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Class numbers and units of number fields E with elementary abelian K;(Og).

by Ruth I. Berger

Abstract

This is a contribution to the research that is going on in Algebraic Number
Theory, relating classical questions on class numbers and units of a number field F
to the structure of K3(Op), the Milnor K-group K> of the ring of integers.

We are interested in number fields F' where the 2-primary subgroup of K»(OF)
is elementary abelian of rank r;(¥), the number of real embeddings of F.

In [{C-H;] it is proven that the 2-primary subgroup of K,(OF) is of the above type
if and only if the number field has the following properties:

a) the number field has exactly one dyadic prime, |

b) its S-class number is odd and

¢) it contains S-units with independent signs.

Here, the set S consists of all dyadic and all infinite primes of the number field.

The purpose of this paper is to examine the existence of number fields of the
above type and to examine their properties with respect to the parity of their
class number and the containment of units with independent signs. We will mostly
restrict our attention to number fields that are totally real. For any given totally
real number field F that satisfies the above properties we will prove that there exist
infinitely many real quadratic extensions that also have the above properties. The
main theorem will be a classification of these quadratic extensions of F into families
that all share the same properties with respect to the parity of their class number

and the containment of units with independent signs.
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Introduction

Let us first rewiew the objects that classical Number Theory deals with.

The field of rational numbers @ contains the ring of integers Z. The integers contain
two kinds of elements that stand out: the units and the prime elements.

The units are defined as the integers u with the following property: there exists
an integef z such that uz = 1. The elements of Z thai satisfy this property are 1
and —1. The prime elements of Z are defined as the integers p with the following
property: if a,b are integers such that ab = p then either a or b must equal p, up
to unit factors £1. The units and the prime elements are the “building blocks” for
all integers. Up to factors of £1, every integer can be expressed uniquely as a
product of powers of prime numbers.

Instead of considering the field @, one can look more generally at a number
field. These fields are defined as the finite algebraic extensions of Q. This means
that a finite number of roots of polynomials with coefficients in @ are adjoined to
Q. A number field F shares many of the properties of Q. F also contains what are
called integers. They are defined as the integral closure of the rational integers,
i.e., the roots of monic polynomials whose coeflicients are in Z. The integers of a
number field F are denoted by Or. Among the integers there are elements called
units. As before, they are defined as the integers u with the property that there
exists an integer & such that uz = 1. Note that & must then be a unit, too. The
units form a multiplicative group. It is denoted by O%.

In general, there are no integers that behave like the prime elements(numbers)
of 7Z; there are no “smallest factors” of which all integers can be uniquely ex-
pressed as a product. Therefore the idea of integers and prime elements needs to
be generalized to objects that reflect this property of being minimal factors. This is
done by introducing the concept of ideals. They are subsets of the ring of integers
that are obtained by taking a set of integers, called the generators of the ideal, and
taking all possible finite sums of products of these elements with integers. If the
generators are taken"to be arbitrary field elements, the resulting ideal is called a
fractional ideal. The set of all fractional ideals of a number field form a group.

Those ideals that are generated by only one element are called principal ideals.
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A prime ideal is defined to be an ideal with the following property: if the product
of two integers is contained in the ideal, then at least one of the integers must be
contained in the ideal. Note that this mimics the property of a prime element in Z:
if the product of two integers equals a prime element, then one of the integers must
equal the prime element (up to units). The ring of integers of a number field is an
example of a Dedekind ring. In such a ring every ideal can be factored uniquely as
a pfoduct of prime ideals.

In Q we also have ideals. Here, every ideal is generated by one integer. The
prime ideals are exactly those that are generated by a prime element. This explain
why prime ideals can be considered a generalization of prime elements.

If all ideals of the ring of integers of a number field happen to be principal, then we
in fact have unique prime element decomposition. ,

One defines C(F), the ideal class group of F as the quotient I(F')/P(F) of
the group of all fractional ideals of F' by the subgroup of principal ideals of F. For
any number field F the ideal class group is a finite group. The number of elements
in C(F) is the class number of F, denoted by h(F'). For number fields where every
ideal is principal, like for @, the class number is 1. The number fields where this
occurs, however, form a very small set among all number fields. In general it is very
difficult to determine the class number of a given number field or even to determine
whether the class number is 1 or not. In many cases one is therefore content with
just determining whether the class number is even or odd.

The prime ideals of a number field are often called the finite primes of the
number field. As this notation indicates, to a number field there are associated
objects called infinite primes. They are defined as the embeddings of the number
field into the complex numbers. @ contains exactly one “infinite prime”, since there
is exactly one way of embedding @ intoC. In fact, Q already embeds into the real
numbers R. In general, a number field F embeds intoC in different ways. Some
embeddings can take F into R, they are called real embeddings of F. A number field
is called totally real if all of its embeddings are real embeddings. @ is an example
of a totally real number field.

Let 7 (F) denote the number of real embeddings of a number field F. For every

@ € F there are ry(F) real numbers associated to z, namely the images of ¢ under
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the real embeddings of F. Some of these images are positive, others are negative.
They are 0 iff z = 0. From the independence of valuations it follows that for any
given 7y (F)-tupel of +1 there is an integer ¢ € F' whose images under the ry(F)
embeddings have exactly these signs. For some number fields it is even possible
to find a set of units of F whose images under the r,(F) embeddings have any
prescribed signs. Number fields with this property are said to contain units with
independent signs.

The concept of units and the ideal class group of a number field F can be
generalized in the following way:
Note that a principal ideal that is generated by a unit must be the whole ring, since
it contains 1. A unit therefore has no prime divisors. If we let ordp(x) denote the
order to which the finite prime P appears in the prime ideal decomposition of the

principal ideal generated by z, then the units of F' can be expressed as:
Of = {x € F | ordp(x) = 0 for all finite primes P of F}

We obtain a bigger group by lifting some of the conditions:
Let S be a set consisting of a finite number of primes of F (S is usually required to

contain all infinite primes of F), then the group of S-units of F is defined as:
Us = {z € F | ordp(z) = 0 for all finite primes P, P ¢ S}

We say that F contains S-units with independent signs if there are S-units of
F whose images under the r; () embeddings have any prescribed signs.

If we take C'(F'), the ideal class group of F, and factor out the subgroup generated
by finite primes that are contained in S we obtain C'S(F), the S-ideal class group
of F. The number of elements in C°(F) is the S-class number of F, h5(F). Note
that hS(F) is a divisor of h(F).

In the following, S will stand for a special collection of primes: S will denote the
set containing all dyadic and all infinite primes of F.

Dyadic primes of F are defined to be the prime ideals of F that contain the rational
prime number 2. Every other prime ideal of F contains exactly one odd prime

number, they will be refered to as odd primes or nondyadic primes. Note that
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a number field can contain several dyadic prime ideals, unlike @ which has only

one.

We can now give an overview over the content of this dissertation:

For the choice of S specified above we will examine number fields F with the following
properties: F has exactly one dyadic prime, the S-class number of F is odd and F
contains S-units with independent signs. These number field are of interest because
they are exactly the number fields whose 2-primary subgroup of the Milnor K-group
of the ring of integers of F is elementary abelian of smallest possible rank.
Examples of number fields that have the above property are: @, Q(\/—l_O) and
E = Q(v10+v10). An interesting property of E is that its class number is even,
but its S-class number is odd and that it does not contain units with independent
signs even though it contains S-units with independent signs. An example of such
a number field had not been known before. The methods used in section 4 to prove
that E has the claimed properties are rather elementary. From the general point of
view they are unsatisfactory because they do not allow insight in why this example
happens to have these properties. One is also left with the question: Are there
other number fields that also satisfy all of the above properties?

In the second chapter we will therefore go about systematically examining
number fields that have exactly one dyadic prime, odd S-class number and that
contain S-units with independent signs. We will restrict our attention to totally real
number fields. Number fields of this type will be said to have property (*). We will
see that for a number field F with property (*), there always exist infinitely many
quadratic extensions E that also have property (*). These quadratic extensions E|F
all have the property that at most one odd prime of F ramifies in E. In fact, there is
exactly one extension in which no odd prime of F ramifies, in all the others exactly
one of the odd primes of F will ramify.

In the third chapter we give a complete classification of all quadratic extensions
E with property (*) of a given number field F with property (*). This classification
will be with respect to the parity of the class number of E, whether E contains units
with independent signs and whether the dyadic prime of F ramifies in E. We will

show that all information about what type of quadratic extension with property (*)
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exists over a given F is already contained in the finite group of square classes of the
completion of F at its dyadic prime.
From this general consideration we will see that there are infinitely many number
fields that have the same properties as Q(1/10++10), above.

Chapter 4 illustrates applications. Here we will also see how the special example

from section 4 fits in the general picture.
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CHAPTER 1
Approaching the problem

In the first chapter we will examine number fields of small degrees in search of
examples of number fields with certain properties. The number fields we are inter-
ested in are those that contain exactly one dyadic prime, have odd S-class number
and that contain S-units with independent signs. Here S is the set consisting of all
infinite primes and all dyadic prime of the number field.
In section 1 we will see how the interest in these number fields arises from K-theory.
An example of a number field that has all of the above properties is Q.

One can impose further conditions on the number field by making requirements
~ on the parity of its honest class number and the existence of honest units with
independent signs in the number field.

Here the term “honest” is used to emphasize the distinction to “S-”.

We ask: are there number fields E that have the above properties and furthermore:
A) we either have, that the class number of E is odd or that E contains units with
independent signs, or both?

B) the class number of E is even and E does not contain units with independént
signs?

The answer is yes in all cases.

In section 2 we will see that there are in fact infinitely many quadratic number
fields that give rise to examples for each of the cases covered in A. Unfortunately,
an example of a number field that satisfies the conditions in B does not exist among
number fields of degree 2. We therefore need to consider higher degree extensions.

In section 3 we examine a certain type of number fields of degree 4: the
biquadratic dicyclic number fields. Also among them, there is no example of type
B.

In section 4 we therefore turn our attention to another type of number fields

of degree 4:  biquadratic cyclic number fields. Here we do find an example that

satisfies the conditions of B: Q(+/10+v10).
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We cannot deal with more general examples in this first chapter. Further examples

will be given in chapter 4.

1. Collection of facts about Kz(OF)

Let R be a ring, E(R) the group generated by the elementary matrices with entries
in R.
(1.1) Definition: K(R) is the kernel of the universal central extension of E(R).

For more details see for example [Mi, page 47]. We can think of K2(R) as the
“nontrivial” relations among elementary matrices with entries in R.

We will now consider a special type of ring: the ring of integers of a number field
F. It will be denoted by R = Op. What does K,(OF) look like? In [Ga] Garland
shows that K2(Op) is a finite abelian group for any number field F. Hence we have

kp

m
(1.2) Kyop)=[]2Z/2%x [ 2=/
=t P oddi;:’imes

The order of the second product, the odd part of K2(OF) , is known for totally real
abelian number fields. Mazur and Wiles, [M-W], have proven that for those number
fields F the order of the odd part of K,(Op) is exactly the odd part of the rational
integer |wy(F') - (p(—1)|. This is a special case of the Birch-Tate Conjecture
which suggests that for all totally real number fields

(1.3) #K2(0F) = |we(F) - {p(-1)|

where (F is the Dedekind zeta-function of F and wo(F) is the largest integer N such
that the Galois group of F(uy) over F is an elementary abelian 2-group. Here u,
denotes the group of N-th roots of unity. By the above remarks the odd part of
this conjecture has been confirmed for all totally real abelian number fields. Less
is known about the 2-primary subgroup of K;(Or) which is therefore of particular

interest. The 2-primary subgroup of K;(Op) will be denoted by 2-prim K,(OF) .
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In [He] Hettling proved that the 2-part of the Birch-Tate Conjecture holds for totally
real number fields F where 2-prim K,(OpF) is elementary abelian of rank »; (). Here
elementary abelian means elementary abelian 2-group, i.e. all factors are of the form
7Z/2 and rq(F) denotes the number of real embeddings of F.
Kolster [Ko| has confirmed the 2-part of the Birch Tate Conjecture more generally
for all number fields F where 2-prim K2(OF) is elementary abelian. He also gives
a criterion for when a number field has this property:
(1.4) Theorem: (Kolster)

Let F be a totally real number field . The following are equivalent:

a) 2-prim K,(Op) is elementary abelian

b) No dyadic prime of F splits in F(y/—1) and

2-part hS(F(v/~1)) =2-part hS(F) - 22-TkC*(F),
O

Notation: S is the set consisting of all dyadic and all .inﬁnite primes of F. The
S-class group, C9(F), is defined as the quotient of the class group of F by the
subgroup generated by the dyadic primes of F.

The S-class number of F, denoted by h%(F), is the order of the S-class group of F.
The 2-rank of an abelian group G is denoted by 2-rkG.

To determine the rank of 2-prim K,;(Op) we have Tate’s 2-rank formula, see[Ta):
(1.5) Theorem: (Tate)
Let r1(F) denote the number of real embeddings of F, g2(F') the number of
dyadic prime ideals of F and C'5(F) the S-class group of F. Then:
2-tk K3(OF) = ri(F) + g2(F) — 14+2-1k C'S(F)
O

Note that the smallest possible value for the 2-rank of K,(Op) is r1(F). It occurs
iff F has exactly one dyadic prime (g2(F) = 1) and the S-class number of F, h5(F),
is odd.

The smallest possible order for 2-prim K3(Op) occurs if 2-prim K,(Op) is elemen-

tary abelian and of smallest rank, which is ry(F). A criterion for when a number




"field F has this property can be found in [C-H;]:
(1.8) Theorem (Conner, Hurrelbrink)
Let F be a number field. The following are equivalent:
a) 2-prim K,(OpF) is elementary abelian of rank r;(F)
b) F admits an extension E|F with #K>(Og) odd
c) F has exactly one dyadic prime, the S-class number of F is odd and

F contains §-units with independent signs.(see definition below)

Remark: This has also been studied by Gras, see [Gr].

We now give the definition of S-units with independent signs for the special case
where S in the set consisting of all dyadic and all infinite primes of F'. To obtain the
definition for the general case where S is any set of primes of F, we replace dyadic
by primes in S in the following.

(1.7) Definition: The elements of Uf := {z € F|ordp(z) = 0 for all nondyadic
finite primes of F'} are the S-units of F.

F contains S-units with independent signs iff ¢ : US/(U$)? — {Z/2}F) is
surjective. This map is defined by mapping an S-unit (mod squares) to the signs of

its images under the ry(F') real embeddings of F.

Remark: To understand the significance of the term “S-units with independent
signs”, note that it is a generalization of the term “units with independent signs”.
The units of F are the elements of O := {z € F|ordp(z) = 0 for all finite primes
P of F}.

(1.7’) Definition: F contains units with independent signs iff

@ 0%/(0%)? — {Z/2}F) is surjective. This map is defined by mapping a unit

(mod squares) to the signs of its images under the ry(F') real embeddings of F.

Remark: A real quadratic number fields contains units with independent signs iff
the norm of the fundamental unit is -1. More generally, a totally real number field

contains units with independent signs iff every totally positive unit is a square.
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Note that for totally imaginary number fields F: ry(F) = 0, hence ¢ is of course
surjective. Therefore an imaginary number field always contains units with inde-

pendent signs and also S-units with independent signs.

The following is an immediate consequence of (1.6.b):
(1.8) Corollary: If a number field satisfies one (and therefore all) of the
properties in (1.6), then so does every subfield. O

Recall the classical question: Which number fields F can be embedded in a number
field E with odd class number h(E)? Since Ko(Op) = C(F) x Z this question can
be reformulated as: Which number fields F can be embedded in a number field E
where the torsion part of Ko(Op) is odd? Similarly one might ask: Which number
fields F can be embedded in a number field E with #K>(Og) odd? Note that (1.6)

answers this “embedding problem for K,”.

Of course we must ask: Are there any number fields that satisfy the equivalent
properties of (1.6)7 An example of such a number field is Q. For § we already
have that the (honest) class number is odd and that @ contains (honest) units with
independent signs. Here the term honest is used as opposed to “S-...” to emphasize
the distinction.

Note that the S-class number is a factor of the honest class number. Hence, if a
number field has odd honest class number then it also has odd S-class number. We
also see that if a number field contains units with independent signs then it also
contains S-units with independent signs since the honest units are contained in the
set of S-units.

This gives rise to the following question: Is the “S-” in (1.6.c) necessary? That is:
(1.9) Question: Are there number fields F that satisfy the properties of (1.6)
and that furthermore satisfy:

i) F has odd class number and contains units with independent signs?

ii) F has even class number and does not contain units with independent signs?
iii) I has odd class number and does not contain units with independent signs?

iv) F has even class number and contains units with independent signs?




The answer will be yes in all cases. In section 2 we will see that there exist many
number fields that satisfy the properties of (1.9) i,iii and iv. Examples of number
fields that satisfy the properties in (1.9.ii) are more difficult to obtain. We will spend
the remainder of this chapter searching for an example of this type. In section 4 we
will obtain one example of such a number field. More examples will be given in the

end.

Consider the following observation from [Hu]:
(1.10) Fact: (Conner):
Let F be a number field in which (2) is at most tamely ramified.
Then the following are equivalent:
a) 2-primK;(OF) is elementary abelian of rank r,(F)
b) g2(F) =1, h(F) is odd and F contains units with indep. signs

This tells us that many number fields have the properties required in (1.9.i). It also
tells us that in order to find number fields that are examples for the other cases we

need to consider number fields where (2) is wildly ramified.

Note that wild ramification is necessary but not sufficient to obtain examples for

.....

field of the type (1.9.i), consider F' = Q(v/2): Here we have: 2-Op = (v/2)?, 50 F
has exactly one dyadic prime. The elements +1, 1+ /2 and —1 — /2 are a set of

units with independent signs and h(F)=1, which is odd.

We now wish to find number fields F for which g;(F) = 1, h5(F) is odd, F contains
S-units with independent signs BUT h(F) is even and/or F does not contain units
with independent signs. By (1.10) such examples can not be found among number

fields of odd degree for the following reason:

If we want these fields to have only one dyadic prime, call it D, then 2. Op = D*
for some positive integer e. Since e divides the degree of F, it is odd. By definition

this means that (2) is at most tamely ramified.

We will therefore now examine number fields of even degree starting with quadratic

number fields .




2. Quadratic number fields

Among quadratic number fields we will find many where 2-primK,(OFp) is elemen-
tary abelian of rank rq (). We will not, however, find any that satisfy the condition
that they have even class number and that they do not contain units with inde-
pendent signs.

(2.1) Theorem: The quadratic number fields F where 2-primK,(OF) is elemen-
tary abelian of rank r,(F) all have the property that h(F), the class number of F, is
odd or that F contains units with independent signs. For each of these cases there

are in fact an infinite number of examples.

To prove (2.1) we will now collect some well known facts about quadratic num-
ber fields. From these a classification of all quadratic number fields F where 2-
primK,(Op) is elementary abelian of rank ry(F) will follow immediately. The
classification will separate the fields according to the parity of h(F) and whether or
not F contains units with independent signs.
The proofs of the following facts can be found, for example, in [C-H,]
(2.2) Fact: Let F =Q(\/E) , d € ZL squarefree, then the following are equivalent
a) 2-primK,(OF) is elementary abélian of rank r{(F)
b) d=2,p,2p,—-1,-2,—p,—2p
where p is a prime with/p = 43 mod 8

O

(2.3) Fact: Let F=Q(Vd) , d € Z squarefree, then the following are equivalent:
a) The class number h(F) is odd
b) d = —1,%2, p, where p is any odd prime and
d = —p,2p, p1p2, for primes p, p;,p2 = 3 mod 4.
O

When determining whether a quadratic number field F has units with independent
signs, recall that following the definition of units with independent signs in (1.7)

we explained that an totally imaginary number field F always contains units with
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independent signs. In particular: any imaginary quadratic number field contains
units with independent signs. For real quadratic number fields we have the following

criterion:

(2.4) Lemma: Let F be a real quadratic number field and let ¢ denote a funda-

mental unit of F, then:

F contains units with independent signs <= Np|g(c) = —1

Proof: The set of units of F is O = {+e"|n € Z}. If N(e) = +1,

then N(+e™) = N(£1)- N(e)® = +1 , i.e., the norm of every unit is +1. Since
the norm is the product of the two conjugates, this shows that for every unit both
it and its conjugate have the same sign. In this case F can not contain units with

independent signs.

