes-Merton theoretical pricing model tends to

minimize at-the-money option values in a market with rising volatility while overpricing

at-the-money options in a market with falling volatility.

The volatility of an underlying contract is difficult to predict as it follows a stochastic

process and therefore varies overtime. However, we have seen that the volatility parameter

is lognormally distributed in the model of Black-Scholes-Merton overcoming the problem

of underlying contract prices being negative. In fact, the lognormal distribution allows for

an infinite upside move in prices while bounding downside prices by 0. This is a better

representation of how prices are actually distributed in the financial markets.

4.16.4 Volatility is independent of the underlying asset price

The market volatility is taken not to be dependent on the underlying contract price by

the Black-Scholes-Merton model. Though it seems that the volatility is dependent on the

direction in which the movement is taken place in the underlying asset. In some situations,

traders expect the market to be either more or less volatile as prices are going up or down.

For example, under certain market conditions, a trader can expect a market to be very

volatile when the underlying asset price is decreasing but a low volatility when prices in

the underlying market are rising. Because volatility is apparently dependent on the price

movements direction in the underlying market, the Black-Scholes-Merton model is flawed
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to correctly represent the real volatility of a market instrument.

4.16.5 Underlying stock prices are continuous with no gaps

It is assumed by the Black-Scholes-Merton model that prices for the underlying con-

tract follow a stochastic diffusion process, which is obviously not conform to the reality of

the financial markets as prices can jump and undergo unpredictable gaps due to events.

These gaps are often happening while financial markets are plummeting or between the

closing price and the opening price the morning after where trading the underlying as-

set was not continuous. This implies that the Black-Scholes-Merton model is less reliable

during financial crisis and traders will tend to use less and less the theoretical pricing

model during period of huge movements in the financial markets where many price gaps

can happen. Traders will rely on their experience and intuition to take trading decisions

and consider Black-Scholes-Merton model lesser since the probability of extreme events are

underestimated and do not assume gaps in prices. Thus, the diffusion process is not a true

representation of the reality of market events implied in the Black-Scholes-Merton model.

Moreover, the diffusion process, following a lognormal distribution and a Brownian ge-

ometric movement, do not take into account jumps in underlying asset prices and prevent

traders from constantly being delta neutral as jumps in prices often occur after unpre-

dictable events leaving the traders with risky directional

Thus, the model assumes an option trader is continuously delta neutral in his position

to eliminate directional risks. The fact that volatility is continuously compounded, the

theoretical pricing model assumes that adjustments are made continuously to remain delta

neutral at every moment in time. However, as we have seen previously, a gap in the un-

derlying asset price where the option is close to expiration can dangerously affect the delta

position of the derivative trader who will become either positive or negative delta. Thus, a
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derivative trader must be aware of this flaw in the Black-Scholes-Merton model and must

be ready to take adequate actions to rehedge his options portfolio as better as he can to

maintain the best riskless hedge by making adjustments.

4.16.6 The normal distribution of the underlying stock prices

It is assumed by the Black-Scholes-Merton model that the underlying contract price

changes are normally distributed over small periods of time, leading to a lognormal distri-

bution of underlying prices at expiration. However, many statistical studies have proven

that this hypothesis is not necessarily correct. Moreover, they seem to show that extremity

tails, representing huge variation in the underlying asset price are underestimated and seem

to happen more often than predicted by the Black-Scholes-Merton model.

Even though the normal distribution tails are relatively low compared to the extreme

events’ real probability in the financial markets, the normal distribution tails are sym-

metric which might not reflect the reality as well. In fact, financial markets might have

more extreme downward movements than extreme upward movement or vice versa. This

hypothesis is not taken into consideration in the normal distribution as it predicts few big

downward and upward movements in the underlying prices but mainly a huge amount of

small variations of the underlying contract price overtime.

Finally, under the hypothesis of a normal distribution, the underlying price can have

upward and downward moves of the same magnitude. This means that if a stock is cur-

rently pricing $40 and increases by $60 to $100, the stock price can also decrease by -$60

and therefore pricing -$20. Obviously, stocks, commodities or futures and other financial

instruments cannot take negative values and this proves that the assumption of a normal

distribution in the Black-Scholes-Merton model is clearly flawed.
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4.17 Conclusion

Even though it is possible to find theoretical pricing models that better applies to

specific financial derivative instruments, like the Black Model (1976) to evaluate options

on futures contracts, the Garman-Kohlhagen Model (1983) to evaluate options on foreign

currencies or the model of Constant-Elasticity of Variance (CEV) which is based on the

connection between price level and volatility of the underlying market, the Black-Scholes-

Merton pricing formulas remain the most widely used of all options pricing models for its

easy and efficient math computations.

Also, the Black-Scholes-Merton model, which assumes no early exercise of options,

poorly suits most of the financial markets where most of the options are American. How-

ever, in some markets and especially in the futures option markets,“the early exercise

value is so small that there is virtually no difference between values obtained from the

Black-Scholes-Merton model and values obtained from an American option pricing model”

(Natenberg, 1994, p44) which require more inputs and estimations and therefore less chance

to closely approximate real world conditions.
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Chapter 5
The Greeks

When selling options in the over the counter market, financial institutions must face

the problem of managing the options’ risks. If similar options are traded at the same time

on an exchange, financial institutions can buy the same option on exchange that was sold

by it in the over the counter market in order to neutralize the risks. But when the option

is not available on an exchange due to particular characteristics of the derivative to sat-

isfy a client in the over the counter market, like an unusual maturity date or strike price,

it becomes more difficult to hedge the risk exposures for the financial institutions. The

Greek letters measure different dimensions to the option position risk present and deriva-

tive trader’s objective is to make the risk he is encountering acceptable by managing the

Greeks.

One strategy is that the financial institutions do nothing. This strategy is called as

a naked position and the financial institution which sold the options hope that they will

finish out-of-the-money. At maturity of the options, the financial institution makes a profit

equal to the premium of one option times the quantity w of options sold in the over the

counter market. However, if the options are in-the-money at expiration, the long position

exercises the options, by paying Kw to the financial institution, which in return, must

deliver a certain quantity of the underlying stock. The financial institution will have to

buy the securities in the underlying market at a higher price than the call option’s strike

price ST > K, or at a price which is less as compared to the put option’s strike price

ST < K. This will generate a loss for the financial institution equivalent to w(ST −K) for

short call options and w(K − ST ) for short put options.
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Financial institutions can use another strategy apart from the naked position that is

to buy directly the underlying stocks when selling the call or put options. If the call or

put options are in-the-money at expiration and therefore exercised by the long positions,

this strategy, referred as a covered position works well. However, if call and put options

are out-of-the-money, a covered position can generate a significant loss for the financial

institution.

Thus, a good hedge is neither provided by a covered position nor a naked position and

this is the reason why most traders and financial institutions use hedging procedures that

are more improved involving steps such as gamma, delta, vega, rho and theta. These data,

also called the Greeks, allow traders to be aware and anticipate risks that could potentially

affect their positions.

5.1 Delta of European stock options

“The delta is a measure of how an option’s value changes with respect to a change in

the price of the underlying contract” (Natenberg, 1994, p99). The delta of a call option is

a figure between 0 and 1. A call option far in-the-money has a delta close to 1 while a call

option deeply out-of-the-money has a delta close to 0. A call option which is at-the-money

has a delta of 0.5. When shorting a call option, delta values become 0 for being deeply

out-of-the-money and -1 for being far in-the-money.

The situation for the put options is pretty similar, except that when a trader is long

a put option, he has a negative delta position which is between -1 and 0. This is due to

the fact that put options lose value when the underlying market increases, and vice versa.

In fact, a trader with a long put position is short the market position as he expects the

underlying market to fall. When shorting a put option, the delta values become positive

and bounded between 0 and 1. A positive delta position means the trader is betting on
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the underlying contract price increase and a negative delta position implies that the trader

expects the underlying contract price to decrease.

Derivative call option delta, mathematically speaking, is the “sensitivity of the price

of the derivative to changes in the prices of the underlying instrument” (Sengupta, 2005,

p104) given by

∆Call =
∂c

∂S
(5.1)

where c represents the derivative call option price and S represents the underlying contract

price. Substituting equation (4.27), the price of theoretical European call option from the

model of Black-Scholes-Merton, into equation (5.1), we have

∆Call =
∂

∂S
[S0N(d1)−Ke−rTN(d2)] = N(d1) (5.2)

where d1 is defined by equation (4.28) and cumulative distribution function is represented by

N(x) for a standard normal distribution implying that the delta of a call option represents

the option’s probability to be in-the-money. Take as an example, a call option June 75

having delta value as 0.23 has a probability of 23% to be in-the-money, or there is 23%

chance that the underlying asset price rises above $75. The short delta position in a single

European call option is equal to −N(d1).

For a short European call option position, it requires the trader to maintain a long

position of N(d1) shares for each option sold to remain delta hedge. Similarly, with a long

position in a European call option, the trader can remain delta neutral by maintaining a

short position of N(d1) shares for each option purchased.

Similarly, we have the put option delta presented as below

∆Put =
∂p

∂S
(5.3)
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where p represents the derivative put option price and S represents the underlying contract

price. Substituting equation (4.30), the theoretical European put option price from the

model of Black-Scholes-Merton, into equation (5.3), we have

∆Put =
∂

∂S
[Ke−rTN(d1)− S0N(d2)] = −N(d2) = N(d1)− 1 (5.4)

where d1 is defined by equation (4.28) and cumulative distribution function is represented

by N(x) for a standard normal distribution.

