
Louisiana State University Louisiana State University 

LSU Scholarly Repository LSU Scholarly Repository 

LSU Master's Theses Graduate School 

2016 

A Statistical, Data-driven Assessment of Climate Extremes and A Statistical, Data-driven Assessment of Climate Extremes and 

Trends for the Continental U.S. Trends for the Continental U.S. 

Xinbo Huang 
Louisiana State University and Agricultural and Mechanical College 

Follow this and additional works at: https://repository.lsu.edu/gradschool_theses 

 Part of the Social and Behavioral Sciences Commons 

Recommended Citation Recommended Citation 
Huang, Xinbo, "A Statistical, Data-driven Assessment of Climate Extremes and Trends for the Continental 
U.S." (2016). LSU Master's Theses. 4471. 
https://repository.lsu.edu/gradschool_theses/4471 

This Thesis is brought to you for free and open access by the Graduate School at LSU Scholarly Repository. It has 
been accepted for inclusion in LSU Master's Theses by an authorized graduate school editor of LSU Scholarly 
Repository. For more information, please contact gradetd@lsu.edu. 

https://repository.lsu.edu/
https://repository.lsu.edu/gradschool_theses
https://repository.lsu.edu/gradschool
https://repository.lsu.edu/gradschool_theses?utm_source=repository.lsu.edu%2Fgradschool_theses%2F4471&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/316?utm_source=repository.lsu.edu%2Fgradschool_theses%2F4471&utm_medium=PDF&utm_campaign=PDFCoverPages
https://repository.lsu.edu/gradschool_theses/4471?utm_source=repository.lsu.edu%2Fgradschool_theses%2F4471&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:gradetd@lsu.edu


A STATISTICAL, DATA-DRIVEN ASSESSMENT OF CLIMATE EXTREMES
AND TRENDS FOR THE CONTINENTAL U.S.

A Thesis

Submitted to the Graduate Faculty of the
Louisiana State University and

Agricultural and Mechanical College
in partial fulfillment of the

requirements for the degree of
Master of Science

in

The Department of Geography and Anthropology

by
Xinbo Huang

M.S. Wuhan University, 2013
December 2016



Acknowledgements

First, I would like to express my sincere thanks to my supervisor Dr. David

Sathiaraj. Without his patient guidance and encouragement during the process

of researching and writing, I could not have written this thesis. It is my honor to

complete my master’s study under his supervision.

Additionally, I also want to thank my advisor Dr. Lei Wang and Dr. Barry Keim

for serving in my thesis committee and their valuable suggestions and precious time

spent on improving my thesis research.

I also want to thank the Department of Geography & Anthropology. During my

study in the master’s program, I gained valuable skills and knowledge in academics

and communication. Besides, I want to thank the NOAA Southern Regional Cli-

mate Center for providing me the opportunity to work as a graduate assistant

(GA). The working experience as a GA in climate extremes related projects gave

me practical training on solving real world problems such as managing and ana-

lyzing massive climate data sets.

Last, but not the least, my heartfelt appreciation goes to my parents, Haitao

Huang and Yan Hong, for supporting me spiritually throughout writing this thesis

and my life in general. Finally, I want thank all my close friends for their help and

encouragement through my academic life.

ii



Table of Contents

Acknowledgements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ii

List of Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iv

List of Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v

Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . x

1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.1 Purpose . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Problem Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.3 Organization of the Thesis . . . . . . . . . . . . . . . . . . . . . . . 2

2. Literature Review . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
2.1 Temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
2.2 Precipitation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

3. Data and Methologies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
3.1 Data Source . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
3.2 Data Preprocessing . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

3.2.1 Climate Division . . . . . . . . . . . . . . . . . . . . . . . . 14
3.2.2 Extreme Frequencies Dataset . . . . . . . . . . . . . . . . . 15

3.3 Non-Parametric Test . . . . . . . . . . . . . . . . . . . . . . . . . . 16
3.3.1 Wilcoxon Signed-Rank Test . . . . . . . . . . . . . . . . . . 17
3.3.2 Mann-Whitney U Test . . . . . . . . . . . . . . . . . . . . . 17
3.3.3 Kolmogorov-Smirnov Test . . . . . . . . . . . . . . . . . . . 18

4. Data Visulization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
4.1 Structure of Data Visualization System . . . . . . . . . . . . . . . . 20
4.2 Choropleth Map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
4.3 Line Chart . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