Conversely: if N(¢) = —1, then &1 and +¢ are a set of units with independent

signs. (]

The following can be found, for example, in [C-H;]: 18.4, 19.9 and chapter 22.

(2.5) Fact: For the real quadratic fields F' = Q(+/d) from (2.2) we have:
if d=2  then N(e)= N(1++v2)=-1
if d=p with p=+3 mod8 then N(g) =+1
if d=p with p=—-3 mod8 then N(¢) =-1
if d=2p with p=+3 mod 8 then N(g) = +1
if d=2p with p= —3 mod 8 then N(¢) = -1

This gives a complete classification of all quadratic number fields F=Q(v/d) with

the property that K;(Op) is elementary abelian of rank r;(F):




h(F) odd h(F) even
F contains d=2,-1,-2 | d=—p with p=—3 mod 8
units with d=—p with p=+3 mod 8 d=+42p withp=—3 mod 8
indep. signs d=+p with p=—3 mod 8 d=—2p with p=+3 mod 8
F does not d=+4p with p=+3 mod 8
contain d=42p with p=+3 mod 8 NONE!
u.w.i.s.

Remark: Other examples of number fields F where K;(Op) is elementary abelian
of rank ry(F) are:

F = Q(v/6) and Q(&,¢) with k > 2.

They can be found in [Hu], 4.2 and 13.11. All of these number fields have odd class
numbers and contain units with independent signs.

We have now seen an infinite number of examples of number fields for each of the
types we asked for in (1.91). Missing so far is an example of the type (1.9ii), i.e a
number field F where 2-primK,(Op) is elementary abelian of rank r;(F) with even
classnumber that does not contain units with independent signs! They do not exist
among quadratic number fields. In view of (1.10) the next step is to look for them

among number fields of degree 4.

3. Biquadratic dicyclic number fields

In this section we will show that among biquadratic dicyclic number fields there
does not exist an example of the type described in (1.9ii). First we recall a criterion
on how to distinguish among the different types of number fields of degree 4. It can
be found, for example, in [C-H,].

(8.1) Fact: Let F=Q(+/d) with d € Z squarefree, be a quadratic number field
and let E=F(\/7) = Q(V/d,/7) where o € F* but ¢ ¢ (F*)?. The normal closure
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of E over Q) is given by Q(\/a, Vo, +/Ngjo(e)). We have:

a) F|Q is biquadratic dicyclic <= Np|g(o) € Q?
b) E|Q is biquadratic cyclic <= d-Npp(o) € Q?
c) E|Q is non-abelian biquadratice= Np|g(o) ¢ Q? and d - Npigl(o) ¢ Q’

Remarks: In case c¢) “non-abelian biquadratic” means that E is a number field of
degree 4, but the normal closure of E is of degree 8. The Galois group of this normal
closure over @ is non-abelian. It is the dihedral group of order 8.
In case a) E has exactly 3 quadratic subfields. This follows from the fact that the
Galois group Gal(E|Q) is ZZ/2 x Z /2, which has exactly three nontrivial subgroups.
In case b) E has exactly one quadratic subfield. This follows from the fact that the
Galois group Gal(E|Q) is Z /4, which has exactly one nontrivial subgroup.
(3.2) Theorem: All biquadratic dicyclic number fields that satisfy

the conditions in (1.6) have odd class number.
Proof: By (3.1) all biquadratic dicyclic number fields can be expressed in the form
E=Q(v/d;,Vdz) with dy # d; € Z squarefree. Which of these are possible candi-
dates for an example of the so far missing type (1.9ii)?
Note that biquadratic dicyclic number fields will always be either totally real or
totally imaginary. Since totally imaginary number fields always contain units with
independent signs, we only need to consider totally real number fields if we want
2-prim K3(Og) to be elementary abelian of rank ry(B). By (1.6b) we know that
this property is hereditary. Hence we can restrict our attention to those number
fields whose quadratic subfields F' all have the property that K;(Op) is elementary
abelian of rank ry(F) = 2. These were listed in (2.2), but by the previous step we
need only the real fields. Therefore we can restrict our attention to those fields E
whose quadratic subfields F are all of the form F:Q(\/(_i) , with d = 2, p, 2p where
p is a prime and p = +3 mod 8.
Let E=Q(+/d1,v/dz), the 3 quadratic subfields are:

Q(Vdy) Q(vd;) and Q(Vdydz)
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Hence we need not only dy and d; but also dyd;, modulo squares, to be contained
in {2,p,2p | p = +£3mod8}. This shows that at least one of dy, d; must equal 2, the
other can be either p or 2p where p = +3 mod 8. The resulting fields are Q(+/2, \VP)
and Q(+/2, v/2p), which are identical.

How far are we in the proof of (3.2)7 We have seen that the only biquadratic
dicyclic number fields that might satisfy the conditions of (1.6) and that might not
contain units with independent signs are those that are of the form E=Q(v/2, VP)
with p = 43 mod 8. Whether or not they actually do have all these properties
is irrelevant at the moment since the next two propositions state that all of these
fields have odd class nuﬁber h(E). They can therefore not provide an example of

the type required in (1.9ii)! O

(3.3) Proposition: Let E=Q(+2,,/p) with p= —3 mod 8 , then h(E) is odd.
Proof: Since the Legendre symbol (12—,) = —1 for p= —3 mod 8 we can apply
[C-H;], theorem 21.1. It tells us that h(E) is odd. |

(3.4) Proposition: Let E=Q(v/2,/p) with p =43 mod 8, then h(E) is odd.
Proof: apply [C-H;]|, theorem 21.2. O

These two propositions conclude the proof of theorem (3.2). It would, however, be
nice to know if these possible candidates for fields that might satisfy the conditions
in (1.6) actually do have these properties. It does not seem possible to check this
with elementary methods. We will therefore not pursue this question at the moment.
Instead we refer to section 14. There we will see that number fields of the type

E=Q(Vv?2, /P) with p = £3 mod 8 in fact do satisfy the conditions of (1.6).

4. Biquadratic cyclic number fields

In this section we will prove that among biquadratic cyclic number fields there is
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at least one number field with the properties required in (1.9ii). The methods used
here are elementary. When we need facts that cannot be seen very easily we will
refer to Hasse [Ha], where he computes many examples. Later, in section 15, we will
again prove that the example from this section satisfies all requirements of (1.9ii).

There we will see that it is in fact a member of an infinite set of examples.

(4.1) Theorem: Let E=Q(+/10+10), then
E is biquadratic cyclic,
E has exactly one dyadic prime,
the S-class number of E is odd,
E contains S-units with independent signs
but furthermore the class number of E is even

and E does not contain units with independent signs

The proof of (4.1) will follow from (4.3),(4.10),(4.11),(4.9) and (4.8a) below.

To get a better idea about the structure of E, note that E=Q(+/10+v10) can also
be written as Q(v/ev1o) with e =14 V10.
(4.2) Proposition: E=Q(+/10+v10) is biquadratic cyclic.

Proof: E is a quadratic extension of the quadratic field F=Q(+/10). We check that
E is cyclic by using the criterion from (3.1): NF|Q(e\/1—O) = Npjg(e) - (=10) =
(=9) - (—10) = 3210 ¢ Q* but 10- Npjo(ev10) = 3210% € Q°. O

(4.3) Proposition: E=Q(1/10+v10) has exactly one dyadic prime.
Proof: F=Q(4/10) is the only nontrivial subfield of E and (2) is ramified in F|Q.

From this it follows that @ is the maximal subfield of E in which (2) is unramified.

This shows that (2) is totally ramified in E|F. O

(4.4) Proposition: {1, v/10, v/10+170, v/10-+/15} is an integral basis of
E=Q(+/10+v10), i.e. a Z-hasis of Op.
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Proof: In [Ha] Hasse computes this integral basis of E. O

For E=Q(+/10+v10) we will now compute the elements of Gal(E|Q) = 7Z/4:
V10410 satisfies 22 = 10+1/10 and therefore (z>—10)? = 10 or z*—20x2+90 = 0.
This shows that the minimal polynomial of v/10++v10 over Q is:  z* — 20z? + 90.
The roots of this polynomial are: ++/10+v10 and ++v/10-vi0. To get a better idea
of the structure of this minimal polynomial, note that it can also be expressed as:
zt — TE|Q(6\/1—6).’B2 - NElQ(e\/ﬁ) with roots: ++/¢vio and £/—&vio

The four embeddings of E=Q(+/10++10) into the real numbers are given by :

V10410 — £4/10+/10

The two embeddings that fix F= Q(+/10) are: /10++/io — =+1/10+v10 because
V10 = (\/I_OWTE)Z —~ 10 clearly is invariant under these two homomorphisms.
The other two embeddings must then map v/10 — —+/10 and either one of them
generates Gal(E|@). Let ¢ denote the map that takes v/10++10 — y/10—vi6. Then
¢? is the nontrivial map that fixes F, but it does not fix v/10—v10 ¢ F. Therefore
¢? maps /10— 1o to the only remaining possible root which is —+/10— /0.

This determines Gal(E|Q) completely, so we have proved:

(4.5) Lemma:  Let E= Q(+/10+v10). The Galois group Gal(E| Q) ~ 7Z/4 is
generated by the automorphism £ : E — E  where { maps the generators of E

over @ as follows:

¢(V104+10) = v/10-v10 '
E(V10-vi0) = £2(v/10+ VD) = —v/10+ V10
£(v10) = ~V10

£(1) =1

Next, we will compute a formula for the norm of E over @, denoted by Ngq.
An arbitrary element of E can be written as a + bv/10 + c\/10+vi0 + dv/10— V10
with a,b,c,d € Q. All of its conjugates are:

id(a + bv/10 + cv/104vi0 + dv/10-v/10 ) = a + byv/10+cv/10+vio +dv/10—10
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£2(a 4 bv/10 + cv/10+v10 + dy/10-v10 ) a + byv/10—cv/10+ /10 —dv/10— /10
¢ (a+ bv10 + cv/10+vio + dv/10-vid ) a — by/10—dv/10+vV10+cv/10- 10
£3(a + bv/10 + ev/10+v30 + dy/10—v10 ) = a-— bv/10+d+/10+v/10—cy/10- /10

The norm of an element in E is the product of all its conjugates:

Ngjg(a + bv/10 + cv/10++v10 + dy/10—+/10)

= |(a +bVA0)? — (cviosvio + dv/m=vio)’]
'[(a — bv/10)% — (dv/10+ V0 — c\/lo_m)z]

- [a2 + 106% + 2abv/10 — ¢2(10 + v/10) — d2(10 — v/10) — 2cd3\/E]
-[a2 + 1062 — 2aby/T0 — d2(10 + v/10) — c3(10 — v/10 + 2cd3\/1—0]

= [az + 1052 — 10(c? + d2) + 2aby/T0 + (d2 — ¢*)v/10 ~ 2cd3/T0]
-[az + 1062 — 10(c? + d2) — 2aby/10 — (d? — ¢?)/10 + 2dc3m]

= [a® + 100 = 10(¢* + )]~ 10[2b + &% — * ~ Ged]

So we have shown:

(4.6) Proposition: Let ¢ = a+5v10+cv10+vi0+dy/10-v10 with a,b,¢,d € Q
be an arbitrary element of E=Q(+/10++10) , then

Najo(e) = [a* +10(82 - ¢ - dz)]2 —10[2ab + d* — ¢ - 6cd]2

Now let a + 5v/10 + ¢y/10++/710 4 dv/10-+/10 be an integer in E, which by (4.3) is
equivalent to assuming that a,b,¢,d € Z . For an integer the above formula for the

norm simplifies to:

(4.7) Ngg(a+5v10 + cV10+v10 + dvio—vis) = a* mod 5

(4.8) Proposition: Let E=Q(1/10++v10) and let Og denote the ring of integers

of E. There is no element in O whose norm over Q is —1 or £2 or 4.
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Proof: By (4.7) the norm over @ of any integer in O is a 4-th power modulo 5.
Hence the norm of an element is 0 or 1 modulo 5, depending on whether the first

coefficient is divisible by 5 or not. It is therefore never —1,+2 or 4. g

This has the following consequences:

(4.8a) Corollary: E does not contain units with independent signs.

Proof: All units of E have norm +1. Hence every unit has an even number of
negative and positive conjugates. From the definition of units with independent

signs we see that E does not contain units with independent signs. £l

(4.8b) Corollary: The dyadic prime ideal of E is not principal.

Proof: If it were principal it would be generated by an integer whose norm equals
the norm of the ideal (up to the sign). Since the dyadic prime is totally ramified
in E, its norm over @ is 2. There exists no integer of norm +2, hence the dyadic

primie can not be principal. O

(4.9) Theorem: Let E=Q(1/10++10) and let h(E) denote the class number of E,
then h(E)=2, in particular: it is even.

Proof: Hasse computes the class number in [Ha). a

(4.10) Corollary: Let E be as above and let h5(E) denote the S-class number
of E, then h5(E) = 1, in particular: h5(E) is odd.

Proof: By (4.9) we know that the ideal class group of E is isomorphic to Z/2.
Therefore it consists of the class of principal ideals and the class of not principal
ideals. By (4.8b) the dyadic prime is not principal. To obtain the S-class group we
factor the class group by the class of the dyadic prime, so h5(E) =1 1

(4.11) Proposition: Let E=Q(1/10+v10), then E contains S-units with inde-

pendent signs.

Proof: We can prove the existence of S-units with independent signs as follows:

Take a generator of the square of the dyadic prime of E. It is an S-unit of norm
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—4, since +4 is excluded by (4.8). This generator and its conjugates form a set of
S-units with independent signs. Practically, the proof ends here, but we will now
give a set of S-units with independent signs explicitly:

Consider the integer z := —2 — V10 — V10416 — v/10-+/10

It is an integer of E and its norm is —22, so x is a S-unit.

Computing the embeddings of z we obtain: id(z) =~ —11.4<0
€(z) ~+2.18>0
£%(z) =~ +1.08 > 0
£(z) ~ +0.15>0

The integers &(z),£%(z) and €*(z) all have the same norm as z. Therefore they
are all S-units. The set {z, &(z), &% (z), €*(z)} is in fact a set of S-units with

independent signs since under U5 — {Z/2}* they map as follows:

T - (sign {’(m)) = (=+,+,+)

1=0..3

(o) = (signei@) =)

(
E(z) — (3zgn£1+2 )izo..s =(+,+,—+)
(

sign £43(2)) = (4,4, )
Here we used the fact that Gal(E|®) is cyclic, so the embeddings of the conjugates
of @ are obtained by cyclically permuting the embeddings of .

Therefore  and its conjugates form a basis of S-units with independent signs.

This concludes the proof that E=Q(+1/10+v10) has all the required properties. [

As pointed out before, the infinite set of examples given in section 15 will include
this example as special case. This infinite set of examples is obtained by considering
2q instead of 10, where ¢ is a prime with ¢ =5 mod 8. Most of the properties claimed
in (4.1) could be checked for this generalization by the same methods used in this

section. The determination of the parity of the class number or the S-class number,
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however, calls for more involved methods. We will therefore now establish general
facts about number fields F' where 2-prim K,(Op) is elementary abelian of rank

r1(F).




CHAPTER 2
Number Fields with property (*)

In chapter 1 we saw examples of number fields F for which 2-prim K,(Op) is
elementary abelian of smallest rank, namely: ry(F). These examples were @ and
degree 2 and degree 4 extensions of Q. This leads to the question: Are there
number fields of higher degree that also have this property? The answer is yes.
In fact, we will see how to construct examples of such number ﬁeldv as consecutive
quadratic extensions of Q. By (1.6) we know that these number fields have the
following properties: they have exactly one dyadic prime, odd S-class number and
contain S-units with independent signs. From now on we will restrict our attention
to number fields with these properties, with one additional condition: The number
field is totally real. This is useful for later, when we will again wish to obtain
examples of number fields where 2-primK>(Op) is elementary abelian of smallest
rank and vthat do not contain units with independent signs. That the condition
of the number field being totally real gives it a better chance of not containing
units with independent signs becomes clear from the consideration of the following
special case: if a quadratic number field it is not totally real then it has no real
embeddings and therefore it contains units with independent signs by default. For
higher degree extensions this argument does not hold, but at least one sees that
it might be difficult to obtain examples of number fields that do not contain units
with independent signs if the number of real embeddings is small.
For convenience of notation we define:
A number field F is said to have property (*) iff it satisfies all of the
following:

F is totally real

F contains exactly one dyadic prime

F has odd S-class number

F contains S-units with independent signs

We will start this chapter by setting up the tools that we will need. In section 6

we introduce the exact hexagon that is given in [C-H,]. We also collect some facts

18
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that are related to it. Then we are ready to give a characterization of quadratic
extensions of number fields with property (*). This will be done in section 7. In
section 8 we are then able to prove the existence of infinitely many number fields
with property (*) that can all be obtained by successive quadratic extensions of @
or any other number field with property (*). A closer examination of which other

properties these number field have will follow in chapter 3.

5. Setting up the tools ‘

In all of the following we let F be a number field and S denotes the set consisting of
the infinite and dyadic primes of F. As before, we will use O% to denote the units

of F and U3 to denote the S-units of F.

(5.1) Proposition: Let F be a number field. The group of square classes of
units of F' injects into the group of square classes of S-units of F. We can therefore

consider O%/(0%)? to be contained in Uz /(Uz)?.

Proof: Let a: Op — Ug/(Us)? be the map induced by the inclusion of Op
into UR /(U5 )2. We have to show that an element of the kernel of « is contained in
(O%)?. This can-be seen as follows: Let u be a unit of F that is in the kernel of
a. Then u = v? for some S-unit v. Since the square of v is a unit, it follows that v

is a unit. Hence, u €'(0%)?. O

(5.2) Dirichlet S-unit theorem (see for example [La]):

US = g B3 (F)+d=1 o (100ts of unity)

here 71 (F') denotes the number of real embeddings of F, 75(F') denotes the number

of pairs of complex embeddings and d is the number of finite primes in S. O

What does this tell us about the group Uz /(U3 )?? The roots of unity form a finite
g F/I\UF y
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cyclic group. They contain —1, an element of even order, so they form a finite cyclic
group of even order. Factoring out squares then leaves only a group isomorphic to
7Z/2. We obtain:

US/(US)? & (T2 (Prera(yte

Applying this to the special type of number fields we are interested in, immediately
yields:

(5.3) Corollary: Let F be a totally real number field that contains exactly one
dyadic prime. Let 7;(F') denote the number of real embeddings of F, which in this

case equals the degree of F. Then:

#UR/(UR)? =27 and  #0%/(0F)" = 2mF)

Remark: By (5.1) we can consider O%/(0%)? as contained in US/(Us)%. In a
number field that satisfies the conditions of (5.3) we can furthermore regard half of

the square classes of U /(U§)? as coming from square classes of O%/(0%)?.

In particular, (5.3) applies to number fields with property (*). By definition such

number fields contain S-units with independent signs. Recall that this means that

the map Ug/(Ug)? — (Z/2)"F) is surjective. The map is defined by mapping

a class of UZ/(UZ)? to the signs of its representatives. For a totally real number

field F with exactly one dyadic prime we just saw that #U5/(U5)? = 2n(F)+1 1f

furthermore F contains S-units with independent signs, then the kernel of the above
g1 (F)+1

map has ‘7~ = 2 elements. One of them is the class represented by 1. The

other we will denote by 75.

(5.4) Definition: Let F be a number field that has property (*). Let 7, denote
the nontrivial element in the kernel of ¢ : Uz /(UR)? — (Z/2)"(F), ie. the

nontrivial square class of totally positive S-units of F.
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Remarks: 1) For this definition to make sense, we only needed that F is totally
real, has exactly one dyadic prime and contains S-units with independent signs. By
‘ stating it for number fields that have property (*) we included the condition that F
has odd S-class number. This is not necessary, but since we will be interested only
in number fields with property (*), it makes our statements easier to read.