The put option delta is negative implying that hedging is done for a long position in a

put option with an underlying stock long position. Similarly, hedging for a short position in

a put option should be done with an underlying stock short position. Finally, substituting

equation (5.2) into the equation (5.4), we obtain the following call-put delta relation

∆Put = ∆Call − 1

The graphs below show the delta variations of a put and a call option with the stock price.

Figure 5.1: Delta variation of a put and a call option with respect to the
underlying non-dividend paying stock price
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The options portfolio delta or other derivative instruments which depend on a single

underlying asset with S as the price is given by

∆(portfolio) =
∂Π

∂S

where ∂Π is the portfolio value.

A portfolio with wi quantity of option i (1 ≤ i ≤ n) has a delta equal to

∆(portfolio) =
n∑
i=1

wi∆i (5.5)

where ∆i is the ith option delta. This formula is useful in calculating the position to be

taken by trader in the underlying asset to make his portfolio delta neutral.

For example, consider a long position with strike price K1 in 100,000 call options, a

short position with strike price K2 (with K1 6= K2) in 200,000 call options, and a short

position with strike price K3 in 50,000 put options. The delta of each option are 0.533,

0.468 and -0.508 respectively. The delta of the portfolio is

100, 000× 0.533− 200, 000× 0.468− 50, 000× (−0.508) = −14, 900

The above calculation implies that we can make the portfolio delta neutral by buying 14,900

underlying shares.

5.2 Delta hedging

Delta hedging consists in making a portfolio of derivative contracts immune to any

price directions of the underlying assets. In order to be delta hedged, a derivatives trader

must have a portfolio delta equal or relatively close to zero. From equation (5.5), a portfolio
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is delta neutral if

∆(portfolio) =
n∑
i=1

wi∆i = 0

Delta hedging enables derivatives traders to enter in a volatility spread position as a stran-

gle, a straddle, a time spread or a butterfly rather than a directional position.

For example, consider the following options and deltas : June 90 put with a delta of

-0.16, June 95 put with a delta of -0.30 and June 100 put with a delta of -0.44. Assume the

trader does not want to take a directional position but instead a volatility position which

means he is willing to bet on the low or high volatility of the underlying market. For this

type of position, the trader must have a delta neutral position and can do so by buying 1

June 90 put and 1 June 100 put, and sell 2 June 95 puts. When adding the deltas of this

position, we have

−0.16− 2× (−0.30)− 0.44 = 0

In this scenario, the trader has a long put butterfly betting on low volatility of the under-

lying market. The highest profit made is $5 by the trader (given by the spread present

between the exercise prices) if the underlying asset is equal to the exercise price of $95 at

expiration and the trader will start losing money as the price of the underlying asset drifts

in either direction from $95.

It should be remembered that an option delta would not be always constant, and hence,

the portfolio of the trader may remain delta hedged for a short period of time relatively

speaking. It is necessary to adjust the hedge periodically or every time the delta position

reaches a positive or negative amount of deltas decided by the trader. This is known as

rebalancing. The derivatives trader can either long calls, long underlying contracts, short

puts to increase the delta of a portfolio or short calls, short underlying contracts, long puts

to decrease the delta of a portfolio and remain delta hedged.
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When a trader rebalances his position on a regular basis to remain delta hedged, the

procedure is called dynamic hedging. If a trader initially sets up a delta neutral position

and never adjusts his portfolio at later time, the procedure is referred as static hedging or

hedge and forget.

5.3 Theta of European stock options

The theta, Θ, is a loss in value of option over a period of time elapsed. Such as, an

option having theta value of 0.10 loses $0.10 per day in value given that other market

conditions remain same. If today’s worth of option is $3.57, then tomorrow it would have

a worth of $3.47. In other words, the portfolio’s theta is the rate at which portfolio’s value

change with respect to the time elapsed with all other parameters and market conditions

being unchanged. At times theta is also called as the portfolio’s time decay.

It can be seen from the pricing formulas of Black-Scholes-Merton that the European

call option theta on a stock that is non-dividend paying is given by

ΘCall = −X0N
′(d1)σ

2
√
T

− rKe−rTN(d2) (5.6)

where d1 and d2 are defined by the equations (4.28) and (4.29) respectively, and

N ′(x) =
1√
2π
e−x

2/2 (5.7)

is the probability density function for a standard normal distribution.

In case of a European put option on an underlying stock, the theta is

ΘPut = −X0N
′(d1)σ

2
√
T

− rKe−rTN(−d2) (5.8)
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Since N(−d2) = 1−N(d2), the theta of a put exceeds the theta of the corresponding call

by rKe−rT . In the formulas (5.6) and (5.8), the theta is measured in years and therefore,

a trader must be careful as time is measured in days in the marketplace. Thus, in order

to get theta per calendar day the trader must divide the measured theta by 365, or to get

the theta per trading day divide by 252.

All calls and puts options have a negative theta which means that all options lose value

and become less valuable as expiration approaches. A negative theta is held by long option

position as on the contrary a positive theta is held by a short option position. The theta

variation of a call option with respect to the underlying stock price is presented in the

figure below.

Figure 5.2: Theta variation of European call option along stock price

Theta is close to zero when the underlying stock price is low. Theta is highly negative for

at-the-money call options. The larger the underlying stock price becomes, the theta of the

call option tends to −rKe−rT .
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All options have a negative theta but in few cases, it is possible for European options

to have a positive theta and therefore the passage of time helps the options gain in value.

European futures options, subject to stock type settlement, which have a lower theoretical

value as compared to parity may have a theta value which is positive. The value of the

European future options will gain value to reach parity (intrinsic value) at expiration of

the options. A European put stock option is likely to be affected by a situation of this kind

depending on how high the interest rates are and whether the put is trading under parity.

Once again, the put stock option premium will rise to parity as expiration approaches.

European options are exception to the rule and can trade under parity and have a

positive theta as they do not allow early exercise. If this were the case for an American

option, a trader would have an arbitrage opportunity to make a sure profit. Thus, Ameri-

can options cannot have a worth below parity and hence do not have theta values as positive.

Finally, as the future price of the underlying stock is unknown, then time decay is

also uncertain. Hence it is wise for a trader to protect a position against price changes of

the underlying asset by being delta neutral but there is no sense to be hedged against the

passage of time.

5.4 Gamma of European stock options

The gamma, Γ, represents the rate at which an option’s delta changes as the underlying

asset price moves. Such as, an option having gamma value of 0.10 means that a rise (fall)

of each point in the underlying asset price will make the option gain (lose) 0.10 delta.

For a European put or call option on a stock that is non-dividend paying, the equation

below gives the gamma

Γ =
N ′(d1)

S0σ
√
T

where the equation (4.28) of the pricing formula of Black-Scholes-Merton defines d1 and
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the probability density function N ′(x) for a standard normal distribution by the equation

(5.7). Thus, puts and calls with similar date of maturity and strike price have the exact

same positive gamma.

When a trader is long an option, he is long gamma; when a trader is short an option,

he is short gamma. Then, a positive gamma position implies that the trader expects the

movements in the underlying contract are highly swift independent of the direction; a

gamma position which is negative means the trader bets the underlying contract will move

slowly regardless of the direction.

The delta of the underlying contract is 1 and remains 1 no matter the price changes

and this implies that the gamma of the underlying contract is 0.

As gamma gives the rate at which delta changes, it is a great measure for traders to

evaluate how quickly an option can change its directional characteristics, behaving similar

to the actual position.

As we have seen previously, the deltas of options are bounded between -1 and 0 or

between 0 and 1 depending on if it is a call or a put, and if the trader is long or short the

position. The fact that a delta of an option remains between 0 and 1 or -1 and 0 means the

gamma of an option would change continuously subtracting or adding deltas with constant

amount from the original delta value will make the total delta of the option go out of its

range.
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Figure 5.3: Variation of an option’s gamma with respect to the underlying
stock price

The graph above illustrates the gamma of a long position and shows that the value for

gamma is positive always and changes along the stock price. Just like an option time value,

gamma of an option reaches the highest point when the derivative contract is at-the-money

and then progressively declines as the option becomes out-of-the-money or in-the-money.

When time remaining is less before an option’s expiration, an-at-the-money option

gamma can increase dramatically. Thus, close to maturity at-the-money options with high

gammas are very risky for traders as their position value is very sensitive to changes in the

underlying stock price.

The gamma is also subject to a change in volatility assumptions: an increase in volatil-

ity in the underlying contract will make options tend to be more at-the-money. A decrease

in volatility will move option deltas away from 0.5 and will make options go further in-the-

money or further out-of-the-money.
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5.5 Making a portfolio Gamma neutral

Suppose a portfolio having gamma equal to Γ and is delta neutral, and a value of

gamma being equal to ΓT for a traded option. If we add to the portfolio a certain amount

wT of traded options, the portfolio’s gamma becomes

Γ(portfolio) = wTΓT + Γ

Therefore to make the portfolio gamma neutral in the traded option a necessary con-

dition is −Γ/ΓT . As the traded option present in portfolio is expected to change the

portfolio’s delta, in order to maintain delta neutrality the underlying asset position needs

to be changed. Only for a short period of time the portfolio will be gamma neutral and

the traded option position needs adjustment, so that it equals −Γ/ΓT always in order to

maintain a gamma neutral portfolio.

