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ABSTRACT 

Transition metal oxides present in waste incineration systems have the ability to 

catalyze the formation of polychlorinated dibenzo-p-dioxins and dibenzofurans 

(PCDD/Fs) through surface mediated condensation of organic dioxin precursors. Current 

studies have concentrated on the catalytic effects of individual transition metal oxides, 

while the complex composition of fly ash introduces the possibility of synergistic or 

antagonistic effects between multiple, catalytically active components. In addition, there 

is at present hardly a quantitative link between fly ash physical properties/chemical 

reactivity and PCDD/Fs yield. 

We have tested fly ash surrogates containing different ratios of iron (III) oxide and 

copper (II) oxide to study the cooperative effects between two transition metals. The 

presence of both iron and copper oxides increased the oxidative power of the fly ash 

surrogates in oxygen rich conditions and led to extremely high PCDD/F yields under 

pyrolytic conditions (up to >5% yield) from 2-monochlorophenol precursor.  PCDD/F 

congener profiles from the mixed oxide samples are similar to results obtained from only 

CuO, however the total PCDD/F yield increases with increasing Fe2O3 content.  Careful 

analysis of the reaction products and changes to the oxidation states of active metals 

indicate the CuO surface sites are condensation reaction centers while the Fe2O3 is 

affecting the bond energy in CuO and increasing the ability of copper centers to form 

surface-bound radicals that are precursors to PCDD/Fs. 

Three fly ash surrogates containing 1%, 2.5%, and 4% of Fe2O3 were prepared 

and their effects on the PCDD/F formation were investigated and compared to typical 5% 

iron oxide sample. The results showed that under pyrolysis conditions, the total dioxin 
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yields increased with the increasing content of iron in the fly ash surrogates. To 

understand the effects of the content and morphology of iron and the formation of 

PCDD/F, the surrogates were characterized using transmission electron microscopy 

(TEM) and X-ray diffraction (XRD). TEM and XRD analysis confirmed that 1% of Fe2O3 

fly ash surrogate was amorphous, and crystallinity increased with the increasing iron 

content. Our results demonstrate the amount of iron in the fly ash influences the 

morphology and size of the Fe2O3 nanoclusters, determining the furan congeners’ 

distribution and total PCDD/F yield.  
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CHAPTER 1 INTRODUCTION 

1.1 Introduction to PCDD/F 

Dioxins are generic names of polychlorinated dibenzo-p-dioxins (PCDD) and 

polychlorinated dibenzofurans (PCDF). PCDD/Fs are formed as byproducts in 

combustion processes,1-2 especially the thermal treatment of municipal solid waste. 3-4 

They are a group of tricyclic aromatic compounds with similar chemical properties. Each 

compound comprises two benzene rings interconnected by oxygen atoms. In PCDDs’ 

structure, the benzene rings are joined by two oxygen bridges, and in PCDFs, the 

benzene rings are connected by a carbon bond and an oxygen bridge. There are 75 

PCDD and 135 PCDF congeners, each differing in the number and position of the chlorine 

atoms. PCDD/Fs are highly toxic in biological systems due to their teratogenic, mutagenic 

and carcinogenic properties. 5-6 Their strong lipophilic nature leads to bioaccumulation in 

the food chain, mainly in the fatty tissue of animals. In PCDD/F family, 2,3,7,8-

tetrachlorodibenzo-p-dioxin (TCDD) is the most toxic; other congeners’ toxicities can be 

expressed as fractional equivalencies of TCDD. Of the 210 possible PCDD/F congeners, 

only the seventeen 2,3,7,8-chloro-substituted congeners are considered toxic and 

bioaccumulative. These 17 congeners have a range of toxic potency, and each has been 

assigned a toxic equivalency factor (TEF) based on the relative potency compared with 

the most toxic congener, 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD). 7 A toxic equivalent 

(TEQ) is then defined as the summation of all toxic congener concentrations weighted by 

their TEF to provide a single unit to measure the toxic concentration of all the PCDD/Fs. 

In addition to PCDD/Fs, some polychlorinated biphenyls (PCBs) have similar chemical 

structures and physical-chemical properties, accordingly, they invoke common toxic 
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responses. Certain members of the PCDD/Fs and PCB family are termed as “dioxin-like” 

products and are assigned TEF values in Table 1.1. 8 Figure 1.1 shows the generic 

structures of PCDDs, PCDFs and PCBs, respectively. In this document, dioxins are 

referred to PCDDs and PCDFs. 

Table 1.1.  Recommended Toxicity Equivalence Factors (TEFs) for Human 
Health Risk Assessment of Polychlorinated Dibenzo-p-dioxins, 
Dibenzofurans, and Dioxin-like Polychlorinated Biphenyls 8 

Compound TEF 

PCDDs 

2,3,7,8-TCDD 1 

1,2,3,7,8-PeCDD 1 

1,2,3,4,7,8-HxCDD 0.1 

1,2,3,6,7,8-HxCDD 0.1 

1,2,3,7,8,9-HxCDD 0.1 

1,2,3,4,6,7,8-HpCDD 0.01 

OCDD 0.0003 

PCDFs 

2,3,7,8-TCDF 0.1 

1,2,3,7,8-PeCDF 0.03 

2,3,4,7,8-PeCDF 0.3 

1,2,3,4,7,8-HxCDF 0.1 

1,2,3,6,7,8-HxCDF 0.1 

1,2,3,7,8,9-HxCDF 0.1 

2,3,4,6,7,8-HxCDF 0.1 

1,2,3,4,6,7,8-HpCDF 0.01 

1,2,3,4,7,8,9-HpCDF 0.01 

OCDF 0.0003 

PCBs 

3',4,4'-TCB 0.0001   

3,4,4',5-TCB 0.0003 

3,3',4,4',5-PeCB 0.1 

3,3',4,4',5,5'-HxCB 0.03 

2,3,3',4,4'-PeCB 0.00003 

2,3,4,4',5-PeCB 0.00003 

2,3',4,4',5-PeCB 0.00003 

2,3,3',4,4', 5-HxCB 0.00003 

2,3,3',4,4',5'-HxCB 0.00003 

2,3',4,4',5,5'-HxCB 0.00003 

2,3,3',4,4',5,5'-HpCB 0.00003 
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1.2 Emission Sources of PCDD/F  

According to the dioxin source inventory issued by the U.S. Environmental 

Protection Agency (EPA),9 the major identified sources of environmental releases of 

dioxin-like compounds are grouped into six broad categories: combustion sources, metals 

 

Figure 1.1. Chemical Structural Formulas for PCDD, PCDF and PCB 

smelting, refining and process sources, chemical manufacturing sources, natural 

sources, and environmental reservoirs. Combustion is a dominant source of dioxin 

emission. 10 “Dioxins” are produced from biomass burning, 11-12 municipal solid waste 

incineration (MSWI), 13-16 medical waste incineration,17 backyard barrel burning of refuse, 

etc. Metallurgical industries 18-19 such as iron ore sintering and secondary non-ferrous 

metal smelting have also been identified as primary source of PCDD/F emission. Other 

sources include co-fired utility boilers,20 automobile exhaust,21 pulp and paper mills,22-23 

forest fire, 24 volcanic activities, pesticide production, 25 etc. The EPA inventory report 

shows that environmental releases of dioxin-like compounds decreased by approximately 

90% between 1987 and 2000; the leading source of dioxin-like compounds in 2000 was 

the backyard burning of refuse in barrels because it was unregulated on a national level. 
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In the Toxics Release Inventory reporting facilities from 2010 to 2016, since 2010, dioxin 

released increased by 114%. This increase is largely driven by increased on-site land 

disposal from a non-ferrous metal smelting and refining facility. 

1.3 Environmental Laws and “Dioxins” 

U.S. EPA has released laws and guidelines to minimize emissions of dioxins and 

protect human health. 26 

Comprehensive Environmental Response, Compensation and Liability Act 

(CERCLA) / Resource Conservation and Recovery Act (RCRA): In 2009, former 

Administrator Lisa Jackson directed EPA to accelerate work underway to reassess the 

human health risks from exposures to dioxin including completing the development of 

draft interim preliminary remediation goals (PRGs) for dioxin in soil. PRGs are goals for 

lowering the concentration of specific chemicals in specific media like soil, sediment, at 

Superfund sites, federal facilities and RCRA sites. They serve as a target to use during 

the initial development, analysis, and selection of cleanup options. These goals are 

designed to protect human health and the environment, and comply with all applicable, 

relevant and appropriate regulations (ARARs) for all exposure pathways being 

addressed. 

Hazardous Air Pollutants for Hazardous Waste Combustors and Clean Air Act: 

EPA announced the final rule Final Standards for Hazardous Air Pollutants for Hazardous 

Waste Combustors in 2005. The rule established national emission standards for 

hazardous air pollutants (like dioxins) for sources that burn hazardous waste: commercial 

and onsite incinerators, cement kilns, lightweight aggregate kilns, boilers, and 

hydrochloric acid production furnaces. These standards were promulgated pursuant to 



5 
 

Section 112 (d) of the Clean Air Act, which requires EPA to issue technology-based 

standards reflecting the performance of the Maximum Achievable Control Technology 

(MACT). 

Toxic Substances Control Act (TSCA): under TSCA section 8(e), any person who 

manufactures (including imports), processes, or distributes in commerce a chemical 

substance (including, generally, dioxin) or mixture and who obtains information which 

reasonably supports the conclusion that such substance or mixture presents a substantial 

risk of injury to health or the environment to immediately inform EPA, except where EPA 

has been adequately informed of such information. Under 40 CFR part 766, testing by 

manufacturers and processors of certain specified chemical substances to ascertain 

whether those substances may be contaminated with halogenated dibenzo-p-dioxins 

(HDDs)/dibenzofurans (HDFs) is required under TSCA section 4, and under TSCA 

section 8 manufacturers and processors of certain chemicals are required to report 

certain information to EPA. 

Emergency Planning and Community Right-to-Know Act (EPCRA): Section 313 of 

the EPCRA of 1986 requires certain facilities manufacturing, processing or otherwise 

using listed chemicals to report their environmental releases of such chemicals annually. 

The list of reportable chemicals, known as the EPCRA section 313 list and also referred 

to as the Toxics Release Inventory, or TRI list, was originally identified in the statute and 

was comprised of more than 300 individual chemicals and 20 chemical categories. 

Safe Drinking Water Act (SDWA): under the Safe Drinking Water Act (SDWA), 

EPA has established a maximum contaminant level for dioxin in drinking water.  
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China is one of the largest dioxin-emitting counties in the world, with estimated 

total annual dioxin emissions from the 17 main industrial sectors of 6 kg toxic equivalent 

(TEQ) in 2008.27 In 2000, China issued the first dioxin emission standard for waste 

incineration. In October 2010, China issued Guidance on the Strengthening of Dioxin 

Pollution Prevention, which requires key dioxin-emitting industries to carry out 

comprehensive actions to reduce dioxin emissions. 28 This is a major historical milestone 

in China’s fight against dioxin pollution. 

European Union has presented three progress reports on dioxins and PCBs since 

2004. 29 Between 1990 and 2007 industrial emissions of newly formed dioxins, furans and 

PCBs were reduced in the European Union by 80%. In order to address the health and 

environmental concerns due to these pollutants the Commission adopted in 2001 a 

Communication to the Council, the European Parliament and the Economic and Social 

Committee setting out a Community Strategy for dioxins, furans and PCBs. This dioxin 

strategy consists of two parts: one part containing actions for reducing the presence of 

dioxins, furans and PCBs in the environment and one part containing actions for reducing 

their presence in feed and food. 

1.4 PCDD/F Formation Mechanisms 

Fly ash from MSWI has been known as hazardous waste because of the high 

content of metals and PCDD/Fs. 30-31 PCDD/Fs are formed as byproducts in combustion 

processes, especially the thermal treatment of municipal waste. Studies have shown the 

highest load of PCDD/Fs released from waste incineration is mainly adsorbed on fly ash. 

32 The metals include Al, Fe and Zn, Cr, Cu and Pb, etc. The content and form of the 

metals is related with the leaching behavior and potential environment risk of the fly ash. 
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31, 33 Since the discovery of PCDD/Fs in MSWI fly ash and flue gas, the formation 

mechanisms of PCDD/Fs 34-36 and the role of metal oxides in promoting or suppressing 

the formation of PCDD/Fs has been thoroughly studied. Among transition metals, copper 

and iron have been identified to be the most active in the formation of PCDD/F.37-39 

Chlorophenols have been demonstrated to be the predominant and direct 

precursors of PCDD/Fs in thermal systems. 40-43 Chlorophenols can be found ubiquitously 

in the environment due to their extensive and long-term use in industry and in daily life. 

In addition to chlorophenols, chlorobenzenes44-46 have also been shown to be the 

precursors of PCDD/F formation via different mechanisms.  

PCDD/Fs are formed by two general pathways: homogeneous and heterogeneous 

pathways. Homogeneous pathways involve the reaction of structurally related precursors 

in the gas phase, in the higher temperature region of 500-800 °C. Heterogeneous 

pathways involve two routes in 100-500 °C: “de novo” synthesis and transition metal 

catalyzed precursor mechanisms. De novo synthesis occurs from carbonaceous 

materials in soot, which releases PCDD/F congeners in the presence of oxygen and 

catalyst without the gas-phase precursor. Transition metal catalyzed condensation 

reaction of precursors. 

1.4.1 Homogeneous Pathway 

Gas phase formation of PCDD/F from structurally related precursors includes three 

principal steps: 34 self-condensation of the precursors; cyclization of the initial 

intermediates from the first step to produce PCDD/F; chlorination/dichlorination reactions. 

Specifically, the production of the phenoxy radical (C6H5O·) from a phenol molecule is an 

important step. This reaction might be initiated through thermal decomposition. Then, the 
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phenoxy radicals experience self-condensation and keto-enol tautomization to form bis-

enol intermediates. PCDFs are formed through a radial-radial coupling while PCDDs 

formation involves radical/radical, molecule/radical or molecule/molecule coupling. 

1.4.2 Heterogeneous Pathways 

In heterogeneous reactions, when gas molecules adsorb and desorb at a 

catalytically active surface and interact with each other, as well as with the surface itself, 

various reaction mechanisms have been proposed. Three main reaction mechanisms:  

(a) Langmuir-Hinshelwood mechanism, (b) Eley-Rideal mechanism, (c) Mars-Van 

Krevelen mechanism are shown in Figure 1.2. In Langmuir-Hinshelwood mechanism, 

both reactant A and B first adsorb onto the surface, then a reaction takes place and the 

reaction product desorbs from the surface. In Eley-Rideal mechanism, only reactant A 

adsorbs onto the surface, the other reactant B interact and react with the adsorbed A 

directly from the gas phase, followed by the desorption of the reaction product. In Mars-

Van Krevelen mechanism, the surface itself is an active part in the reaction, which 

involves transfer of oxygen atoms from the surface to the adsorbate. When the reaction 

product desorbs, a vacancy is left behind the surface and it will be filled by a reactant 

atom from the bulk. The characteristic feature of this mechanism is that some products of 

the reaction leave the solid catalysts’ surface with one or more constituents of the 

catalysts’ lattice. 

De novo Formation 

The emission of PCDD/F from native carbon in MSWI fly ash and sources of 

oxygen, chlorine and hydrogen is referred to de novo pathway. The phenomenon of dioxin 
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Figure 1.2. (a) Langmuir-Hinshelwood mechanism, (b) Eley-Rideal mechanism, (c) Mars-
Van Krevelen mechanism 
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formation from residual carbon in fly ash was originally discovered by Vogg and Stieglitz   

in 1986. 47 They suggested that the formation of PCDD/F could be regarded as a de novo 

synthesis from carbon and inorganic chloride in fly ash. Since then, many laboratories 

have performed de novo studies under different experimental conditions. Milligan and 

Altwicker studied the relationship between de novo synthesis of PCDD/F and carbon 

gasification in fly ash. 48 A clear correlation was observed between carbon gasification 

rates and PCDD/F formation rates for all four fly ashes. Huang and Buekens 49 developed 

a kinetic model for the formation of PCDD/F based on the de novo pathway. Three 

reactions are considered: 

Reaction 1: C + aO2 → bCO + cCO2 + dAr + e(PCDD/Fs)s 

Reaction 2: (PCDD/Fs)s → (PCDD/Fs)g 

Reaction 3: (PCDD/Fs)g → other products 

Reaction 1 describes carbon gasification and PCDD/F formation; reaction 2 is the 

desorption of solid phase PCDD/F to the gas phase; reaction 3 is the degradation of 

PCDD/F to other product. Kinetic parameters for the three reactions were all adopted from 

previous literature data. Based on their calculation, de novo synthesis of PCDD/F is 

dominant in industrial incinerators. 

           Cu is thought to be the key catalyst of the de novo synthesis in both modeled and 

real fly ash. Li 50 studied the effect of 0.1 wt% Cu, Cr, Ni, Zn and Cd chloride or oxide 

model fly ash on the de novo synthesis of PCDD/F. They found that combining the 

function of chlorinating agent and catalyst, chlorides are more active than oxides. CuCl2 

is the most active PCDD/F catalyst. By using the fly ash from an MSWI in Taiwan, Wang 
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51 also concluded the formation of PCDD/Fs was significantly increased by CuCl2 after 

comparing the results from 10 wt% FeCl2, ZnCl2 and CuCl2 into the fly ash medium. 