5. Results and Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
5.1 P-value . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
5.2 Maximum Temperature is Greater than 95 ◦F . . . . . . . . . . . . 32
5.3 Minimum Temperature is Greater than 75 ◦F . . . . . . . . . . . . 39
5.4 Minimum Temperature is Lower than 32 ◦F . . . . . . . . . . . . . 43
5.5 Minimum Temperature is Lower than 0 ◦F . . . . . . . . . . . . . . 46
5.6 Precipitation is Greater than 2 inches . . . . . . . . . . . . . . . . . 54
5.7 Annual Total Precipitation . . . . . . . . . . . . . . . . . . . . . . . 54
5.8 Annual Total Snowfall . . . . . . . . . . . . . . . . . . . . . . . . . 60

iii



6. Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

Vita . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

iv



List of Tables

3.1 Thresholds to generate extreme climate frequency dataset . . . . . . 16

5.1 Number of climate divisions grouped by wilcoxon test p-value from

two ETF datasets (1946-1980 and 1981-2015) and the percentage of

climate divisions with an increasing trend (NaN means that p-values

are unavailable in these climate divisions) . . . . . . . . . . . . . . . 26

5.2 Number of climate divisions grouped by Mann-Whitney test p-value

from two ETF datasets (1946-1980 and 1981-2015) and the per-

centage of climate divisions with increasing trend (NaN means that

p-values are unavailable in these climate divisions) . . . . . . . . . . 27

5.3 Number of climate divisions grouped by K-S test p-value from two

ETF datasets (1946-1980 and 1981-2015) and the percentage of cli-

mate divisions with increasing trend (NaN means that p-values are

unavailable in these climate divisions) . . . . . . . . . . . . . . . . . 28

5.4 Distribution of states in the six regions . . . . . . . . . . . . . . . . 30

v



List of Figures

2.1 Global average surface temperature change with RCP2.6 and RCP8.5

(relative to 1986-2005) [1] . . . . . . . . . . . . . . . . . . . . . . . 6

2.2 Change in average surface temperature (1986-2005 to 2081-2100) [1] 7

2.3 Change in average precipitation (1986-2005 to 2081-2100) [1] . . . . 8

3.1 Flowchart for data processing . . . . . . . . . . . . . . . . . . . . . 11

3.2 Spatial distribution of climate data observing stations . . . . . . . . 12

3.3 Climate divisions of the continental U.S. [2] . . . . . . . . . . . . . 13

3.4 Algorithm used to group data by climate division . . . . . . . . . . 14

3.5 Algorithm used to groupe data by time . . . . . . . . . . . . . . . . 15

4.1 Pipeline of data visualization system . . . . . . . . . . . . . . . . . 20

4.2 Screenshot of data visualization system with chart of maximum tem-

perature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

4.3 Screenshot of data visualization system withWilcoxon p-value choro-

pleth map when maximum temperature is greater than 85 ◦F . . . . 22

4.4 Screenshot of data visualization system with difference choropleth

map when maximum temperature is greater than 85 ◦F . . . . . . . 23

4.5 Screenshot of line chart with the climate division TX01 when max-

imum temperature is greater than 85 ◦F . . . . . . . . . . . . . . . 24

5.1 Regional climate center regions in the continental U.S. [3] . . . . . . 30

5.2 Distribution of difference and p-value of climate divisions in contin-

tental U.S. when maximum tempertaure is greater than 95 ◦F . . . 31

5.3 Distribution of Wilcoxon test p-value when maximum temperature

is greater than 95 ◦F . . . . . . . . . . . . . . . . . . . . . . . . . . 32

vi



5.4 Distribution of Mann-Whitney test p-value when maximum temper-

ature is greater than 95 ◦F . . . . . . . . . . . . . . . . . . . . . . . 33

5.5 Distribution of Kolmogorov-Smirnov test p-value when maximum

temperature is greater than 95 ◦F . . . . . . . . . . . . . . . . . . . 33

5.6 Distribution of difference when maximum temperature is greater

than 95 ◦F . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

5.7 Distribution of difference and p-value of climate divisions in high

plains region when maximum temperature is greater than 95 ◦F . . 34

5.8 Distribution of difference and p-value of climate divisions in south-

ern region when maximum temperature is greater than 95 ◦F . . . . 35

5.9 Distribution of difference and p-value of climate divisions in south-

east region when maximum temperature is greater than 95 ◦F . . . 36

5.10 Distribution of difference and p-value of climate divisions in western

region when maximum temperature is greater than 95 ◦F . . . . . . 37

5.11 Distribution of difference and p-value of climate divisions in contin-

tental U.S. when minimum temperature is greater than 75 ◦F . . . . 38

5.12 Distribution of Wilcoxon test p-value when minimum temperature

is greater than 75 ◦F . . . . . . . . . . . . . . . . . . . . . . . . . . 39