The goal of a delta neutral as well as a gamma neutral portfolio is to correct the hedging

error. Delta neutrality is a hedge from comparatively small movements in underlying

asset price between rebalancing. A protection is given by gamma neutrality against high

movements in this price of stock between rebalancing.

For instance, take a delta hedged portfolio with a gamma value of -3,000. Suppose the

gamma of a traded call option is 1.50 and its delta is equal to 0.62. To make portfolio

gamma neutral 3, 000/1.50 = 2, 000 call options can be purchased. However, the portfo-

lio’s delta will change from zero to 2, 000× 0.62 = 1, 240. Therefore, 1,240 units from the

portfolio of the underlying stock should be sold so that it remains delta hedged.

5.6 Relationship between gamma, theta, and delta

A single derivative price that depends on a stock that is non-dividend paying must

satisfy the differential equation of Black-Scholes-Merton (4.22). It follows that the Π value
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of a portfolio of derivatives can be modeled as the differential equation

∂Π

∂t
+ rS

∂Π

∂S
+

1

2
σ2S2∂

2Π

∂S2
= rΠ

Since

Θ =
∂Π

∂t
, ∆ =

∂Π

∂S
, Γ =

∂2Π

∂S2

it follows that

Θ + rS∆ +
1

2
σ2S2T = rΠ

For a portfolio that is delta neutral, ∆ = 0, hence we get

Θ +
1

2
σ2S2T = rΠ

It leads to the fact that a high positive gamma value implies a high negative theta; a small

negative gamma implies a small positive theta. Thus, gamma and theta are closely related

as they represent the risks of similar degree in accordance with movement of market and

the time elapsed respectively. All the options are a tradeoff between time decay and market

movement. Given that underlying contract volatility aids position of a trader then the time

duration will have adverse affects and it is true the other way around.

The gamma is the portfolio’s second partial derivative with respect to price of asset

Γ =
∂2Π

∂S2

The delta position of portfolio will change slowly for a smaller value of gamma, and adjust-

ments need to be less frequent in order to maintain the delta neutrality of the portfolio.

In case where gamma is highly negative or highly positive, the portfolio’s delta changes

instantly with change in underlying asset prices. It then becomes very uncertain for a
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trader who needs to adjust its portfolio quite often in order to remain delta hedged.

Let the underlying asset price change be given by ∆S over short time interval, ∆t, and

the corresponding change in price of portfolio be ∆Π. Then, for a delta neutral portfolio,

we have

∆Π = Θ∆t+
1

2
Γ∆S2

where Θ is the portfolio’s theta.

Figure 5.4: Relationship between ∆Π and ∆S in time ∆t for a portfolio that is
delta neutral with (a) slightly positive gamma, (b) large positive gamma, (c)

slightly negative gamma, and (d) large negative gamma

Theta value is likely to be negative when gamma value is positive. The value of port-

folio decreases given that price S underlying asset does not change, but if there is a big

negative or positive change in S then it increases. Theta is likely to be positive when value
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of gamma is negative and hence there is a rise in portfolio value given S remains unchanged

but value decreases if S changes by a large negative or positive amount. As the gamma

absolute value rises, the portfolio’s value sensitivity to S also rises.

5.7 Vega of European stock options

It is assumed by the Black-Scholes-Merton model that the volatility is constant and

therefore, calculating vega from the model might seem strange as the volatility in reality

follows a stochastic process. On the contrary, the fact is that the vega that is computed

using stochastic volatility model is quite same to the vega calculated using Black-Scholes-

Merton model. Thus, calculating vega from a constant volatility model is logical.

The vega of an option represents a point change in the option theoretical value for

every single percentage point change occurring in the underlying contract volatility.

For example, an option with vega equal to 0.20, with $4.55 theoretical value at a volatil-

ity rate of 21%, will have $4.75 theoretical value at a volatility rate of 22% or $4.35 at a

volatility of 20%.

For a European put or call option on a stock that is non-dividend paying, vega is

ν = S0

√
TN ′(d1)

where d1 is defined by the equation (4.28) of the pricing formula of Black-Scholes-Merton

model and the probability density function N ′(x) for a standard normal distribution.

A long put or call position vega in an American or European option is positive contin-

uously and changes with the underlying asset price as shown in the following figure.
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Figure 5.5: Variation of an option’s vega with respect to the underlying stock
price

We can see from the graph that the highest vegas is for the at-the-money options

and hence this changes instantly with changes in volatility in terms of total point change.

However, out-of-the-money options are the most affected by changes in volatility in terms

of percentage change.

For example, assume a volatility of 15% and an out-of-the-money and at-the-money

option with theoretical values of $0.50 and $2 respectively. If our estimation of volatility

rises to 20%, the premiums will become $3 and $1. The at-the-money option shows the

greatest increase in points (+$1) but the out-the-money option shows the greatest percent-

age increase (+100%).

The vega of an option declines as the derivative instrument gets closer to maturity.

Thus, long-term options show more responsiveness to a volatility change as compared with

options which are short-term with the same characteristics but a closer expiration date.

This brings an important concept about option’s evaluation. The further the expiration

date of an option, the more time for volatility to take effect.

Traders can take advantage of this situation by doing a time spread strategy when they

expect a change in implied volatility. In fact, a trader, who believes implied volatility is
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about to increase, can sell a short-term option and buy a long-term option having similar

strike prices. In this scenario, according to the time spread strategy, the trader is long.

Since the option which is long-term will be more sensitive than the short-term option to the

change in implied volatility, the long-term option’s theoretical value will increase quicker

than the short-term one. This results in an increase in the spread between the two options

and therefore generating a profit for the trader when he closes out his position entirely at

expiration of the long-term option.

On the other half, a trader will write a time spread (short the long-term option + long

the short-term option) if he predicts the implied volatility to decrease in the future.

It is important to notice that in the case of a time spread, a trader has different opinions

on the implied volatility and volatility. In fact, a long time spread will become profitable

if the underlying market sits still and the implied volatility increases at the same time. A

short time spread will become profitable if the underlying market shows some movements

but there is a fall in implied volatility.

The vega, ν, of a derivatives portfolio, is defined as rate of change of portfolio value

with respect to the underlying asset volatility given by

ν =
∂Π

∂σ

For a vega that is greatly negative or greatly positive, the value of portfolio responds

instantly to small volatility changes. If it approximates to zero, changes in volatility do

not have much effect on the value of the portfolio. An underlying asset has a vega equal to

zero. On the contrary, a portfolio vega is possible to alter the same way gamma is altered,

by addition of a position in traded option. Let ν represent portfolio’s vega and νT represent

the traded option vega, a −ν/νT position in the traded option would make the portfolio

vega neutral immediately. However, a gamma neutral portfolio will not generally be vega
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neutral, and the reverse is also true.

Gamma neutrality provides a hedge from big price changes of the underlying asset

between rebalancing. Protection against the variable σ is achieved by vega neutrality.

5.8 Rho of European stock options

The rho describes the responsiveness of theoretical value of an option to an interest

rate change. Call stock options have a positive rho while put stock options have a negative

rho.

For a European call option on a stock that is non-dividend paying, we have

ρCall = KTe−rTN(d2)

where d2 is defined by the equation (4.29) of the pricing formula of Black-Scholes-Merton

model. For a European put option, we have

ρPut = −KTe−rTN(−d2)

Deeply in-the-money options show the greatest rho as their premiums are high and need

a consequent cash outlay. Finally, the greater is time in reaching the date of expiration,

the higher the value for rho.

Options and underlying contracts that are subject to futures type settlement, like

options on futures that do not require any cash outlay until closing out the positions, are

not affected by interest rate changes and therefore have a rho equal to 0. All other options

subject to stock type settlement will be affected by interest rate changes and therefore will

have a rho measure.

The rho of an options portfolio is defined as the rate of change of the portfolio value

with respect to the interest rate is

∂Π

∂r
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It is a measurement of how sensitive the portfolio value is to the interest rate change hold-

ing all other parameters and market conditions constant.

5.9 Elasticity of European stock options

The elasticity of an option is the relative percentage sensitivity of the option’s theoret-

ical value for specific change in percentage of the underlying contract’s price.

For example, let a call have a $2.50 theoretical value and $50 be the price of the un-

derlying asset. Let the delta of call be 0.25 and the underlying contract is assumed to

rise to $52. In percentage terms, the call value altered 5 times as quickly as the value of

the underlying asset since there was a rise of 4% (2/50) in the underlying contract while

the rise in call was 20% (0.5/2.50). In this case, the call option has an elasticity of equal to 5.

The elasticity of an option can be referred as the leverage value of an option and can

be computed as follow

Elasticity =
Underlying price

Theoretical value option
× delta option

In our example, the computation becomes

Elasticity =
50

2.50
× 0.25 = 5

5.10 The reality of hedging

Ideally, it is possible for a trader to rebalance repeatedly his portfolio for the purpose of

maintaining all Greeks equal to zero. In practice, this is not possible. When the portfolio

is managed by the trader dependent on a unique underlying asset, delta is made zero or

close to zero by the trader at least one time daily by underlying asset trading. Unluckily,

a zero vega and a zero gamma are not easy to achieve for a trader since finding options or

other derivatives traded in the required amount at competitive prices can be difficult.
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A trader must consistently rebalance its portfolio by buying and selling options and

underlying contracts for remaining delta neutral. In order to find an option’s delta, the

trader has plugged in some inputs in the theoretical pricing model to get option’s theo-

retical price but also the various option Greeks. A trader must be aware that the Greeks

values he obtained are based on his volatility assumption of the underlying contract and

can be changing at any moment. The derivatives trader should have this understanding

that his market conditions estimates is the basis for delta neutral position and he cannot

guarantee that these estimates are correct. This why many traders use the implied deltas

of the option to maintain a delta neutral position.