        Fe3+, also redox-active, is almost the highest concentration transition metals in fly 

ash. Depending on the MSWI facilities and sampling time, the content of iron oxide in fly 

ashes is from 0.85-5.02 %. 31 Early research has focused on the destruction rather than 

formation of PCDD/Fs. 52-53 Recently, the effect of iron (III) on the PCDD/F formation has 

been realized and extensively studied both in de novo pathway 54-57 and in precursor 

pathway. 38, 58 

Transition Metal Catalyzed Precursor Condensation Pathway 

Transition metals are present in the fly ashes in the exhaust and air pollution 

control devices of most combustion systems. It is known that transition metal oxides and 

chlorides play an important role in dioxin formation.59 Specifically, substituted aromatic 

species chemisorb to metal oxide or hydroxide surface sites to form a phenoxy-type, 

persistent free radicals (EPFRs). These surface-associated phenoxy radicals can then 

react with each other to form PCDD/Fs and other pollutant. Scheme 1.1 shows the EPFR 

formation mechanisms. 38 Two pathways of chemisorption have been identified for 

chlorophenols: (1) elimination of H2O (2) elimination of both H2O and HCl. The 

mechanism of chemisorption of phenols and other substitute aromatic species on 

transition metal surfaces suggests that the surface catalyzed precursor reaction involving 

transition metals is a significant source of PCDD/F emissions. It is believed that ~70% 60 

of PCDD/F emissions are due to transition-metal mediated surface reactions in the post-

flame, cool zone of combustors. Lomnicki and Dellinger suggested that the formation of 

PCDFs follows a Langmuir-Hinshelwood mechanism while the formation of PCDDs 
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follows a Eley-Rideal Mechanism.61 The formation mechanisms are shown in scheme 1.2 

and scheme 1.3, respectively. Nagnai further proposed an additional mechanism of PCDF 

formation (scheme 1.4). 38 The bidentate intermediate depicted in Scheme 1.1 could form 

a surface-associated phenoxyl radical through back-electron transfer, the phenoxyl 

radical then converts to keto mesomer, two keto mesomers then react to form DF.   

As known from the previous results, PCDFs were the dominant products over iron 

oxide. DF’s maximum output temperature was above 350 oC and 4,6-DCDF was < 350 

oC; for copper oxide, PCDD and PCDF product yields are comparable, with no DF was 

observed. Different PDDD/F congener profiles formed on iron and copper indicated 

different chemisorption mechanism. For copper oxide, 2-chlorophenoxyl radial is the 

dominant intermediate and it proceeds to form 4,6-DCDF while for iron oxide, both 2-

chlorophenoxy radial and bidentate species could form through chemisorption. Bidentate 

species further react to produce phenoxyl radicals that forms DF. 38 

1.5 Real Fly Ash vs. Fly Ash Surrogate 

Fly ash is one of the combustion residues from MSWI. It has complex structures 

and variable properties. 31 After the combustion process, most metals remain in fly ash 

and could be transported by fly ash particles. The metals may be in the forms of oxides, 

chlorides, sulfates and carbonates. The amount of transported metals depends on the 

size, shape, density of particles and combustion conditions. The smaller particle size of 

fly ash having the larger mass fraction of metals. Particulates less than 10 µm in diameter 

can easily penetrate into the lungs, thus executing a significant toxicity to human health.62-

64 The morphology of fly ash is irregular, with both amorphous structures and 

polycrystalline aggregates.  Generally, metals are mainly present in the forms of aerosol 
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Scheme 1.1. EPFRs formation mechanism (adapted from 38) 
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Scheme 1.2. Langmuir-Hinshelwood Mechanism for DF and DCDF Formation 
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Scheme 1.3. Eley-Rideal Mechanism for DD and MCDD Formation (adapted from 58) 
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particulates or tiny particulates enriched on surfaces of fly ash particles. Jiang 31 collected 

fly ash samples from the baghouses of six urban waste combustion facilities in China and 

analyzed their basic properties. The primary metals include Zn, Pb, Cr, Cu, Fe, etc. The 

content (w/w) of Fe2O3 is between 0.85~5.02% while that of CuO is between 0.09~0.51%. 

         Typical fly ashes generated from combustion contain complex components; it is 

very difficult to detect the effect of a specific metal. Fly ash is collected at the end of the 

combustion system after they have been exposed to multiple organics, and their activities 

might be changed compared to that of fresh, in situ generated fly ash. These fly ashes 

are only representative of the specific combustion facilities under the operating conditions 

at the time of collection.38  

As opposed to real fly ash, whose metal content varies significantly depending on 

its source, the fly ash surrogates were appropriate tools to formulate a reaction 

mechanism as synthetic model fly ash has similar characteristics to the fly ash produced 

from MSWI and they are uniform in the composition and their chemical makeup is easily 

reproducible, which allows an interpretation of eventual changes of fly ash state and 

composition clearly and easily. Therefore, model fly ash has been a useful tool to simulate 

PCDD/F formation.65-67 

1.6 Human Exposure-Case Studies 

Human exposure to dioxins and dioxin-like substances has been associated with 

a range of toxic responses. Dietary intake of animal fat is the major route of exposure for 

the general population. Local populations have been accidentally exposed to high dioxin 

levels, e.g. in Seveso , Italy after an explosion at a chemical factory. 68 

http://www.greenfacts.org/glossary/def/exposure-exposed-expose.htm
http://www.greenfacts.org/glossary/def/dioxin.htm
http://www.greenfacts.org/glossary/pqrs/seveso.htm
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A pilot study was conducted to evaluate the relationship between concentrations 

of PCDD/F in house dust and residential proximity to known sources.69 Samples from 

vacuum bag dust from homes of 40 residents of Detroit, Los Angeles, Seattle, or Iowa 

were analyzed. Higher concentrations of certain PCDD/F in homes near cement kilns, 

freight routes, and major roads suggest that these outdoor sources are contributing to 

indoor environmental exposures. 

In 2013, US Department of Agriculture published their study about the farm-raised 

catfish contamination by dioxin. 70 Under the Pesticide Data Program, catfish samples 

were collected and analyzed for 17 toxic PCDD/Fs. Comparison of the dioxin congener 

patterns in commercial catfish to known sources of PCDD/Fs showed strong similarities 

to the pattern of PCDD/Fs found in kaolin clays which have often been used as anti-

caking agents in animal feeds. The study indicated mineral clays used in feeds as the 

potential source, which is a critical control point for PCDD/Fs entrance to the food supply. 

Risk mitigation recommendations include: 71 Inventory and reduce emissions of 

dioxins and dioxin-like substances; Clean up and safely dispose of industrial waste 

containing PCDD/F; reduce contamination in food and feed and monitor PCDD/Fs in food 

items and human milk. 
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CHAPTER 2 RESEARCH HYPOTHESES AND OBJECTIVES 

2.1  Research Hypotheses 

Although metal-mediated PCDD/F formation has been studied extensively, 1-4 

most of the studies were focused on the effect of single metal chloride or oxide. In the 

MSWI, fly ash is a complex mixture of components whose concentration can vary widely 

based on incinerator feedstock. How those components react to each other in terms of 

PCDD/Fs formation? Some synergistic or inhibitive effect might exist. How does the 

change of the metal content affect the PCDD/F output? Those questions need to be 

addressed. Iron and copper are the most commonly transition metals in combustion 

systems, thus it is important to understand their cooperative effect in terms of PCDD/F 

formation.  The synergy effect between iron and copper has been applied into many fields. 

A novel nanostructured Fe-Cu binary oxide was synthesized for efficiently removing 

arsenic from water. 5 Schuchardt’s study showed copper oxide exhibits a synergistic 

effect on iron oxide supported silica for the oxidation of cyclohexane at room temperature. 

6 Yang investigated the synergy between iron ore and copper ore as oxygen carriers in 

chemical-looping combustion and the mixture of iron ore and copper ore are expected to 

address simultaneously reactivity, recyclability, cost and environmental concerns of 

oxygen carriers. 7 Rossi prepared iron-copper composite catalysts to study the efficiecy 

in the Fenton Heterogeneous Process regarding organic charge removal and 

biodegradability enhancement. 8 For PCDD/F formation, Liao used different mixture of 

CuCl2 and Fe2O3 for de novo synthesis of PCDD/F but no synegistic effects were 

observed. 9 
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Iron oxide, which is redox-active, is almost always at the highest concentration of 

all transition metals in combustion systems. It could mediate or catalyze the formation of 

PCDD/Fs. However, the relationship between iron content in the fly ash and the yield of 

PCDD/Fs is not clear. Is it possible that different content of iron oxide form various 

nanoclusters on the surface of silica, which will affect the formation of the EPRFs, thus 

the yield of dioxins? At present, there is hardly a quantitative link between fly ash physical 

properties/chemical reactivity and PCDD/F yield. 

My research hypotheses are (1) In the fly ash, synergy between iron and copper 

affects the formation, yield and emission of PCDD/Fs; (2) The concentration of iron in fly 

ash and, even the morphology and size of the iron oxide clusters affect PCDD/Fs 

formation and yield. 

2.2  Research Objectives 

          With this research the detailed insight into the following mechanistic questions will 

be obtained: (1) Does a cooperative effect between Fe2O3 and CuO exist and contribute 

to the PCDD/F yields?  (2) How is the metal state change before and after reaction? (3) 

Which intermediates play a key part in the PCDD/F formation? (4) How could the metal 

content and morphology affect PCDD/F yield? 

The research objectives are to understand which components of a multiple-catalyst 

system contribute to PCDD/F congener profile formation and which contribute to yield. 

Knowing the roles of each metal will lead to better models for PCDD/F formation 

prediction. In addition, to understand the relationship between the content of Fe2O3 in the 

fly ash and total yield of PCDD/Fs.  
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CHAPTER 3 EXPERIMENTAL  

3.1 Fly Ash Surrogate Synthesis 

The incipient wetness method was used to prepare the mixed oxide fly ash 

surrogates.  An aqueous solution of copper (II) nitrate and iron (III) nitrate was introduced 

into silica gel powder (Aldrich, grade 923, 100−200 mesh size) in the appropriate amount 

for incipient wetness to occur.  Various ratios of Fe3+/Cu2+ were used to produce 1% 

Fe2O3/4% CuO, 2.5% Fe2O3/2.5% CuO and 4% Fe2O3/1% CuO on silica (by weight). The 

samples were rotated on Rotavap for 24 h at room temperature, dried 12 h at 120°C, and 

calcined in air for 7 h at 450°C. Figure 3.1 depicts the procedure.  

The same procedure was applied for the synthesis of 1 %, 2.5 %, 4% and 5 % 

Fe2O3 fly ash surrogates, respectively by introducing appropriate amount of iron (III) 

nitrate aqueous solution into silica gel powder. After rotatory evaporation and calcination, 

Fe2O3 model fly ashes with different iron content were obtained. Table 3.1 lists the 

composition of fly ash surrogate samples. 

 

 Figure 3.1. Incipient Wetness Synthesis of Fly Ash Surrogates 

Fe(NO3)3 solution Cu(NO3)2 solution 
Silica 

Calcinate at 450 
o
C 

Dry at 120 
o
C 

Fly ash 
surrogates 

Rotavap dry 
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3.2 System for Thermal Diagnostic Studies 

The thermal degradation of organic materials is a complex process as 

temperature, carrier gas, and catalyst are all involved in the process and affect the organic 

material’s degradation behavior. 1 Conducting the extensive range of thermal diagnostic 

studies requires flexible experimentation and instrumentation. Rubey and Grant 2 

described the detailed design aspects of the system for thermal diagnostic studies 

(STDS) to flexibility and versatility for conducting a broad range of thermal related studies 

in 1988. Since then, STDS has been widely applied for investigating the degradation 

behavior and decomposition products of organic materials in thermal and combustion 

processes. 3-4 

Our customized STDS 5 consists of four basic components to operate as an 

integrated functional system: a thermal couple console, two GC ovens and a Mass Spec 

detector. The diagram for STDS is shown in Figure 3.2. 

Table 3.1. Synthesized and Studied Fly Ash Surrogate Samples 

Samples % w/w Ratio 

  Fe
2
O

3
 CuO Fe Cu Fe

2
O

3
: CuO 

(% w/w) 

Fe: Cu 

(% w/w) 

Fe: Cu 

(mole ratio) 

Fe
2
O

3
-CuO/SiO

2
 

 

 

  1            4 

 2.5          2.5 

  4            1 

0.7         3.2  

1.75          2 

2.8         0.8 

      0.25 

       1 

       4 

0.22 

0.88 

3.5 

0.25 

1 

4 

Fe
2
O

3
/SiO

2
* 

CuO/SiO
2
* 

  5            0 

  0            5 

3.5            - 

 -              4 

  Fe
2
O

3
 Fe   

  

_ 
 

Fe
2
O

3
/ SiO

2
 

   

1 

2.5 

4 

0.7 

1.75 

2.8 

  Fe
2
O

3
/SiO

2
* 5 3.5 

*: Reference samples studied before and used for comparison 
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Figure 3.2. System for Thermal Diagnostic Studies (adapted from 5) 
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3.3 PCDD/F Formation Studies 

The STDS was used to investigate the surface-mediated reactions of 2-

monochlorophenol (2-MCP), which is a known PCDD/F precursor, over a 

Fe2O3/CuO/Silica or Fe2O3/Silica surface. Briefly, a thermal reactor (4.0 mm i.d. fused 

silica reactor) is set in a high-temperature furnace housed within an isothermal oven that 

facilitates precise temperature control over all transfer lines to and from the reactor (180 

oC).  A GC-MS system was interfaced in-line with a thermal reactor for analysis of 

combustion products. 

A small amount of catalyst (40 mg) was placed between quartz wool plugs in the 

thermal reactor.  To avoid condensation of the reaction products, all transfer lines were 

maintained at a constant temperature of 180 °C. Prior to each experiment, the catalyst 

was oxidized in situ at 450 °C for 1 h under an air flow of 5 cc/min to oxidize the surface 

of the fly ash surrogate.  2-MCP (Aldrich) was introduced into the flow stream by a digital 

syringe pump (KD Scientific, model-100) through a GC injection port maintained at 185 

°C.  Two carrier gases were used: air (~21% O2) for oxidation experiments and pure 

nitrogen for pyrolytic experiments. The rate of injection was set to maintain a constant 

gas phase concentration of 50 ppm of 2-MCP with a residence time of 0. 2 s. Reaction 

temperatures range from 200 to 550 °C. In between runs the transfer lines were baked 

out at 210 oC in air flow and blank run was performed to check for trace residue of 

products. 

The products from the reaction were analyzed using an in-line Varian CP-3800 GC 

system. A 30 m, 0.25 mm i.d., 0.25 μm film thickness column was used (HP-5MS) for 

product separation. The temperature was held at -60 °C for the reaction period followed 
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by a ramp from -60 to 300 at a rate of 10 °C min-1. Detection and quantification of the 

products were obtained on a Varian Saturn 2000 mass spectrometer, which was operated 

in full-scan mode from 15 to 450 amu for the duration of the GC run. Identification of the 

eluting compounds was done based on the mass spectrum of the eluent and the retention 

time comparison to a standard. The amount of the formed products was calculated based 

on the calibration curves using respective standard solutions.  The following standards 

were used for the calibration of PCDD/F products based on the peak area in the 

chromatogram: dibenzofuran (DF), 2-chlorodibenzo-p-dioxin (MCDD), 4-

chlorodibenzofuran (MCDF), 2,7-/2,8-dichlorodibenzo-p-dioxin (DCDD). For the selected 

PCDD/F compounds, calibration was based on the MS response to the similar 

compounds:  The calibration curve for DCDD was used to calculate DCDF, 

trichlorodibenzo-p-dioxin (TriCDD) and tetrachlorodibenzo-p-dioxin (TetraCDD). The 

yields of the products were calculated by use of the expression:  

𝑌 =
[𝑃𝑅𝑂𝐷]×𝐴

[2−𝑀𝐶𝑃]0
× 100%      [1] 

where [PROD] is the concentration of specific product formed (in moles), [2-MCP]0 is the 

initial concentration of 2-MCP (in moles), and A is the molar stoichiometric factor. 

Quantitative standards were used to calibrate the MS response for all products.  Total 

yield of the PCDD/F for each temperature is defined as: 

𝑌𝑇 = ∑ 𝑌𝑃𝑅𝑂𝐷      [2] 

where PROD is: DD, DF, MCDD, DCDD, DCDF, TriCDD and TetraCDD. PCDD/F ratio 

was calculated based on the average integrated yields of PCDD and PCDF (average of 

the total PCDD or PCDF yields within the entire temperature range 200-550 oC). All 
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experimental data represent an average of triplicate or more runs. Between each 

experiment a reactant/product transport analysis was performed. 

