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Abstract 

To understand the role of 1-alkenes and allylic radicals in the reaction pathways leading to 

the formation and growth of polycyclic aromatic hydrocarbons (PAH), pyrolysis experiments have 

been performed with three 1-alkene fuels—propylene (CH2=CH–CH3), 1-butene  

(CH2=CH–CH2–CH3), and 1-pentene (CH2=CH–CH2–CH2–CH3)—at temperatures of 600 – 1000 

°C and a fixed residence time of 0.31 s.  The experiments are carried out in an isothermal laminar-

flow quartz-tube reactor.   

Analyses of the pyrolysis products by gas-chromatographic and high-pressure liquid-

chromatographic techniques reveal that the three fuels differ in:  1) their conversion behavior, 2) 

the relative amounts of the major C2 – C4 species produced, and 3) the propensity for PAH 

formation.  The propylene pyrolysis experiments reveal that propylene’s conversion becomes 

significant at temperatures ≥ 850 °C, where acetylene, propadiene, and propyne are produced in 

high yields and allyl and propargyl radicals are abundantly available for aromatic-growth 

reactions.  In contrast, pyrolysis experiments with 1-pentene show that 1-pentene’s conversion is 

appreciable already above 600 °C, but that a large portion of the reacted carbon is “tied up” in 1-

pentene’s highest-yield product ethylene.  High yields of acetylene, propylene, propadiene, 

propyne, 1-butene, and 1,3-butadiene, however, and the readily formed allyl, propargyl, and 

butadienyl radicals result in increased formation of PAH from 1-pentene pyrolysis compared to 

propylene pyrolysis.   

The 1-butene pyrolysis experiments reveal that 1-butene’s conversion becomes substantial 

above 700 °C and that between 750 and 900 °C, 1-butene produces C2 – C4 products in higher 

yields compared to propylene or 1-pentene pyrolysis.  The abundantly produced allyl, propargyl, 

methylallyl, and butadienyl radicals from 1-butene pyrolysis prove to be very effective aromatic-
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formation and -growth agents.  Consequently, PAH products from 1-butene pyrolysis are both 

higher in number—69 two- to seven-ring product PAH having been identified, 67 of which for the 

first time from this fuel—and higher in yield (by factors of 2 – 6) than from the pyrolysis of the 

other two 1-alkene fuels.  The findings of this experimental study unveil the importance of the 

molecular fuel structure and the critical role of allylic radicals in the formation and growth of PAH 

from 1-alkenes during fuel pyrolysis.  

 

 

 



1 
 

Chapter I. Introduction 

1.1. Background and Motivation 

The combustion of solid fuels is a big part of everyday life and is contributing significantly 

to our energy demands.  Coal, for example, delivers 43 % of the world’s electricity generation and 

28 % of the world’s total energy generation, and it is the world’s most widely used source of energy 

for power generation [1-4].  It is predicted that in 2040, coal will still make up almost a third of 

the total energy demand [2].  The combustion of biomass-fuels currently accounts for 15% of the 

world’s energy demands [5], and with the growing population and economy of developing 

countries, which heavily rely on biomass-based fuels, this percentage is predicted to rise in the 

future [6].   

During the combustion of solid fuels, unwanted by-products are formed, many of which 

are considered harmful to the environment and to the human body.  One class of unwanted by-

products are the polycyclic aromatic hydrocarbons (PAH) [7,8].  The combustion of a solid fuel 

takes place within a diffusion flame, where high temperatures and oxygen-deficient or fuel-rich 

conditions are present.  Under these conditions, devolatilization of the solid fuel occurs and the 

fuel is broken down into smaller fragments.  These fuel fragments can then participate in pyrolytic 

reactions to produce PAH.  This class of compounds is known to be a major contributor to 

emissions of small particles. These small particles can be inhaled and stay in the bronchioles and 

alveoli of the lung and can cause serious health problems, such as lung and heart diseases [9,10].  

Additionally, PAH are considered to be precursors to soot [11-13] and some PAH have been found 

to exhibit carcinogenic and/or mutagenic activity [15-17].  Several studies have reported the 

formation of PAH products from numerous solid fuels [18-24].  It is important to study the 
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formation and growth of PAH, so that cleaner, more environmentally friendly solid combustion 

processes can be designed.   

Within the diffusion flame of a solid fuel, devolatilization processes lead to the production 

of smaller n-alkanes and alkyl fragments, which undergo dehydrogenation reactions to form 

alkenes.  High yields of alkenes, especially of 1-alkenes, have been observed in the thermal 

decomposition products from coal and biomass [25-32].  1-Alkenes and their decomposition 

products can undergo pyrolytic reactions leading to the formation of one-ring aromatics and PAH.   

The purpose of this study is to better understand the role of 1-alkenes in reaction pathways 

leading to the formation and growth of PAH from solid fuel combustion.  Since the composition 

of solid fuels is rather complex, representative 1-alkene fuels are used to perform fundamental 

pyrolysis studies and the resulting aliphatic and aromatic products are extensively characterized.  

It is particularly important to perform isomer-specific characterization of the PAH products, since 

their biological activity is very dependent on the structure of the compound [33].  Additionally, 

the absence or the presence of certain isomers can provide vital insight into the reaction pathways 

responsible for the formation and growth of PAH.  

When pyrolyzed, 1-alkene fuels with ≥ 3 carbons can readily produce allylic radicals [37-

57,66-69], which can reach high concentrations due to their resonance stability.  Therefore, 

pyrolysis experiments with model 1-alkene fuels ≥ 3 carbons can help improve the understanding 

of the role of allylic radicals as participants in aromatic-ring-growth reactions.  To understand the 

formation and growth reactions of PAH it is important that the products of the 1-alkene pyrolysis 

experiments be meticulously and extensively characterized.  Particularly, the isomer-specific 

characterization of PAH products can help provide important mechanistic insights in the reaction 

routes leading to the formation and growth of PAH.  Furthermore, the investigation of 1-alkenes 
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with different chain-lengths can help pinpoint fuel-specific differences in the formation reactions 

of PAH.  

For the purpose of this study, we have chosen to conduct pyrolysis experiments with three 

different 1-alkenes:  the C3 alkene propylene, the C4 alkene 1-butene, and the C5 alkene 1-pentene.  

The molecular structures and relevant bond-dissociation energies [34,35] of the three fuels are 

depicted in Figure 1.1.  All three selected model 1-alkene fuels have been reported to be among 

the thermal decomposition products of coal and biomass [25-32].  Figure 1.1 reveals, that 

propylene’s easiest-to-break bond is its allylic C-H bond, which has a bond-dissociation energy of 

88.2 kcal/mole [34].  Breakage of this bond will lead to the formation of the allyl 

 

Figure 1.1. Molecular structures of propylene, 1-butene, and 1-pentene and relevant bond-
dissociation energies [34,35]. 

radical during the primary decomposition reaction of propylene.  The weakest bonds of 1-butene 

and 1-pentene are their respective allylic C-C bonds with bond-dissociation energies of 75.9 

kcal/mole for 1-butene and 74.3 kcal/mole for 1-pentene [34].  Therefore, both 1-butene and 1-

pentene will also primarily decompose to the allyl radical.  Additionally, breaking the second-

weakest bonds of 1-butene and 1-pentene, their allylic C-H bonds, will lead to the formation of 

methylallyl and ethylallyl radical, respectively.  Therefore, pyrolysis experiments with the three 

selected model 1-alkene fuels could help to not only reveal important findings about the influence 
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of molecular fuel structure but also elucidate the role of the allyl, methylallyl, and ethylallyl radical 

in the formation and growth reactions of PAH.  It is these questions that will be investigated in this 

experimental study.  

1.2. Structure of Dissertation 

The experimental methods and procedures of the pyrolysis experiments of the three fuels—

propylene, 1-butene, and 1-pentene—are described in Chapter 2.  The setup of the pyrolysis 

reactor, which consists of the gas delivery system, the reactor, and the product collection system, 

are presented and discussed in detail.  Furthermore, the preparation of gas-phase and condensed-

phase samples are explained.  Finally, the analysis of the gas-phase products by gas 

chromatography with flame-ionization detection and thermal-conductivity detection, and the 

analysis of the condensed-phase products by gas-chromatography with flame-ionization detection 

and mass-spectrometric detection and by high-pressure liquid chromatography coupled with 

ultraviolet-visible spectrometric detection are described in Chapter 2.  

The temperature-dependent yields of aliphatic and one-ring aromatic products from 

propylene pyrolysis, 1-butene pyrolysis, and 1-pentene pyrolysis are presented in Chapter 3.  First, 

the conversion of the three investigated fuels is discussed, after which the yields of the aliphatic 

C1 – C6 hydrocarbon products are presented.  The different decomposition reactions for propylene, 

1-butene and 1-pentene pyrolysis are shown, along with formation reactions for the aliphatic 

products from each individual fuel.  Then, the yields of one-ring aromatics are presented, and 

mechanistic implications for the formation of these products are discussed.  At the end of Chapter 

3, the temperature-dependent summed yields of aliphatic and one-ring aromatic products are 

shown and conclusions about the difference in these yield-trends for each investigated fuel are 

drawn.   
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The formation of PAH from propylene pyrolysis, 1-butene pyrolysis, and 1-pentene 

pyrolysis is discussed in Chapter 4.  First, the summed yield of product PAH ≥ 2 rings from each 

pyrolysis set is shown and the findings from Chapter 3 are applied to explain the differences in the 

PAH yield for each individual fuel.  Furthermore, the individually identified product PAH of the 

three pyrolysis sets at the highest investigated pyrolysis temperature, 1000 °C, are presented and 

fuel-specific differences are discussed.  Finally, individual temperature-dependent yields of the 

quantified two- to seven-ring product PAH are presented, their formation reactions are discussed, 

and conclusions are drawn.  

In the last chapter, Chapter 5, the present work is summarized and conclusions are drawn 

about the findings of this study, and recommendations for future work are given.  
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Chapter II. Experimental Methods and Procedures 

2.1. Homogeneous Pyrolysis Reactor 

The homogeneous pyrolysis reactor consists of a fuel delivery system, an isothermal quartz 

flow reactor, a Balston Teflon filter, and a product collection system.  Figure 2.1. illustrates the 

scheme of the experimental setup of the pyrolysis experiments.  Each of the components—the fuel 

delivery, the isothermal quartz flow reactor, and the product collection—are discussed in detail 

below. 

 

Figure 2.1. Reactor system for the pyrolysis experiments.  Fuel concentrations are 1378 ppm for 
propylene, 1392 ppm for 1-butene, and 1410 ppm for 1-pentene.  

2.1.1. Gas Delivery System 

The three different gaseous alkene fuels, propylene, 1-butene, and 1-pentene, each come 

in a gas cylinder diluted in N2.  The concentrations of the fuels are 1378 ppm for propylene, which 

corresponds to a 0.413 mole-% carbon loading, 1392 ppm for 1-butene, corresponding to a carbon 

loading of 0.557 mole-%, and 1410 ppm for 1-pentene, equivalent to a 0.705 mole-% carbon 

loading of the reactor.  For a given set of pyrolysis experiments, the respective fuel is being fed to 

the reactor by a mass flow controller.  In front of the mass flow controller, a three-way valve is 

installed between the gas cylinder containing the feed gas and a gas cylinder containing ultra-high 

purity N2.  This setup allows the reactor to be flushed with pure nitrogen before and after each 

experimental run.  