2) In the following we will not always distinguish between the class 7 and one of its
representatives. Hence, from now on 7 will either denote the above defined element
of UZ/(UZ)? or, by abuse of notation, a totally positive S-unit of F that is not a
square from U3. The following is a useful criterion to check whether a number field

F with property (*) contains units with independent signs:

(5.5) Proposition: Let F be a number field with property (*), then:

F contains units with independent signs = ™ € O%/(0%)?

Proof: In (5.1) we saw that O%/(O})? can be considered as a subgroup of

UZ/(Ug)*. Let ¢ denote the surjective map from Ug/(US)? onto (Z/2)™(F),
By definition of 7 we have: ker(p) = {1,7-}. Consider the restriction map
plo : O5/(0%)? — (Z/)2)"F). Its kernel is contained in {1,7x}. By definition
we have: ¢|o is surjective iff F contains units with independent signs. Since both
0% /(0%)? and (Z/2)"*F) are finite groups of the same order, namely 2" we
have: ¢|o is injective iff F contains units with independent signs. Now it is clear
that F contains units with independent signs iff ker(p|o) = {1}, which occurs if
and only if 7 &€ O%/(0%)3. O

We are still setting up the tools we will need in the following sections. For this we
now need to consider real quadratic extensions E|F of a number field F. Here, “real
quadratic” means that the square root of a totally positive element of F is adjoined
to F, so no infinite prime of F will ramify in E. We will examine the relationship
between E containing S-units with independent signs and F containing S-units with
independent signs. Here S can stand for any set of primes of F that contains all
infinite primes of F. In particular we will apply the result to the case where S consists

of the infinite and dyadic primes of F and also to the case where S contains no finite
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primes of F. In this second case we will get a relationship between E containing
units with independent signs and F containing units with independent signs.

We will see that if E contains S-units with independent signs, then so does F;
but the converse does not hold in general. The relationship between S-units with

independent signs of E and F will follow from examining the following diagram:

(5.6) Lemma: Let E be a real quadratic extension of a number field F.

Let {o1,..,0%,..,0.(F)} denote the real embeddings of F and let

{11,012, 4,031, Fi25 -0y Opy (F)1, Oy (F)2 } denote the real embeddings of E, where the
notation is chosen such that o |p = ¢42|F = o; for ¢ = 1,...,71(F). The following

diagram commutes:

E* (...,O'-lﬁ;'Zt'“) R27‘1(F)

Ng\p } L m
B (_'i'_;) er(F)

Here m is the map defined by multiplying two successive entries,

i.e. let (a,u,a.lg,...,arl(p)l,arl(p)z) € R then

M @11, @125 -y Cry (F)15 Cry (F)2) °= (@11 * Q125 000y @y ()1 * Qpy (F)2)

Proof: Let T denote the generator of Gal(E|F) = 7Z./2, then for any a € E we
have: Ngp(a) = a-T(a) and for i = 1,..,r we have: 0y = 053 0T. In order to

check the commutativity of the diagram we need to check:

mo (‘711 *012y -3 0py (F)1 " arl(F)Z) = (0'1’ -",arl(F)) © NE]F

This is done as follows. Let a € E, then:

[m 0 (cry7ity 0izy )] (@) = m(eyoir(a), 0i2(a),...)
= (w,0u(a) oi(a),..)
= (wou(a) oiy(Ta),...)

woif(a-Ta),...)

- 0i1(Ngir(a),...)

..,O'i(NElp(a,),...)

SN SN N
. . .




23

[(...,0',;,...) o NE|F](a,) = (...,O'i,...)(NE|F(a))
In the second to last line we used the fact that NE|F(a) € F and oy |F = o;. O

Since we are interested in properties of E and F concerning units with independent
signs and S-units with independent signs, we will now give a weaker version of
(5.6). Instead of mapping an element of F™* or E* into R we only need the sign of
its image in R, so we will map an element to the signs of its embeddings. We also
do not need all of E* and F*, but only the subgroups of S-units: U5 and U3. Here,
one set S is a collection of primes of F, the other S is the set of primes in E that
lie over those from F. Which set S is meant, is clear from the context, we will not
distinguish them in our notation.
Hence, (5.6) restricts to the following commutative diagram of groups:

Ug — (=/2)nD)

n b m

Ug - (z/2m
The maps m,p, ™ and n are defined as follows:
The map m again denotes the map that multiplies two successive entries.

We let ¢ and 7 denote the maps that take an element to the signs of its embeddings:
7 = (..., S8gN0yy, SigNTiz,..) 1 Us — (Z/)2)%m(F)

¢ = (., signas, ) Up — (Z)2)™F)

By n we denote the restriction of the norm map Ngp to Ug. Note that n in fact
maps U3 into UZ. The image of n is NE|F(U5). We can also consider this restricted
norm map n as mapping Ug /(Us)? into U2 /(Us)?. The image is-NE|F(Ug)/(U5)2
and the cokernel is isomorphic to Uz /N B ip(U 2).

Note that (Ug)? is contained in the kernel of m and (U2)? is contained in the kernel
of ¢. We can therefore consider 7 and ¢ as mappings on square classes. This

justifies the following;:

(5.7) Corollary:  With the notation as above, the following diagram of finite

abelian groups commutes:
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USSP S @2y
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The cokernel of n is isomorphic to U3 /Ngp(Ug). O

Remarks: If F has property (*), then the kernel of ¢ is {1,77}, where 7 is as in
(5.4). 4

Recall that, by definition, F contains S-units with independent signs iff ¢ is sur-
jective. E contains S-units with independent signs iff 7 is surjective.

As explained above, the set S corresponding to E consists of all primes lying over
those primes that are in the set S corresponding to F. The set S of primes of F
can stand for any set of primes that contains all infinite primes of F. In i)articular,
it applies to the case where S contains no finite primes. In this case we replace
“S-units with independent signs” by “units with independent signs” and U 2,Ug by
0%,0%-

(5.8) Proposition: Let E be a real quadratic extension of a number field F. If E
contains S-units with independent signs, then p on: US/(U§)? — (Z/2)"F) is

surjective; in particular: F contains S-units with independent signs.

Proof: The idea of the proof is that the norms of a set of S-units with independent
signs of E form a set of S-units with independent signs in F. We are assuming
that E contains S-units with independent signs, so 7 is surjective. Clearly the map
m that mutiplies two successive entries is also surjective. Hence, the composition
momw: US/UZ) — (Z/2)"F) is surjective. From the commutativity of the
diagram in (5.7) we conclude that ¢ on is surjective. Therefore the restriction of ¢
to the image of n is surjective. In particular, this tells us that ¢ is surjective, so F

contains units with independent signs. (|

The converse of (5.8) holds, too. Note that to conclude that E contains S-units
with independent signs it does not suffice that F contains S-units with independent

signs. We need to assume the stronger condition that ¢ o n is surjective.
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(5.9) Proposition: Let E be a real quadratic extension of a number field F. If
pon:UE/(US)? — (Z/2)"(Flis surjective [notation as in (5.7)], then E contains

S-units with independent signs.

Proof: The idea of the proof is that S-units with independent signs of F can be
“pulled up” to S-units with independent signs of E by the norm. We will use the
same notation for the elnbeddings of E and F into R as in (5.6), T will stand for
the generator of Gal(E|F). Let {a;,...,a. (5} be a set of representatives of square
classes of S-units of E such that 6;(Ng)pa;) is negative and o;( Ng|ra;) is positive
for all j # <. It is possible to choose such a set since we are assuming that the
restriction of ¢ to the image of the norm map n is surjective onto (Z/2)"(F), To
show that E contains S-units with independent signs, we need to show that = is
surjective. For this it suffices to find a set {4, ..., A,,(F)} of S-units of E such that
for every ¢ € {1,...,71(F)} we have: 0;;1(4;) is negative and o;;(4;) is positive for
all j # ¢ and o0j2(A;) is positive for all j € {1,..,71(M}.

The existence of these elements suffices to conclude that 7 is surjective, because
these A; together with their conjugates T(A4;) form a set of S-units of E that are
negative in exactly one embedding of E into R and positive in all the others.
Under the map 7 products of these S-units will then map to any given element of
(z/z)m‘l(F).

We now fix any ¢ € {1,...,71(F)} and construct an element A; with the desired
properties. We start by considering the element a;. We have 0;(Ng|ra;) = 0i1(a;)-
oi2(a;). Since o;(N B Fa;) is negative we can conclude that exactly one of o;1(a;)
or gi3(a;) is negative. By replacing a; by its conjugate T'(a;), if necessary, we can
assume that o3 (a;) is negative. Unfortunately, when considering o;;(a;) and oj2(a;)
for 7 # i we can only conclude that they both have the same sign. This follows from
the fact that their product is o;( Ng|ra;), which is positive. To obtain an element 4;
as required, we need to alter a; such that the signs under the embeddings o;; and o,
stay the same, i.e. negative and positive, respectively; but the signs of the element
under all other embeddings are positive. Let I denote the set of indices where the
embedding of a; has negative signs: I := {k| sign[o}i1a;] < 0 and sign[oyza;] < 0}

Since we already know that oj;(ax) and oj3(ar) = 0;1(Tar) have the same sign for
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all j # 4,k € {1,..r1(F)}, we can take:

A;=a;- H arT(ar)
ki

This element will have the same signs as a; at the embeddings o;; and o;2. Like a;
it will be positive under o1 and o2 for k € I, but whereas a; was negative under

o and oy for k € I, this element is positive. il

In propositions (5.8) and (5.9) we have shown that E contains S-units with inde-
pendent signs iff ¢ o n is surjective. For the special case where S does not contain
any finite primes this yields:

(5.10) Corollary: Let E be a real quadratic extension of F. Then E contains
units with independent signs if and only if F contains units with independent signs

and all units of F' are norms of units of E.

Proof: If E contains units with independent signs then ¢ on : 0%/(0%)? —
(Z/2)"(F) is surjective by (5.8). Hence ¢ is surjective, so F contains units with
independent signs. Since ¢ maps O%/(0%)?, which by (5.3) has order 27(¥) into
(Z/2)"+F) | we see that ¢ is an isomorphism. We conclude that n : 0%/(0%)* —
0% /(0% )? is surjective, so evéry unit of F is the norm of a unit of E.

Conversely, assume that F contains units with independent signs, so ¢ is surjective,
and that every unit of F is the norm of a unit from E, so n is surjective. It follows

that ¢ o n is surjective, so by (5.9) E contains units with independent signs. O

6. The exact hexagon
We now need to introduce the exact hexagon that is defined in [C-H,], applied
to the case where F|F is an extension of degree 2. S could be any finite set of
primes of F containing all infinite primes of F. We will later apply this to two cases:
the case where S is the set of all dyadic primes and all infinite primes of F and the

case where S contains no finite primes of F.
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Let T denote a generator of the galois group Gal(E|F) = Z/2 = C; =< T >. The
set of S-integers of F and the set of S-units of F will be denoted by O3 and Ug,
respectively. We will let O3, denote the integral closure of O3 in E, U§ the set of
S-units of E and C5(E) the S-class group of E.

Note: In the case where S contains no finite primes of F we will just omit ‘S’
in the notation. In accordance with this the set of integers of F will be denoted by
Or, but for the set of units of F we will use O%.

We have the following cohomology groups:

HY(Cy;CS(E)) = {cl(A) € C5(E) |3z € B*: A-TA =3205}/{#}

here A is an ideal of E and cl(4) its class in the S-ideal class group of E.
H'(Cx3US) = {v € US | No = 1}/{2)

H°(C2;Ug) = Ug/Ngir(Ug)

H°(Cy;CS(E)) = {cl(A) € C5(E) |3z € E*: TA =zA}/N(C5(E))

We will now give a collection of results from [C-H]:

(8.1) There exists an exact hexagon:

i HY(Ca;C5(E) 3 HY(CHUS)

/7 N
RY(E|F) RY(E|F)
AN 7
8 HYCuUS) < HY(Ch;CS(E)) 9

For the definitions of the six maps and the groups R%(E|F') and Ry (E|F) we refer
to [C-H,]. It is known that all six groups in the above exact hexagon are finite
elementary abelian 2-groups. Recall that this means that they are all of the
form (Z/2)* for some nonzero integer k. This & is called the 2-rank or just the rank

of the group. In the next sections we will need the following facts:

(6.2) H°(C,,C5(E))and H'(Cy,C5(E)) have the same rank; they are noncanon-

ically isomorphic.

(6.3) If E is a quadratic extension of F that is either ramified or in which at least

one dyadic prime of F is inert, then




28

R%(E'F) o (E/z)number of ramified primes+ number of inert primes in S —1’
R]S(ElF) o~ (Z/z)number of finite ramified primes outsideof S
Note that in the case where S contains no finite primes of F we have:

RY(E|F) = (Z/2)wember of remified primes =1
RIS(EIF) o (%/z)number of finite ramified primes

(6.4) There is an injection from R%(E|F) into the cohomology group
H%(C3, E*) = F*/Ngr(E*). We also have the canonical injection from H®(C,,Ug)
into H°(C3, E*). This canonicél injection commutes with the composition of i5 and

the inclusion of R%(E|F) into H°(C>, E*).

(6.5) If AS5(F)is odd, then:

.5
a) R%(ElF)z—%HI(Cz, C5(E)) is surjective.
b) 2-tkCS(E) =2-rkH(C3, C5(E))

C) R%(EIF) o~ (Z/z)number of ramified primes+ numberof in.ert primes in S —],

Remark: This can be found as 2.2 in [C-H,].

(8.8) Let E|F be a ramified quadratic extension. The following are equivalent:
a) the relative class number h(E|F') is odd

b) g : H°(C,,0%) — R°(E|F) is surjective and C; acts trivially on the 2-primary
subgroup of C(E).

Remark: This is a special case of 5.8 in [C-Ha].

For ramified extensions the relative class number h(E|F') is defined as the quotient

of the class numbers of E and F. This quotient is an integer.

(6.7) Let F be a number field and let S denote the set of infinite and dyadic primes

of F. If A5(F), the S-class number of F, is odd then any quadratic extension of F

in which no dyadic prime is inert must be a ramified extension.

Proof: Assume that F has an unramified quadratic extension E in which no
dyadic prime of F is inert. It follows that E is a quadratic extension of F in which

all dyadic primes split. E is therefore contained in the Hilbert S-Class Field of F.
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The Galois group of the Hilbert S-Class Field of F' over F therefore has a factor 2,
i.e. it is even. By class field theory this Galois group is isomorphic to the S-ideal
class group of F. Hence the order of the S-ideal class group, namely the S-class

number h5(F), is even. This contradicts the assumption. O

7. Characterizing quadratic extensions with property (*)

Before we can prove the existence of number fields with property (*) in the next
section, we now give a very useful characterization of quadratic extensions with
property (*). .
(7.1) Theorem: Let F be a number field with property (*) and E a real quadratic
extension of F. Let 7 be any totally positive S-unit of F that is not a square. E has
property (*) if and only if either

1) no odd prime of F ramifies in E|F  or

2) exactly one odd prime of F ramifies in E|F and 7 ¢ Ngp(E*).

Proof: We will prove the claimed equivalence by proceeding in the following way:
Let F have property (*) and let E be a real quadratic extension of F. We will check
that:

a) If no odd prime of F ramifies in E|F then E has property (*).

b) If more than one odd prime of F ramifies in E|F then E does not have prop.(*).
c) If exactly one odd prime of F ramifies in E|F and if 7 € Ng|p(E*) then E does
not have property (*). |

d) If exactly one odd prime of F ramifies in E|F and if 7 ¢ Ngp(E*) then E has
property (*).

Before we start with the proof let us review what it means for F to have prop. (*):
F is totally real, F' contains exactly one dyadic prime, the S-class number of F,

hS(F), is odd and F contains S-units with independent signs. Note that E is always
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totally real, so to check whether E has property (*), we need to examine the number
of dyadic primes of E, the S-class number, h5(E), and whether E contains S-units
with independent signs.

This is done by computing some of the elementary abelian 2-groups in the ex-
act hexagon (6.1). We then use the facts listed in section 6 to draw conclusions
about other groups of the hexagon. In particular, we will determine the order of
H(C2,Ug) = Ug/Ngp(Ug) which is the cokernel of n in (5.7). This will allow
us to determine whether ¢ on is surjective. By (5.8) and (5.9) we can then tell
whether E contains S-units with independent signs. Note that by (5.4) we have
ker o = {1,7}.

Case a): No odd prime of F ramifies in E|F

Since we are assuming that h5(F) is odd we can apply (6.5.c) to obtain:

2-tk R%(E|F) = (#primes of F that ramify in E)-+(#dyadic primes of F that are inert in E)—1.
This number is not negative, hence F must either contain a prime that ramifies in
E|F or a dyadic prime (there is only one!) that is inert in EIF Since no odd prime
of F ramifies in E|F we conclude that the dyadic prime of F is either ramified or
inert in E|F. This shows that E contains exactly one dyadic prime.

We have 2-tkRY(E|F) = 0, so the elementary abelian 2-group R%(E|F) is trivial.
Applying (6.5.a) yields that H'(C;,C5(E)) is also trivial, since it is the image
under a surjective map from a trivial set. By (6.5.b) we obtain that the 2-rank of
CS5(E) is the same as the 2-rank of H!(C2,C%(E)), which by (6.2) is the same as
the 2-rank of H°(C,,CS(E)). This shows that 2-rtkC3(E) is trivial, i.e. h5(E) is
odd. Plugging the information obtained so far into the exact hexagon from (6.1)

gives an isomorphism:

H(C,, Ug)ﬁRg(Ew) =1
Hence H°(C,,U75) = UI‘,S/NEW(Ug) is trivial. The map n : Ug/(U§)? —
UZ/(U§)? in (5.7) therefore has a trivial cokernel, i.e., it is surjective. By as-
sumption F contains S-units with independent signs, so ¢ of (5.7) is surjective. We
conclude that the composition ¢ o n is surjective. Applying (5.9) yields that E
contains S-units with independent signs. This shows that E has property (*) in the

case under consideration.

Case b): More than one odd prime of F ramifies in E|F.
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We assume that at least two odd primes of F ramify in E|F and that E has property
(*). This will lead to a contradiction. We are assuming that F has property (*), soin
particular A5(F) is odd. Under this condition we can apply (6.5.b): 2-rkC'S(E)=2-
rkH(Cq,C%(E)). We are assuming that E has property (*), so h5(E) is odd.
This means that 2-rkC'5(E) is trivial, hence H*(C,,C%(E)) is trivial as well. The
above equality then yields that also the elementary abelian 2-group H!(C,,C>(E))
is trivial. By (6.2) we then also have H°(C2,C°(E)) trivial. Plugging this into the

exact hexagon results in an isomorphism:

is
H'(C,,Ug)—R3(E|F)

By (6.3) we have 2-tkR%(E|F) > 2+ 1 — 1, where 2 stands for the minimal number
of odd primes of F that ramify in E and 1 stands for the dyadic prime of F which
is either ramified or inert in E, since we are assuming E to have only one dyadic
prime. Combining this with the above isomorphism yields: H°(C.,Ug) = (Z/2)™,

with m > 2. Expressing H°(C,Ug) in a different way we have:
Uz /Ngir(Ug) = (Z/2)™ with m > 2

For the map n : Ug /(Ug)? — Ug/(U$)? in the diagram (5.7) this means that the
cokernel of n has (Z/2)™ elements. From (5.3) we have #Us/(Uz)? = 2n(F)+1,
2r1;i)+1 = onu(F)+1-m < 9ri(F)=1 clements. The map
pon: Ug/(US)?: — (Z/2)"F) can therefore not be surjective. From (5.8) we

Hence, the image of n has

conclude that E does not contain S-units with independent signs. This shows that
in this case E does not have property (*).