3.4 EPFRs Formation and Analysis 

A custom-made vacuum exposure system was built to perform the EPFRs 

formation experiment.  6 The diagram of the system is shown in Figure 2.3. It includes a 

vacuum pump, a pressure gauge, a vacuum exposure chamber, a high temperature 

ceramic heater, a dosing pot and two EPR-extraction cells. 

The vacuum pump can evacuate to lower pressure down to 10-2 torr to ensure the 

appropriate vacuum for the formation and stabilization of the EPFRs. A digital pressure 

gauge (Varian, eyesys convector, model L973633200220) is used to monitor the pressure 

of the whole system. The dosing pot was attached to the vacuum exposure chamber, 

within which is the chemical to be dosed. The EPR-extraction cells can be easily detached 

from the dosing exposure chamber after dosing. The vacuum exposure glass chamber is 

covered with heating ropes (Omegalux®, model FGR) that connected to a variable AC 

temperature controller (Electrothermal, model MC240X1) that control the temperature of 

the whole chamber to about 80 o C. Above the heating ropes, the vacuum exposure glass 

chamber is covered with aluminum foil to prevent the organic precursor from condensing. 

A liquid nitrogen thermos is placed in-between the vacuum pumps and the vacuum 

exposure chamber to trap excess physisorbed species so as to prevent excess 

physisorbed species from reaching the vacuum pumps. 

EPFR formation was studied by exposing both CuO/Fe2O3/SiO2 and Fe2O3/SiO2 

particles to 2-MCP precursor vapors, respectively. Before 2-MCP’s exposure, the 

particles were heated in situ at 450 °C for 1 h to remove organics on the surface. After 
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that, these particles were exposed to the 2-MCP vapors at 230 °C in the customized 

vacuum exposure chamber for 6 min under vapor.  

After exposure, samples stayed under vacuum for 1 h to remove excess non-

chemisorbed adsorbate at 10−2 Torr. Still under vacuum conditions, the dosed particles  

 

 

 

Figure 3.3. Diagram of Dosing System for EPFRs Formation (adapted from 6) 
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were cooled to room temperature before EPR spectra were recorded. EPR spectra were 

recorded in a Suprasil EPR tube at room temperature using a computer-controlled Bruker 

EMX 10/2.7 EPR spectrometer. Instrument parameters were as follows: center field, 3470 

G; sweep width, 100 G; microwave frequency, 9.7 GHz; microwave power, 2.0 mW; 

modulation frequency, 4.0 G; modulation amplitude, 4.0 G; receiver gain, 3.54 × 104; time 

constant, 41.0 ms; and three scans. Radical concentration was calculated using the 2,2-

diphenyl-1-picrylhydrazyl (DPPH) standard due to the similarity between the spectral 

profiles of DPPH and the radicals formed on CuO/Fe2O3/Silica and Fe2O3/Silica. 

3.5 Characterization of Fly Ash Surrogate 

3.5.1 XPS analysis  

 To evaluate the oxidation state and coordination of the active metal centers of 

surrogate samples, X-ray Photoelectron Spectroscopy (XPS) measurements were 

carried out using a Kratos Axis-165 Auger/XPS system. A survey scan and high-

resolution individual elemental scans were performed on the surrogate surface of each 

mixed oxide catalyst with the mono Al x-ray source at a beam current of 15 mA and anode 

high tension of 15KV. 

All survey scans were performed at binding energy range of 0-1200 eV with pass 

energy of 160 eV; High-resolution scans of all the elements were performed with pass 

energy of 40 eV. Composition quantification results were based on the high-resolution 

elemental scans before and after PCDD/F formation reactions. 

All spectra were fit using X-ray Photoelectron Spectroscopy Tools (XPST) version 

1.1, a curve fitting software package for Igor (Igor Pro 6.3.4.1).  Peaks were identified 

using the NIST X-ray Photoelectron Spectroscopy Database version 4.1. Copper 
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reduction was determined by calculating the ratio of Cu2+ 2p3/2 peak areas and Cu1+ 

2p3/2 peak areas. 

3.5.2 TEM-EDAX Measurements  

The morphology of the Fe2O3 fly ash surrogates was characterized using TEM 

(JEOL 2011 TEM) with an acceleration voltage of 200 kV. Five (5) μL of a diluted 

suspension of sample was deposited on a Lacey (300-mesh carbon-coated copper) grid. 

The material was allowed to dry overnight. The distribution of nanocrystal dimensions 

was obtained from the analysis of TEM images using Gatan Microscopy Suite, Digital 

Micrograph software. About 80 nanocrystals were randomly selected and the length and 

of each were measured using the ruler tool. EDS testing was conducted by EDAX TEAM. 

3.5.3 XRD analysis  

Powder X-ray diffraction (XRD) measurements were conducted on 1 %, 2.5 %, 4 

% and 5 % Fe2O3 synthetic fly ash using a PANalytical Empyrea X-ray diffractometer with 

Cu Kα radiation. XRD Data were collected at a constant scanning rate of 2°/min. Data 

was processed by PANalytical high score plus software.  
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CHAPTER 4 RESULTS* 

4.1 Thermal Degradation of 2-Monochlorophenol over 1%Fe2O3 /4%CuO/SiO2 

4.1.1 Pyrolytic Conditions 

The temperature dependence of the surface-mediated pyrolysis of 2-MCP over 

1%Fe2O3/4%CuO/SiO2 and the yields of major organic products are presented below. 

95% of 2-MCP already degraded at 200 °C, with 5% of the initial reactant remaining 

undestroyed. (Figure 4.1). Chlorophenols and chlorobenzenes were the major aromatic 

products. The maximum yields of 2,4-and 2,6-dichlorophenol (2,4-+2,6-DCP) were 0.02% 

at 250 °C (Figure 4.1). Chlorobenzenes were detected at 300-450 °C. The maximum 

yields of monochlorobenzene (MCBz) and 1,2-dichlorobenzene (1,2-DCBz) were 0.01% 

and 0.002% at 300 °C (Figure 4.2). 

Compared to chlorophenols and chlorobenzenes, significant amounts of PCDD/F 

were produced at 200-250 °C on pyrolysis of 2-MCP over 1%Fe2O3/4%CuO/SiO2 (Figure 

4.3). The observed dioxin products were: 1-chloro-dibenzo-p-dioxin (1-MCDD), 2,7+2,8-

dichlorodibenzo-p-dioxin (2,7+2,8 - DCDD) and 4,6- dichlorodibenzofuran (4,6-DCDF) 

with the yields of MCDD > DCDD > DCDF. The maximum yields of 1-MCDD, 2,7+2,8-

DCDD and 4,6-DCDF were 0.55 %, 0.15% and 0.14% at 250 °C, respectively. Trace 

amount of trichlorodibenzo-p-dioxin (TriCDD), dibenzo-p-dioxin (DD) and dibenzofuran 

(DF) were also detected.  

 

 

 

*Portions of this chapter reprinted by permission of Elsevier, Journal of Chemosphere 
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Figure 4.1. Chlorophenol Yields and Precursor Conversion from Pyrolysis of 2-MCP 
over 1%Fe2O3 /4%CuO/SiO2 

 
 

Figure 4.2. Chlorobenzene Yields from Pyrolysis of 2-MCP over 1%Fe2O3 4%CuO/SiO2 
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Figure 4.3. Major PCDD/F Yields from Pyrolysis of 2-MCP over 1%Fe2O3 /4%CuO/SiO2 
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Table 4.1. Dioxin and Non-Dioxin Products and Percent Yields from Pyrolysis of 2-Monochlorophenol over 1% 
Fe2O3/4%CuO/SiO2 

 
Products 

Reaction Temperature (°C) 

200 250 300 350 400 450 500 550 

Monochlorobenzene 2.11E-03 1.79E-03 10.5E-03 7.21E-03 7.89E-03 4.66E-03 1.30E-03 3.34E-03 

2-Monochlorophenol  403E-03 200E-03 51.8E-03 52.3E-03 10.8E-03 15.5E-03 10.7E-03 41.7E-03 

1,2-Dichlorobenzene 0.04E-03 0.11E-03 0.69E-03 0.23E-03 0.20E-03 bdl 0.12E-03 0.05E-03 

2,4+2,6-Dichlorophenol 18.1E-03 16.3E-03 1.34E-03 3.70E-03 0.55E-03 0.38E-03 0.46E-03 1.62E-03 

1,2,3+1,2,4-Trichlorobenzene bdl 0.07E-03 0.25E-03 0.15E-03 0.10E-03 0.10E-03 0.08E-03 0.21E-03 

1,2,3,4+1,2,3,5-
Tetrachlorobenzene 

bdl 0.19E-03 0.26E-03 0.26E-03 0.20E-03 0.23E-03 0.20E-03 0.41E-03 

2,3,6+2,4,6-Trichlorophenol bdl bdl 1.60E-03 5.39E-03 1.03E-03 bdl 0.05E-03 6.54E-03 

Pentachlorobenzene bdl 0.27E-03 0.30E-03 0.34E-03 0.27E-03 0.31E-03 0.27E-03 0.47E-03 

Hexachlorobenzene bdl bdl bdl 0.11E-03 bdl bdl bdl 0.44E-03 

 

Dibenzofuran 0.27E-03 0.58E-03 0.30E-03 0.30E-03 0.57E-03 4.32E-03 0.24E-03 1.22E-03 

Dibenzo-p-dioxin 0.15 E-03 0.54E-03 0.06E-03 0.02E-03 0.03E-03 0.14E-03 bdl 0.06E-03 

4-Monochlorodibenzofuran 4.70E-03 10.4E-03 1.90E-03 0.62E-03 0.95E-03 1.10E-03 0.28E-03 1.13E-03 

1-Monochlorodibenzondioxin 258E-03 560E-03 67.1E-03 16.9E-03 25.2E-03 13.4E-03 7.98E-03 50.3E-03 

4,6-Dichlorodibenzofuran 53.0E-03 135E-03 11.5E-03 2.02E-03 2.11E-03 1.36E-03 1.40E-03 3.50E-03 

2,7-Dichlorodibenzodioxin 33.7E-03 161E-03 23.4E-03 2.61E-03 2.88E-03 1.11E-03 0.66E-03 5.08E-03 

1,3,7-Trichlorodibenzodioxin 0.85E-03 0.89E-03 0.86E-03 0.29E-03 bdl 0.50E-03 0.29E-03 0.73E-03 

Total PCDD/F 0.35 0.87 0.11 0.02 0.03 0.02 0.01 0.06 

bdl-Below Detection Limit 
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4.1.2 Oxidative Conditions 

The temperature dependence of the surface-mediated oxidation of 2-MCP over 

1%Fe2O3/4%CuO/SiO2 and the yields of major organic products are presented below. 

Complete degradation of 2-MCP occurred as low as 200 °C (Figure 4.4). Chlorophenols 

and chlorobenzenes were the major aromatic products. The maximum yields of 2,4-+2,6-

DCP and 2,3,6+2,4,6-trichlorophenol (2,3,6+2,4,6-TriCP) were 0.05% and 0.07% at 250 

°C (Figure 4.4). The amount of 2,4-+2,6-DCP was 2.5 times of which under pyrolysis. The 

maximum yields of MCBz were 0.005% at 250 °C (Figure 4.5), which was only half of that 

under pyrolysis. Trace amount of 1,2-DCBz, 1,2,3 + 1,2,4-trichlorobenzene (1,2,3 + 1,2,4-

TriCBz) were also detected.   

Compared to chlorophenols and chlorobenzenes, comparable amount of PCDD/F 

were produced at 200-250 °C on oxidation of 2-MCP over 1%Fe2O3/4%CuO/SiO2 (Figure 

4.6). The observed dioxin products were: 1-MCDD, 2,7+2,8-DCDD and TriCDD with the 

yields of 1-MCDD > DCDD > TriCDD. The maximum yields of 1-MCDD and DCDD were 

0.04% and 0.03% at 275 and 250 °C, respectively. There was almost none of PCDFs 

observed. 
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Figure 4.4. Chlorophenol Yields and Precursor Conversion from Oxidation of 2-MCP 
over 1%Fe2O3 /4%CuO/SiO2 

 

 
Figure 4.5. Chlorobenzene Yields from Oxidation of 2-MCP over 1%Fe2O3 4%CuO/SiO2 
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Figure 4.6. Major PCDD/F Yields from Oxidation of 2-MCP over 1%Fe2O3 4%CuO/SiO2 

 

 

 



44 
 

Table 4.2. Dioxin and Non-Dioxin Products and Percent Yields from Oxidation of 2-Monochlorophenol over 1% 
Fe2O3/4%CuO/SiO2 

 
Products 

Reaction Temperature (°C) 

200 250 300 350 400 450 500 550 

Monochlorobenzene 1.44E-03 4.48E-03 1.19E-03 1.39E-03 1.52E-03 1.05E-03 0.25E-03 0.46E-03 

2-Monochlorophenol  62.1E-03 70.0E-03 27.1E-03 10.9E-03 50.5E-03 22.1E-03 28.1E-03 65.0E-03 

1,2-Dichlorobenzene 0.42E-03 1.36E-03 0.24E-03 0.80E-03 0.91E-03 0.49E-03 0.01E-03 0.18E-03 

2,4+2,6-Dichlorophenol 0.96E-03 46.1E-03 0.36E-03 0.40E-03 0.40E-03 0.52E-03 0.33E-03 0.80E-03 

1,2,3+1,2,4-Trichlorobenzene 0.13E-03 0.28E-03 0.29E-03 1.16E-03 1.37E-03 0.95E-03 0.15E-03 0.14E-03 

1,2,3,4+1,2,3,5-
Tetrachlorobenzene 

0.21E-03 0.28E-03 0.40E-03 2.40E-03 1.86E-03 2.11E-03 0.30E-03 0.25E-03 

2,3,6+2,4,6-Trichlorophenol bdl 73.0E-03 bdl bdl bdl bdl bdl bdl 

Pentachlorobenzene 0.27E-03 0.30E-03 0.31E-03 1.27E-03 1.13E-03 1.22E-03 0.39E-03 0.33E-03 

Hexachlorobenzene 0.26E-03 Bdl bdl 1.42E-03 1.45E-03 2.11E-03 0.28E-03 bdl 

 

Dibenzofuran 0.12E-03 0.37E-03 0.11E-03 0.07E-03 0.09E-03 0.15E-03 bdl 0.06E-03 

Dibenzo-p-dioxin bdl 0.01E-03 bdl bdl bdl bdl bdl bdl 

4-Monochlorodibenzofuran 0.37E-03 0.64E-03 0.26E-03 0.26E-03 0.19E-03 0.32E-03 bdl 0.22E-03 

1-Monochlorodibenzondioxin 15.0E-03 30.2E-03 6.13E-03 5.38E-03 3.10E-03 7.85E-03 0.58E-03 6.48E-03 

4,6-Dichlorodibenzofuran 1.61E-03 4.37E-03 1.05E-03 1.00E-03 1.05E-03 1.49E-03 1.76E-03 2.86E-03 

2,7-Dichlorodibenzodioxin 1.95E-03 33.6E-03 2.16E-03 1.16E-03 0.73E-03 0.80E-03 1.03E-03 1.62E-03 

1,3,7-Trichlorodibenzodioxin bdl 6.97E-03 0.61E-03 0.17E-03 bdl bdl bdl 0.09E-03 

2,3,7,8-Tetrachlorodibenzodioxin bdl 0.49E-03 bdl 0.12E-03 bdl bdl bdl 0.23E-03 

Total PCDD/F 0.02 0.08 0.01 0.008 0.005 0.01 0.003 0.011 

bdl-Below Detection Limit 
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4.2 Thermal Degradation of 2-Monochlorophenol over 2.5%Fe2O3 /2.5%CuO/SiO2 

4.2.1 Pyrolytic Conditions 

The temperature dependence of the surface-mediated pyrolysis of 2-MCP over 

2.5%Fe2O3/2.5%CuO/SiO2 and the yields of major organic products are presented below. 

85% of the 2-MCP decomposed at 200 °C and almost complete destroyed by 250 °C 

(Figure 4.7). Chlorophenols and chlorobenzenes were the major aromatic products. The 

maximum yields of 2,4-+2,6-DCP and 2,3,6+2,4,6-TriCP were 0.01% and 0.05% at 200 

°C and 250 °C (Figure 4.7). The maximum yields of MCBz were 0.06% at 400 °C (Figure 

4.8). 

Compared to chlorophenols and chlorobenzenes, huge amount of PCDD/F were 

produced at 300 °C on pyrolysis of 2-MCP over 2.5%Fe2O3/2.5%CuO/SiO2 (Figure 4.9). 

The observed dioxin products were: 1-MCDD, 2,7+2,8-DCDD and 4,6-DCDF with the 

yields of 1-MCDD > DCDF > DCDD. The maximum yields of 1-MCDD, DCDF and DCDD 

were 4.4%, 0.75% and 0.6% at 300 °C, respectively. 