Isothermal Quartz Flow Reactor

600–1000 °C, 0.31 s

Product 

Collection

Fuel in N2

≈1400 ppm
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2.1.2. Reactor 

The reactor consists of a quartz reactor tube, length 1.22 m, inner diameter, 2 mm, which 

is installed along the centerline of an electrically heated Lindberg/Blue M furnace.  The furnace is 

controlled in three zones to ensure an isothermal temperature profile along the length of the reactor 

zone of 56 cm.  At its respective ends the furnace is insulated with Moldatherm high-temperature 

ceramic-fiber plugs, and the quartz tube is kept at a temperature between 300 and 400 °C to ensure 

that there is no condensation of the fuel entering the reactor or the product mixture leaving the 

reactor.  The furnace is calibrated in 50 °C increments at nine different temperatures ranging from 

600 to 1000 °C.  The calibration is carried out by measuring the temperature inside the reactor tube 

at every inch with a Type K thermocouple (Model: KMQXL-032U-40) and setting each of the 

three zones to the temperature that will result an isothermal temperature profile along the length 

of the reactor zone of 56 cm and a sharp drop in temperature before and after the reactor zone.  The 

calibration for each reaction temperature can be found in Table A.1 in the Appendix.  The fixed 

residence time of 0.31 s is achieved by setting the mass flow controller such that the flow through 

the reactor tube is 338 mL/min at reaction temperature.  The reactor is designed such that it fulfills 

Lee’s criteria [36] of idealized plug-flow at flows corresponding to residence times between 0.2 

and 0.6 s.  That means that upon exiting the reactor, a certain residence time can be attributed to 

the reaction products, and no corrections for mixing have to be applied.  Before each experiment, 

the temperature inside of the reactor tube is measured along the centerline to verify the uniform 

calibration of the furnace.  Furthermore, the flow rate setting of the mass flow controller is 

confirmed by attaching a bubble flow meter to the outlet of the reactor.  
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2.1.3. Product Collection 

An experiment at each given reaction condition consists of three different runs: two runs 

to collect gas-phase products—one for the collection of C1 – C6 hydrocarbon products and one for 

the collection of product H2—and a third run to collect the condensed-phase products, namely the 

one-ring aromatic products and product PAH ≥ 2 rings.  The collection system for the condensed-

phase products consists of a detachable quartz arm, in which the products are quenched to room 

temperature (quench time approximately 0.028 s) and are starting to condense, a Balston Teflon 

Filter, in which a portion of the lighter products and particles of solid carbon are collected, and a 

dichloromethane (DCM) solvent trap, where the majority of the condensed-phase products are 

collected.  The collection of the gas-phase products also utilizes the quartz arm and the Balston 

Filter, but instead of a solvent bath, the system is connected to a Teflon gas sampling bag in which 

the gaseous product mixture is collected for analysis.  

Prior to the collection of the gas-phase products at a given reaction condition, the product-

gas mixture is allowed to bypass the gas sampling bag for 5 minutes, after which a two-way valve 

is turned so that the products are lead into the gas bag, where they are collected for 30 minutes.  

The products are then analyzed with gas chromatography and flame-ionization detection 

(GC/FID), for the C1 – C6 hydrocarbon products, or with gas chromatography and thermal 

conductivity detection (GC/TCD), for product H2.  The condensed-phase products are collected 

for 75 minutes in the DCM solvent bath, so as to obtain a high enough concentration of the 

products.  After the sample of the liquid-phase product mixture is adequately prepared (as 

described below in Section 2.2), it is analyzed using gas chromatography and flame-ionization 

detection coupled with mass-spectrometric detection (GC/FID/MS), for the one- and two-ring 
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aromatic products, and high-pressure liquid chromatography with ultraviolet-visible detection 

(HPLC/UV) for product PAH ≥ 2 rings.  

2.2. Sample Preparation 

2.2.1. Gas-Phase Products (C1 – C6 Hydrocarbons and H2) 

Immediately after the collection of gas-phase products, the gas sampling bag is connected 

to either the GC/FID, for analysis of C1 – C6 hydrocarbon products, or the GC/TCD, to measure 

product H2.  It is important that the time between collecting a gas-phase sample and analyzing it 

is kept both as short and as consistent as possible, to ensure that none of the heavier gas-phase 

products, such as benzene, partly condense in the gas bag.  At each experimental condition, the 

product-gas mixture is also analyzed by a non-dispersive infrared detector (NDIR) to measure CO 

and CO2.  This is an effective additional step to ensure that the reactor system is leak-free, since 

there is no oxygen present in the fuel or the pyrolysis environment and therefore neither CO nor 

CO2 can be products of the alkene pyrolysis experiments.  

2.2.2. Condensed-Phase Products (Light Aromatics and PAH) 

After the condensed-phase products are collected, the quartz arm and Balston filter are 

filled with DCM, sonicated for 5 minutes, and then thoroughly flushed with DCM to ensure that 

the entirety of the condensed-phase products is collected and dissolved in DCM.  The product 

mixture is then filled into a Kuderna-Danish evaporator and concentrated to a volume of 10 ml.  

To analyze the one- and two-ring aromatic products 1 ml of the DCM/product mixture, 

representing 10% of the total volume and therefore 10% of the total amount of products, is 

transferred into a sample vial and analyzed on the GC/FID/MS.  The remaining 90% are further 

concentrated until approximately 5 ml of the DCM/product mixture remain.  This portion is used 

for analysis on the HPLC/UV.  The liquid is solvent-exchanged under a nitrogen purge into 
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dimethylsulfoxide (DMSO), a solvent that is compatible with the ones used as mobile phases in 

the HPLC analysis methods.  The flow of the nitrogen is set such that is barely disturbs the surface 

of the DCM/product/DMSO mixture, so that the loss of one- and two-ring aromatic products due 

to evaporation is minimal.  Because the more volatile one- and two-ring aromatic products are 

prone to evaporate during this process, these compounds are instead characterized from the 10% 

of the products shot on the GC/FID/MS.  

2.3. Product Analysis 

Of the products collected in the gas phase, the C1 – C6 hydrocarbon products are measured 

with GC/FID, while H2 is measured using GC/TCD.  Products in the condensed phase are 

measured with both GC/FID/MS and HPLC/UV.  The more volatile one- and two-ring aromatics 

as well as some three-ring PAH—acenaphthylene, fluorene, phenanthrene, and anthracene—are 

analyzed by GC/FID/MS (the three-ring PAH are also analyzed using HPLC/UV.)  PAH of three 

or more rings are not only less volatile but also have increasing numbers of isomers, which makes 

them optimal candidates for analysis by HPLC/UV.  Since the UV spectrum is a fingerprint 

property of each individual PAH, HPLC/UV analysis enables us to isomer-specifically 

characterize the product PAH from our pyrolysis experiments.  The analysis instruments and 

procedures for C1 – C6 hydrocarbon products, product H2, light one- and two-ring aromatics, and 

product PAH are discussed in detail below.  

For each fuel and each experimental condition, the carbon and hydrogen atoms of the 

unreacted fuel and the quantified products are summed up for the carbon-atom and hydrogen-atom 

balance, which is shown in Figure A.1 in the appendix.  Figure A.1a shows, that at temperatures 

below 950 °C, the carbon-atom balances for propylene pyrolysis, 1-butene pyrolysis, and 1-butene 
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pyrolysis is 97 % or higher.  Only at the two highest temperatures, where solid carbon is observed 

in the reactor tube, is the carbon-atom balance below 97 %. 

2.3.1. Analysis of Gas-Phase Products 

2.3.1.1. C1 – C6 Hydrocarbon Products 

The C1 – C6 hydrocarbon products are analyzed by an Agilent Model 6890/5973 gas 

chromatograph/flame-ionization detector (GC/FID).  The product gases are separated using a 

GSGASPRO capillary column (Agilent J&W scientific) of length, 30 m, and inner diameter, 0.32 

mm.  The C1 – C6 products are separated using the following temperature program: hold at 35 °C 

for the first 2 min, then ramp at the rate of 5 °C/min for the next 13 min to 100 °C, followed by 

another ramp of 10 °C/min for the next 14 min to 240 °C, and finally a hold at 240 °C for 10 min.  

With the exception of vinylacetylene (C4H4) and cyclopentadiene (C5H6), the products are 

identified by matching their retention times and mass spectra to those of their respective reference 

standards.  The flame-ionization detector is extensively calibrated for the C1 – C6 products with 

reference standards containing known concentrations of these products, and the resulting response 

factors are used to quantify the hydrocarbon products.  The response factors are shown in Table 

A.2.  Since there is no commercially available reference standard for cyclopentadiene, its 

identification is achieved by matching the product component’s GC retention index with that of 

cyclopentadiene generated from the pyrolysis of dicyclopentadiene and by matching product 

component’s mass spectrum with that of a reference standard in the NIST/EPA/NIH mass spectral 

library.  Vinylacetylene is also identified by matching the product component’s mass spectrum 

with that of a reference standard in the NIST/EPA/NIH mass spectral library.  
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2.3.1.2. Product H2 

H2 is measured by an Agilent Model 6890 gas chromatograph/thermal-conductivity 

detector (GC/TCD).  The product gases are separated on a HP plot Molsieve A capillary column 

(Agilent J&W scientific) of length, 25 m, and inner diameter, 0.53 mm.  The temperature program 

used for the separation is as follows: hold at 35 °C for the first 20 min, then ramp at the rate of 5 

°C/min for the next 30 min to 240 °C, and finally a hold at 240 °C for 50 min.  The thermal-

conductivity detector is calibrated by shooting known concentrations of H2 onto the column.  The 

response factor and elution time of H2 on the GC/TCD are shown in Table A.2 in the Appendix. 

2.3.1.3. CO and CO2 

Even though no CO or CO2 is not formed during alkene pyrolysis, the gaseous products 

are analyzed for them to ensure that there are no leaks in the reactor system.  The product sample 

is analyzed on two Horiba Model VIA-510 nondispersive infrared analyzers (NDIR), one for CO 

and one for CO2.  Before pumping the gas through the analyzers, a constant flow of ultra-high 

purity N2 is led through the analyzers to equilibrate the NDIR.  

2.3.2. Analysis of Condensed-Phase Products 

2.3.2.1. Light Aromatics ≤ 2 Rings 

As mentioned in Section 2.2.2., 10 % of the total amount of condensed-phase products 

(corresponding to a sample volume of 1 ml) are used for the analysis of lighter aromatic products 

up to three rings.  The DCM/product mixture is analyzed on an Agilent Model 6890/5973 gas 

chromatograph/flame-ionization detector/mass spectrometer (GC/FID/MS).  For FID analysis, 2 

μl of sample are withdrawn and injected onto an HP-5MSi (Agilent J&W scientific) fused silica 

capillary column of 30 m length, 0.25 mm inner diameter, and 0.25 μm film thickness.  Since the 

MSD is less sensitive than the FID, a larger sample volume of 10 μl is used for injection onto the 
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mass detector.  The FID and MSD analyses are performed during the same gas chromatographic 

run by consecutive injections of both samples onto their respective detectors.  The product 

components are separated with the following temperature program:  hold at 40 °C for the first 3 

min, then ramp at the rate of 4 °C/min for the next 60 min to 280 °C, and finally a hold at 280 °C 

for 30 min.  The one- to three-ring aromatics are identified by matching their GC elution times and 

mass spectra to those of reference standards.  The two- and three-ring aromatics are additionally 

identified by matching their HPLC elution times and UV absorbance spectra with those of 

reference standards.  The quantification of the products results from extensive calibration of the 

GC/FID by injecting known concentrations of reference standards onto the FID.  These 

calibrations are presented in Table A.3.  