Case c): Exactly one odd prime of F ramifies in E|F and 7 € Nggp(E*)

We want to show: that E can not have property (*), but suppose E does have
property (*):

Since h°(E) is odd by assumption, we have 2-tkC'(E) = 0. By (6.5.b) this equals
the 2-rank of the elementary abelian 2-group H!(C3,C'°(E)), which in turn also
equals the 2-rank of the elementary abelian 2-group H°(C;,C'5(E)). Hence both
H°(C,,C3(E)) and H*(C2,CS(E)) are trivial. Plugging this into the exact hexagon
yields an isomorphism:

is
H®(Cy,Ug)—-R3(E|F)
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We now need to consider two possibilities: 7 ¢ Ngp(Ug), but still in Ngp(E*);
or T € Npr(Ug):

If 7 ¢ Ngp(Ug) then the classes of 1 and 7 in U3 /Ng r(Ug) are distinct. By the
above isomorphism the classes of 1 and r are then also distinct in RY(E|F). By
(6.4) RY(E|F) is a subset of H°(C3, E*) = F*/Ng p(E*). But here the classes of
7 and 1 are the same, since we are discussing a case where 7 € Npp(E*). This is
a contradiction, hence we must now assume that 7 € NE|F(Ug).

By (6.3) the rank of the elementary abelian group R%(E|F)is 1+1—1 = 1. Here,
the first one is the number if odd ramified primes of F and the next one counts the
dyadic prime of F which is either ramified or inert in E. Hence RY(E|F) = 7 /2.
From the isomorphism i§ we obtain: UZ/Ngp(Ug) = Z/2. In the commutative
diagram (5.7). we now have that the cokernel of n has order 2. Since n maps into
UZ/(Ug)?, which by (5.3) has 2(F)*! elements, we see that the image of n has
271(F) elements. The restriction of ¢ to the image of n is therefore a map frcm
a group of order 2"(F) to (7Z/2)"{F) | which has the sa;me order. Hence ¢|im n
is surjective iff it is injective. In the present case it is not injective since we are
assuming 7 € Ng p(Ug), so ker ¢lim n = {1,7} N Ngip(Ug) = {1,7}. We conclude
that ¢ on is not surjective, so by (5.8) E can not contain S-units with independent
signs. In this case E does not have property (*).

Case d): Exactly one odd prime of F ramifies in E|F and 7 ¢ Ngr(E*)

We want to check that E has property (*). Since 7 is not a norm from (E*) it
is certainly not the norm of an S-unit of E. Therefore the classes of 1 and 7 in
H°(C3,Ug) = UR/Ngr(Ug) are distinct. In the exact hexagon (6.1) H°(C3,Ug)
maps into RY(E|F) by i5. What can be said about the images of the classes of 1
and 7 under i§? By (6.4) we can consider R§(E|F) to be ¢ontained in H*(E*) =
F*/Ngp(E*). Here the images of the classes of 1 and 7 are distinct, since 7 ¢
Ngr(E*). Hence the images of 1 and 7 under ij are distinct in RY(E|F), so
RY(E|F) contains at least two elements. By (6.3) we know that the 2-rank of the
elementary abelian 2-group R%(E|F) is:

1 + (#ramified dyadic primes of F) + (#inert dyadic primes) — 1.

Here, the first one is the one ramified odd prime of F. By our previous observations

this number is to be at least 2. Since F contains exactly one dyadic prime we can
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deduce that R%(E|F) has rank 1 and that the dyadic prime of F is either ramified
or inert in E. This shows that E contains exactly one dyadic prime, the first step
towards property (*). Another conclusion we can draw from the above is that i3
is surjective. This follows from the fact that RY(E|F) has only two elements and
ig (1) is distinct from 45 (7). Since hA°(F) is odd we can apply (6.5.a) to obtain
another surjective map: R%(E|F)-Jf>Hl(Cg,CS(E)). From the exactness of the
hexagon (6.1) we obtain that the kernel of j{ equals the image of i5. This image is
isomorphic to R%(E|F) since i is surjective. Hence j{ is the trivial map and since
it is surjective we conclude that H(C;,C5(E)) is trivial. By (6.5b) this shows that
h5(E) is odd. To complete the proof that E has property (*) we now need to show
that E contains S-units with independent signs. We just saw that H(C3,C°(E)),
and by (6.2) then also H°(C,,C5(E)), is trivial. The exact hexagon therefore yields

an isomorphism:
Z/2 = R3(E|F) = H'(C2,U) = Up/Ngp(Us)

We now proceed as in case c¢). The map n in the diagram (5.7) has a cokernel of
order 2"1(¥), The kernel of ¢|im » is {1,7} N Ngr(Ug) but this time we have 7 ¢
NE|F(Ug). Hence, ¢|im » is injective and then for reasons of order also surjective.
This shows that ¢ on is surjective. By (5.9) we have that E contains S-units with

independent signs. This concludes the proof that in this case E has property (*). O

(7.2) Corollary: Let F be a number field with property (*) and let E be a
quadratic extension of F that also has property (*).

1) If no odd prime of F ramifies in E|F then all S-units of F are norms of S-units
of E.

2) If exactly one odd prime of F ramifies in E|F then UZ/Ngr(Ug) = 7Z/2.
Hence, exactly half of all square classes of S-units of F' are square classes of S-units
of E. Furthermore, Ngr(Uz)/(UZ)? is a subgroup of index 2 of U5 /(U5)? that

does not contain 7.

Proof: In part a) of the proof of (7.1) we showed that Uz /Ngp(Ug) is trivial.
this proves claim 1). Claim 2) was shown in d) of the proof of (7.1). |
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(7.3) Remark: Let F be a number field and let E be a quadratic extension of
F. Let S be a set of primes of F such that no finite prime of S splits in E|F. If a

unit of F is the norm of an S-unit of E then it is the norm of a unit of E. |

(7.4) Proposition: Let F be a number field with property (*). Let E be a
quadratic extension of F with property (*) in which exactly one odd prime of F

ramifies. Let  be a unit of F. If u € Ngp(E*) then u € Ng|p(O%). Hence,
Ngir(E*)NOF = Ngir(OF)

Proof: E is assumed to contain S-units with independent signs. By (5.8) we have
that pon : US/(US)? — (Z/2)"F) is surjective. Since the kernel of @
US/(UE)? — (Z/2)*F) is {1,7}, we have that either u or Tu is in the image of
n. So either u or 7u is a norm from an S-unit of E. By (7.2) we have U /Ngp(U}) =
7Z/2. By (7.1) we know that the S-unit 7 is not the norm of any element of E. Let
u € Ngp(E*). Since 7 ¢ Ng|p(E*) we must have Tu ¢ Ngp(E*). In particular,
Tu € Ngr(Ug). We conclude that v € Ngp(Ug). From (7.3) it follows that
u € Ng)r(O%)-

O

8. The existence of number fields with property (*)

We start with a question: For any given number field F, do there exist extensions
with property (*)? One part of the answer is clear from the hereditary nature of
property (*), see (1.8):

(8.1) Proposition: If a number field F does not have property (*), then neither

does any extension of F.

(8.2) Theorem: Let F be a number field with property(*).
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There exists exactly one quadratic extension of F with property (*) in which no
odd prime of F ramifies. It is given by F'(,/7), where 7 denotes any totally positive
S-unit of F that is not a square.

There exist infinitely many other quadratic extensions of F with property (*). In

all of these exactly one odd prime of F ramifies.

When proving this we will actually show more than is claimed. This stronger version
of (8.2) is given in (8.7). The proof will be given below, but first note that from
(8.2) it follows immediately:

(8.3) Corollary: If a number field F has property (*), then there exist infinitely
many extensions of F with property (*). There are number fields with property
(*) of arbitrarily high degree; examples can be obtained by successive quadratic

extensions of @. v O

Before we can give the proof of (8.2), here are two observations that we will need:

(8.4) Fact: Let F be a number field and P an odd prime of F, o € F.
P ramifies in F(y/o)|F < ordp(c)=1 mod 2

This fact can be found, for example, in [Cohn| on page 215. He also gives a criterion

for the ramification of dyadic primes of F, which is more involved.

(8.5) Proposition: Let F be a number field with odd S-class number h5(F).
Let o be an element of F and let the principal ideal generated by o be denoted by
o -Op. Let P denote an odd prime of F. There exists an element y € F with the
following properties:

2) F(y3) = F(\/a).

b) If the exact power of P dividing o - Op is odd then P divides y - Og exactly to
the odd power h5(F).

c) If the exact power of P dividing o - OF is even then P does not divide y - OF.
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Proof: Let P be an odd prime ideal of F and let P* be the exact power of P
dividing o - Op. We will show that there exists an element y € F' in whose prime
ideal decomposition the prime P will appear iff k£ is odd. The odd prime factors of
y different from P are the same as those of . The power with which they appear in
y will be the power with which they appear in ¢ multiplied by an odd number, so
the parity will be the same. Also, we will have F(,/y) = F(y/o). The proposition
follows from successive application of this.

Let n be such that k =2n or k = 2n+ 1. We have o-Op = AP?" for some ideal A.
Consider " (F), Since hS(F) is odd we have F(Vo?*(F)) = F(y/7). Furthermore,
we have o**(F).0p = Ahs(F)(Phs(F))z". The ideal P**(F) js principal up to dyadic
factors. We obtain o*° (F).0p = A"S(F)mzn(DF)m for some z € F and some m € Z.

s
o F

We set y := _:cﬁ—) This y has the proberties that we claimed. (]

Proof of (8.2): Let F have property (*) and let E = F(,/o) for some o € F. In the
following let t denote the number of odd primes of F that ramify in E. In (7.1) we
have shown that E has property (*) iff either t=0 or: t=1 and 7 ¢ Ngrp(E*). We
will use this to first derive a necessary condition on ¢ for E(,/c) to have property
(*). Then we will show that this condition in fact suffices and it will also become
clear that such o exist.

Case 1: Suppose there exists ¢ € F such that E = F(,/o) has property (*) and
t=0. What can be said about such 67 Note that we are only interested ir} o mod
F2, since we are concerned with the quadratic extension E. Since t=0, i.e. no odd
prime of F ramifies in E, we know from (8.4) that the principal ideal ¢ - Op can
have odd prime factors only to an even degree. Applying (8.5) we can assume that
o - Op contains no odd prime factors at all, i.e. ¢-Op is a pure power of the dyadic
prime of F. Furthermore, since we are assuming that E = F(,/c) has property (*),
we get that o must be totally positive ( so E is real) and not a square in F ( for E to
in fact be a proper extension of F). These conditions on o tell us that o is a totally
positive S-unit that is not a square in F, so o is a representative of the square class
denoted by 7 in (5.4). This shows that the only quadratic extension of F that could
have property (*) and t=0 is £ = F(4/7). By (7.1.1) we know that F(,/7) in fact
does have property (*).
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This shows that there is a unique extension E of F with property (*) such that no
odd prime of F ramifies in E|F. It is given by E = F(,/7), where 7 is a totally

positive S-unit if F that is not a square.

Case 2: Suppose there exists ¢ € F such that F = F(\/o) has property (*) and
t=1. What can be said about such ¢? Note that, as before, we are only interested
in o mod F?. Since t=1 we know that exactly one odd prime of F ramifies in E.
Let P be this prime. By (8.4) we have: ordp(c) = 1 mod 2 and ordg (o) = 0 mod
2 for all other odd primes @ of F. Applying (8.5) we can assume that the principal
ideal generated by o does not contain any odd prime besides P and that the power
to which P divides o - O is odd. Applying (8.5b) we can assume that the power
to which P divides o - Op is h5(F). Furthermore, o must be totally positive since
E is to be totally real. Hence, in order for a quadratic extension E = F(+/o) with
property (*) and t=1 to exist it is necessary (not sufficient) that there exists an
element ¢ € F' with the following properties: ¢ is totally positive and the principal
ideal generated by o is of the form D™ - PY(F) where D is the dyadic prime of
F, m € Z and P is an odd prime of F. There is another necessary condition that
we have not taken into account so far: If E is to have property (*) and t=1, then
T ¢ Ngrp(E*). From the Hasse Norm Theorem it follows that there must exist
a prime A of F (finite or infinite) such that (7,0)a = —1. Here (.,.)p denotes the
Hilbert symbol. We will now show that if such a A exists it must equal P or D,
whefe P is the odd prime dividing . We will also obtain a necessary condition on

P for when we in fact do have (1,0)p = —1.

For an infinite prime A of F we have (7,0)a = +1 since 7 is totally positive. For
any finite prime A # P, D we also have (7,0)a = +1. This can be seen as follows:
consider F),the completion of F at A. Since A does not divide o the extension
Fp(y/o)|Fa is unramified, i.e. it has ramification index 1. By the Local Norm
Index Theorem we have  #O%, /N(O%, ( z)) = 1. This shows that in this case
every local unit is a local norm. The S-unit 7 is a local unit in Fj since A # D. So
7 is a local norm in Fj and it follows that (7,0)s = +1. The only two primes for
which we have not yet checked the Hilbert symbol are P and D. By the Reciprocity
Law we know that the product of the Hilbert symbols over all primes of F equals

1. Therefore (7,0)p = (7,0)p,. This shows that for E to have property (*) and
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t=1 it is necessary that E is of the form F(,/o) where ¢ - O = D™ . P for some
odd prime P such that (t,0)p = —1.

Since the S-unit 7 is a local unit at P and ¢ has order 1 at P we have:
(ry0)p = —1 <= 7is not a square in the residue field Op/P

Hence, there are infinitely many primes P of F for which (r,0)p = —1.

Conversely, we ask: Given an odd prime P of F such that 7 is not a square mod
P do there exist o € F such that E := F(/o) has property (*) and t=1?7 Yes, we
will now construct all such 0. Modulo squares of elements of F there will be exactly
two such o. It will turn out that for any given P there exist exactly two quadratic
extensions of F with property (*) and t=1 where P is the odd prime that ramifies.
Given an odd prime P of F such that 7 is not a square mod P we want a totally
positive element o € F such that o - Op = D™ . P for some m € Z. In the S-ideal
class group C°(F) we have: cl(P)hs(F) = 1. So there exists some z € F™* such
that P*°(F) = z . D™ for some m € Z. The principal ideal generated by = has
the prime ideal decomposition: PYF)  p-m, Unfortunately z is not necessarily
totally positive. Since F contains S-units with independent signs we can take an
S-unit « whose embeddings into R all have the same sign as the embeddings of .
We define o := @ - u. This element is totally positive and since u contributed only
powers of the dyadic prime D to the product, we get: o -Of = PR (F) . D7 for
some integer n. Since h5(F) is odd and we are interested in ¢ only modulo squares,
we can use (8.5) and assume that o - Op = PR (F) . D™ Note that by (8.5a) this
new o is still totally positive. If we now examine E := F(/c) we see that E is
totally real and P is the only odd prime ramifying. Furthermore, we have chosen
P such that (r,0)p = —1, so 7 & Ng;p(E*). In (7.1) we have shown that such an
extension has property (*). Are other choices for o possible? Let ¢ - Op be of the
form D™ - P*°(F) for some n € 7 and assume that there is another totally positive
element of F whose prime ideal decomposition is D™ - P (F) for some m € Z.
The quotient of the two elements has only one prime divisor: the dyadic prime D.
It is therefore an S-unit of F. Furthermore, it is totally positive. Modulo squares
there is only one such S-unit, it has been denoted by 7. Hence there is exactly one

other quadratic extension of F with property (*) and t=1 where the given prime P
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* ramifies. This extension is given by F({/70).
This completes the proof of (8.2). [

For later use we note that in the proof of (8.2) we actualy proved:

(8.7) Proposition: Let F be a number field with property (*).- For every odd
prime P of F such that 7 is not a square in the residue field Op/P there are exactly
two quadratic extensions of F with property (*) in which exactly one odd prime of
F ramifies. If one is given by Ey = F(1/0) then the other is E; = F(4/70). Besides
these there is only one other quadratic extension of F with property (*). It is given

by F(4/7). Here the dyadic prime of F is the only ramifying prime.

Proof: That the dyadic prime ramifies in F(1/7) was shown in the proof of (7.1).
The rest of (8.7) follows from the proof of (8.2). . a

(8.8) Remark: Let E be a quadratic extension of a number field F where both
have property (*) and exactly one odd prime P of F ramifies in E. We know that
T & Ngp(Ug), but in the proof of (8.2) we showed furthermore that 7 is not a norm
locally at P and Dy, i.e., if E is given by F(y/o) then (1,0)p = (7,0)p, = —1. O




CHAPTER 3

The complete picture

We now return to the question rajsed in chapter 1. Recall that we were looking for a
number field F with elementary abelian 2-prim K;(Op) of smallest rank with certain
conditions on the parity of the honest class number and units with independent
signs. In chapter 2 we examined number fields with property (*), which by definition
are exactly the totally real number fields with elementary abelian 2-prim K;(OF)
of smallest rank. Using this, we now are able to list infinitely many number fields
that share the properties of the example in section 4. In order to do this, we will
first collect more properties of quadratic extensions where both number fields have
property (*). This will be done in section 9. In section 10 we will recall generalized
ideal class groups. They will be necessary in section 11. Here we will again show
the existence of quadratic extensions with property (*), but this time we will be
more specific and classify all quadratic extensions with property (*) according to
their properties with respect to the honest class number and units with independent
signs. In section 12 we finally put it all together in the main theorem. After this it

will be easy to give many examples of number fields with property (*).

9. Detailed properties

Let F be a number field with property (*). We saw that in every quadratic extension
E|F with property (*) there is either none or exactly one odd prime of F that
ramifies in E. This still leaves many questions:

What can be said about the dyadic prime of F? We know that it does not split, but
does it ramify or is it inert? How does this behavior of the dyadic prime affect the
parity of the honest class number of E and whether E contains honest units with

independent signs or not? We will now examine some of these relationships.

40
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(9.1) Theorem: Let E|F be a quadratic extension of number fields where both
have property (*). Let t denote the number of odd primes of F that ramify in E
and let D, denote the dyadic prime of F.
1) if t=1 and if Dy is inert in E then: h(E|F) is odd.

if D, ramifies in E then:

h(E|F)is even < 2||h(E|F) < E contains units with independent signs.

2) If t=0 then:

F cont. units with indep. signs & E cont. units with indep. signs.
furthermore, if Dy ramifies in E then: A(E|F) is odd.

if Dy is inert in E then: h(F) must be even and

h(E)is odd & 2||h(F)

Remark: Note that this theorem covers all possible cases of quadratic extensions
with property (*) since Dy can not split in E and by (7.»1) we know that 0 and 1
are the only possible values of t. '
Proof: First, we will check that if t=0, i.e., no odd prime of F ramifies in E, tht;n:
F contains units with independent signs <= E contains units with independent
signs.
From (7.2.1) we know that every S-unit of F is the norm of an S- unit from E. In
particular, every unit of F is the norm of an S-unit of E. By (7.3) we can conclude
that every unit of F is the norm of a unit of S. By (5.10) we obtain the desired
result.

Next, we will consider the case where t=0 and Dy is inert:
Since E is an unramified extension of F it is contained in the maximal unramified
extension of F, the Hilbert class field of F. Since E is a quadratic extension of F
it follows that the Hilbert class field of F over F is of even degree. By class field
theory the Galois group of this extension is isomorphic to the ideal class group C(F)
of F. Hence, G(F) is of even order, i.e. h(F') is even. For the claim on the parity of
h(E) we refer to [C-H,|, theorem 8.2.

In all remaining cases we are dealing with a ramified extension E|F, so we

can apply (6.6). We will now check that the condition : “C; acts trivially on the
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2-primary subgroup of C(E)” is always satisfied in the case where both E and F
have property (*). Since h5(FE) is odd we know that 2-primC(E) is contained in
the subgroup of C(E) that consists of the class of the dyadic prime of E and all its
powers. The dyadic prime of E is either equal to the dyadic prime of F (in the case
where Dy is inert) or it is the square of the dyadic prime of F (ramified case). In
either case we see that C5, the Galois group of E over F, acts trivially on the dyadic
prime of E and therefore also on all its powers. Hence, C; acts trivially on 2-prim
C(E). In the discussion of the following cases we can therefore use a simplified form
of (6.6):
h(E|F)is odd <= ig: H*(C;,0%) — R'(E|F) is surjective

We can now easily prove the cases in which we claimed that h(E|F) is odd:
Let t=1 and D, inert in E or let t=0 and D, ramified in E.
In either case we have that exactly one prime of F ramifies in E|F. The version of
(6.3) where S is the set containing no finite primes of F is:
2-tkR%(E|F) =number of ramified primes—1. Since E is a real extension of F all
infinite primes are not ramified. Hence, we see that R°(E|F) has rank 0, i.e. it is
trivial. The map 9 maping into R°(E|F) is therefore trivially surjective. By (6.6)
we conclude that the relative class number A(E|F) is odd.

