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C lass n u m bers and u n its  o f  num ber fie ld s E w ith  e lem en ta ry  ab elian  K ^ O e ).

by Ru th  I. Berger

A b stra ct

This is a contribution to  the research th a t is going on in Algebraic Number 

Theory, relating classical questions on class num bers and units of a  num ber field F 

to  the structu re  of (O f ) > the Milnor K-group K 2 of the ring of integers.

We are interested in num ber fields F where the 2-prim ary subgroup of O f )  

is elem entary abelian of rank  r 1(F),  the num ber of real embeddings of F.

In [C-jHi ] it is proven th a t the  2-primary subgroup of / ^ ( O f ) ° f  the above type 

if and only if the num ber field has the following properties:

a) the num ber field has exactly one dyadic prim e,

b) its S-dass num ber is odd and

c.) it contains S-units with independent signs.

Here, the set S consists of all dyadic and all infinite prim es of the num ber field.

The purpose of this paper is to  examine the existence of num ber fields of the 

above type and to exam ine their properties w ith respect to  the parity  of their 

class num ber and the containm ent of units w ith independent signs. We will mostly 

restric t our a tten tion  to  num ber fields th a t are to tally  real. For any given totally 

real num ber field F  th a t satisfies the above properties we will prove th a t there exist 

infinitely m any real quadratic extensions th a t also have the above properties. The 

main theorem  will be a classification of these quadratic extensions of F  into families 

th a t all share the same properties with respect to  the parity  of their class number 

and the containm ent of units with independent signs.



I n t r o d u c t io n

Let us first rewiew the objects th a t classical N um ber Theory deals w ith.

T he field of rational num bers Q contains the ring of integers TL. The integers contain 

two kinds of elements th a t stand  out: the units and the prim e elements.

The units are defined as the  integers u  w ith the following property: there exists

an integer x  such th a t ux — 1. The elements of TL th a t satisfy this property  are 1 

and —1. The prim e elements of TL are defined as the integers p  w ith the  following 

property: if a, b are integers such th a t ab = p  then  either a or b m ust equal p, up

to unit factors ±1 . The units and the prim e elements are the “building blocks” for 

all integers. Up to  factors of ± 1 , every integer can be expressed u n iq u e ly  as a 

product of powers of prim e numbers.

Instead of considering the field (Q, one can look more generally a t a  n u m b e r  

fie ld . These fields are defined as the finite algebraic extensions of Q. This means 

th a t a finite num ber of roots of polynomials w ith coefficients in <Q are adjoined to 

Q. A num ber field F  shares many of the properties of Q. F  also contains w hat are 

called integers. They are defined as the integral closure of the rational integers, 

i.e., the roots of monic polynomials whose coefficients are in TL. The integers of a 

num ber field F  are denoted by Of - Among the integers there are elements called 

units. As before, they are defined as the integers u  w ith the  property  th a t there 

exists an integer x  such th a t ux  =  1. Note th a t x  m ust then  be a  un it, too. The 

units form a  m ultiplicative group. It is denoted by Op.

In general, there are no integers th a t behave like the prim e elements(num bers) 

of TL] there are no “smallest factors” of which all integers can be u n iq u e ly  ex­

pressed as a product. Therefore the idea of integers and prim e elements needs to 

be generalized to  objects th a t reflect this property  of being m inim al factors. This is 

done by introducing the concept of ideals. They are subsets of the ring of integers 

th a t are obtained by taking a  set of integers, called the generators of the ideal, and 

taking all possible finite sums of products of these elements w ith integers. If the 

generators are taken to  be arb itra ry  field elements, the resulting ideal is called a 

fractional ideal. The set of all fractional ideals of a  num ber field form  a group. 

Those ideals th a t are generated by only one element are called principal ideals.



A prim e ideal is defined to  be an ideal w ith the following property: if the product

of two integers is contained in the ideal, then a t least one of the integers m ust be 

contained in the  ideal. Note th a t this mimics the property  of a prim e element in TL: 

if the product of two integers equals a prim e element, then  one of the  integers m ust 

equal the prim e element (up to units). The ring of integers of a num ber field is an 

example of a Dedekind ring. In such a ring every ideal can be factored uniquely as 

a  product of prim e ideals.

In Q we also have ideals. Here, every ideal is generated by one integer. The 

prim e ideals are exactly those th a t are generated by a prim e element. This explain 

why prim e ideals can be considered a generalization of prim e elements.

If all ideals of the ring of integers of a num ber field happen to  be principal, then we 

in fact have unique prim e e le m e n t decomposition.

One defines C(F ) ,  the id e a l c lass  g ro u p  of F  as the quotient I ( F ) / P ( F )  of 

the group of all fractional ideals of F  by the subgroup of principal ideals of F. For 

any num ber field F  the ideal class group is a finite group. The num ber of elements 

in C (F )  is the c lass  n u m b e r  of F , denoted by h(F).  For num ber fields where every 

ideal is principal, like for Q, the class num ber is 1. The num ber fields where this 

occurs, however, form a very small set among all num ber fields. In general it is very 

difficult to  determ ine the class num ber of a given num ber field or even to  determ ine 

w hether the class num ber is 1 or not. In m any cases one is therefore content with 

ju s t determ ining whether the  class num ber is even or odd.

The prim e ideals of a num ber field are often called the f in i te  p r im e s  of the 

num ber field. As this no tation indicates, to  a num ber field there are associated 

objects called infinite prim es. They are defined as the embeddings of the num ber 

field into the complex num bers. Q contains exactly one “infinite prim e” , since there 

is exactly one way of em bedding <Q into®. In fact, Q already embeds into the real 

num bers R. In general, a num ber field F  embeds into®  in different ways. Some 

em beddings can take F into R, they are called real em beddings of F. A num ber field 

is called to tally  real if all of its embeddings are real em beddings. Q is an example 

of a to tally  real num ber field.

Let rj(F ) denote the num ber of real em beddings of a num ber field F . For every 

x  G F  there are rj(F ) real num bers associated to  ®, nam ely the images of x under
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the real embeddings of F. Some of these images are positive, others are negative. 

They are 0 iff x — 0. From the independence of valuations it follows th a t for any 

given r^ F j- tu p e l of ±1 there is an integer x  £ F  whose images under the rj(F ) 

em beddings have exactly these signs. For some num ber fields it is even possible 

to  find a set of u n i ts  of F  whose images under the ri(F ) embeddings have any 

prescribed signs. N um ber fields w ith this property  are said to contain u n its  w ith  

in d e p e n d e n t  s ig n s .

The concept of units and  the ideal class group of a num ber field F  can be 

generalized in the following way:

Note th a t a principal ideal th a t is generated by a unit m ust be the whole ring, since 

it contains 1. A unit therefore has no prim e divisors. If we let ordp(x)  denote the 

order to  which the finite prim e P  appears in the prim e ideal decom position of the 

principal ideal generated by x , then  the units of F  can be expressed as:

Op =  {* 6 F  | ordp(x)  =  0 for all finite prim es P of F}

We obtain  a bigger group by lifting some of the conditions:

Let S be a set consisting of a  finite num ber of primes of F  (S is usually required to 

contain all infinite primes of F), then the group of S -u n its  of F  is defined as:

Up — {x  E F  | ordp(x)  = 0 for all finite prim es P , P ^  S}

We say th a t F contains S -u n its  w ith  in d e p e n d e n t  s ig n s  if there are S-units of

F whose images under the rx(F) embeddings have any prescribed signs.

If we take C (F ) , the ideal class group of F , and factor out the subgroup generated 

by finite prim es th a t are contained in S we obtain  C S(F),  the S - id e a l c lass  g ro u p  

of F. The num ber of elements in C S( F ) is the S -c lass  n u m b e r  of F, h s (F).  Note 

th a t h s (F)  is a divisor of h(F).

In the following, S will s tand  for a special collection of primes: S will denote the

set containing all d y a d ic  and all infinite primes of F.

Dyadic prim es of F are defined to  be the prim e ideals of F  th a t contain the rational

prim e num ber 2. Every other prim e ideal of F  contains exactly one odd prim e 

num ber, they will be refered to as o d d  p r im e s  or n o n d y a d ic  p r im e s . Note th a t
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a  num ber field can contain several dyadic prim e ideals, unlike Q which has only 

one.

We can now give an overview over the content of this dissertation:

For the choice of S specified above we will examine num ber fields F  w ith the following 

properties: F  has exactly one dyadic prim e, the S-class num ber of F  is odd and F

contains S-units w ith independent signs. These num ber field are of interest because 

they are exactly the num ber fields whose 2-prim ary subgroup of the Milnor K-group 

of the ring of integers of F  is elem entary abelian of smallest possible rank. 

Exam ples of num ber fields th a t have the above property are: Q, Q (\/lO ) and

E  = Q( \ / i o + v T o ) .  An interesting property of E is th a t its class num ber is even, 

bu t its S-class num ber is odd and th a t it does not contain units w ith independent 

signs even though it contains S-units w ith independent signs. An example of such 

a num ber field had not been known before. The m ethods used in section 4 to prove 

th a t E has the claimed properties are ra ther elementary. From the general point of 

view they are unsatisfactory because they do not allow insight in  w h y  this example 

happens to  have these properties. One is also left w ith the question: Are there

other num ber fields th a t also satisfy all of the above properties?

In the second chapter we will therefore go about system atically examining 

num ber fields th a t have exactly one dyadic prim e, odd S-class num ber and th a t 

contain S-units with independent signs. We will restrict our atten tion  to  totally real 

num ber fields. N um ber fields of this type will be said to have p r o p e r ty  (* ). We will 

see th a t for a num ber field F  w ith property (*), there always exist infinitely many 

quadratic extensions E th a t also have property (*). These quadratic extensions E \ F  

all have the property  th a t a t m ost one odd prim e of F  ramifies in E. In fact, there is 

exactly one extension in which no odd prim e of F ramifies, in all the others exactly 

one of the odd prim es of F will ramify.

In the th ird  chapter we give a complete classification of all quadratic extensions 

E w ith property  (*) of a given num ber field F  w ith property (*). This classification 

will be w ith respect to  the parity  of the class num ber of E, whether E contains units 

w ith independent signs and w hether the dyadic prim e of F  ramifies in E. We will 

show th a t all inform ation about w hat type of quadratic extension w ith property (*)
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exists over a given F is already contained in the finite group of square classes of the 

com pletion of F  a t its dyadic prim e.

From  this general consideration we will see th a t there are infinitely m any num ber 

fields th a t have the same properties as (Q(\Ao+\/Io), above.

C hapter 4 illustrates applications. Here we will also see how the special example 

from  section 4 fits in the general picture.



C H A P T E R  1 

A p p roach in g  th e  p rob lem

In  the first chapter we will examine num ber fields of small degrees in search of 

exam ples of num ber fields w ith certain properties. The num ber fields we are in ter­

ested in are those th a t contain exactly one dyadic prim e, have odd S-class num ber 

and th a t contain S-units w ith independent signs. Here S is the set consisting of all 

infinite prim es and all dyadic prim e of the num ber field.

In section 1 we will see how the  interest in these num ber fields arises from K-theory. 

An exam ple of a num ber field th a t has all of the above properties is Q.

One can im pose further conditions on the num ber field by making requirem ents 

on the parity  of its honest class num ber and the existence of honest units with 

independent signs in the num ber field.

Here the term  “honest” is used to emphasize the distinction to “S-” .

We ask: are there num ber fields E th a t have the above properties and furtherm ore:

A) we either have, th a t the class num ber of E is odd or th a t E contains units with 

independent signs, or both?

B) the class num ber of E is even and E does not contain units w ith independent 

signs?

T he answer is yes in all cases.

In section 2 we will see th a t there are in fact infinitely m any quadratic num ber 

fields th a t give rise to  examples for each of the cases covered in A. Unfortunately, 

an exam ple of a num ber field th a t satisfies the conditions in B does not exist among 

num ber fields of degree 2. We therefore need to consider higher degree extensions.

In section 3 we examine a certain type of num ber fields of degree 4: the

biquadratic dicyclic num ber fields. Also among them , there is no example of type 

B.

In section 4 we therefore tu rn  our atten tion  to  another type of num ber fields 

of degree 4: biquadratic cyclic num ber fields. Here we do find an example th a t

satisfies the conditions of B: Q(\/io-i-v^o).

1
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We cannot deal w ith more general examples in this first chapter. F urther examples 

will be given in chapter 4.

1. C o lle c tio n  o f  fa c ts  a b o u t  K 2(Of )

Let R be a  ring, E(R) the group generated by the elem entary m atrices with entries 

in R.

(1 .1 ) D e f in itio n : K 2 {R)  is the kernel of the universal central extension of E(R).

For more details see for exam ple [Mi, page 47]. We can think of K 2(R)  as the 

“nontrivial” relations among elem entary m atrices w ith entries in R.

We will now consider a special type of ring: the ring of integers of a num ber field 

F. It will be denoted by R  =  Of - W hat does K 2{Of ) look like? In [Ga] G arland 

shows th a t A 2(O f)  is a  finite abelian group for any num ber field F. Hence we have

m kp
(1.2) K 2(OF) = l [ ^ / 2 ai x  I J  7L/pbi

i=  1 i = i
p  odd p r i m e s

The order of the second product, the odd part of K 2(Of ) > is known for totally real

abelian num ber fields. M azur and Wiles, [M-W], have proven th a t for those num ber

fields F  the order of the odd p a rt of K 2(Op)  is exactly the odd part of the rational 

integer |u>2 (-E) • Cf( —1)1- This is a special case of the B irc h -T a te  C o n je c tu re  

which suggests th a t for all to tally  real num ber fields

(1.3) # ^ 2( 0 f ) =  M F ) . C f ( - 1 ) |

where ( f  is the Dedekind zeta-function of F and w 2(F)  is the  largest integer N such 

th a t the Galois group of F ( p N) over F  is an elem entary abelian 2-group. Here p N 

denotes the group of N -th roots of unity. By the above rem arks the odd part of 

this conjecture has been confirmed for all totally real abelian num ber fields. Less 

is known about the 2-prim ary subgroup of K 2( O p ) which is therefore of particular 

interest. The 2-prim ary subgroup of K 2(Of ) will be denoted by 2-prim  K 2(Of ) .



3

In [He] H ettling proved th a t the  2-part of the B irch-Tate Conjecture holds for totally 

real num ber fields F  where 2-prim  K 2( O f ) is elem entary abelian of rank r \ ( F) .  Here 

elem entary abelian m eans elem entary abelian 2-group, i.e. all factors are of the form 

TL/2 and ri(F ) denotes the num ber of real embeddings of F.

K olster [Ko] has confirmed the  2-part of the Birch Tate Conjecture more generally 

for all num ber fields F  where 2-prim  K 2(Of ) is elem entary abelian. He also gives 

a criterion for when a num ber field has this property:

(1 .4 ) T h eorem : (K olster)

Let F  be a to tally  real num ber field . The following are equivalent:

a) 2-prim  K 2( O p ) is elem entary abelian

b) No dyadic prim e of F splits in jF(-\/—T) and 

2-part h 5 (F (x /^ I ) )  = 2 -part h s ( F ) • 22~rkcS(FK

. □

N o ta tio n : S is the set consisting of all dyadic and all infinite primes of F. The

S-class group, C S( F ), is defined as the quotient of the class group of F  by the 

subgroup generated by the dyadic prim es of F.

The S-class num ber of F , denoted by h s (F),  is the order of the S-class group of F. 

The 2-rank of an abelian group G is denoted by 2-rkG.

To determ ine the rank of 2-prim  K 2(Op)  we have T ate’s 2-rank formula, see[Ta]:

(1 .5 )  T h eorem : (Tate)

Let r i (F ) denote the num ber of real embeddings of F, g2 {F)  the num ber of 

dyadic prim e ideals of F and C S(F)  the S-class group of F . Then:

2-rk K 2{ 0 f ) = rt(F) +  g2(F)  -  1+2-rk C S( F )

□

Note th a t the  smallest possible value for the 2-rank of K 2( O f ) is r i ( F) .  It occurs 

iff F  has exactly one dyadic prim e (g2 (F)  =  1) and the S-class num ber of F , h s (F),  

is odd.

The sm allest possible order for 2-prim  K 2( O p ) occurs if 2-prim  K 2(Op)  is elemen­

ta ry  abelian and  of smallest rank, which is n (F ) . A criterion for when a  num ber
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field F  has this property  can be found in [C-ffi]:

(1 .6 )  T h e o re m  (Conner, Hurrelbrink)

Let F  be a  num ber field. The following are equivalent:

a) 2-prim  K ^ O f ) is elem entary abelian of rank ri(F)

b) F  adm its an extension E \ F  w ith # i^ 2 (O e ) odd

c) F has exactly one dyadic prim e, the S-class num ber of F  is odd and

F contains S-units with independent signs.(see definition below)

□

Rem ark: This has also been studied by Gras, see [Gr].

We now give the definition of S-units w ith independent signs for the special case 

where S in the set consisting of all dyadic and all infinite prim es of F. To obtain the 

definition for the general case where S is any set of prim es of F , we replace dyadic 

by primes in S  in the following.

(1 .7 )  D e f in it io n : The elements of Up {* £ F \ordp(x )  =  0 for all nondyadic

finite prim es of F }  are the S -u n its  of F.

F  contains S -u n its  w ith  in d e p e n d e n t  s ig n s  iff <p : U p / ( U p )2 —» {Z5/2}ri*F) is

surjective. This m ap is defined by m apping an S-unit (mod squares) to the signs of

its images under the r 1(F)  real embeddings of F.

Remark: To understand  the significance of the term  “S-units w ith independent

signs” , note th a t it is a generalization of the term  “units w ith independent signs” . 

The units of F  are the elements of Op  {® £ F \ordp(x)  =  0 for all finite primes 

P of F}.

(1 .7 ’) D e f in it io n : F contains u n i ts  w ith  in d e p e n d e n t  s ig n s  iff

tp : O p / ( O p ) 2 —> {2Z/2}r i(F ) is surjective. This m ap is defined by m apping a unit 

(m od squares) to  the signs of its images under the r \ ( F ) real embeddings of F.

Rem ark: A real quadratic num ber fields contains units w ith independent signs iff

the norm  of the fundam ental unit is -1. More generally, a  to tally  real num ber field 

contains units w ith independent signs iff every totally  positive unit is a  square.
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Note th a t for to tally  im aginary num ber fields F: rj(F ) =  0, hence ip is of course 

surjective. Therefore an im aginary num ber field always contains units w ith inde­

pendent signs and also S-units w ith independent signs.

The following is an im m ediate consequence of (1.6.b):

(1 .8 )  C o ro lla ry : If a num ber field satisfies one (and therefore all) of the

properties in (1.6), then  so does every subfield. □

Recall the classical question: W hich num ber fields F  can be em bedded in a num ber 

field E w ith odd class num ber h(E)? Since K o ( O f ) = C (F )  X TL this question can 

be reform ulated as: W hich num ber fields F  can be em bedded in a num ber field E 

where the  torsion p a rt of K 0(O e)  is odd? Similarly one m ight ask: W hich num ber 

fields F  can be em bedded in a  num ber field E w ith # K 2 (O e)  odd? Note th a t (1.6) 

answers this “em bedding problem  for jKV’.

Of course we m ust ask: Are there any num ber fields th a t satisfy the equivalent

properties of (1.6)? An exam ple of such a num ber field is Q. For Q we already 

have th a t the (honest) class num ber is odd and th a t Q contains (honest) units with 

independent signs. Here the te rm  honest is used as opposed to  “S-...” to  emphasize 

the distinction.

Note th a t the S-class num ber is a factor of the honest class num ber. Hence, if a 

num ber field has odd honest class num ber then  it also has odd S-class num ber. We 

also see th a t if a num ber field contains units w ith independent signs then it also 

contains S-units w ith independent signs since the honest units are contained in the 

set of S-units.

This gives rise to  the following question: Is the “S-” in (1.6.c) necessary? T hat is:

(1 .9 )  Q u e s tio n : Are there num ber fields F  th a t satisfy the properties of (1.6) 

and  th a t furtherm ore satisfy:

i) F  has o d d  class num ber and c o n ta in s  units w ith independent signs?

ii) F  has ev e n  class num ber and does n o t  c o n ta in  units w ith independent signs?

iii) F  has o d d  class num ber and does n o t c o n ta in  units w ith independent signs?

iv) F  has ev e n  class num ber and  c o n ta in s  units w ith independent signs?
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The answer will be yes in all cases. In section 2 we will see th a t there exist many 

num ber fields th a t satisfy the  properties of (1.9) i,iii and  iv. Examples of num ber 

fields th a t satisfy the properties in  (1.9.ii) are more difficult to  obtain. We will spend 

the rem ainder of this chapter searching for an exam ple of this type. In section 4 we 

will ob tain  one example of such a num ber field. More examples will be given in the 

end.

Consider the following observation from [Hu]:

(1 .1 0 ) F a c t: (Conner):

Let F  be a num ber field in which (2) is at m ost tam ely ramified. 

T hen the following are equivalent:

a) 2 -prim/'£T2 (0 f )  is elem entary abelian of rank ri(F)

b) g2 {F)  =  1 , h (F ) is odd and F contains units w ith indep. signs

This tells us th a t m any num ber fields have the properties required in  (1.9.i). It also 

tells us th a t in order to  find num ber fields th a t are examples for the other cases we 

need to  consider num ber fields where (2) is wildly ramified.

Note th a t wild ram ification is necessary bu t n o t  sufficient to  obtain  examples for

(9.1) ii, iii and iv. Even in  the case of wild ram ification we can obtain  a num ber 

field of the type (1.9.i), consider F  =  Q (\/2 ): Here we have: 2 • Of  = ( \/2 )2, so F

has exactly one dyadic prim e. The elements ± 1 , 1 +  y/2 and —1 — \p i  are a set of 

units w ith independent signs and h (F )= l ,  which is odd.

We now wish to  find num ber fields F  for which g2 (F)  = 1 , h s (F)  is odd, F contains 

S-units w ith independent signs B U T  h(F ) is even a n d /o r  F  does not contain units 

w ith independent signs. By (1.10) such examples can not be found among num ber 

fields of odd degree for the  following reason:

If we want these fields to  have only one dyadic prim e, call it D, then  2 • Of  =  D c 

for some positive integer e. Since e divides the degree of F, it is odd. By definition 

this m eans th a t (2) is at m ost tam ely ramified.

We will therefore now exam ine num ber fields of even degree sta rting  w ith quadratic 

num ber fields .
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2. Q u ad ratic  num ber fields

Among quadratic num ber fields we will find many where 2 -prim /i 2(0 ;r) is elemen­

tary  abelian of rank ri(F ). We will not, however, find any th a t satisfy the condition 

th a t they have even class num ber and  th a t they do not contain units with inde­

pendent signs.

(2 .1 )  T h eorem : The quadratic num ber fields F  where 2 -p rim /l2 (0 F ) is elemen­

ta ry  abelian of rank rj(F ) all have the property  th a t h (F ), the class num ber of F , is 

odd or th a t F  contains units w ith independent signs. For each of these cases there 

are in fact an infinite num ber of examples.

To prove (2.1) we will now collect some well known facts about quadratic num ­

ber fields. From these a classification of all quadratic num ber fields F  where 2- 

p r im /l^ O p )  is elem entary abelian of rank r^ F )  will follow immediately. The 

classification will separate th e  fields according to  the  parity  of h (F ) and w hether or 

not F  contains units w ith independent signs.

The proofs of the following facts can be found, for example, in [C-H2]

Let F = Q (V d) , d £ TL squarefree, then the following are equivalent

a) 2 -prim .ff2 ( 0 F) is elem entary abelian of rank ri(F )

b) d =  2, p, 2p, —1, —2, —p, —2p 

where p is a prim e w ith p =  ± 3  mod 8

□

Let F = Q (\/d )  , d £ TL squarefree, then the  following are equivalent:

a) The class num ber h(F ) is odd

b) d =  —1, ± 2 ,p , where p is any odd prim e and 

d =  —p ,2 p ,p ip 2, for prim es p ,p i ,p 2 =  3 m od 4.