2.3.2.2. PAH Products 

The remaining 90 % of the DCM/product mixture is used to measure product PAH ≥ 3 

rings by HPLC/UV analysis.  Before any kind of analysis, the products are solvent-exchanged into 

100 µl DMSO, a solvent that is compatible with all the mobile phases used in the HPLC method.  

The sample is then analyzed using a Hewlett-Packard Model 1050 chromatograph, coupled to a 

diode-array ultraviolet-visible absorbance detector (HPLC/UV).  A sample volume of 25 µl is 

injected onto a Restek Pinnacle II PAH column (particle size, 4 µm; pore size, 110 Å; inner 

diameter, 4.6 mm; and length, 250 mm.)  The PAH products are separated using a mobile flowrate 

of 1.4 ml/min with the following method of a time-programmed sequence of solvents:  the method 

begins with 60:40 water:ACN; next, it ramps to pure ACN in 43 minutes; then ACN is isocratically 

held for 21 min; and finally it ramps to pure DCM in 43 min.  After the products are separated, 

they pass through a UV diode-array detector, which simultaneously monitors five absorbance 

channels:  328–332 nm, 335–345 nm, 275–285 nm, 236–500 nm, and 190–520 nm.  UV 
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absorbance spectra, covering the range of 190–520 nm, are taken every 0.8 s at a resolution of 2 

nm.  Each individual PAH product’s identity is established by matching its UV absorbance 

spectrum with a reference spectrum obtained from a reference standard of the compound or with 

a UV spectrum published in the literature. The major advantage of using UV absorbance detection 

for PAH analysis is that it allows for isomer-specific characterization of product PAH, since each 

PAH has a unique UV spectrum.  Figure 2.2. shows the UV spectrum of a product component 

from 1-butene pyrolysis, in solid lines, that elutes at 42.2 minutes on our HPLC instrument and 

the UV spectrum of a reference standard of benzo[a]pyrene, in dashed lines, that also elutes at 42.2 

minutes.  It is apparent, that the UV spectrum of the product component matches very well with 

that of the reference standard.  Furthermore, the retention time of the product component is 

                         

Figure 2.2. UV absorbance spectra of a pyrolysis-product component (solid line) and a reference 
standard of benzo[a]pyrene (dashed line). 
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identical to that of benzo[a]pyrene Therefore, the identity of the product component can be 

unequivocally determined as benzo[a]pyrene.   

To quantify the product PAH, the instrument is calibrated with standard solutions of 

reference compounds at eight different concentrations ranging from 2.5 mg/l to 500 mg/l.  Within 

this wide range of concentrations two different response factors, linear and non-linear, are 

determined for each given compound, and they are listed in Table A.4.  It is not practical to 

calibrate our HPLC/UV instrument for all of the quantified PAH products, since some of the 

products do not have commercially available reference standards.  In such cases, response factors 

of structurally similar compounds were used.   
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Chapter III. Aliphatic and One-Ring Aromatic Products from Propylene 

Pyrolysis, 1-Butene Pyrolysis, and 1-Pentene Pyrolysis 

3.1. Fuel Conversion 

Propylene pyrolysis, 1-butene pyrolysis, and 1-pentene pyrolysis experiments have been 

performed at nine temperatures between 600 and 1000 °C and at a fixed residence time of 0.31 s.  

To understand the decomposition behavior of the three different alkenes, we first look at the 

amount of unreacted fuel shown in Figure 3.1, where the amount is reported in % of the carbon 

                                    

Figure 3.1. Yield, as function of temperature, of unreacted propylene from propylene pyrolysis 
(blue squares and curve), unreacted 1-butene from 1-butene pyrolysis (red circles and curve), and 
unreacted 1-pentene from 1-pentene pyrolysis (green triangles and curve) at 0.31 s. 

fed to the reactor as carbon in the unreacted fuel exiting the reactor.  The symbols represent the 

measured values obtained from the pyrolysis experiments: blue squares for unreacted propylene 
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from propylene pyrolysis, red circles for unreacted 1-butene from 1-butene pyrolysis, and green 

triangles for unreacted 1-pentene from 1-pentene pyrolysis.   

Figure 3.1 reveals, that propylene is not very reactive at the lower pyrolysis temperatures.  

As the blue squares show in Figure 3.1, propylene is starting to react at 650 °C, however, it is only 

at temperatures above 850 °C, where propylene’s conversion starts to become significant, and even 

at the highest investigated pyrolysis temperature, 1000 °C, a small fraction of the fuel remains 

unreacted.  The reason for propylene needing relatively high temperatures for its decomposition is 

the bond-dissociation energy of propylene’s easiest-to-break bond, shown in Figure 1.1.  

Propylene’s weakest bond, the allylic C-H bond, requires 88.2 kcal/mole [34] to be broken into a 

hydrogen atom and the resonantly stabilized allyl radical.  The allyl radical is also formed when 

the easiest-to-break bond of 1-butene, the allylic C-C bond, is broken.  Figure 1.1 reveals that the 

bond-dissociation energy of this bond is 75.9 kcal/mole [34], which is significantly lower than that 

of propylene.  This explains the much higher conversion of 1-butene at lower temperatures, as 

apparent from the red circles in Figure 3.1.  At 700 °C, 1-butene’s conversion is 9.7 % already and 

at 850 °C—where propylene’s conversion only just reached 10.4 %—1-butene is almost 

completely (99.9 %) converted.  1-pentene is even more reactive than 1-butene is.  The green 

triangles in Figure 3.1 show that already at 600 °C, only 96.3 % of the fed carbon is still accounted 

for by unreacted 1-pentene, corresponding to a fuel conversion of 3.7 % at the lowest investigated 

pyrolysis temperature.  At 800 °C, 1-pentene’s conversion is 99.9 % complete, while at the same 

temperature 1-butene’s conversion is only 76.6%.  The easiest-to-break-bond of 1-pentene is, just 

like for 1-butene, the allylic C-H bond, which has a bond-dissociation energy of 74.3 kcal/mole 

[34].  This value for 1-pentene is only 1.6 kcal/mole lower than that for 1-butene.  Despite the 

similar bond-dissociation energies for these two alkene fuels, we have seen that 1-pentene is much 
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more reactive than 1-butene.  The reason for 1-pentene’s higher reactivity is the composition of 

tits pyrolysis products.  For example, Figure A.2 in the Appendix reveals that H2 is produced 

during 1-pentene pyrolysis at temperatures 150 °C lower than during 1-butene pyrolysis and 200 

°C lower than during propylene pyrolysis.  This finding suggests, that there are more hydrogen 

atoms available at lower temperatures during 1-pentene pyrolysis compared to 1-butene or 

propylene pyrolysis and that these hydrogen atoms accelerate the 1-pentene decomposition 

reactions.   

In the following section of this chapter we will investigate the decomposition reactions and 

formation of C1 – C6 aliphatic hydrocarbon products from each investigated fuel, and will pinpoint 

the pathways and products that contribute to the difference in conversion of the three fuels.   

3.2. C1 – C6 Aliphatic Hydrocarbon Products 

The temperature-dependent yields of the C1 – C6 aliphatic hydrocarbon products of 

propylene pyrolysis, 1-butene pyrolysis, and 1-pentene pyrolysis at 0.31 s are shown in Figures 

3.2 – 3.5; where Figures 3.2 and 3.3 reveal the yields of the major C1 – C5 products, Figure 3.4 

shows the yields of the minor C2 – C6 products, and Figure 3.5 depicts the yields of the trace C3 – 

C5 products of the three pyrolysis sets.  To better compare the yields of products from different 

fuels, the yield of a given product is reported as % of the carbon fed to the reactor as carbon in the 

given product, and the different pyrolysis sets are color-coded as follows: blue circles and curves 

for product yields from propylene pyrolysis, red circles and curves for product yields from 1-

butene pyrolysis, and green triangles and curves for product yields from 1-pentene pyrolysis.  The 

major and minor C1 – C6 aliphatic hydrocarbon products of each fuel along with important 

decomposition and formation reactions are discussed in detail below. 
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Figure 3.2. Yields, as functions of temperature, of the major C1 – C3 hydrocarbon products from propylene pyrolysis (blue squares and 
curves), 1-butene pyrolysis (red circles and curves), and 1-pentene pyrolysis (green triangles and curves), at 0.31 s: (a) methane, (b) 
ethylene, (c) acetylene, (d) propylene, (e) propadiene, and (f) propyne.  
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Figure 3.3. Yields, as functions of temperature, of the major C4 and C5 hydrocarbon products from 
propylene pyrolysis (blue squares and curves), 1-butene pyrolysis (red circles and curves), and 1-
pentene pyrolysis (green triangles and curves) at 0.31 s: (a) 1-butene, (b) 1,3-butadiene, (c) 
vinylacetylene, and (d) cyclopentadiene.  

3.2.1. Aliphatic Hydrocarbon Products of Propylene Pyrolysis  

To investigate the aliphatic hydrocarbon products of propylene pyrolysis, we focus on the 

blue squares and curves of Figures 3.2 – 3.5.  Propylene’s major products are methane, ethylene, 

acetylene, propadiene, propyne, and 1,3-butadiene.  As mentioned above in Chapter 3.1, the 
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Figure 3.4. Yields, as functions of temperature, of minor C2 – C6 aliphatic hydrocarbon products 
from propylene pyrolysis (blue squares and curves), 1-butene pyrolysis (red circles and curves), 
and 1-pentene pyrolysis (green triangles and curves) at 0.31 s: (a) ethane, (b) summed yields of 
cis- and trans-2-butene, (c) summed yields of cis- and trans-1,3-pentadiene, and (d) 1,5-hexadiene.  

hydrogen atom and the resonantly stabilized allyl radical, as shown in Reaction 1 [37-43].  The 

allyl radical can undergo hydrogen-atom loss to form propadiene, which is produced at 

temperatures above 750 °C, as Figure 3.2e illustrates.  Propadiene then readily isomerizes to  
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Figure 3.5. Yields, as functions of temperature, of trace C3 – C5 aliphatic hydrocarbon products from propylene pyrolysis (blue squares 
and curves), 1-butene pyrolysis (red circles and curves), and 1-pentene pyrolysis (green triangles and curves) at 0.31 s: (a) propane, (b) 
isobutene, (c) isoprene, (d) 1-butyne, and (e) 2-butyne. 
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propyne, whose yield is shown in Figure 3.2f.  At ≥ 900 °C, more propyne than propadiene is 

produced.  The yields of the two C3H4 isomers are increasing up to a temperature of 950 °C, after 

which they both decrease with a further increase in temperature.  This observed behavior is due to 

the increased hydrogen-atom loss from propadiene and propyne to form another resonantly 

stabilized radical, the propargyl radical [44-54].  It has been previously shown that the propargyl 

radical plays an important role in aromatic ring-growth reactions [45-54,78].  Apart from forming 

the propargyl radical, propyne can also decompose to form methyl and acetylene [44,47,54].  The 

blue squares in Figure 3.2c reveal that indeed acetylene is a major product of propylene pyrolysis, 

whose yield keeps increasing with increasing pyrolysis temperature.  Since acetylene’s yield is 

much higher than that of propyne, there have to be additional pathways that contribute to the 

formation of acetylene.  Another reaction that is important for the formation of acetylene is 

Reaction 2, the decomposition of propylene by breaking its vinylic C-C bond to form the vinyl and 

the methyl radical [37-43].   