The only case that is left to check is: if t=1 and Dy ramifies in E, then
h(E|F) is even < 2||h(E|F) & E contains units with independent signs.
One part of the statement is that if h(E|F) is even then 2 is the exact 2-power
dividing h(E|F). This can be seen as follows: Let D, denote the dyadic prime of
F and D, the dyadic prime of E. Let k be such that 2* is the exact 2-power dividing
h(F). Since h(E) = h{F)-h(E|F), where h( E|F) is even we know that 25%? divides
h(E). Why is 28! in fact the exact 2-power dividing k(E)? Since hS(Ej is odd
we know that the class of D, generates the 2-primary subgroup of the ideal class
group C(E). We need to check that 2**! is the exact 2-power dividing the order of
Dy. We just showed that 281 divides the order of Dy. For the converse, consider

ngﬂ :
gkl a2k 2k . Cp2y2 . .
Dy = (DE) = (DF) , if Dy ramifies or : (DF) , if Dp is inert

In either case we are raising D, the generator of the 2-primary subgroup of C(F),
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to the order of this group, so we obtain 1. This shows that the order of Dy is a
divisor of 2¥*1. So, we have checked that if A(E|F) is even then 2 is the exact
2-power dividing it. The converse is, of course, also true.

The last step is to prove: E contains units with independent signs if and only if
h(E|F) is even.

Let E contains units with independent signs. From (5.10) we know that then every
unit of F is the norm of a unit of E. Hence, H%(C;,0%) = O%/Ngp(0%) is the
trivial group. We compute the rank of R°(E|F) by (6.3) as: 2 — 1 = 1. Here, the
2 counts the one odd prime of F (t=1) and the dyadic prime of F which is either
ramified or inert in E. The map iy : 1 — R®(E|F) = Z/2 can therefore not be
surjective. By (6.6) we can conclude that h{ E|F) is even.

For the converse, we will show that if E does not contain units with independent
signs then %g is surjective, so h(E|F) is odd by (6.6).

Assume that E does not contain units with independent signs. We are still in the

case where t=1 and D is ramified in E, so RY(E|F) = 7Z/2.
We have H*(C3,0%) = O3 /Ngr(0%) > R (E|F) = Z/2

In order to show that iy is surjective we need to find a class in O /Ng|r(OF) whose
image in R*(E|F) is not trivial. By (6.4) we can consider R°(E|F) a subgroup of
H°(C:, E*) = F*/Ng p(E*). We are therefore looking for a class in O} /Ng|r(O})
whose image in F* /N g p(E*) is not trivial. This means that we need to find a unit
of F that is not the norm of any element from E. v

If F does not contain units with independent signs we take 7. Since E has property
(*) and t=1 we know by (7.1) that 7 ¢ Ngjr(E*). By (5.5) the class of T is contained
in O%/(0%)?, so it is an element of the required kind.

If F contains units with independent signs 7 will not be an element of the required
kind since it is not a unit. Since E does not contain units with independent signs
we know from (5.10) that not all units of F are norms of units from E. Let a be a .
unit of F that is not the norm of any unit of E. By (7.4) a can not be the norm of
any element of E. Hence, a is a unit of F that is not a norm from E. This concludes

the proof of (9.1). O
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(9.2) Lemma: Let E|F be a quadratic extension where both number fields have
property (*) and where exactly one odd prime of F ramifies in E.

If h(F), the class number of F, is even then h(E) is even.

If h(F) is odd then h(E) is odd, with the possible exeption of the case where:
h(F') is odd, the dyadic prime of F ramifies in E and F contains units with in-
dependent signs. In this case h(FE) is even iff E contains units with independent

signs.

Proof: Since the extension E|F is ramified we have h(E) = h(F) - h(E|F'), where
h(E|F) € Z is the relative class number. From this it is clear that if A(F') is even,
then so is h(E). Now let h(F') be odd. From (9.1) we know that if Dy, the dyadic
prime of F, is inert in E then h(E) is odd. Also by (9.1) we know that if Dy ramifies

then h(E|F) is even iff E contains units with independent signs. O

Remark: An example where h(F') is odd and where there are quadratic extensions

E of F that have h(FE) even and others with A(F) odd is the following:

Let F=Q, here h(F) = 1. The extensions F(+/2p) where p = 5 mod 8 have even
class number, the extensions F(v/2); F(1/2p) where p = 3 mod 8 and F( \/P) where

p = 3 or 5 mod 8 all have odd class number.

10. Completions and generalized ideal class groups

We are trying to obtain a coinplete picture of what type of quadratic extensions
with property (*) there can exist over a number field with property (*). We would
like to get an idea of how many there are and what their properties are with respect
to containing (honest) units with independent signs and the parity of their class
numbers. We will see that the quadratic extensions with property (*) can be clas-
sified into families that all share certain properties. For this classification we need

the completion of F at its dyadic prime, or rather the group of square classes of the
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completion. We will also need generalized ideal class groups. They will be defined
in (10.4).

Notation: Let F be a number field with property (*). In particular, F has only
one dyadic prime. As before, it will be denoted by Dy or, if no confusion is possible,
by D. The completion of F at its dyadic prime will be denoted by F,. We will use
Op to denote the local ring of integers of Fj,.

In the following we will restrict our attention to number fields with property (*).
In particular, we will assume that F contains only one dyadic prime and that it
has odd S-class number. All of the following holds true for a more general set S,
but from now on we will formulate all statements for the case where S is the set
consisting of D and the infinite primes of F.

Consider the group of S-integers of F, which is contained in the multiplicative group
F*. F*, in turn is contained in its completion at the dyadic prime F}. By tak-
ing square classes of US, F* and F}, we obtain the finite groups Uz /(Uz)? and
F/(F2)? and the infinite group F*/(F*)*. Induced by fhe inclusion map we ob-
tain an injective map from Uz /(Ug )? into F*/(F*)?. The map from F*/(F*)? into

F}/(F2)? cannot be injective. It is, however, surjective.

(10.1) Lemma: Let F be a number field with property (*) and let S be the set
containing Dy and all infinite primes of F. Then the map U3 /(Ug)? — F3/(F})?
from the square classes of S-units of F to the square classes of the completion of F

at Dy is injective.

Proof: Let cl(v) be in the kernel, so v is an S-unit of F that is in F2 under the
inclusion of F into F,. We need to show that v is already the square of an S-unit of
F. It suffices to show that v is a square in F, since then it follows that it is a square
in Ug.

Let us assume v ¢ (F*)?. This leads to a contradiction:

F(/v) is an extension of degree 2 of F but Fy,(1/v) = F,. Hence the degree of the
extension F(1/v) over Fy, is 1, so both the ramification index ep and the inertia
degree fp of Fy(y/v) over Fy, are 1. Since Fp,(1/v) is unramified over Fj, we know
that- Dy does not ramify in F(y/v). Can any other finite prime P # D, ramify in
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F(4/v)? No. Note that v is an S-unit, so the prime ideal decomposition of v - Op
contains no primes other than D. Comparing this to the criterion in (8.4) we see
that no odd prime can ramify. Let 0y, ..,0,, (F) denote the infinite primes of F. Some
of these could ramify in F(4/v). Let I := {t| o; is ramified}. We now need to use
some facts from class field theory. The Artin reciprocity map gives a surjective map
w : C(F,cg) — Gal(F(y/v)|F) = Z/2. Here C(F,cy) is the generalized ideal class

group corresponding to the cycle ¢y = [] o;. The definition of the generalized ideal
iel
class group is given in (10.4’). For the cycle c; we have: C(F,cy) = I(F)/P(cy)

where I(F') denotes the group of ideals of F and P(F,cs) denotes the group of
principal ideals of F that have a generator z such that signfo;(z)] > 0 for all 7 € I.
The class of the dyadic prime D maps to the identity under w. This follows from the
definition of w and the fact that fpo = 1. Since ¢l(Dy) is in the kernel of w we see
that w factors through C(F,cy)/cl(Dy). This group is isomorphic to C5(F), the
S-ideal class group of F. Recall the definition: C5(F) = I(F)/(P(F), D), where
P(F) is the set of principal ideals of F. The principal ideals do not necessarily
have a generator that is positive under the embeddings o; with ¢ € I. Hence
P(F) # P(F,cs). But if we consider ideals modulo the dyadic prime, then every
principal ideal does have generators that are positive anywhere. This follows from
the fact that F contains S-units with independent signs. For a given principal ideal,
we multiply a generator by an S-unit with the appropriate signs of its embeddings.
The resulting ideal differs from the given principal ideal by factors of D, only.

The order of C(F,cs)/cl(Dy) is therefore h5(F'), which is odd. This odd ordered
group is mapped into Z/2 by the homomorphism w, hence w is the trivial map.

This is a contradiction to the fact that w is surjective onto 7Z /2. (|

Remark: We can therefore consider US /(US)? as a subgroup of F*/(F*)? when-
ever this is convenient.

Note that US/(U$)?, F*/(F*)? and F*/(F*)? are Z/2-vector spaces. Here the
nontrivial element of Z /2 acts on the groups by squaring the classes. We have this
vector space structure in mind when we now talk about "linearly independent” and
"basis”.

(10.2) Proposition: Let F be a number field with property (*) of degree r;(F)
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and denote the embeddings of F into R by o1,...,0,(F). Let {uy,...,u.(m} be
a set of square classes of S-units of F' such that sign[o;(u;)] = +1 for j # ¢ and
sign[oi(u;)] = —1 for 4,5 € {1,...,r(/}. Let 7 be the nontrivial totally positive
square class [see (5.4)]. Then {uy,...,u, (p), T} are a basis of UZ /(UZ)?.

Furthermore: the Hilbert symbol (.,7)p,, is trivial on Uz /(U5)2.

Proof: As before, we will simplify notation by denoting representatives of square
classes by the same symbol as the class.

We will first check that the elements are linearly independent:

r(F)
Let rt. H uz" =1 with [,[; € {0,1}
i=1

For any fixed j € {1,..,71(F)} we have:

1 = signfo;(1)] = sign [crj(j'lHuﬁ‘ ) = sign[aj_(u;-j )] = (=1)4

7

Hence, I; = 0 for all j. This leaves !t = L By choice of 7 as distinct from 1,
we have | = 0. This shows that all exponents /,1;,..,1, (r) are 0, so the elements
are indeed independent. In (5.3) we showed #Ug/(UZ)? = 21(F)+1, Hence the
dimension of the 7 /2-vector space Uz /(U§)? is r1(F) + 1. Therefore the ry(r) + 1
linearly independent elements form a basis.

Every element of Uz /(UZ)? can be expressed as a product of elements of

{¥1, ., ury(m), T}, as above. It therefore suffices to check that (u,7)p, = +1 for all
% € {¥1,.., Uy (F), T}. We conclude this by reciprocity: The Hilbert symbol of u and
T is +1 at any infinite prime of F since 7 is totally positive. The Hilbert symbol is

+1 at any finite prime P # D, since both S-units « and 7 are local units at P. O

(10.3) Remark: If we consider U5 /(U§)? as contained in Fj/(F})? the set
{1, ..y Up (&), T} is also linearly independent in Fjy /(F5)?. It does not form a basis,
since F,;‘/(F,;‘)2 has 271(F)*+2 clements. A basis of F}/(F*)? contains exactly one
more element. Such an element 3 € F/(F})? is characterized by: (3,7)p, = —1.

In particular, we have: Ug/(U7)? is the kernel of (., 7)pp.-
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Proof: By (10.2) we have (v,7)p, = +1 for all v € U3 /(U3 )?. The Hilbert symbol
(.,-)Dp is non degenerate. If (3,7)p, = +1 for 8 € Ug /(UZ)? then it would follow
that 1 = 1 € F}/(F%)?. This contradicts the definition of 7 as the nontrivial totally
positive square class. Hence (3,7)p, = —1 for all 3 ¢ Uz /(UZ)?. O

The definition of generalized ideal class groups can be found for example in [Lal.
We first state the general definition in (10.4’) and then restate it in (10.4) for the
special case that we need it in.

(10.4°) Definition: Let F be a number field and let S be a set of primes of F.
Let ¢s = [[ P¢? be a cycle, i.e. a formal product of the primes in S. For z € F™,
we deﬁne:Pe:zs = 1 mod*cg iff z is positive at all real infinite primes in S and z =1
mod P¢? for all finite primes P € S.

I(cs) := {A | A is a fractional ideal of F with ordp(A4) =0 for all p € S}.
P(cs):={A | A is a principal ideal that has a generator z = 1 mod*cs}

The generalized ideal class group is defined as: C(F,cs) := I(cs)/P(cs).

In the following we only need the generalized ideal class group in connection with
number fields with property (*). In particular, F is a totally real number field that
contains exactly one dyadic prime and by S we mean the set that consists of that
dyadic prime and the infinite primes of F. We will therefore now give a definition

that is restricted to apply to this special case.

(10.4) Definition: Let F be a totally real number field that contains exactly

one dyadic prime Dy. Let oy,..,0, (F) denc'>te the real embeddings of F. Let ¢g be

r1(F)

the cycle: (Dg)%¢*t!. J[ o:  where e is the ramification index of F;, over @,. .
i=1

(Here Fy, is the completion of F at Dy and Q, are the 2-adic numbers) For = ¢ ™,

we define:
z =1 mod*cg iff z is totally positive and z = 1 mod (D )?¢*!

Let I(cs) denote the group of fractional Op ideals A such that ordp, A = 0 and

let P(cs) denote the subgroup that consists of principal ideals for which there exist
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generators that are congruent to 1 mod* ¢s. The generalized ideal class group

C(F,cg) is defined as the quotient C(F,cs) = I(cs)/P(cs).

(10.5) Lemma: If z =1 mod* cs then z is a local square, i.e., a square in the

completion of F, at all primes that are contained in S.

Proof: Let z =1 mod* cs. The completion of F at any infinite prime is R. Since
z is totally positive it certainly is a square in R. We have to show that z is a square
in Fp,, the completion of F at the dyadic prime D,. By assumption we have z = 1
mod(D;)?¢T!. We will apply Hensel’s Lemma to show z € F2:

Consider the polynomial f(z) = z? — z € Fp[z]. Modulo (Dy)?**? there exists
a solution to f(z) = 2 — z = 2% — 1, namely: f(1) = 0 mod (Dy)?¢*1. The
derivative of f(z) is f'(z) = 2z, so f'(1) = 2. Recall that e denotes the ramification
index of Fy, over @,. This tells us that the prime ideal decomposition of 2 in F
ist 2-0r = (Dg)®. Hence, ordp,.(2) = e. We have now checked the following
inequality: 0 < 2:o0rdp.(f'(1)) < 2e + 1. This is precisely the condition that
needs to be satisfied in Hensel’s Lemma We can now conclude that f(z) = z? — z

has a solution in F}, so z is a square in Fp. O

The following theorem will be the key to our classification of quadratic extensions
with property (*). We will formulate the theorem only for number fields with
property (*) where S is the set consisting of D and the infinite primes of F. The

theorem goes through in the same way for more general cases. It is, however, crucial

that hS(F) be odd.

(10.6) Theorem: Let F be a number field with property (*). Let D, denote
the dyadic prime of F and let 7 be the nontrivial totally positive square class,

see (5.4). There exists a surjective group homomorphism @ from F}/(F})? onto

C(F,cs)/C(F,cs)? whose kernel is {1,7}.

Remark: To simplify notation in all of the following we will not distinguish between

an element in F or its image in the completion Fp,, unless that distinction is essential
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to the argument. Also, we will use the same notation for an element and its square

class except for # and o, which we need to distinguish.

Proof: Let 0y,..,0,,(F) denote the embeddings of F into R. Consider the in-
clusion of F* into the product of completions of F: F} x R () defined by
z +— (z,012,..,0.,(F)2). From the independence of valuations we know that this

map is dense. The induced map into the finite group of square classes:
F* — FJ(F2)? x (Z)2)mF) z = (2, sign[oy 2], .., signio., (r)z])

is therefore surjective.

We can now define the map ® : F}/(F2)> — C(F,cs)/C(F,cs)?

Let 3 € F}/(F})?. By the above, we can choose a totally positive element ¢ € F'
such that o = 8 € F}/(F})?. Note that this choice of o is not unique! Let m € 7
be the exact power to which D, appears in the prime ideal decomposition of the

principal ideal generated by o in F. We have:
0-0fp = D7'A  for some fractional ideal 4 € I(cs)

We take the odd part of this, i.e. A. We define the class of 4 in C(F,cs)/C(F,cs)®
to be the image of 3.
After defining this map

®: F3/(F3)? — C(F,cs)/C(F,cs)® with 8 cl(4)

we must check that it is well defined and that it is a surjective group homomorphism
with kernel {1,7}.

(‘I> is well defined:

For a given [ the choice of o was certainly not unique. We therefore need to check if
different choices of o result in the same class in C(F,cs)/C(F,cs)?. Let o, s € F*
be two totally positive elements such that ¢ = s € F3/(F%)?. (Again, we are
simplifying the notation by not distinguishing between ¢, s € F and their images
in F3/(F2)*!) Consider £ € F. This is a totally positive element since both ¢

and s are totally positive. We claim that there exists an element a € F such that
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2.a7%2 = 1 mod*cs. For any a € F we certainly have that 3 -a % is a totally
positive element of F. To prove the claim we must show that there exists a such
that £ -a~2 = 1 mod (Dr)?**!. By assumption we have that ¢ = s € Fy /(F3)?,
so Z is a square in F},. therefore the element 2 € F' is a square modolo any power
of Dy. In particular, there exists a € F' such that £ = a? mod (Dr)?**'. This

completes the proof that there exists @ € F' such that £.472 =1 mod*cs.

Let 0-Op = D7 A with 4 € I(cs). Since s = £ .0 =(2.a7?)-a® - o we can write

the principal ideal generated by s as:
s-0p=(2-a"2)a*D7 4
o

We have a-Op = D% B for some b € Z and B € I(cs). Plugging this into the above

equation yields:

s-Of = (—éi -a?)DEt™ B4

o
By definition of ®, we now take the class of the odd part of s Op:

([2-a7)B24) = cl([Z-a™] - Or) - cl(B)* - cl(4) € C(F,cs)/C(F,cs)’

o
The class of [£ - a72] - O is trivial already in C(F,cs) since £ -a~%? =1 mod*cs.
In C(F,cs)/C(F,cs)® we therefore obtain:

cz([i -a‘Z]BzA) = cl(A)

g

This shows that different choices of s and ¢ still give the same class in
C(F,cs)/C(F,cs)?, hence the map ® is well defined.

We check that ® is a homomorphism of multiplicative groups:

Recall how the map was defined: For 8 € F?/(F})? we chose a totally positive
inverse image ¢ € F*. This map from the group of totally positive elements in
F* to F}/(F})? is a group homomorphism. We then take the odd part of o - Op.
This map from F™* into I(cs) is again a group homomorphism. Factoring out P(cs)
and taking square classes also preserves the group structure, i.e. it is a group
homorphism. The map is surjective:

Given cl(A) € C(F,cs)/C(F,cs)? for any A € I(cs) we will construct an inverse

image. A is a fractional ideal of F and by assumption the S-class number hS(F)
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is odd. Therefore there exist m € Z and o € F such that A*"(F) = . D7
Claim: the class of o in F%/(F2})? is an inverse image of cl(4). To check where
o € F}/(F})? maps to we need a totally positive inverse image in F. The condition
"totally positive” prevents us from taking o € F. Since F is assumed to contain
S-units with independent signswe can take an S-unit © € F' that has the same sign
as o in all embeddings of F. The product cu € F is totally positive and we know
that the ideal ou - Op differs from o - Op only by powers of the dyadic prime. Since
o -OF was equal to Ahs(F)D;m, we have ou-Op = A"S(F)D;"""" for some n € Z.
The odd part of this is AR (F) | Tt class in C(F,cs) is cl(A)hs(F). Modulo squares
" this is equivalent to cl(A4), since h5(F') is odd. This shows that o € F/(F})? is an
inverse image of cl(4) € C(F,cs)/C(F,cs)?.