5.13 Distribution of Mann-Whitney test p-value when minimum temper-

ature is greater than 75 ◦F . . . . . . . . . . . . . . . . . . . . . . . 40

5.14 Distribution of Kolmogorov-Smirnov test P-value when minimum

temperature is greater than 75 ◦F . . . . . . . . . . . . . . . . . . . 40

5.15 Distribution of difference when minimum temperature is greater

than 75 ◦F . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

5.16 Distribution of difference and p-value of climate divisions in south-

ern region when minimum tempertaure is greater than 75 ◦F . . . . 41

vii



5.17 Distribution of difference and p-value of climate divisions in high

plains region when minimum tempertaure is greater than 75 ◦F . . 42

5.18 Distribution of difference and p-value of climate divisions in the

contintental U.S. when minimum tempertaure is lower than 32 ◦F . 43

5.19 Distribution of Wilcoxon test p-value when minimum temperature

is lower than 32 ◦F . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

5.20 Distribution of Mann-Whitney test p-value when minimum temper-

ature is lower than 32 ◦F . . . . . . . . . . . . . . . . . . . . . . . . 44

5.21 Distribution of Kolmogorov-Smirnov test p-value when minimum

temperature is lower than 32 ◦F . . . . . . . . . . . . . . . . . . . . 45

5.22 Distribution of difference when minimum temperature is lower than

32 ◦F . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

5.23 Distribution of difference and p-value of climate divisions in south-

east region when minimum tempertaure is lower than 32 ◦F . . . . 46

5.24 Distribution of difference and p-value of climate divisions in western

region when minimum tempertaure is lower than 32 ◦F . . . . . . . 47

5.25 Distribution of difference and p-value of climate divisions in the

contintental U.S. when minimum tempertaure is lower than 0 ◦F . . 48

5.26 Distribution of Wilcoxon test p-value when minimum temperature

is lower than 0 ◦F . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

5.27 Distribution of Mann-Whitney test p-value when minimum temper-

ature is lower than 0 ◦F . . . . . . . . . . . . . . . . . . . . . . . . 49

5.28 Distribution of Kolmogorov-Smirnov test p-value when minimum

temperature is lower than 0 ◦F . . . . . . . . . . . . . . . . . . . . . 49

5.29 Distribution of difference when minimum temperature is lower than

0 ◦F . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

viii



5.30 Distribution of difference and p-value of climate divisions in south-

east region when minimum tempertaure is lower than 0 ◦F . . . . . 51

5.31 Distribution of difference and p-value of climate divisions in western

region when minimum tempertaure is lower than 0 ◦F . . . . . . . . 52

5.32 Distribution of difference and p-value of climate divisions in the

continental U.S. when precipitation is greater than 2 inches . . . . . 53

5.33 Distribution of difference when precipitation is greater than 2 inches 54

5.34 Distribution of difference and p-value of climate divisions in western

region when precipitation is greater than 2 inches . . . . . . . . . . 55

5.35 Distribution of difference and p-value of total annual precipitation

in climate divisions in the Continental U.S. . . . . . . . . . . . . . . 56

5.36 Distribution of difference of total annual precipitation . . . . . . . . 56

5.37 Distribution of difference and p-value of total annual precipitation

in climate divisions in southeast region . . . . . . . . . . . . . . . . 57

5.38 Distribution of difference and p-value of total annual precipitation

in climate divisions in western region . . . . . . . . . . . . . . . . . 58

5.39 Distribution of difference and p-value of total annual snowfall in

climate divisions in the continental U.S. . . . . . . . . . . . . . . . 59

5.40 Distribution of difference of total annual snowfall . . . . . . . . . . 60

5.41 Distribution of difference and p-value of total annual snowfall in

climate divisions in high plains region . . . . . . . . . . . . . . . . . 61

5.42 Distribution of difference and p-value of total annual snowfall in

climate divisions in midwestern region . . . . . . . . . . . . . . . . 62

ix



Abstract

Climate extremes are meteorological events that can have significant impacts on

human and natural systems. Weather hazards, such as heat waves, drought, heavy

thunderstorms, floods, hurricanes, occur frequently, and are a threat to human

lives and property.

Climate data observations spanning over 100 years are an important asset in

understanding climate extremes and trends. This research uses daily climate data

observations from more than 3000 climate stations in the continental U.S. to as-

sess the climate trends and extremes, including temperature, precipitation, and

snowfall.