 

                     propylene                              vinyl              methyl 

The addition of a hydrogen atom to methyl leads to the formation of methane, whose 

temperature-dependent yield is shown in Figure 3.2a.  The vinyl radical can either lose a hydrogen 

atom and form acetylene [61,63-65], or it can gain a hydrogen atom and form ethylene, which is 

also a major product of propylene pyrolysis, as Figure 3.2b reveals.  At the higher pyrolysis 

temperatures, ethylene can dehydrogenize and further contribute to the formation of acetylene.  

The recombination of two vinyl radicals leads to the formation of 1,3-butadiene.  Figure 3.3b 

illustrates that the yield of 1,3-butadiene decreases between 950 and 1000 °C.  Similar to 

propadiene and propyne, 1,3-butadiene can undergo hydrogen-atom loss at either its terminal or 

● 

                 CH2=CH-CH3                      CH2=CH      +    CH3     (2) 
● 
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internal carbon atom, and form n-1,3-butadienyl and i-1,3-butadienyl radicals, respectively [54-

60,62].  The i-1,3-butadienyl radical is resonantly stabilized, and it can play a major role in 

aromatic-ring-growth reactions, similar to other radicals with resonance stability that are available 

in the products. Both butadienyl radicals can undergo subsequent hydrogen-atom loss to form the 

C4H4 product vinylacetylene [62,63], which is formed at temperatures ≥ 900 °C, as shown in 

Figure 3.3c.   

While not produced in very high yields, the C5 product cyclopentadiene is important to 

mention since its relatively weak methylene C-H bond can easily be broken to produce the 

cyclopentadienyl radical.  This radical is resonantly stabilized and therefore it can play an 

important role in aromatic-ring-growth reactions.  Cyclopentadiene could be formed by the 

reaction of propargyl with ethylene, as shown in Reaction 3, and Figure 3.3d reveals that it is 

formed at temperatures above 850 °C and that its yield is increasing up to a temperature of 950 °C, 

after which it decreases with a further increase in temperature.  Propargyl could also react with 

acetylene instead of with ethylene, which would lead to the direct formation of the 

cyclopentadienyl radical.  

 

                      propargyl              ethylene                   cyclopentadiene 

The recombination of methyl radicals leads to the formation of ethane, and the blue squares 

in Figure 3.4a reveal that propylene produces some ethane at temperatures above 800 °C.  Ethane’s 

yield reaches its peak at 950 °C, after which it decreases with a rise in temperature.  Similar to 

ethane, 1,5-hexadiene is also formed from the recombination of two radicals, in this case two allyl 

radicals.  Figure 3.4d shows that propylene produces minor amounts of 1,5-hexadiene at 750 – 900 

°C, with its peak yield being at 800 °C.  The 1,5-hexadiene that is formed readily decomposes to 

                 CH2=C=CH    +     CH2=CH2                                              +    H   (3) 
● 
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form two allyl radicals again.  Other minor and trace products are 1- and 2-butene (shown in Figure 

3.3a and 3.4b, respectively), isobutene (shown in Figure 3.5) and 1- and 2-butyne (shown in Figure 

3.5d and 3.5e, respectively.)  

As discussed in Section 3.1 above, 1-butene begins to react at lower temperatures than 

propylene, which is in part due to the lower bond-dissociation energy of 1-butene’s easiest-to-

break bond.  In the following section we will discuss in detail the decomposition pathways of 1-

butene pyrolysis and investigate additional reasons for 1-butene’s higher conversion at lower 

temperatures compared to propylene.  

3.2.2. Aliphatic Hydrocarbon Products of 1-Butene Pyrolysis 

The red circles and curves of Figures 3.2. and 3.3 reveal that 1-butene’s major products are 

methane, ethylene, acetylene, propylene, propadiene, propyne, and 1,3-butadiene.  Similar to 

propylene, the first decomposition step of 1-butene leads to the formation of the allyl radical.  

Instead of allyl and H, however, 1-butene produces allyl and methyl, as shown in Reaction 4 [55-

57].  This methyl radical can form methane by adding a hydrogen atom.  Figure 3.2a reveals, that 

1-butene produces methane at temperatures as low as 650 °C already, while propylene only does 

so at 800 °C.  At temperatures between 600 and 950 °C, 1-butene produces more methane than 

propylene does.  Only at the highest investigated temperature of 1000 °C is the methane yield from 

propylene pyrolysis slightly higher than that from 1-butene pyrolysis.  The addition of a hydrogen 

atom to the allyl radical leads to the formation of propylene and Figure 3.2d shows that propylene’s 

yield from 1-butene pyrolysis increases up to a temperature of 800 °C, after which it decreases 

with increasing temperature.  By losing a hydrogen atom, allyl can form propadiene, and Figure 

3.2e shows that propadiene is formed at temperatures as low as 650 °C and peaks in yield at 850 

°C, after which propadiene’s yield decreases with a further rise in temperature.  Propadiene easily 
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isomerizes to propyne, whose yield is shown in Figure 3.2f and which is produced in higher 

amounts than propadiene at temperatures between 850 °C and 1000 °C.  As mentioned in Section 

3.2.1, both of these C3H4 products are important sources of the resonantly 

 

 

                  1-butene       allyl                     methyl 

stabilized propargyl radical [44-54], which is a vital participant in formation and growth reactions 

of aromatic products.  It is important to note that these two C3 compounds are formed at much 

lower temperatures from 1-butene pyrolysis compared to propylene pyrolysis, which suggests, that 

there is a larger amount of propargyl radicals available at lower temperatures from 1-butene 

pyrolysis than from propylene pyrolysis.  It is only at temperatures of 900 °C and above, that 

propylene produces propadiene and propyne in higher yields than 1-butene does.   

The second-weakest bond of 1-butene is its allylic C-H bond with a bond-dissociation 

energy of 83.8 kcal/mole [34]. This value is 4.4 kcal/mole lower than propylene’s weakest bond.  

Breaking 1-butene’s allylic C-H bond leads to Reaction 5, the formation of methylallyl and H [55-

57].  The methylallyl radical is not formed in high amounts from propylene pyrolysis.  Not only  

 

 

                  1-butene       methylallyl   

does the methylallyl radical increase the variety of abundant radicals in the 1-butene pyrolysis 

environment compared to propylene’s reaction environment, it is also a major source of the C4 

hydrocarbon product 1,3-butadiene.  The methylallyl radical can form 1,3-butadiene by losing a 

hydrogen atom [55-58].  Figure 3.3b reveals that 1-butene produces a lot more 1,3-butadiene at 

                CH2=CH-CH2-CH3                      CH2=CH-CH-CH3     +    H   (5) 
● 

● ● 

                 CH2=CH-CH2-CH3                      CH2=CH-CH2     +     CH3    (4) 
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temperatures below 950 °C than propylene does.  Already at 600 °C some 1,3-butadiene is 

produced from 1-butene pyrolysis and at 800 °C, 15.5 % of the carbon fed to the reactor is 

accounted for by 1,3-butadiene.  It is only at the two highest investigated temperatures, 950 and 

1000 °C that propylene produces a slightly higher amount of 1,3-butadiene than 1-butene does.  

1,3-butadiene readily loses a hydrogen atom to form either the n- or the i-butadienyl radical [54-

60,62], both of which are participants in aromatic-ring-formation and -growth reactions.  

Furthermore, 1,3-butadiene can decompose according to Reaction 6 to form ethylene and vinyl 

[54-60,63,64].   

 

                     1,3-butadiene                               ethylene              vinyl 

Figure 3.2b shows that the yield of ethylene from 1-butene pyrolysis becomes significant 

at above 700 °C, and increases with increasing temperature up to 950 °C, where ethylene accounts 

for 29.9 % of the carbon fed to the reactor during 1-butene pyrolysis.  The only temperature at 

which propylene pyrolysis produces more ethylene than 1-butene pyrolysis is 1000 °C, where 

ethylene’s yield from 1-butene pyrolysis is 26.5 % of the fed carbon and ethylene’s yield from 

propylene pyrolysis is 27.2 % of the fuel carbon.  At higher temperatures, ethylene can 

dehydrogenize to form acetylene, whose yield is shown in Figure 3.2c.  Acetylene production from 

1-butene pyrolysis begins at 750 °C, becomes significant at 850 °C, and rapidly increases with 

rising temperature at 900 °C and above.  Therefore, at 1000 °C, 34.6 % of the carbon fed to the 

reactor from 1-butene pyrolysis is accounted for by acetylene.  The yield of acetylene is even 

higher than that of ethylene from 1-butene pyrolysis and therefore, dehydrogenation of ethylene 

cannot be the sole source of acetylene in the 1-butene reaction environment.  Further ways 

acetylene is produced from 1-butene pyrolysis are, as previously mentioned in Section 3.2.1, 

    H   +   CH2=CH-CH=CH2                       CH2=CH2     +    CH=CH2   (6) 
● 
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hydrogen-atom loss from vinyl radicals [61,63-65] and decomposition of propyne to form 

acetylene and methyl [44,47,54].  At all investigated pyrolysis temperatures, 1-butene produces 

more acetylene than propylene does, which is an important finding since acetylene is known to 

play a key role in the formation and growth of aromatic products.  

The C4H4 hydrocarbon vinylacetylene is a product of the dehydrogenation of butadienyl 

radicals [62,63], and its yield is shown in Figure 3.3c.  Since 1-butene pyrolysis produces 

significantly more 1,3-butadiene than propylene does at temperatures < 950 °C, it makes sense 

that more vinylacetylene is produced from 1-butene pyrolysis than from propylene pyrolysis.  Only 

at 1000 °C does propylene produce more vinylacetylene than 1-butene does.  Another product 

important to mention is cyclopentadiene, whose yield is shown in Figure 3.3d.  Hydrogen-atom 

loss of cyclopentadiene leads to the formation of the resonantly stabilized cyclopentadienyl radical, 

which can participate in aromatic-ring-formation reactions.  As mentioned in Section 3.2.1, 

cyclopentadiene is formed through Reaction 3, propargyl addition to ethylene.  Alternatively, if 

instead of ethylene the propargyl radical reacts with acetylene, the cyclopentadienyl radical is 

formed directly.  Therefore, even if the yield of cyclopentadienyl is not very high, the 

cyclopentadienyl radical could still play an important role in the formation of aromatic products.   

The minor products and trace products of 1-butene pyrolysis are shown in the red circles 

and curves in Figure 3.4 and 3.5.  As Figure 3.4a shows, 1-butene produces ethane at temperatures 

> 600 °C, and ethane’s yield is increasing with a rise in pyrolysis temperature up to 850 °C, ethane 

accounts for 9 % of the carbon fed to the reactor.  Above 850 °C, ethane’s yield is decreasing with 

increasing temperatures.  Since ethane is formed from the recombination of two methyl radical 

and since 1-butene forms methyl radicals much more readily—primarily in Reaction 4—and at 

lower temperatures than propylene does, ethane’s higher yield at lower temperatures from 1-butene 
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pyrolysis is a logical result of the high availability of methyl radicals during 1-butene pyrolysis.  

At temperatures below 1000 °C, 1-butene produces up to 34 times more ethane than propylene 

does, indicating the higher abundance of methyl radicals in the 1-butene pyrolysis environment 

compared to the propylene pyrolysis environment.  Another product that is produced in higher 

amounts and at lower temperatures from 1-butene compared to propylene is 2-butene, whose yield 

is shown in Figure 3.4b.  2-Butene can be formed by the recombination of a hydrogen atom with 

the resonance structure of the methylallyl radical.  As mentioned in Section 3.2.1, 1,5-hexadiene 

is formed by recombination of two allyl radicals and since more allyl radicals are available at lower 

temperatures from 1-butene pyrolysis compared to propylene pyrolysis, more 1,5-hexadiene is 

formed from 1-butene than from propylene at temperatures below 850 °C, as shown in Figure 3.4d.  