Finally, one important data that a trader must take into consideration is the theoretical

edge. This figure tells him if his position is profitable or not according to the assumptions

the trader has made on the market conditions. Obviously, a trader is looking for a positive

theoretical edge as he expects to make a profit on his strategy.
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Chapter 6
Estimating volatilities

6.1 Using historical data to estimate volatility

For estimating stock price volatility, we take an example having the length of time of

fixed intervals τ (every day, week, month) expressed in years. Defining total numbers of

observations as n+1 and stock price at the end of the ith interval by ST where i = 0, 1,....,

n. Let

ui = ln(
Si
Si−1

) for i = 1, 2, ...., n

For the standard deviation s of the ui a reasonable estimate is given by

s =

√√√√ 1

n− 1

n∑
i=1

(ui − ū)2

or

s =

√√√√ 1

n− 1

n∑
i=1

u2
i −

1

n(n− 1)
(
n∑
i=1

ui)2

where ū is the mean of the ui. The standard deviation of the ui can be deduced from

equation (4.11) σ
√
τ . An approximation of σ

√
τ is the variable s and therefore, σ can be

approximated as σ̂ as follow

σ̂ =
s√
τ

The standard error of the approximation σ̂ is approximately equal to σ̂/
√

2n.

Choosing the number of observations n can be delicate. The more data n we have, the

more accurate σ. The stock’s volatility parameter σ is susceptible to change with time and
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hence very old data might be irrelevant in predicting a future volatility. Several compro-

mises that seem to work is to make use of the most recent 90 to 180 days for daily closing

prices data or alternatively, we can set n as the amount of days to which we apply the

volatility. For example, to use volatility estimate on a 9-month option, the last 9 months

daily data are used.

Let’s look at an example of forecasting the future volatility from historical data. Con-

sider a stock prices sequence during 31 consecutive trading days. Here, n = 30. We obtain

the following table:
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Table 6.1: Computation of future volatility
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Thus, the standard deviation estimate of the each day return is

√
0.009426

29
− 0.0376172

30× 29
= 0.01798

or 1.798%. Assuming trading days per year are 252, τ = 1/252, and hence volatility

estimate per year is equal to 0.01798
√

252 = 0.2855 or 28.55%. The standard error of this

volatility estimate is

0.2855√
2× 30

= 0.0369

or 3.69% per year.

The previous analysis assumes that the stock is not paying any dividends. Nevertheless,

the model can be modified for a stock that pays a dividend where during the time interval

the return ui which includes the ex-dividend date is

ui = ln(
Si +D

Si−1

)

where D is the amount of dividend. In other time intervals the returns remain the same

ui = ln(
Si
Si−1

)

6.2 Finding the implied volatilities in the Black-Scholes-Merton

model

The underlying stock price volatility σ in the pricing formulas of Black-Scholes-Merton

is the sole parameter unable to be observed directly and must be therefore estimated by

traders from historic stock prices as we have discussed earlier. In practice, however, traders

usually work with the implied volatilities. The Black-Scholes-Merton pricing formulas imply

these volatilities to give the option prices observed in the marketplace.
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To understand how a trader can determine an implied volatility, consider a European

call option whose market price is 1.875 when r = 0.1, S0 = $21, T = 0.25 and K = $20.

Thus, when parameters are substituted in the pricing formula of Black-Scholes-Merton of

a call, the option’s implied volatility is the value σ that gives c = 1.875.

Unfortunately, inverting this formula and expressing σ as a function of S0, K, r, T is

not possible. However, it is possible to use an iterative process to calculate the implied

volatility σ. For example, if we enter σ = 0.20 in the equation (4.27), the value of c is

computed equal to 1.76, which is very less. Since we know that c is an increasing function

of σ, this implies a higher value of σ. When trying to put σ = 0.30, we obtain c = 2.10

the value being very large. Hence it can be deduced that the implied volatility σ must be

in the range [0.20, 0.30]. The implied volatility σ must even lie between 0.20 and 0.25 as

c > 1.875 when σ = 0.25. By iteration and shortening the range for σ, it is possible to find

the correct implied volatility. For the given example, the implied volatility σ is equal to

0.235, or 23.5% per year.

In order to monitor the opinion of the market about a particular stock’s future volatility,

implied volatilities are used. Although historical volatilities have the property of backward

looking, the implied volatilities look forward and therefore give a better estimation of the

future volatilities. Traders in the marketplace commonly state the option’s implied volatil-

ity instead of its price since the volatility σ has lesser variations as compared to the price

of the option.

6.3 The volatility smile

If the expiration date and the risk-free interest rate are fixed and known, the implied

volatility should be constant no matter the “moneyness” of the option. This implies that

the volatility curve should be horizontal which is not conform to the real life as for each
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parity, there is a different level of volatility. Various volatility levels for each parity of the

option is not appropriately reflected using the Black-Scholes-Merton model, which being an

important factor to be considered in option pricing. Hence, it is important to take under

consideration the volatility input as a variable fluctuating over time and consider volatility

as a stochastic process.

The Black-Scholes-Merton model is used by the traders but not in the manner that

was intended by its founders Black, Scholes and Merton. In fact, instead of assuming that

the underlying asset has a constant volatility during the option’s life, it is allowed by the

traders to use the volatility to price the option so that it is dependent upon its strike price

and time remaining until maturity. The option’s implied volatility with a particular life

duration when written as a function of option’s strike price is referred as volatility smile.

Rubinstein (1985, 1994) and Jackwerth and Rubinstein (1996) studied the volatility

smile for equity options. As far as the crash of the stock market in October 1987, the traders

use the volatility smile to price equity options (both on stock indices and on individual

stocks) which can be generalized as follow:

Figure 6.1: Volatility smile for equity options
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At times we call this the skewed volatility. Implied volatilities were more independent

of strike price before October 1987. As there is a rise in the strike price the implied volatil-

ity decreases. To price an option having a low strike price (i.e. a deep in-the-money call or

a deep out-of-the-money put) is considerably more as compared to the one used to price a

high strike price option (i.e. a deep out-of-the-money call or a deep in-the-money put).

For equity options the volatility smile tallies to the implied probability distribution

shown in the graph below by a solid line. A distribution which is lognormal having the

same standard deviation and mean as the implied distribution is represented by the dotted

line in the graph below.

Figure 6.2: Implied distribution and lognormal distribution for equity options

We can see from the graph that the implied distribution as compared to the lognormal

distribution has a less heavy right tail and a heavier left tail. When the implied distribution

is used a deep out-of-the-money call having a strike price of K2 has a price that is less as

compared to when we use the lognormal distribution. The reason is that the option pays
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off only if K2 is below the stock price, and the probability is lower as compared to the

implied probability distribution relative to the lognormal distribution. Hence, the implied

distribution should give for the option a lower price. A low price is followed by a lower

implied volatility and that is what is observed in the graph of the volatility smile.

Take for consideration a put option which is deep out-of-the-money having a K1 strike

price. If the stock price is less than K1 only then the option will pay off. The graph of

the implied distribution shows that the probability is less for the lognormal distribution as

compared to the implied probability distribution. Hence, a relatively high price should be

given for the implied distribution, which means that implied volatility will also be relatively

high for this put option which can be seen in the volatility smile graph for equity options.

6.3.1 Why the volatility smile is the same for calls and puts

A European put and call option with identical time to maturity and strike price have

equal implied volatility. This means that the volatility smile for European calls with a

certain maturity is the same as that for European puts with the same maturity. Thus, we

do not have to worry about whether the options are calls or puts.

Let’s recall the put-call parity from section 4.n. equation (4.34), a relationship between

the price of a European put and call option with similar characteristics, when the underlying

asset is paying a dividend yield q

p+ S0e
−qT = c+Ke−rT

where p and c are the European put and call price, K being the strike price, and T

representing time to maturity. The underlying stock price is given by the variable S0, the

risk-free interest rate r for maturity T and the asset yield q.

The put-call relationship does not assume any asset price probability distribution in

the future however it is based on a no arbitrage idea. In fact, the put-call parity is true
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when the asset price distribution is lognormal or not.

Let cBSM and pBSM be European call and put options values for a particular value of

the volatility calculated from the Black-Scholes-Merton model. Also let pmkt and cmkt be

the market values of these options. Since for the Black-Scholes-Merton model, the put-call

parity holds we must have

pBSM + S0e
−qT = cBSM +Ke−rT (6.1)

In the arbitrage opportunities being absent, for the market prices the put-call parity also

holds, so that

pmkt + S0e
−qT = cmkt +Ke−rT (6.2)

Subtracting equation (6.2) from (6.1), we get

pBSM − pmkt = cBSM − cmkt (6.3)

The above equation shows that when the Black-Scholes-Merton model is employed for pric-

ing a European put option, the dollar pricing error should be equal to the dollar pricing

error when pricing a European call option having the same time to maturity and strike price.