□

W hen determ ining w hether a quadratic num ber field F  has units w ith independent 

signs, recall th a t following the definition of units w ith independent signs in (1.7) 

we explained th a t an totally  im aginary num ber field F  always contains units with

(2 .2 )  Fact:

(2 .3 )  Fact:



independent signs. In particu lar: any im aginary quadratic num ber field contains 

units w ith independent signs. For real quadratic num ber fields we have the following 

criterion:

(2 .4 ) L e m m a : Let F be a  real quadratic num ber field and let e denote a funda­

m ental unit of F , then:

F  contains units w ith independent signs 4=> N f \q {£) =  —1

Proof: The set of units of F  is Op =  { ± e n |n € TL}. If N ( e ) = + 1 ,

then N ( ± e n) =  iV (± l) • N ( e ) n — +1 , i.e., the norm  of every un it is +1 . Since 

the norm  is the product of the  two conjugates, this shows th a t for every unit both  

it and its conjugate have the same sign. In this case F  can not contain units with 

independent signs.

Conversely: if N(e) =  —1, then ±1 and ±£ are a set of units w ith independent

signs. Q

The following can be found, for exam ple, in [ C - ^ ] :  18.4, 19.9 and chapter 22.

(2 .5 ) F a c t: For the real quadratic fields F  =  Q(Vd) from (2.2) we have:

if d = 2  then N (e)=  N(1 +  y/2) = - 1

if d = p  w ith p = + 3  m od 8 then N(e) =  +1

if d = p  w ith p =  —3 m od 8 then N(e) =  —1

if d= 2 p  w ith p = + 3  m od 8 then N(e) =  +1

if d= 2 p  w ith p =  —3 m od 8 then N(e) =  —1

□

This gives a complete classification of all quadratic num ber fields F =  Q( \/d)  w ith 

the property  th a t K 2(Of ) is elem entary abelian of rank rj(F ):
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h(F ) odd h(F ) even

F contains 
units with 
indep. signs

d = 2 ,—1, —2
d = —p w i t h  p = + 3  m o d  8 

d = + p  w i t h  p = —3 m o d  8

d ~ —p w i t h  p = —3 m o d  8 

d=4-2p w i t h p = —3 m o d  8

d =  — 2p w i t h  p = ± 3  m o d  8

F does not
contain
u.w.i.s.

d = + p  w i t h  p = + 3  m o d  8 

d = + 2 p  w i t h  p = + 3  m o d  8 NONE!

Rem ark: O ther examples o f  num ber fields F  where K 2 ( Of )  is elem entary abelian 

o f  rank r j ( F )  are:

F  =  Q( \/6 ) and Q(£2fc) w ith k > 2.

They can be found in [Hu], 4.2 and 13.11. All of these num ber fields have odd class 

num bers and contain units w ith independent signs.

We have now seen an infinite num ber of examples of num ber fields for each of the 

types we asked for in (1.9i). Missing so far is an example of the type (1.9ii), i.e a 

num ber field F  where 2 ^ 0 1 1 1 /^ 2  (O f)  is elem entary abelian of rank ri(F ) w ith even 

classnum ber th a t does not contain units w ith independent signs! They do not exist 

among quadratic num ber fields. In view of (1.10) the next step is to  look for them  

among num ber fields of degree 4.

3 . B iq u a d ra t ic  d icy c lic  n u m b e r  fie ld s

In this section we will show th a t among biquadratic dicyclic num ber fields there 

does not exist an example of the type described in (1.9ii). F irst we recall a criterion 

on how to distinguish among the different types of num ber fields of degree 4. It can 

be found, for exam ple, in [C-Hz].

(3 .1 ) F a c t: Let F = Q (\/d )  w ith d £ TL squarefree, be a quadratic num ber field

and let E = F (^ /o :) =  Q (\/d , y/o") where <r G F* bu t a  (F *)2. The norm al closure



of E over Q is given by Q (\/d , \ J N e \q {(t )). We have:
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a) -E|Q is b iquadratic dicyclic 4=4- JVe |q (<t) £ (Q2

b) i£|Q  is b iquadratic cyclic d ■ Np\q{a)  G (Q2

c) E |Q is non-abelian b iq u a d ra t ic ^ ^  N f \q (<t ) ^  <Q2 and d • N f \q (<t ) $  Q2

□

Rem arks: In case c) “non-abelian b iquadratic” m eans th a t E is a num ber field of

degree 4, bu t the norm al closure of E is of degree 8. The Galois group of this norm al 

closure over Q is non-abelian. It is the dihedral group of order 8.

In case a) E has exactly 3 quadratic subfields. This follows from  the fact th a t the 

Galois group Gal(J5|Q) is 2Z/2 x 2L/2, which has exactly three nontrivial subgroups. 

In case b) E has exactly one quadratic subfield. This follows from  the fact th a t the 

Galois group G al(E |Q ) is 2Z/4, which has exactly one nontrivial subgroup.

(3 .2 )  T h e o re m : All b iquadratic dicyclic num ber fields th a t satisfy

the conditions in (1.6) have odd class num ber.

Proof: By (3.1) all b iquadratic dicyclic num ber fields can be expressed in the form

E = Q (v /d7, y/di)  w ith di 7  ̂ d2 G TL squarefree. W hich of these are possible candi­

dates for an example of the so far missing type (1.9ii)?

Note th a t biquadratic dicyclic num ber fields will always be either to tally  real or 

to tally  im aginary. Since to tally  im aginary num ber fields always contain units with 

independent signs, we only need to  consider to tally  real num ber fields if we want 

2-prim  K 2(O e)  to  be elem entary abelian of rank r^E ) .  By (1.6b) we know tha t 

this property  is hereditary. Hence we can restric t our a tten tion  to  those num ber 

fields whose quadratic subfields F  all have the property  th a t K 2 ( Of )  is elem entary 

abelian of rank r^ F )  =  2. These were listed in (2.2), bu t by the previous step we 

need only the real fields. Therefore we can restric t our a tten tion  to  those fields E 

whose quadratic subfields F are all of the form F = Q (\/d )  , w ith d = 2, p, 2p  where 

p is a prim e and p =  ± 3  m od 8.

Let E = Q (y/d\ ,  y/d-z), the 3 quadratic  subfields are:

Q (\A ?0 Q (\/d 2 ) and Q (v/d id2)



11

Hence we need not only dj and d2 bu t also d id 2, m odulo squares, to  be contained 

in {2,p, 2p | p  =  ±3m od8}. This shows th a t a t least one of d j, d2 m ust equal 2, the 

other can be either p or 2p  where p  =  ± 3  mod 8. The resulting fields are Q( \/2 , \/p ) 

and Q (\/2 , \/2p ), which are identical.

How far are we in the proof of (3.2)? We have seen th a t the only biquadratic 

dicyclic num ber fields th a t m ig h t satisfy the conditions of (1.6) and th a t might not 

contain units w ith independent signs are those th a t are of the form E = Q (\/2 , y/p) 

w ith p =  ± 3  m od 8. W hether or not they actually do have all these properties 

is irrelevant a t the m om ent since the next two propositions s ta te  th a t all of these 

fields have o d d  class num ber h(E). They can therefore n o t  provide an example of 

the type required in (1.9ii)! □

(3 .3 ) P r o p o s i t io n :  Let E=Q (-\/2, yjp) w ith p =  —3 mod 8 , then h(E ) is odd.

Proof: Since the Legendre symbol ( | )  =  —1 for p =  —3 mod 8 we can apply

[C-jH ]̂? theorem  21.1. I t tells us th a t h(E) is odd. □

(3 .4 )  P ro p o s i t io n :  Let E = Q (\/2 , y/p) w ith p = + 3  m od 8, then h(E) is odd.

Proof: apply [C-H 2\, theorem  21.2. □

These two propositions conclude the proof of theorem  (3.2). It would, however, be

nice to know if these possible candidates for fields th a t m ig h t satisfy the conditions 

in (1.6) actually do have these properties. It does not seem possible to  check this 

w ith elem entary m ethods. We will therefore not pursue this question a t the moment. 

Instead we refer to  section 14. There we will see th a t num ber fields of the type 

E = Q (a /2 , y/p) w ith p =  ±3  m od 8 in fact do satisfy the  conditions of (1.6).

4. B iq u a d ra t ic  cyclic  n u m b e r  fie ld s

In this section we will prove th a t among biquadratic cyclic num ber fields there is
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at least one num ber field w ith the properties required in (1.9ii). The m ethods used 

here are elementary. W hen we need facts th a t cannot be seen very easily we will 

refer to  Hasse [Ha], where he com putes m any examples. Later, in section 15, we will 

again prove th a t the example from this section satisfies all requirem ents of (1.9ii). 

There we will see tha t it is in  fact a m em ber of an infinite set of examples.

(4 .1 ) T h eorem : Let E=Q(\Ao+v"io), then

E is b iquadratic cyclic,

E has exactly one dyadic prim e, 

the S-class num ber of E is odd,

E contains S-units w ith independent signs 

but furtherm ore the class num ber of E is even

and E does n ot contain units w ith independent signs

The proof of (4.1) will follow from (4.3),(4.10),(4.11),(4.9) and (4.8a) below.

To get a be tte r idea about the structu re  of E, note th a t E=<Q(\Ao+v/T6) can also 

be w ritten  as (Q(Vevlo) w ith e =  1 +  \ / l0 .

(4 .2 ) P ro p o sitio n : E=Q (\/u>+v/io) is b iquadratic cyclic.

Proof: E is a  quadratic extension of the quadratic field F = Q ( \/ l0 ) .  We check tha t

E is cyclic by using the criterion from (3.1): iV^|Q(e\/IO) =  iVp|g(e) • (—10) =

( - 9 )  • ( -1 0 )  =  3210 0  Q2 b u t 10 ■ JVF |Q(ev 'l0 ) -  32102 G Q2. □

(4 .3 ) P ro p o sitio n : E=Q (V io+V Io) has exactly one dyadic prime.

Proof: F = Q (v /l0 )  is the only nontrivial subfield of E and (2) is ramified in F \ Q.

From this it follows th a t Q is the m axim al subfield of E in which (2) is unramified. 

This shows th a t (2) is to tally  ramified in E |F . □

(4 .4 )  P ro p o sitio n : {1, \ / l $ ,  y/io+y/Io, ^ i o - V f o }  is an integral basis of

E=Q(v^°-tVb»), i-e- a ZZ-basis of Oe •
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Proof: In [Ha] Hasse com putes this integral basis of E. □

For E=Q (\/io+\/k>) we will now com pute the elements of G al(E |Q ) =  7L/4: 

a/io+vIo satisfies a: 2 =  1 0 + y/lO and therefore (x2 —10) 2 =  10 or x 4 —20*2+90 =  0. 

This shows th a t the minim al polynomial of -v/io+vTo over Q is: x 4 — 20a: 2 +  90.

The roots of this polynom ial are: ± a / 1 0 +v+o and ±y/ io -Vio .  To get a better idea 

of the structu re  of this m inim al polynomial, note th a t it can also be expressed as: 

x 4 — Te \q (6\/T0)x 2 — iV£;|Q(e\/l0 ) with roots: ± \ / fcvTo and ± \ / — evTo 

The four em beddings of E = Q (\/io+ v f5 ) into the real num bers are given by :

\/io+vTo i—̂ ± V W ^

The two em beddings th a t fix F =  (Q (\/l0) are: \J  1 0 + + 1 0  t-+ ± \/io + \/io  because

\/T() =  (x/io+v+o) 2 — 1 0  clearly is invariant under these two homomorphisms. 

The other two embeddings m ust then m ap i/lO —y/l0 and either one of them  

generates Gal(E|(Q). Let £ denote the m ap th a t takes y/io+^/io > x/io-Vio. Then 

£ 2 is the nontrivial m ap th a t fixes F, bu t it does not fix y/io-VTo F.  Therefore 

£ 2 m aps 1 0 -vTo to  the only remaining possible root which is —\/io-vTo.

This determ ines G al(E |Q ) completely, so we have proved:

(4 .5 )  L e m m a : Let E =  Q(\/io+v+o). The Galois group G al(E | <Q) ~  TLj4 is

generated by the autom orphism  £ : E  —> E  where £ maps the generators of E 

over Q as follows:

^(x/io+vTo) =  x/io-v+o
_______ 1______

£ (i/io - \/ i( j )  =  £ 2 ( \ / i  0 -f vTo) =  — v'10+v'io

£ ( ^ )  = - V 10

e a )  = i
Next, we will com pute a form ula for the norm  of E over Q, denoted by N e \q - 

An arb itra ry  element of E can be w ritten as a +  by/To +  c\/io+v+o +  dy/io-\ f ib  

w ith a ,b ,c ,d  € Q. All of its conjugates are:

id(a +  by/TO +  c y / i o + V i o  +  d y / i o - V T o  ) =  a +  6v/10+cv/io+v/io + d \/io -v /io
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£2(a +  by/ 10 +  cy /io+VTo  +  d y / io-vTo ) =  a +  6 \ / l 0 —c\/io+vTo — dy/ io-y /To

£ (a, + 6VlO +  cy / io +y / io  +  d y / i o - %/io ) =  a  — 6%/lO—dy/ i<s+y/ io-\ -cy / \o -\ / \b

£3(a + 6\/lO + c\/10+Vlo + cfvTo-VIo ) = a — b y / l O + d y / i o + V i o —c y / i o - Vio

The norm  of an element in E  is the product of all its conjugates:

N e \q {® 4" 6\/l0 "I- cVio+Vio -t- d y / i o —V 1 0)

j^(a +  6 \ / T 0 ) 2 — ( c V i o + V I h  +  d x / i o - v T o ) 2

• j (̂a — 6 \ / l 0 ) 2 — (dy/io+Vio — cy/io-y/io)'2

a 2 +  1062 +  2a6\/To -  c2(10 +  y / W )  -  d2(10 -  vTO) -  2cd3\/T0

a2 +  10&2 _  2a6v/10 -  d2(10 +  VIO) -  c2(10 -  y / l o  +  2cd3vTo

a2 +  1062 -  10(c2 +  d2) +  2a6\/l0  +  (d2 -  c2)VlO -  2cd3v/'l0

a2 +  1062 _  10(c2 +  ^  _  2a6vT^0 -  (d2 -  c^VTo +  2dc3v/10

a 2 +  1062 — 1 0 (c2 +  d2 ) j 2  — 1 0 2 a 6  +  d2 — c2 — 6 cd

So we have shown:

(4 .6 )  P ro p o s i t io n :  Let x  = a + by/lO + cy/io+Vib + dy/io^y/io w ith a, 6 , c, d G Q

be an arb itrary  element of E = Q ( \/n )+v/To) , then

N e \q {x ) — a 2 +  1 0 (6 2 — c2 — d2)j — 1 0  ĵ2 a 6  +  d2 — c2 — 6 cdj

Now let a +  by/lO +  ca/io+vTo +  dVio^vTo be an integer in E, which by (4.3) is 

equivalent to  assum ing th a t a , 6 , c ,d  G 5Z . For an integer the above formula for the 

norm  simplifies to:

(4 .7) Ne\q{(i  +  by/lO +  c\Ao+\/io +  dy/i o - v T o )  =  a4 m od 5

(4 .8 )  P ro p o sitio n : Let E=Q(vTo+vT5) and let Oe  denote the ring of integers

of E. There is no element in  Oe  whose norm  over Q is —1 or ± 2  or 4.
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Proof: By (4.7) the norm  over Q of any integer in O e  is a 4-th  power modulo 5.

Hence the norm  of an element is 0 or 1 modulo 5, depending on w hether the first, 

coefficient is divisible by 5 or not. It is therefore never —1 ,± 2  or 4. □

This has the following consequences:

(4 .8 a )  C o ro lla ry : E does not contain units w ith independent signs.

Proof: All units of E have norm  +1. Hence every unit has an even num ber of

negative and positive conjugates. From the definition of units w ith independent 

signs we see th a t E does not contain units w ith independent signs. □

(4 .8 b )  C o ro lla ry : The dyadic prim e ideal of E is not principal.

Proof: If it were principal it would be generated by an integer whose norm  equals

the norm  of the ideal (up to  the sign). Since the dyadic prim e is totally ramified 

in E, its norm  over <Q is 2. There exists no integer of norm  ± 2 , hence the dyadic 

prim e can not be principal. □

(4 .9 ) T h e o re m : Let E=Q (\/io+vTo) and let h(E) denote the class num ber of E, 

then h (E )= 2 , in particular: it is even.

Proof: Hasse com putes the  class num ber in [Ha]. □

(4 .1 0 ) C o ro lla ry : Let E  be as above and let h s (E)  denote the S-class num ber 

of E, then h s ( E ) =  1, in particular: h s ( E ) is odd.

Proof: By (4.9) we know th a t the ideal class group of E is isomorphic to  ZZ/2.

Therefore it consists of the class of principal ideals and the class of not principal 

ideals. By (4.8b) the dyadic prim e is not principal. To obtain  the S-class group we 

factor the class group by the class of the dyadic prim e, so h.s (E)  =  1  □

(4 .1 1 ) P r o p o s i t io n :  Let E =  Q(\Ao+v/To), then E contains S-units w ith inde­

pendent signs.

Proof: We can prove the existence of S-units with independent signs as follows:

Take a  generator of the square of the dyadic, prim e of E. It is an S-unit of norm
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—4, since + 4  is excluded by (4.8). This generator and its conjugates form a set of 

S-units w ith independent signs. Practically, the proof ends here, bu t we will now 

give a set of S-units w ith independent signs explicitly:

Consider the integer x := —2 — v^lO — y/ io+vTo — \J io -\/io  

It is an integer of E and its norm  is —22, so a; is a S-unit.

Com puting the embeddings of x we obtain: id(x)  w —11.4 <  0

£(s) «  +2.18 >  0

£2 (s )  «  +1.08 > 0  

£3(x)  «  +0.15 >  0

The integers £(:e),£2 (:e) and £3 (:c) all have the same norm  as x. Therefore they

are all S-units. The set {.r, £(:c), £2 (<c), £3(*)} is in fact a set ° f  S-units with

independent signs since under U§ — ► {TLj2 } 4 they m ap as follows:

X (s ign  £*(*)) .
V / t=0..3 — ( — 1 + ) +» + )

£(*) •-> ( s ign  C +1(x ))V /  t=0..3 =  ( +  > +) + )

£2(*) ^ (s ign  £l+2(®))\  /  i=0..3 =  ( +  > +) ~1 + )

£3(*) ~ (s ign  £t+3(* ))V /  i=0..3 =  ( +  > + : + j —)

Here we used the fact th a t G al(E |Q ) is cyclic, so the em beddings of the conjugates 

of x  are obtained by cyclically perm uting the embeddings of x.

Therefore x  and its conjugates form a basis of S-units w ith independent signs.

This concludes the proof th a t E=(Q(\/io+vTo) has all the required properties. □

As pointed out before, the infinite set of examples given in section 15 will include 

this exam ple as special case. This infinite set of examples is obtained by considering 

2q instead of 10, where q is a prim e w ith q = 5  mod 8 . Most of the properties claimed 

in (4.1) could be checked for this generalization by the same m ethods used in this 

section. The determ ination of the parity  of the class num ber or the S-class num ber,
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however, calls for more involved m ethods. We will therefore now establish general 

facts abou t num ber fields F  where 2 -prim  K 2( O f ) is elem entary abelian of rank 

rjfF ).



C H A P T E R  2 

N u m b e r  F ie ld s  w ith  p r o p e r ty  (* )

In chapter 1  we saw examples of num ber fields F  for which 2-prim  K 2{Op)  is 

elem entary abelian of smallest rank, namely: t\{F).  These examples were (Q and 

degree 2 and degree 4 extensions of <Q. This leads to  the question: Are there 

num ber fields of higher degree th a t also have this property? T he answer is yes. 

In fact,'w e will see how to  construct examples of such num ber field as consecutive 

quadratic extensions of Q. By (1.6) we know th a t these num ber fields have the 

following properties: they have exactly one dyadic prim e, odd S-class num ber and

contain S-units w ith independent signs. From  now on we will restric t our attention 

to  num ber fields w ith these properties, w ith one additional condition: The num ber 

field is to tally  real. This is useful for la ter, when we will again wish to  obtain 

examples of num ber fields where 2 -prim.K2 (0 F) elem entary abelian of smallest 

rank and th a t do n o t contain units w ith independent signs. T hat the condition 

of the num ber field being to tally  real gives it a be tte r chance of not containing 

units w ith independent signs becomes clear from the consideration of the following 

special case: if a quadratic  num ber field it is not to tally  real then  it has no real

em beddings and therefore it contains units w ith independent signs by default. For 

higher degree extensions th is argum ent does not hold, bu t a t least one sees tha t 

it might be difficult to  ob tain  examples of num ber fields th a t do not contain units 

w ith independent signs if the  num ber of real embeddings is small.

For convenience of no ta tion  we define:

A  n u m b e r  fie ld  F  is s a id  to  have  p r o p e r ty  (* ) iff i t  sa tis f ie s  a ll o f  th e  

fo llow ing :

F is to tally  real

F  contains exactly one dyadic prim e 

F  has odd S-class num ber 

F contains S-units w ith independent signs

We will s ta rt this chapter by setting up the tools th a t we will need. In section 6  

we introduce the exact hexagon th a t is given in [C-H 2\. We also collect some facts

18
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th a t are related to  it. T hen we are ready to  give a characterization of quadratic 

extensions of num ber fields w ith property  (*). This will be done in  section 7. In 

section 8  we are then able to  prove the existence of infinitely m any num ber fields 

w ith property  (*) th a t can all be obtained by successive quadratic extensions of (Q 

or any other num ber field w ith  property (*). A closer exam ination of which other 

properties these num ber field have will follow in chapter 3.

5. S e t t in g  u p  th e  to o ls

In all of the following we let F be a num ber field and S denotes the set consisting of 

the infinite and dyadic prim es of F. As before, we will use Op  to  denote the units 

of F and Up to  denote the S-units of F.

(5 .1 )  P ro p o s i t io n :  Let F  be a num ber field. The group of square classes of 

units of F injects into the group of square classes of S-units of F. We can therefore 

consider O p / ( O p ) 2 to  be contained in U p / ( U p ) 2.

Proof: Let a  : Of  — > U p / ( U p ) 2 be the m ap induced by the inclusion of Of

into U p / ( U p ) 2. We have to  show th a t an element of the kernel of a  is contained in 

(O p)2. This can be seen as follows: Let u be a unit of F  th a t is in the kernel of

a.  Then u — v 2 for some S-unit v. Since the square of v is a unit, it follows th a t v 

is a  unit. Hence, u £ ' (Op)2. □

(5 .2 )  Dirichlet S-unit theorem  (see for example [La]):

Up =  x (roots of unity)

here r i ( F )  denotes the num ber of real embeddings of F , r 2 (F)  denotes the num ber 

of pairs of complex em beddings and d is the num ber of finite prim es in S. □

W hat does this tell us about the group U p / ( U p ) 2! The roots of unity  form  a finite
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cyclic group. They contain —1, an element of even order, so they form a finite cyclic 

group of even order. Factoring out squares then leaves only a  group isomorphic to 

7L/2. We obtain:

u f/(u f )2 -  (Z5/2)ri(F)+r3(F)+d

Applying this to  the special type of num ber fields we are interested in, im mediately 

yields:

(5 .3 )  C orollary: Let F be a  totally real num ber field th a t contains exactly one 

dyadic prim e. Let r 1(F)  denote the num ber of real embeddings of F, which in this 

case equals the degree of F. Then:

-  2 r i <F >+ 1  and #0*F/(0*F )2 =  2 ri(F)

□

Rem ark: By (5.1) we can consider 0 F / ( 0 F )2 as contained in UF /(U F )2. In a

num ber field th a t satisfies th e  conditions of (5.3) we can furtherm ore regard half of 

the square classes of UF /(U F )2 as coming from square classes of 0 F/ ( 0 F )2.