We compute the kernel of ®:

Let 8 € F}/(F})? be in the kernel of the map. First, we show that there must exist
a totally positive S-unit of F whose image in F}*/(F})? equals 3: We know that
there exists a totally positive element ¢ € F whose image in F}/(F3)? equals 3.
The ideal generated by o in F is of the form o - Op = A - (D)™ for some n € 7
and some A € I(cs). By definition of the image of # under ® we take the class in
C(F,cs)/C(F,cs)* of the odd part of o - Op. Hence this image is cl(A). We are
assuming that B is in the kernel, so cl(4d) = 1 € C(F,cs)/C(F,cs)®. This means
that A = z - B? for some z € F with 2 = 1 mod*cs and some B € I(cs). In F we
have: 0+ O = z- B*(Dy)™. We now raise this to the power A5(F). Since h5(F) is
the S-class group of F we have: B" (F) = . (Dp)™ for some b € F and m € Z.
We obtain:

Uhs(F) .Op = zhs(F)(BhS(F))Z(DF)hS(F)n — zhs(F)bZ(DF)2m+hs(F)n

s
oh7(F)
ZhS(F)yp2

We consider the element: € F. It has the following properties:

a) it is a totally positive S-unit,

b) its image in F3/(F3)? is .

To check this we first note that 2 = 1 mod*cg, hence by (10.5) 2 is totally positive
and its image in F}, is a square. We have o, = and of course b? are totally positive,

therefore is totally positive. It is an S-unit because it generates the ideal

- S
zhS(F)p2

(DF)Z""'”'”S(F)T‘, which contains no odd primes. This proves a).




53

The element o was chosen such that its image in F/(F})? is B. Since hS(F) is
odd we see that o*"(F) also has image 3. The elements z and b? both have trivial
images in F2/(F})? since they are contained in F2. This proves b).

Recall that by (10.1) we can consider Uz /(U3 )? a subgroup of Fj/(Fp)?. We have
just shown that if an element of F};/(F})? is in the kernel, then it is represented
by a totally positive S-unit. Modulo squares there are exactly two such S-units: 1

and 7. Both of these are in fact in the kernel. This concludes the proof of (10.6).00

11. Families of number fields with property *)

Recall that for a given F with property (*) there is exactly one quadratic extension
with property (*) in which no odd prime of F ramifies. It is given by F(y/7). In
all other quadratic extensions with property (*) there is exactly one odd prime of
F that ramifies. It is these other extensions that we will now be concerned with. In
the previous section we defined a surjective group homomorphism ® from F} /(F})?
onto C(F,cs)/C(F,cs)? whose kernel has two elements, namely 1 and 7. We will
now use the 2 to 1 correspondence that ® gives to classify the infinitely many
quadratic extensions E with property (*) of F in which one odd prime ramifies.

A quadratic extension E of F is of the form E = F(./o) for some o € F, where
o is determined uniquely up to squares in F. The extension therefore determines a
unique element of F/(F})?, by taking the image of . In the following this image
of o in F}/(F})? will be denoted by 3. If E has property (*) and if one odd prime
of F ramifies in E, then the extension determines a unique odd prime, namely the
one that ramifies. This prime can be considered an element of I(cg). The extension

therefore determines a unique element in the factor group C(F,cs).

(11.1) Proposition: Let F be a number field with property (*) and let E =
F(y/o) be a quadratic extension with property (*) in which one odd prime of F -
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ramifies. Let 3 denote the class of ¢ in F}/(F3)? and let P be the odd prime of F
that ramifies in E. Then the image of # under the map ®, defined in (10.6), is the
class of P in C(F,cs)/C(F,cs)*.

Proof: Recall how the image of 8 under ® was defined:

We take a totally positive element of F whose image in F}/(F%)? is 8. Such an
element is given by o. Note, that it is indeed totally positive since E is totally real.
We then need the odd part of the principal ideal ¢ - Op. We are assuming that P is
the only odd prime that ramifies in E=F(/o). Applying (8.4) we obtain that the
prime ideal decomposition of o - Op contains P to an odd power and every other
odd prime to an even power. We take the class in C(F,¢s)/C(F,cs)? of this odd
part of o - Op. This leaves cl(P), since all squares are factored out. So, cl(P) is

indeed the image of 8 under ®. - 0O

In the following proposition we consider Us/(Us)? as a subgroup of F}/(Fp)?,
which can be done by (10.1). The complement of Ug /(Uz)? in Fy/(Fp3)? will be
denoted by F*/(F)?* — Us /(Us)?.

(11.2) Proposition: Let F be a number field with property (*) and let E =
F(y/o) be a quadratic extension of F with property (*) in which exactly one odd
prime of F ramifies. Then the class of o in F}/(F)? is contained in F}/(F})? —

Ui /[(UF)*.

Proof: Let o denote the element of F or F*/(F*)? and 3 its image in Fj, or
F}/(F})?. As before, our notation does not distinguish between elements and their
square classes. By (10.2) we have (7,v)p, = +1 for all S-units v. On the other
hand, since E has property (*) and one odd prime of F ramifies in E, we know from
(8.8) that that 7 is not a local norm at the dyadic prime Dy: (7,8)p, = —1. This
shows that 8 € F%/(F2)?, the image of o, can not be contained in the subgroup

Ui /[(UR)*. O

The converse of (11.2) also holds, namely: for every 8 € F: /(Fz)2—Ug /(Uz)? there

exist extensions of F with property (*). Note that (8.2) already gave the existence
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of of infinitely many quadratic extensions of F with property (*) in which exactly
one odd prime ramifies. Proposition (11.3) will be an improvement on this because
it shows the existence of infinitely many such E=F(,/c) for any given image 8 of
o.

By (8.7) we must show that for a given § € F}/(F2)* — Us/(Ug)? there exists
o € F (modulo squares) that has the following properties:

o is totally positive and its prime ideal decomposition is of the form o - Op =
(DF)""P"S(F) for some odd prime P for which 7 is not a square in the residue field
Op/P.

Any 8 € F*/(F*)? certainly has many totally positive inverse images in F™*/(F*)?,
but why should there be those among them that contain exactly one odd prime?
This is where we will use the map ® that was constructed in (10.6). It takes
B to a class in the generalized ideal class groﬁp modulo squares. The class of
$(3) contains infinitely many primes P. We will see that for each such P we can
construct an element o whose image in Fy/(F})? is 8 and where P is the only odd
prime that ramifies in F(y/0). Furthermore, we will see that if 3 was chosen in
F3/(F2)? — Ug/(UZ)? then each F(y/o) will have property (*), i.e., each P will

have the property that 7 is not a square in the residue field Op/P.

(11.3) Proposition: Let F be a number field with property (*).

For each 8 € F}/(F2)?—Ug /(US)? there exist infinitely many quadratic extensions
E = F(\/c) of F such that E has property (*), exactly one odd prime of F ramifies
in E and S is the image of o in F}/(F})?.

Proof: Given 8 € F/(F})?, consider its image in C(F,cg)/C(F,cs)® under &.
Every class in C'(F,cs)/C(F,cs)? contains infinitely many prime ideals of F. They
are all odd primes, by the definition of C'(F,cg). Asin the proof of (8.2) we have that
every odd prime P gives rise to exactly two real quadratic extensions of F in which
P is the only odd prime that ramifies. Recall that these extensions are obtained by
raising P to the power A5(F'). This ideal is of the form: PP = D™ where we
can assume o € F to be totally positive since F contains S-units with independent

signs. The real quadratic extensions of F that are uniquely determined by the fact
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that P is the only odd prime that ramifies are: Eq = F(y/0) and E; = F(y/70).
What are the images of o and 7o in F}/(F})2? By definition of & both images
map to cl(P) € C(F,cs)/C(F,cs)?. By the choice of P we also know that 8 is an
inverse of cl(P). Since ® is a two to one map we have: [ is the image of either o
or 7o in F}/(F})?. Since we are dealing with square classes we can multiply by T,
if necessary, and assume that g is the image of o.

The above works for any 8 € Fy/(F2)?. If we take B € Fp/(F3): — Ug/(UF)?,
then we claim that both E; = F(y/o) and E, = F(1/70) have property (*):

By the criterion in (7.1) we need to check that 7 is not a norm from E,; over F and
also not from FE; over F. It suffices to show that 7 is not a norm locally for some
prime of F. We consider the dyadic prime Dy: we have chosen 3 & Uz /(Ug)? by
(10.3) we have (7,8)p, = —1. This shows that 7 is not a norm from E; = F(/0)
over F'. We have (7,7)p, = +1 since the Hilbert symbol of  and 7 is clearly +1 at

all other primes. Hence, we have:
(7,70)pp = (1,0)Dp(T,T)Dp = (T,0)Dp = —1

Therefore, T is also not a norm from E; = F(4/70) over F.

We have shown: For any given 8 € F/(F})?—Ug /(U )? there are infinitely many
P that each give rise to exactly one quadratic extension E = F(4/o) such that this
extension has property (*), exactly one odd prime, namely P, ramifies in E and 3
is the image of & in F/(F}).

Note that the other extensions E = F(4/7a) do not satisfy all of the required
properties since the image of o in F}/(F3)? is 73 # B. W]

(11.4) Definition: Let F be a number field with property (*). Let E = F(\/c)
and E' = F(4/s) be quadratic extensions with property (*) in which exactly one
odd prime of F ramifies. We say that E and E’ are members of the same family iff

o and s determine the same element in F}/(F%)2.

(11.5) Remarks:
a) By (11.2) each family is determined by an element in F}/(F3)? — Uz /(Ug)*.

There are 27 (F)+1 guch elements.




57

b) For each element of Fy/(F%)? — US/(UZ)? we obtain a family that contains
infinitely many members. This follows immediately from (11.3). We will often refer
to families as infinite families.

c) For a number field F with property (*)there is a one to one correspondence be-
tween the elements of F*/(F3)*—Ug/(US)? and the families of quadratic extensions

with property (*) in which exactly one odd prime ramifies.

We will now justify this classification of extensions with property (*) into families
by showing that members of the same family have the same behavior with respect

to many of the properties that we are interested in.

(11.8) Proposition: Let F be a number field with property (*). Let E be
a family of quadratic extensions of F with property (*) in which exactly one.odd
prime of F ramifies.

a) The dyadic prime Dy of F either ramifies in all members of E or in none.

b) The members of E either all contain units with independent signs or they all
do not contain units with independent signs.

c) All members E of E have the same exact 2-power dividing their class numbers

h(E), in particular, they are either all even or all odd.

Proof: Let 3 denote the element of F/(F*)? — U5 /(U3 )? that corresponds to the
family E. Let E=F(1/¢) be a member of E. This means that § is the image of o in
Fy/(Fp)*.

a) We have: Dj ramifies in E over F & Fy(y/f) is a ramified extension of Fj.
This proves that the behavior of the dyadic prime in E|F is determined by the
family that E belongs to.

c) follows immediately from a), b) and (9.1)

b) If F does not contain units with independent signs, then no extension E with
property (*) contains units with independent signs.

If F contains units with independent signs we have from (5.10): E contains units
with independent signs iff all units of F are norms of units of E. Let a be a unit

of F. We will now check that whether or not a is a norm from E depends only on
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B. To check if a is a norm we check if it is a norm locally at all primes of F. To do
this we consider the Hilbert symbol of @ and o. At an infinite prime of F it is +1
since o is totally positive. At a finite prime that is distinct from Dy and the one
prime that ramifies in E, the Hilbert symbol is ;again +1 since both a and o are
local units. By reciprocity the value of the Hilbert symbol is the same at the two
primes that are left. Hence, a is a norm locally everywhere iff (¢,8)p, = +1. By
the Hasse Norm Theorem we then have: a is a norm from E iff (a,8)p, = +1. By
(7.4) we know that a unit of F is a norm from E iff it is the norm of a unit of E.
This shows that whether all units of F are norms of units of E depends only on 3.

O

(11.7) Remark: Let E|F be a quadratic extension of number fields that both
have property (*) and where exactly one odd prime of F ramifies in E. From (7.2)
we know that Ngr(UZ)/(Ug)? is a subgroup of index 2 of Uz /(Ug)? that does
not contain 7. Since both E and F contain S-units wit'h independent signs we
have by (58) that NEIF(Ug)/(Ug)Z, which is the image of n, maps surjectively
onto (Z/2)"F) under y. Hence the subgroup contains a set {uy,..,u, (;)} of
square classes of S-units of F of the following type: signfoi(u;)] = +1 for j # ¢
and signo;(u;)] = —1 for all 4,5 € {1,..,71(F)}. Here {04,..,0, (F)} denote the
embeddings of F into R. By (10.2) such a set {u1,..,%,,(F)} together with 7 form
a basis of the Z/2-vector space U5 /(Uz)?. Hence a set of the above type already

generates a subgoup of index 2 in U /(U3 )2. (]

Let E be a quadratic extension of F that has property (*) and in which exactly
one odd prime of F ramifies. We just stated that, by taking norms of S-units of E,
E uniquely determines a subgroup of index 2 in U2 /(I75)? that does not contain 7.
The converse also holds:
(11.8) Proposition: Let F be a number field with property (*).
For any subgroup of index 2 of UZ/(U§)? that does not contain 7 there exist two
infinite families of quadratic extensions of F with property (*) such that for any
member E of the families we have: all classes in the given subgroup consist of

norms from S-units of E.
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Before we prove (11.8), note that this has the following consequences:

(11.9) Corollary: Let F be a number field with property (*) that contains units
with independent signs. Among the 27(F)+1 infinite families of quadratic extensions
with property (*) there are exactly two that also contain units with independent
signs. They correspond to the choice of O} /(O%)? as the subgroup of U5 /(U5)? in

(11.8). All other families do not contain units with independent signs.

Proof of (11.9): We use the fact that O%/(0%)? is a subgroup of Uz /(U5)? of
index 2. Since F contains units with independent signs we have from (5.5) that
T is not a square class of honest units of F, so O%/(0O%)? does not contain 7. By
(11.8) there are two infinite families such that for every member E' we have: all
classes in O% /(0% )? consist of norms from S-units of E. By (7.3) we know that a
unit of F that is the norm of an S-unit of E is already the norm of a unit of E.
Hence, all members E of the two infinite families have the property that all classes
in O%/(0%)? consist of norms from (honest) units of E. By (5.10) we conclude that
all these E contain units with independent signs. We also see that no member of

any other family can contain units with independent signs. O

Proof of (11.8): Every subgroup of index 2 of UZ/(Uz)? that does not contain 7
must map surjectively to (Z/2)? under ¢, as defined in (5.7). Hence the subgroup
contains, and is also generated by, a set {uy,..,u, (7} of square classes of S-units
of F of the following type: signfoi(u;)] = +1 for j # ¢ and sign[o;(u;)] = —1 for
all 3,7 € {1,..,71(7}. We identify u; with their images in F}/(F%)?. From (10.2)
we know that {u1,..,%. (), 7} form a basis of the 7 /2-vector space UR/(TT5)2, so
they are linearly independent in F}/(F})?. Consider the vector space isomorphism:
Fy/(F3)? = Homg (F2/(F%)?,2/2) that is given by mapping 3 € F/(F})? to
its the Hilbert symbol at the dyadic prime (., 3)p,. This tells us that any given Z/2
homomorphism f from F}/(F})? to Z/2 there exists exactly one 3 € F}/(F%)?
such that 3 = f. If we prescribe values on the set {uy,..,%. (F), 7}, which is one
element short of being a basis of F/(F})?, then there are exactly two elements

of F}/(F3)? that correspond to it. Let f € Homg/, (F;/(F;)z,Z/2) such that
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f(r) = -1 and f(u;) = +1 for all i. Let 8 be an element of F}/(F3)? such
that (.,8)p, = f. The other element of F}/(F})? that corresponds to f is then
3. This follows from the bimultiplicativity of the Hilbert symbol and from the
fact that (v,7)p, = +1 for all v € Uz /(Ug)? which we saw in (10.2). Note that
both B and 78 are in F3/(F%)? — Us/(Ug)? since (7,8)pr = (7,78)Dr = —1,
see (10.3). We take the two infinite families that correspond to # and 74. Let E
be a member of one of these infinite families. We will now show that the square
classes {u1,..,un (F)} consist of norms from E. E is of the form F(\/o) or F(y/70)
for some totally positive ¢ € F whose image in F}/(F%)? is 8. Let us assume that
E = F(y/a). The other case is completely analogous. Let u be a representative of
any of the classes {u1,.., %, (5)}. As was explained in the proof of (11.6b), to check
if » is a norm globally from F( \/E) over F is equivalent to checking if it is a norm
locally from F,(+/B) over F,. By the choice of 8 we have: (u,8)p, = +1 for all
w. This shows that « is a norm from E. Hence, the square classes {u1,..,u. (r)}
consist of norms from E for every member of the fa.milieé corresponding to  and:
3. The above square classes generate the given subgroup of index 2, hence all
classes in the given subgroup consist of norms from S-units of E for every member

of the families corresponding to # and 74. O

12. The main theorem

We now put together all the information we obtained in the previous sections to
obtain a complete picture of the type of quadratic extensions with property (*)
that exist for a given number field. The properties that such an extension can have,
of course, depend on properties of F. We will therefore need many seperate case
discussions. Recall that property (*) is hereditary, so the given number field F

must have property (*), or there are no such extensions.
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(12.1) Theorem: Let F be a number field with property (*) of degree ry(rF)
and let 7 be as defined in (5.4). The following is a complete list of all quadratic
extensions of F that have property (*): There is exactly one extension in which no
odd prime of F ramifies. It is given by F(y/7). There are 2(F)+1 infinite families
of extensions [in the sense of (11.4)]. In all members of these families exactly one
odd prime of F ramifies. Furthermore, the extensions have the following properties
concerning the ramification of the dyadic prime Dy, the parity of the class number
and the containment of units with independent signs:

A) If h(F) is odd and if F contains units with independent signs:

The extension F(1/7) has odd class number, it contains units with independent
signs and D ramifies. There is one infinite family whose members have odd class
number, contain units with independent signs and in which Dy is inert. There is
one infinite familyﬂ whose members have even class number [in fact 2||h(E)], contain
units with independent signs and in which Dy ramifies. The members of all other
infinite families have odd class number, do not contain units with independent signs
and Dy ramifies in these extensions.

B) If h(F) is odd and if F does not contain units with independent signs:

All quadratic extensions with property (*) have odd class number, do not contain
units with independent signs and Dy ramifies in these extensions.

C) If h(F)is even and if F contains units with independent signs:

The extension E = F(4/T) contains units with independent signs and D, is inert.
It is an unramified extension, so h(E) is odd iff 2||h(F'). There are two infinite
families whose members contain units with independent signs. They have even
class number, in fact 2||h( E|F'), and D, ramifies. The members of all other infinite
families do not contain units with independent signs. They also have even class
number, but here the relative class number is odd, and D, ramifies.

D) If h(F) is even and if F does not contain units with independent signs:
The extension E = F(4/7) does not contain units with independent signs and Dy is
inert. It is an unramified extension, so h(E) is odd iff 2|{hA(F'). The members of all
2" (F)+1 infinite families have even class number [in fact the relative class number

is odd], they do not contain units with independent signs and Dy ramifies.
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(12.2) Remark: In the first chapter we were looking for a number field with
property (*) that has even class number and does not contain units with independent
signs. Such a number field does not exist among quadratic extensions of a number
field of type A) [using the notation of the main theorem]. Since Q is of type A), we
see again, that it does not have a quadratic extension of the required kind. If we are
looking for an example among quadratic extensions of a quadratic number field we
see that the quadratic number field must be of type C). This is indeed the case in
our example from section 4. The main theorem tells us that for every number field
of type C) there exist quadratic extensions with property (*), even class number

and units with independent signs. Examples will be given in section 15.