Compared to the PCDD/F produced from 1%Fe2O3 4%CuO/SiO2, the highest yield 

of congener 1-MCDD at 250 °C was 0.55%. This same load amount of metal oxide fly ash 

surrogate generates almost 10-fold of dioxin yield, which was 4.4%. We can assume there 

is synergistic effect between iron and copper oxides which contributes the formation of 

significant amount of PCDD/F.  
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Figure 4.7. Chlorophenol Yields and Precursor Conversion from Pyrolysis of 2-MCP 
over 2.5%Fe2O3 /2.5%CuO/SiO2 

 
Figure 4.8. Chlorobenzene Yields from Pyrolysis of 2-MCP over 2.5%Fe2O3 

/2.5%CuO/SiO2 
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Figure 4.9. Major PCDD/F Yields from Pyrolysis of 2-MCP over 2.5%Fe2O3 
2.5%CuO/SiO2 
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Table 4.3. Dioxin and Non-Dioxin Products and Percent Yields from Pyrolysis of 2-Monochlorophenol over 2.5% 
Fe2O3/2.5%CuO/SiO2 

 
Products 

Reaction Temperature (°C) 

200 250 300 350 400 450 500 550 

Monochlorobenzene 1.96E-03 2.43E-03 8.03E-03 9.80E-03 65.8E-03 1.26E-03 27.6E-03 5.95E-03 

2-Monochlorophenol  14 2.6 790E-03 1.5 85.2E-03 21.6E-03 70.6E-03 17.0E-03 

1,2-Dichlorobenzene 0.02E-03 0.24E-03 1.18E-03 0.67E-03 7.90E-03 bdl 0.16E-03 0.10E-03 

2,4+2,6-Dichlorophenol 61.6E-03 26.1E-03 61.3E-03 18.8E-03 4.64E-03 0.73E-03 1.93E-03 1.17E-03 

1,2,3+1,2,4-Trichlorobenzene 0.10E-03 0.11E-03 1.11E-03 0.21E-03 2.82E-03 0.21E-03 0.09E-03 0.13E-03 

1,2,3,4+1,2,3,5-
Tetrachlorobenzene 

0.24E-03 0.24E-03 1.34E-03 0.30E-03 1.68E-03 0.50E-03 0.20E-03 0.27E-03 

2,3,6+2,4,6-Trichlorophenol 17.8E-03 29.9E-03 93.6E-03 6.98E-03 18.6E-03 2.53E-03 0.79E-03 14.6E-03 

Pentachlorobenzene 0.31E-03 0.38E-03 1.19E-03 0.38E-03 0.96E-03 0.69E-03 0.27E-03 0.38E-03 

Hexachlorobenzene 0.55E-03 0.39E-03 2.51E-03 0.38E-03 0.63E-03 1.15E-03 bdl 0.40E-03 

 

Dibenzofuran 0.46E-03 0.60E-03 5.46E-03 1.66E-03 4.72E-03 3.59E-03 51.5E-03 7.08E-03 

Dibenzo-p-dioxin 0.44E-03 0.32E-03 3.18E-03 1.99E-03 0.87E-03 0.03E-03 1.01E-03 0.08E-03 

4-Monochlorodibenzofuran 14.7E-03 8.15E-03 63.3E-03 22.8E-03 15.1E-03 0.76E-03 4.05E-03 0.82E-03 

1-Monochlorodibenzondioxin 100E-02 503E-03 440E-02 136E-02 719E-03 9.53E-03 81.1E-03 17.5E-03 

4,6-Dichlorodibenzofuran 147E-03 162E-03 753E-03 271E-03 75.3E-03 3.59E-03 23.1E-03 3.79E-03 

2,7-Dichlorodibenzodioxin 69.1E-03 183E-03 623E-03 197E-03 196E-03 3.13E-03 11.3E-03 2.45E-03 

1,3,7-Trichlorodibenzodioxin 0.46E-03 4.82E-03 60.0E-03 5.23E-03 27.0E-03 1.51E-03 0.27E-03 3.10E-03 

2,3,7,8-Tetrachlorodibenzodioxin bdl 0.24E-03 13.8E-03 0.07E-03 2.34E-03 bdl bdl 3.73E-03 

Total PCDD/F 1.23 0.86 5.92 1.86 1.04 0.02 0.17 0.04 

bdl-Below Detection Limit 
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4.2.2 Oxidative Conditions 

The temperature dependence of the surface-mediated oxidation of 2-MCP over 

2.5%Fe2O3/2.5%CuO/SiO2 and the yields of major organic products are presented below. 

Almost complete degradation of 2-MCP occurred at 200 °C (Figure 4.10). Chlorophenols 

and chlorobenzenes were the major aromatic products. The maximum yields of 2,4-+2,6-

DCP were 0.004% at 250 °C (Figure 4.10). The maximum yields of MCBz, DCBz and 

TriCBz were 0.004%, 0.004% at 350 °C and 0.006% at 400 °C (Figure 4.11). 

Compared to chlorophenols and chlorobenzenes, significant amount of PCDD/F 

were produced at 250 °C on oxidation of 2-MCP over 2.5%Fe2O3/2.5%CuO/SiO2 (Figure 

4.12). The observed dioxin products were: 1-MCDD, 2,7+2,8-DCDD, TriCDD and 4,6-

DCDF with the yields of DCDD > DCDF > TriCDD > MCDD. Their maximum yields were 

0.03%, 0.02%, 0.015% and 0.013% at 250 °C, respectively.  

Synergy of iron and copper also worked under oxidation conditions but produced 

a completely different result. Instead of producing large amount of PCDD/F, the 

synergistic catalytic effect between iron and copper disrupted the precursor 2-MCP 

quickly as low as 200 °C. Therefore, less amount of surface condensation of adsorbed 

phenolic species was left for the subsequent formation of PCDD/F. 
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Figure 4.10. Chlorophenol Yields and Precursor Conversion from Oxidation of 2-MCP 
over 2.5%Fe2O3 /2.5%CuO/SiO2 

 
Figure 4.11. Chlorobenzene Yields from Oxidation of 2-MCP over 2.5%Fe2O3 

/2.5%CuO/SiO2 
 



51 
 

 
Figure 4.12. Major PCDD/F Yields from Oxidation of 2-MCP over 2.5%Fe2O3 
2.5%CuO/SiO2 
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Table 4.4. Dioxin and Non-Dioxin Products and Percent Yields from Oxidation of 2-Monochlorophenol over 2.5% 
Fe2O3/2.5%CuO/SiO2 

 
Products 

Reaction Temperature (°C) 

200 250 300 350 400 450 500 550 

Monochlorobenzene 2.17E-03 0.90E-03 0.94E-03 3.33E-03 1.12E-03 3.02E-03 1.21E-03 0.23E-03 

2-Monochlorophenol  248E-03 16.7E-03 12.9E-03 14.0E-03 12.6E-03 14.8E-03 21.7E-03 12.3E-03 

1,2-Dichlorobenzene 0.32E-03 1.25E-03 1.76E-03 3.62E-03 2.46E-03 2.10E-03 0.04E-03 0.07E-03 

2,4+2,6-Dichlorophenol 10.7E-03 3.50E-03 1.67E-03 1.53E-03 0.59 E-03 0.66E-03 0.89E-03 0.57E-03 

1,2,3+1,2,4-Trichlorobenzene 0.11E-03 1.72E-03 1.93E-03 3.83E-03 5.16E-03 3.74E-03 0.51E-03 0.64E-03 

1,2,3,4+1,2,3,5-
Tetrachlorobenzene 

0.25E-03 3.08E-03 2.28E-03 6.22E-03 11.0E-03 6.90E-03 1.67E-03 1.81E-03 

2,3,6+2,4,6-Trichlorophenol 39.1E-03 5.11E-02 6.17E-03 12.5 E-03 3.46E-03 3.22E-03 18.1E-03 11.0E-03 

Pentachlorobenzene 0.33E-03 1.80E-03 0.72E-03 2.05E-03 5.49E-03 3.77E-03 2.81E-03 2.44E-03 

Hexachlorobenzene 0.71E-03 8.16E-03 0.32E-03 1.94E-03 8.17E-03 7.27E-03 9.98E-03 bdl  

 

Dibenzofuran 0.04E-03 0.13E-03 bdl 0.10E-03 0.08 E-03 bdl 0.04E-03 0.04E-03 

Dibenzo-p-dioxin bdl bdl bdl bdl bdl bdl bdl bdl 

4-Monochlorodibenzofuran 0.39E-03 0.95E-03 0.23E-03 0.26E-03 0.16 E-03 bdl 0.12E-03 0.09E-03 

1-Monochlorodibenzondioxin 11.3E-03 12.7E-03 6.04E-03 7.12E-03 4.08E-03 3.41E-03 5.06E-03 3.23E-03 

4,6-Dichlorodibenzofuran 2.72E-03 17.4E-03 1.54E-03 1.65E-03 1.29E-03 3.78E-03 1.44E-03 1.58E-03 

2,7-Dichlorodibenzodioxin 6.89E-03 26.7E-03 5.74E-03 12.4E-03 0.45E-03 6.08E-03 1.00E-03 0.56E-03 

1,3,7-Trichlorodibenzodioxin 1.19E-03 13.9E-03 1.43E-03 9.64E-03 bdl bdl bdl bdl 

2,3,7,8-Tetrachlorodibenzodioxin 0.68E-03 5.30E-03 0.10E-03 2.86E-03 bdl bdl bdl bdl 

Total PCDD/F 0.02 0.08 0.015 0.03 0.006 0.013 0.009 0.006 

bdl-Below Detection Limit 
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4.3 Thermal Degradation of 2-Monochlorophenol over 4%Fe2O3 /1%CuO/SiO2 

4.3.1 Pyrolytic Conditions 

The temperature dependence of the surface-mediated pyrolysis of 2-MCP over 

4%Fe2O3/1%CuO/SiO2 and the yields of major organic products are presented below. 

90% of the 2-MCP degraded at 200 °C and the rest of the 10% almost decomposed 

completely by 350 °C (Figure 4.13). Chlorophenols and chlorobenzenes were the major 

aromatic products with chlorophenols observed in greater yields than chlorobenzenes. 

The maximum yields of 2,4-+2,6-DCP and 2,3,6+2,4,6-TriCP were 0.3% and 2% at 250 

°C, which were the highest yields on all the fly ash surrogates (Figure 4.13). The maximum 

yields of MCBz were 0.07% at 550 °C (Figure 4.14). 

Compared to chlorophenols and chlorobenzenes, significant amount of PCDD/F 

were produced at 275 °C on pyrolysis of 2-MCP over 4%Fe2O3/1%CuO/SiO2 (Figure 

4.15). The observed dioxin products were: 1-MCDD, 2,7+2,8-DCDD and 4,6-DCDF with 

the yields of 1-MCDD > DCDF > DCDD. Their maximum yields were 3.6%, 0.5% and 

0.5% at 275 °C, 250 °C, and 300 °C respectively (Figure 4.15). 

Compared to the PCDD/F produced from 2.5%Fe2O3/2.5%CuO/SiO2 under 

pyrolysis, 4.4% of 1-MCDD at 300 °C, the maximum output of 1-MCDD from 

4%Fe2O3/1%CuO/SiO2 shifted to 275 °C with the yield of 3.5%. 
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Figure 4.13. Chlorophenol Yields and Precursor Conversion from Pyrolysis of 2-MCP 
over 4%Fe2O3 /1%CuO/SiO2 

 
Figure 4.14. Chlorobenzene Yields from Pyrolysis of 2-MCP over 4%Fe2O3 

/1%CuO/SiO2 
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Figure 4.15. Major PCDD/F Yields from Pyrolysis of 2-MCP over 4%Fe2O3/ 
1%CuO/SiO2 
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Table 4.5. Dioxin and Non-Dioxin Products and Percent Yields from Pyrolysis of 2-Monochlorophenol over 4% 
Fe2O3/1%CuO/SiO2 

 
Products 

Reaction Temperature (°C) 

200 250 300 350 400 450 500 550 

Monochlorobenzene 1.90E-03 2.78E-03 11.5E-03 3.44E-03 6.92E-03 16.4E-03 5.87E-03 70.3E-03 

2-Monochlorophenol  10 5.2 2.5 1.5 213E-03 34.9 E-03 102 E-03 24.6E-03 

1,2-Dichlorobenzene 0.07E-03 0.49E-03 1.63E-03 0.67E-03 0.49 E-03 1.89E-03 0.36 E-03 1.76E-03 

2,4+2,6-Dichlorophenol 52.4E-03 271 E-03 169E-03 14.2E-03 2.82E-03 1.03E-03 1.23E-03 14.6E-03 

1,2,3+1,2,4-Trichlorobenzene 0.08E-03 0.17E-03 0.73E-03 0.17E-03 0.39E-03 0.97E-03 0.78 E-03 2.15E-03 

1,2,3,4+1,2,3,5-Tetrachlorobenzene 0.23E-03 0.60E-03 0.97E-03 0.40E-03 1.09E-03 2.02E-03 1.65E-03 8.05E-03 

2,3,6+2,4,6-Trichlorophenol 22.3E-03 206E-02 649E-03 45.7E-03 17.6E-03 108 E-03 30.5 E-03 506E-03 

Pentachlorobenzene 0.47E-03 2.18E-03 1.68E-03 0.99E-03 1.91E-03 6.76E-03 2.39E-03 31.1E-03 

Hexachlorobenzene 2.80E-03 17.1E-03 8.48E-03 3.04E-03 5.21E-03 35.3E-03 6.92E-03 181E-03 

 

Dibenzofuran 0.72E-03 0.81E-03 11.7E-03 48.6E-03 98.7E-03 36.5E-03 84.2 E-03 130E-03 

Dibenzo-p-dioxin 0.10E-03 0.50E-03 1.17E-03 0.46E-03 1.15E-03 0.25E-03 0.38 E-03 0.07E-03 

4-Monochlorodibenzofuran 4.30E-03 17.7E-03 27.7E-03 30.0E-03 25.8E-03 5.99E-03 2.84E-03 31.3E-03 

1-Monochlorodibenzondioxin 249E-03 988E-03 139E-02 213E-03 272E-03 29.9E-03 13.7E-03 414E-03 

4,6-Dichlorodibenzofuran 55.1E-03 467E-03 360 E-03 49.1E-03 48.3E-03 11.6E-03 4.51E-03 319E-03 

2,7-Dichlorodibenzodioxin 22.9E-03 280E-03 489 E-03 28.3E-03 13.3E-03 11.0E-03 3.20E-03 252E-03 

1,3,7-Trichlorodibenzodioxin 0.76E-03 16.7E-03 74.7E-03 1.27E-03 bdl 2.92E-03 0.50E-03 120E-03 

2,3,7,8-Tetrachlorodibenzodioxin 0.14E-03 1.72E-03 13.3E-03 bdl bdl 0.67E-03 0.27E-03 84.3E-03 

Total PCDD/F 0.33 1.77 2.37 0.37 0.46 0.10 0.11 1.35 

bdl-Below Detection Limit 
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4.3.2 Oxidative Conditions 

The temperature dependence of the surface-mediated oxidation of 2-MCP over 

4%Fe2O3/1%CuO/SiO2 and the yields of major organic products are presented below. 

Complete degradation of the 2-MCP already occurred at 200 °C (Figure 4.16). 

Chlorophenols and chlorobenzenes were the major aromatic products with chlorophenols 

observed in greater yields than chlorobenzenes. The maximum yields of 2,4-+2,6-DCP 

and 2,3,6+2,4,6-TriCP were 0.04% and 0.22% at 250 °C (Figure 4.16). The maximum 

yields of 1,2,3,4+1,2,3,5-tetrachlorobenzene (TetraCBz) were 0.014% at 350 °C, the 

maximum yields of MCB, DCBz and TriCBz were all 0.006% at 350 °C (Figure 4.17). 