A minor product that is not produced in measurable amounts from propylene pyrolysis is 1,3-

pentadiene, which is a product of methyl reacting with the i-butadienyl radical.  Figure 3.4c 

reveals, that 1,3-pentadiene’s yield from 1-butene pyrolysis peaks at 800 °C, above which it 

decreases with increasing temperature.  

In this section, we have learned that 1-butene pyrolysis produces high yields of C2, C3, and 

C4 products, all of which are instrumental in the formation and growth reactions of one-ring 

aromatics and polycyclic aromatic hydrocarbons.  Not only does 1-butene begin to react at much 

lower temperatures than propylene does, resulting in the availability of aromatic-growth agents at 

lower temperatures from 1-butene compared to propylene, 1-butene pyrolysis also leads to a more 

divers distribution of radicals and products—specifically C4 species—compared to propylene 

pyrolysis.  The latter finding suggests, that a larger number of reaction pathways can contribute to 

the formation and growth of aromatic products during 1-butene pyrolysis than during propylene 

pyrolysis.  Therefore, we would expect that 1-butene pyrolysis leads to a higher yield of one-ring 
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aromatic products and product PAH compared to propylene pyrolysis.  In the following section 

we will examine the decomposition of the C5 alkene 1-pentene and the formation of aliphatic 

hydrocarbon products from 1-pentene pyrolysis.   

3.2.3. Aliphatic Hydrocarbon Products of 1-Pentene Pyrolysis 

The green triangles and curves in Figures 3.2 and 3.3 reveal the yields of 1-pentene’s major 

aliphatic hydrocarbon products.  The major products of 1-pentene pyrolysis are ethylene, 

acetylene, propylene, propadiene, propyne, 1-butene, and 1,3-butadiene.  Breaking 1-pentene’s 

weakest bond, the allylic C-C bond, leads to the formation of allyl and ethyl radical, shown in 

Reaction 7 [66-69].  The allyl radical undergoes the same reactions as during propylene pyrolysis 

and 1-butene pyrolysis, mentioned in Section 3.2.1 and 3.2.2, respectively.   

 

                     1-pentene                                        allyl                            ethyl 

Addition of a hydrogen atom to the allyl radical leads to the formation of propylene, and 

since 1-pentene conversion is higher at lower temperatures compared to 1-butene conversion, more 

propylene is formed from 1-pentene pyrolysis than from 1-butene pyrolysis.  Figure 3.2d reveals, 

that propylene is already formed during 1-pentene pyrolysis at 600 °C, and with increasing 

temperature, the yield of propylene rises.  At 750 °C, propylene accounts for 27.7 % of the carbon 

fed to the reactor from 1-pentene pyrolysis, which is a factor of 3.5 times more than from 1-butene 

pyrolysis at the same temperature.  Above 750 °C, the yield of propylene decreases with a further 

increase in temperature.  However, at any investigated temperature 1-pentene produces more 

propylene than 1-butene does.  The loss of a hydrogen atom from the allyl radical leads to the 

formation of propadiene, and the green triangles in Figure 3.4e reveal, that at temperatures of up 

● 

        CH2=CH-CH2-CH2-CH3                      CH2=CH-CH2     +     CH2-CH3     (7) 
● 
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to 750 °C, 1-pentene produces more propadiene than 1-butene or propylene does.  At 800 and 

850 °C, more propadiene is formed from 1-butene pyrolysis than from 1-pentene pyrolysis or 

propylene pyrolysis, and between 900 and 1000 °C, propylene produces more propadiene than 1-

pentene or 1-butene does.  As mentioned in the sections above, propyne is formed via 

isomerization of propadiene, and as Figure 3.2f reveals, 1-pentene forms propyne at temperatures 

above 750 °C.  As we have learned in Section 3.2.1 and 3.2.1, hydrogen-atom loss of propadiene 

or propyne lead to the formation of propargyl [44-54].  

The biggest difference in the primary decomposition reaction of 1-pentene compared to the 

other two investigated fuels is the formation of ethyl radical.  This radical is very reactive and 

readily loses a hydrogen atom to form ethylene.  It is apparent from Figure 3.2b that already at 600 

°C, some ethylene is produced and that its yield is rapidly increasing up to 43 % of the fuel carbon 

at 750 °C, after which it is still increasing with increasing temperature, albeit not quite as 

drastically.  At 900 °C, ethylene accounts for 51 % of the carbon fed to the reactor.  Above 900 

°C, ethylene’s yields is decreasing with a further increase in temperature.  However, even at the 

highest investigated pyrolysis temperature of 1000 °C, still 42 % of the carbon fed to the reactor 

is accounted for by ethylene.  Ethylene is 1-pentene’s highest-yield product at all investigated 

temperatures, and 1-pentene produces more ethylene than 1-butene or propylene does at any 

investigated temperature.  The extremely high yields of ethylene from 1-pentene pyrolysis even at 

the higher temperatures render a large portion of the fuel carbon unavailable for aromatic-growth 

reactions.  This finding would suggest, that the yields of aromatic products from 1-pentene 

pyrolysis might not be as high as they are from 1-butene pyrolysis.  We will learn about the 

aromatic-formation and -growth behavior of our three fuels in the sections below.   
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Ethylene can dehydrogenate to form acetylene, and Figure 3.3c reveals that 1-pentene 

produces acetylene at temperatures of 700 °C and that acetylene’s yield is rising with increasing 

temperature up to 1000 °C, where acetylene accounts for 31 % of the carbon fed to the reactor.  

Acetylene can also be formed from the decomposition of propyne [44,47,54] and the 

dehydrogenation of vinyl radical [61,63-65].  Between 800 and 1000 °C, 1-pentene produces up 

to 39 % less acetylene than 1-butene does.  

Similar to the formation of methylallyl in Reaction 5 during 1-butene pyrolysis, the 

breaking of 1-pentene’s allylic C-H bond leads to the formation of ethylallyl [67-69], as shown in 

Reaction 8.  The ethylallyl radical, just like the methylallyl and allyl radical, has resonance 

stability, and it primarily decomposes according to Reaction 9, forming 1,3-butadiene and methyl 

radical [62].   

 

                     1-pentene                                            ethylallyl 

 

                    ethylallyl                                      1,3-butadiene               methyl 

The addition of a hydrogen atom to methyl leads to the formation of methane, and Figure 

3.2a reveals that at all temperatures investigated, 1-pentene pyrolysis leads to the formation of less 

methane than 1-butene pyrolysis does, and that at temperatures higher than 900 °C, propylene 

produces more methane than 1-pentene does.  The methyl radical can also recombine with allyl to 

form 1-butene, and Figure 3.3a reveals that 1-butene’s yield from 1-pentene pyrolysis is increasing 

with increasing temperature up to 750 °C, where 13% of the fed carbon is accounted for by 1-

butene.  With a further increase in temperature, 1-butene is decomposing until 900 °C, where it is 

completely reacted.  The decomposition of 1-butene is described in Section 3.2.  The yield of 1,3-

       CH2=CH-CH2-CH2-CH3                      CH2=CH-CH-CH2-CH3     +     H  (8) 
● 

       CH2=CH-CH-CH2-CH3                      CH2=CH-CH=CH2     +     CH3   (9) 
● ● 
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butadiene from 1-pentene pyrolysis is shown in the green triangles in Figure 3.3b and we can see 

that at temperatures below 750 °C, 1-pentene produces more 1,3-butadiene than 1-butene or 

propylene does.  Between 750 and 850 °C, 1-butene pyrolysis leads to the highest yield of 1,3-

butadiene compared to 1-pentene pyrolysis and propylene pyrolysis.  Only at the two highest 

temperatures does propylene produce more 1,3-butadiene than the two other investigated alkene 

fuels.  As mentioned above, 1,3-butadiene can lose a hydrogen atom and form the n-butadienyl 

radical and the resonantly stabilized i-butadienyl radical [54-60,62].  Further dehydrogenation of 

1,3-butadiene leads to the formation of the C4H4 hydrocarbon vinylacetylene [62,63], whose yield 

is shown in Figure 3.3c.  1,3-butadiene can also decompose to ethylene and vinyl according to 

Reaction 6 [54-60,63,64].  Figure 3.3d shows that cyclopentadiene is produced at lower 

temperatures from 1-pentene than from 1-butene or propylene, however at 800 °C and above, the 

yield of cyclopentadiene from 1-butene pyrolysis is higher than from 1-pentene pyrolysis.  

The minor and trace products of 1-pentene pyrolysis are shown in the green triangles and 

curves in Figures 3.4 and 3.5.  Figure 3.4a shows the yield of ethane and reveals that up to 900 °C, 

1-pentene forms less ethane than 1-butene does, but more ethane than propylene does.  Since 

ethane is formed from methyl/methyl recombination and methyl radicals are more readily available 

from 1-butene pyrolysis compared to 1-pentene pyrolysis, this trend in yield makes sense.  Above 

900 °C, ethane’s yield from 1-pentene decreases with increasing temperature, which means that 

the ethane is dehydrogenating to ethylene.  The summed yield of cis- and trans-1,3-pentadiene is 

shown in Figure 3.4c, and the green triangles reveal that 1-pentene forms small amounts of 1,3-

pentadiene at 600 °C already.  The two isomers of 1,3-pentadiene are formed from the loss of a 

hydrogen atom from the ethylallyl radical [68], which is formed in Reaction 8.  As mentioned 

above, recombination of two allyl radicals leads to the formation of 1,5-hexadiene, and Figure 3.4d 
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reveals, that at temperatures below 750 °C, 1-pentene produces up to 4.7 times more 1,5-hexadiene 

than 1-butene does.  This finding can be attributed to the conversion of 1-pentene at much lower 

temperatures compared to 1-butene, which means that more allyl radicals are readily available 

from 1-pentene pyrolysis at lower temperatures than from 1-butene.  1,5-hexadiene primarily 

decomposes to form two allyl radicals again.  

In this section we have learned that, while 1-pentene produces aliphatic products at 

temperatures lower than 1-butene or propylene does, the very high yield of ethylene make a large 

portion of 1-pentene’s fuel carbon unavailable to participate in aromatic-ring-formation reactions.  

Apart from the carbon that is “trapped” in ethylene, 1-pentene produces high amounts of C2 – C4 

compounds, many of which are effective aromatic-growth agents.  We have further found that the 

1-pentene reaction environment is rich in allyl, propargyl, methylallyl, butadienyl, and ethylallyl 

radicals, which play an important role in aromatic-growth-reactions.  In the following section, we 

will investigate the formation of one-ring aromatic products from the three investigated 1-alkene 

fuels. 