In particu lar, (5.3) applies to  num ber fields with property (*). By definition such 

num ber fields contain S-units with independent signs. Recall th a t this means tha t 

the m ap U § / (U $ )2 _► (Z5/2)r i(F> is surjective. The m ap is defined by m apping 

a class of UF /{UF )2 to  the signs of its representatives. For a to tally  real num ber 

field F  w ith exactly one dyadic prim e we ju st saw th a t # U F / (U F )2 =  2 r’1 ( F ) + 1 . If 

furtherm ore F  contains S-units w ith independent signs, then the  kernel of the above 

m ap has ~  2 elements. One of them  is the class represented by 1. The

other we will denote by r>.

(5 .4 )  D efin ition : Let F be a num ber field th a t has property  (*). Let r F denote

the nontrivial element in th e  kernel of <p : UF /(U F )2 —> (ZZ/2)r i F̂ ,̂ i.e. the

nontrivial square class of to tally  positive S-units of F.



21

Rem arks: 1) For this definition to  make sense, we only needed th a t F  is totally

real, has exactly one dyadic prim e and contains S-units w ith independent signs. By 

stating  it for num ber fields th a t have property (*) we included the condition th a t F 

has odd S-class num ber. This is not necessary, bu t since we will be interested only 

in num ber fields w ith property  (*), it makes our statem ents easier to read.

2) In the following we will not always distinguish between the class t>  and one of its 

representatives. Hence, from  now on 7> will either denote the  above defined element 

of U p / ( U p ) 2 or, by abuse of no tation, a totally  positive S-unit of F  th a t is not a 

square from Up.  The following is a useful criterion to check whether a num ber field 

F w ith property  (*) contains units w ith independent signs:

(5 .5 )  P ro p o s i t io n :  Let F  be a num ber field w ith property  (*), then:

F contains units w ith independent signs t> ^  O p / ( O p ) 2

Proof: In (5.1) we saw th a t O p / ( O p ) 2 can be considered as a  subgroup of

U p / ( U p ) 2. Let <p denote the surjective m ap from U p / ( U p ) 2 onto (TLj2 )rd-F). 

By definition of t> we have: ker(ip) =  { l,r> } . Consider the restriction map 

<pjo '• O p / ( O p ) 2 —> (2&/2)ri(-F) . Its kernel is contained in { l , r F}. By definition 

we have: ipjo is surjective iff F contains units w ith independent signs. Since both 

0*p/{0*F )2 and ( 2Z /2 )r i^ ^  are finite groups of the same order, namely 2ri^F\  we 

have: <p\o is injective iff F contains units with independent signs. Now it is clear 

th a t F  contains units w ith independent signs iff ker(ip\o) — {1}, which occurs if 

and only if tf £  0*F/ { 0 p ) 2. □

We are still setting up the tools we will need in the following sections. For this we 

now need to  consider real quadratic extensions E \ F  of a num ber field F. Here, “real 

quadratic” m eans th a t the square root of a totally positive element of F is adjoined 

to  F , so no infinite prim e of F will ramify in E. We will examine the relationship 

between E containing S-units with independent signs and F containing S-units with 

independent signs. Here S can stand  for any set of prim es of F th a t contains all 

infinite prim es of F. In particu lar we will apply the result to the case where S consists 

of the infinite and dyadic prim es of F  and also to the case where S contains no finite
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prim es of F. In this second case we will get a  relationship between E containing 

units w ith independent signs and F  containing units w ith independent signs.

We will see th a t if E contains S-units w ith independent signs, then so does F; 

bu t the converse does not hold in general. The relationship between S-units with 

independent signs of E and F  will follow from exam ining the following diagram:

(5 .0 )  L e m m a : Let E be a real quadratic extension of a num ber field F.

Let { a i , .., <ri,.., (jr i(p)} denote the real embeddings of F  and let 

{ < 7 i i , < 7 i 2 , °Vi(F)i, <7 rx(F)2 } denote the-real embeddings of E, where the 

no ta tion  is chosen such th a t an\F  — a{2\F =  or* for i — 1 , . . . , r 1 (F). The following 

diagram  commutes:

p  * j^2 ri(F)

N jg | p J, J. m
p*  (," '<T‘ ’•")

Here m  is the m ap defined by m ultiplying two successive entries, 

i.e. let ( a u , a i 2 j---ja r 1(F)i»a ri(F)2 ) G Jt2 rd F) then

n 7 (a n ,a i2 , ■••,a r 1(F ) i ,a r1 (F)2) ::= (« n  ' “ 12, •••)«r1 (F)i • “ n(F)2)

Proof: Let T  denote the generator of G a l (E \F ) =  ZS/2, then for any a 6  E  we

have: N E\F(a ) =  “ ■ T(a)  and for i =  l , . . , r  we have: a n  =  a n  o T.  In order to 

check the  com m utativity  of the diagram  we need to  check:

m  O (au  ■ <712 , . . . , a ri(F)l ■ “Vi(F)2 ) =  (“ l > •••> “ M F)) 0  ^ F |F

This is done as follows. Let a £ E ,  then:

[m o ( . . . , a i i , a i2,. . .  )](a) =  m (..., a n  (a), a i2{a) , ...)

.,<rfi(a ) • <7{2(“ ), •••) 

,<7ii(«) • ( rn {T a ) , ...) 

,<7ii(a • Ta) , . . . )  

, a n { N E \F (a ) , ...) 

,<7t(iVB|F (a),. . .)
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[ ( . . . ,(Ti, ...) o iVB|ir](o )  =  (..., <Ti, —)(NE\F(a))

In the second to last line we used the fact th a t Np\p(a)  E F  and <t h \F  =  <Ti. □

Since we are interested in properties of E and F  concerning units w ith independent 

signs and S-units w ith independent signs, we will now give a weaker version of

(5.6). Instead of m apping an element of F* or E* into R  we only need the sign of 

its image in R, so we will m ap an element to the signs of its em beddings. We also 

do not need all of E*  and F *, but only the subgroups of S-units: Up and Up. Here, 

one set S is a collection of prim es of F , the other S is the set of prim es in E th a t 

lie over those from F. W hich set S is m eant, is clear from  the context, we will not 

distinguish them  in our notation.

Hence, (5.6) restricts to  the following com m utative diagram  of groups:

U§ (7L/2)2r^
r a j , I  m

Up (7L/2)r

T he m aps m,<p, ty and n  are defined as follows:

The m ap m  again denotes the m ap th a t multiplies two successive entries.

We let <p and 7r denote the m aps th a t take an element to the signs of its embeddings:

7T :=  (..., signer^, s igna  i2,...)  : U§ — ► (7L/2)2ri(F)

(p :=  ( . . . ,s ignai , . . . )  : Up — > (2 i/2 )ri(-p)

By n  we denote the restriction of the norm  m ap N p\p  to Up.  Note th a t n  in fact 

m aps Up in to  Up.  The image of n  is N p\p (U§) .  We can also consider this restricted 

norm  m ap n  as m apping U p / ( U § ) 2 into U p / (U p )2. The image is N p \p ( U p ) / ( U p ) 2 

and the cokernel is isomorphic to U p/Np\p (U p) .

Note th a t (Up)2 is contained in the kernel of 7r and (Up)2 is contained in the kernel 

of (p. We can therefore consider 7r and p  as m appings on square classes. This 

justifies the following:

(5 .7 )  C orollary: W ith the notation as above, the following diagram  of finite

abelian groups commutes:
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U § / ( U § ) 2 ^  ( K / 2 )2^ F>
n  J, J. m .

U l / ( U * ) 2 ^  ( 7 L / 2 Y 'W

The cokernel of n  is isomorpliic to  Up / N e \f {Ue )- ^

Remarks: If F has property  (*), then the kernel of p  is {1 ,t> } , where r F is as in

(5.4).

Recall th a t, by definition, F  contains S-units w ith independent signs iff p  is sur­

jective. E contains S-units w ith independent signs iff 7r is surjective.

As explained above, the set S corresponding to  E consists of all prim es lying over 

those prim es th a t are in the  set S corresponding to F. The set S of primes of F 

can stand  for any set of prim es th a t contains all infinite primes of F. In particular, 

it applies to  the case where S contains no finite primes. In this case we replace 

“S-units w ith independent signs” by “units w ith independent signs” and U p ,U §  by

O * n*

(5 .8 ) P ro p o s i t io n :  Let E be a real quadratic extension of a num ber field F. If E 

contains S-units w ith independent signs, then p  o n  : U § / (U § )2 — > (7L/2)ri^F  ̂ is 

surjective; in particular: F  contains S-units w ith independent signs.

Proof: The idea of the proof is th a t the norms of a set of S-units w ith independent

signs of E form a set of S-units w ith independent signs in F. We are assuming 

th a t E contains S-units w ith independent signs, so 7r is surjective. Clearly the map 

m  th a t m utiplies two successive entries is also surjective. Hence, the composition 

m  o 7r : U p / (U § )2 — ► (5Z/2)r i(F) is surjective. From the com m utativity of the

diagram  in (5.7) we conclude th a t p  o n  is surjective. Therefore the restriction of p  

to  the image of n  is surjective. In particu lar, this tells us th a t p  is surjective, so F 

contains units w ith independent signs. □

The converse of (5.8) holds, too. Note th a t to conclude th a t E contains S-units 

w ith independent signs it does not suffice th a t F  contains S-units w ith independent 

signs. We need to  assume the stronger condition th a t p  o n  is surjective.
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(5 .9 )  P ro p o sitio n : Let E  be a real quadratic extension of a num ber field F. If

<p o n  : U p / ( U p ) 2 — > (7Zi/2)ri (Fhs  surjective [notation as in (5.7)], then E contains 

S-units w ith independent signs.

Proof: The idea of the proof is th a t S-units w ith independent signs of F can be

“pulled up” to S-units w ith independent signs of E by the norm . We will use the 

same notation  for the embeddings of E and F into R  as in (5.6), T  will stand  for 

the generator of Gal(E\F).  Let {a j, . . . ,a r i(jp)} be a set of representatives of square 

classes of S-units of E such th a t (Ti(Np^pai) is negative and o-j(NE\Fai) is positive 

for all j  ^  i. It is possible to choose such a set since we are assuming th a t the 

restriction of ip to the im age of the norm  m ap n  is surjective onto {TL/2)rx^F\  To 

show th a t E contains S-units with independent signs, we need to show th a t 7r is 

surjective. For this it suffices to  find a set {A \ , ...,^4r i(^)} of S-units of E such tha t 

for every i £  {1 , . . . , rj(F )} we have: crf l(^4*) is negative and crji(Ai) is positive for 

all j  /  i and crj2(Ai)  is positive for all j  £ (1 , ..,ri(F )} .

The existence of these elements suffices to  conclude th a t 7r is surjective, because 

these A{ together w ith their conjugates T (A i )  form a set of S-units of E th a t are 

negative in exactly one em bedding of E into R and positive in all the others. 

Under the m ap tt products of these S-units will then m ap to  any given element of 

(Z5/2)2ri<F>.

We now fix any i £ {1 ,..., ri(F )}  and construct an element Ai  w ith the desired 

properties. We s ta rt by considering the element a;. We have <Ti{NE\pa;) =  <Tii(a,) • 

^ ( ^ i ) .  Since cri(NE\pai) is negative we can conclude th a t exactly one of <rn(ai) 

or <ri2{ai) is negative. By replacing a; by its conjugate T (oj), if necessary, we can 

assume th a t <Tn(ai) is negative. U nfortunately, when considering <Tji(a;) and crj2(ai) 

for j  7  ̂ i we can only conclude th a t they both  have the s a m e  sign. This follows from 

the fact th a t their product is o-j{Np\pai), which is positive. To obtain  an element Ai  

as required, we need to  alter ai such th a t the signs under the embeddings cr;i and cr, 2 

stay the same, i.e. negative and positive, respectively; bu t the signs of the element 

under all other embeddings are positive. Let I denote the set of indices where the 

em bedding of has negative signs: I  :=  { k | sign[akiai\ <  0 and sign[<rk2ai] < 0}

Since we already know th a t a j i {a k) and crj2(ak) =  ^ ( T a * .)  have the same sign for
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all j  ^  i , k  € {1 , ...ri(F )}, we can take:

M  ai • JJaifelXafc)
k^i

This element will have the same signs as ct; at the em beddings an  and <r;2. Like a; 

it will be positive under aki and ak2 for k I ,  bu t whereas a{ was negative under 

crfci and erfc2 for k € I ,  this element is positive. □

In propositions (5.8) and (5.9) we have shown th a t E contains S-units w ith inde­

pendent signs iff ip o n  is surjective. For the special case where S does not contain 

any finite primes this yields:

(5 .1 0 ) C o ro lla ry : Let E be a real quadratic extension of F. Then E contains

units w ith independent signs if and only if F  contains units w ith independent signs 

and all units of F  are norms of units of E.

Proof: If E contains units w ith independent signs then <p o n  : 0 E / ( 0 E )2 — >

(TLf2)ri(F) is surjective by (5.8). Hence ip is surjective, so F  contains units with 

independent signs. Since p  m aps Oe / ( O e )2, which by (5.3) has order 2ri^F\  into 

(7L/2)ri^F\  we see th a t <p is an isomorphism. We conclude th a t n  : 0 E / ( 0 E )2 — > 

0 E/ ( 0 E )2 is surjective, so every unit of F is the norm  of a unit of E.

Conversely, assume th a t F contains units w ith independent signs, so <p is surjective, 

and th a t every unit of F  is th e  norm  of a  unit from  E , so n  is surjective. It follows 

th a t <p o n  is surjective, so by (5.9) E contains units w ith independent signs. □

6 . T h e  e x a c t h e x a g o n  

We now need to in troduce the exact hexagon th a t is defined in [C-H-2\, applied 

to  the case where E \ F  is an extension of degree 2 . S could be any finite set of 

prim es of F containing all infinite prim es of F. We will la ter apply this to  two cases: 

the case where S is the set of all dyadic prim es and all infinite prim es of F and the 

case where S contains no finite primes of F.
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Let T  denote a  generator of the galois group G al(E |.F ) =  5Z/2 =  C2 = <  T  > . The 

set of S-integers of F  and the  set of S-units of F  will be denoted by Op  and Up,  

respectively. We will let O p  denote the integral closure of Op  in E, U§ the set of 

S-units of E and C S(E)  the S-class group of E.

N o te: In the case where S contains no finite prim es of F we will ju s t omit ‘S’

in the notation. In accordance w ith this the  set of integers of F  will be denoted by 

Of , bu t for the set of units of F  we will use Op.

We have the  following cohomology groups:

H ^C 'r ,  C S(E ))  =  {cZ(i4) G C S{E)  | 3x  G E* : A • T A  =

here A is an ideal of E and cl(A)  its class in the S-ideal class group of E.

h \ c 2\ u § )  = { v e U § \ N v  =

H ° ( C 2; U ! )  = U S / N e IF(U§)

H ° ( C 2; C s (E))  =  { cl{A ) G C S(E)  \ 3 x  E E* : T A  =  x A } / N ( C s { E ))

We will now give a collection of results from  [C-H 2\:

(0 .1 ) There exists an exact hexagon:

if  H \ C 2-,Cs {E)) H ' { C x U § . )  if
/ •  \

\  s ^  

fo H ° ( C 2-,U§) S -  H ° ( C 2-,Cs (E))  iS

For the definitions of the six m aps and the groups R°S(E \F )  and R ^ E l F )  we refer 

to  [G-H2 ]. It is known th a t all six groups in the above exact hexagon are f in ite  

e le m e n ta ry  a b e l ia n  2 -g ro u p s . Recall th a t this means th a t they are all of the 

form  (2Z/2)fc for some nonzero integer k. This k is called the 2-rank or ju s t the rank 

of the group. In the next sections we will need the following facts:

( 6 .2 ) H ° (C 2, C s (E))  and H 1(C2, C S(E))  have the same rank; they are noncanon-

ically isomorphic.

(6 .3 )  If E is a quadratic extension of F  th a t is either ramified or in which at least 

one dyadic prim e of F  is inert, then



28

R°S (E \F )  {rjj j  2 'jnumber of ramified primes-\- number of inert primes in S —1

fiX — ^r^i^ytumber of finite ramified primes outside of S

Note th a t in the case where S contains no finite prim es of F  we have:

R ® (E \F )  ~  (TL/2)number ° f  ramified primes —1

r U e \f ) (2Zi / 2 ) n u m b e r  ° f  f i n i t e  r a m i f i e d  p r i m e s

(6 .4 )  There is an injection from R°S (E \F )  in to  the cohomology group 

H ° ( C 2,E*)  — F* / N e \f ( E * ) -  We also have the canonical injection from H ° ( C 2, U § )  

in to  H ° (C 2, E*).  This canonical injection com mutes w ith the com position of and 

the inclusion of R°S(E \F )  in to  H ° (C 2,E*).

(6 .5 )  If h s (F)  is odd, then:

a) R°S( E \ F ) ^ H 1(C2, C s (E))  is surjective.

b) 2-rkC s ( £ )  = 2-rkH 1{C2, C S(E))
fid / 2 ) nurnber rarnified primes-\~ number of inert primes in S —X

Rem ark: This can be found as 2.2 in [C-ffi].

( 6 .6 ) Let E \ F  be a ramified quadratic extension. The following are equivalent:

a) the relative class num ber h(E \F )  is odd

b) io : H ° ( C 2, O e ) —> R ° ( E \ F )  is surjective and C2 acts trivially on the 2-prim ary 

subgroup of C(E) .

Rem ark: This is a special case of 5.8 in [C -i^]-

For ramified extensions the relative class num ber h ( E \ F ) is defined as the quotient 

of the class num bers of E and F. This quotient is an integer.

(6 .7 )  Let F  be a num ber field and let S denote the set of infinite and dyadic primes 

of F. If h s (F),  the S-class num ber of F, is odd then any quadratic extension of F 

in which no dyadic prim e is inert m ust be a ramified extension.

Proof: Assume th a t F has an u n ra m if ie d  quadratic extension E in which no

dyadic prim e of F is inert. It follows th a t E is a quadratic extension of F  in which 

all dyadic prim es split. E is therefore contained in the H ilbert S-Class Field of F.
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The Galois group of the H ilbert S-Class Field of F  over F  therefore has a factor 2, 

i.e. it is even. By class field theory this Galois group is isomorphic to the S-ideal 

class group of F . Hence the  order of the S-ideal class group, nam ely the S-class 

num ber h s ( F ), is even. This contradicts the assum ption. □

7. C h a ra cter iz in g  q u adratic  ex ten s io n s  w ith  p ro p erty  (*)

Before we can prove the existence of num ber fields w ith property  (*) in the next 

section, we now give a very useful characterization of quadratic extensions with 

property  (*).

(7 .1 )  T h eorem : Let F  be a  num ber field w ith property  (*) and E a real quadratic 

extension of F. Let r  be any to tally  positive S-unit of F  th a t is not a  square. E has 

property  (*) if and only if either

1) no odd prim e of F  ramifies in E \ F  or

2) exactly one odd prim e of F ramifies in E \ F  and r  ^  N e \f (E*).

Proof: We will prove the claimed equivalence by proceeding in the following way:

Let F  have property  (*) and  let E be a real quadratic extension of F. We will check 

tha t:

a) If no odd prim e of F  ramifies in  E \ F  then  E has property  (*).

b) If m ore than  one odd prim e of F ramifies in E \ F  then  E does not have prop.(*).

c) If exactly one odd prim e of F  ramifies in E \ F  and if r  £ N e \f (E*) then E does 

not have property  (*).

d) If exactly one odd prim e of F  ramifies in E \ F  and if r  ^  N e \f (E*)  then E has 

property  (*).

Before we s ta rt w ith the proof let us review w hat it means for F to have prop. (*): 

F  is to tally  real, F contains exactly one dyadic prim e, the S-class num ber of F, 

h S( F ), is odd and F contains S-units w ith independent signs. Note th a t E is always
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totally  real, so to  check w hether E has property  (*), we need to  exam ine the num ber 

of dyadic prim es of E, the  S-class num ber, h s (E) ,  and w hether E contains S-units 

w ith independent signs.

This is done by com puting some of the elem entary abelian 2-groups in the ex­

act hexagon (6.1). We then  use the facts listed in section 6  to  draw conclusions 

about other groups of the  hexagon. In particu lar, we will determ ine the order of 

H ° ( C 2 ,U §)  — U p / N E\F(U§)  which is the cokernel of n  in (5.7). This will allow 

us to  determ ine w hether <p o n  is surjective. By (5.8) and (5.9) we can then tell 

w hether E contains S-units w ith independent signs. Note th a t by (5.4) we have 

ker <p =  {1 , r} .

C ase a): No odd prim e of F  ramifies in E \ F

Since we are assuming th a t h s ( F ) is odd we can apply (6.5.c) to  obtain:

2 - r k J 2 ^ ( E I F 1)  =  ( # p r i m e s  o f  P  t h a t  r a m i f y  in  2 ? ) + ( # d y a d i c  p r i m e s  o f  F  t h a t  a r e  i n e r t  i n  E )  — 1..

This num ber is not negative, hence F  m ust either contain a prim e th a t ramifies in 

E \ F  or a dyadic prim e (there is only one!) th a t is inert in E \F .  Since no odd prime 

of F  ramifies in E \ F  we conclude th a t the dyadic prim e of F  is either ramified or 

inert in E \F .  This shows th a t E contains exactly one dyadic prime.

We have 2-TkR°s (E \F )  =  0, so the elem entary abelian 2-group R°S(E \F )  is trivial. 

Applying (6 .5.a) yields th a t H 1(C 2 , C S(E))  is also trivial, since it is the image 

under a surjective m ap from  a  trivial set. By (6.5.b) we obtain  th a t the 2-rank of 

C S(E)  is the same as the 2-rank of H 1(C 2 , C S(E)) ,  which by (6.2) is the same as 

the  2-rank of H ° ( C 2 , C S(E)) .  This shows th a t 2-vkCs (E )  is trivial, i.e. h s (E)  is 

odd. Plugging the inform ation obtained so far into the exact hexagon from (6.1) 

gives an isomorphism:

H 0(C2,Ui) 'XR?s (E \F )  = l

Hence H ° ( C 2 ,U F ) — UF / N E\F(U§)  is trivial. The m ap n : U § / (U § )2 — >

u § n  r '!> ! in (5.7) therefore has a trivial cokernel, i.e., it is surjective. By as­

sum ption F contains S-units w ith independent signs, so of (5.7) is surjective. We 

conclude th a t the com position o n  is surjective. Applying (5.9) yields tha t E 

contains S-units w ith independent signs. This shows th a t E has property  (*) in the 

case under consideration.

C ase b): More than  one odd prim e of F  ramifies in E\F .
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We assume th a t a t least two odd primes of F  ramify in E \ F  and th a t E has property 

(*). This will lead to a  contradiction. We are assum ing th a t F has property (*), so in 

particu lar h s (F)  is odd. Under this condition we can apply (6.5.b): 2-rkC,s (J5)=2- 

rk JfiT1 (C 2 , C S(E)) .  We are assuming th a t E has property  (*), so h s (E)  is odd. 

This means th a t 2-rkC s (E ) is trivial, hence H i (C 2 , C s (E))  is trivial as well. The 

above equality then  yields th a t also the elem entary abelian 2 -group H 1(C 2 , C S(E))  

is trivial. By (6.2) we then also have H ° (C 2 , G S(E))  trivial. Plugging this into the 

exact hexagon results in an isomorphism:

H 0( C 2 , U i ) - ^ R ° s ( E \ F )

By (6.3) we have 2-TkR°s ( E \ F )  >  2 +  1 — 1, where 2 stands for the minimal num ber 

of odd prim es of F th a t ramify in E and 1 stands for the dyadic prim e of F which 

is either ramified or inert in E, since we are assum ing E to have only one dyadic 

prim e. Combining this w ith the above isom orphism  yields: 17°(6 2 , UJ ) =  (ZZ/2)m, 

w ith m  >  2. Expressing H 0(C 2 , Up)  in a different way we have:

Uf / N b \f (U§)  =  (ZZ/2 )m with m  > 2

For the m ap n  : U p / (U p )2 — > U p / (U p )2 in the diagram  (5.7) this means th a t the 

cokernel of n  has (2&/2)m elements. From (5.3) we have $ U p / ( U p ) 2 =  2r i^ +1. 