Compared to chlorophenols, similar amount of PCDD/F were produced at 250 °C 

on oxidation of 2-MCP over 4%Fe2O3/1%CuO/SiO2 (Figure 4.18). The observed dioxin 

products were: 1-MCDD, 2,7+2,8-DCDD, TriCDD and 4,6-DCDF with the yields of DCDD 

>1-MCDD > TriCDD > DCDF. Their maximum yields were 0.22%, 0.12%,0.08% and 

0.03% at 250 °C respectively (Figure 4.18). 0.05% of TetraCDD was also detected at 

200°C. 
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Figure 4.16. Chlorophenol Yields and Precursor conversion from Oxidation of 2-MCP 
over 4%Fe2O3 /1%CuO/SiO2 

 
 

 
Figure 4.17. Chlorobenzene Yields from Oxidation of 2-MCP over 4%Fe2O3 

/1%CuO/SiO2 
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Figure 4.18. Major PCDD/F Yields from Oxidation of 2-MCP over 4%Fe2O3 
1%CuO/SiO2 
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Table 4.6. Dioxin and Non-Dioxin Products and Percent Yields from Oxidation of 2-Monochlorophenol over 4% 
Fe2O3/1%CuO/SiO2 

 
Products 

Reaction Temperature (°C) 

200 250 300 350 400 450 500 550 

Monochlorobenzene 1.85E-03 6.15E-03 1.21E-03 6.38E-03 2.82E-03 1.54E-03 0.70E-03 1.41E-03 

2-Monochlorophenol  550E-03 125E-03 15.4E-03 12.4E-03 10.1E-03 17.8E-03 8.79E-03 28.7E-03 

1,2-Dichlorobenzene 0.36E-03 1.05E-03 0.81E-03 6.20E-03 2.83E-03 0.82E-03 0.03E-03 0.01E-03 

2,4+2,6-Dichlorophenol 24.5E-03 39.0E-03 3.82E-03 0.72E-03 0.80E-03 1.86E-03 1.03E-03 0.77E-03 

1,2,3+1,2,4-Trichlorobenzene 0.31E-03 0.47E-03 0.89E-03 5.59E-03 3.67E-03 1.23E-03 0.54 E-03 0.21E-03 

1,2,3,4+1,2,3,5-Tetrachlorobenzene 0.42E-03 0.56E-03 1.20E-03 13.6 E-03 8.86E-03 2.43E-03 1.21E-03 0.46E-03 

2,3,6+2,4,6-Trichlorophenol 171E-03 220E-03 152 E-03 2.37E-03 13.1E-03 1.41E-02 23.0E-03 27.7E-03 

Pentachlorobenzene 0.67E-03 0.46E-03 0.66E-03 5.25E-03 6.42E-03 1.70E-03 1.11E-03 0.78E-03 

Hexachlorobenzene 6.87E-03 2.55E-03 1.58E-03 7.92E-03 11.1E-03 2.66E-03 1.20E-03 8.00E-03 

 

Dibenzofuran 0.09E-03 0.03E-03 0.03E-03 0.06 E-03 0.34E-03 0.07E-03 0.13E-03 bdl 

Dibenzo-p-dioxin bdl 0.01E-03 bdl bdl bdl bdl bdl bdl 

4-Monochlorodibenzofuran 1.17E-03 1.81E-03 0.38E-03 0.24E-03 0.30E-03 1.25E-03 0.27E-03 0.34E-03 

1-Monochlorodibenzondioxin 74.0E-03 121E-03 20.0E-03 6.96E-03 4.57E-03 13.7E-03 5.19E-03 11.2E-03 

4,6-Dichlorodibenzofuran 33.6E-03 34.6E-03 4.39E-03 7.54E-03 2.31E-03 9.82E-03 6.29E-03 1.12E-03 

2,7-Dichlorodibenzodioxin 97.3E-03 216E-03 39.1E-03 15.0E-03 1.84E-03 18.2E-03 3.07E-03 1.08E-03 

1,3,7-Trichlorodibenzodioxin 72.9E-03 75.3E-03 28.0E-03 14.8E-03 0.55E-03 7.42E-03 0.54E-03 bdl 

2,3,7,8-Tetrachlorodibenzodioxin 48.8E-03 11.1E-03 0.47E-03 4.07E-03 0.19E-03 2.97E-03 0.19E-03 bdl 

Total PCDD/F 0.33 0.46 0.09 0.05 0.01 0.05 0.02 0.01 

bdl-Below Detection Limit 
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4.4 Thermal Degradation of 2-Monochlorophenol over 1%Fe2O3 /SiO2 

4.4.1 Pyrolytic Conditions 

The temperature dependence of the surface-mediated pyrolysis of 2-MCP over 

1%Fe2O3 /SiO2 and the yields of major organic products are presented below. Significant 

catalytic degradation of 2-MCP occurred at 200 °C, with 20% of the initial reactant 

remaining undestroyed. Rapid decomposition was observed at above 300 °C, achieving 

almost complete degradation of 2-MCP by 400 °C (Figure 4.19). Chlorophenols and 

chlorobenzenes were the major aromatic products, with maximum yield of 0.04% of 2,4 

and 2,6-DCP at 350 °C, 0.03 % of MCBz at 550 °C (Figure 4.19 and Figure 4.20). 2-

chloro-1-benzofuran (CBF) and 5,7-dichlorobenzofuran (DCBF) were also observed with 

the maximum yields of 0.03 % and 0.001% at 400 °C, respectively (Figure 4.21). The 

observed dioxin products were: DD, DF, 1-MCDD, 4-MCDF and 4,6-DCDF. The 

maximum yields of 4-MCDF and 4,6-DCDF were at 400 and 275 °C, respectively whereas 

DD and 1-MCDD exhibited maximum yields at 350 °C (Figure 4.22). 

 
Figure 4.19. Chlorophenol Yields and Precursor Conversion from Pyrolysis of 2-MCP 
over 1% Fe2O3/SiO2  
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Figure 4.20. Chlorobenzene Yields from Pyrolysis of 2-MCP over 1% Fe2O3/SiO2 

 

 

Figure 4.21. Chlorobenzofuran Yields from Pyrolysis of 2-MCP over 1% Fe2O3/SiO2  
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Figure 4.22. Major PCDD/F Yields from Pyrolysis of 2-MCP over 1% Fe2O3/SiO2  
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Table 4.7. Dioxin and Non-Dioxin Products and Percent Yields from Pyrolysis of 2-Monochlorophenol over 1% 
Fe2O3/SiO2 surface 

 
Products 

Reaction Temperature (°C) 

200 250 300 350 400 450 500 550 

Monochlorobenzene 3.97E-03 3.83E-03 3.16E-03 4.55E-03 4.41E-03 8.84E-03 16.9E-03 31.1E-03 

2-Monochlorophenol  20 19 10.6 10.3 10 95.2E-03 33.8E-03 65.8E-03 

1,2-Dichlorobenzene 1.64E-03 2.49E-03 2.11E-03 2.82E-03 4.04E-03 3.49E-03 1.39E-03 0.82E-03 

2,4+2,6-Dichlorophenol 3.03E-03 8.52E-03 7.48E-03 35.4E-03 6.20E-03 0.84E-03 0.27E-03 1.08E-03 

1,2,3+1,2,4-Trichlorobenzene bdl 0.01E-03 bdl 0.02E-03 0.04E-03 0.05E-03 0.02E-03 0.01E-03 

3-Chloro-1-benzofuran 7.71E-03 10.4E-03 10.2E-03 31.0E-03 29.6E-03 19.8E-03 11.1E-03 7.50E-03 

5,7-Dichlorobenzofuran bdl 0.01E-03 0.04E-03 0.48E-03 0.78E-03 0.47E-03 0.03E-03 0.01E-03 

2,3,6+2,4,6-Trichlorophenol 0.12E-03 0.19E-03 0.16E-03 0.40E-03 0.29E-03 0.27E-03 0.14E-03 0.60E-03 

 

Dibenzofuran 0.04E-03 0.15E-03 0.35E-03 2.36E-03 5.56E-03 14.6E-03 10.2E-03 48.5E-03 

Dibenzo-p-dioxin 0.04E-03 1.59E-03 2.31E-03 13.9E-03 10.5E-03 13.3E-03 5.29E-03 17.8E-03 

4-Monochlorodibenzofuran 1.59E-03 26.0E-03 31.0E-03 71.0E-03 123E-03 88.8E-03 18.6E-03 20.4E-03 

1-Monochlorodibenzondioxin 0.06E-03 4.60E-03 7.14E-03 17.3E-03 9.59E-03 3.91E-03 0.81E-03 0.77E-03 

4,6-Dichlorodibenzofuran 2.21E-03 58.8E-03 65.0E-03 55.7E-03 52.3E-03 11.7E-03 4.78E-03 10.6E-03 

2,7-Dichlorodibenzodioxin 0.13E-03 4.08E-03 4.66E-03 5.13E-03 2.58E-03 1.09E-03 0.23E-03 2.38E-03 

1,3,7-Trichlorodibenzodioxin 0.01E-03 0.07E-03 0.24E-03 0.08E-03 0.02E-03 0.02E-03 0.01E-03 0.10E-03 

Total PCDD/F 4.08E-03 0.10 0.11 0.17 0.20 0.13 0.04 0.1 

bdl-Below Detection Limit 
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4.4.2 Oxidative Conditions 

The temperature dependence of the surface-mediated oxidation of 2-MCP over 

1%Fe2O3 /SiO2 and the yields of major organic products are presented below. At the 

lowest temperature we studied of 200 °C, 85% of the 2-MCP undergoes surface mediated 

decomposition, above 200 °C, the reaction rapidly accelerates resulting in almost 

complete degradation of 2-MCP by 400 °C. The main products were chlorophenols, 

chlorobenzenes, PCDD/Fs, and chlorobenzofurans. Chlorophenols have higher yields 

than chlorobenzenes, with the maximum yields of 0.06% for 2,4- and 2,6-dichlorophenols 

at lower temperature region (200-250 oC). Chlorobenzene products are all trace amount, 

dichlorobenzene has the maximum yield of 0.015% at 350 oC and monochlorobenzene 

(MCBz) has a constant yield of 0.006% across the temperature range from 200-450 °C. 

1,2,4- and 1,2,3-trichlorobeneze (TriCBz) has the maximum yield of 0.002% at 450 °C. 

Figure 4.23 and Figure 4.24 depicts the yields of chlorophenols and chlorobenzenes 

respectively from the oxidation of 2-MCP over 1%Fe2O3 /SiO2 surface. 

In addition to PCDD/Fs, single benzene ring compounds including 

chlorobenezenefuran (CBF) and dichlorobenezenefuran (DCBF) are also produced from 

oxidation of 2-MCP over 1%Fe2O3 /SiO2 surface. As shown in Figure 4.25, CBF and DCBF 

have the maximum yields of 0.012% and 0.004% at 350 °C, respectively. 

Compared to chlorobenzenes and chlorophenols, significant amounts of PCDD/Fs 

were produced at 350 °C, with the maximum yield of 0.11% of 4,6-DCDF and the 

maximum yield of 0.03% for both 1- MCDD and DCDD (Figure 4.26). 
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Figure 4.24. Chlorobenzenes 
Yield from Oxidation of 2-MCP 
over 1% Fe2O3/SiO2 

Figure 4.25. Major PCDD/F 
Yields from Oxidation of 2-MCP 
over 1% Fe2O3/SiO2  

Figure 4.23. Chlorophenol Yields and 
Precursor Conversion from Oxidation 
of 2-MCP over 1% Fe2O3/SiO2 
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Figure 4.26. Major PCDD/F Yield from Oxidation of 2-MCP over 1% Fe2O3/SiO2
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Table 4.8. Dioxin and Non-Dioxin Products and Percent Yields from Oxidation of 2-Monochlorophenol over 1% 
Fe2O3/SiO2 Surface 

 

Products 
Reaction Temperature (°C) 

200 250 300 350 400 450 500 550 

Monochlorobenzene 5.53E-03 6.12E-03 4.86E-03 6.15E-03 6.36E-03 5.64E-03 1.68E-03 0.78E-03 

2-Monochlorophenol  15 3.2 2.5 794E-03 70.9E-03 68.5E-03 84.9E-03 95.6E-03 

1,2-Dichlorobenzene 3.79E-03 3.76E-03 3.88E-03 15.3E-03 9.52E-03 7.89E-03 1.92E-03 1.05E-03 

2,4+2,6-Dichlorophenol 64.7E-03 62.0E-03 32.4E-03 37.2E-03 5.45E-03 0.38E-03 0.97E-03 0.41E-03 

1,2,3+1,2,4-Trichlorobenzene 0.02E-03 0.04E-03 0.06E-03 1.01E-03 1.62E-03 1.89E-03 0.57E-03 0.40E-03 

3-Chloro-1-benzofuran 10.0E-03 9.80E-03 9.18E-03 11.9E-03 8.97E-03 7.35E-03 7.14E-03 7.13E-03 

5,7-Dichlorobenzofuran 0.05E-03 0.14E-03 0.39E-03 3.62E-03 1.47E-03 0.32E-03 0.02E-03 bdl 

1,2,3,4+1,2,3,5-
Tetrachlorobenzene 

bdl bdl bdl 0.07E-03 0.13E-03 0.16E-03 0.10E-03 0.11E-03 

2,3,6+2,4,6-Trichlorophenol 2.49E-03 3.28E-03 3.32E-03 8.85E-03 1.49E-03 0.44E-03 0.94E-03 0.52E-03 

 

Dibenzofuran 0.02E-03 0.02E-03 0.05E-03 0.03E-03 0.01E-03 0.01E-03 0.01E-03 0.02E-03 

Dibenzo-p-dioxin 0.04E-03 0.07E-03 1.37E-04 0.36E-03 0.14E-03 bdl bdl bdl 

4-Monochlorodibenzofuran 1.91E-03 2.99E-03 3.03E-03 7.20E-03 2.73E-03 0.49E-03 0.06E-03 bdl 

1-Monochlorodibenzondioxin 0.68E-03 3.71E-03 7.46E-03 29.7E-03 6.24E-03 0.54E-03 0.03E-03 bdl 

4,6-Dichlorodibenzofuran 20.9E-03 51.2E-03 43.7E-03 106E-03 36.2E-03 11.0E-03 1.01E-03 0.54E-03 

2,7-Dichlorodibenzodioxin 1.09E-03 5.31E-03 7.43E-03 31.1E-03 8.12E-03 1.63E-03 0.07E-03 0.04E-03 

1,3,7-Trichlorodibenzodioxin 0.67E-03 0.57E-03 0.96E-03 4.54E-03 1.16E-03 0.26E-03 0.05E-03 bdl 

2,3,7,8-Tetrachlorodibenzodioxin 0.01E-03 0.01E-03 0.03E-03 0.20E-03 bdl bdl bdl bdl 

Total PCDD/F 0.03 0.06 0.06 0.18 0.05 0.014 1.23E-03 0.6E-03 

bdl-Below Detection Limit 
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4.5 Thermal Degradation of 2-Monochlorophenol over 2.5%Fe2O3 /SiO2 

4.5.1 Pyrolytic Conditions 

The temperature dependence of the surface-mediated pyrolysis of 2-MCP over 

2.5%Fe2O3 /SiO2 and the yields of major organic products are presented below. The 

catalytic degradation of 2-MCP occurred at 200 °C. Compared with the 80% of 2-MCP 

degradation on 1%Fe2O3 /SiO2 surface, only 60% of the initial reactant were destroyed at 

200 °C. Rapid decomposition reaction followed above 300 °C, achieving almost complete 

degradation of 2-MCP by 400 °C (Figure 4.27). Chlorophenols and chlorobenzenes were 

the major aromatic products; the yields of chlorophenol were greater than 

chlorobenzenes. The maximum yield of 2,4 and 2,6-DCP were observed at 300 °C with 

the value of 0.05%. The maximum yield of MCB and DCBz were 0.016% and 0.006% at 

400 and 350 °C, respectively (Figure 4.28). 

The maximum yields of CBF and DCBF were 0.03 % and 0.002% at 350 °C, 

respectively (Figure 4.29). 