Let the implied volatility be 25% for the put option. This implies pmkt = pBSM when

a volatility value used in the Black-Scholes-Merton model is 25%. It follows from the last

equation (6.3) that cBSM = cmkt when this volatility level is used. The argument concludes

that European call option implied volatility is same as the European put option implied

volatility given the two options have the same maturity date and strike price. In other

words, for a given date of maturity and strike price, the volatility employed in pricing a

European call option should be equal to that employed in pricing the European put option
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using the model of Black-Scholes-Merton.

Given this does not hold, the option prices reflect an arbitrage opportunity. With same

date of maturity and strike price, there can be a profitably execution by a trader doing

a conversion if the calls were overpriced with respect to the puts (i.e. implied volatility

call > implied volatility put); it will be profitable to execute the reverse conversion by the

trader if the calls were underpriced with respect to the puts (i.e. implied volatility put >

implied volatility call).

Finally, the fact that for a given strike price and maturity date, we have

implied volatity put = implied volatility call

The volatility smile (the relation among strike price for a particular maturity and implied

volatility) and the volatility term structure (the relationship between maturity for a partic-

ular strike price and implied volatility) must be the same for European puts and European

calls.

6.3.2 Alternative ways of characterizing the volatility smile

The link among implied volatility and option’s strike price is given by the volatility

smile. The relation is dependent on the underlying asset current price. If the underlying

stock volatility increases, the volatility smile tends to move up; if the underlying stock

volatility falls, the volatility smile tends to move down. Similarly, as there is a rise in stock

price, the volatility skew tends to move to the right; when there is a decrease in stock price,

the volatility skew tends to move to the left. Thus, in order to obtain a much more stable

volatility smile, the volatility smile is computed by taking the relation among the implied

volatility and K/S0 rather than taking the relation among the implied volatility and K.
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Suppose a trader wishes to integrate a volatility skew into his theoretical pricing model.

What should the trader do? As the price of the underlying contract changes the trader

could shift the skew left or right. If several weeks later, the underlying contract was to

increase by $4, the constant shape of the skew can be shifted by 4 points to the right.

Simultaneously, the trader could lower or raise the skew, using the reference point of at-

the-money options to reflect his opinion about the implied volatility being either too low

or too high.

It might be a reasonable approach to shift the complete skew given that a trader

assumes that the skew will not change even though market conditions are changing. Is it

likely? It is probable that the implied volatilities of different exercise prices are dependent

on how the marketplace sees the chances of underlying market having large movements.

Every movement is relative with respect to the underlying price and to time. An increase

or decrease of 8 points in the underlying contract is smaller with the underlying contract

at 185 (4.32% move) than with the underlying contract quoting 145 (5.52% move). An

increase of decrease of 8 points over a 2-month period is smaller than a 8-point increase or

decrease over a 2-week period.

Thus, as market conditions change the volatility skew will probably change. The shape

of the skew changes and it becomes more severe with passing time. Its position also changes

with the fluctuating underlying contract price and implied volatility. The trader trying to

incorporate into a theoretical pricing model the volatility skew is facing a problem. Traders

use pricing models to evaluate options but also to manage risk under changing market con-

ditions. To incorporate a skew into the model built by the trader, he should know how the

skew is going to vary with market conditions changing.

We have seen earlier that movements in the underlying contract are relative to the un-

derlying contract current price and expiration time left. The relative amount of movement
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required to reach an exercise price in the Black-Scholes-Merton model is fully expressed as

1√
T

ln
K

S0

(6.4)

As we employ the Black-Scholes-Merton model to evaluate the various options implied

volatilities, and since the Black-Scholes-Merton model expresses strike prices as we have

seen above, it is coherent to express the exercise prices skew similarly.

For the purpose of volatility scale generalization, it might be a good idea to express all

volatilities for a given skew in terms of theoretical at-the-money option volatility.

Such as take an underlying stock contract price be $46.68. The option implied volatility

with a strike price of $46.68 (a theoretically at-the-money option) would be about 2.67%.

The volatility at each exercise price can be expressed as the difference in that volatility

of exercise price and 2.67%. Using this approach, the 51 exercise price, with an implied

volatility of 2.95% would be assigned a value of 2.95−2.67 = 0.28%. The 44 exercise price,

with an implied volatility of 2.78% would be assigned a value of 2.78− 2.67 = 0.11%.

When implied volatilities are unchanged this method works well. But assume the stock

option market implied volatility were to double to 5.34%. The implied volatilities under

these circumstances at every exercise price can double too. The 51 exercise price will have

an implied volatility of 5.90% instead of 2.95%. Since in the marketplace implied volatility

may alter, a method of linking the overall change in implied volatility to the change in

each implied volatility exercise price should be devised. The most simple way to carry this

out is expressing at each exercise price the implied volatility as a percentage point of the

implied volatility of the at-the-money option.

Suppose an implied volatility of 2.67% for at-the-money option then the 51 exercise

price with an implied volatility of 2.95% would get a value of 2.95/2.67 = 110.5%. The 44

exercise price, having an implied volatility of 2.78% would get a value of 2.78/2.67 = 104.1%
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The volatility smile can be computed as the link in the implied volatility and K/F0

where F0 is the asset’s forward price for a contract having same maturity date as the options

under consideration. Traders also define an at-the-money as an option where K = F0 and

not as an option where K = S0 as F0 is the expected stock price on the option’s maturity

date in a risk neutral world. Thus, equation (6.4) becomes

1√
T

ln
K

F0

(6.5)

and implied volatility at each exercise price can then be expressed by the traders as a

percent of the at-the-money implied volatility.

Another possibility is to define a volatility smile as the link between option delta and

the implied volatility. In this case, an at-the-money option is defined as a put option with

a delta of -0.5 or a call option with a delta of +0.5.

6.4 The volatility term structure and volatility surfaces

Traders allow the implied volatility to depend on time to maturity as well as strike

price. Implied volatility is likely to be a function of time to maturity with property of an

increasing function given that short-dated volatilities are having lower values in the past.

The reason for this is that it is anticipated that in the future volatilities would rise. For the

case where short-dated volatilities are high in the past, volatility is likely to be a decreasing

function of maturity. This is because that it is expected that in the future the volatility

will drop.

Volatility surfaces unite the volatility term structure with volatility smile to estimate

the right value of volatilities used in valuing an option with any maturity and strike price.

Let’s look at an example of the volatility surface for an option on an underlying stock.
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Table 6.2: Volatility surface

Figure 6.3: Volatility surface for European options on non-dividend paying
stocks

One dimension of the table is K/S0, whereas time to maturity is the other dimension.

Implied volatilities computed using the model of Black-Scholes-Merton is shown in graph.

It can be concluded from the graph that the volatility smile gets less definite as there is a

rise in option maturity. When a new option has to be valued, the trader looks up in the

table or graph above.

For example, suppose a trader wishes to evaluate a 9-month option with 1.05 is given

as its K/S0 ratio. Interpolation is done by the trader between 13.4% and 14.0% in order

to get a 13.7% volatility value. The Black-Scholes-Merton model uses this volatility to get
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the option market price with maturity 9 months and a ratio K/S0 = 1.05.

The volatility smile shape is dependent on the option maturity. The smile tends to

be less pronounced as the table illustrates with the maturity of the option rising. When

opted by traders to define the volatility smile as a link among equation (6.5) and implied

volatility

1√
T

ln(
K

F0

)

instead of defining it as a link among K and implied volatility, the volatility smile is much

independent of the time to maturity.

A trader making use of the model of Black-Scholes-Merton can use the volatility skew

to detect whether options are underpriced or overpriced. To determine the relative value

of options between each other and find arbitrage opportunities, the trader can also use the

volatility smile. For example, given a maturity date, a trader can short a butterfly if he

believes that the options with lower and higher exercise price are overpriced compared to

an option with a middle exercise price.

The skew is used to adjust bids and offers by a market maker. When the market maker

possesses a gamma position that is highly positive, he can reduce its risk by shifting down-

ward the skew and selling options. The result of this would be offers and bids on all options

being reduced. When the market maker is short by a big amount of out-of-the-money puts

or calls, the skew can be adjusted by wings being raised. As a result offers and bids would

increase on out-of-the-money options.

6.5 The greeks with the volatility smile

The volatility smile complicates the computation of Greek letters. Suppose that the

relationship between an option implied volatility and K/S with a specific maturity time

remains the same. As the underlying asset price moves, the option’s implied volatility also
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changes to reflect the moneyness of the option. The previous Greek formulas seen earlier

are not correct anymore. Such as call option delta becomes

∂cBSM
∂S

+
∂cBSM
∂σimp

∂σimp
σS

where cBSM is the call option price given by Black-Scholes-Merton presented as an asset

price S function and the implied volatility σimp. Let’s look at the impact of this new

formula for an equity call option. Recall that volatility is a decreasing function of K/S and

therefore, as the asset price rises there is a rise in implied volatility so that

∂σimp
∂S

> 0

Thus, as compared to the Black-Scholes-Merton model, the delta is greater.