Hence, the image of n  has 2 1̂ + =  2ri^F^+1~m <  2 r i^ ) - i  elements. The m ap

ip o n  : U p / ( U p ) 2 — ► (TL/2)r i F̂ ) can therefore not be surjective. From (5.8) we 

conclude th a t E does not contain S-units w ith independent signs. This shows tha t 

in this case E does not have property (*).

C ase c): Exactly one odd prim e of F ramifies in E \ F  and r  € Np\p(E*)

We want to  show th a t E can not have property (*), bu t suppose E does have 

property  (*):

Since h s (E)  is odd by assum ption, we have 2-rkG S(E)  — 0. By (6.5.b) this equals 

the 2-rank of the elem entary abelian 2-group H 1(C 2 , G S(E)) ,  which in tu rn  also 

equals the 2-rank of the elem entary abelian 2-group H ° (C 2 , G S(E)) .  Hence both 

H ° ( C 2 , C s (E))  and H 1(C 2 , C S(E))  are trivial. Plugging this into the exact hexagon 

yields an isomorphism:

H ° ( C 2 , U i ) ^ L R ° s (E \F)
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We now need to  consider two possibilities: r  (£ N E \p(U§),  bu t still in N e \e (E*); 

or t  G N e \ f ( U e )  '■

If r  ^  N e \f { U § )  f^en the classes of 1 and r  in U f / N e \e ( U f ) are distinct. By the 

above isom orphism  the classes of 1 and r  are then  also distinct in R°S(E\F) .  By

(6.4) R°S{E\F)  is a subset of H ° ( C 2,E *)  =  F * / N e { f (E*).  But here the classes of 

r  and 1 are the same, since we are discussing a  case where r  G N E \p(E*).  This is 

a contradiction, hence we m ust now assume th a t r  G N E \p(U§).

By (6.3) the rank of the elem entary abelian group R°S (E \F )  is 1 +  1 — 1 =  1. Here, 

the first one is the num ber if odd ramified primes of F  and the next one counts the 

dyadic prim e of F  which is either ramified or inert in  E. Hence =  2Z/2.

From the isom orphism  i f  we obtain: U p / N E\p(U§) = 2Z/2. In the  com m utative 

diagram  (5.7). we now have th a t the  cokernel of n  has order 2. Since n  m aps into 

U p /{U p )2, which by (5.3) has 2 r i ^F *+ 1  elements, we see th a t the  image of n  has 

2r i(F ) elements. The restriction of <p to  the image of n  is therefore a m ap from 

a group of order 2ri('F ) to  (2Z/2)ri(-F\  which has the same order. Hence ip\im n  

is surjective iff it is injective. In the present case it is not injective since we are 

assum ing r  G N E \f ( U § ) ,  so  ker ip\im n =  { l , r }  n  N E\F(U§)  =  { l , r } .  We conclude 

th a t y? o n  is not surjective, so by (5.8) E can not contain S-units w ith independent 

signs. In this case E does not have property (*).

C a se  d ) : Exactly one odd prim e of F ramifies in E \ F  and r  ^  N e \e (E*)

We want to  check th a t E has property  (*). Since r  is not a norm  from (E *) it 

is certainly not the norm  of an S-unit of E. Therefore the classes of 1 and r  in 

H ° ( C 2 , U § ) =  U e / N e \e ( U e ) are distinct. In  the exact hexagon (6.1) H ° ( C 2,UE ) 

m aps into R°S(E \F )  by i f .  W hat can be said about the images of the classes of 1 

and r  under i f ?  By (6.4) we can consider R°S ( E \ F ) to  be contained in H °(E*)  = 

F * / N e \f { E * ) .  Here the images of the classes of 1  and r  are d istinct, since r  ^ 

N e \f { E*) -  Hence the images of 1  and r  under i f  are distinct in R°S(E \F) ,  so 

R°S( E \ F ) contains at least two elements. By (6.3) we know th a t the 2-rank of the 

elem entary abelian 2-group R°S(E \F )  is:

1 +  (^ ram ified  dyadic prim es of F) +  (# in e r t dyadic primes) — 1.

Here, the first one is the one ramified odd prim e of F. By our previous observations 

this num ber is to  be a t least 2. Since F contains exactly one dyadic prim e we can
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deduce th a t R°S(E \F )  has rank  1 and th a t the dyadic prim e of F  is either ramified 

or inert in E. This shows th a t E contains exactly one dyadic prim e, the first step 

tow ards property  (*). A nother conclusion we can draw from  the above is th a t ijf 

is surjective. This follows from  the fact th a t R°S(E \F )  has only two elements and 

zjf(l) is distinct from z'jf(r). Since h s (F)  is odd we can apply (6 .5.a) to obtain
jS

another surjective map: R°s ( E \ F ) - ^ H i (C 2 , C S(E)) .  From the  exactness of the 

hexagon (6.1) we obtain  th a t the  kernel of j f  equals the image of Zq . This image is 

isom orphic to  i2s(i? |.F) since zjf is surjective. Hence is the trivial m ap and since 

it is surjective we conclude th a t H 1(C 2 , C S(E))  is trivial. By (6.5b) this shows th a t 

h s (E)  is odd. To complete the  proof th a t E has property  (*) we now need to  show 

th a t E contains S-units w ith independent signs. We ju st saw th a t H 1(C 2 , C S(E)) ,  

and by (6.2) then also H ° ( C 2 , C S(E)) ,  is trivial. The exact hexagon therefore yields 

an isomorphism :

E /2  =  R 0s { E \F )  = H °(C2 ,U §)  = U $ / N E\F{U§)

We now proceed as in case c). The m ap n  in the diagram  (5.7) has a cokernel of 

order 2ri(-FK T he kernel of <p\im n is {1,7"} fl N E\F(U§)  bu t this tim e we have t  $  

N e \f (Ue )- Hence, <p\im n is injective and then for reasons of order also surjective. 

This shows th a t <p o n  is surjective. By (5.9) we have th a t E contains S-units with 

independent signs. This concludes the proof th a t in this case E has property  (*). □

(7 .2 ) C orollary: Let F  be a num ber field w ith property (*) and let E be a

quadratic  extension of F th a t also has property  (*).

1) If no odd prim e of F  ramifies in E \ F  then all S-units of F  are norm s of S-units 

of E.

2) If exactly one odd prim e of F  ramifies in E \ F  then U p /N p \p (U § )  =  TL/2. 

Hence, exactly half of all square classes of S-units of F are square classes of S-units 

of E. Furtherm ore, N e \f (Ue )/ (V f ) 2 a subgroup of index 2 of U p / ( U p ) 2 th a t 

does not contain r .

Proof: In p a rt a) of the  proof of (7.1) we showed th a t U p /N p \F ( U § ) is trivial,

this proves claim 1). Claim 2) was shown in d) of the proof of (7.1). □
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(7 .3 )  R e m a rk :  Let F  be a num ber field and let E be a quadratic extension of

F. Let S be a set of prim es of F  such th a t no finite prim e of S splits in E \F .  If a 

unit of F is the norm  of an S-unit of E then it is the norm  of a  unit of E. □

(7 .4 )  P r o p o s i t io n :  Let F  be a num ber field w ith property  (*). Let E be a 

quadratic extension of F  w ith property  (*) in which exactly one odd prim e of F 

ramifies. Let u be a unit of F. If u G N e \e (E*)  then u G N e \f (Oe )- Hence,

N E]F( E * ) n O * F  =  N E]F(0*E )

Proof: E is assumed to contain S-units w ith independent signs. By (5.8) we have

th a t <p o n  : U § / (U § )2 — > (7L/2)r^  is surjective. Since the kernel of <p :

Ue / ( U f ) 2 — * (2Z/ 2 )Vl(F) is { 1 , t } ,  we have th a t either u  or t u  is in the image o f  

n .  So either u or t u  is a norm  from an S-unit of E. By (7.2) we have Ue / N E\f{U e ) =  

5Z/2. By (7.1) we know th a t the S-unit r  is not the norm  of any element of E. Let 

u  G N e \ f (E * ) .  Since r  ^  N e \e {E*) we m ust have t u  0  N e \ f (E * ) -  In particular, 

t u  N E\p{UE ). We conclude th a t u G N E\p(UE ). From (7.3) it follows th a t

u  G N E\F {Oe ).

□

8. T h e  e x isten ce  o f  num ber fie ld s w ith  p ro p erty  (*)

We s ta rt w ith a question: For any given num ber field F , do there exist extensions 

w ith property  (*)? One p a rt of the answer is clear from the hereditary nature of 

property  (*), see ( 1 .8 ):

(8 .1 )  P ro p o sitio n : If a num ber field F does not have property  (*), then neither

does any extension of F.

(8 .2 )  T heorem : Let F  be a  num ber field w ith property(*).
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There exists exactly one quadratic extension of F  w ith property  (*) in which 110 

odd prim e of F  ramifies. It is given by F ( y / r ), where r  denotes any totally  positive 

S-unit of F  th a t is not a square.

There exist infinitely m any o ther quadratic extensions of F  w ith property (*). In 

all of these exactly one odd prim e of F  ramifies.

W hen proving this we will actually show more th an  is claimed. This stronger version 

of (8.2) is given in (8.7). The proof will be given below, bu t first note th a t from

(8 .2 ) it follows im m ediately:

(8 .3 )  C o ro lla ry : If a num ber field F  has property  (*), then  there exist infinitely 

m any extensions of F  with property  (*). There are num ber fields w ith property 

(*) of arb itrarily  high degree; examples can be obtained by successive quadratic 

extensions of Q. □

Before we can give the proof of (8.2), here are two observations th a t we will need:

(8 .4 )  F a c t: Let F be a  num ber field and P  an odd prim e of F , cr E F.

P  ramifies in  F (y /a ) \F  <=>• or dp [a) =  1 mod 2

This fact can be found, for exam ple, in [Cohn] on page 215. He also gives a criterion 

for the ram ification of dyadic prim es of F , which is more involved.

(8 .5 ) P ro p o s i t io n :  Let F be a num ber field w ith odd S-class num ber h s (F).  

Let cr be an element of F  and  let the principal ideal generated by cr be denoted by 

o  • Op.  Let P  denote an odd prim e of F. There exists an element y  € F  w ith the 

following properties:

a) F ( J y )  = F ( y f i ) .

b) If the exact power of P  dividing cr • Op  is odd then P  divides y  • Op  exactly to 

the odd power h s (F).

c) If the exact power of P  dividing <r ■ Op  is even then  P  does not divide y  • O f .
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Proof: Let P  be an odd prim e ideal of F  and let P k be the exact power of P

dividing cr • Op.  We will show th a t there exists an element y £ F  in whose prim e 

ideal decom position the prim e P  will appear iff k  is odd. T he odd prim e factors of 

y  different from P  are the same as those of cr. The power w ith which they appear in 

y  will be the power w ith which they appear in cr m ultiplied by an odd num ber, so 

the  parity  will be the same. Also, we will have F(y/y)  — F(y/cr). The proposition 

follows from successive application of this.

Let n  be such th a t k = 2n or k  =  2n +  1 . We have cr • O f  — A P 2n for some ideal A. 

Consider (rhS^FK Since h s ( F ) is odd we have _F(\/cr,lS(F))) =  F{yfa).  Furtherm ore, 

we have crhS(F1 -Op  =  A hS(F) ( P hS(F))2n. The ideal p kS(F ) js principal up to  dyadic 

factors. We obtain  c r ^ ^ ^ - O p  = A hS ̂  x 2n{D F)m for some x E F  and some m  E Z.  

We set y  :=  c x$n *. This y  has the properties th a t we claimed. □

Proof of (8.2): Let F  have property  (*) and let E  — F(y /a )  for some cr E F.  In the

following let t denote the num ber of odd primes of F  th a t ramify in E. In (7.1) we 

have shown th a t E has property  (*) iff either t= 0  or: t = l  and r  £ Np\p{E*) .  We

will use this to first derive a  necessary condition on a  for E(y/cr) to  have property 

(*). Then we will show th a t this condition in fact suffices and it will also become 

clear th a t such cr exist.

C ase  1: Suppose there exists cr £ F  such th a t E  =  F(y/cr) has property (*) and

t= 0 . W hat can be said about such cr? Note th a t we are only interested in cr mod 

F 2, since we are concerned w ith the quadratic extension E. Since t= 0 , i.e. no odd 

prim e of F  ramifies in E, we know from (8.4) th a t the principal ideal a • Of  can 

have odd prim e factors only to  an even degree. Applying (8.5) we can assume tha t 

cr • Op  contains no odd prim e factors at all, i.e. <r • Op  is a  pure power of the dyadic 

prim e of F. Furtherm ore, since we are assuming th a t E  =  F{y /a)  has property (*), 

we get th a t cr m ust be to tally  positive ( so E is real) and not a square in F ( for E to 

in fact be a proper extension of F). These conditions on cr tell us th a t cr is a totally 

positive S-unit th a t is not a square in F, so cr is a representative of the square class 

denoted by r  in (5.4). This shows th a t the only quadratic extension of F that, could 

have property (*) and t= 0  is E  = F{^ /r) .  By (7.1.1) we know th a t F(y/a)  in fact 

does have property (*).
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This shows th a t there is a unique extension E of F  w ith property  (*) such th a t no 

odd prim e of F ramifies in E \F .  It is given by E  — F(y / r ) ,  where r  is a totally 

positive S-unit if F  th a t is not a square.

C a se  2: Suppose there exists a  6  F  such th a t E  =  F(\/cr)  has property  (*) and

t = l .  W hat can be said about such cr? Note th a t, as before, we are only interested 

in cr m od F 2. Since t = l  we know th a t exactly one odd prim e of F  ramifies in E. 

Let P  be this prim e. By (8.4) we have: ordp(cr) =  1 mod 2 and ordg(cr) =  0 mod 

2 for all o ther odd primes Q  of F. Applying (8.5) we can assume th a t the principal 

ideal generated by cr does not contain any odd prim e besides P  and th a t the power 

to  which P divides cr • Op  is odd. Applying (8.5b) we can assume th a t the power 

to which P divides a • Op  is h s (F).  Furtherm ore, cr m ust be to tally  positive since 

E is to be to tally  real. Hence, in order for a quadratic extension E  — F(y /a)  with 

property  (*) and t = l  to  exist it is necessary (not sufficient) th a t there exists an 

element cr € F  w ith the following properties: cr is totally  positive and the principal

ideal generated by cr is of the  form D m • P fcS(F) where D  is the dyadic prim e of 

F, m  £ TL and P  is an odd prim e of F. There is another necessary condition tha t 

we have not taken into account so far: If E is to  have property  (*) and t = l ,  then 

r  (£ N p\p(E*) .  From the Hasse Norm Theorem  it follows th a t there m ust exist 

a prim e A of F  (finite or infinite) such th a t ( r , ct) a  =  — 1 .  Here ( . , . ) a  denotes the 

H ilbert symbol. We will now show th a t if such a A exists it m ust equal P  or D , 

where P  is the odd prim e dividing cr. We will also obtain  a necessary condition on 

P  for when we in fact do have (r , cr)p =  —1.

For an infinite prim e A of F  we have (r , <r)\ =  +1 since r  is totally  positive. For 

any finite prim e A ^  P , D  we also have (r , ct)a =  +1. This can be seen as follows: 

consider PAjthe completion of F  at A. Since A does not divide cr the extension 

P a (V ^ ) |T a  is unramified, i.e. it has ram ification index 1. By the Local Norm 

Index Theorem  we have N{0*F^ ^ ^ )  =  1. This shows th a t in this case

every local un it is a local norm . The S-unit r  is a local unit in Pa since A /  D. So 

r  is a  local norm  in F \  and it follows th a t ( r , cr)a =  +1. The only two primes for 

which we have not yet checked the H ilbert symbol are P  and D.  By the Reciprocity 

Law we know th a t the product of the H ilbert symbols over all prim es of F  equals 

1. Therefore (r , <t)p  =  (t , ct)d f . This shows th a t for E to have property (*) and
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t = l  it is necessary th a t E is of the form  F(y /a)  where cr • Of  — D m • P  for some 

odd prim e P  such th a t (r , cr)p — — 1.

Since the S-unit r  is a  local unit at P  and cr has order 1 a t P  we have:

(r , cr)p =  — 1  r  is not a square in the residue field O p / P

Hence, there are infinitely m any prim es P  of F  for which (r,cr)p =  —1.

Conversely, we ask: Given an odd prim e P  of F  such th a t r  is not a square mod

P  do there exist cr E F  such th a t E  :=  F(y/cr) has property  (*) and t= l?  Yes, we 

will now construct all such cr. Modulo squares of elements of F  there will be exactly 

two such cr. It will tu rn  out th a t for any given P  there exist exactly two quadratic 

extensions of F  with property  (*) and t = l  where P  is the odd prim e th a t ramifies. 

Given an odd prim e P  of F  such th a t r  is not a square m od P  we want a totally 

positive element cr E F  such th a t cr • O f  =  D m • P  for some m  E TL. In the S-ideal 

class group C S( F ) we have: c l (P)h ^  =  1. So there exists some x E F* such

th a t P hSip ) = x • D m for some m  E TL. The principal ideal generated by x  has

the prim e ideal decomposition: p hS(F) . D ~ m . U nfortunately x  is not necessarily

totally  positive. Since F  contains S-units w ith independent signs we can take an 

S-unit u whose em beddings into R all have the same sign as the embeddings of x. 

We define cr x ■ u. This element is totally  positive and since u contributed only 

powers of the  dyadic prim e D  to  the product, we get: cr • Of  — P h ^  • D n for

some integer n. Since h s ( F ) is odd and we are interested in cr only modulo squares, 

we can use (8.5) and assume th a t cr • Of  =  . p n  j\j0 t e th a t by (8 .5 a ) this

new cr is still to tally  positive. If we now exam ine E  :=  F(y/cr) we see th a t E is 

to tally  real and P  is the only odd prim e ramifying. Furtherm ore, we have chosen 

P  such th a t ( r , cr)p =  —1, so t  ^  N e \f {E*)- In (7.1) we.have shown th a t such an 

extension has property  (*). Are o ther choices for a  possible? Let cr • Of  be of the 

form  D n • P h (F ) for some n  ETL and assume th a t there is another totally positive 

element of F  whose prim e ideal decom position is D m • P hS(.f "> for some m  E TL. 

The quotient of the two elements has only one prim e divisor: the dyadic prim e D.

It is therefore an S-unit of F . Furtherm ore, it is totally  positive. Modulo squares 

there is only one such S-unit, it has been denoted by r .  Hence there is exactly one 

other quadratic extension of F  w ith property  (*) and t = l  where the given prim e P
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ramifies. This extension is given by F(^ / ra) .

This completes the proof of (8.2). □

For la ter use we note th a t in  the proof of (8.2) we actualy proved:

(8 .7 )  P ro p o sitio n : Let F be a num ber field w ith property  (*).- For every odd 

prim e P  of F  such th a t r  is not a square in the residue field O p / P  there are exactly 

two quadratic extensions of F  w ith property (*) in which exactly one odd prime of 

F  ramifies. If one is given by E\  =  F(y/a)  then the other is i ?2 =  F(^/rcr).  Besides 

these there is only one other quadratic extension of F w ith property (*). It is given 

by F{y/r) .  Here the dyadic prim e of F  is the only ramifying prime.

Proof: T h a t the dyadic prim e ramifies in F(y / r )  was shown in the proof of (7.1).

The rest of (8.7) follows from  the proof of (8.2). □

(8 .8 )  R em ark: Let E be a quadratic extension of a num ber field F  where both 

have property  (*) and exactly one odd prime P of F  ramifies in E. We know tha t 

r  ^  Np\p(Ug  ), bu t in the proof of (8 .2 ) we showed furtherm ore th a t r  is not a norm 

locally a t P and D F, i.e., if E is given by F(^ fa)  then ( r , <r)p =  ( r , ct)df  = — ^



C H A P T E R  3 

T h e co m p lete  p ictu re

We now re tu rn  to  the question raised in chapter 1. Recall th a t we were looking for a 

num ber field F  w ith elem entary abelian 2 -prim  K 2( O f  ) of smallest rank w ith certain 

conditions on the parity  of the honest class num ber and units w ith independent 

signs. In  chapter 2 we exam ined num ber fields w ith property (*), which by definition 

are exactly the to tally  real num ber fields w ith elem entary abelian 2 -prim  K 2( O f ) 

of sm allest rank. Using this, we now are able to list infinitely m any num ber fields 

th a t share the properties of the example in section 4. In order to  do this, we will 

first collect more properties of quadratic extensions where both  num ber fields have 

property  (*). This will be done in section 9. In section 10 we will recall generalized 

ideal class groups. They will be necessary in section 11. Here we will again show 

the existence of quadratic extensions with property (*), bu t this tim e we will be 

more specific and classify all quadratic extensions w ith property  (*) according to 

their properties w ith respect to  the honest class num ber and units w ith independent 

signs. In section 12 we finally pu t it all together in the m ain theorem . After this it 

will be easy to  give m any examples of num ber fields w ith property  (*).

9. D eta ile d  p ro p ertie s

Let F  be a num ber field w ith property (*). We saw th a t in every quadratic extension 

E \ F  w ith property (*) there is either none or exactly one odd prim e of F  tha t 

ramifies in E. This still leaves m any questions:

W hat can be said about the dyadic prim e of F? We know th a t it does not split, but 

does it ramify or is it inert? How does this behavior of the dyadic prim e affect the 

parity  of the honest class num ber of E and w hether E contains honest units with 

independent signs or not? We will now examine some of these relationships.

40
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(9 .1 )  T h eorem : Let E \ F  be a quadratic extension of num ber fields where both

have property  (*). Let t  denote the num ber of odd prim es of F  th a t ramify in E 

and let D F denote the dyadic prim e of F.

1) if t = l  and if D F is inert in  E then: h( E\ F)  is odd.

if D f ramifies in E then: 

h (£ |F ) is  even <S> 2\ \h(E\F)  E contains units w ith independent signs.

2) If t= 0  then:

F cont. units w ith indep. signs E cont. units w ith indep. signs, 

furtherm ore, if D F ramifies in E then: h(E\ F)  is odd.

if D F is inert in  E then: h(F)  m ust be even and

h(E)  is odd ^  2\\h(F)

Rem ark: Note th a t this theorem  covers all possible cases of quadratic extensions

w ith property (*) since D F can not split in E and by (7.1) we know th a t 0 and 1 

are the only possible values of t.

Proof: F irst, we will check th a t if t= 0 , i.e., no odd prim e of F ramifies in E, then:

F contains units w ith independent signs E contains units w ith independent

signs.

From (7.2.1) we know th a t every S-unit of F is the norm  of an S- unit from E. In 

particu lar, every unit of F  is the  norm  of an S-unit of E. By (7.3) we can conclude 

th a t every unit of F  is the norm  of a unit of S. By (5.10) we obtain  the desired 

result.

Next, we will consider the  case where t= 0  and D F is inert:

Since E is an unramified extension of F it is contained in the m axim al unramified 

extension of F , the H ilbert class field of F. Since E is a quadratic extension of F 

it follows th a t the H ilbert class field of F over F  is of even degree. By class field 

theory the Galois group of this extension is isomorphic to  the ideal class group C(F) 

of F. Hence, C (F) is of even order, i.e. h(F)  is even. For the claim on the parity  of 

h (E)  we refer to  [C-H 2 ], theorem  8.2.

In all rem aining cases we are dealing with a ramified extension E\ F,  so we 

can apply (6 .6 ). We will now check th a t the condition : “C'2 acts trivially 011 the
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2 -prim ary subgroup of C (E )” is always satisfied in the case where both  E and F 

have property (*). Since h s (E)  is odd we know th a t 2-prim C(E) is contained in 

the subgroup of C(E) th a t consists of the class of the dyadic prim e of E and all its 

powers. The dyadic prim e of E is either equal to  the dyadic prim e of F  (in the case 

where D F is inert) or it is the  square of the dyadic prim e of F  (ramified case). In 

either case we see th a t C’2, the  Galois group of E over F , acts trivially on the dyadic 

prim e of E and therefore also on all its powers. Hence, C2 acts trivially on 2-prim 

C(E). In the discussion of th e  following cases we can therefore use a simplified form 

of (6 .6 ):

h( E\ F)  is odd : H°(C'2, 0*E ) —> R ° ( E \ F )  is surjective

We can now easily prove the cases in which we claimed th a t h( E \ F)  is odd:

Let t = l  and D P inert in E or let t= 0  and D F ramified in E.