Compared to chlorophenols and chlorobenzenes, significant amount of PCDD/F 

were produced on pyrolysis of 2-MCP on 2.5%Fe2O3 /SiO2 (Figure 3.30). The observed 

dioxin products were: DD, DF, 1-MCDD, 4-MCDF and 4,6-DCDF with the yields of 4,6-

DCDF> 4-MCDF > 1-MCDD > DCDD > DF > DD. The maximum yields of 4,6-DCDF and 

4-MCDF were at 250 and 300 °C, respectively whereas 1-MCDD and DCDD exhibited 

maximum yields at 300 °C. The maximum yields of 4,6-DCDF and 4-MCDF were 0.22% 

and 0.14%, respectively.  
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Figure 4.27. Chlorophenol Yields 
and Precursor Conversion from 
Pyrolysis of 2-MCP over 2.5% 
Fe2O3/SiO2 

Figure 4.28. Chlorobenzene Yields 
from Pyrolysis of 2-MCP over 2.5% 
Fe2O3/SiO2 

Figure 4.29. Chlorobenzofuran 
Yields from Pyrolysis of 2-MCP 
over 2.5% Fe2O3/SiO2 
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Figure 4.30. Major PCDD/F Yields from Pyrolysis of 2-MCP over 2.5% Fe2O3/SiO2  
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Table 4.9. Dioxin and Non-Dioxin Products and Percent Yields from Pyrolysis of 2-Monochlorophenol over 2.5% 
Fe2O3/SiO2 surface 

 
Products 

Reaction Temperature (°C) 

200 250 300 350 400 450 500 550 

Monochlorobenzene 7.96E-03 5.88E-03 4.36E-03 6.27E-03 15.4E-03 8.66E-03 5.22E-03 8.39E-03 

2-Monochlorophenol  37 29 6.6 5.7 1.3 38.0E-03 29.8E-03 46.8E-03 

1,2-Dichlorobenzene 1.38E-03 2.86E-03 3.37E-03 5.62E-03 5.11E-03 2.35E-03 0.57E-03 0.40E-03 

2,4+2,6-Dichlorophenol 6.36E-03 33.8E-03 41.9E-03 12.1E-03 0.14E-03 0.22E-03 0.10E-03 0.36E-03 

1,2,3+1,2,4-Trichlorobenzene 0.02E-03 0.03E-03 0.03E-03 0.03E-03 bdl 0.02E-03 0.01E-03 0.04E-03 

3-Chloro-1-benzofuran 8.42E-03 13.5E-03 22.9E-03 27.9E-03 12.9E-03 11.1E-03 8.21E-03 7.16E-03 

5,7-Dichlorobenzofuran 0.01E-03 0.06E-03 0.61E-03 1.67E-03 0.12E-03 0.25E-03 0.04E-03 bdl 

2,3,6+2,4,6-Trichlorophenol 0.25E-03 0.33E-03 0.81E-03 0.85E-03 0.04E-03 0.09E-03 0.09E-03 0.17E-03 

 

Dibenzofuran 0.06E-03 0.22E-03 2.34E-03 1.27E-03 17.1E-03 13.5E-03 18.8E-03 29.4E-03 

Dibenzo-p-dioxin 0.18E-03 5.58E-03 13.3E-03 7.57E-03 10.6E-03 8.27E-03 4.36E-03 4.43E-03 

4-Monochlorodibenzofuran 3.16E-03 52.6E-03 141E-03 88.9E-03 21.5E-03 10.9E-03 1.71E-03 0.72E-03 

1-Monochlorodibenzondioxin 0.51E-03 30.5E-03 37.7E-03 33.9E-03 0.91E-03 0.83E-03 0.07E-03 0.05E-03 

4,6-Dichlorodibenzofuran 23.8E-03 221E-03 196E-03 108E-03 22.5E-03 6.98E-03 11.0E-03 50.5E-03 

2,7-Dichlorodibenzodioxin 0.96E-03 15.1E-03 24.2E-03 9.95E-03 1.31E-03 0.57E-03 2.12E-03 0.04E-03 

1,3,7-Trichlorodibenzodioxin 0.05E-03 0.20E-03 0.46E-03 0.12E-03 bdl bdl bdl bdl 

Total PCDD/F 0.03 0.33 0.42 0.25 0.07 0.04 0.04 0.09 

bdl-Below Detection Limit 
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4.5.2 Oxidative Conditions 

The temperature dependence of the surface-mediated oxidation of 2-MCP over 

2.5%Fe2O3 /SiO2 and the yields of major organic products are presented below. The 

catalytic degradation of 2-MCP occurred at 200 °C. Compared with only 60% of 2-MCP 

degraded on 2.5%Fe2O3 /SiO2 at 200 °C under pyrolysis, 85% of the 2-MCP were 

destroyed under oxidation. Then decomposition reaction accelerated above 200 °C, with 

almost complete degradation of 2-MCP by 350 °C (Figure 4.31). Chlorophenols and 

chlorobenzenes were the major aromatic products; the yields of chlorophenol were 

greater than chlorobenzenes. The maximum yield of 2,4 and 2,6-DCP were observed at 

250 °C with the value of 0.07%. The maximum yield of MCB and DCBz were 0.01% at 

350 °C (Figure 4.32). 

The maximum yields of CBF and DCBF were 0.01 % and 0.001% at 300 °C, 

respectively (Figure 4.33). 

Under oxidation conditions, comparable amount of PCDD/F were produced on 

2.5%Fe2O3 /SiO2 (Figure 4.34). The observed dioxin products were: 1-MCDD, 4-MCDF 

and 4,6-DCDF, DCDD with the yields of 4,6-DCDF > DCDD > 1-MCDD > 4-MCDF.  The 

maximum yields of 4,6-DCDF were at 250 °C with a value of 0.09%, 1-MCDD and DCDD 

exhibited maximum yields at 300 °C. with the value of 0.02% and 0.01%, respectively.  
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Figure 4.31. Chlorophenol Yields 
and Precursor Conversion from 
Oxidation of 2-MCP over 2.5% 
Fe2O3/SiO2 

Figure 4.32. Chlorobenzene Yields 
from Oxidation of 2-MCP over 2.5% 
Fe2O3/SiO2 

Figure 4.33. Chlorobenzofuran Yields 
from Oxidation of 2-MCP over 2.5% 
Fe2O3/SiO2 
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Figure 4.34. Major PCDD/F Yields from Oxidation of 2-MCP over 2.5% Fe2O3/SiO2  
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Table 4.10. Dioxin and Non-Dioxin Products and Percent Yields from Oxidation of 2-Monochlorophenol over 2.5% 
Fe2O3/SiO2 

 
Products 

Reaction Temperature (°C) 

200 250 300 350 400 450 500 550 

Monochlorobenzene 11.9E-03 6.79E-03 4.54E-03 9.26E-03 5.02E-03 2.05E-03 0.31E-03 0.19E-03 

2-Monochlorophenol  15 8.0 977E-03 37.0E-03 106E-03 78.5E-03 94.2E-03 89.9E-03 

1,2-Dichlorobenzene 6.45E-03 5.21E-03 7.03E-03 9.28E-03 4.91E-03 3.84E-03 0.77E-03 0.60E-03 

2,4+2,6-Dichlorophenol 55.2E-03 65.3E-03 33.8E-03 2.37E-03 1.18E-03 1.05E-03 0.19E-03 0.48E-03 

1,2,3+1,2,4-Trichlorobenzene bdl 0.04E-03 0.46E-03 2.38E-03 1.04E-03 1.63E-03 0.66E-03 0.68E-03 

3-Chloro-1-benzofuran 8.55E-03 9.25E-03 9.14E-03 7.61E-03 7.20E-03 7.18E-03 7.15E-03 7.14E-03 

5,7-Dichlorobenzofuran 0.05 E-03 0.24E-03 0.86E-03 0.50E-03 0.03E-03 bdl bdl 0.03 E-03 

1,2,3,4+1,2,3,5-
Tetrachlorobenzene 

bdl bdl 0.04E-03 0.24E-03 0.11E-03 0.18E-03 0.07E-03 0.33E-03 

2,3,6+2,4,6-Trichlorophenol 2.58E-03 3.94E-03 3.24E-03 0.83E-03 0.50E-03 0.79E-03 0.30E-03 0.85E-03 

 

Dibenzofuran 0.02E-03 0.03E-03 0.03E-03 0.03E-03 0.03E-03 0.03E-03 0.02E-03 0.01E-03 

Dibenzo-p-dioxin 0.05E-03 0.18E-03 0.12E-03 0.04E-03 0.02E-03  0.02E-03 bdl 0.02E-03 

4-Monochlorodibenzofuran 1.33E-03 3.72E-03 3.25E-03 1.00E-03 0.26E-03 0.70E-03 0.08E-03 0.40E-03 

1-Monochlorodibenzondioxin 1.04E-03 12.0E-03 12.9E-03 1.88E-03 0.10E-03 0.16E-03 0.07E-03 0.18E-03 

4,6-Dichlorodibenzofuran 35.5E-03 88.0E-03 56.2E-03 20.1E-03 4.72E-03 8.81E-03 25.9E-03 3.95E-03 

2,7-Dichlorodibenzodioxin 4.06E-03 16.9E-03 20.6E-03 5.21E-03 0.66E-03 0.29E-03 5.07E-03 0.63E-03 

1,3,7-Trichlorodibenzodioxin 0.63E-03 1.00E-03 2.00E-03 0.62E-03 0.03E-03 0.03E-03 0.01E-03 0.03E-03 

Total PCDD/F 0.04 0.12 0.095 0.03 5.82E-03 0.01 0.03 5.22E-03 

bdl-Below Detection Limit 
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4.6 Thermal Degradation of 2-Monochlorophenol over 4%Fe2O3 /SiO2 

4.6.1 Pyrolytic Conditions 

The temperature dependence of the surface-mediated pyrolysis of 2-MCP over 

4%Fe2O3 /SiO2 and the yields of major organic products are presented below. The 

catalytic degradation of 2-MCP occurred at 200 °C, 80% of the 2-MCP were destroyed. 

Then decomposition reaction accelerated above 200 °C, with almost complete 

degradation of 2-MCP by 350 °C (Figure 4.35). Chlorophenols and chlorobenzenes were 

the major aromatic products; the yields of chlorophenol were greater than 

chlorobenzenes. The maximum yield of 2,4 and 2,6-DCP were observed at 250 °C with 

the value of 0.05%. The maximum yield of MCB and DCBz were 0.0035% and 0.0025% 

at 350 °C and 300 °C (Figure 4.36). 

The maximum yields of CBF and DCBF were 0.025 % and 0.002% at 350 °C, 

respectively (Figure 4.37). 

Significant amount of PCDD/F were produced on pyrolysis of 2-MCP over 

4%Fe2O3 /SiO2 (Figure 4.38). The observed dioxin products were: 1-MCDD, 4-MCDF and 

4,6-DCDF, DCDD with the yields of 4,6-DCDF > 4-MCDF > 1-MCDD > DCDD. The 

maximum yields of 4,6-DCDF were at 250 °C with a value of 0.27%, 4-MCDF and 1-

MCDD exhibited maximum yields at 300 °C. with the value of 0.12% and 0.06%, 

respectively.  
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Figure 4.35. Chlorophenol Yields 
and Precursor Conversion from 
Pyrolysis of 2-MCP over 4% 
Fe2O3/SiO2 

Figure 4.36. Chlorobenzene 
Yields from Pyrolysis of 2-MCP 
over 4% Fe2O3/SiO2 

Figure 4.37. Chlorobenzofuran 
Yields from Pyrolysis of 2-MCP 
over 4% Fe2O3/SiO2 
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Figure 4.38. Major PCDD/F Yields from Pyrolysis of 2-MCP over 4% Fe2O3/SiO2  
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Table 4.11. Dioxin and Non-Dioxin Products and Percent Yields from Pyrolysis of 2-Monochlorophenol over 4% 
Fe2O3/SiO2 surface 

 
Products 

Reaction Temperature (°C) 

200 250 300 350 400 450 500 550 

Monochlorobenzene 3.45E-03 3.05E-03 3.18E-03 3.60E-03 3.14E-03 2.82E-03 2.65E-03 1.19E-03 

2-Monochlorophenol  22 21 3.2 933E-03 30.7E-03 52.1E-03 34.6E-03 29.9E-03 

1,2-Dichlorobenzene 1.44E-03 1.41E-03 2.19E-03 1.82E-03 1.11E-03 0.43E-03 0.21E-03 0.30E-03 

2,4+2,6-Dichlorophenol 6.73E-03 32.8E-03 52.5E-03 9.49E-03 0.17E-03 0.19E-03 0.18E-03 0.35E-03 

1,2,3+1,2,4-Trichlorobenzene bdl bdl 0.03E-03 0.04E-03 0.01E-03 bdl 0.03E-03 0.05E-03 

3-Chloro-1-benzofuran 9.08E-03 11.2E-03 20.8E-03 24.4E-03 9.58E-03 7.60E-03 7.21E-03 7.14E-03 

5,7-Dichlorobenzofuran 0.01E-03 0.09E-03 1.34E-03 2.01E-03 0.15E-03 0.02E-03 0.02E-03 0.04E-03 

2,3,6+2,4,6-Trichlorophenol 0.11E-03 0.27E-03 1.84E-03 2.32E-03 0.04E-03 0.06E-03 0.07E-03 0.21E-03 

         

Dibenzofuran 0.06E-03 0.14E-03 1.17E-03 2.68E-03 7.01E-03 11.0E-03 10.5E-03 45.9E-03 

Dibenzo-p-dioxin 0.36E-03 3.53E-03 9.77E-03 6.46E-03 8.69E-03 1.88E-03 3.13E-03 2.58E-03 

4-Monochlorodibenzofuran 5.66E-03 32.4E-03 100E-03 92.7E-03 8.54E-03 1.61E-03 0.30E-03 2.13E-03 

1-Monochlorodibenzondioxin 1.07E-03 18.1E-03 57.3E-03 40.9E-03 0.79E-03 0.08E-03 0.04E-03 0.04E-03 

4,6-Dichlorodibenzofuran 37.4E-03 262E-03 136E-03 130E-03 6.90E-03 7.63E-03 9.67E-03 0.72E-03 

2,7-Dichlorodibenzodioxin 1.94E-03 11.0E-03 23.1E-03 20.1E-03 0.35E-03 0.45E-03 0.61E-03 0.21E-03 

1,3,7-Trichlorodibenzodioxin 0.02E-03 0.15E-03 0.51E-03 0.60E-03 bdl bdl 0.02E-03 0.01E-03 

Total PCDD/F 0.05 0.33 0.33 0.29 0.03 0.02 0.02 0.05 

bdl-Below Detection Limit 
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4.6.2 Oxidative Conditions 

The temperature dependence of the surface-mediated oxidation of 2-MCP over 

4%Fe2O3 /SiO2 and the yields of major organic products are presented below. The 

catalytic degradation of 2-MCP occurred at 200 °C, about 80% of the 2-MCP were 

destroyed. Then decomposition reaction accelerated above 200 °C, with almost complete 

degradation of 2-MCP by 250 °C whereas under pyrolysis conditions, complete 

degradation of 2-MCP by 350 °C (Figure 4.39). Trance amounts of chlorophenols and 

chlorobenzenes were observed. The maximum yield of MCB and DCBz were 0.0035% 

and 0.003% at 200 °C and 250 °C (Figure 4.40). 

The maximum yields of CBF and DCBF were 0.007 % and 0.0003% at 250 °C, 

respectively (Figure 4.41). 

Significant amount of PCDD/F were produced on oxidation of 2-MCP over 

4%Fe2O3 /SiO2 (Figure 4.42). The observed dioxin products were: 1-MCDD, 4-MCDF and 

4,6-DCDF, DCDD with the yields of 4,6-DCDF > DCDD > 1-MCDD > 4-MCDF. The 

maximum yields of 4,6-DCDF and DCDD were at 250 °C with a value of 0.045% and 

0.005%, respectively. 
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Figure 4.39. Chlorophenol Yields 
and Precursor Conversion from 
Oxidation of 2-MCP over 4% 
Fe2O3/SiO2 

Figure 4.40. Chlorobenzene 
Yields from Oxidation of 2-MCP 
over 4% Fe2O3/SiO2 

Figure 4.41. Chlorobenzofuran 
Yields from Oxidation of 2-MCP 
over 4% Fe2O3/SiO2 
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Figure 4.42. Major PCDD/F Yields from Oxidation of 2-MCP over 4% Fe2O3/SiO2  
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Table 4.12. Dioxin and Non-Dioxin Products and Percent Yields from Oxidation of 2-Monochlorophenol over 4% 
Fe2O3/SiO2 Surface 

 
Products 

Reaction Temperature (°C) 

200 250 300 350 400 450 500 550 

Monochlorobenzene 3.51E-03 3.51E-03 3.00E-03 2.85E-03 2.05E-03 0.58E-03 0.25E-03 0.10E-03 

2-Monochlorophenol  1.8 493E-03 45.2E-03 38.5E-03 37.6E-03 62.0E-03 56.3E-03 62.8E-03 

1,2-Dichlorobenzene 2.06E-03 2.92E-03 2.89E-03 2.03E-03 1.92E-03 0.62E-03 0.56E-03 0.27E-03 

2,4+2,6-Dichlorophenol 18.9E-03 20.8E-03 0.82E-03 0.27E-03 0.27E-03 0.80E-03 0.19E-03 0.48E-03 

1,2,3+1,2,4-Trichlorobenzene 0.02E-03 0.08E-03 0.33E-03 0.16E-03 0.26E-03 0.30E-03 0.68E-03 0.09E-03 

3-Chloro-1-benzofuran 7.69E-03 7.79E-03 7.17E-03 7.14E-03 7.13E-03 7.14E-03 7.13E-03 7.13E-03 

5,7-Dichlorobenzofuran 0.04E-03 0.27E-03 0.04E-03 bdl bdl bdl bdl bdl 

Tetrachlorobenzene bdl bdl 0.03E-03 0.01E-03 0.02E-03 0.06E-03 0.09E-03 0.03E-03 

2,3,6+2,4,6-Trichlorophenol 1.76E-03 4.62E-03 0.23E-03 0.15E-03 0.23E-03 0.57E-03 0.20E-03 0.45E-03 

 

Dibenzofuran 0.04E-03 0.02E-03 0.01E-03 0.01E-03 0.01E-03 0.01E-03 0.01E-03 0.02E-03 

Dibenzo-p-dioxin 0.02E-03 0.02E-03 bdl bdl bdl bdl bdl bdl 

4-Monochlorodibenzofuran 0.78E-03 1.22E-03 0.11E-03 0.05E-03 0.04E-03 0.15E-03 0.03E-03 0.06E-03 

1-Monochlorodibenzondioxin 0.19E-03 2.01E-03 0.17E-03 0.01E-03 0.02E-03 0.02E-03 0.01E-03 0.01E-03 

4,6-Dichlorodibenzofuran 18.4E-03 43.9E-03 3.52E-03 7.92E-03 0.38E-03 5.44E-03 5.92E-03 2.20E-03 

2,7-Dichlorodibenzodioxin 0.88E-03 6.31E-03 0.60E-03 0.70E-03 0.06E-03 0.05E-03 0.28E-03 0.13E-03 

1,3,7-Trichlorodibenzodioxin 0.12E-03 0.84E-03 0.07E-03 bdl bdl 0.02E-03 0.27E-03 0.02E-03 

Total PCDD/F 0.02 0.05 4.48E-03 8.69E-03 0.51 5.69 6.52 2.44 

bdl-Below Detection Limit 
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4.7 EPFRs Formation 

The concentration of metals in fly ash vary greatly depending on the incineration 

facilities and sampling time. The analysis and characterization of transition metals in the 

fly ashes reveals 0.85-5.02 % iron oxide and 0.09-0.51% copper oxide. 1 The wide 

distribution of metal concentration raises the question of how the metal concentration 

affects yields and chemical reactivity of the EPFRs. Kiruri 2 investigated the effect of 

copper oxide concentration on the formation of EPFRs, instead of a linear correlation 

between the EPFRs yield and copper content, an exponential decrease in radical density 

per copper atom was observed between 1% and 5% CuO content for 2-MCP adsorption. 