6.6 Determination of implied risk neutral distributions using volatil-

ity smiles

The European call option price on an underlying asset with maturity T and strike price

K can be presented as follow

c = e−rT
∫ ∞
ST=K

(ST −K)g(ST )dST

where the constant interest rate is r, the asset price is presented as ST at time T , and the

risk neutral probability density function is given by g of ST . We get by differentiating with

respect to K one time

∂c

∂K
= −e−rT

∫ ∞
ST=K

g(ST )dST

Differentiating again with respect to K gives

∂2c

∂K2
= e−rTg(K)
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This shows that the probability density function of g is given by

g(K) = erT
∂2c

∂K2
(6.6)

This result, from Breeden and Litzenberger (1978), allows risk neutral probability distri-

butions to be estimated from volatility smiles. Assume that c1, c2 and c3 are the European

call option prices of T -year with strike prices of K − δ, K, and K + δ respectively. Assum-

ing δ is small, an estimate of g(K) obtained by approximating the partial derivative in the

equation (6.6) is

erT
c1 + c3 − 2c2

δ2

6.7 Different weighting schemes for the volatility estimate

We are now going to look at some models for which volatilities are not constant such as

the autoregressive conditional heteroscedasticity (ARCH), exponentially weighted moving

average (EWMA), and generalized autoregressive conditional heteroscedasticity (GARCH).

Volatility is comparatively low during some periods, while in others, it may be relatively

high. Volatility variations through time are recorded by these models.

6.7.1 Estimating volatility

Define σn as the market variable volatility on day n by estimation at day n-1 end. On

day n, the volatility square σ2
n is the variance rate. Suppose at the end of day i the market

variable value is Si. We have

ui = ln
Si
Si−1

where the variable ui is the return compounded continuously during day i. An unbiased

variance rate estimate on each day is σ2
n, using m observations which are most recent on
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the ui is

σ2
n =

1

m− 1

m∑
i=1

(un−i − ū)2 (6.7)

where ū is the mean of the ui given by

ū =
1

m

m∑
i=1

un−i

For the variance rate σ2
n simplifying the formula (6.7) by following the steps below let:

• Define the ui as the market variable percentage change during the day i so that

ui =
Si − Si−1

Si−1

• ū is taken as zero

• replace m− 1 by m

Thus, the new variance rate formula becomes

σ2
n =

1

m

m∑
i=1

u2
n−1 (6.8)

6.7.2 The ARCH(m) model

The equation (6.8) gives equal weight to u2
n−1, u2

n−2,..., u2
n−m. Estimating the volatility

present level, σn, is the purpose here. Hence, the most recent data plays a more significant

role. Following is the model which satisfies this condition

σ2
n =

m∑
i=1

αiu
2
n−i

The αi represents the variable that gives weight for each individual observation i days ago.
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The αi’s are having positive values. The sum of weight should equal 1

m∑
i=1

αi = 1

It is possible to extend the model assuming that a long-run average variance rate exists

and some weight should be given to this. The model becomes

σ2
n = γVL

m∑
i=1

αiu
2
n−i

where VL represents the variance rate in the long run and the weight assigned to VL is γ.

Since the sum of the weight should equal to 1, we have

γ +
m∑
i=1

αi = 1

This model was suggested by Engle (1982) and is called the ARCH(m) model. The variance

estimate is based on an average variance in the long-run and m number of observations.

The older an observation, the less weight it is given.

6.7.3 The EWMA model

A particular case of the ARCH model is the exponentially weighted moving average

(EWMA) model in which the weights αi decrease exponentially as moving in past time. In

particular, we have αi+1 = λαi, where λ represents a constant lying between values 0 and

1. Thus, to update volatility estimates the formula turns out to be

σ2
n = λσ2

n−1 + (1− λ)u2
n−1 (6.9)

where σn is the estimate for a variable volatility for day n and is computed using σn−1 and

un−1 represents daily percentage change that is the most recent in the variable.
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Let’s prove that the equation (6.9) corresponds to weights that decrease exponentially.

It is possible to rewrite the formula (6.9) as follow by substituting σ2
n−1 to get

σ2
n = λ[λσ2

n−2 + (1− λ)u2
n−2] + (1− λ)u2

n−1

or

σ2
n = (1− λ)(u2

n−1 + λ2
n−2) + λ2σ2

n−2

In a similar way substituting for σ2
n−2 gives

σ2
n = (1− λ)(u2

n−1 + λu2
n−2 + λ2u2

n−3) + λ3σ2
n−3

Continuing in this way gives

σ2
n = (1− λ)

m∑
i=1

λi−1u2
n−i + λmσ2

n−m

For bigger values of m, the term λmσ2
n−m is small enough to be ignored and hence the

EWMA model equation and the following equation are the same

σ2
n =

m∑
i=1

αiu
2
n−i

with αi = (1− λ)λi−1. Moving back in time the weights for the ui decrease at a rate given

by λ. Hence every weight is λ times the last weight.

To maintain attraction about using EWMA model is that a small amount of data

needs to be stored. For a given time, the current variance rate estimate and the latest

observations on the market variable are the only values to be stored. Then, the estimate of

the variance rate is updated as a new observation on the market variable is obtained while

the variance rate previous values and the older market variable values can be ignored.
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The model of EWMA is designed to track volatility changes. Assume a large movement

in the market variable during day n−1 so that u2
n−1 is big. This leads the current volatility

estimate to go up. The λ value shows how the daily volatility estimate is affected by the

very latest daily percentage change. A low λ value leads to greater weight being given to

the variable u2
n−1 when calculating σn. In this case, volatility estimates are highly volatile.

A value of λ that is high (i.e. a value close to 1) produces daily volatility estimates which

are slow responding to the daily percentage changes being most recent.

The bank JP Morgan made a database called RiskMetrics which uses the λ = 0.94 for

EWMA model to update estimates for daily volatility. The bank found out that the value

0.94 for λ is the one that gives the variance rate closest estimate to the variance rate that

is realized.

6.7.4 The GARCH(1,1) model

Invented in 1986 by Bollerslev, the GARCH(1,1) model enables to calculate σ2
n using

an average variance rate VL from the long-run and from σn−1 and un−1. The equation for

GARCH(1,1) is

σ2
n = γVL + αu2

n−1 + βσ2
n−1 (6.10)

where γ, α and β are the assigned weights for VL, u2
n−1 and σ2

n−1 respectively. The weights

must sum to 1, thus we have γ + α + β = 1. A particular case of GARCH(1,1) model is

the EWMA model taking the values γ = 0, α = 1-λ and β = λ.

It is indicated by the GARCH(1,1) model that σ2
n is based on the latest variance rate

estimate and latest observation of u2. The GARCH(p,q) model that is more general com-

putes σ2
n from the latest p observations on u2 and latest variance rate estimates q. Today,

the most used GARCH model is the GARCH(1,1).
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Let w = γVL. The GARCH(1,1) model (equation (6.10)) becomes

σ2
n = w + αu2

n−1 + βσ2
n−1

This model form is employed for parameters estimation. Once we estimate w, α and β, the

term 1-α-β is computed. Next computation for VL the long-term variance is done as w/γ.

For GARCH(1,1) model to be stable, α+ β < 1 else weight becomes negative that is being

applied to the long-term variance.

Consider the model of GARCH(1,1) from daily data as

σ2
n = 0.000002 + 0.13u2

n−1 + 0.86σ2
n−1

where α = 0.13, w = 0.000002 and β = 0.86. Because γ = 1 − α − β, we have γ = 0.01.

Because w = γVL, we have VL = 0.0002. Thus, the model implies a long-run daily average

variance of 0.0002. The corresponding volatility is equal to
√

0.0002 = 0.014 or 1.4% per

day. Now assume that the volatility estimate is 1.6% per day on day n-1, so that we have

σ2
n−1 = 0.0162 = 0.000256 and that on day n-1 the market variable decreased by 1%, such

that u2
n−1 = 0.012 = 0.0001. Then we have

σ2
n = 0.000002 + 0.13× 0.0001 + 0.86× 0.000256 = 0.00023516

The new estimate of the volatility is therefore
√

0.00023516 = 0.0153 or 1.53% per day.

6.7.5 The weights γ, α, and β

Substituting for σ2
n−1 in the equation of the GARCH(1,1) model gives

σ2
n = w + αu2

n−1 + β(w + αu2
n−2 + βσ2

n−2)
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or

σ2
n = w + βw + αu2

n−1 + αβu2
n−2 + β2σ2

n−2

Substituting for σ2
n−2 gives

σ2
n = w + βw + β2w + αu2

n−1 + αβu2
n−2 + αβ2u2

n−3 + β3σ2
n−3

Thus, if we keep on extending the formula, it can be observed that the weight applied to

u2
n−1 is αβi−1. There is an exponential decrease in weights at rate β interpreted as the

“decay rate”. In the EWMA model, it is similar to λ.

For example, if β = 0.9, then u2
n−2 is only 90% as important as u2

n−1; u2
n−3 is 81%

as important as u2
n−1 and so on. The GARCH(1,1) model is very similar to the EWMA

model in a sense that they both assign exponentially declining weights to past u2. How-

ever, in the GARCH(1,1) model, the average volatility in the long-run is given some weight.

6.7.6 Choosing between the models

Variance rates, in practice, are likely to be mean reverting. It is recognized in the

GARCH(1,1) model that with time the variance is likely to get pulled back to an average

level of VL in the long-run. The GARCH(1,1) model is the same as the model with the

variance V following the stochastic process

dV = a(VL − V )dt+ ξV dv

where we measure time in days, a = 1−α−β and ξ = a
√

2. This model is mean reverting.

There is a drift in the variance pulling it back at rate a to VL. When V < VL, the variance

has a positive drift; when V > VL, the variance has a negative drift. While mean reversion

is part of the GARCH(1,1) model, the EWMA model does not show this behavior. Hence,

the GARCH(1,1) model is better adapted than the EWMA model.

113



6.7.7 The maximum likelihood method to estimate parameters

We are now going to see how we can estimate the parameters w, α and β in GARCH(1,1).