3.3. One-Ring Aromatic Products  

The yields of one-ring aromatic products from propylene pyrolysis, 1-butene pyrolysis, and 

1-pentene pyrolysis are revealed in Figure 3.6.  The blue squares in Figure 3.6a show that 

propylene pyrolysis forms benzene at temperatures ≥ 900 °C, and that benzene’s yield is increasing 

with increasing temperatures until at 1000 °C, 11.7 % of the carbon fed to the reactor from 

propylene pyrolysis is accounted for by benzene.  Benzene formation starts at much lower 

temperatures from 1-butene pyrolysis compared to propylene pyrolysis.  The red circles in Figure 

3.6a reveal that 1-butene forms benzene at 750 °C, above which benzene’s yield is increasing with 

rising temperature up to 950 °C.  At these temperatures, 1-butene produces more benzene than  
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Figure 3.6. Yields, as functions of temperature, of one-ring aromatic products and biphenyl from propylene pyrolysis (blue squares and 
curves), 1-butene pyrolysis (red circles and curves), and 1-pentene pyrolysis (green triangles and curves) at 0.31 s: (a) benzene, (b) 
ethylbenzene, (c) toluene, (d) styrene, (e) phenylacetylene, and (f) biphenyl 
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propylene does.  It is only at 1000 °C, when the rise in benzene’s yield tapers off during 1-butene 

pyrolysis, that propylene produces more benzene than 1-butene does.  1-Pentene pyrolysis leads 

to benzene formation at even lower temperatures than 1-butene pyrolysis, as shown by the green 

triangles in Figure 3.6a.  Already at 700 °C, a small amount of benzene is formed from 1-pentene 

pyrolysis, and with increasing temperature, benzene’s yield is increasing.  However, the yield of 

benzene is not increasing as steeply from 1-pentene pyrolysis compared to 1-butene pyrolysis or 

propylene pyrolysis.  Hence that at 800 °C, more benzene is formed from 1-butene pyrolysis 

compared to 1-pentene pyrolysis, and at 950 °C, more benzene is formed from both 1-butene 

pyrolysis and propylene pyrolysis than it is from 1-pentene pyrolysis.   

Four different reactions are responsible for the formation of benzene: propargyl/propargyl 

recombination [52], shown in Reaction 10, cross-reaction of propargyl radicals and allyl radicals 

[71-75], shown in Reaction 11, and reaction of acetylene with either the n-butadiene [60,75] or the 

i-butadiene radical [60,76], shown in Reaction 12 and Reaction 13, respectively.  All three alkene 

pyrolysis systems produce plenty of allyl and propargyl radicals, although both 1-butene and 1-

pentene form them at lower temperatures than propylene does.  Therefore, Reactions 10 and 11 

are prevalent in all three pyrolysis reaction environments.  Since both 1-butene and 1-pentene 

produce significantly more 1,3-butadiene than propylene does, Reactions 12 and 13 are 

furthermore contributing to the formation of benzene during 1-butene pyrolysis and 1-pentene  

 

 

                      propargyl               propargyl                             benzene 

 

 

                      propargyl                 allyl                                    benzene 
 

                  CH≡C-CH2     +     CH2-C≡CH                                  (10) 

 

                  CH≡C-CH2     +     CH2-CH=CH2                                        +       2H  (11) 

● ● 

● ● 
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                     i-1,3-butadienyl            acetylene                         benzene 

 

 

                     n-1,3-butadienyl            acetylene                         benzene 
 

pyrolysis, while they do not play as a large of a role in the propylene pyrolysis environment.  Due 

to the relatively high bond-dissociation energy of the aryl C-H bonds of benzene, the abstraction 

of a hydrogen atom to form a phenyl radical [70] requires higher reaction temperatures, which 

means that benzene is not very reactive at lower temperatures.  Benzene’s stability becomes 

evident when looking at Figure 3.6f, which shows that biphenyl’s yields become significant only 

at temperatures > 900 °C, where phenyl becomes available and can react with benzene to form 

biphenyl. 

At temperatures above 900 °C, reaction of phenyl with methyl (Reaction 14), vinyl, and 

acetylene lead to the formation of toluene, styrene, and phenylacetylene [78], whose temperature-

dependent yields are shown in Figures 3.6c-e.  We can see that benzene’s yields are about an order 

of magnitude higher than the substituted one-ring aromatics, with the exception of the low-yield   

 

 

                              phenyl                methyl                              toluene 

product ethylbenzene shown in Figure 3.6b.  The substituted one-ring aromatics are more reactive 

than benzene, especially toluene, whose methyl C-H bond can much more easily be broken to lose 

a hydrogen atom and form the resonantly stabilized benzyl radical.  Benzyl can react with methyl 

and form ethylbenzene.  Figure 3.6c reveals, that toluene formation begins at 750 °C from 1-butene 

                 CH2=CH-C=CH2    +    CH≡CH                                            +         H  (12) 
● 

                 CH2=CH-CH=CH    +    CH≡CH                                                +       H  (13) 
● 

                                            +         CH3                                                 +         H  (14) 
● 
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pyrolysis, as shown by the red circles, and at 700 °C from 1-pentene pyrolysis, as shown by the 

green triangles.  At these temperatures, the phenyl radical is not yet readily available for reaction, 

which means that there has to be another source of toluene.  Reaction 15 shows, that propargyl can 

react with 1,3-butadiene to form toluene.  Furthermore, toluene can be formed from 

allyl/methylallyl combination [79].  As we have previously established, both 

 

 

                     1,3-butadiene                 propargyl                       toluene 

1,3-butadiene and C3H4 products are more abundant from 1-butene pyrolysis at temperatures above 

750 °C.  Therefore, it makes sense that more toluene is formed from 1-butene pyrolysis compared 

to 1-pentene pyrolysis, as is revealed in Figure 3.6c.  The yield of toluene peaks at 950 °C for both 

1-butene and 1-pentene pyrolysis and decreases with a further increase in temperature.  This 

indicates that in both reaction systems, more toluene is “used up” by undergoing hydrogen-atom 

loss and forming the resonantly stabilized benzyl radical, which then can participate in the 

formation- and growth-reactions of PAH.  In contrast, the blue squares in Figure 3.6c show that 

the yield of toluene from propylene pyrolysis is still increasing up to a temperature of 1000 °C.   

If vinylacetylene reacts with i-butadienyl, styrene is formed, as shown in Reaction 16.  

Furthermore, the cyclopentadienyl radical can react with propargyl to from styrene, which is 

shown in Reaction 17 [60].  The blue squares of Figure 3.6d show, that propylene  

 

 

 

              vinylacetylene              i-1,3-butadienyl                        styrene 

 

               CH2=CH-CH=CH2    +    CH≡C-CH2                                    +         H  (15) 
● 

         CH≡C-CH=CH2    +    CH2=CH-C=CH2                                    +         H  (16) 
● 
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              cyclopentadienyl                propargyl                          styrene 

forms styrene at temperatures ≥ 900 °C, and that the yield of styrene is rising with increasing 

temperature, until at 1000 °C, styrene accounts for 0.8 % of the carbon fed to the reactor from 

propylene pyrolysis.  1-butene produces styrene at temperatures ≥ 850 °C, as shown by the red 

circles in Figure 3.6d, and styrene’s yield is rising up to 1.1 % of the fed carbon at 950 °C, above 

which it decreases, indicating that more styrene is reacting than it is formed.  At 1000 °C, propylene 

pyrolysis leads to a higher yield of styrene than 1-butene pyrolysis does.  The green triangles in 

Figure 3.6d reveal that styrene formation from 1-pentene pyrolysis begins at 800 °C, which is 50 

°C lower than for 1-butene pyrolysis; however, between 850 and 1000 °C, 1-butene produces up 

to 3 times more styrene than 1-pentene does.  Analogous to the formation of acetylene from the 

dehydrogenation of ethylene, phenylacetylene can be formed from the dehydrogenation of styrene.  

Phenylacetylene’s yields are shown in Figure 3.6e, which shows that more phenylacetylene is 

formed from 1-butene pyrolysis compared to propylene pyrolysis and 1-pentene pyrolysis at 

temperatures between 850 and 1000 °C.   

3.4. Aliphatic and One-Ring Aromatic Products 

In this chapter, we have discussed the key reactions for the decomposition of the three 

investigated pyrolysis fuels—propylene, 1-butene, and 1-pentene—and the formation of aliphatic 

and one-ring aromatic products.  Figures 3.7a and 3.7b reveal the sum of the C1 – C6 aliphatic 

products and one-ring aromatic products, respectively.  The different pyrolysis sets are presented 

in the same colors and symbols as in previous figures:  blue squares and curves for propylene  

                                       +         CH≡C-CH2                                             (17) 
● 
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Figure 3.7. Yields, as functions of temperature, of classes of products from propylene pyrolysis 
(blue squares and curves), 1-butene pyrolysis (red circles and curves), and 1-pentene pyrolysis 
(green triangles and curves) at 0.31 s: (a) C1 – C6 aliphatic products and (b) one-ring aromatic 
products. 

pyrolysis, red circles and curves for 1-butene pyrolysis, and green triangles and curves for 1-

pentene pyrolysis. 

We have established in Section 3.1 that propylene conversion begins at higher temperatures 

than 1-butene and 1-pentene conversion does.  Therefore, the C1 – C6 aliphatic products are formed 

at higher temperatures from propylene pyrolysis compared to 1-butene or 1-pentene pyrolysis.  

Figure 3.7a shows, that the summed yield of aliphatic products from propylene produces becomes 

significant at temperatures above 800 °C and that it rapidly increases between 850 and 950 °C, 

above which it tapers off, so that at 1000 °C, C1 – C6 aliphatic hydrocarbon products account for 

78.3 % of the carbon fed to the reactor during propylene pyrolysis.  As we have learned in Section 

3.2.1, propylene pyrolysis leads to the formation of large amounts of acetylene, a compound that 

is known to play a major role in formation- and growth-reactions of aromatic products.  

Furthermore, high yields of the two C3H4 isomers propadiene and propyne are produced during 
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propylene pyrolysis, which provide ample amounts of the resonantly stabilized propargyl radical.  

The propylene pyrolysis environment is furthermore rich in allyl radicals and also contains 

butadienyl and cyclopentadienyl radicals, all of which are important participants in the formation 

of one-ring aromatic products, as we have established in Section 3.3.  The conversion of the C4 

alkene 1-butene begins at temperatures much lower than that of propylene, and consequently, 1-

butene pyrolysis leads to the formation of C1 – C6 aliphatic hydrocarbon products at lower 

temperatures than propylene pyrolysis does, as is depicted in Figure 3.7a.  The yield of aliphatic 

products from 1-butene pyrolysis becomes significant at temperatures above 650 °C, and increases 

with increasing temperature up to 850 °C, at which 92 % of the carbon fed to the reactor is 

accounted for by C1 – C6 aliphatic hydrocarbons.  With a further increase in temperature, the yield 

of aliphatic products decreases up to 1000 °C, where it accounts for 77.6 % of the carbon fed to 

the reactor during 1-butene pyrolysis.  Since 1-butene produces acetylene and the C3 products 

propylene, propadiene, and propyne in higher yields at lower temperatures than propylene does, 

they are available for reactions leading to aromatic products at lower temperatures compared to 

propylene pyrolysis.  Additionally, as we have learned in Section 3.2.2, 1-butene pyrolysis leads 

to the formation of large amounts of 1,3-butadiene, which means that a lot more butadienyl radicals 

are available for ring-growth reactions.  Furthermore, the formation of methylallyl radicals during 

the decomposition of 1-butene increases the variety of the radical pool in 1-butene pyrolysis 

compared to propylene pyrolysis.  The green triangles in Figure 3.7a show that 1-pentene produces 

aliphatic products at 600 °C already, and that the summed yield of aliphatic products increases up 

to a temperature of 800 °C, where 99.3 % of the carbon fed to the reaction from 1-pentene pyrolysis 

is made up of C1 – C6 hydrocarbon products.  Above 800 °C, the yield of aliphatic products is only 

slightly decreasing up to 1000 °C, where still 84.3 % of the fed carbon is accounted for by aliphatic 
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products.  The majority of this sum is made up of 1-pentene’s highest-yield product ethylene, 

which “traps” a large portion of the carbon, making it unavailable to participate in reactions leading 

to the formation and growth of aromatic products.  The carbon that is not tied up in ethylene is 

made up of acetylene and C3 and C4 species, which are key players in aromatic-growth reactions.  