Iron oxide is almost the highest concentration transition metal in combustion systems and 

is known to catalyze PCDD/F formation; it would be interesting to know the effect of iron 

content on the formation of EPFRs. Figure 4.43 and Figure 4.44 depict the EPFRs’ EPR 

spectra and concentration of EPFRs adsorbed at 230 °C for different Fe2O3 content in the 

model fly ash, respectively. It is shown that with the increasing content of iron oxide in the 

model fly ash, the EPFRs concentration increased accordingly. Table 4.13 presents g-

value, ΔHp-p and concentration of radical signals with changing Fe2O3 content in model 

fly ash. The g values for EPFR species were ~2.00364-2.00433, which came from the 

mixed of oxygen-centered and carbon-centered free radial species. 3 The surface-

mediated precursor mechanism for PCDD/F formation can also be applied to mixed 

oxides. Indeed, the exposure of mixed metal oxide systems to the vapors of 2-MCP at 

230 °C have shown the formation of EPFRs in Figure 4.45 and g-value, ΔHp-p and 

concentration of radical signals were listed in Table 4.14. 
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Figure 4.43. Electron Paramagnetic Resonance (EPR) Spectra of Fe2O3/Silica Fly Ash 

Surrogates Dosed with 2-MCP 

 

Figure 4.44. EPFRs Concentration from Different Content of Fe2O3 in Fly Ash Surrogates 
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Table 4.13. G value, ΔHp-p and Concentration of Radical Signals with 

Changing Fe2O3 Content in Fly Ash Surrogates 

 g factor ΔHp-p Spins/g 

1% Fe2O3 2.0043 6.2 6.7E+16 

2.5% Fe2O3 2.0041 6.1 7.7E+16 

4%Fe2O3 2.0036 5.9 15 E+16 

5%Fe2O3 2.0036 5.7 26 E+16 

 

 

Figure 4.45. EPR Spectra of Fe2O3/CuO/Silica Fly Ash Surrogates Dosed with 2-MCP 
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Table 4.14. EPR Data of Mixed Fe2O3/CuO/Silica Fly Ash 

Surrogates Dosed with 2-MCP 

 g factor ΔHp-p Spins/g 

4%Fe2O3/1%CuO 2.0043 6.3 2.35E+17 

 2.0044 6.6 2.10E+17 

 2.0044 6.3 4.69E+17 

average   3.05E+17 

2.5% Fe2O3/2.5%CuO 2.0039 6.4 4.40E+17 

 2.0040 6.4 4.99E+17 

 2.0040 6.5 3.17E+17 
 

average   4.19E+17 

1% Fe2O3/4%CuO 2.0040 6.0 1.05E+17 

 2.0041 7.1 1.50E+17 

 2.0041 6.9 1.20E+17 

average   1.25E+17 

 

4.8 Characterization of Fly Ash Surrogates 

4.8.1 XPS Analysis of Fe2O3/CuO/SiO2 

Figure 4.46 and Figure 4.47 present XPS spectra from the fresh and used 

Fe2O3/CuO/SiO2 fly ash surrogates, respectively. According to NIST X-ray photoelectron 

spectroscopy database, binding energy for different oxidation state of copper is 

summarized in table 4.15.  
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Table 4.15. Binding Energy of Cu 2p3/2  

Formula Energy (eV) 

Cu 932.2-933.1 

 

Cu
2
O 932.2-932.8 

 

CuO 932.7-934.6 

 

 

As shown in Figure 4.46, among the fresh Fe2O3/CuO/SiO2 fly ash surrogates 

(before reaction), there is not much difference of binding energy. The peak of Cu 2p3/2 

corresponding to binding energy of 933 eV belong to CuO. After the reaction on the 

surface of fly ash surrogates (used samples), the peak of Cu 2p3/2 shifts towards Cu+. 

Figure 4.48 presents a comparison of Cu 2p spectra from the catalytic samples after 

reaction with 2-MCP under pyrolytic conditions. Binding energy absorption peaks were 

fitted to different oxidation states and speciation of copper and the percent of Cu reduction 

from +2 to +1 oxidation state were calculated. Addition of Fe2O3 into the CuO samples 

results in gradual increase of the copper reduction. Small addition of iron (1%Fe2O3 + 

4%CuO) already results in almost double the degree of copper reduction: 79% of the Cu 

is reduced compared to the 49% reduced in the pure CuO surrogate. In the 1:1 mixture 

of copper and iron oxides, more than 90% of copper is reduced after reaction. The 

increased reducibility of copper in mixed oxide systems implies an interaction between 

iron and copper ions and their direct contact. 
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Figure 4.46. XPS Spectra from the Fresh Fe2O3/CuO/SiO2 Fly Ash Surrogates at Cu2p 
Binding Energy Range 

 

Figure 4.47. XPS Spectra from the Used Fe2O3/CuO/SiO2 Fly Ash Surrogates at Cu2p 
Binding Energy Range 
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Figure 4.48. High Resolution XPS Spectra of the Cu 2p Binding Energy Region with Fitted Peaks Corresponding to Cu2+ 
and Its Reduced Forms:  Cu2O and CuCl2.  The Percent of Reduced Copper after PCDD/F Formation is Emphasized for 
Each Surrogate 
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4.8.2 TEM-EDAX Analysis of Fe2O3/SiO2 

Figure 4.49 presents Fe2O3 nanoclusters’ TEM image (top row) and their 

corresponding diffraction pattern (bottom row).  Shown in the high-resolution TEM images 

, the size of the Fe2O3 nanoclusters was <10 nm. With the content of iron increasing in 

the fly ash surrogates, the nanocluster size is increasing. Simultaneously, the diffraction 

pattern is changing. Figure 4.50 shows the EDAX analysis results. The appearance of the 

diffraction pattern can reflect the nature of the crystalline phases in the specimen. For 

microcrystalline or amorphous systems, the diffraction pattern consists of a series of 

concentric rings rather than spots/discs. For current Fe2O3/silica samples, the electron 

diffraction pattern is composed of concentric rings. The image on a selected area 

diffraction pattern from 1% of Fe2O3 shows diffuse ring diffraction patterns with no discrete 

reflections and one or possibly two diffuse rings of maximum intensity, which is typical for 

amorphous samples. Thus, iron oxide in 1% Fe2O3 fly ash surrogate is amorphous with 

no long-range order in the atomic network. For the material existing as a collection of a 

large number of crystals, with different geometric orientations, the individual reflections 

are seen within the rings, observed for samples containing 2.5% to 5% of Fe2O3 in fly ash 

surrogates. Thus, these samples were identified to contain small (nano) crystallites of iron 

oxide. Fe2O3 nanoclusters’ size distribution histograms determined from TEM images are 

shown in Figure 4.51.  The particle size of the single cluster ranges from ~3-10 nm. With 

the increasing content of iron in the model fly ash, the cluster size shifts towards larger 

diameters. Such clusters were also subject to aggregation, forming larger aggregates with 

irregular shapes. These aggregates could be identified by EDAX. Due to particles 

agglomeration, most Fe2O3 nanoclusters exist as agglomerates instead of a single cluster.   

http://www.ammrf.org.au/myscope/tem/background/concepts/imagegeneration/diffractionimages.php#term
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Figure 4.49. TEM Images and Diffraction Patterns of Different Fe2O3 Content Fly Ash Surrogates (From Left to Right: 1%, 
2.5%, 4% and 5% Fe2O3) 
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Figure 4.50. EDAX Analysis of Fe2O3 Nanoclusters (From Top to Bottom: 1%, 2.5%, 4% 
and 5% Fe2O3)
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Figure 4.51. Size Distribution of Fe2O3 Nanoclusters 
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4.8.3 XRD Analysis of Fe2O3/SiO2 

XRD spectra show the diffraction patterns of iron oxide particles (Figure 4.52). The 

peaks at 33.18°, 35.67°, 40.74°, 49.51°, 53.90°, 62.17°, 63.97° and 72.03° are 

corresponding to the diffraction peaks of -Fe2O3, indicating the fly ash surrogates are 

composed of -Fe2O3 crystals and amorphous silica. XRD spectra confirmed that 1% of 

Fe2O3 fly ash surrogate is amorphous, with the increasing amount of iron, a larger number 

of crystals formed on and within amorphous silica. 

 

 
Figure 4.52. XRD Pattern of Fe2O3 Fly Ash Surrogates 
 
 

22x10
3

20

18

16

14

12

In
te

n
s
it
y
 (

c
p
s
)

80706050403020
2 theta (°)

 1% Fe2O3

 2.5% Fe2O3

 4% Fe2O3

 5% Fe2O3

33.18
*

*

*

*

*

*

* *

35.67

40.74

49.51

53.90

62.17

63.97 72.03

XRD Analysis of Fe2O3  Fly Ash



97 
 

4.9 References 
 
1. Jiang, J.-g.; Xin, X.; Jun, W.; Yang, S.-j.; Zhang, Y., Investigation of basic 
properties of fly ash from urban waste incinerators in China. Journal of Environmental 
Sciences 2007, 19 (4), 458-463. 

2. Kiruri, L. W.; Khachatryan, L.; Dellinger, B.; Lomnicki, S., Effect of copper oxide 
concentration on the formation and persistency of environmentally persistent free radicals 
(EPFRs) in particulates. Environmental science & technology 2014, 48 (4), 2212-2217. 

3. Lomnicki, S.; Truong, H.; Vejerano, E.; Dellinger, B., Copper oxide-based model 
of persistent free radical formation on combustion-derived particulate matter. 
Environmental science & technology 2008, 42 (13), 4982-4988. 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



98 
 

CHAPTER 5 DISCUSSION 

5.1 Fe/Cu Synergy in PCDD/F Formation 

Although metal-mediated PCDD/F formation has been studied extensively, 1-4 

most of the studies were focused on the effect of single metal chloride or oxide. In the 

MSWI, fly ash is a complex mixture of components whose concentration can vary widely 

based on incinerator feedstock. How those components react to each other in terms of 

PCDD/F formation? Some synergistic or inhibitive effect might exist. How does the 

change of the metal content affect the PCDD/F output? Those questions need to be 

addressed. Iron and copper are the most commonly transition metals in combustion 

systems, it will be interesting to know their cooperative effect in terms of PCDD/F 

formation.  Acutally, the synergy effect between iron and copper has been applied into 

many fields. A novel nanostructured Fe-Cu binary oxide was synthesized for efficiently 

removing arsenic from water. 5 Schuchardt’s study showed copper oxide exhibits a 

synergistic effect on iron oxide supported silica for the oxidation of cyclohexane at room 

temperature. 6 Yang investigated the synergy between iron ore and copper ore as oxygen 

carriers in chemical-looping combustion and the mixture of iron ore and copper ore are 

expected to address simultaneously reactivity, recyclability, cost and environmental 

concerns of oxygen carriers. 7 Rossi prepared iron-copper composite catalysts to study 

the efficiecy in the Fenton Heterogeneous Process regarding organic charge removal and 

biodegradability enhancement. 8 For PCDD/F formation, Liao used different mixture of 

CuCl2 and Fe2O3 for de novo synthesis of PCDD/F but no synegistic effects were 

observed. 9 In our study, different ratio of iron to copper mixed metal oxide model fly ashes 

were prepared to study their cooperative effects.  
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The conversion of 2-MCP over the three-studied mixed oxide Fe2O3/CuO 

surrogates is shown in Figure 5.1 and Figure 5.2.  For reference, 10-11 previously obtained 

results from single oxide surrogates are also included in the figure.  Under oxidative 

conditions, clear differences can be observed between the mixed oxide systems and 

single oxide catalysts in the catalytic oxidation of 2-MCP (Figure 5.1).  All three mixed 

oxide surrogates convert > 99.5% of the 2-MCP precursor across the entire measured 

temperature range. On the contrary, single oxide systems gradually increase their activity 

in the oxidation process in the temperature range of 200-400 °C and level-off above 400 

°C.  In pyrolytic conditions, mixed oxide systems are also superior to single oxides in 

degradation of 2-MCP, though differences are less dramatic (Figure 5.2). The difference 

in the oxidative and pyrolytic degradation profiles indicates that 2-MCP is undergoing the 

Mars-Van Krevelen Mechanism.12  Current experiments further confirm this theory, where 

in the absence of molecular oxygen, oxidation of 2-MCP still occurs. Higher activity of the 

mixed oxide systems at lower temperatures (below 400 °C) indicates a more energetically 

favorable abstraction of oxygen from the surface by the adsorbed molecules in mixed 

oxide samples compared to single oxides.  This higher activity supports the hypothesis 

that synergy between iron and copper oxides is primarily due to weakened metal-oxygen 

bonds. Previous studies13 have indicated that the adsorption of aromatic species on metal 

oxides leads to the formation of surface radicals and the mechanism for EPFR formation 

on individual transition metal oxides has been thoroughly characterized.10, 14 Depending 

on the reactivity of the system and the reaction temperature, this leads to 

degradation/oxidation products or condensation of such radicals to form larger species 

(such as PCDD/Fs and others). The surface-mediated precursor mechanism for PCDD/F    
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formation can also be applied to mixed oxides. Indeed, the exposure of mixed metal oxide 

systems to the vapors of 2-MCP at 230 °C has shown the formation of EPFRs, similarly 

as described for the single metal systems.4 These radicals are identified as a mixture of 

phenoxy- and semiquinone-type radicals. 

There is an opposite relationship between the conversion of 2-MCP and the 

formation of PCDD/Fs on the mixed oxide catalysts. Under oxidative conditions, the yields 

of PCDD/Fs are very small. Surface-formed radicals are subject either to condensation 

process or further oxidation to smaller molecules and CO2. There is a competition 

between the oxidation and condensation processes and under oxygen-rich conditions, 

the rate of destruction of 2-MCP surpasses the rate of condensation of PCDD/F 

intermediates, as indicated by almost complete destruction of 2-MCP.  In the absence of 

molecular oxygen, the rate of catalytic oxidation of 2-MCP is suppressed and the rate of 

condensation of surface species increases the yields of PCDD/Fs (Figure 5.3). In fact, 

PCDD/F yields on the mixed oxide catalysts under pyrolytic conditions are up to five times 

higher than any previously measured yield from a single oxide catalyst. This applies 

particularly to the mixed oxide samples containing 2.5% of CuO and less (Fe:Cu ratios 

0.9 and 3.5). The samples containing 1% Fe2O3 still formed higher yields of PCDD/Fs 

than either single oxide samples, however much less than the other two studied mixed 

oxide catalysts. 

Mixed oxide systems have shown a clear temperature shift in the  PCDD/F 

formation window under pyrolytic conditions. While for the single oxides, formation of 

PCDD/Fs started above 300 °C (for Fe) and 350 °C (for Cu), mixed oxide systems have  
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shown formation of PCDD/Fs already at 200 °C with a clear maximum at ~ 275-300 °C. 

A  correlation between the degradation of 2-MCP and the beginning of PCDD/F formation 

shows the point at which the surface is sufficiently activated to form surface-bound 

intermediates. Comparing the onset of the PCDD/Fs formation temperature with the 2-

MCP degradation profiles, it appears that ~ 93-94% degradation of MCP marks the 

activity threshold for the PCDD/F formation onset (with the exception of Fe:Cu = 1:1 at 

200 °C, where 2-MCP degradation is at 86%). 

 We have shown previously a significant difference in the PCDD and PCDF yields 

for copper and iron oxides from 2-MCP: 10-11 copper oxides preferentially formed PCDDs, 

while iron oxide formed primarily PCDFs. By using 2-MCP in current studies, we were 

hoping to identify which metal center dominates the PCDD/F formation process in mixed

 
Figure 5.3. Total PCDD/F Yields from the Pyrolytic Degradation of 2-MCP over Fe/Cu 
Mixed Oxide Catalysts 
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oxide systems. PCDD: PCDF ratios for all samples are shown in Figure 5.4. The congener 

profiles of all three mixed oxide systems contain higher quantities of PCDDs across the  

 
Figure 5.4. PCDD/PCDF Ratios from the Pyrolytic Degradation of 2-MCP over Fe/Cu 
Mixed Oxide Catalysts 
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dichlorodibenzofuran (DCDF) formation on the surface of mixed metal oxides reaches 

maximum at 300 °C (0.8% yield) for samples containing 1:1 ratio of iron and copper and 

quickly drops to zero with increasing temperatures (Figure 5.5). As a result, such species 

become more available for reaction with the gas phase precursor to form PCDDs. 