The climate data measurement sites were grouped by climate divisions and each

climate division was statistically assessed for the following elements: maximum and

minimum temperature, precipitation and snowfall. Furthermore, by dividing the

climate data time series into 2 time intervals (1946-1980 and 1981-2015). Appli-

cation of a host of non-parametric, statistical tests, provided insights on whether

the recent time period is experiencing increased, decreased or similar frequencies

of the climate extremes threshold being analyzed.

The study also analyzed trends of climate extremes on a regional basis by break-

ing up the continental US into western, high plains, southern, midwestern, north-

east and southeast regions. A data visualization system was also developed to

assess and analyze the results from this data-intensive study. The visualization

system includes intuitive choropleth maps and charts that depict climate trends.

x



Chapter 1
Introduction

1.1 Purpose
In recent decades, global climate is changing and this change is apparent across a

wide range of observations [4], and severe weather occurs frequently in recent years

and causes casualties and property losses [5, 6]. Meanwhile, the linear trend of the

globally averaged temperature combined land and ocean surface show a warming

of 0.85 ◦C over the period 1880 to 2012 [1]. It is indisputable fact that climate

extremes are inextricably associted with climate change.

The rule of more extreme weather and climate, coupled with increased vulnera-

bility, highlights a need to collect, analyse, and assess extreme climate data so as

to discover the trend of climate change and to prevent it further.

This research attempts to provide an assessment of trend in climate extremes

for the the continental United States in recent decades by analyzing daily resolu-

tion climate data, including maximum temperature, minimum temperature, pre-

cipitation, and snowfall. In addition, in this study, a data visualization system is

established to provide a portal to help users access these climate data more easily

and intuitively.

1.2 Problem Statement
Due to the nature of climate data, some research problems addressed in this thesis

includes

• Continental United States is vast with variable climate types and different

land cover. The amount of climate data analyzed for the Continental United

1



States is enormous and analyzing a wide range of data is becoming a problem

to process extreme climate data.

• Climate is defined as long-term averages and variations in weather measured

over a period of several decades [4], and thus climate data are easily analyzed

as time-series nature.However, it is a problem to tranform climate data into

the threshold exceeding frequencies data set (TEF).

• The trend of climate data is an abstract concept and climate data itself con-

tains numerous nuances. It is a problem to extract trend of climate extremes

from numerous time-series climate data.

• The result and dataset involved in this study are volumonous and complex.

It is necessary to establish an intuitive, friendly interface to help users grasp

the trend and relationship in extreme climate data.

1.3 Organization of the Thesis
To achieve the goals outlined above, the thesis is divided into three sections:

• The first section, includes Chapter 3 and it details information regarding

sources for the daily climate data and metadata, information on the 3000 cli-

mate stations in the continental U.S., the data preprocessing routines used

to transform raw climate data observations into climate divisions based ag-

gregations and deriving frequencies information, which is then tested using

non-parameric statistics.

• The second section, includes Chapter 4, that describes the data visualization

system and analysis and insights derived from the choropleth map-based

visualizations.

2



• The last section, including Chapter 5, display general results about extreme

high maximum temperature, extreme high minimum temperature, extreme

low minimum temperature, extreme high precipitation, total annual precipi-

tation, and total annual snowfall in the continental U.S. and regional result in

six regions, including western region, high plains region, midwestern region,

northeast region, southern region, and southeast region.

3



Chapter 2
Literature Review

This chapter reviews the literature about climate extremes and climate change.

Meehl [7] gave a definition and conceptual discussion of climate extremes. Houghton

[8] focused on earlier climate model studies of global warming, and he started to

analyze possible climate changes of future weather and climate extremes [9].

2.1 Temperature
Overall, a global warming of approximately 0.85 ◦C has occurred over the past

century [1, 10, 11]. Human activities are at least partially responsible for the ob-

served warming in the 20th century and particularly for that warming which has

occurred in the latter half of the century, a view supported by numerous authors

[12, 11, 13, 14, 15, 16, 7, 17]. These global trends may continue through this century,

resulting in a global warming of 1 to 3.5 ◦C over the next century [13, 18, 19].

Hennessy [20] established a high-resolution regional model over southeastern

Australia nested in a global model run under a transient enhanced greenhouse

scenario shows that the frequency of minimum temperatures below freezing was

roughly halved when the mean minimum temperature increased by nearly 2 ◦C.