When w = 0, the GARCH(1,1) model tends to be like the EWMA model. The GARCH(1,1)

model becomes unstable when w is negative hence the EWMA model becomes more appeal-

ing. Estimating parameters using the historical data is known as the maximum likelihood

method. Parameter values in such models are selected to maximize the data occurring

chances.

Firstly, estimating for a variable X, the constant variance is the main objective from m

observations onX by the maximum likelihood method. Suppose the distribution underlying

is normal having zero mean and take u1, u2,..., um as the observations. Denoting variable

X variance by v. The probability density function for X given below is defined as the

likelihood of ui being observed when X = ui

1√
2πv

e
−u2i
2v

The likelihood of occurring of m observations in the same order as they are observed in is

m∏
i=1

[
1√
2πv

e
−u2i
2v ] (6.11)

The best estimate of v, by the maximum likelihood method, is hence the value that max-

imizes this expression. The expression (6.11) being maximized is similar to the logarithm

of the expression being maximized. Thus, we want to maximize

m∑
i=1

[− ln(v)− u2
i

v
] (6.12)
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or

−m ln(v)−
m∑
i=1

u2
i

v
(6.13)

Let the differentiation of expression (6.13) with respect to v equal to zero, for v the maxi-

mum likelihood estimator is

1

m

m∑
i=1

u2
i

Now, let’s see how one trader can use the maximum likelihood method for GARCH(1,1)

model parameter estimation. Let vi = σ2
i be the estimated variance for day i. Suppose the

conditional probability distribution of ui on the variance is a normal distribution. Thus,

for the GARCH(1,1) model, the best parameters are the ones that maximize

m∏
i=1

[
1√
2πvi

e
−u2i
2vi ]

Now take logarithms, this is the same as maximizing

m∑
i=1

[− ln(vi)−
u2
i

vi
] (6.14)

The expression (6.14) is the same as (6.12) except that to search iteratively v is replaced

by vi and for finding the parameters w, α, β in the model for expression maximization. We

can implement the GARCH(1,1) method using the solver tool of Excel for searching the

parameters values that maximize the likelihood function.

6.7.8 Forecasting future volatility using GARCH(1,1) model

The estimation for variance rate for day n done at the end of day n-1, when GARCH(1,1)

is used is given by equation (1.48) or

σ2
n = (1− α− β)VL + αu2

n−1 + βσ2
n−1
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which is the same as

σ2
n − VL = α(u2

n−1 − VL) + β(σ2
n−1 − VL)

In the future on day n+ t,

σ2
n+t − VL = α(u2

n+t−1 − VL) + β(σ2
n+t−1 − VL)

The expected value of u2
n+t−1 is σ2

n+t−1. Hence

E[σ2
n+t − VL] = (α + β)E[σ2

n+t−1 − VL]

where expected value is denoted by E. Using this equation repeatedly yields

E[σ2
n+t − VL] = (α + β)t(σ2

n − VL)

or

E[σ2
n+t] = VL + (α + β)t(σ2

n − VL) (6.15)

The equation (6.15) on day n + t forecasts the volatility using the information given by

the end of day n − 1. If α + β < 1, the term (α + β)t(σ2
n − VL) for increasing t becomes

progressively smaller.

The figure below shows that when current variance rate is different from VL, the trajec-

tory of the expected path followed by the variance rate. As we have seen that the variance

rate gives the mean reversion with a reversion rate of 1−α−β and a reversion level of VL.
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Figure 6.4: Variance rate expected path when (a) current variance rate is
above long-term variance rate and (b) current variance rate is below

long-term variance rate

The future forecast for the variance rate approaches VL as we look very far in the future.

Thus, this analysis shows the stability of the GARCH(1,1) model when α+β < 1. Finally,

if α + β > 1, the long-term average variance weight is negative and the process is mean

fleeing and not mean reverting.

6.7.9 The volatility term structure

Let be day n. Then we define

V (t) = E(σ2
n+t)

and

a = ln
1

α + β

so the equation (6.15)

E[σ2
n+t] = VL + (α + β)t(σ2

n − VL)
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becomes

V (t) = VL + e−at[V (0)− VL]

Here, V (t) is the instantaneous variance rate estimate in t number of days. The variance

rate per day average between today and time T is as follow

1

T

∫ T

0

V (t)dt = VL +
1− e−aT

aT
[V (0)− VL]

The closer is the value to VL as T grows larger.

Defining σ(T ) as the annual volatility rate that should be used for valuing a T -day

option with the model of GARCH(1,1). Taking 252 trading days per year, σ(T )2 is the

average variance rate per day multiplied by 252 so that

σ(T )2 = 252(VL +
1− e−aT

aT
[V (0)− VL]) (6.16)

On the model of GARCH(1,1) basing results, the equation (6.16) enables a trader to find

out a relationship among the option implied volatilities on a same asset and their maturi-

ties. This is called a volatility term structure. Thus, given a strike price and a volatility

term structure, a trader is able to identify arbitrage opportunities between overpriced and

underpriced options of the same strike price and different maturities. For example, a trader

will be able to identify long and short time spreads from the volatility term structure.

In order to see how the actual volatility term structure responds to volatility changes

we use the volatility term structure. The volatility term structure is downward-sloping if

the current volatility exceeds the long-term volatility. The GARCH(1,1) model estimates

a volatility term structure that is upward-sloping if the current volatility is less than the

long-term volatility.
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Let’s look at the impact of volatility changes on the volatility term structure. The

average variance rate per year equation (6.16) can also be presented as

σ(T )2 = 252[VL +
1− e−aT

aT
(
σ(0)2

252
− VL)]

Changing σ(0) by ∆σ(0), σ(T ) changes by approximately

1− e−aT

aT

σ(0)

σ(T )
∆σ(0)

This process enables a trader to determine how much risk exposure he has due to instan-

taneous volatility changes in the underlying market.

Table 6.3: Impact of a 100 basis point change in the instantaneous volatility
predicted from GARCH(1,1)

From this table based on S&P 500 options of varying maturities, a trader is therefore able

to say that an increase of 1% in the instantaneous volatility increases the volatility of a

10-day option by 0.97%, 0.92% for a 30-day option and so on. If the implied volatilities of

the different maturity options do not increase by the same percentage amount predicted

by the GARCH(1,1) model, some arbitrage opportunities are then available to market

participants.
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Chapter 7
Stochastic volatility models: an
alternative to the
Black-Scholes-Merton model

7.1 Stochastic volatility models

An alternative to the Black-Scholes-Merton model that is assuming constant volatility

over the option’s life is a model where the geometric Brownian motion volatility parameter

is known as a function of time. Followed by the asset price, the risk-neutral process is then

dS = (r − q)Sdt+ σ(t)Sdv (7.1)

If the variance rate is taken to be equal to the average variance rate during the option’s

life, then the Black-Scholes-Merton formulas are correct.

The variance rate is the volatility square. Suppose that in a total duration of 1-year

during the first 6 months the stock volatility will be 20% and 30% during the next 6

months. The average variance rate is 0.5 × 0.202 + 0.5 × 0.302 = 0.065. Then, using the

Black-Scholes-Merton formulas is right with a variance rate of 0.065, corresponding to a

volatility of
√

0.065 = 25.5%.

The equation (7.1) assumes that a trader can perfectly predict the asset’s instantaneous

volatility. In practice, volatility varies stochastically and therefore a more complex model

is needed with two stochastic variables: the volatility of stock price and stock price itself.
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One model that has been used by financial participants is

dS

S
= (r − q)dt+

√
V dvS

dV = a(VL − V )dt+ ξV αdvV

where dvS and dvV are Wiener processes and a, VL, ξ and α are constants. The variance

rate has a drift that pulls it back to a level VL at rate a.

In “The Pricing of Options on Assets with Stochastic Volatilities”, Hull and White

demonstrate that when volatility is uncorrelated with the asset price but stochastic, the

European call option premium equals Black-Scholes-Merton price integrated over the av-

erage variance rate probability distribution during the life of the option

∫ ∞
0

c(V̄ )g(V̄ )dV̄

where V̄ is the variance rate average value, the Black-Scholes-Merton price is c expressed

as a function of V̄ and g in a risk-neutral world is the probability density function of V̄ . It

can be shown using this results that at-the-money or close to the money options are over-

valued using Black-Scholes-Merton, and options that are deep in or deep out-of-the-money

are undervalued.

We discussed earlier alternative models, EWMA and GARCH(1,1) models, to char-

acterize a stochastic volatility model. In “The GARCH Option Pricing Model”, the au-

thor, J.-C Duan, shows that for a consistent option pricing model it is possible to use

GARCH(1,1) model. In fact, stochastic volatility models can be used to model exotic

options and plain vanilla prices.
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For options with less than a year left to maturity, using a stochastic volatility model

impact is quite small in absolute terms but larger for deep out-of-the-money options in

percentage terms. For options with longer maturities (over a year), using a stochastic

volatility process makes more sense as the impact becomes progressively larger as the

option’s life rises.

Finally, using a stochastic volatility process impact is generally quite large on the per-

formance of delta hedging. Traders are aware of this and therefore monitor their exposure

to volatility changes by calculating vega.

7.2 Monte Carlo Simulation

We usually use for derivatives where the payoff is dependent on the history of the

underlying variable or where there are several underlying variables the Monte Carlo simu-

lation. When used to value an option, Monte Carlo simulation makes use of the risk neutral

valuation result. In order to obtain the expected payoff in a risk neutral world sample paths

are used and this payoff is then discounted at the interest rate that is risk-free.