We now list some corollaries that illustrate the implications of the main theorem.
(12.3) Corollary:  For any natural number n there exists a number field F of
degree 2™ with property (*) and 2™||h(F').

Proof: With the notation of the main theorem @ is of tyi)e A). For the casen =1
we take any member of the one infinite family that contains units with independent
signs and where 2 is the exact 2-power dividing the class number. Such a number
field is of type C). For n > 2 we take successive quadratic extensions of the above
number field. These extensions are always chosen from the two families that contain
units with independent signs. Each time we take such an extension the exact 2-

power dividing the number field rises by 1. O

(12.4) Corollary: If F is a number field with property (*) that is built from
successive quadratic extensions of Q(,/p) or Q(+/2p) then the class number of F is
odd.

Proof: Note that @(/p) or @(1/2p) are of type B) in the main theorem, see (2.5)
or (13.1). O

Before we can completely prove the main theorem (12.1), here is one more important
observation: In (11.6.a) we saw that the dyadic prime Dy will either ramify in all
members of an infinite family or in none. We will now see how this behavior of D,

is determined by the @ € F}/(F2%)? that is related to the family. For all families
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the related § is contained in F}/(F3)? — Uz /(Ug)?, but the following proposition
also applies to the case F(1/7). We therefore do not restrict 3 in the following

proposition, so it includes the case 8 = 7.

- (12.5) Proposition: Let F be a number field with exactly one dyadic prime Dy.

Let FD denote the completion of F at D,. Let o be an element of F such that
L := F,(\/P) is a proper extension of Fy; where we denote the image of o in
F3/(F3)? by .

a) The classes in F}/(F})? that contain units of F;, form a subgroup of index 2.
b) (Local norm index theorem)

The classes in F;/(F5)? that consist of norms from L form a subgroup of index 2.
¢) Let E := F(,/7), then Dy does not ramify in E|F iff in F},/(F})? we have: the

subgruop of norms coincides with the subgroup of classes containing local units.

Proof: Let O, denote the ring of integers of F,,. In O, the ideal D, is principal,
a generator is called a uniformizer. The classes of F/(F%)? are all generated by
elements of the form v and um, where u denotes a unit of F, and 7 denotes a
uniformizer. The class of u is distinct from u, so exactly half of the classes contain
local units. This proves a).

b) We are assuming that L is a proper quadratic extension of Fp, i.e., the degree
of the extension L|Fy is 2. From local class field theory, see for example [La], we
have #Fp /Ny, (L*) = degree of the extension = 2. Hence, half of all elements of
F, are norms from L. Note that squares of F,, are always norms from L over Fy,
so taking square classes we see that exactly half of all classes consist of norms.

c¢) To check if D, ramifies in E|F we only need to consider this locally. What is the
ramification index of L over F,7 By the local norm index theorem, see for example
[La], we have that the ramification index is given by the number of elements in
0} /Ny p,(0}1). For local extensions we have: if a unit of F, is a norm from L,
then it is the norm of a unit of L. Hence, Ny p, (07 ) = Npr, (L*)N 0O}, This shows
that the ramification index of L over Fy is 1 if all local units of F, are norms from

L and it is 2 otherwise. Hence, the ramification index is 1 iff the classes of norms

" coincide with those that contain local units. That the ramification index locally is
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1 means exactly that Dy is not ramified in E|F. O

Remark: In the proof of (12.1) we will apply (12.5) to the cases where 8 = 7 or
B € F*/(FX)? —Ug/(US)%. In either case the condition that L := Fp(+/B) is a

proper extension is satisfied.

Proof of (12.1):
That F(+/7) and the members of the 27 () infinite families corresponding to the
elements of F*/(F2)? —Ug /(Us)? are in fact the only extensions of F with property
(*) was explained in (8.2) and (11.5).

We will first examine the extension E = F(/7):
By (9.1.2) we have: E contains units with independent signs iff F' contains units
with independent signs. We have to show that if A(F’) is odd then D, ramifies in
E|F and if h(F) is even then D, does not ramify, so it is inert. The claim on the
parity of h(E) will then follow by (9.1.2).
For E = F(y/7) all S-units of F are norms from E by (7.2.1). Considering Uz /(U7 )?
as a subset of F?*/(F*)? we can say that the square classes of U5 /(U§)? are exactly
those that consist of norms. We want to apply the criterion from (12.5¢). We know
that the subgroup of norms (global and therefore also local) is Uz /(UZ)?. We will
now examine whether this subgroup coincides with the subgroup of square classes
that contain local units.
If h(F) is even we claim that the the two groups coincide. For this we must show
that the image of an S-unit of F in F}}/(F})? is the class of a local unit. This can be
seen as follows: h(F) is even but h5(F) is odd, so the dyadic prime Dy has even
order in the ideal class group of F. Let u be any S-unit of F. Then v+« Of = D}} for
some even m € Z. Let m be the uniformizer of Dy in F,. In F, we have « = 7#™v
for some local unit v. The square class of « therefore contains the local unit v. This
shows that in Fp the subgroup of norms is contained in the subgroup containing
local units. Both groups have index 2, so they are equal. Hence, if 2(F') is even then
then the classes of norms coincide with the classes that contain units. We conclude
by (12.5¢) that D, does not ramify.
If A(F) is odd, then Dy has odd order n. We have D} = u - O for some S-unit «
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of F. Locally, in Fj,, we obtain u = n#™v for some local unit v. Modulo squares this
leaves: u = mv. Hence, the square class of v does not contain a local unit. It does,
however, consist of norms, since we pointed out above that all classes of S-units
consist of norms. Hence, if A(F') is odd, the subgroup of norms does not coincide
with the subgroup of square classes that contain units. By (12.5¢) we conclude that
D, ramifies in E|F. This completes the discussion of the case E = F(/7).

We now turn to those extensions of F where exactly one odd prime of F ramifies.
Recall that here we have 7 ¢ Ngp(E*). Furthermore, we showed in the proof of
(8.2) that 7 is not a local norm from L = F,(+/f) over Fy. As before, we will
consider 0% /(0%)? as a subset of Uz /(Ug)%. By (5.5) we know that if F does not
contain units with independent signs then 7 € O%/(0%)?.

For each type of F we now examine the 27(F)+1 families.

Cases B) and D): If F does not contain units with independent signs, then

E does not contain units with independent signs for any member E of any of the
2ri(F)+1 families. This is clear, because otherwise the norms of S-units of E would
give S-units with independent signs in F, see (5.8). F does not contain units with
independent signs, so T € O5/(03)?. Since every global unit is also a local unit we
see that in Fj/(F2)? the class of 7 is a class containing a local unit. But 7 is not
a local norm, by (8.8), so this square class does not contain any norms. Therefore,
the classes of norms do not coincide with those containing local units. By (12.5¢)
we conclude that D, ramifies in E|F. From (9.1.1) we obtain that h(E|F) is odd
for these cases, so the parity of h(E) is the same as the parity of h(F).

Cases A) and C): If F contains units with independent signs, then

from (11.9) we know that there exist exactly two infinite families whose members all
contain units with independent signs. The members of all the other infinite families
do not contain units with independent signs. We now need to seperate the cases
where h(F') is even/odd:

C) If h(F)is even and if F contains units with independent signs:

We show that in this case the subroup of norms in F /(F%)? does not coincide with
the subgroup of square classes containing local units. An example of a square class
that does not consist of norms but that does contain a local unit is: 7. For the

S-unit 7 we have 7 - Op = ’DT for some m € Z where the order of Dy divides m.
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This order is even because h(F) is even but h(°(F) is odd. Hence, 7 - Op is an
even power of D,. Let m be a uniformizer in F,,, then 7 = #™v for some local unit
v € F,. Modulo squares we obtain that the class of 7 equals the class of the local
unit v. By (8.8) T is not a local norm, so in F}%/(F})? the classes of norms do not
coincide with those containing units. By (12.5¢) we obtain that Dy ramifies in E|F
for any member E of any of the 2m(f)+?! infinite families. Since all members of the
infinite families are ramified extensions of F we know that h(F') divides h(E), so
h{E) is even. By (9.1.1) we see furthermore that 2||h(E|F) if E contains units with
independent signs, which is the case for two infinite families, and h(E|F) is odd if
E does not contain units with independent signs.
A) I« h(F)is odd and if F contains units with independent signs:

Case Ap: Let E be a member of any of the families whose members do not contain
units with independent signs. Since F contains units with independent signs * but
E does not, we have by (5.10) that not all units of F are norms of units of E. Let w
be a unit of F that is not a norm from a unit of E. By the same argument as in the
proof of (11.6b) we see that « can not be the norm of any element of E. Since u is
not a norm globally it must be a “not norm” also locally for some prime of F. We
let E = F(y/0) and check the Hilbert symbol of o and u at all primes. For infinite
primes it is +1 since o is totally positive. For any prime distinct from Dy and the
one odd prime that ramifies in E the Hilbert symbol is also +1 since both ¢ and
u are local units. Hence, u is a norm locally for all of the above primes. So the
only primes where u can be a “not norm” are Dy and the odd ramified prime. By
reciprocity u is a norm locally either in none or in both. We conclude: the image
of u in F, is not a norm from Fy, (/o) over F;,. But the global unit u is a local
unit in F,. We obtain that the classes of norms in F}/(F2)? do not coincide with
the classes containing local units. By (12.5¢) we see that D ramifies in E|F. From
(9.1.1) we then have that A(E|F) is odd, so h(E) is odd.

Case A,: We now consider the two infinite families whose members contain units
with independent signs. By (11.9) they both belong to the choice of square classes
of honest units as classes that are norms from E over F. In the proof of (11.8) we
saw that if one of the families corresponds to 3 € F/(F})?, in the sense of (11.4),

then the other corresponds to 78 € F}/(F2)*.
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We claim that either the class of B or the class of 73 in F/(F3)? is the class of a
local unit. This can be seen as follows: From (5.5) we have 7 ¢ O} /(O})? because
F contains units with independent signs. Let 7 - Op = DI for some m € ZZ. The
order of D is odd in the class group of F and it divides m. This m can not be even
because if m = 2n for some n € 7Z then the order of D, divides n and we have:
1. O0p = (Dp)*™ = (D?)?. The ideal D? is principal, call its generator z. Then
7 = 2%u for some u € Op. Hence, the class of 7 in US/(UZ)? is contained in the
subgroup 0% /(0% ). This is a contradiction. We conclude that 7 - Op = DY for
some odd integer m. If we let m denote a uniformizer of D, in Fy,, then 7 = 7™v
for some local unit v. Hence, the power to which the uniformizer appears in 3 and
78 is distinct modulo 2. This shows that either the class of 8 or the class of 78 in
F*/(F%)? is the class of a local unit.

Note that for square classes we have: 3 = 123 = 7(73). Therefore we can assume
without loss of generality that the class of § is the class of a local unit. This is done
by replacing 8 by 78 if necessary. .

Let E; = F(/o) and E; = F(,/T0) be representatives of the two families that we
are examining. Note that o is a totally positive element of F whose image in F}, is
B. Let Ly = Fp(v/B) and Ly = Fy,(1/78).

We claim that 8 is a norm from L; over F, but not from L, over Fj,.

To check that 8 is not a norm from L; = Fy(1/f) we need to show: (8,8)p, =
+1. We first note that by (5.10) all units of F are norms from FE;, hence also
—~1 € Ng,\r(E1). In particular, ~1 is a norm locally at all primes of F. So, —1
is a norm from L; over F,. Note that —@ is the norm of v/, so it is a norm
from L; over Fy,. In terms of Hilbert symbols this means: (8,-~1)p, = +1 and
(8,—B)pr = +1. The product of these gives: (8,8)p, = +1. This shows that

B is a norm from L, over F,. Furthermore, we have (8,7) = —1. This is true
because 3 € FX/(F*)* —UZ/(UZ)?, as we saw in the proof of ( . ). This gives
(8,78)pr = —1, so # is not a norm from L, over Fj,.

We have now shown that 3 is a class containing a local unit in F /(F5)?, but it does
not consist of norms from L». By (12.5c¢) we conclude that Dy ramifies in F,|F.
For any member of the infinite family that is represented by E; we now know that

Dy ramifies and by (9.1.1) we have that 2 is the exact 2-power dividing the relative
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- class number.

To examine the behavior of Dy in E; we proceed as follows:

Consider the classes of Fj3/(F3)?. Which of these are classes of local units? We
saw above that the class of @ is the class of a local unit. Also, the classes of global
units » € O are classes of local units. The subgroup O%/(0%)? has index 4 in
FX/(F%)* and B € O%/(O%)?. This shows that the subgroup of F}; /(F})? generated
by O%/(0%)? and 8 has index 2, so it is the complete subgroup of square classes
that contains local norms. We claim that these classes are classes of norms from
Ly over Fy,. This holds because we just ckecked that 3 is a norm from L, over Fj,.
We also know that all units of F are norms from F; over F, so their images in Fp
are all norms from Lj. Since both subgroups have the same order, this shows that
in F%/(F})? the classes of norms coincide with the classes that contain local units.
By (12.5¢) we conclude that Dy is not ramified in Ey|F. It must therefore be inert.
For any member of the infinite family that is represented by Ey we now know that
Dy is inert and by (9.1.1) we have that the relative class number is odd.

This concludes the proof of (12.1) O




CHAPTER 4

Examples

Let F be a number field, let 71(F) denote the number of real embeddings of F and
let S be the set consisting of all infinite and all dyadic primes of F. Recall that
for a number field F to have property (*), means that F is totally real, it has
exactly one dyadic prime, it contains S-units with independent signs and its S-class
number is odd. An equivalent formulation of property (*) is: F is totally real and
2-primK,(F) is elementary abelian of rank r; ().

We have shown that for a given number field F with property (*) there exist
exactly 2" (F)+1 ipfinite families of quadratic extensions with property (*). Each
member E of such a family has the proi)erty that exactly one odd prime of F ramifies
in E|F. Besides these, there exists one more quadratic extension of F with property
(*). Tt is given by F(y/7), where T denotes the nontrivial square class of totally
positive S-units of F, see (5.4).

We will now illustrate how to apply our results to actually determine quadratic
extensions with property (*) of a given number field F. The easiest case is F' = Q.
In section 13 we will show how our methods can be used to determine all quadratic
extensions of @ with property (*). Note that in section 2 we already listed all
quadratic number fields where 2-pri1nI(§(0F) is of rank ry(F) = 1. By applying
our results about quadratic extensions with property (*), we again obtain the real
number fields among these.

In section 14 we consider the biquadratic dicyclic number fields from section

3. We will see that the number fields Q(v/2, v/P) with p = £3 mod 8 have property
(*)-

In section 4 we saw that @(y/10+V10) is a number field with property (*), that
has even class number and that does not contain units with independent signs.
From our main theorem we know that there exist many number fields that all share
the same properties. Section 15 will explicitly list an infinite number of these. The
example from section 4 will be a special case.

In section 16 we give one explicit example for each of the 8 infinite families of

quadratic extensions with property (*) of Q(1/10).
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13. Application to F = Q

The number field F' = @ has property (*) since it is totally real, it has exactly one
dyadic prime: Dy = (2), it has odd class number: h(Q) = 1, and it contains units
with independent signs: +1. Furthermore, we have 74(F) =1 and 7 = 2.

We will now recall our general results and apply them to F' = Q.

Recall: For a number field F with property (*) we have the inclusions:
0% /(0%) — Ui /(Up)* — F3/(Fp)’

If r1(F) denotes the degree of F, then the above groups have order

ori(F) grilF)+1 and 2m{F)+2) respectively.  See:  (5.1)(10.1)(5.3).
To determine F}/(F})? we recall that F}/(F})? is a Z/2-vector space of
one more dimension than Uz /(Ug)?. By (10.3) we know that to obtain
an element 3 which together with US /(U§)? generates F}:/ (F; )? we need

B such that (v,8)p, = —1.

Claim: For F = Q an element 3, as above, is given by # = 5.

Proof: Since (7,5)p,, we must check: (2,5); = —1.

We have (2,5), = +1 for the infinite prime of @ since 2 and 5 are positive. Further-
more, (2,5), = +1 for all finite primes p # 2,5 since both 2 and 5 are local units
at p. By reciprocity we have (2,5) = (2,5)s. This equals the Legendre symbol
(2) = (-1)F* = 1. 0

For F = Q we have 0% /(0%)? = {1,-1} and U3 /(U#)? = {1,~-1,2,—2}, hence
FJ:/(FI:)Z = {17_1’2,‘2a5,_5,2'5a"2'5}

Note that 3 = —5 mod 8 and —5 is invertible mod 8, so % = 1 mod 8. By Hensel’s
lemma we know that such an element is a square in @Q,, so 3 = —5 in F}}/(F})?.

We therefore have:

Fr/(F3)? ={1,-1,2,-2,5,3, 2-5, 2.3}




71

Recall: For a number field F with property (*) we proved in (11.2) and (11.3) that
there is a one-to-one correspondence between the 2m(F)+! elements 4 €
FX/(F*)? - U5 /(Us)? and the infinite families of quadratic extensions
E of F with property (*). The correspondence is given by: the members
of the family corresponding to 3 are of the form E = F(y/o) where
o € F*/(F*)? is an element that maps to 8 € F3/(Fy)?, it is totally

positive and it has only one odd prime in its prime ideal decomposition.

For F = Q there are 2"(F)+! — 4 infinite families of quadratic extensions of F with
property (*). They correspond to the elements {5,3,10,6} € F}/(F3)? Uz /(Uz)*.
We now explicitly determine the members of the families:

We need totally positive elements o € F*/(F™*)? that contain exactly one odd prime
to an odd power and that map to 5,3,10,6 € F};/(F})?, respectively. Since we need
o only modulo squares this means that either o = p or o= 2p for some prime p.
Since all elements of @ that are congruent to 1 mod 8 are in @2 we have:

The members of the infinite families corresponding to 5 and 2 -5 € Fy/(F})? are
E = F(,/p) and E = F(/2p) for p =5 mod 8.

The members of the infinite families corresponding to 3 and 2 -3 € F}/(F})? are

E = F(,/p) and E = F(y/2p) for p = 3 mod 8.

Recall: For a number field F with property (*), let o1, ..,0,, (F) denote the (real)
embeddings of F. We have shown in (11.7) and (11.8) that there is a
one-to-one correspondence between pairs 3,78 € F/(F3): — Uz /(UZ)?
and subgroups of index 2 of UZ/(Us)? that do not contain 7. This
correspondence is given by (4,¢)p, = (78,u)p, = +1 for all u in the
subgroup. The subgroup is also uniquely determined as those square
classes of S-units of F' that are norms from E over F for all E in the

families associated to 8 and 7b.

For F = Q the subgroups of index 2 of Uz /(U5 )? that do not contain 2 are: {1, -1}
and {1,—2}. Note that 1 is always a norm. We have to check which one of —1
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or —2 is a norm from members of each of the 4 families. For § = 5 we have:
(-1,8)pp = (=1,5); = +1. This holds because 1z? + 5y* = 1 has a solution:
r=2,y=1.

Hence, for any member E of the family corresponding to 5 € F%/(F})* we know
that —1 is a norm from E over F. Since there is also a one-to-one correspondence
between pairs of families and sets of S-units that are norms, we conclude that —1isa
norm for any member E of the families corresponding to 5 and 2-5. These E contain
units with independent signs. For the members E of the families corresponding to
3 and 2. 3, we must then have that —2 is a norm from E over F. These E do not

contain units with independent signs.

Recall: The main theorem (12.1) classifies the quadratic extensions with property
(*) of a given number field F with respect to their properties concerning
the class number, units with independent signs and whether the dyadic

prime of F ramifies.

We know that Q,(1/5) is the unramified extension of ®,, so in any member of the
family corresponding to # = 5 the dyadic prime will be inert.
With the notation as in our main theorem we have: F' = @ is of type A),

i.e., h(F) is odd and F contains units with independent signs. We conclude:

(13.1) Proposition:  The 2"(F)+1 = 22 infinite families of quadratic extensions
with property (*) of F' = @ classify by:

A) There is exactly one family whose merﬁbers have odd class number, contain
units with independent signs and in which Dy is inert. This family is the one
corresponding to # = 5, namely: Q(,/p) with p =5 mod 8.