 
Figure 5.5. 4,6-Dichlorodibenzofuran (DCDF) Yields from the Pyrolytic Degradation of 2-
MCP over Fe/Cu Mixed Oxide Catalysts 
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copper oxides affects the metal-oxygen bonds and enhances reactivity in Mars-Van 

Krevelen type oxidation. Figure 5.6 presents the binding energy shift with the change of 

iron/copper content in fly ashes between fresh and used catalysts. The binding energy of 

copper decreased with the increasing iron content. Shift of electron clouds indicates 

copper is more reduced. Addition of Fe2O3 into the CuO samples results in graduation  

 
Figure 5.6. Binding Energy Shift with Iron/Copper Content in Fe2O3/CuO/SiO2 Fly Ash 

Surrogates 
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that increased affinity of Cu2+ ions to electrons will also accelerate the formation of EPFRs 

and/or increase their stabilization on the surface. Since PCDD/F formation is dependent 

on surface coverage by EPFRs, higher concentration of longer lasting EPFRs results in 

higher PCDD/F yields. No significant changes were observed within the iron binding 

energy range in respect of changing iron content. Since PCDD/F formation is dependent 

on surface coverage by EPFRs, higher concentration of longer lasting EPFRs results in 

higher PCDD/F yields. 

The effect of Fe-Cu electronic interaction in mixed metal oxide catalysts are 

manifested in dibenzo-p-dioxin (DD) (Figure 5.7) and 1-monochlorodibenzo-p-dioxin 

(MCDD) (Figure 5.8).  Both DD and MCDD are formed by similar E-R mechanisms, the 

difference being the reaction site of gas-phase molecule attack, either at the hydroxyl 

group or the chlorine of the adsorbed EPFR.16 As seen in Figure 5.7 and Figure 5.8, the 

single oxide and mixed oxide surrogates primarily form DD and MCDD, respectively.  We 

infer that  as the Fe-Cu interaction affects the reducibility of copper sites, the electron 

density of the associated Cu-adsorbate can be affected, increasing the rate of Cl  

abstraction/substitution by copper sites.  Alternatively, since reaction at the OH site 

results in the stronger adsorbed species, 17 this can lead to oxidation of surface-bound 

DD (mixed oxide systems indicate much higher oxidative potential. cf. Figure 5.1).  

The results indicate the synergy between iron and copper promotes PCDD/F 

formation. Under pyrolytic conditions, synergy of Iron and copper oxides produced almost 

5-fold yields of PCDD/F compared to single CuO or Fe2O3.  Under oxidative conditions, 

iron and copper synergy enhances the oxidation of PCDD/F precursor.  
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Figure 5.7. Dibenzo-p-dioxin Yields from the Pyrolytic Degradation of 2-MCP over 
Fe/Cu Mixed Oxide Catalysts  

 
Figure 5.8. Monochlorodibenzo-p-dioxin Yields from the Pyrolytic Degradation of 2-MCP 
over Fe/Cu mixed Oxide Catalysts 
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5.3 Content and Morphology of Fe2O3 in PCDD/F Formation 

5.3.1 Content and Morphology of Fe2O3 on EFPRs and PCDD/F Formation 

As one of the highest concentration transition metals in fly ash, the effect of iron 

(III) on the PCDD/F formation has been extensively studied both in de novo pathway 18-21 

and in precursor pathway. 10, 22 Depending on the MSWI facilities and sampling time, the 

content of iron oxide in fly ashes is from 0.85-5.02 %. 23 From Fe2O3 and CuO mixed 

metal oxide fly ash study, we know that iron contributed to PCDD/F yields. In order to 

further understand the relationship between physical properties of iron oxide and its 

catalytic activities in PCDD/F formation, we prepared 1%, 2.5% and 4% (wt) of iron oxide 

fly ash surrogates and compared the results with that of typical 5% iron oxide model fly 

ash.  

Figure 5.9 and Figure 5.10 present the catalytic degradation of 2-MCP over Fe2O3 

fly ash surrogates under pyrolysis and oxidation conditions, respectively. Degradation of 

2-MCP is lower with decreasing amount of iron, particularly in pyrolysis conditions. Under 

oxidation conditions, more than 90% of 2-MCP has been destructed at 250 °C on four fly 

ash surrogates, almost none of 2-MCP is left at 350 °C. Pyrolytic conditions result in a 

significant surface oxygen deficit, due to Mars-Van Krevelen mechanism. At 200 °C, 5% 

Fe2O3 decomposed 90% of 2-MCP while 1% to 4% Fe2O3 degraded 70% to 80% of 2-

MCP. Above 300 °C, 2-MCP degraded similarly on all fly ash surrogates.  

Although 5% Fe2O3 destroyed 2-MCP at the initial temperature we studied, under 

pyrolysis conditions, total PCDD/F yield increased with the content of iron oxide in the 

model fly ash (Figure 5.11). The typical maximum formation window for dioxin is between 

280-350°C. This is also true in our case for pyrolytic conditions. However, total PCDD/F  
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Figure 5.10. Catalytic Degradation of 2-MCP over 
Fe2O3 Catalysts under Oxidation Conditions 

Figure 5.9. Catalytic Degradation of 2-MCP over 
Fe2O3 Catalysts under Pyrolysis Conditions 
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yield did not change too much between 2.5% and 4% Fe2O3, when Fe2O3 increased from 

4% to 5%, total PCDD/F yield doubled from 0.45% to 0.9%. One interesting phenomenon 

is that under oxidation, 5% Fe2O3 produced approximately the same amount of PCDD/Fs 

as that under pyrolysis during the entire temperature range (Figure 5.12). But lower than 

5% Fe2O3 of fly ashes produced neglectable amount of PCDD/Fs compared to which 

under pyrolysis.  We can anticipate that 5% is a critical point for the yield of PCDD/Fs in 

terms of the Fe2O3 content in the fly ashes.         

We have previously demonstrated that 2-MCP interacts with the surfaces of metal 

oxides through a chemisorption mechanism. 16 Once chemisorbed to the surface, the 

adsorbed species can undergo multiple transformations to form EPFRs, which are the 

intermediates of dioxins and other products. The results of EPFRs concentration for 

different amount of iron oxide in the fly ash surrogates are presented in Figure 5.13. The 

EPFRs concentration increases quadratically as a function of the amount of iron oxide 

following the dependence y = 2*1016 x2 - 6*1016 x + 1*1017 with R2 of 0.9969. According to 

the surface theory of dioxins formation, this indicates the potential for increasing yield of 

dioxins with increasing Fe2O3 content: condensation of radicals to PCDD/Fs is dependent 

on the concentration of surface bound species. Indeed, PCDD/F yield follows the same 

trend as EPFRs (Figure 5.13) in respect to Fe2O3 content. The correlation between the 

concentration of EPFRs and the average integrated PCDD/F yield is presented in Figure 

5.14. It follows a linear correlation y = -0.02+1.4*10-18 x with adjusted R2 = 0.915. This 

correlation strongly confirms the validity of the surface radicals being the precursors in 

the dioxins formation mechanism. 
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Figure 5.11. Total PCDD/F Yields from the Pyrolytic Degradation of 2-MCP over Iron 
Oxide Fly Ash Surrogates

 
Figure 5.12. Total PCDD/F Yields from the Oxidation Degradation of 2-MCP over Iron 
Oxide Fly Ash Surrogates 
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Figure 5.13. EPFRs Concentration and Average Integrated PCDD/F Yield for Different 
Amount of Iron Oxide in Fly Ash Surrogates 
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Figure 5.14. Correlation between EPFRs Concentration and Average Integrated Yield of 
PCDD/F  
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As is known, the particle size, morphology, oxidation state, and chemical/physical 

environment are strongly related to their properties and catalytic activities. 24 We can 

anticipate that changing the concentration of metal in fly ashes will affect the metal/metal 

oxide cluster size and its activities. In order to understand the composition of iron oxide 

fly ash and its relationship with size, morphological, structural properties, the fly ash 

surrogates were investigated by using transmission electron microscopy and X-ray 

diffraction. High resolution TEM images and diffraction patterns of different Fe2O3 content 

fly ash surrogates are depicted in Figure 4.49. Determined from TEM images, the size of 

the single Fe2O3 nanoclusters ranges from ~3-10 nm. With the amount of iron increasing 

in the model fly ash, the average size of Fe2O3 nanoparticles is increasing, as shown in 

Figure 5.15. Based on TEM images and diffraction pattern, larger nanoparticle clusters  

 
Figure 5.15. Average Fe2O3 nanoparticle Size for different Content of Fe2O3 Fly Ash 
Surrogates 
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and more crystals are easily formed on the 5% Fe2O3. XRD spectra also confirmed that 

1% Fe2O3 model fly ash is amorphous and does not contain -Fe2O3 crystals, with the 

increasing content of iron, a lot more -Fe2O3 crystals formed within the amorphous 

phase of silica. 

5.3.2 Competition between 4-MCDF and DF Formation Reactions 

From previous studies of the Fe2O3 mediated formation of PCDD/Fs from 2-MCP, 

we indicated PCDD/F formation mechanism. Specifically, chlorinated phenols chemisorb 

to metal oxide or hydroxide surface sites to form a phenoxy-type, environmentally 

persistent free radicals (EPFRs). These surface-associated EPFRs can react with each 

other to form PCDD/Fs and other products. Two pathways of chemisorption have been 

identified for 2-MCP (cf. Scheme 5.1): (1) elimination of H2O to form 2-chlorophenoxy 

radical (II), which can proceed to form 4,6-DCDF; (2) elimination of both H2O and HCl to 

form the bidentate species (V), which could produce phenoxy radicals that forms DF. 

Surface-medicated formation of 4,6-DCDF, DD, MCDD 16 and DF10 have been 

described and Langmuir-Hinshelwood mechanism is proposed for the formation reactions 

of 4,6-DCDF and DF, i.e., both reacting species are adsorbed on the surface. 4,6-DCDF 

is formed directly from condensation of 2-chlorophenoxy radical 16 at lower temperatures. 

DF is formed through the bidentate intermediate V depicted in Scheme 5.1 leading to the 

formation of phenoxy radical. Phenoxy radical, in turn, converts to keto mesomer; and 

two of the surface-bound mesomers react to form DF at higher temperature range. 
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Scheme 5.1.  EPFRs Formation Mechanisms (adapted from 10) 

Our data also indicate the formation of 4-MCDF over lower content iron samples, 

within the maximum yield at 300-450 °C; but 4-MCDF was not observed over 5% Fe2O3 

fly ash (Figure 5.16).  On the contrary, DF was only detected over 5% Fe2O3/silica surface 

within the maximum yield at 450-500 °C. The phenomenon implies different mechanism 

of formation of PCDFs over low iron content of fly ashes. 
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Figure 5.16. 4-MCDF Yields from the Pyrolytic Degradation of 2-MCP over Fe2O3 
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species seems to be hindered. This may result from lower concentration of sites capable 

of simultaneous binding of two carbons.  Since the iron oxide cluster size decreases with 

lowing the iron content, a geometric or electronic effect can contribute to those limitations. 

As a result, it is more likely that smaller concentration of iron resulting phenoxy species 
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to 4-MCDF, as depicted in Scheme 5.2 (reaction between species VII and II). Thus, the 
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different Fe2O3 fly ash surrogates is in table 5.1.   
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Scheme 5.2. Surface-Mediated Formation of 4-MCDF  

 

 
Figure 5.17. 4,6-DCDF Yields from the Pyrolytic Degradation of 2-MCP over Fe2O3 
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Table 5.1.  Summary of PCDF Congener Yield Over Different Fly Ash Surrogates 

Product Maximum Yield and 

Temperature 

% (w/w) of Fe2O3 in  

Fly Ash Surrogates 

Surface Radical 

4,6-DCDF 

0.07% at 300 °C 1% 

 

0.22% at 250 °C 2.5% 

0.26% at 250 °C 4% 

0.32% at 300 °C 5% 

4-MCDF 

0.12% at 400 °C 1% 

 

0.14% at 300 °C 2.5% 

0.10% at 300 °C 4% 

0 5% 

DF 

0.05% at 550 °C 1% 

 

0.03% at 550 °C 2.5% 

0.05% at 550 °C 4% 

0.40% at 500 °C 5% 
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5.3.3 PCDDs vs PCDFs 

A closer look at the total PCDD and PCDF yields as a function of iron oxide content 

in fly ash surrogates indicates interesting differences in reactivities. Figure 5.18 presents 

the average integrated yield of PCDDs and PCDFs over entire temperature range (the 

average integrated yield is defined as a sum of all products in a category divided by the 

number of measurement points). PCDDs include DD, 1-MCDD, DCDD, TriCDD and 

PCDFs include DF, 4-MCDF, 4,6-DCDF. A clear trend is that with the increasing content 

of iron, both the yields of PCDDs and PCDFs are increasing accordingly, which is 

consistent with the EPFRs formation. Over all the iron oxide fly ash surrogates, PCDFs’ 

formation is dominant over PCDDs because the chemisorption mechanisms over copper 

and iron oxides surfaces are different (rf. Scheme 5.1). Bidentate species could only form 

on iron oxide surface as the intermediate of DF. 

 

Figure 5.18. Average Integrated Yield of PCDDs and PCDFs Depending on Fe2O3 

Content under Pyrolysis 
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The ratio of PCDD/PCDF is increasing with the increasing content of Fe2O3 in the 

model fly ash, shown in Figure 5.19. And this ratio is even increasing more dramatically 

on the mixed metal oxides with the increasing content of CuO in the fly ash surrogates. 

The yield of MCDD, DCDD, TriCDD, DD follow an increasing trend with adding more iron 

oxide in the model fly ash (DD was only found on 5% Fe2O3/silica, which indicates the 

surface catalyzed chlorination reactions preferably happen on low content of iron). See 

Figure 5.20 for the 1-MCDD yields from the pyrolytic degradation of 2-MCP over Fe2O3. 

For the PCDFs, although 4,6-DCDF yield increased with content of iron; for 4-MCDF, less 

difference is found when iron oxide is less than 5% and none of 4-MCDF was formed on 

5% Fe2O3.  

 

Figure 5.19. PCDF/PCDD Ratio for Different Fe2O3 Content in Fly Ashes (under 
Pyrolysis) 
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Figure 5.20. 1-MCDD Yields from the Pyrolytic Degradation of 2-MCP over Fe2O3 

 Conclusions can be drawn that in the fly ashes of the incinerator, not only the 

content, but also the cluster size of iron oxide nanoparticle will affect the formation of the 

surface associated EPFRs. These EPFRs further react either through Eley-Rideal 

mechanism or Langmuir-Hinshelwood mechanism to form different PCDD/F congeners.  

Generally, higher content of iron will form larger nanoparticle clusters and more crystals, 

which contributes producing higher yields of PCDD/F.  
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CHAPTER 6 CONCLUSIONS 

Transition metal-mediated PCDD/F formation reactions occurring in the cool zone 

of the combustors account for most of the PCDD/F emission in combustion systems. Both 

copper and iron are present in fly ashes and considered the most active metals in 

catalyzing PCDD/F formation. Previous research has focused on the effect of single metal 

oxide or chloride on the formation of PCDD/F and there are rarely studies on the multi-

metal effect and a quantitative link between the content of metal in the fly ash and PCDD/F 

yields. 

We studied the cooperative effect between iron and copper on the PCDD/F 

formation. The results indicate the synergy between iron and copper promotes PCDD/F 

formation. Under pyrolytic conditions, synergy of iron and copper oxides produced almost 

5-fold yields of PCDD/F compared to single CuO or Fe2O3.  Under oxidative conditions, 

iron and copper synergy enhances the oxidation of PCDD/F precursor. After comparing 

PCDD/F congener profiles and yields with that of single CuO or Fe2O3, we found that in 

the iron and copper mixed oxide system, CuO contributes to the formation of PCDD/F 

congener profile while Fe2O3 is affecting the PCDD/F yields.  

The effect of iron content and Fe2O3 cluster size on the PCDD/F formation was 

investigated. Under pyrolytic conditions, EPFRs concentration increased with the 

increasing of the iron content in the fly ash surrogates. Total PCDD/F yield followed the 

same trend. The catalytic activity of Fe2O3 fly ash surrogates relates to not only the 

content, but also the cluster size of Fe2O3. 1% Fe2O3 sample is amorphous containing 

smaller nanoclusters and 5% Fe2O3 contains a larger number of crystals with larger 

nanoclusters. Fe2O3 content and morphology determines PCDF congeners’ distribution.  
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In the waste incineration, single metal oxide does affects the PCDD/F formation 

and yields, however, interaction and collective effects between transition metals, 

particularly between copper and iron contribute to the PCDD/F formation overall. 

Sulfur has been applied to MSWI as an effective inhibitor of dioxin formation, 

however, the mechanism on how sulfur affects the redox potential of iron or copper and 

poison their catalytic activity, thus the formation of EPFRs for PCDD/F has not been fully 

understood. Our future work is to introduce sulfur by impregnating the sulfur compound 

into fly ash surrogates or introducing gaseous SO2 to study the sulfur’s inhibitive effect on 

the formation of PCDD/Fs. 
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