Karl and Knight [21] discovered that increases in minimum temperature have ap-

peared consistently in a number of different climate models and also are associated

with an observed decrease in diurnal temperature range in some areas. The great-

est change in the 20-year return values of daily maximum temperature is found

in central and southeast North America, central and southeast Asia, and tropical

Africa where there is a decrease in soil moisture content. Large extreme temper-

ature increases also are seen over the dry surface of north Africa. In contrast,

4



the west coast of North America is affected by increased precipitation resulting in

moister soil and more moderate increases in extreme temperature [17].

Representative Concentration Pathways (RCPs) Scenarios that include time se-

ries of emissions and concentrations of the full suite of greenhouse gases (GHGs)

and aerosols and chemically active gases, as well as land use/land cover [22]. The

word representative signifies that each RCP provides only one of many possible

scenarios that would lead to the specific radiative forcing characteristics. The term

pathway emphasizes that not only the long-term concentration levels are of inter-

est, but also the trajectory taken over time to reach that outcome [23].

RCPs usually refer to the portion of the concentration pathway extending up to

2100, for which Integrated Assessment Models produced corresponding emission

scenarios. Extended Concentration Pathways (ECPs) describe extensions of the

RCPs from 2100 to 2500 that were calculated using simple rules generated by

stakeholder consultations and do not represent fully consistent scenarios.

In Climate Change 2014 Synthesis Report [24], it is described that the increase

of global mean surface temperature by the end of the 21st century (2081-2100)

relative to 1986-2005 is likely to be 0.3 ◦C to 1.7 ◦C under RCP2.6, 1.1 ◦C to 2.6

◦C under RCP4.5, 1.4 ◦C to 3.1 ◦C under RCP6.0 and 2.6 ◦C to 4.8 ◦C under

RCP8.59. The Arctic region will continue to warm more rapidly than the global

mean.

Four RCPs produced from Integrated Assessment Models were selected from the

published literature and are used in the present IPCC Assessment as a basis for

the climate predictions and projections presented n WGI AR5 Chapters 11 to 14

[24]
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FIGURE 2.1. Global average surface temperature change with RCP2.6 and RCP8.5 (rel-
ative to 1986-2005) [1]

• RCP2.6 One pathway where radiative forcing peaks at approximately 3W/m2

before 2100 and then declines.

• RCP4.5 and RCP6.0 Two intermediate stabilization pathways in which ra-

diative forcing is stabilized at approximately 4.5 W/m2 and 6.0 W/m2 after

2100.

• RCP8.5 One high pathway for which radiative forcing reaches >8.5 W/m2

by 2100 and continues to rise for some amount of time.

In Figure 2.1, Global average surface temperature change from 2006 to 2100

as determined by multi-model simulations. All changes are relative to 1986-2005.

Time series of projections and a measure of uncertainty (shading) are shown for

scenarios RCP2.6 (blue) and RCP8.5 (red). The mean and associated uncertainties

averaged over 2081-2100 are given for all RCP scenarios as coloured vertical bars

at the right hand side of each panel.
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FIGURE 2.2. Change in average surface temperature (1986-2005 to 2081-2100) [1]

Figure 2.2 reflects change in average surface temperature based on multi-model

mean projections for 2081-2100 relative to 1986-2005 under the RCP2.6 (left) and

RCP8.5 (right) scenarios. The number of models used to calculate the multi-model

mean is indicated in the upper right corner of each panel. Stippling shows regions

where the projected change is large compared to natural internal variability and

where at least 90% of models agree on the sign of change. Hatching shows regions

where the projected change is less than one standard deviation of the natural

internal variability.

2.2 Precipitation
Changes in precipitation will not be uniform. The high latitudes and the equatorial

Pacific are likely to experience an increase in annual mean precipitation under

the RCP8.5 scenario. In many mid-latitude and subtropical dry regions, mean

precipitation will likely decrease, while in many mid-latitude wet regions, mean

precipitation will likely increase under the RCP8.5 scenario. Extreme precipitation

events over most of the mid-latitude land masses and over wet tropical regions will

very likely become more intense and more frequent.
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FIGURE 2.3. Change in average precipitation (1986-2005 to 2081-2100) [1]

Increased precipitation intensity (albeit with certain regional variations) in a fu-

ture climate with increased greenhouse gases was one of the earliest model results

regarding precipitation extremes, and remains a consistent result with improved,

more detailed models [25, 26]. There are also some indications from observations

that such changes of precipitation intensity are already being seen in some regions

[21]. There have been questions regarding the relatively coarse spatial scale reso-

lution in climate models being able to represent essentially mesoscale and smaller

precipitation processes. However, the globally averaged increase in moisture capac-

ity of a warmer atmosphere is physically consistent with increases in precipitation

and, potentially, with increases of precipitation rate in some regions.