Furthermore, ethyl and ethylallyl radicals are available in much higher amounts during 1-pentene 

pyrolysis compared to 1-butene or propylene pyrolysis.  

While 1-pentene produces one-ring aromatic products at lower temperatures than 1-butene 

or propylene does, the yield of one-ring aromatics from 1-pentene pyrolysis does not increase as 

rapidly with increasing temperature compared to 1-butene or propylene pyrolysis, as the green 

triangles in Figure 3.7b reveal.  Therefore, once the temperature reaches 800 °C, the yield of 

aliphatic products from 1-butene pyrolysis, as shown by the red circles in Figure 3.7b, is higher 

than from 1-pentene pyrolysis.  At temperatures ≥ 800 °C, 1-butene produces up to 2.5 times more 

one-ring aromatic products than 1-pentene does.  As is illustrated by the blue squares in Figure 

3.7b, formation of the one-ring aromatic products from propylene becomes appreciable only above 

900 °C and it is only 1000 °C, that propylene produces a slightly higher amount of one-ring 

aromatics than 1-butene does and a significantly higher amount than 1-pentene does.  Especially 

noteworthy is the finding that between 800 and 950 °C, 1-butene produces more substituted one-

ring aromatics compared to either 1-pentene or propylene pyrolysis, since the substituted one-ring 

aromatics are more susceptible to lose a hydrogen atom and participate in aromatic-ring-growth 

reactions.   
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Chapter IV. Polycyclic Aromatic Hydrocarbons from Propylene Pyrolysis, 1-

Butene Pyrolysis, and 1-Pentene Pyrolysis 

4.1. PAH Products from the Three Pyrolysis Sets 

The three investigated alkene fuels—propylene, 1-butene, and 1-pentene—have been 

pyrolyzed at nine temperatures between 600 and 1000 °C at a fixed residence time of 0.31 s, and 

the condensed-phase products have been analyzed by GC/FID/MS, for the one- and two-ring 

aromatic products, and by HPLC/UV, for two-ring aromatic products and higher-ring-number 

PAH products.  The sum of the individual temperature-dependent PAH-product yields from each 

fuel are presented in Figure 4.1, using the same color coding as in Chapter 3: blue squares for  

                                  

Figure 4.1. Yield, as function of temperature, of product PAH ≥ 2 rings from propylene pyrolysis 
(blue squares and curve), 1-butene pyrolysis (red circles and curve), and 1-pentene pyrolysis (green 
triangles and curve) at 0.31 s. 
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yields from propylene pyrolysis, red circles for yields from 1-butene pyrolysis, and green triangles 

for yields from 1-pentene pyrolysis.  

Of all three investigated alkene fuels, propylene is the fuel with the lowest yield of PAH 

products at any of the investigated temperatures, when compared to 1-pentene and 1-butene.  As 

shown by the blue squares in Figure 4.1, PAH yields from propylene pyrolysis become significant 

only at temperatures above 900 °C.  After 900 °C, the summed yield of product PAH continues to 

rise with an increase in temperature, so that at 1000 °C, PAH products account for 1.7 % of the 

carbon fed to the reactor.  The formation of PAH products from 1-pentene pyrolysis begins at 

lower temperatures than it does from propylene pyrolysis.  The green triangles and curve in Figure 

4.1 reveal that the PAH yield from 1-pentene pyrolysis becomes significant above 800 °C, and it 

rapidly increases with increasing temperature up to 950 °C.  From 950 to 1000 °C, the summed 

yield of PAH products is still increasing, albeit with a smaller slope, so that at 1000 °C, 2.0 % of 

the carbon fed to the reactor are accounted for by PAH products from 1-pentene pyrolysis, which 

is almost 20 % more than from propylene pyrolysis.  While the formation of product PAH from 1-

butene pyrolysis begins at around the same temperature as that from 1-pentene pyrolysis, the 

summed yield of the PAH formed from 1-butene pyrolysis is larger than that from either 1-pentene 

or propylene pyrolysis at all investigated pyrolysis temperatures.  The red circles Figure 4.1 show 

that the summed yield of PAH from 1-butene pyrolysis becomes larger than zero at 800 °C, after 

which it increases with a rise in temperature.  At 1000 °C, 3.1 % of the carbon fed to the reactor 

from 1-butene pyrolysis is accounted for by PAH products, which is a factor of 1.5 times more 

than from 1-pentene pyrolysis and a factor 1.8 times more than from propylene pyrolysis.  Not 

only does 1-butene produce a higher yield of PAH products than the other two fuels, it also leads 

to the formation of a larger number of individual product PAH.  Figure 4.2 reveals the product 
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Figure 4.2. HPLC chromatogram of the products of 1-butene pyrolysis at 1000 °C and 0.31 s. The product compounds are color-coded 
by structural class: benzenoid PAH (black), ethynyl-substituted species (purple), vinyl-substituted PAH (pink), cyclopenta-fused PAH 
(red), fluoranthene benzologues (dark blue), indene benzologues (green), methyl substituted aromatics and acenaphthene (light blue), 
bi-aryls (grey), and phenalene-type compounds (olive).  The names, molecular formulae, and structures of all the PAH products from 
1-butene pyrolysis appear in Table A.5 in the Appendix. 
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chromatogram from 1-butene pyrolysis at 0.31 s and 1000 °C, the temperature at which the highest 

number of PAH are formed, and the 69 PAH that have been unequivocally identified by their UV 

spectra as products of 1-butene pyrolysis are shown.  Of these 69 product PAH, 68 are reported 

here for the first time as products of 1-butene pyrolysis.  The PAH range in size up to seven rings 

and are color-coded according to structural class: 23 benzenoid structures in black, 7 cyclopenta-

fused PAH in red, 5 ethynyl-substituted species in purple, 7 fluoranthene benzologues in dark blue, 

2 vinyl-substituted structures in pink, 10 indene benzologues in green, 8 methylated compounds 

and acenaphthene in light blue, 3 bi-aryls in grey, and 3 phenalene-type compounds in olive.  The 

names and structures of all 69 PAH products are presented, sorted by molecular structure, in Table 

A.5 in the Appendix.  Among the 69 identified product PAH shown in Figure 4.2 are the 64 PAH 

products that have been identified as products from 1-pentene pyrolysis (Figure A.3 and Table 

A.6) at 1000 °C and 0.31 s—all of which are reported here for the first time as products of 1-

pentene pyrolysis–—and the 59 PAH products that have been identified as products from 

propylene pyrolysis at the same condition (Figure A.4 and Table A.7).  Since the pyrolysis of 

propylene has been studied more widely than that of 1-butene or 1-pentene, some information of 

PAH products from propylene pyrolysis is available [84].  However, still 35 of the 59 product PAH 

found in this work are reported here for the first time as products of propylene pyrolysis.  No PAH 

products are formed during 1-pentene and propylene pyrolysis that are not also found in the 

product mixtures from 1-butene pyrolysis, and most of the additional products found from 1-

butene pyrolysis are higher-ring-number PAH.  This finding, along with the higher summed yield 

of PAH products from 1-butene pyrolysis suggests, that the reactions of PAH formation and 

growth are “further along” in the 1-butene pyrolysis environment compared to either the propylene 

or the 1-pentene pyrolysis environment.   
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In the following sections, we will investigate in detail the reactions leading to the different 

structural classes of product PAH formed during propylene, 1-butene, and 1-pentene pyrolysis.  In 

order to understand the formation and growth reactions for PAH products, we first take a look at 

the smallest polycyclic products, the two-ring aromatic products.   

4.2. Two-Ring Aromatic Products 

Figure 4.3 reveals the yields of two-ring aromatic products from propylene pyrolysis (blue 

squares), 1-butene pyrolysis (red circles), and 1-pentene pyrolysis (green triangles), and the yields 

are reported as “% fed C as C in given product”, in order to better compare between the three fuels.  

In the previous chapter we have learned that the various resonantly stabilized radicals that are 

present in the pyrolysis environments of the three investigated alkene fuels play a key role in the 

formation of one-ring aromatic products.  We have also established that the one-ring product 

toluene is a ready source of the resonantly stabilized benzyl radical, which can react with the C2 – 

C4 species that are produced during the pyrolysis of either of the three fuels.  Benzyl can react with 

acetylene [81,82], a product that is abundant in all three pyrolysis environments, and form indene, 

as shown in Reaction 18.  Indene, whose temperature-dependent yields are revealed in Figure 4.3a, 

has the ability to form the resonance-stabilized indenyl radical, which is readily produced by  

 

     (18) 

 

     (19) 

breaking indene’s methylene C-H bond.  If benzyl radical reacts with propargyl instead of 

acetylene, naphthalene is formed [80,81], as shown in Reaction 19.  Naphthalene’s yields are 

shown in Figure 4.3b and similarly to benzene, fission of the aryl C-H bond of naphthalene to form  

+ CH≡CH
-H

-H
+ CH≡C-CH2

-H
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Figure 4.3. Yields, as functions of temperature, of two-ring aromatic products from propylene pyrolysis (blue squares and curves), 1-
butene pyrolysis (red circles and curves), and 1-pentene pyrolysis (green triangles and curves) at 0.31 s: (a) indene, (b) naphthalene, (c) 
1-methylnaphthalene, (d) 2-methylnaphthalene, (e) 2-vinylnaphthalene, and (f) 2-ethynylnaphthalene. 
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the naphthyl radical also requires high reaction temperatures.  Evidence of the presence of the 

naphthyl radical at temperatures of 900 °C and above is found in Figure 4.3f, which shows that 2-

ethynylnaphthalene is produced in significant amounts only at 950 and 1000 °C.  Therefore, the 

major source of 2-ethynylnaphthalene seems to be Reaction 20, acetylene addition to the 2-

naphthyl radical [80].  Analogous to toluene and styrene, methyl and vinyl radicals can combine 

with naphthyl radicals to form methyl- and vinylnaphthalenes.  However, as Figures 4.3c and 4.3d 

reveal, both 1- and 2-methylnapthalene are already produced at temperatures below 900 °C from 

1-pentene pyrolysis as well as from 1-butene pyrolysis.  One other possible source of the  

 

           (20) 

 

formation of 1- and 2-methylnapthalene is the reaction of the benzyl radical with C4 species, such 

as butadienyl radicals [81], which would account for the formation of methylnaphthalenes at 

temperatures below 900 °C, since both benzyl and C4 species are readily available in the reaction 

environments of 1-butene as well as 1-pentene.  As Figure 4.3e shows, both 1-butene and 1-pentene 

produce 2-vinylnaphthalene at 900 °C, while 2-vinylnaphthalene formation from propylene begins 

at 950 °C.   