Take for example a derivative that depends on a single market variable S providing

a payoff at given time T . Taking constant interest rates, the derivative can be value as

follow:

• Assuming a risk neutral world, we sample a random path for S

• Compute the derivative payoff

• To get many sample values of the payoff from the derivative in a risk neutral world

repeat the steps one and two above

• Compute sample payoffs mean to get an expected payoff estimate in a risk neutral

world
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• This expected payoff is discounted at the risk-free rate to get a derivative price esti-

mate

Assuming underlying stock price variable is following the process in a risk neutral world

given by equation (4.3)

dS = µSdt+ σSdv

where a Wiener process is represented by dv, the expected return in a risk neutral world

is µ, and the volatility parameter is σ. For simulating the path S, we can divide the

life of the derivative into N short time intervals ∆t and hence the above equation can be

approximated as

S(t+ ∆t)− S(t) = µS(t)∆t+ σS(t)ε
√

∆T

where the value of S at time t is given by S(t), a random sample from a normal distribution

with standard deviation of 1 and mean zero is represented by ε.

We can then compute at time ∆t the value of S from the starting value of S, at time

2∆t compute the value S from previous computation at time ∆t and so on. Practically, it

is a better idea to simulate lnS rather than simulating S. From equation (4.10) and Itô’s

lemma, the lnS follows a process given by

d lnS = (µ− σ2

2
)dt+ σdv

hence

lnS(t+ ∆t)− lnS(t) = (µ− σ2

2
)∆t+ σε

√
∆t

or equally can be written as

S(t+ ∆t) = S(t)e(µ−σ
2

2
)∆t+σε

√
∆t (7.2)

We use the equation (7.2) for constructing a path for S.
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Working with lnS is more accurate than working with S. Also, if µ and σ are constant,

then

lnS(T )− ln(0) = (µ− σ2

2
)T + σε

√
T

is true for all T . It follows that

S(T ) = S(0)e(µ−σ
2

2
)T+σε

√
T (7.3)

The equation (7.3) can be used to price derivatives with nonstandard payoff at time T .

7.2.1 Probability distribution of the Monte Carlo simulation

A simulation done to obtain random outcomes for a stochastic process is called as

Monte Carlo simulation. Let’s recall the previous example where the stock expected return

annual rate is 0.10% and the volatility annual rate is 0.20%. The stock price change over

1 week is given by equation (4.7)

∆S = 0.00192S + 0.0277Sε

Simulations for a path for the stock price over 10 weeks can be done by sampling repeatedly

for ε from φ(0, 1) and putting this into the equation (4.7).
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Table 7.1: Stock price simulation for σ = 0.20 and µ = 0.10 during 1-week
periods, given that initial stock price is S = $100

This table shows one path for a stock price over a 10-week period. It is significant that

the given table presents a single possible pattern for the movements in stock price and

hence various price movements result by various random samples. We can use any small

time interval ∆t for the simulation. The final stock price of $102.1017 can be regarded as

a distribution of stock prices from random sample by 10 weeks end. When simulations in

stock price movements are done repeatedly, at the end of 10 weeks, a different probability

distribution is obtained. The trader can then compute the payoff from the option derivative

contract for each probability distribution obtained.

7.2.2 Strengths and weaknesses of the Monte Carlo simulation

The Monte Carlo simulation prime benefit is that we can use it for calculating the

payoff when it is dependent on only on the final value of S as well as when it is dependent

on the path being followed by the underlying variable S. Such as we can use the Monte

Carlo simulation when the payoffs are dependent on the average value of S between 0 and

time T . Payoffs can occur during all the derivative life the end.
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Efficiency of Monte Carlo simulation is greater numerically as compared to other pro-

cedures when stochastic variables exceed or equal to three. A benefit of using Monte Carlo

simulation is that it provides for the estimates a standard error as well. The result accuracy

is dependent on the number of trials for the Monte Carlo simulation. The mean µ and the

standard deviation σ given by the simulation for the discounted payoffs can be computed

too. The variable µ corresponds to the simulation’s estimate of the derivative value. The

estimate standard error is given by

σ√
M

(7.4)

where the number of trials is represented by M . For the price f of the derivative a 95%

confidence interval is

µ− 1.96σ√
M

< f < µ+
1.96σ√
M

The Monte Carlo simulation major disadvantage is that it is very time consuming com-

putationally and is not adapted for situations where early exercise is a possibility.

7.2.3 Monte Carlo simulation and the Greeks

The Greek letters can be calculated in the case of a Monte Carlo simulation. Suppose

that a trader looks at the partial derivative c with respect to S where c represents the call

option premium and S the underlying stock price. The trader applies the Monte Carlo

simulation to estimate the derivative value given by ĉ. An increase in S, by ∆S, is then

made and a new value for the derivative, ĉ∗, is similarly computed to ĉ. Hence for the

hedge parameter an estimate is

ĉ∗ − ĉ
∆S

To minimize (7.4), the estimate standard error should correspond to N representing the

number of time intervals used, the random samples that are used, and the number of trials

M to calculate both ĉ and ĉ∗.
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Chapter 8
Conclusion

Many traders and financial institutions have experienced huge losses due to the use

of derivatives. In fact, in 1998, a major hedge fund collapsed, the Long-Term Capital

Management (LTCM) where Myron S. Scholes and Robert C. Merton were key people of

the firm, and more recently, the bankruptcy of the fourth biggest bank in the United States

in 2008, Lehman Brothers, were the result of underestimating the risks of these derivative

instruments. Some non-financial corporations due to some of the losses have declared that

they plan to reduce their use of derivatives and might even eliminate it at all. This will

be very adverse because derivatives provide firms and financial institutions a very efficient

way to manage their risks and achieve their risk/profit goals at lower transaction costs.

This brings up an important point. The use of derivatives can be either for speculating

or for hedging; meaning, we can use them either to take risks or to reduce risks. Primary

reason for losses due to derivatives is that they were not used correctly. Financial institu-

tions and hedge funds that were supposed to hedge their risks instead speculated with the

high leverage of these instruments.

From these losses a major lesson that should be learnt is the significance of control-

ling and managing risks taken while using derivatives. The Black-Scholes-Merton model,

allowing traders to price theoretically European put and call options on stocks that are

non-dividend paying, offers market participants an easy and efficient way to manage their

option portfolio’s risks through the Greek letters. In fact, most of option derivatives traders

nowadays follow a delta neutral strategy to be protected against the direction of the under-

lying asset prices and instead bet on the volatility of the underlying asset prices. Derivatives

traders can also choose to be gamma neutral in order to make an option portfolio’s delta
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rate of change equal to zero, or vega neutral to hedge their portfolio against time sensitivity

and implied volatility respectively.

However, when using a different model like stochastic volatility models to price stock

options, the computation of the Greeks is more time consuming as it implies to iterate the

Monte Carlo simulation several times by making the one variable (delta for a directional

hedge, gamma for a volatility hedge, vega for an implied volatility hedge and rho for an

interest rate hedge) to calculate vary.

The Black-Scholes-Merton model is based on more or less realistic assumptions. One

main critic that can be made is about the assumption that this model take the underlying

asset returns following a normal distribution over small periods of time, resulting in un-

derlying prices at options expiration following a lognormal distribution. This hypothesis

made by the model implies that the underlying stock volatility remains unchanged over

the derivative instrument life and fails to explain the volatility smile. In fact, for a given

maturity date, options have different volatilities which are having different strike prices

resulting in a graph with a shape of a smile. Thus, the use of stochastic volatility models

can be justified when pricing options as they better represent financial market conditions

with the mean reverting phenomenon of volatility and the capacity to explain the volatility

smile of stock options.

However, even if stochastic volatility models are better adapted to derivatives markets,

these models imply long computations with more parameters to estimate to price and hedge

an option portfolio. Thus, derivatives traders rather use the time efficient Black-Scholes-

Merton model where less estimation errors can be made.

The assumption of the normal distribution of underlying asset price changes made by

the Black-Scholes-Merton model tends to overprice close-to-the-money or at-the-money op-

tions while deep out-of-the-money options are undervalued. Once again, stochastic volatil-
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ity models, to the detriment of longer computations, give a better representation of the

underlying asset returns as the probability distribution can be skewed positively or nega-

tively with an unusual tall and pointed or low and flat peak to give more probabilities to

certain market events than the normal distribution does.

Since employing a theoretical pricing model, like a stochastic volatility model or the

Black-Scholes-Merton model, is based on assumptions more or less accurate to the real

world and requires a trader to make some estimations on inputs, the new derivatives trader

might feel that taking the right decision based on the theoretical pricing model is just a

chance matter. In the short-run luck might be helpful however in the long-run, better

performing traders are the ones who will put some efforts in comprehending the model

along with its every problem. This is the reason why using a pricing model remains among

traders the best way to manage risk and evaluate options.

Finally, the reader of this paper might be thinking that trading and evaluating options

is merely an arithmetic calculations series. The options evaluation mechanism forms any

trader’s education integral part, but mathematical models provide the trader with tools to

make decisions. A successful trader for options is one who knows when science ends and

where intuition, market fell or experience begins. If a trader is basing his decisions intensely

on the model calculations and putting intuition aside he would end up in a misfortune. Only

a trader who understands the limitations of the models used will end up being successful.
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