B) There are 22 — 2 = 2 families whose members have odd class number, do not
contain units with independent signs and in which D, ramifies. They are the ones
corresponding to 8 = 3 and 6, namely: Q(,/p) and Q(+/2p) with p = 3 mod 8.

C) There is exactly one family whose members have even class number, in fact
2||h(E), contain units with independent signs and in which D, ramifies. This

family is the one corresponding to 8 = 10, namely Q(/2p) with p = 5 mod 8.
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Furthermore, the one quadratic extension with property (*) of @ in which no odd
prime ramifies is given by Q(y/7) = Q(+/2). It contains units with independent

signs and has odd class number. : O

All of these results agree with the facts stated in section 2.

14. Biquadratic dicyclic number fields with property (*)

Recall that in section 3 we saw that the number fields E = Q(+/2, Vv/P) with p = £3
mod 8 were the only candidates among biquadratic dicyclic number fields that could
have elementary abelian 2-primK2(Op) of rank ri(F). At that time we were not
interested in whether or not they actually do have this property, because we were
looking for an example with even class number. Note, that these number fields are
totally real, so to ask whether they have elementary abelian 2-primK,(Op) of rank

r1(F) = 4 is equivalent to asking whether they have property (*).

(14.1) Theorem: The biquadratic dicyclic number fields that have property (*)
are given by Q(v/2, /P) where p is a prime with p = 4-:3 mod 8.

Furthermore, the number fields Q(v/2,,/p) with p = +3 mod 8 have odd class
number and do not contain units with independent signs.

The number fields Q(+/2, +/P) with p = 5 mod 8 also have odd class number but

they.contain units with independent signs.

v

Proof: We examine the quadratic fields F' = @Q(,/p) where pis a prime with p = +3
mod 5. In the previous section we showed that these number fields have property
(*). We have Q(v/2, VP) = F(1/2). We claim F(y/7) = F(v/2), the one quadratic
extension of F with property (*) in which no odd prime ramifies. By definition, 7
is any representative of the non trivial square class of totally positive S-units of F.

To show that 2 is a representative of the class of 7, we must show that 2 is a totally
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positive S-unit of F that is not a square.

This can be seen as follows: 2 € Q(,/p) is certainly a totally positive S-unit. Assume
that 2 is a square, i.e., there exist a,b € @ such that 2 = (a 4 b,/p)®. We have
2 = a? + b’p + 2ab,/p, s0 2 = a® + b?p and 2ab = 0. Hence, either ¢ = 0 or b = 0,
so either 2 = b%p or 2 = a?. Both of these are impossible for an odd prime p and
a,b € Q. Therefore 2 is not a square, hence F(/7) = F(v/2).

We conclude that Q(+v/2, /P) has property (*) for any prime p = £3 mod 8. From
the main theorem we also know that A(E) is odd and E contains units with inde-

pendent signs iff F contains units with independent signs. O

15. The fields Q(+/cvzq) with ¢ =5 mod 8

(15.1) Theorem: For any prime ¢ with ¢ = 5 mod 8, let ¢ denote a positive

fundamental unit of Q(1/2g). The number fields Q(1/ev2q) and Q(/2¢v2¢) have

property (*). Furthermore, they are biquadratic cyclic, they have even class number,
in fact 2 is the exact 2-power dividing the class number, and they do not contain

units with independent signs.

(15.2) Remark:  This gives infinitely many examples for the type of number

field that we were looking for in chapter 1. The example from section 4 is included

in the above, by taking ¢ = 5 in Q(+/2¢v2q).

Proof: For Q(+/10) we have ¢ = 3 + /10.
2610 = 2(3 + V10)v/10 = 2(10 + 3v/10) = [2£¢22]°(10 + v10)

This shows that 2¢4/10 and 10 + /10 are in the same square class of F, hence

adjoinig their square root results in the same field. (]

Proof of (15.1): Let F = Q(/2q) where q is a prime with ¢ = 5 mod 8.
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In (13.1.C) we showed that these number fields have property (*). Furthermore, we
showed that 2||h(F) and F contains units with independent signs.

By a positive fundamental unit € we mean a fundamental unit of F whose image in
R is positive under the embedding of F that takes 1/2¢ to 1/2¢. Since F contains
units with independent signs, we have that Np|g(¢) = —1, so the image of ¢ in R
is negative under the embedding that takes /2q to —/2q.

We have r1(F) = 2 and the ring of integers is Op = Z[/2q].

The rational primes that ramify in F are 2 and q. We have 2- O = (1/2¢,2)? and
q-Or = (v/2q,9)*. The dyadic prime of F is D, = (1/2¢,2) and let Q = (1/2q,q).
Note that /2¢-Op = Q - Dr.. We know that 2 is a totally positive S-unit of F that
is not a square since 2 = (a + b\/tj)2 has no solution a,b € Q. Therefore we can
take 7 = 2.

We have O3%/(0F)? = {£1,%¢e} and U3 /(U5)? = {£1, +¢,£2, +2¢}.

Consider the element £1/2¢ € F. It is totally positive (by choice of ) and the prime
ideal decomposition of the principal ideal it generates isle\/—Z_a O =Q - -Dp. It
contains exactly one odd prime, namely @, to an odd power. We would like to
conclude that F(+/c1/2q) has property (*). By the criterion in (8.7) we need to
check that 7 = 2 is not a square in the residue field OvQ/Q.

The ramification index of Fg over @, is 2, so the inertia degree is f = 1. We have
#00/Q = ¢f = q, hence Ogp/Q = Z/q. To check that 2 is not a square in Z/q we

use the Legendre symbol:
2_
(2) = (——1)Lﬂ_l = —1 since ¢ = 5 mod 8

From (8.7) we obtain that both F(1/¢vZq) and F(1/2¢v24) have property (*).

So far we have shown:

For any prime ¢ with ¢ = 5 mod 8, the number fields Q(\/ev2q¢) and Q(/2¢v2q)
have property (*).

That they are biquadratic cyclic is checked by using the criterion from (3.1):

2¢ - N(ev/2q) = 2¢(—1)(—2q) = (2¢)*.

Let F = Q(y/2q) for any prime ¢ = 5 mod 8. The two quadratic extensions
F(\/ev2q) and F(,/2e,2q) are members of the two infinite families with property
(*) that correspond to 8 = &4/2¢ and 78 = 2¢,/2q. Since F is of type C) in our
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main theorem, we know that both quadratic extensions have even class number. We
do not know if they belong to the two families whose members contain units with
independent signs. By (11.9) we must check if the subgroup O%/(0%)? of U5 /(U)?
consists of norms from S-units of the extensions F(+/ev2q) or F(+/2¢/29).

Note: we do know that the set of square classes of S-units if F' that are norms from
either extension is the same.

By computing Hilbert symbols we will now check that ¢ are not norms locally at
Dy. Tt follows that they cannot be global norms.

In (15.3) below, we will show:

(e,~€)pr = +1, (6,6)pp = ~1, (V2¢,~1)pp =—1 and (v2q,¢)p, = +1.

Using this we can now check that +¢ are not local norms at Dp:
(ev/24,€)pr = (6,6)Dr (V/2¢;€)Dp = (+1)(-1) = —

( \/_q,—e) (51 e)DF(\/—v_l DF(\/_7E)DF (+1 ( 1)(+1) =-1

We conclude that F(y/evzq) and F(v/2¢/2q) do not contain units with independent
signs. This concludes the proof of (15.1) ‘. (N

(15.8) Proposition: (¢,—¢)p, = +1, (6¢&)pr = -1, (V2¢,—1)p, = -1

and (v/2¢,¢)p, = +1.

Proof: (e,—€)pr = +1, by properties of the Hilbert symbol.

(¢,€)pr = —1, since the Hilbert symbol is +1 at all other primes except for one
infinite prime.

(v/2¢,—1)py = —1 can be seen as follows: We have ¢ = 5 mod 8, so (~—) = +1, i.e.
—1 is a square in Og/Q = 7Z/q. From this it follows that (y/2¢,—1)g = +1. The
Hilbert symbol of 1/2¢q and —1 has the following values: It is +1 at all finite primes
distinct from @ and D, since both elements are local units there. The Hilbert
symbol is negative at the infinite prime under which \/2q is negative and positve at
the other. By reciprocity we conclude that it is —1 at Dj.

To show that (1/2¢,¢)p, = +1 we again consider the Hilbert symbol at all other

primes. It is positive in one and negative in the other infinite prime. At all finite
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primes distinct from @ and Dy it is +1, since 1/2¢ and ¢ are local units. We we
will now prove that (1/2¢,¢)g = —1. Using this we can conclude by reciprocity that
(v2¢,€)p, = +1. |

We claim that (v/2¢,6)g = —1, i.e., we claim that the equation \/2¢z® +ey* =1 has
no solution in Fg, the completion of F at Q. This is equivalent to: V2qz?dey? = 22
has no solution in O, the ring of integers of Fg.

Suppose that there exists a solution z,y,z € Og. We can assume that z,y,z are
relatively prime. Since Og has only one prime, namely a generator of Q, we can
assume that at least one of z,y, z is a local unit.

Case 1: z is not a local unit:

We check that is is impossible for 1/2qz? + ey? = 2% to have a solution where
or y is a unit. We have ordg(v/2¢) = 1 and ordg(e) = 0. In the present case we
also have ordg(z) > 1, so ordg(z?) > 2. If we assume that y is a local unit, then
ordg(ey?) = 0. But ordg(1/2gz?) > 1, so ordg(v/2qz? + ey?) = 0 < 2 < ordg(z?).
Hence, y can not be a unit, so z must be a unit. We have ordg(v/2qx?) = 1 and
ordg(ey?) > 2. This gives ordg(v/2qy® + ex?) = 1 < 2 < ordg(2?), which again
shows that 1/2gz2 4 ey? can not equal 2°.

Case 2: z is a local unit:

Dividing the equation by z yields: /2qx® 4+ ey? = 1 for some z,y € O¢g. This will
also lead to a contradiction. Let ¢ = a + 3+/2q for some a, 8 € Z. Note that since
N(e) = a? — 2gB% = —1, we have o = —1 mod ¢q. We are assuming that the
equation /2¢gz? + (o + B+/2q)y* = 1 has a solution in Og. It therefore also has
a solution modulo Q = (1/2q,q). Since 1/2q € Q the equation reduces to ay? =
mod Q. If we let y = c+d+/2q for some ¢,d € 7, then y? = ¢? +2¢d® +2¢d\/2q = ¢*
mod Q. This equation reduces to ac? = 1 mod q. Multiplying by ™! = —a mod ¢
yields: ¢ = —a mod ¢. This is impossible since —a is not a square modulo ¢q. This

can be seen by checking the Legendre symbol:
(52) = (F)5) =(-1)(+1)

Here we used the fact that ¢ = 5 mod 8, so (:ql-) = +1. Also, we have that a* = —1
mod g. The subgroup of 4-th powers of (Z/q)* has 9—;1 elements, so its order is

odd. This shows that —1 is not a fourth power modulo ¢, and therefore « is not a
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square modulo g, i.e., (%) = ~1.

This concludes the proof that /2gz? + ey* = 2? does not have a solution in Fyp,
hence (1/2¢,€)qo = —1. O

16. Quadratic extensions of Q(1/10) with property (*)

In the previous section we were examining number fields of the type F = Q(1/2q)
for a prime ¢ = 5 mod 8. We saw that:

O3 /(0F)* = {1, %}  Up/(Up)* = {1, &6, 42, £2¢}
Furthermore, we proved that \/2q € Fy/(F2)? — U3 /(U§)?, so

F*J(F*)? = {£1, ke, £2, +2¢,++/2q, £e+/2q, £21/2¢, £261/2¢}

We now apply this to the case ¢ = 5. For F' = Q(+/10) a positive fundamental unit
is given by € = 3 + v/10. From the above we have:

07/(0%)* = {£1,%e} Ug/(Uz)* = {1, %e, %2, +2¢}

FrJ(F*)? = {+1, %, +2, +2¢, £v/10, ££v/10, +2/10, +2¢v/10}

The 21(F)*+1 — 8 infinite families of quadratic extensions with property (*) of

F = Q(+/10) correspond to the 8 elements 8 € {+£1/10,+ev/10,£2/10, +2¢+/10}.
Each pair 3,20 corresponds to a subgroup of index 2 of Uz /(U§)? that does not
contain 7 = 2. This subgroup consists of those square classes that are norms from

the members of the corresponding families. There are four such subgroups:
<eg —e>={l,e,—¢,~1} <e,—2>={1,¢,2¢,-2}

<2,—¢>={1,2¢,—¢,-2} < 2¢,—2¢>=1{1,2¢,~2¢,-1}

We will now determine which 3 they correspond to. We will also explicitly determine

one member for each of the corresponding infinite families.
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(16.1) Theorem: Let F' = Q(v/10). A positive fundamental unit of F is given
by ¢ = 3 4+ v/10. This number field contains units with independent signs and
2||h(F). There exists exactly one quadratic extension with property (*) in which
no odd prime of F ramifies. It is given by F(1/2). This is an unramified extension
of F. Its class number is odd.

There are 8 infinite families of quadratic extensions of F with property (*). The
following table lists one member E of each family together with the 3 € F}/(F%)? —
UZ/(UE)? that is associated to the family, the subgroup of Uz /(U£)? that consists
of square classes of norms from E over F, the exact 2-power dividing the class

number of E and whether E contains units with independent signs [uwis] or not.

E B norms E|F
F(+1/10+3v10) ev/10 {1,2¢,—2¢,—1} | 2||h(E) no uwis
F(y/2(10+3v10)) 2e1/10 {1,2e,—2¢,—1} | 2||h(E) no uwis
F(1/20-5+/10) V10 {1,e,—2¢,—2} 2||A(E) no uwis
F(y/2(20-510)) 2v/10 {1,¢e,—2¢,—-2} 2||h(E) no uwis
F(+/20+5v10) —/10 {1,2¢,—e, -2} 2||h(E) no uwis
F(/2(20+5v10)) —24/10 {1,2¢,—e,—2} 2||h(E) no uwis
F(+/38+11v10) —ev/10 {1,¢e,—¢,—1} 4||h(E) uwis
F(yz@s+t11v10)) | —2ev/10 | {1,e,—¢,—1} 4||M(E) uwis

Remark: In (15.2) we saw F(1/2(10+3v10)) = F(4/104+v10), so the example from

section 4 is among the above.

Remark: In (3.1) we recalled a criterion on how to distinguish among the different
types of number fields of degree 4. From the norms that are computed in 16.2 we
" obtain: The first two fields listed in the above table are biquadratic cyclic (see

15.1), whereas all others are non-abelian biquadratic.

Proof of (16.1):

By (13.1.C') we know that F contains units with independent signs and that 2||h(F).
With the notation as in our main theorem F' = Q(1/10) is of type C). The claims
on F(v/2) all follow from this. The main theorem also tells us the properties of all
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infinite families.

To determine which # € {v/10,—+/10,e1/10, ~1/10} each of the 4 subgroups of

norms correspond to, we determine Hilbert symbols at Dg:

From (15.3) we have: (v/10,-1)p, = -1 (v/10,¢)p, = +1 (&,—€)p, = +1
(e;€)pr = -1 (L,e)p, = -1 (—l,fl)DF =+1

Using these we obtain:
(V10,¢)p, = +1
(VI0, ~€)pp = (VI8 ~1)pp (VI0,€)pp = (~1)(+1) = —
Hence /10 corresponds to < e, —2¢ >
(—vT0,€)ps = (~1,6)0p (VID, E)pp = (~1)(+1) = ~
(—v/T0,~€)pr = (~1,~€)pe (VIO ~1)pp (VI8 €)pp = (~1)(=1)(+1) = +1
Hence —+/10 corresponds to < 2¢, —¢ >
(ev/10,€)p, = (£,€)Dp(V10,6)pp = (—1)(+1) = —
(ev10,—€)p, = (¢, —€)pp(V10,—¢)pp = (+1)(-1)
Hence /10 corresponds to < 2e, —2¢ >
(—eV10,¢)p, = (—6 &)pe(V10,6)p, = (+1)(+1) =
(—eV10, - ~1,=1)pp(~1,6)pp (610, ~€)p, = (+1)(=1)(~1) = +1

Hence —c+/10 corresponds to<e,—e >

-1

Note that by (11.9) the members of the families corresponding to § = —e+/10 and
78 = —2¢v/10 will be the ones that contain units with independent signs, since
they have O%/(0%)? as the subset of Us /(Ug)* that are norms. This determines
all properties of the members of each family: The members E of the two families
corresponding to —e1/10 and —2¢+/10 contain units with independent signs and
have 4||k(E) (since 2||h(F')). All others do not contain units with independent signs
and 2||h(E).

We still have to show that the number fields E listed in the table of (16.1) are in
fact members of the infinite families of their corresponding 3. For this we need to
prove that 10+ 3v/10, 20 —5/10, 20+ 5+/10 and 38+ 11/10 are totally positive
elements of F whose image in F/(F5)® is £v10, 10, —/10, —e+/10, respectively,
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and whose prime ideal decomposition contains exactly one odd prime to an odd
power.

For 3 = €v/10 we already saw in the general case (15.1) that £4/10 = 10 + 3/10
satisfies all required properties. ‘

The other 3 elements will be examined in (16.2). O

(16.2) Proposition:  The elements 20 — 51/10, 20 + 5v/10 and 38 + 114/10 in
F = ©(+/10) have the following properties:

a) they are totally positive,

'b) their prime ideal decomposition contains exactly one odd prime of F to an odd

power,
c) in F}/(F})? they map to v10,—/10,—ev/10, respectively.

Proof: a) All three elements are in fact totally positive.

b) We compute their norms over Q: |

N (20 + 5v/10) = 20% — 250 = 150 = 2 - 3 - 52

N(38 4+ 11/10) = 38% — 1210 = 234 = 2-3% .13

The rational primes 3 and 13 split in F over @. The primes 2 and 5 are exactly the
ramified primes. Let D, denote the prime over 2,  the prime over 5, P a prime
over 3 and P' a prime over 13. Note that 3 appears to a second power in the norm of
38 +111/10. The prime ideal decomposition of (38 + 11\/%) - Op therefore contains
either P% or both primes that lie over 3, each to the first power. The second case

is not possible since 3 does not divide 38 and 11. We therefore have:
(20 + 5v10) - O = (D;)* - P - Q*

(38 + 11v/10) - O = (D)? - P*. P'

In either case, we see that the prime ideal decomposition contains exactly one odd
prime.

¢) To prove that in F}/(F})? we have:
V10 =20 — 5v/10, — V10 =20 4+ 5v/10 and — V10 = 38 + 1110

we observe that the following equalities hold in F'
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20 — 5/10 = v/10(—5 + 2v/10) = v10 - [(1 + v10)? — 2¢]

20 + 5v10 = —v10(—5 — 2v10) = —v10 - [(1 — V10)% — 2*]

38 + 114/10 = —e/10 - =50HVI0 — _ o /77 . L. [((2 + v/10)% — 2°]

Note that ;5 = (711-——0-)2 € (F*)?, so this element is trivial in F};/(F3)?.

We will now check that the elements in [...] are also trivial in F}/(F3)?, i.e., that
they are in (F},)?. This is done by applying Hensel’s lemma:

The elements are all of the type [A? — 2"] with n > 4 and A € OF with

ordp,(A) =0, for A =1+ /10, and ordp,(4) = 1, for A = 2 + V10.

The polynomial F(z) = z? — (A% — 2™) has a solution modulo (Dj)?™.

Such a solution is given by A, since ordp,(2) = 2, s0 2™ = 0 mod (D )*". We have:
ordp.(F'(A)) = ordp,(24) = ordp,(2) + ordp,(A) < 3

Since 2-3 + 1 < 2n for n > 4, the hypothesis of Hensel’s lemma is satisfied and
we obtain that F(z) has a solution in Fy,. Hence, all elements in [...], above, are

squares in Fp,. 0
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