It has been recognized recently that changes in precipitation intensities could

have a geographical dependence. For example, Bhaskharan and Mitchell [27] note

that the range of precipitation intensity over the south Asian monsoon region

broadens in a future climate experiment with increased greenhouse gases, with

decreases prevalent in the west and increases more widespread in the east. Increases

in extreme precipitation events recently have been projected in nested regional

models over Australia [20] and the United States [28], and in a high-resolution
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nested hurricane model over the northwest tropical Pacific [29]. In a recent global

model simulation with doubled CO2, precipitation extremes increase more than

the mean daily precipitation (the mean increase is 4%; 20-yr extreme precipitation

event return values increase 11%) with a consequent decrease in return period for

the 20-yr extreme precipitation events almost everywhere [30].
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Chapter 3
Data and Methologies

This chapter introduces the data and methodologies and related problems. Figure

3.1 is the flowchart for data processing in the study. First, daily climate data are

obtained from ACIS. The data are then grouped by climate divisions, and extreme

frequency data are generated by setting some thresholds. Grouping by climate

divisions is conducted as follows: An average was computed using data from at

least 3 climate measurement sites - each of the sites included data that spanned

the time period 1946-2015 and each of the climate measurement sites included

less than 10% missing values per year. So for example, to compute for a say New

York’s climate division 1, annual frequencies of minimum temperatures exceeding

75 ◦F are collected from at least 3 climate measurement sites and a mean annual

frequency value is computed. If less than 3 climate measurement sites were available

for a climate division (likely due to excessive missing values), then that climate

division was excluded from the study.

The time-series extreme frequency data between 1946 and 2015 is divided into

two independent samples, which can be compared using non-parametric statistical

hypothesis test. Finally, p-value is obtained to be the representation of significance

of whether the two time-series climate data have a similar distribution. In addition,

the difference between the means of the 2 time-series data for each of the thresholds

is also evaluated, to indicate an increasing 1 or decreasing 2 trend.

1In this thesis, increasing trend denotes that the more recent time period (1981-2015) is experiencing higher
mean frequency of days for the threshold being analyzed, when compared to the prior time period (1946-1980)

2decreasing trend denotes that the more recent time period (1981-2015) is experiencing lower mean frequency
of days for the threshold being analyzed, when compared to the prior time period (1946-1980)
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ACIS

Group by Climate Divisions

Generate TEF Dataset

Dataset (1946 − 1980) Dataset (1981 − 2015)

Apply 3 Statistical Analysis

P − value

Difference

Trends

FIGURE 3.1. Flowchart for data processing
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FIGURE 3.2. Spatial distribution of climate data observing stations

3.1 Data Source
This research used the daily climate data from the Applied Climate Information

System (ACIS), an Internet-based system designed to facilitate the generation and

dissemination of climate data products to users. ACIS is developed by the NOAA

Regional Climate Centers (RCCs) to manage the complex flow of information from

climate data collectors to end users of climate data information.

ACIS accepts and returns climate information in JavaScript Object Notation

(JSON), which uses structures that are similar to those used in many coding lan-

guages, including C, C++, Java, JavaScript, Perl, and Python. For each call, users

specify a set of parameter to describe the data being requested. After passing these

parameters to the server and accessing these climate data, a climate data product

is returned to users.

As shown in Figure 3.2, 3210 climate stations in the continental United States

were used in this study. There are more than 26000 GHCN climate data measure-
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FIGURE 3.3. Climate divisions of the continental U.S. [2]

ment sites. However not all span the entire time period of 1946-2015. Additional

criteria used for this data analysis and study included the following: allow for less

than 10% missing values for a station per year and every climate division should

have at least 3 climate measurement sites. Once this criteria was applied, the num-

ber of valid stations that fit these criteria reduced to 3210. These 3210 stations are

distributed to cover most of land in the continental United States. By analyzing

the climate data from these stations, the trends of climate extremes can then be

obtained for the continental United States.

3.2 Data Preprocessing
As daily climate data from ACIS is raw data which cannot be processed further,

data preprocessing is necessary to generate extreme climate dataset.