In either case we have th a t exactly one prim e of F ramifies in E\ F.  The version of 

(6.3) where S is the set containing no finite prim es of F  is:

2-rk.ff0 (.E |i?) —number of ramified primes-1 . Since E is a real extension of F all 

infinite prim es are not ramified. Hence, we see th a t R° (E \ F)  has rank 0, i.e. it is 

trivial. The m ap i 0 m aping into R° ( E\ F)  is therefore trivially surjective. By (6 .6 ) 

we conclude th a t the relative class num ber h( E\ F)  is odd.

The only case th a t is left to  check is: if t = l  and D F ramifies in E, then 

h( E\ F)  is even 2\ \h(E\F)  E contains units w ith independent signs.

One p a rt of the statem ent is th a t if h( E\ F)  is even then 2 is the exact 2 -power 

dividing h(E\F) .  This can be seen as follows: Let D F denote the dyadic prim e of

F and D E the dyadic prim e of E. Let k be such th a t 2k is the exact 2-power dividing 

h(F) .  Since h(E)  = h ( F ) - h ( E \ F ), where h( E\ F)  is even we know th a t 2k+1 divides 

h(E) .  W hy is 2k+1 in fact the exact 2-power dividing h(E)7  Since h s ( E ) is odd 

we know th a t the class of D E generates the 2-prim ary subgroup of the ideal class 

group C(E). We need to  check th a t 2 fc+ 1  is the exact 2-power dividing the order of

D e . We just showed th a t 2 fc + 1  divides the order of D E. For the converse, consider
D 2 k + '  .

B

D 2E + =  ( D2) 2 — ( D f ) 2 » if D f ramifies or : (DP) 2 , if D P is inert 

In either case we are raising D P, the generator of the 2-prim ary subgroup of C(F),
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to the order of this group, so we obtain 1. This shows th a t the order of D E is a 

divisor of 2fc+1. So, we have checked th a t if h( E \ F)  is even then  2 is the exact 

2-power dividing it. The converse is, of course, also true.

The last step is to  prove: E contains units w ith independent signs if and only if

h ( E \ F ) is even.

Let E contains units w ith independent signs. From (5.10) we know th a t then  every 

unit of F is the norm  of a unit of E. Hence, H ° ( C 2, O e ) =  0 p / N E\F ( 0 E ) is the 

trivial group. We com pute the rank of R ° ( E \ F )  by (6.3) as: 2 — 1 =  1. Here, the 

2 counts the one odd prim e of F  ( t= l )  and the dyadic prim e of F  which is either 

ramified or inert in E. The m ap z0 : 1 —> R ^ E l-P ) =  ZZ/2 can therefore not be 

surjective. By (6 .6 ) we can conclude th a t h( E\ F)  is even.

For the converse, we will show th a t if E does n o t  contain units w ith independent 

signs then io is surjective, so h(E\ F)  is odd by (6 .6 ).

Assume th a t E does not contain units w ith independent signs. We are still in the 

case where t = l  and D F is ramified in E, so i2°(i?|.F) =  7L/2.

We have H°{C2, 0 *E ) =  0*f / N e \f {0*e ) ^ R ° { E \ F )  = 2Z/2

In order to  show th a t i0 is surjective we need to  find a class in 0 E / N E\F ( 0 E ) whose 

im age in R° (E \ F)  is not trivial. By (6.4) we can consider R ° ( E \ F )  a subgroup of 

H ° ( C 2, E*)  =  F * / N e \f {E*).  We are therefore looking for a class in Oe / N e \f (0*e ) 

whose image in F * / N e \f (E*)  is not trivial. This means th a t we need to  find a unit 

of F  th a t is not the norm  of any element from E.

If F  does not contain units w ith independent signs we take r .  Since E has property 

(*) and t = l  we know by (7.1) th a t r  ^  N E\f (E*).  By (5.5) the class of r  is contained 

in 0 F/ ( 0 F )2, so it is an element of the required kind.

If F  contains units with independent signs r  will not be an element of the required 

kind since it is not a unit. Since E does not contain units with independent signs 

we know from  (5.10) th a t not all units of F  are norms of units from  E. Let a be a 

un it of F  th a t is not the norm  of any unit of E. By (7.4) a can not be the norm  of 

any element of E. Hence, a is a  unit of F th a t is not a norm  from E. This concludes 

the proof of (9.1). □
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(9 .2 ) L em m a: Let E \ F  be a quadratic extension where both  num ber fields have

property  (*) and where exactly one odd prim e of F  ramifies in E.

If h(F) ,  the class num ber of F , is even then h(E)  is even.

If h(F)  is odd then h(E)  is odd, w ith the possible exeption of the case where: 

h ( F ) is odd, the dyadic prim e of F  ramifies in E and F contains units with in­

dependent signs. In this case h(E)  is even iff E contains units w ith independent

signs.

Proof: Since the extension E \ F  is ramified we have h(E)  — h ( F ) • h(E\F) ,  where

h( E \ F)  G TL is the relative class num ber. From this it is clear th a t if h(F)  is even, 

then so is h(E) .  Now let h(F)  be odd. From (9.1) we know th a t if D F, the dyadic 

prim e of F, is inert in E then h(E)  is odd. Also by (9.1) we know th a t if D F ramifies 

then  h( E\ F)  is even iff E contains units with independent signs. □

Rem ark: An example where h(F)  is odd and where there are quadratic extensions

E of F  th a t have h ( E ) even and others with h(E)  odd is the following:

Let F = Q , here h(F)  = 1. The extensions F{y/2p)  where p = 5 m od 8  have even 

class num ber, the extensions F { \ / 2); F(y/2p)  where p = 3 mod 8  and F(y/p)  where 

p =  3 or 5 mod 8  all have odd class num ber.

1 0 . C o m p le tio n s  a n d  g e n e ra liz e d  id e a l c lass  g ro u p s

We are trying to  obtain  a complete picture of what type of quadratic extensions 

w ith property  (*) there can exist over a num ber field with property (*). We would 

like to  get an idea of how m any there are and w hat their properties are w ith respect 

to containing (honest) units with independent signs and the parity  of their class 

numbers. We will see th a t the quadratic extensions w ith property (*) can be clas­

sified into families th a t all share certain properties. For this classification we need 

the completion of F  at its dyadic prim e, or rather the group of square classes of the



45

completion. We will also need generalized ideal class groups. They will be defined 

in (10.4).

N o ta t io n :  Let F  be a num ber field w ith property  (*). In particu lar, F  has only

one dyadic prim e. As before, it will be denoted by D F or, if no confusion is possible, 

by D. The completion of F  a t its dyadic prim e will be denoted by FD. We will use 

0 D to  denote the local ring of integers of FD.

In the following we will restric t our a tten tion  to  num ber fields w ith property  (*). 

In particu lar, we will assum e th a t F  contains only one dyadic prim e and th a t it 

has odd S-class num ber. All of the following holds true  for a more general set S, 

bu t from  now on we will form ulate all statem ents for the case where S is the set 

consisting of D F and the infinite prim es of F.

Consider the group of S-integers of F , which is contained in the m ultiplicative group 

F*. F*,  in tu rn  is contained in its com pletion at the dyadic prim e F*.  By tak ­

ing square classes of Up,  F* and F*,  we obtain  the finite groups U p / ( U p ) 2 and 

F * / ( F * ) 2 and the infinite group F * / ( F * ) 2. Induced by the inclusion m ap we ob­

ta in  an injective m ap from U p / ( U p ) 2 in to  F * / ( F* )2. The m ap from F * / ( F* )2 into 

F * / ( F * ) 2 cannot be injective. It is, however, surjective.

(1 0 .1 ) L e m m a : Let F  be a num ber field w ith property  (*) and let S be the set

containing D F and all infinite prim es of F. Then the m ap U p / { Up ) 2 — > F * / ( F* )2 

from the square classes of S-units of F  to  the square classes of the com pletion of F 

at D f is injective.

Proof: Let cl(v) be in the kernel, so v is an S-unit of F  th a t is in F 2 under the

inclusion of F  into FD. We need to  show th a t v is already the square of an S-unit of 

F. It suffices to  show th a t v is a square in F, since then it follows th a t it is a square 

in Up.

Let us assume v ^  (F*)2. This leads to  a contradiction:

F(y/ v)  is an extension of degree 2 of F  bu t FD(y/v) = FD. Hence the degree of the 

extension Fd( i/ v ) over FD is 1, so both  the ram ification index ep  and the inertia 

degree f p  of FD(y/v)  over FD are 1. Since FD( s/v)  is unram ified over FD we know 

th a t D f does not ramify in F( \ / v ) .  Can any other finite prim e P  ^  D F ramify in
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F( y / v ) l  No. Note th a t v is an S-unit, so the prim e ideal decom position of v • Of  

contains no prim es other th a n  D. Com paring this to  the criterion in (8.4) we see 

th a t no odd prim e can ramify. Let <Ti,.. ,  (tTi (f ) denote the infinite prim es of F . Some 

of these could ramify in F(yfv) .  Let I  {i| <r; is ramified}. We now need to use 

some facts from  class field theory. The A rtin  reciprocity m ap gives a surjective map 

u; : C ( F , C f ) — > Gal ( F( y / v ) \ F ) =  TL/2. Here C ( F , C f ) is the generalized ideal class

group corresponding to  the cycle c / =  }} Ci. The definition of the generalized ideal
i e i

class group is given in (10.4’). For the cycle Cf we have: C(F,Cf )  — I ( F ) / P ( c f )

where 1(F)  denotes the group of ideals of F  and P(F, Cf )  denotes the group of 

principal ideals of F  th a t have a  generator z such th a t sign[cri(z)\ > 0 for all i E I.  

The class of the  dyadic prim e D m aps to  the identity  under w. This follows from the 

definition of u> and the fact th a t f u  =  1 . Since cl (DF) is in the kernel of <jo we see 

th a t w factors th rough C( F , Cf ) / c l ( DF). This group is isom orphic to  C s (F) j  the 

S-ideal class group of F. Recall the definition: C S(F)  =  1 ( F ) / ( P ( F ) ,  D F) , where

P ( F )  is the set of principal ideals of F. The principal ideals do not necessarily 

have a generator th a t is positive under the embeddings cri w ith i E I .  Hence 

P ( F )  7  ̂ P(F,Cf ) .  But if we consider ideals modulo the dyadic prim e, then every 

principal ideal does have generators th a t are positive anywhere. This follows from 

the fact th a t F  contains S-units w ith independent signs. For a given principal ideal, 

we m ultiply a generator by an S-unit w ith the appropriate signs of its embeddings. 

The resulting ideal differs from  the given principal ideal by factors of D F only.

T he order of C( F , Cf ) / c l ( DF) is therefore h s (F),  which is odd. This odd ordered 

group is m apped into TL/2 by the hom om orphism  u;, hence is the trivial map. 

This is a contradiction to  the fact th a t lo is surjective onto TL/2. □

Rem ark: We can therefore consider U p / ( U p ) 2 as a subgroup of F * / ( F * ) 2 when­

ever this is convenient.

Note th a t U p / ( U p ) 2, F * / ( F * ) 2 and F * / ( F * ) 2 are ffi/2-vector spaces. Here the 

nontrivial element of TL/2 acts on the groups by squaring the classes. We have this 

vector space structu re  in m ind when we now talk about ’’linearly independent” and 

’’basis” .

(1 0 .2 ) P ro p o s itio n : Let F  be a num ber field w ith property  (*) of degree rj(F)
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and denote the embeddings of F into R by <ri, o"r i (F)- Let { « i , t i ri(F)} be 

a set of square classes of S-units of F such th a t sign[<Ti(uj)} = +1 for j  i and 

sign[(Ti(ui)\ =  —1 for i , j  G { 1 , ^ (F)} .  Let r  be the nontrivial totally  positive

square class [see (5.4)]. T hen  are a  basis of U p / ( U p ) 2.

Furtherm ore: the H ilbert symbol ( . ,t )d f is trivial on U p / ( U p ) 2.

Proof: As before, we will simplify notation by denoting representatives of square

classes by the same symbol as the class.

We will first check th a t the elements are linearly independent:

ri (F)

Let t 1 • jQ  u l/  = 1 w ith l , h  G {0,1}
2 =  1

For any fixed j  G {1, . . ^ ( F ) }  we have:

1 =  sign[<Tj( 1 )] =  a i g n ^ j i r ' I J t t j 4)] =  sign[<Tj(xi?)] =  ( - 1 )‘>
i

Hence, l j  —  0 for all j .  This leaves t 1 —  1. By choice of r  as distinct from 1,

we have I — 0. This shows th a t all exponents /, l \ ,.. , /r i(f ) are 0, so the elements 

are indeed independent. In (5.3) we showed i f iUpKUp)2 — 2r i^ +1. Hence the 

dimension of the TLj2 -vector space U p / ( U p ) 2 is ri(F ) +  1. Therefore the r j(F) +  1 

linearly independent elements form a basis.

Every element of U p / ( U p ) 2 can be expressed as a product of elements of 

{ n i,.. ,« n (F ) ,r} »  as above. I t therefore suffices to  check th a t ( u , t ) d f  =  +1 for all 

u  G { u i , . . ,u r i(F ),r }. We conclude this by reciprocity: The H ilbert symbol of u and 

r  is + 1  a t any infinite prim e of F  since r  is to tally  positive. The H ilbert symbol is 

+1 at any finite prim e P  7  ̂ D F since both  S-units u and r  are local units at P.  □

(1 0 .3 ) R e m a rk :  If we consider U p / ( U p ) 2 as contained in F * / ( F * ) 2 the set

{•ui, ...,Mri(j?),T} is also linearly independent in F * / ( F * ) 2. It does not form a basis, 

since F * / ( F f )2 has 2Vl^F^+2 elements. A basis of F * / ( F * ) 2 contains exactly one 

more element. Such an element f3 G F*/ (F*  )2 is characterized by: (/3 , t ) d f  — — 1. 

In particular, we have: U p / ( U p ) 2 is the kernel of ( . , t )d f .
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Proof: By (10.2) we have (v , t )d f — +1 for all v  £ U p / ( U p ) 2. The H ilbert symbol

(., ,)Dp is non degenerate. If (/3, t )d f =  +1 for (3 $  Up / { Up ) 2 then  it would follow 

th a t r  =  1 £ F * / ( F * ) 2. This contradicts the definition of r  as the nontrivial totally 

positive square class. Hence (/3, t )d f =  —1 for all (3 ^  U p / ( U p ) 2. □

The definition of generalized ideal class groups can be found for example in [La]. 

We first s ta te  the general definition in (10.4’) and then restate  it in (10.4) for the 

special case th a t we need it in.

(1 0 .4 ’) D e f in itio n : Let F  be a num ber field and let S be a set of prim es of F.

Let cs  =  J7 P ep be a cycle, i.e. a formal product of the prim es in S. For z £ F*,
P G S

we define: z  =  1  mod*cs iff z is positive at all real infinite prim es in S and 2  =  1

mod P ep for all finite primes P  £ S.

I ( c s ) :=  {A  | A is a fractional ideal of F  with ordp(A)  = 0 for all p £ 5}.

P ( c s ) :=  {A  | A is a  principal ideal th a t has a generator 2  =  1 mod*cs}

The generalized ideal class group is defined as: C( F, cs )  :=  I ( c s ) /P{cs ) -

In the following we only need the generalized ideal class group in  connection with 

num ber fields w ith property (*). In  particu lar, F  is a totally  real num ber field tha t 

contains exactly one dyadic prim e and by S we mean the set th a t consists of tha t 

dyadic prim e and the infinite prim es of F. We will therefore now give a definition 

th a t is restric ted  to apply to  this special case.

(1 0 .4 )  D e f in it io n : Let F  be a totally  real num ber field th a t contains exactly

one dyadic prim e D F. Let <r\ ,.., 0 >i(F) denote the real embeddings of F . Let cs  be
n(F)

the cycle: ( DF)2e+1 ■ <Ti where e is the ram ification index of FD over <Q2.
i= 1

(Here FD is the completion of F  a t D P and Q 2 are the 2 -adic num bers) For 2  £ F * , 

we define:

2  =  1  mod*cs iff ^ is totally  positive and 2  =  1 mod (D F)2e+i

Let I(cs ) denote the group of fractional Op  ideals A such th a t ordp>F A = 0 and 

let P (c5 ) denote the subgroup th a t consists of principal ideals for which there exist
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generators th a t are congruent to 1 mod* c s • The generalized ideal class group 

C ( F , c s )  is defined as the quotient C ( F , c s ) — I (c s ) / F( c s ) -

(1 0 .5 )  L e m m a : If z =  1 mod* cs  then z is a local square, i.e., a square in the 

com pletion of F , a t all prim es th a t are contained in S.

Proof: Let z =  1 mod* cs-  T he completion of F a t any infinite prim e is R. Since

z is to tally  positive it certainly is a square in R. We have to  show th a t z is a square 

in Fd , the com pletion of F  a t the dyadic prim e D F. By assum ption we have z =  1 

mod(Z>F)2e+1. We will apply Hensel’s Lemma to  show z £ F 2:

Consider the polynom ial f ( x ) =  x 2 — z £ FD[x\. Modulo (D F ) 2 e + 1  there exists 

a solution to  f ( x )  = x 2 — z = x 2 — 1, namely: / ( l )  =  0 mod (£>ir)2e+1. The

derivative of f ( x )  is f ' ( x )  = 2x,  so / ' ( l )  — 2. Recall th a t e denotes the ramification 

index of FD over (Q2- This tells us th a t the prim e ideal decom position of 2 in F 

is: 2  • O f  =  (D F)e . Hence, ordoF{2 ) =  e. We have now checked the following

inequality: 0 <  2 • orduF( f ' (  1)) <  2e +  1. This is precisely the condition tha t

needs to be satisfied in Hensel’s Lemma We can now conclude th a t f ( x )  — x 2 — z 

has a solution in FD, so z is a  square in FD. □

The following theorem  will be the key to our classification of quadratic extensions 

w ith property  (*). We will form ulate the theorem  only for num ber fields with 

p roperty  (*) where S is the set consisting of D F and the infinite prim es of F. The 

theorem  goes through in the same way for more general cases. It is, however, crucial 

th a t h s (F)  be odd.

(1 0 .6 )  T h eorem : Let F  be a num ber field w ith property (*). Let D F denote 

the dyadic prim e of F and let r  be the nontrivial to tally  positive square class, 

see (5.4). There exists a surjective group hom om orphism  $  from F * / ( F * ) 2 onto 

C ( F , c s ) / C ( F , c s ) 2 whose kernel is { l , r } .

Rem ark: To simplify nota tion  in all of the following we will not distinguish between

an elem ent in F or its image in the completion FD, unless th a t distinction is essential
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to  the argum ent. Also, we will use the same notation for an element and its square 

class except for /3 and (7 , which we need to  distinguish.

Proof: Let cr̂ ,.., cri(F) denote the embeddings of F into R. Consider the in­

clusion of F*  in to  the product of completions of F: F1* x R r i*F\  defined by

z i ► (z,<7jz, ..,crri(F)z).  From  the independence of valuations we know th a t this 

m ap is dense. The induced m ap into the finite group of square classes:

F* —  F * / ( F * ) 2 x { 7 L / 2 Y ' W  z »  (z,sign[<TlZ\, . . , sign[ari{F)z})

is therefore surjective.

We can now define the m ap $  : F * / ( F * ) 2 — ► C ( F , c s ) / C ( F , c s ) 2 

Let j3 E F * / ( F * ) 2. By the above, we can choose a totally positive element cr E F  

such th a t a — (3 E F * / ( F * ) 2. Note th a t this choice of cr is not unique! Let m  ETL 

be the exact power to  which D F appears in the prim e ideal decomposition of the 

principal ideal generated by a  in F. We have:

cr ■ Op — D™A for some fractional ideal A E I{cs)

We take the odd part of this, i.e. A.  We define the class of A in C ( F , c s ) / C ( F , c s ) 2 

to be the image of (3.

After defining this m ap

* :  F*d /{F*d )2 — >C( F, c s ) / C ( F , c s )2 w ith (3 »  cl(A)

we m ust check th a t it is well defined and th a t it is a surjective group homomorphism 

w ith kernel { l , r } .

$  is well defined:

For a given f3 the choice of cr was certainly not unique. We therefore need to check if 

different choices of a  result in  the same class in C ( F , c s ) / C ( F , c s ) 2■ Let a, s E F* 

be two totally  positive elements such th a t cr — s E F * / ( F * ) 2. (Again, we are 

simplifying the notation by not distinguishing between cr, s E F  and their images 

in F * / ( F * ) 2\) Consider ^  E F.  This is a totally  positive element since both  cr 

and s are to tally  positive. We claim th a t there exists an element a E F  such tha t
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^ • a~2 =  1 mod*cs- For any a £ F  we certainly have th a t ^ • a~2 is a totally 

positive element of F. To prove the claim we m ust show th a t there exists a such 

th a t ^ • a~2 =  1 mod (Z>F)2e+1. By assum ption we have th a t a = s £ F £ / ( F £ ) 2, 

so ^  is a square in FD. therefore the element ^ £ F  is a square modolo any power 

of D f . In particu lar, there exists a £ F  such th a t ^ =  a2 m od (D F)2e+1. This 

completes the proof th a t there exists a £ F  such th a t ~ • a~2 =  1 mod*cs.

Let a • O f  — D™A w ith A £ I(cs)-  Since 3 — ^  • cr =  • a ~2) • a2 • a  we can write

the principal ideal generated by s as:

s - 0 F = - a - 2)a2D™A

We have cl-Of  =  D bFB  for some b £ 5Z and B  £ /(eg ). Plugging this into the above 

equation yields:

s - O p  =  - a - 2) D 2Fb+mB 2A 

By definition of $ ,  we now take the  class of the odd part of s • Op'

c Z ( £  ■ a~2] B 2A )  =  • a “ 2] • O f )  ■ c l { B f  • cl(A)  £ C{ F, cs ) / C { F , c s )2

T he class of • a -2 ] • O f  is trivial already in C ( F , c s ) since ^  ■ a~2 =  1 mod*cs- 

In C ( F , c s ) / C ( F , c s ) 2 we therefore obtain:

c l ( [ ^  • a - 2] B 2A )  =  c/ (d)

This shows th a t different choices of s and <r still give the same class in 

C ( F , c s ) / C ( F , c s ) 2, hence the m ap $  is well defined.

We check th a t $  is a  hom om orphism  of m ultiplicative groups:

Recall how the m ap was defined: For (3 £ F * / ( F * ) 2 we chose a totally  positive

inverse image a £ F * . This m ap from the group of totally  positive elements in 

F* to  F p / ( F * ) 2 is a  group homom orphism. We then take the odd part of cr • Of - 

This m ap from F* into I ( c s ) is again a group homom orphism. Factoring out P(cs)  

and  taking square classes also preserves the group structu re , i.e. it is a group 

hom orphism . The m ap is surjective:

Given cl{A) £  C ( F , c s ) / C ( F , c s ) 2 for any A £  I ( c s ) we will construct an inverse 

image. A is a fractional ideal of F and by assum ption the S-class num ber h s (F)
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is odd. Therefore there exist m  £ ZZ and cr £ F  such th a t A hS^F  ̂ = cr • D™. 

Claim: the class of cr in F*/ ( F*  ) 2 is an inverse image of cZ(d). To check where

a  £ F * / (F* ) 2 m aps to  we need a totally positive inverse image in F. The condition 

’’to tally  positive” prevents us from taking cr £ F.  Since F  is assumed to contain 

S-units w ith independent signswe can take an S-unit u £ F  th a t has the same sign 

as cr in all em beddings of F. The product cru £ F  is totally  positive and we know 

th a t the  ideal cru- Op  differs from cr -Op  only by powers of the dyadic prime. Since 

cr-Op was equal to  A h we have cru- O f  =  A h (F)J)~m+n for some n  £TL.

The odd p a rt of this is A h (FK Its class in C(F,  cs)  is cl (A)hS^FK Modulo squares 

this is equivalent to  cZ(.4), since h s (F)  is odd. This shows th a t cr £ F * / {F* ) 2 is an 

inverse image of cl{A) £ C ( F , c s ) / G ( F , c s ) 2 ■

We com pute the kernel of <&:

Let (3 £ F * / ( F * ) 2 be in the kernel of the m ap. F irst, we show th a t there m ust exist 

a to tally  positive S-unit of F  whose image in F * / ( F £ ) 2 equals /3: We know tha t

there exists a to tally  positive element cr £ F  whose image in ,F * /(F * ) 2 equals f3. 

The ideal generated by <x in F  is of the form cr ■ Of  — A • ( D F)n for some n  £ TL 

and some A £ I(c$).  By definition of the image of (3 under $  we take the class in 

C ( F , c s ) / C ( F , c s ) 2 of the odd part of a ■ Of . Hence this image is cl(A).  We are 

assum ing th a t f3 is in the kernel, so cl(A)  =  1  6  C ( F , c s ) / C ( F , c s ) 2 • This means 

th a t A — z • B 2 for some z £ F  w ith z =  1 mod*cs and some B  £ I ( c s ). In F we 

have: a • Of  =  z ■ B 2( D F)n . We now raise this to  the power h s (F).  Since h s (F)  is 

the S-class group of F  we have: =  b • (D F)m for some b £ F  and m  £ TL.

We obtain:

<rhSm  ■ 0 F =  z hS(F\ B hSW ) 2( DF)hS^ n = z hS^ b 2( D F)2m+hS^ n

We consider the element: "'^s ( F ) *2 € F . It has the following properties:

a) it is a to tally  positive S-unit,

b) its image in F * / ( F * ) 2 is (3.

To check this we first note th a t z =  1 m od*cs, hence by (10.5) 2  is totally positive 

and its image in FD is a square. We have cr, z and of course b2 are totally positive, 

therefore ^S(F)^2 IS to tally  positive. I t is an S-unit because it generates the ideal 

( D F)2m+h <F)n , which contains no odd primes. This proves a).
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The element cr was chosen such th a t its image in F* / (F* ) 2 is 0.  Since h s (F)  is 

odd we see th a t <rhS^  also has image 0.  The elements z and b2 bo th  have trivial 

images in F * / ( F * ) 2 since they are contained in F 2. This proves b).

Recall th a t by (10.1) we can consider U p / ( U p ) 2 a subgroup of F*/ ( F*  )2. We have 

ju st shown th a t if an element of F £ / ( F * ) 2 is in the kernel, then  it is represented 

by a totally  positive S-unit. M odulo squares there are exactly two such S-units: 1

and r .  Both of these are in fact in  the kernel. This concludes the proof of ( 1 0 .6 ).Q

11. F am ilie s  o f  n u m b e r  fie ld s  w ith  p r o p e r ty  (* )

Recall th a t for a given F w ith property (*) there is exactly one quadratic extension 

w ith property  (*) in which no odd prim e of F ramifies. It is given by F ( \ / t ). In 

all o ther quadratic extensions w ith property (*) there is exactly one odd prime of 

F th a t ramifies. It is these other extensions th a t we will now be concerned with. In 

the previous section we defined a surjective group hom om orphism  $  from  F*/ (F*  ) 2 

onto C ( F , c s ) / C ( F , c s ) 2 whose kernel has two elements, nam ely 1  and r .  We will 

now use the 2  to  1  correspondence th a t $  gives to classify the infinitely many 

quadratic extensions E w ith property (*) of F  in which one odd prim e ramifies.

A quadratic extension E of F  is of the form E  = F ( \ f a )  for some a E F,  where 

cr is determ ined uniquely up to  squares in F. The extension therefore determines a 

unique element of F * / ( F * ) 2, by taking the image of cr. In the following this image 

of cr in  F*/ { F£) 2 will be denoted by 0.  If E has property  (*) and if one odd prime 

of F  ramifies in E, then the  extension determines a unique odd prim e, namely the 

one th a t ramifies. This prim e can be considered an element of I{cs)-  The extension 

therefore determ ines a unique element in the factor group C(F,cs) -

(1 1 .1 )  P ro p o s i t io n :  Let F be a  num ber field w ith property  (*) and let E  =

F(y/cr) be a  quadratic extension w ith property (*) in which one odd prim e of F
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ramifies. Let f3 denote the class of cr in F £ / ( F £ ) 2 and let P be the  odd prim e of F 

th a t ramifies in E. Then the image of (3 under the m ap 4?, defined in (10.6), is the 

class of P in C ( F , c s ) / C ( F , c s ) 2 •

Proof: Recall how the image of f3 under $  was defined:

We take a totally  positive element of F  whose image in F * / ( F * ) 2 is (3. Such an 

element is given by cr. Note, th a t it is indeed to tally  positive since E  is to tally  real. 

We then  need the odd p a rt of the principal ideal cr • O p . We are assum ing th a t P is 

the only odd prim e th a t ramifies in E —F{y/a).  Applying (8.4) we obtain  th a t the 

prim e ideal decomposition of cr ■ O f  contains P to  an odd power and every other 

odd prim e to an even power. We take the class in C ( F , c s ) / C ( F , c s ) 2 of this odd 

p a rt of a  • O f - This leaves c l (P ), since all squares are factored out. So, cl(P)  is 

indeed the image of (3 under 4>. □

In the  following proposition we consider U p / ( U p ) 2 as a subgroup of F* /  (F*)2, 

which can be done by (10.1). The complement of U p / ( U p ) 2 in F*/ (F*  ) 2 will be 

denoted by F*/(F'*)2 -  C / | / ( [ / | ) 2.

(1 1 .2 ) P ro p o sitio n : Let F be a num ber field w ith property  (*) and let E  =

F(y/cr) be a quadratic extension of F  w ith property  (*) in which exactly one odd 

prim e of F  ramifies. Then the class of cr in F * / ( F * ) 2 is contained in F £ / ( F £ ) 2 —

Proof: Let a  denote the element of F  or F * / ( F * ) 2 and f3 its image in FD or

F* / (F* ) 2 . As before, our nota tion  does not distinguish between elements and their
f

square classes. By (10.2) we have (r,v)p>F — +1 for all S-units v. On the other 

hand, since E has property  (*) and one odd prim e of F  ramifies in E, we know from

(8 .8 ) th a t th a t r  is not a  local norm  at the dyadic prim e D F: {t ,/3)d f = —1. This

shows th a t [3 £  F*/ ( F*  )2, the  image of cr, can not be contained in the subgroup 

U § / ( U § ) 2. □

The converse of (11.2) also holds, namely: for every f3 £ F * / ( F * ) 2 — U p / ( U p )2 there 

exist extensions of F w ith property  (*). Note th a t (8.2) already gave the existence
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of of infinitely many quadratic extensions of F  w ith property (*) in which exactly 

one odd prim e ramifies. Proposition (11.3) will be an improvement on this because 

it shows the existence of infinitely m any such E —F{y/a)  for any given image (3 of 

cr.

By (8.7) we m ust show th a t for a  given (3 G F £ / {F£ ) 2 — U p/ {Up) 2 there exists 

<r G F  (modulo squares) th a t has the following properties:

cr is to tally  positive and its prim e ideal decom position is of the form cr • O f  =  

[DF)mP h S for some odd prim e P  for which r  is not a square in the residue field 

O p / P .

Any (3 G F * / {F* ) 2 certainly has m any totally  positive inverse images in F*/ {F*) 2, 

bu t why should there be those among them  th a t contain exactly one odd prime? 

This is where we will use the m ap $  th a t was constructed in (10.6). It takes 

(3 to  a class in the generalized ideal class group modulo squares. The class of 

$(/?) contains infinitely m any prim es P. We will see th a t for each such P we can 

construct an element cr whose image in F ^ / { F * ) 2 is (3 and where P is the only odd 

prim e th a t ramifies in F{y/cr). Furtherm ore, we will see th a t if j3 was chosen in 

F;/{F*d )2 — Up/ {U§) 2 then each F{t/ct)  will have property (*), i.e., each P will 

have the property  th a t r  is not a square in the residue field O p / P .

(1 1 .3 ) P ro p o s i t io n :  Let F be a  num ber field w ith property (*).

For each f3 G F */ { F*) 2 — Up / { Up ) 2 there exist infinitely many quadratic extensions 

E  — F{ \ / a )  of F such th a t E has property (*), exactly one odd prim e of F ramifies 

in E and (3 is the image of cr in F * / { F* ) 2.

Proof: Given (3 G F * / { F * ) 2, consider its image in C { F , c s ) / C ( F , c s ) 2 under <&.

Every class in C{F,  cs ) / C{F,  cs )2 contains infinitely many prim e ideals of F. They 

are all odd primes, by the definition of C{F , cs). As in the proof of (8.2) we have tha t 

every odd prim e P gives rise to exactly two real quadratic extensions of F in which 

P is the only odd prime th a t ramifies. Recall th a t these extensions are obtained by 

raising P to the power h s {F).  This ideal is of the form: P hS(F > =  <tD™, where we

can assume cr G F  to  be totally  positive since F  contains S-units w ith independent 

signs. The real quadratic extensions of F th a t are uniquely determ ined by the fact
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th a t P  is the only odd prim e th a t ramifies are: E\  =  F(^Ja)  and E 2 =  F(y/ ra) .  

W hat are the images of cr and t<t in F * / (F* )2? By definition of $  both  images 

m ap to  cl (P)  G C ( F , c s ) / C ( F , c s ) 2. By the  choice of P  we also know th a t /? is an 

inverse of cl(P).  Since $  is a  two to one m ap we have: (3 is the image of either cr

or to- in Ff , / (F*)2. Since we are dealing w ith square classes we can m ultiply by r ,  

if necessary, and assum e th a t fl is the image of a.

The above works for any /? e  F ; / ( F * ) 2. If we take (3 £ F * / ( F * ) 2 -  Uj / / (U§)2, 

then  we claim th a t both  E\  =  F(y/a ') and E 2 =  F(y/rcr)  have property  (*):

By the criterion in  (7.1) we need to check th a t r  is not a  norm  from  Ei  over F  and 

also not from E 2 over F. It suffices to  show th a t r  is no t a norm  locally for some 

prim e of F. We consider the dyadic prim e D P: we have chosen (3 U p / ( U p ) 2 by

(10.3) we have (r,/3)p,F = —1. This shows th a t r  is not a  norm  from E j =  F(y/(r) 

over F. We have (t , t )d f =  +1 since the H ilbert symbol of r  and r  is clearly 4:1 at 

all o ther prim es. Hence, we have:

(t ,T(t )d f =  (t ,(t )d f (t , t )Df = (t , ct)Df = - 1

Therefore, r  is also not a norm  from E 2 =  F ( y / ra )  over F.

We have shown: For any given f3 £ F * / ( F * ) 2 — U p / ( U p ) 2 there are infinitely many

P th a t each give rise to exactly one quadratic extension E  =  F(y/cr) such th a t this 

extension has property  (*), exactly one odd prim e, nam ely P, ramifies in E and (3 

is the im age of a  in F * / ( F * ) 2.

Note th a t the other extensions E  =  F ( y / ra )  do not satisfy all of the required 

properties since the image of r u  in F£/ ( F£  )2 is t (3 ^  /3. □

(1 1 .4 ) D efin ition : Let F  be a num ber field w ith property  (*). Let E  =  F(^ /c )

and E'  =  F(y/ s)  be quadratic extensions w ith property  (*) in which exactly one 

odd prim e of F  ramifies. We say th a t E and E ’ are m em bers of the same family  iff 

cr and s determ ine the same element in F * / ( F * ) 2.

(1 1 .5 ) R em arks:

a) By (11.2) each family is determ ined by an element in F * / ( F * ) 2 — U p / ( Up ) 2. 

There are 2rd i7'^ + 1  such elements.
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b) For each element of F * / ( F * ) 2 — U p / ( U p ) 2 we ob ta in  a family th a t contains 

infinitely m any m embers. This follows im m ediately from (11.3). We will often refer 

to families as infinite families.

c) For a num ber field F w ith property  (*(there is a one to  one correspondence be­

tween the  elements of F* / ( F *  ) 2 — Up/ (  Up ) 2 and the families of quadratic extensions 

with property  (*) in which exactly one odd prim e ramifies.

We will now justify this classification of extensions w ith property  (*) into families 

by showing th a t m em bers of the  same family have the same behavior w ith respect 

to m any of the properties th a t we are interested in.

(1 1 .0 ) P ro p o sitio n : Let F  be a num ber field w ith property  (*). Let E be

a family of quadratic extensions of F  w ith property  (*) in which exactly one odd 

prim e of F ramifies.

a) The dyadic prim e D F of F  either ramifies in all mem bers of E or in none.

b) The mem bers of E either all contain units w ith independent signs or they all 

do not contain units w ith independent signs.

c) All m em bers E of E have the same exact 2-power dividing their class numbers 

h(E) ,  in particu lar, they are either all even or all odd.

Proof: Let /? denote the elem ent of F * / ( F * ) 2 — Up / { Up ) 2 th a t corresponds to  the

family E. Let E = F (v/or) be a  m em ber of E. This means th a t f3 is the image of cr in

f ; / ( f z ) 2 .

a) We have: D F ramifies in  E over is a ramified extension of FD.

This proves th a t the behavior of the dyadic prim e in E \ F  is determ ined by the 

family th a t E belongs to.

c) follows im m ediately from a), b) and (9.1)

b) If F  does not contain units w ith independent signs, then no extension E with 

property  (*) contains units w ith independent signs.

If F contains units w ith independent signs we have from (5.10): E contains units

w ith independent signs iff all units of F are norms of units of E. Let a be a unit 

of F. We will now check th a t w hether or not a is a norm  from  E depends only on
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/3. To check if a is a norm  we check if it is a norm  locally a t all primes of F. To do 

this we consider the Hilbert symbol of a and cr. At an infinite prim e of F  it is +1 

since a  is totally  positive. At a finite prim e th a t is distinct from D F and the one 

prim e th a t ramifies in E, the  H ilbert symbol is again +1 since both  a and cr are 

local units. By reciprocity the  value of the H ilbert symbol is the same at the two 

prim es th a t are left. Hence, a  is a  norm  locally everywhere iff (a,/3)EF — +1. By 

the Hasse Norm Theorem  we then have: a  is a norm  from E iff (a ,/? )# P — +1- By

(7.4) we know th a t a unit of F is a norm  from E iff it is the norm  of a unit of E. 

This shows th a t whether all units of F  are norms of units of E depends only on /3. 

□

(1 1 .7 ) R em ark: Let E \ F  be a quadratic extension of num ber fields th a t both

have property  (*) and where exactly one odd prim e of F  ramifies in E. From (7.2) 

we know th a t N E^p(Up) / (Up)2 is a subgroup of index 2 of Up / ( U p ) 2 th a t does 

not contain r .  Since both  E  and F  contain S-units w ith independent signs we 

have by (5.8) th a t N E\ F(U§) / (Up)2, which is the image of n , maps surjectively 

onto (ZZ/2)rd F ) under ip. Hence the subgroup contains a  set { u j , .., u r i ( F) }  of 

square classes of S-units of F  of the following type: sign[ai(uj)] — +1 for j  ^  i

and sign[<Ti(ui)] —  — 1  for all i , j  E  { 1 ,  . . , r i ( F ) } .  Here { < x i , - v ^ r ^ F ) }  denote the 

em beddings of F  into It. By (10.2) such a set ,.., w r i ( F ) }  together with r  form 

a basis of the TL/2-vector space U p / ( U p ) 2. Hence a set of the above type already 

generates a subgoup of index 2 in U p / ( U p ) 2. □

Let E be a  quadratic extension of F  th a t has property (*) and in which exactly 

one odd prim e of F ramifies. We ju st sta ted  th a t, by taking norms of S-units of E, 

E uniquely determ ines a subgroup of index 2 in U p / ( U p ) 2 th a t does not contain r .  

The converse also holds:

(1 1 .8 ) P ro p o sitio n : Let F  be a num ber field with property (*).

For any subgroup of index 2 of U p / ( U p ) 2 th a t does not contain r  there exist two 

infinite families of quadratic extensions of F  w ith property (*) such th a t for any 

m em ber E of the families we have: all classes in the given subgroup consist of

norm s from  S-units of E.
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Before we prove (11.8), note th a t this has the following consequences:

(1 1 .9 ) C orollary: Let F  be a num ber field w ith property  (*) th a t contains units

w ith independent signs. Among the 2 r i ( ^ + 1  infinite families of quadratic extensions 

w ith property  (*) there are exactly two th a t also contain units w ith independent 

signs. They correspond to the choice of O p / { O p ) 2 as the subgroup of U p / ( U p )2 in

(11.8). All other families do not contain units w ith independent signs.

P roof of (11.9): We use the fact th a t 0*F/ ( 0 p ) 2 is a subgroup of UF / (UF )2 of

index 2. Since F  contains units w ith independent signs we have from (5.5) tha t 

t  is not a square class of honest units of F, so O p / ( O p ) 2 does not contain r .  By

( 1 1 .8 ) there are two infinite families such th a t for every m em ber E we have: all 

classes in O p / ( O p ) 2 consist of norms from S-units of E. By (7.3) we know th a t a 

unit of F  th a t is the norm  of an S-unit of E  is already the norm  of a unit of E. 

Hence, all members E of the  two infinite families have the property th a t all classes 

in O p / ( O p ) 2 consist of norms from  (honest) units of E. By (5.10) we conclude tha t 

all these E contain units w ith independent signs. We also see th a t no member of 

any other family can contain units w ith independent signs. □

Proof of (11.8): Every subgroup of index 2 of UF / (UF )2 th a t does not contain r

m ust m ap surjectively to  {TL/2 ) 2 under ip, as defined in (5.7). Hence the subgroup 

contains, and is also generated by, a set {«j ,  . . , uri(F)} of square classes of S-units 

of F of the following type: sign[cri(uj)] — +1 for j  ^  i and sign[<Ti(ui)] =  — 1  for

all i , j  € {1, ..,ri(F )} . We identify if; w ith their images in F £ / ( F * ) 2. From (10.2) 

we know th a t {u1?.., ttr i(^), r}  form  a basis of the Z / 2 -vector space UF / (UF )2, so 

they are linearly independent in F*/ ( F*  )2. Consider the vector space isomorphism: 

F*d /(F*d )2 = Homyz / 2  ( F£ / ( F * ) 2,7L/2)  th a t is given by m apping f3 <E F * / ( F * ) 2 to 

its the  H ilbert symbol at the dyadic prim e (.,f3)£>F. This tells us th a t any given TL/2 

hom om orphism  /  from  F * / ( F * ) 2 to TL/2 there exists exactly one f3 £ F * / ( F * ) 2 

such th a t (3 =  / .  If we prescribe values on the set {«.],.., itr i (j7) , r } ,  which is one 

element short of being a basis of F* / (F* )2, then there are exactly two elements 

of F ^ / ( F * ) 2 th a t correspond to  it. Let /  6  H o m ’z i 2 ( F * l ( F * ) 2,TL/2) such tha t
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/ ( r )  =  —1 and f ( u i ) =  +1 for all i. Let /? be an element of jP * /(F * ) 2 such 

th a t ( .,/? )d f  — /•  The o ther element of F * / ( F * ) 2 th a t corresponds to  /  is then 

t /3 . This follows from the bim ultiplicativity of the H ilbert symbol and from the 

fact th a t (v , t ) d f  =  +1 for all v G U p/ {Up) 2 which we saw in (10.2). Note tha t 

bo th  /3 and t /3 are in F * / ( F * ) 2 -  U§/(U§.)2 since ( t , /3 ) d f  =  ( t , t /3 ) d f  = —1, 

see (10.3). We take the two infinite families th a t correspond to (3 and t /3 . Let E 

be a  m em ber of one of these infinite families. We will now show th a t the square 

classes {« i, . . ,« r i(F)} consist of norms from E. E is of the form F(y / a)  or F(y/rcr) 

for some to tally  positive a  G F  whose image in F * / ( F * ) 2 is f3. Let us assume tha t 

E  = F{y/a) .  The other case is completely analogous. Let u be a representative of 

any of the classes {uj ,  . . ,uri(F)}. As was explained in the proof of (11.6b), to  check 

if u is a  norm  globally from F(^/ir)  over F  is equivalent to checking if it is a norm 

locally from  F D ( \f]3) over FD. By the choice of f3 we have: (u, (3 ) d f  — +1 for all

u.  This shows th a t u is a norm  from E. Hence, the square classes {iij, . . ,« r i(F)} 

consist of norms from  E for every member of the families corresponding to (3 and 

t /3 . The above square classes generate the given subgroup of index 2, hence all 

classes in the given subgroup consist of norms from S-units of E for every member 

of the families corresponding to  (3 and rf3. □

12. T h e m ain  th eo rem

We now pu t together all the inform ation we obtained in the previous sections to 

obtain  a complete picture of the type of quadratic extensions with property (*) 

th a t exist for a given num ber field. The properties th a t such an extension can have, 

of course, depend on properties of F. We will therefore need m any seperate case 

discussions. Recall th a t property (*) is hereditary, so the given num ber field F 

m ust have property  (*), or there are no such extensions.
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(1 2 .1 ) T h e o re m : Let F be a num ber field w ith property (*) of degree ry(F)

and let r  be as defined in (5.4). The following is a complete list of all quadratic 

extensions of F  th a t have property  (*): There is exactly one extension in which no

odd prim e of F  ramifies. It is given by F(y/ r) .  There are 2 r i ^ i ? ^+ 1  infinite families 

of extensions [in the sense of (11.4)]. In all members of these families exactly one 

odd prim e of F  ramifies. Furtherm ore, the extensions have the following properties 

concerning the ram ification of the dyadic prim e D P, the parity  of the class num ber 

and the containm ent of units w ith independent signs:

A ) If h(F)  is odd and if F  contains units w ith independent signs:

The extension F(y / r )  has odd class num ber, it contains units w ith independent 

signs and D P ramifies. There is one infinite family whose m em bers have odd class 

num ber, contain units w ith independent signs and in which D F is inert. There is 

one infinite family whose mem bers have even class num ber [in fact -2\\h(E)], contain 

units w ith independent signs and in which D P ramifies. The m em bers of all other 

infinite families have odd class num ber, do not contain units w ith independent signs 

and D f ramifies in these extensions.

B ) If h(F)  is odd and if F  does not contain units w ith independent signs:

All quadratic extensions w ith property (*) have odd class num ber, do not contain 

units w ith independent signs and D F ramifies in these extensions.

C ) If h(F)  is even and if F  contains units w ith independent signs:

The extension E  — F( y / r )  contains units w ith independent signs and D F is inert. 

It is an unram ified extension, so h(E)  is odd iff 2 ||/i(F1). There are two infinite 

families whose members contain units w ith independent signs. They have even 

class num ber, in fact 2\ \h(E\F),  and D F ramifies. The members of all other infinite 

families do not contain units with independent signs. They also have even class 

num ber, bu t here the relative class num ber is odd, and D F ramifies.

D ) If h(F)  is even and if F does not contain units w ith independent signs:

T he extension E  =  F(y / r )  does not contain units w ith independent signs and D P is 

inert. It is an unram ified extension, so h(E)  is odd iff 2||/j(jF7). The members of all

;nfjn i[e families have even class num ber [in fact the relative class num ber 

is odd], they do not contain units with independent signs and D P ramifies.
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(1 2 .2 ) R em ark: In the first chapter we were looking for a num ber field with 

property (*) th a t has even class num ber and does not contain units w ith independent 

signs. Such a  num ber field does not exist am ong quadratic extensions of a  num ber 

field of type A) [using the nota tion  of the m ain theorem]. Since Q is of type A), we 

see again, th a t it does not have a quadratic extension of the required kind. If we are 

looking for an example among quadratic extensions of a  quadratic num ber field we 

see th a t the quadratic  num ber field m ust be of type C). This is indeed the case in 

our example from  section 4. The m ain theorem  tells us th a t for every  num ber field 

of type C) there exist quadratic extensions w ith property  (*), even class num ber 

and units w ith independent signs. Exam ples will be given in section 15.