13



Require: Ts,v
1: Initialize int NumClimdiv = 327
2: Initialize array ArrSum[NumClimdiv] = φ
3: Initialize array ArrNum[NumClimdiv] = φ
4: Initialize array ArrClimdiv[NumClimdiv] = φ
5: Initialize array ArrRes[NumClimdiv] = φ
6: for each dataset dc in Tv,s do
7: ClimdivCode = dc[ClimdivCode]
8: if ClimdivCode in ArrClimdiv then
9: ArrSum[ClimdivCode]+ = dc[V alue]

10: ArrNum[ClimdivCode]+ = 1
11: else
12: Insert dc[V alue] into ArrSum
13: Insert 1 into ArrNum
14: Insert ClimdivCode into ArrClimdiv
15: end if
16: end for
17: for i := 0 to NumClimdiv − 1 do
18: ArrRes[i] = ArrSum[i]/ArrNum[i]
19: end for
20: Export ArrRes

FIGURE 3.4: Algorithm used to group data by climate division

3.2.1 Climate Division

As shown in Figure 3.3, the continental United States (U.S.) is subdivided into 344

climate divisions by The National Climatic Data Center (NCDC) [31]. For each

climate division, which represents nearly homogenous climatic regions, monthly

station temperature and precipitation values are computed from the daily observa-

tions [32], and their monthly temperature, monthly water equivalent precipitation,

Palmer Drought Severity Index, and Palmer Hydrological Drought Index values

have been generated back to 1895 [33].

Numerous applications have used these climate divisional data, e.g., they are

used to monitor the U.S. climate by the NCDC, the Climate Prediction Center,

the National Drought Mitigation Center, and others. These divisional data sets are

also used frequently in applied research [34, 35].
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Require: Ts,v
1: Initialize int NumY ears = 70
2: Initialize array ArrRes[NumY ears] = φ
3: Initialize array ArrY ears[NumY ears] = φ
4: Initializa array Arr
5: for each dataset dc in Tv,s do
6: if dc[V alue] then
7: if dc in ArrY ears then
8: ArrRes[dc[Y ear]]+ = 1
9: else

10: Insert 1 into ArrRes
11: Insert dc[Y ear] into ArrY ears
12: end if
13: end if
14: end for
15: Export ArrRes

FIGURE 3.5: Algorithm used to groupe data by time

The NCEI climate divisions shape file (geographical dataset) includes 327 out

of the 344 climate divisions in the continental U.S.. Hence for this study, climate

measurement data from 3210 data sites were grouped into 327 climate divisions

to derive the Threshold Exceeding Frequencies (TEF) Dataset. To group a set

of climate measurement sites into a climate division, a minimum of 3 climate

measurement stations were required and the frequency measurement (number of

days exceeding a threshold) was averaged for the climate division. Each of the

climate data sites in a climate division was also required to have less than 10%

missing values per year. Figure 3.4 is pseudocode to group daily climate data by

climate divisions and compute the means in every climate divisions.

3.2.2 Extreme Frequencies Dataset

The daily climate data from 3210 climate measurement sites was then trans-

formed into the Threshold Exceeding Frequency (TEF) data set. The threshold

used for this study was based on a combination of thresholds used in the CLIMDEX

- Datasets for Indices of Climate Extremes [36] and the Southeast chapter of the US

National Climate Assessment document, released in 2014 [37]. The pseudocode or
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TABLE 3.1. Thresholds to generate extreme climate frequency dataset
Element Thresholds
Maximum Temperature ≥105, ≥100, ≥95, ≥85
Minimum Temperature ≥80, ≥75, ≥70, ≥65, ≤36,

≤32, ≤28, ≤24, ≤15, ≤10,
≤5, ≤0

Precipitation ≥2, ≥4, sum
Snowfall sum

procedure for grouping the data by year and number of days exceeding a threshold

is depicted in Figure 3.5.

There are some threshold is chosen, including that maximum temperature is

greater 105 ◦F, 100 ◦F, 95 ◦F, or 85 ◦F, minimum temperature is greater than 80

◦F, 75 ◦F, 70 ◦F, or 65 ◦F, minimum temperature is lower than 36 ◦F, 32 ◦F, 28

◦F, 24 ◦F, 15 ◦F, 10 ◦F, 5 ◦F, 0 ◦F, precipitation is greater than 2 inches or 4

inches, total annual precipitation (in inches), and total annual snowfall (in inches),

as shown in Table 3.1. In addition, to ensure availability of the frequencies dataset,

climate divisions should have no more than 10% missing values per year.

3.3 Non-Parametric Test
The determination of the distribution form which a sample is drawn is an important

problem in many statistical applications [38]. If the distribution is not known,

or is known to not follow a particular form, then non-parametric statistics are

appropriate.

The verification of the compatibility of a set of observed sample values with a

hypothesized distribution is carried out by a goodness-of-fit test. Various studies

have shown that for continuous populations several tests based on the empirical

distribution function (edf), including the Kolmogorov-Smirnov test are used.
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Thus, the three non-parametric test, Wilcoxon Signed-Rank Test, Mann-Whitney

U Test, and Kolmogorov-Smirnov Test, are chosen to compare distributional form

of the population in two time-series datasets.