We now list some corollaries th a t illustrate the im plications of the m ain theorem .

(1 2 .3 ) C orollary: For any natu ra l num ber n  there exists a num ber field F  of

degree 2n w ith property (*) and 2n \\h(F).

Proof: W ith  the notation of the m ain theorem  Q is of type A). For the case n  =  1

we take any m em ber of the one infinite family th a t contains units w ith independent 

signs and where 2 is the exact 2-power dividing the class num ber. Such a num ber 

field is of type C). For n  > 2 we take successive quadratic extensions of the above 

num ber field. These extensions are always chosen from  the two families th a t contain 

units w ith independent signs. Each tim e we take such an extension the  exact 2- 

power dividing the num ber field rises by 1. □

(1 2 .4 ) C orollary: If F  is a num ber field w ith property  (*) th a t is built from 

successive quadratic extensions of Q(>/p) or (Q(y^p) then  the class num ber of F  is 

odd.

Proof: Note th a t (^(y/p) or Q (\/2p) are type B) in the m ain theorem , see (2.5)

or (13.1). □

Before we can completely prove the main theorem  (12.1), here is one more im portan t 

observation: In (11.6.a) we saw th a t the dyadic prim e D F will either ramify in all

members of an infinite family or in none. We will now see how this behavior of D F 

is determ ined by the /? 6 F ^ / ( F ^ ) 2 th a t is related to  the family. For all families
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the related /? is contained in F ^ / { F * ) 2 — U p / (U p )2, bu t the following proposition 

also applies to the case F(y /r ) .  We therefore do not restrict (3 in the following 

proposition, so it includes the  case /3 =  r .

(1 2 .5 )  P ro p o sitio n : Let F  be a  num ber field w ith exactly one dyadic prim e D F.

Let F d denote the completion of F a t D F. Let a be an element of F  such tha t 

L  :=  Fd{\/]3) is a proper extension of Fd ; where we denote the  image of a  in 

F*J{F*)2 by/?.

a) T he classes in F * / ( F * ) 2 th a t contain units of FD form a subgroup of index 2.

b) (Local norm  index theorem )

The classes in F * / ( F * ) 2 th a t consist of norms from  L form  a subgroup of index 2.

c) Let E  :=  F ( 1/o :), then D F does n ot ramify in E \ F  iff in F * / ( F * ) 2 we have: the 

subgruop of norms coincides w ith the subgroup of classes containing local units.

Proof: Let 0 D denote the ring of integers of FD. In 0 D the ideal D F is principal,

a generator is called a uniformizer. The classes of F £ / ( F £ ) 2 are all generated by 

elements of the form u and wr,  where u  denotes a unit of FD and 7r denotes a 

uniformizer. The class of u is distinct from 7«7r, so exactly half of the classes contain 

local units. This proves a).

b) We are assuming th a t L is a proper quadratic extension of FD, i.e., the degree 

of the extension L\FD is 2. From local class field theory, see for example [La], we 

have # F d / N L\pD (L*) — degree of the extension =  2. Hence, half of all elements of 

Fd are norms from  L. Note th a t squares of FD are always norms from L over FD, 

so taking square classes we see th a t exactly half of all classes consist of norms.

c) To check if D F ramifies in E \ F  we only need to  consider this locally. W hat is the 

ram ification index of L over FD1 By the local norm  index theorem , see for example 

[La], we have th a t the ram ification index is given by the num ber of elements in 

O* /N p\pD (Op).  For local extensions we have: if a unit of FD is a norm  from L,

then it is the norm  of a unit of L. Hence, NL\pD(Op)  =  N i \ p D ( L * ) f l O £ . This shows 

th a t the ram ification index of L over FD is 1 if all local units of FD are norms from 

L and it is 2 otherwise. Hence, the ram ification index is 1 iff the classes of norms 

coincide w ith those th a t contain local units. T hat the ram ification index locally is
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1 means exactly th a t D F is not ramified in E \ F .  □

Rem ark: In the proof of (12.1) we will apply (12.5) to  the cases where /3 = r  or 

/3 £ F * / ( F * ) 2 — U p / (U p )2. In either case the  condition th a t L  := FD(y//3) is a 

proper extension is satisfied.

P r o o f  o f  (12 .1 ):

T hat F (y / r )  and the m em bers of the 2r i^ +1 infinite families corresponding to  the 

elements of F * / ( F * ) 2 — U p / ( U p ) 2 are in fact the only extensions of F  w ith property 

(*) was explained in (8.2) and (11.5).

We will first examine the  extension E  =  F(y/r):

By (9.1.2) we have: E  contains units w ith independent signs iff F  contains units

with independent signs. We have to  show th a t if h(F)  is odd then  D F ramifies in 

E \ F  and if h ( F ) is even then  D F does not ramify, so it is inert. The claim on the 

parity  of h(E)  will then  follow by (9.1.2).

For E  = F (y / r )  all S-units of F  are norm s from E by (7.2.1). Considering U p / ( U p ) 2 

as a subset of F * / ( F * ) 2 we can say th a t the square classes of U p / ( U p ) 2 are exactly 

those th a t consist of norm s. We want to  apply the criterion from  (12.5c). We know 

th a t the subgroup of norm s (global and therefore also local) is U p / ( U p ) 2. We will 

now examine w hether this subgroup coincides w ith the subgroup of square classes 

th a t contain local units.

If h(F)  is even we claim th a t the the two groups coincide. For this we m ust show 

th a t the image of an S-unit of F  in F * / ( F * ) 2 is the class of a local unit. This can be 

seen as follows: h(F)  is even but h s (F)  is odd, so the dyadic prim e D F has even

order in the  ideal class group of F . Let u  be any S-unit of F. Then u  • O f  — D™ for 

some even m  £ 2Z. Let f  be the uniformizer of D F in FD. In FD we have u — n mv 

for some local unit v. The square class of u therefore contains the local unit v.  This 

shows th a t in FD the subgroup of norms is contained in the subgroup containing 

local units. Both groups have index 2, so they are equal. Hence, if h(F)  is even then 

then the classes of norm s coincide with the classes th a t contain units. We conclude 

by (12.5c) th a t D F does not ramify.

If h(F)  is odd, then D F has odd order n. We have Dp =  u • Of  for some S-unit u
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of F . Locally, in FD, we obtain  u = Trnv  for some local un it v. M odulo squares this 

leaves: u =  itv. Hence, the square class of u does not contain a local unit. It does,

however, consist of norm s, since we pointed out above th a t all classes of S-units 

consist of norms. Hence, if h (F )  is odd, the subgroup of norm s does not coincide 

w ith the subgroup of square classes th a t contain units. By (12.5c) we conclude th a t 

D f ramifies in E \F .  This completes the discussion of the  case E  — F(y / r ) .

We now tu rn  to  those extensions of F where exactly one odd prim e of F  ramifies. 

Recall th a t here we have r  ^  N e \f {E*)- Furtherm ore, we showed in the proof of

(8.2) th a t r  is not a  local norm  from L  =  FD{^/]3) over FD. As before, we will 

consider 0 F/ ( 0 F )2 as a subset of UF /(U F )2. By (5.5) we know th a t if F  does not 

contain units w ith independent signs then r  £ 0 F / ( 0 F )2.

For each type of F  we now exam ine the 2ri^F^+1 families.

C a se s  B ) a n d  D ): If F  does not contain units w ith independent signs, then

E does not contain units w ith independent signs for any m em ber E of any of the 

2 ri(f ’)+1 families. This is clear, because otherwise the norm s of S-units of E would 

give S-units w ith independent signs in F , see (5.8). F  does not contain units with 

independent signs, so r  £ 0 F / ( 0 F )2. Since every global un it is also a local unit we 

see th a t in F £ / ( F £ ) 2 the class of r  is a class containing a local unit. But r  is not 

a local norm , by (8.8), so th is square class does not contain any norm s. Therefore, 

the classes of norms do not coincide w ith those containing local units. By (12.5c) 

we conclude th a t D F ramifies in E \F .  From (9.1.1) we obtain  th a t h (E \F )  is odd 

for these cases, so the parity  of h(E)  is the same as the parity  of h(F).

C a se s  A ) a n d  C ): If F  contains units with independent signs, then

from (11.9) we know th a t there exist exactly two infinite families whose members all 

contain units w ith independent signs. The members of all the other infinite families 

do not contain units w ith independent signs. We now need to  seperate the cases 

where h(F)  is even/odd:

C ) If h(F)  is even and if F  contains units w ith independent signs:

We show th a t in this case the subroup of norms in F * / ( F * ) 2 does not coincide with 

the subgroup of square classes containing local units. An example of a square class 

th a t does not consist of norm s bu t th a t does contain a  local unit is: r .  For the 

S-unit r  we have r  • Of  — D™ for some m  £ TL where the order of D F divides m.
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This order is even because h(F)  is even bu t h(s (F)  is odd. Hence, r  • Of  is an 

even power of D F. Let tt be a  uniformizer in FD, then  r  =  irmv for some local unit 

v G Fd . Modulo squares we obtain th a t the class of r  equals the class of the local 

unit v. By (8.8) r  is not a local norm , so in F * / ( F £ )2 the classes of norm s do not 

coincide w ith those containing units. By (12.5c) we obtain  th a t D F ramifies in E \ F  

for any m em ber E of any of the 2r i F̂ +̂1 infinite families. Since all members of the 

infinite families are ramified extensions of F  we know th a t h(F)  divides h(E) ,  so 

h (E )  is even. By (9.1.1) we see furtherm ore th a t 2\ \h(E\F)  if E contains units w ith 

independent signs, which is the case for two infinite families, and h (E \F )  is odd if 

E does not contain units w ith independent signs.

A ) If h(F)  is odd and if F  contains units w ith independent signs:

Case A \ : Let E be a m em ber of any of the families whose members do not contain 

units w ith independent signs. Since F contains units w ith independent signs • but 

E does not, we have by (5.10) th a t not all units of F  are norm s of units of E. Let u 

be a un it of F  th a t is not a norm  from a unit of E. By the same argum ent as in the 

proof of (11.6b) we see th a t u can not be the norm  of any element of E. Since u  is 

not a norm  globally it m ust be a “not norm ” also locally for some prim e of F. We 

let E  — F(y/a-) and check the Hilbert symbol of cr and u a t all prim es. For infinite 

prim es it is +1 since cr is to tally  positive. For any prim e distinct from D F and the 

one odd prim e th a t ramifies in E the H ilbert symbol is also +1 since bo th  cr and 

u  are local units. Hence, u  is a norm  locally for all of the above primes. So the 

only prim es where u  can be a “not norm ” are D F and the odd ramified prim e. By 

reciprocity u is a norm  locally either in none or in both . We conclude: the image 

of u in Fd is not a norm  from  FD(y/cr) over FD. B ut the global un it u is a local 

unit in FD. We obtain th a t the classes of norm s in F £ / { F * )2 do not coincide with 

the classes containing local units. By (12.5c) we see th a t D F ramifies in E \F .  From

(9.1.1) we then have th a t h(E \F )  is odd, so h(E)  is odd.

Case A 2 : We now consider the two infinite families whose members contain units 

with independent signs. By (11.9) they both  belong to the choice of square classes 

of honest units as classes th a t are norms from E over F. In the proof of (11.8) we 

saw th a t if one of the families corresponds to /d G F * / ( F * ) 2, in the sense of (11.4), 

then the other corresponds to  r/3 6 F*/ (F*  )2.
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We claim th a t either the class of (3 or the class of r/3 in F* / (F* )2 is the class of a 

local unit. This can be seen as follows: From (5.5) we have r  O p / ( O p ) 2 because

F contains units w ith independent signs. Let r  • Op  =  D™ for some m  £ TL. The 

order of D F is odd in the  class group of F  and it divides m . This m  can not be even 

because if m  = 2n for some n  £ TL then  the order of D F divides n  and we have: 

r  . Op  =  ( D F)2n — (D f )2. The ideal D F is principal, call its  generator x.  Then 

r  =  x 2u  for some u  £ Of . Hence, the class of r  in U p / (U p )2 is contained in the 

subgroup O p / ( O p ) 2. This is a contradiction. We conclude th a t r  • O f  — D™ for 

some o d d  integer m  . If we let 7r denote a uniform izer of D F in FD, then  r  =  n mv

for some local unit v. Hence, the power to  which the uniformizer appears in  f3 and

t /3 is distinct modulo 2. This shows th a t either the class of /3 or the class of t (3 in 

F * / ( F * ) 2 is the class of a local unit.

Note th a t for square classes we have: f3 =  t 2(3 =  t (t /3). Therefore we can assume

w ithout loss of generality th a t the class of /? is the class of a local unit. This is done 

by replacing (3 by r/3 if necessary.

Let E i  = F(t/<t) and E 2 — F (y / r a )  be representatives of the  two families th a t we 

are examining. Note th a t a  is a to tally  positive element of F  whose image in F D is 

f3. Let — FD(y//3) and L 2  = Fp(y/rf3).

We claim th a t /3 is a norm  from  L\  over FD bu t not from L 2 over FD.

To check th a t f3 is not a norm  from  L 1 =  FD(y/(3) we need to show: ((3,(3)p)F =

+1. We first note th a t by (5.10) all units of F are norm s from Ex,  hence also 

— 1 £ N p l \p(Ex).  In particu lar, —1 is a norm  locally at all prim es of F. So, —1 

is a norm  from Li  over FD. Note th a t —(3 is the norm  of so it is a norm 

from L i  over FD. In term s of H ilbert symbols this means: (/? ,— 1 )d f =  +1 ai*d

((3,—/3)d f — +1 . The product of these gives: (/3,(3)d f = +1 . This shows th a t

/3 is a  norm  from  L\  over FD. Furtherm ore, we have (/3 ,r) =  —1. This is true 

because (3 £ F * / ( F * ) 2 — U p / ( U p ) 2, as we saw in the proof of ( . ). This gives 

(/3 ,t /3)d f =  —lj  so (3 is not a norm  from L 2 over FD.

We have now shown th a t /3 is a class containing a local unit in Ff / ( F f  )2, bu t it does 

not consist, of norms from  L 2 . By (12.5c) we conclude th a t D F ramifies in E-^F.  

For any m em ber of the infinite family th a t is represented by E 2 we now know tha t 

D f  ramifies and by (9.1.1) we have th a t 2 is the exact 2-power dividing the relative
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class num ber.

To exam ine the behavior of D F in E \  we proceed as follows:

Consider the classes of F * / (F* )2. W hich of these are classes of local units? We 

saw above th a t the class of (3 is the  class of a  local unit. Also, the classes of global 

units u £ Of  are classes of local units. The subgroup 0 F / ( 0 p ) 2 has index 4 in 

F * / ( F * ) 2 and /3 ^  O p / ( O p ) 2. This shows th a t the subgroup of F * / ( F * ) 2 generated 

by O p / ( O p ) 2 and /? has index 2, so it is the complete subgroup of square classes 

th a t contains local norm s. We claim th a t these classes are classes of norms from 

L i  over FD. This holds because we ju st ckecked th a t j3 is a norm  from  L\  over FD. 

We also know th a t all units of F  are norm s from E \  over F , so their images in FD 

are all norm s from  L j . Since bo th  subgroups have the same order, this shows tha t 

in F * / ( F * ) 2 the  classes of norm s coincide w ith the classes th a t contain local units. 

By (12.5c) we conclude th a t D F is not ramified in E \ \F .  It m ust therefore be inert. 

For any m em ber of the infinite family th a t is represented by E\  we now know tha t 

D f is inert and by (9.1.1) we have th a t the relative class num ber is odd.

This concludes the proof of (12.1) □
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C H A P T E R  4 

E x a m p le s

Let F  be a num ber field, let rj(F ) denote the num ber of real embeddings of F  and 

let S be the set consisting of all infinite and all dyadic prim es of F. Recall th a t 

for a num ber field F  to  have property  (*), means th a t F  is totally  real, it has 

exactly one dyadic prim e, it contains S-units w ith independent signs and its S-class 

num ber is odd. An equivalent form ulation of property  (*) is: F  is to tally  real and 

2-\>x\vdK 2{ F )  is elem entary abelian of rank ri(F ).

We have shown th a t for a given num ber field F w ith property  (*) there exist 

exactly 2r i î? +̂1 infinite families of quadratic extensions w ith property  (*). Each 

m em ber E of such a family has the property  th a t exactly one odd prim e of F  ramifies 

in E\F .  Besides these, there exists one more quadratic extension of F with property 

(*). It is given by F1(y /r ) ,  where r  denotes the nontrivial square class of totally 

positive S-units of F, see (5.4).

We will now illustrate how to  apply our results to actually determ ine quadratic 

extensions w ith property (*) of a given num ber field F. The easiest case is F  =  Q. 

In section 13 we will show how our m ethods can be used to  determ ine all quadratic 

extensions of Q w ith property  (*). Note th a t in section 2 we already listed all 

quadratic num ber fields where 2-prim If2(O F) is of rank rR F) =  1. By applying 

our results about quadratic extensions w ith property  (*), we again obtain  the real 

num ber fields am ong these.

In section 14 we consider the b iquadratic dicyclic num ber fields from section 

3. We will see th a t the num ber fields Q (\/2 j \ fp)  w ith p =  ± 3  mod 8 have property

(*)•

In section 4 we saw th a t Q ( \ A ° +  v7!0) is a num ber field w ith property  (*), tha t 

has even class num ber and th a t does not contain units w ith independent signs. 

From our m ain theorem  we know th a t there exist many num ber fields th a t all share 

the same properties. Section 15 will explicitly list an infinite num ber of these. The 

example from section 4 will be a  special case.

In section 16 we give one explicit exam ple for each of the 8 infinite families of 

quadratic extensions w ith property  (*) of Q(\/T0).

69
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13. A p p lica tio n  to  F  =  Q

The num ber field F  — Q has property (*) since it is to tally  real, it has exactly one 

dyadic prime: D F = (2), it has odd class num ber: h{ Q) =  1, and it contains units 

w ith independent signs: ± 1 . Furtherm ore, we have rj(F ) =  1 and r  =  2.

We will now recall our general results and apply them  to  F  =  Q.

R ecall: For a num ber field F with property  (*) we have the inclusions:

0*f / ( 0*f )2 —  U § /{ U § )2 — > F*D/{F*D)2

If ri(F) denotes the degree of F, then  the above groups have order 

2 J’i(F),27-i(i:’)+i an(j 2r’1(f,)+2) respectively. See: (5.1)(10.1)(5.3).

To determ ine F * /{ F * )2 we recall th a t F * /{ F * )2 is a 2Z/2-vector space of 

one more dim ension than  Up/{TJp)2. By (10.3) we know th a t to  obtain 

an element /? which together w ith U p /{ U p )2 generates F * /{F * )2 we need 

/3 such th a t { t , [3) d f  =  — 1.

C laim : For F  =  (Q an element /3, as above, is given by /? =  5.

Proof: Since ( r , 5)p>F, we m ust check: (2,5)2 =  ~  1-

We have (2 ,5)p =  +1 for the infinite prim e of (Q since 2 and 5 are positive. Further­

more, (2 ,5)p =  +1 for all finite prim es p /  2 ,5  since both  2 and 5 are local units 

a t p. By reciprocity we have (2,5)2 =  (2 ,5 )s. This equals the Legendre symbol

( I )  =  ( - 1 ) ^  = - ! ■  □

For F  =  Q we have 0*F/{0*F )2 = { 1 ,-1 }  and U § /{U $ )2 = {1, —1,2, —2}, hence 

K K K  f  =  {1. - 1 ,2 ,  - 2 ,5 ,  - 5 ,2  • 5, - 2  • 5}

Note th a t 3 =  —5 m od 8 and —5 is invertible m od 8, so ^  =  1 m od 8. By Hensel’s 

lem m a we know th a t such an element is a square in Q 2> so 3 =  —5 in F * /{F * )2. 

We therefore have:

F P7 ( F D*)2 =  { 1 ,—1 ,2 ,- 2 ,5 ,3 ,  2 -5 ,  2 -3 }
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R e c a ll: For a num ber field F with property  (*) we proved in (11.2) and (11.3) tha t

there is a one-to-one correspondence between the 2r i^ +1 elements f3 G 

FZ/(F*d )2 — U p /{U p )2 and the infinite families of quadratic extensions 

E of F  w ith property  (*). The correspondence is given by: the members 

of the family corresponding to (3 are of the form E  — F(t/<t) where 

<7 e  F * / (F * )2 is an element th a t maps to (3 G F * / ( F £ ) 2, it is totally 

positive and it has only one odd prim e in its prim e ideal decomposition.

For F  = Q there are 2r i F̂ +̂1 =  4 infinite families of quadratic extensions of F  with 

property  (*). They correspond to the elements {5 ,3 ,10 ,6}  G F * / ( F * ) 2 — U p / (U p )2. 

We now explicitly determ ine the members of the families:

We need totally  positive elements cr G F * / (F * )2 th a t contain exactly one odd prime 

to an odd power and th a t m ap to 5 ,3 ,1 0 ,6  G F ^ / ( F *  )2, respectively. Since we need 

cr only modulo squares this means th a t either cr =  p or cr = 2p for some prim e p.

Since all elements of Q th a t are congruent to  1 mod 8 are in Q j we have:

The members of the infinite families corresponding to  5 and 2 • 5 G F * / ( F * ) 2 are 

E  = F (y /p ) and E  =  F(y/2p)  for p =  5 mod 8.

The members of the infinite families corresponding to  3 and 2 ■ 3 G F*/(F*  )2 are

E  =  F{y/p)  and E  =  F(y/2p)  for p =  3 mod 8.

R e c a ll: For a num ber field F w ith property  (*), let ai,  . . ,ari^p) denote the (real)

embeddings of F. We have shown in (11.7) and (11.8) th a t there is a 

one-to-one correspondence between pairs /3,t/3 G F * / ( F * ) 2 — U p / (U p )2 

and subgroups of index 2 of U p / (U p )2 th a t do not contain r .  This

correspondence is given by (/3,u )d f =  (t (3,u )d p — +1 for all u in the

subgroup. The subgroup is also uniquely determ ined as those square

classes of S-units of F th a t are norms from E over F  for all E in the

families associated to  f3 and rb.

For F  = Q the subgroups of index 2 of U p / ( U p ) 2 th a t do not contain 2 are: {1, —1} 

and { 1 ,-2 } . Note th a t 1 is always a norm. We have to  check which one of —1
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or —2 is a norm  from members of each of the 4 families. For /3 — 5 we have: 

(—1 , / 3 ) d f  =  (—1,5)2 =  +1- This holds because l x 2 +  5y 2 = 1 has a  solution: 

3: — 2, y =  1.

Hence, for any m em ber E of the family corresponding to  5 G F* / (F* )2 we know 

th a t —1 is a norm  from E over F. Since there is also a one-to-one correspondence 

between pairs of families and sets of S-units th a t are norm s, we conclude th a t —1 is a 

norm  for any member E of the families corresponding to  5 and 2-5. These E contain 

units w ith independent signs. For the members E of the families corresponding to 

3 and 2 • 3, we m ust then have th a t —2 is a norm  from  E over F. These E do not 

contain units w ith independent signs.

R eca ll: The main theorem  (12.1) classifies the quadratic extensions w ith property

(*) of a given num ber field F  w ith respect to  their properties concerning 

the class num ber, units w ith independent signs and w hether the dyadic 

prim e of F  ramifies.

We know th a t <Q2(v/5) is the  unramified extension of Q 2, so in any m em ber of the 

family corresponding to  f3 =  5 the dyadic prim e will be inert.

W ith the notation as in our main theorem  we have: F  — Q is of type A), 

i.e., h.(F) is odd and F contains units w ith independent signs. We conclude:

(1 3 .1 ) P ro p o sitio n : The — 22 infinite families of quadratic extensions

w ith property  (*) of F  =  <Q classify by:

A) There is exactly one family whose members have odd class num ber, contain 

units w ith independent signs and in which D P is inert. This family is the one 

corresponding to  (3 =  5, namely: Q (y/p) w ith p =  5 mod 8.