3.3.1 Wilcoxon Signed-Rank Test

The Wilcoxon Test of the hypothesis H0, two continuous distribution functions, F

and G, are equal, is typically based on independent random samples, X1, ..., Xm

from F, Y1, ..., Yn from [39]. In order to test whether X1 is stochastically larger

than Y1 [40], Wilcoxon [41] introduced the statistic

Wm,n = sum of the ranks of the X ′is in the combined sample

The algorithm is the core of Wilcoxon Signed-Rank Test. Wilcoxon Test focus

on accessing whether the population mean ranks differ.

3.3.2 Mann-Whitney U Test

Mann-Whitney (MW) statistical test is a test for assessing the signficance of a

difference in median or central tendency or mean of two series. By comparing

with parametric statistical tests such as a t-test, the nonparametric test is more

suitable for non-normally distributed data and censored data, which are frequently

encountered in hydrological time serie [42, 43].

Mann and Whitney [44] introduced the equivalent statistic

Mm,n =
m∑
i=1

#{j : Yj < Xi}

The equivalence of these statistics can be seen as follows. Let X(i) denote the

ith-order statistic of X1, ..., Xm. Then for i = 2, ...,m, the ranks of X(1), ..., X(i−1)

are included in Wm,n , but not in Mm,n. Hence, Wm,n = Mm,n +
∑m

i=1 i = Mm,n +

1

2
m(m+ 1) [40].
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Mann-Whitney U Test is different from Wilcoxon Signed-Rank Test. The Mann-

Whitney U test is applied to independent samples, and the Wilcoxon signed-rank

test is applied to matched or dependent samples.

3.3.3 Kolmogorov-Smirnov Test

The Kolmogorov-Smirnov test [45] is the best-known and most widely used goodness-

of-fit test based on the empirical distribution function (edf). In a random sample

of size n, the edf, denoted by Sn(x), is defined by

Sn(x) =


0, x < X(1),

i/n, X(i) ≤ x < X(i+1) for i = 1, 2, ..., n− 1,

1, x ≥ X(n),

where X(i) represents the i-th order statistic in the random sample. As in Harter,

Khamis and Lamb (1984), we define

d+n = max
1≤i≤n

[(i− 0.5)/n− Fi]

d−n = max
1≤i≤n

[Fi − (i− 0.5)/n]

dn = max(d+n , d
−
n ) = max

1≤i≤n
[|(i− 0.5)/n− Fi|]

and base the KS test on these statistics. The relationship between these test

statistics and the one-sided (D+
n , D

−
n ) and two-sided (Dn) KS test statistics is

D+
n = d+n + 0.5/n

D−n = d−n + 0.5/n

18



Dn = dn + 0.5/n

where Fi, is the theoretical (population) cdf, F (X(i)), corresponding to the i-th

order statistic [38].

Compared withWilcoxon Signed-Rank Test, Mann-Whitney U Test, Kolmogorov-

Smirnov Test is more sensitive to differences in both location and shape of the

empirical cumulative distribution functions of the two samples.
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FIGURE 5.41: Distribution of difference and p-value of total annual snowfall in
climate divisions in high plains region
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FIGURE 5.42: Distribution of difference and p-value of total annual snowfall in
climate divisions in midwestern region
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Chapter 6
Conclusions

Overall, by analyzing the extreme climate data from more than 3000 climate sta-

tions in the continental U.S. between 1946 and 2015, the conclusions are summa-

rized as follows:

• In the continental United States, the frequencies of extreme high maximum

temperature in inland areas have deceased dramatically, which in east coastal

areas remain steady, and in contrast, the west coastal areas show increases

in frequency. The frequencies of extreme high maximum temperature is gen-

erally indicating a decreasing trend.

• In the continental United States, the frequencies of extreme high minimum

temperature is indicating a statistically significant, increasing trend.

• In the continental United States, the frequencies of extreme low minimum

temperature is showing a statistically significant, decreasing trend.

• Due to the frequency of maximum temperatures decreasing relatively slowly

and minimum temperatures increasing sharply, the diurnal temperature range

narrows down across continental United States.

• In the continental United States, the frequencies of extreme high precipitation

and total annual precipitation indicates an increasing trend, and precipitation

in inland areas and northeast region increased more rapidly than that in other

areas.
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• In the continental United States, total annual snowfall decreased substan-

tially generally.
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