B) There are 22 — 2 =  2 families whose members have odd class num ber, do not 

contain units w ith independent signs and in which D F ramifies. They are the ones 

corresponding to  /? =  3 and 6, namely: G^y/p) and w ith p =  3 mod 8.

C) There is exactly one family whose members have even class num ber, in fact 

2 ||h(E) ,  contain units w ith independent signs and in which D F ramifies. This 

family is the one corresponding to f3 — 10, nam ely Q( \/2p) w ith p =  5 m od 8.
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Furtherm ore, the one quadratic extension w ith property  (*) of <Q in which no odd 

prim e ramifies is given by Q( y/r)  =  Q (\/2 ). It contains units w ith independent 

signs and has odd class num ber. O

All of these results agree w ith the facts stated  in section 2.

14. B iq u a d ra t ic  d icy c lic  n u m b e r  fie ld s w ith  p r o p e r ty  (* )

Recall th a t in section 3 we saw th a t the num ber fields E  =  Q (\/2 j \ fp)  w ith p = ±3 

mod 8 were the only candidates am ong biquadratic dicyclic num ber fields th a t could 

have elem entary abelian 2-primA’2 (0 f ) of rank ri(F). At th a t tim e we were not 

interested in w hether or not they actually do have this property, because we were 

looking for an example w ith even class num ber. Note, th a t these num ber fields are 

totally  real, so to ask w hether they have elem entary abelian 2-primA'2(O F ) of rank 

ri(F) — 4 is equivalent to  asking w hether they have property  (*).

(1 4 .1 ) T h e o re m : The biquadratic dicyclic num ber fields th a t have property (*)

are given by Q (\/2 , \ /p)  where p is a prim e w ith p  =  ± 3  mod 8.

Furtherm ore, the num ber fields Q(-\/2,y/p)  w ith p =  +3  mod 8 have odd class 

num ber and do not contain units with independent signs.

The num ber fields Q (\/2 > \/p ) P =  5 m od 8 also have odd class num ber but

they contain units w ith independent signs.

Proof: We examine the quadratic fields F  =  Q(y^p) where p is a prim e w ith p = ±3

mod 5. In the previous section we showed th a t these num ber fields have property 

(*). We have <Q(v/2, y/p) — F ( \ / 2). We claim F (y /r )  =  F ( \ /2 ) ,  the one quadratic 

extension of F  w ith property  (*) in which no odd prim e ramifies. By definition, r  

is any representative of the non trivial square class of totally  positive S-units of F. 

To show th a t 2 is a representative of the class of r ,  we m ust show th a t 2 is a  totally
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positive S-unit of F  th a t is not a square.

This can be seen as follows: 2 € Q(^/p) is certainly a to tally  positive S-unit. Assume 

th a t 2 is a square, i.e., there exist a, b £ Q such th a t 2 =  (a -f- by/p)2. We have 

2 =  a2 +  b2p  +  2aby/p, so 2 =  a2 +  b2p  and 2a6 =  0. Hence, either a =  0 or b = 0, 

so either 2 =  b2p  or 2 — a2. Both of these are impossible for an  odd prim e p and 

a, b € Q. Therefore 2 is not a square, hence F (y f r )  = F( \ /2 ) .

We conclude th a t Q (\/2 , y/p) has property  (*) for any prim e p = ± 3  mod 8. From 

the m ain theorem  we also know th a t h(E)  is odd and E contains units w ith inde­

pendent signs iff F  contains units w ith independent signs. □

15. T h e fields <Q(\/ev^g) w ith  q = 5 m o d  8

(1 5 .1 ) T h eorem : For any prim e q w ith q =  5 m od 8, let e denote a positive 

fundam ental unit of ty(i/2q).  The num ber fields §{y/eV2q) and Q ( \/2£\/2g) have 

property  (*). Furtherm ore, they are biquadratic cyclic, they have even class number, 

in fact 2 is the exact 2-power dividing the class num ber, and they do not contain 

units w ith independent signs.

(1 5 .2 ) R em ark: This gives infinitely many examples for the type of number 

field th a t we were looking for in chapter 1. The exam ple from  section 4 is included 

in the above, by taking q =  5 in Q (y /2 ev'fg).

Proof: For Q (\/i0 )  we have e =  3 +  \/To.

2eVlO = 2(3 +  v T 0 ) \/l0  =  2(10 +  3 \/ l0 )  =  [ ^ ± ^ ] 2(10 +  \ / l0 )

This shows th a t 2 e \/l0  and 10 +  \/I() are in the same square class of F, hence 

adjoinig their square root results in the same field. □

Proof of (15.1): Let F  = ( ^ ( y ^ )  where q is a prim e w ith q =  5 mod 8.



V

75

In (13.1.C) we showed th a t these num ber fields have property  (*). Furtherm ore, we 

showed th a t 2 ||h (JF) and F contains units w ith  independent signs.

By a positive fundam ental un it e we m ean a  fundam ental un it of F  whose image in 

R is positive under the em bedding of F  th a t takes y/2q to  y/2q. Since F  contains 

units w ith independent signs, we have th a t iV^iQ^) =  —1, so the image of e in R 

is negative under the em bedding th a t takes y/2q to  — y/2q.

We have ri(F ) =  2 and the  ring of integers is O f  — 7L[y/2q\.

The rational prim es th a t ram ify in F are 2 and q.  We have 2 ■ Op — ( \ /2 9 , 2)2 and 

q • Op  =  (\/2?>9)2- The dyadic prim e of F  is D F = ( y / 2 q , 2 )  and let Q — ( y / 2 q , q ). 

Note th a t y / 2 q  ■ O f  — Q • D F. We know th a t 2 is a  to tally  positive S-unit of F tha t 

is not a square since 2 =  (a -f- b y / q ) 2 has no solution a., 6 £ Q. Therefore we can 

take r  =  2.

We have 0*F/(0*F )2 =  { ± l ,± e }  and U ^ / ( U § ) 2 = {±1, ± e , ± 2 , ±2e}.

Consider the element £y/2q £  F.  It is totally  positive (by choice of e) and the prime 

ideal decom position of the principal ideal it generates is Sy/2q • Op  =  Q • D F. It 

contains exactly one odd prim e, namely Q, to  an odd power. We would like to 

conclude th a t F( y/Sy/^q)  has property  (*). By the criterion in (8.7) we need to 

check th a t r  =  2 is not a square in the residue field Oq  /  Q.

The ram ification index of Fq  over Q g is 2, so the inertia  degree is /  =  1. We have 

# O q /Q  = qf  = q, hence O q / Q  = TLjq. To check th a t 2 is not a square in TL/q we 

use the Legendre symbol:

,2-1
( | )  =  (—1) 8 =  —1 since <7 =  5 m od 8

From (8.7) we obtain  th a t both  F{y/ey/zq) and F ( y / 2 £%/2 q) have property  (*).

So far we have shown:

For any prim e q w ith  q =  5 m od 8, the num ber fields Q (y/eViq) and Q( y/2 £s/2 q) 

have property (*).

T hat they are b iquadratic cyclic is checked by using the criterion from (3.1):

2q • N(£y/2q) = 2g( —1)(—2g) =  (2q)2.

Let F  = Q (\/2g) for any prim e q = 5  m od 8. The two quadratic extensions 

F ( y / £ y / 2q) and F { y / 2 £y/2 q) are members of the  two infinite families with property 

(*) th a t correspond to  (3 = £y/2q and r/? =  2£y/2q. Since F  is of type C) in our
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m ain theorem , we know th a t both  quadratic extensions have even class num ber. We 

do not know if they belong to the two families whose members contain units with 

independent signs. By (11.9) we m ust check if the subgroup O p / ( O p ) 2 of U p / (U p )2 

consists of norms from S-units of the extensions F ( y / e j T q )  or F ( y / i e s p iq ) .

Note: we do know th a t the set of square classes of S-units if F  th a t are norms from 

either extension is the  same.

By com puting H ilbert symbols we will now check th a t ± e  are not norm s locally at 

D f . It follows th a t they cannot be global norms.

In (15.3) below, we will show:

( e ,~ e )D F =  +1) (e>e)r>F = - 1 ,  (y/%q, ~ 1 ) d f  = - 1  and ( y / 2 q , e ) DF = +1.

Using this we can now check th a t ± e  are not local norms a t D F:

(e^ /2q ,e)Dp = (e,e)DF(y /2q ,e )DF =  (+ 1 ) ( -1 )  =  - 1

( £ a/ 2g,  —e )d f  =  ( £ j - e W ( \ / 2 < h  —1 ) d f ( V ^ 3 ) £ ) d f  =  ( + 1 ) ( —1 ) ( + 1 )  =  - 1

We conclude th a t F (y /s V T q )  and F ( s j i e %/ 2 q) do not contain units w ith independent 

signs. This concludes the proof of (15.1) □

(1 5 .3 ) P ro p o sitio n : ( e , - e ) Dji, =  +1, (s,£)d f =  - 1 ,  ( y / 2 q , - l ) o F =  - 1

and (s/2q,£)DF = + 1.

Proof: (e, —e)d f — +1? by properties of the H ilbert symbol.

(£,e)d f — ~  1) since the H ilbert symbol is +1 a t all o ther prim es except for one

infinite prime.

( \ /2 q, — 1 )d f =  can be seen as follows: We have q =  5 m od 8, so (~~) =  + 1 , he.

— 1 is a square in O q / Q  =  TL/q. From this it follows th a t (\/2q, — 1)q =  +1. The 

H ilbert symbol of y/2q and —1 has the following values: It is +1 at all finite primes 

distinct from Q and D F since both elements are local units there. T he Hilbert 

symbol is negative at the infinite prim e under which \/2q is negative and positve at 

the other. By reciprocity we conclude th a t it is —1 at D F.

To show th a t ( \/2q, £)d f =  +1 we again consider the H ilbert symbol a t all other 

prim es. It is positive in one and negative in the other infinite prim e. At all finite
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prim es distinct from Q and D P it  is +1, since y/2q and e are local units. We we 

will now prove th a t (\/2q,  e)q  =  —1. Using this we can conclude by reciprocity tha t

(y/2q ,e )oF =  +1.

We claim th a t (-y/2g,e)c? =  —1, i-e., we claim th a t the equation y/2qx2 + ey2 =  1 has 

no solution in Fq  , the com pletion of F  at Q. This is equivalent to: \ /2qx2 + ey2 =  z 2

has no solution in O q , the ring of integers of F q .

Suppose th a t there exists a solution x , y , z  G O q . We can assume th a t x , y , z  are 

relatively prim e. Since O q has only one prim e, namely a generator of Q, we can 

assume th a t a t least one of x , y ,  z is a local unit.

Case 1: z is not a local unit:

We check th a t is is impossible for y / 2 q x 2 +  e y 2 =  z 2 to  have a solution where x  

or y  is a unit. We have o r d q ( x/2 q )  = 1 and o r d g ( e )  =  0. In the present case we 

also have o r d q ( z )  > 1, so o r d q { z 2) >  2. If we assume th a t y  is a local unit, then 

o r d q ( e y 2) — 0. But o r d q ( y / 2 q x 2 ) > 1, so o r d q ( y / 2 q x 2 +  ey2) =  0 <  2 <  o r d q ( z 2 ). 

Hence, y  can not be a unit, so a; m ust be a unit. We have o r d q ( y / 2 q x 2) — 1 and 

o r d q ( e y 2 ) > 2. This gives o r d q ( ^ / 2 q y 2 +  e x 2 ) =  1 <  2 <  o r d q ( z 2 ), which again 

shows th a t y / 2 q x 2 +  e y 2 can not equal z 2 .

Case 2: z is a local unit:

Dividing the equation by z yields: \ / 2qx2 +  ey2 — 1 for some x , y  € Oq.  This will 

also lead to  a contradiction. Let e =  a  +  /3\/2q for some a,f3 G TL. Note th a t since 

N(e)  = a 2 — 2q(32 =  —1, we have a 2 = —1 mod q. We are assuming th a t the 

equation y/2qx2 +  (a  +  /3-*f2q)y2 = 1 has a solution in Oq.  It therefore also has 

a solution modulo Q =  (y/2q,q).  Since yflq  G Q the equation reduces to a y 2 =  1 

mod Q. If we let y  =  c +  d\/2q  for some c, d G TL, then y2 =  c2 +  2qd2 +  2cdy/2q = c2 

m od Q. This equation reduces to  a c2 =  I mod q. M ultiplying by a -1 =  —a  mod q 

yields: c2 =  —a  mod q. This is impossible since —a  is not a square modulo q. This 

can be seen by checking the Legendre symbol:

Here we used the fact th a t q = 5  mod 8, so ( ^ )  =  +1. Also, we have th a t a 2 =  — 1 

mod q. T he subgroup of 4-th  powers of (TL/q)* has elements, so its order is 

odd. This shows th a t —1 is not a fourth power modulo q, and therefore a  is not a
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square modulo q , i.e., (^) = —1.

This concludes the proof that y / 2 q x 2 + e y 2 = z 2 does not have a solution in F q , 

hence (\/2q , e ) Q  — —1. D

16. Q u ad ratic  e x te n s io n s  o f  Q(\/T0) w ith  p ro p erty  (*)

In the previous section we were exam ining num ber fields of the type F  = Q (\/2q) 

for a  prim e q = 5 m od 8. We saw tha t:

0*F /(0*F )2 = {± 1 , ± e }  U $ /{U $ )2 =  {±1, ± e , ± 2 , ±2e}

Furtherm ore, we proved th a t y/2q € F * / ( F * ) 2 — UF /(UF )2, so

K K K ?  = { ± l , ± e , ± 2 , ± 2 e , ± V ^ , ± e>/ 2 ^ ,± 2 V ^ ,± 2  £y/2q}

We now apply this to  the case q = 5. For F  =  Q(v/lO) a positive fundam ental unit 

is given by s —• 3 +  \ / l0 .  From  the above we have:

0*F /{0*F )2 = {± 1 , ± e }  U SF / ( U SF )2 = {±1 , ± e , ± 2 , ±2e} 

F ; / ( F ; ) 2 = { ± l ,± e ,± 2 ,± 2 e ,± v T 0 ,± £ \ / i0 ,± 2 V ^ 0 ,± 2 e V /i0}

The 2r i F̂ +̂1 =  8 infinite families of quadratic  extensions w ith property (*) of 

F  =  Q(v/lO) correspond to  the  8 elements f3 G { ± \ / l0 ,  ±£a/10, ±2-\/l0 , ±2eVT0}. 

Each pair /3,2(3 corresponds to  a subgroup of index 2 of UF /(U F )2 th a t does not 

contain r  =  2. This subgroup consists of those square classes th a t are norm s from 

the m em bers of the corresponding families. There are four such subgroups:

<  e , —£ > =  {1 ,£, —c, —1} <  e , —2e > =  { l , e ,2 e ,—2}

< 2e, — £ >=  { l ,2 e ,—e ,—2} < 2 £ ,—2£ > =  {1,2£, — 2e, — 1}

We will now determ ine which j3 they correspond to. We will also explicitly determ ine 

one m em ber for each of the corresponding infinite families.
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(1 6 .1 ) T h e o re m : Let F  — Q (\/l0 ) . A positive fundam ental unit of F  is given

by e =  3 +  VlO. This num ber field contains units w ith independent signs and 

2 ||h ( i?1). There exists exactly one quadratic extension w ith property (*) in which 

no odd prim e of F  ramifies. It is given by F{\/2) .  This is an unramified extension 

of F. Its class num ber is odd.

There are 8 infinite families of quadratic extensions of F  w ith property (*). The 

following table lists one m em ber E of each family together w ith the f3 £ F * / ( F * ) 2 — 

U p / ( U p ) 2 th a t is associated to  the family, the subgroup of U p /{U p )2 th a t consists 

of square classes of norms from E over F , the exact 2-power dividing the class 

num ber of E and w hether E contains units w ith independent signs [uwis] or not.

E P norms E \ F
F’( \ / io+3vTo) £ \ / l0 ( l ,2 e ,  —2s, —1} 2\\h(E)  no uwis
F(\/2(10 + 3Vl0)) 2ey/T6 {1 ,2e, —2e, —1} 2j|h(E)  no uwis
JF’( v/20-5v/To) %/To ( 1 ,£, —2e, —2} 2 ||h(E)  no uwis
F(\/2(20-5v/l0)) 2 \ / i d { l , e , - 2 e , - 2 } 2 ||h(E)  no uwis
F ( \ /  20+5\/ro) -Vio { l,2 e , —s, —2} 2 ||h(E)  no uwis
F { \ / 2(20+5Vl0)) - 2 v / l0 {1 ,2e, —e, —2} 2 ||h (E )  no uwis
-F(v/38+i i  vlo) -eVlb { l , e , - e , - l } 4\\h(E)  uwis
F ( V/2(38+llv'lO)) - 2 e i / l 0 4|| h (E )  uwis

Rem ark: In (15.2) we saw jF (y^T o+ivfoj) =  i7'(\/io+vTo), so the exam ple from

section 4 is among the above.

Remark: In (3.1) we recalled a criterion on how to  distinguish among the different

types of num ber fields of degree 4. From the norms th a t are com puted in 16.2 we 

obtain: The first two fields listed in the above table are b iq u a d ra t ic  cyclic  (see

15.1), whereas all others are n o n -a b e l ia n  b iq u a d ra t ic .

P roof of (16.1):

By (13.1.C) we know tha t F  contains units with independent signs and th a t 2\\h{F). 

W ith  the notation as in our m ain theorem  F  — Q(\/To) is of type C). The claims 

on E ( \/2 )  all follow from this. The m ain theorem  also tells us the properties of all
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infinite families.

To determ ine which (3 £ {v^O, — \ / l0 j  ~ £ \/l0 }  each of the 4 subgroups of

norm s correspond to, we determ ine H ilbert symbols a t D F:

From  (15.3) we have: (\/T0, — 1 )d f  =  —1 ( \ / l 0 5£)r>F =  +1 (e?— s )d f = + 1

(e,e)Dp, = - l  ( l , e ) i ) F = - l  ( - 1, - l ) DjP = + 1

Using these we obtain:

(a/IO .O d ,  =
( V^IO, £)d f  =  ( V l 0 , - l ) JDP ( v ^ 0 , e ) r >F =  ( —1 ) ( + 1 )  =  - 1  

Hence y/lO corresponds to  <  s, —2s >

( —\/1 0 ,£ )d f =  ( —1?£:)z5f ( v/10)£)d f =  ( — 1)( +  1) =  —1

( - V w  , - s )Df =  ( — 1 ,  — e ) £ ) F ( \ / l 0 ,  — 1 ) d f ( \ / 1 0 ,  £ ) d f  =  ( - 1 ) ( - 1 ) ( + 1 )  =  + 1

Hence — s/10 corresponds to  < 2e, —e >

{ey/ lO,  s ) d f  =  { £ , c ) d f { V1Q, £ ) d f  =  ( _ 1 ) ( + 1 ) =  _ 1  

( e y T o , - e ) d f  =  (e,-e)DF(\/iO,-e)DF = ( + 1 ) ( - 1 )  =  - 1
Hence ey/lQ corresponds to  <  2e, —2e >

( —e\/T o,e)D F =  ( —£, £)d f ( \ / l0 )  £)d f = (+ 1 )(+ 1 ) =  +1 

( —s \ / l0 ,  ~ £)d f = ( - l , - l ) D F{ - l , £ ) D F{£y/:i O , - e ) DF = ( + i ) ( - i ) ( _ i )  =  +1 

Hence — sy/lO corresponds to  <  e, — s >

Note th a t by (11.9) the  m em bers of the families corresponding to  f3 =  — ey/lO and 

r/3 =  —2sy/l0  will be the ones th a t contain units w ith independent signs, since 

they have O p / ( O p )2 as the subset of U p / ( U p )2 th a t are norm s. This determines 

all properties of the m em bers of each family: The m em bers E of the two families

corresponding to  —£-\/T0 and —2ey/ ld  contain units w ith independent signs and 

have 4 ||h (E )  (since 2 ||h(.F)). All others do not contain units w ith independent signs 

and 2 ||h(E).

We still have to  show th a t the num ber fields E listed in the table of (16.1) are in 

fact members of the infinite families of their corresponding /?. For this we need to 

prove th a t 10 + 3 i/ l0 ,  20 — 5\/I(), 20 +  5-v/lO and 38 +  11 \ / l0  are to tally  positive 

elements of F  whose im age in Ff / ( F f )2 is ey/10, \/To, — y/lO, —ey/lQ, respectively,
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and whose prim e ideal decom position contains exactly one odd prim e to  an odd 

power.

For /3 =  ey/lO we already saw in the general case (15.1) th a t e \/lO  =  10 +  3 \/ i0  

satisfies all required properties.

T he o ther 3 elem ents will be exam ined in (16.2). □

(1 6 .2 )  P r o p o s i t io n :  The elements 20 — 5\/T0, 20 +  5 \ / l0  and 38 +  l l \ / l 0  in

F  =  Q ( \/l0 )  have the  following properties:

a) they are to tally  positive,

b) their prim e ideal decom position contains exactly one odd prim e of F  to  an odd 

power,

c) in F * / ( F * ) 2 they m ap to  -v/TO, — VlO, — ey/lO,  respectively.

Proof: a) All th ree elem ents are in fact to tally  positive.

b) We com pute their norm s over Q:

N (20 ±  5 \/ l0 )  =  202 -  250 =  150 =  2 • 3 • 52

jV(38 +  l l \ / l ( ) )  =  382 -  1210 =  234 =  2 • 32 • 13

The rational prim es 3 and 13 split in F over (Q. The prim es 2 and 5 are exactly the 

ramified prim es. Let D P denote the prim e over 2, Q the prim e over 5, P a  prime 

over 3 and P '  a prim e over 13. Note th a t 3 appears to  a second power in the norm  of 

38 +  l l \ / l ( ) .  The prim e ideal decom position of (38 +  llv /lO ) • Op  therefore contains 

either P 2 or bo th  prim es th a t lie over 3, each to  the first power. T he second case 

is not possible since 3 does not divide 38 and 11. We therefore have:

(20 ±  5 \/ l0 )  • 0 F =  ( A ,) 2 P  Q2

(38 +  11\/10) • 0 F =  (D f )2 • P 2 • P'

In either case, we see th a t the  prim e ideal decom position contains exactly one odd 

prime.

c) To prove th a t in F */ (F *  )2 we have:

v'lO =  20 -  5 \ / l0 ,  -  \ / l0  =  20 +  5\/T0 and -  eVlO  =  38 +  l l \ / l 0

we observe that the following equalities hold in F:
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20 -  5\/T0 =  > / l0 ( -5  +  2>/T0) =  >/io  ■ [(1 +  VlO)2 -  24]

20 +  5 \ / l0  =  - v /T O M  -  2>/l0) =  - V l O  ■ [(1 -  v/IO)2 -  24]

38 +  llV ^O  =  - e V l O  • - 5-°+4%/l-°- -  £\/lO  • ^  • [((2 +  x/lO)2 -  26]

Note th a t jg = ( ^ ^ ) 2 £ {F*)2, so this element is trivial in F * / ( F * ) 2.

We will now check th a t the elements in [...] are also triv ial in F*d / ( F * ) 2, i.e., tha t 

they are in (FD )2. This is done by applying Hensel’s lemma:

The elements are all of the type [A2 — 2n] w ith n  >  4 and A  € Of  w ith 

ordnF( A ) =  0, for A  — 1 ±  \ / l0 ,  and ordnF(A) = 1, for .4 =  2 +  y/lO.

The polynom ial F (x )  =  x 2 — (A 2 — 2n ) has a solution modulo (D F)2n.

Such a solution is given by A,  since ordr>F(2) =  2, so 2n =  0 m od (D F)2n. We have:

ordDF(F '(A))  =  ord£)jp(2A) =  ordDjr(2) +  ord£>F(4 )  < 3

Since 2 • 3 +  1 <  2n for n  > 4, the hypothesis of Hensel’s lem m a is satisfied and 

we obtain  th a t F (x)  has a solution in FD. Hence, all elements in [...], above, are 

squares in FD. □
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