Additional to cross-reaction of the vinyl and 2-naphthyl radical, indenyl/allyl 

recombination could contribute further to the formation of 2-vinylnaphthalene, some of which can 

dehydrogenate to 2-ethynylnaphthalene.  In order to understand the formation of 1-

vinylnaphthalene, we turn our attention to Figure 4.4a, which shows that 1-vinylnaphthalene is 

formed in much lower amounts than its isomer with the vinyl substitution on the 2- position.  This 

trend is, because 1-vinylnaphthalene readily cyclizes to form acenaphthene, whose yields are 

+ CH≡CH
- H
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revealed in Figure 4.4b.  Acenaphthene furthermore can undergo dehydrogenation to form 

acenaphthylene, whose yields are shown in Figure 4.4c.  It is obvious that acenaphthylene’s yields  

 

Figure 4.4. Product yields, as functions of temperature, from propylene pyrolysis (blue squares 
and curves), 1-butene pyrolysis (red circles and curves), and 1-pentene pyrolysis (green triangles 
and curves) at 0.31s: (a) 1-vinylnaphthalene, (b) acenaphthene, (c) acenaphthylene, and (d) 
phenalene.  

are a lot higher from each of the three fuels than the yields of acenaphthene. Therefore, 

dehydrogenation of acenaphthene cannot be the sole source of acenaphthylene formation.  When 

studying the two-ring aromatic products of the three pyrolysis sets, it becomes apparent that 1-

ethynylnaphthalene is not observed as a product of any of the pyrolysis experiments.  1-
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Ethynylnaphthalene is formed by acetylene addition to the 1-naphthyl radical, but once formed, it 

readily cyclizes to the energetically favored acenaphthylene, as shown in Reaction 21.  

Furthermore, the combination of indenyl and allyl radicals can also lead to the formation of 

acenaphthylene (Reaction 22) [82,83].   

 

(21) 

 

(22) 

 

Another important group of PAH is phenalene and phenalene benzologues.  The addition 

of C3 radicals to the 1-naphthyl radical (Reaction 23), or acetylene addition to the 1-

naphthylmethyl radical (Reaction 24) can lead to the formation of phenalene.  As can be seen from 

Figure 4.4d, phenalene is not produced in large yields from either of the three pyrolysis fuels, 

however, phenalene readily produces the resonantly stabilized phenalenyl radical by breaking the 

relatively weak methylene C-H bond [85,86].  This radical, along with other radicals can react 

with C3 and C4 species, to form either another phenalene-type PAH or a benzenoid PAH.   

 

(23) 

 

(24) 

In this section we have learned how the different structural classes of two-ring aromatic 

products are formed during propylene pyrolysis, 1-butene pyrolysis, and 1-pentene pyrolysis.  We 

CH≡C-CH2+

CH≡CH+

+ CH≡CH
- H

+
-2H -2H
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have established, that C1 – C4 species react with phenyl and benzyl radicals to form PAH products 

of two rings.  Since propylene requires much higher temperatures to convert than 1-butene or 1-

pentene does, the yields of two-ring aromatic products from propylene pyrolysis become 

appreciable only above 900 °C, whereas they are already appreciable above 850 °C from 1-pentene 

pyrolysis and above 800 °C from 1-butene pyrolysis.  Even though 1-pentene begins to react at 

much lower temperatures than 1-butene does, a large portion of the converted carbon from 1-

pentene pyrolysis is “tied up” in ethylene.  Therefore, more aliphatic and one-ring aromatic 

compounds and radicals are available for reaction in the 1-butene pyrolysis environment compared 

to the other two pyrolysis sets.  In the following section, we will investigate the types of reactions 

leading to PAH products of higher ring number.  

4.3. Higher-Ring Number PAH 

The individual temperature-dependent yields of three- to seven-ring PAH products from 

propylene pyrolysis, 1-butene pyrolysis, and 1-pentene pyrolysis at 0.31 s are shown in Figures 

4.5 – 4.13.  The yield graphs are color-coded in accordance with the rest of the document:  yields 

from propylene pyrolysis experiments are shown in blue squares, yields from 1-butene pyrolysis 

experiments are depicted in red circles, and yields from 1-pentene pyrolysis experiments are 

revealed in green triangles.  Each figure-panel shows the yield of an individual PAH product with 

the exception of Figure 4.8d, which reveals the summed yield of benzo[a]fluorene and 

benzo[b]fluorene, since co-elution of the two isomers in the chromatograms obtained from the 

HPLC method used to analyze the pyrolysis products renders an accurate quantification of the 

individual products impossible.  The structures of the individual product PAH that are shown in 

different colors according to their structural class in Figure 4.2—black for benzenoid PAH, purple 

for ethynyl-substituted PAH, pink for vinyl-substituted PAH, red for cyclopenta-fused PAH, dark  
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Figure 4.5. Yields, as functions of temperature, of benzenoid PAH products from propylene pyrolysis (blue squares and curves), 1-
butene pyrolysis (red circles and curves), and 1-pentene pyrolysis (green triangles and curves) at 0.31 s: (a) phenanthrene, (b) anthracene, 
(c) chrysene, (d) benzo[c]phenanthrene, (e) benz[a]anthracene, and (f) pyrene.  
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Figure 4.6. Yields, as functions of temperature, of benzenoid PAH products from propylene pyrolysis (blue squares and curves), 1-
butene pyrolysis (red circles and curves), and 1-pentene pyrolysis (green triangles and curves) at 0.31 s: (a) dibenz[a,h]anthracene, (b) 
benzo[b]chrysene, (c) picene, (d) triphenylene, (e) coronene, and (f) dibenz[cd,lm]perylene.  
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Figure 4.7. Yields, as functions of temperature, of benzenoid PAH products from propylene pyrolysis (blue squares and curves), 1-
butene pyrolysis (red circles and curves), and 1-pentene pyrolysis (green triangles and curves) at 0.31 s: (a) benzo[a]pyrene, (b) 
benzo[e]pyrene, (c) perylene, (d) naphtho[2,1-a]pyrene, (e) naphtho[2,3-a]pyrene, and (f) benzo[ghi]perylene.  
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Figure 4.8. Yields, as functions of temperature, of product indene benzologues from propylene 
pyrolysis (blue squares and curves), 1-butene pyrolysis (red circles and curves), and 1-pentene 
pyrolysis (green triangles and curves) at 0.31 s: (a) benz[e]indene, (b) benz[f]indene, (c) fluorene, 
and (d) benzo[a]fluorene + benzo[b]fluorene.   

blue for fluoranthene benzologues, green for indene benzologues, light blue for methyl-substituted 

aromatics and acenaphthene, grey for bi-aryls, and olive for phenalene-type compounds—are now 

shown in black in each panel of the Figures 4.5 – 4.13.  The yields of product PAH ≥ 2 rings, 

summed by different structural classes, are presented in Figure 4.14.  Figure 4.14a shows the 

summed yield of benzenoid product PAH ≥ 2 rings, which is made up of the individual product 

yields shown in Figures 4.3b, 4.5, and 4.6.  It is apparent from Figure 4.14a that between 900 and  
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Figure 4.9. Yields, as functions of temperature, of product indene benzologues from propylene pyrolysis (blue squares and curves), 1-
butene pyrolysis (red circles and curves), and 1-pentene pyrolysis (green triangles and curves) at 0.31 s: (a) 4H-
cyclopenta[def]phenanthrene, (b) 4H-cyclopenta[def]chrysene, and (c) 4H-benzo[def]cyclopenta[mno]chrysene.  

 

Figure 4.10. Yields, as functions of temperature, of methyl-substituted product PAH from propylene pyrolysis (blue squares and curves), 
1-butene pyrolysis (red circles and curves), and 1-pentene pyrolysis (green triangles and curves) at 0.31 s: (a) 2-methylphenanthrene, 
(b) 1-methylpyrene, (c) 2-methylpyrene.  
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Figure 4.11. Yields, as functions of temperature, of ethynyl-substituted and cyclopenta-fused PAH products from propylene pyrolysis 
(blue squares and curves), 1-butene pyrolysis (red circles and curves), and 1-pentene pyrolysis (green triangles and curves) at 0.31 s: (a) 
1-ethynylacenaphthylene, (b) 2-ethynylanthracene, (c) acephenanthrylene, (d) cyclopenta[hi]acephenanthrylene, (e) 
cyclopenta[cd]fluoranthene, and (f) cyclopenta[cd]pyrene.  
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Figure 4.12. Yields, as function of temperature, of product fluoranthene benzologues from propylene pyrolysis (blue squares and curves), 
1-butene pyrolysis (red circles and curves), and 1-pentene pyrolysis (green triangles and curves) at 0.31 s: (a) benzo[a]fluoranthene, (b) 
benzo[b]fluoranthene, (c) benzo[j]fluoranthene, (d) benzo[k]fluoranthene, (e) indeno[1,2,3-cd]pyrene. 
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Figure 4.13. Yields, as functions of temperature, of bi-aryls and phenalene-type product 
compounds from propylene pyrolysis (blue squares and curve), 1-butene pyrolysis (red circles and 
curve), and 1-pentene pyrolysis (green triangles and curve) at 0.31 s: (a) 2-phenylnaphthalene, (b) 
7H-benz[de]anthracene, (c) 6H-benzo[cd]pyrene. 

1000 °C, 1-butene produces more benzenoid PAH than 1-pentene or propylene does.  At 1000 °C, 

the yield of benzenoid PAH from 1-butene pyrolysis is 75 % and 78 % higher than from 1-pentene 

pyrolysis and propylene pyrolysis, respectively.  Furthermore, we can see that PAH products with 

benzenoid structures are produced in the highest yields from all three 1-alkene fuels.  

 

 

0.000

0.007

0.014

0.021

600 700 800 900 1000%
 F

e
d

 C
 a

s
 C

 i
n

 2
-P

h
e

n
y
ln

a
p

h
th

a
le

n
e

Temperature (°C)

2-Phenylnaphthalene

propylene
pyrolysis 

1-pentene 
pyrolysis 

1-butene 
pyrolysis 

0.000

0.001

0.002

0.003

600 700 800 900 1000%
 F

e
d

 C
 a

s
 C

 i
n

 6
H

-B
e

n
z
o

[c
d

]p
y
re

n
e

Temperature (°C)

6H-Benzo[cd]pyrene

propylene
pyrolysis 

1-pentene 
pyrolysis 

1-butene 
pyrolysis 

0.000

0.001

0.002

0.003

0.004

600 700 800 900 1000%
 F

e
d

 C
 a

s
 C

 i
n

 7
H

-B
e

n
z
[d
e

]a
n

th
ra

c
e

n
e

Temperature (°C)

7H-Benz[de]anthracene

propylene
pyrolysis 

1-pentene 
pyrolysis 

1-butene 
pyrolysis 

(a)

(b) (c)



61 
 

 

Figure 4.14. Yields, as functions of temperature, of product PAH ≥ 2 rings summed by structural class from propylene pyrolysis (blue 
squares and curves), 1-butene pyrolysis (red circles and curves), and 1-pentene pyrolysis (green triangles and curves) at 0.31 s: (a) 
benzenoid PAH, (b) indene benzologues, (c) methyl-substituted PAH, (d) ethynyl-substituted PAH, (e) cyclopenta-fused PAH, and (f) 
fluoranthene benzologues.  
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Similar to the formation of naphthalene by the combination of benzyl and propargyl, shown 

in Reaction 19, higher-ring number benzenoid PAH are formed by the reaction of arylmethyl 

radicals with propargyl radicals.  The three-ring PAH phenanthrene, for example, can be formed 

by the reaction of the 2-naphthylmethyl radical with propargyl, as shown in Reaction 25.  

Benzenoid PAH can furthermore be formed by the reaction of aryl radicals with C4 species 

[80].  When using the example of phenanthrene, reaction of the 2-naphthyl radical with 1,3-

butadiene or other C4 species available in the reaction environment can lead to the formation of 

 

(25) 

phenanthrene.  As Figure 4.5a reveals, phenanthrene is formed in higher amounts from 1-butene 

pyrolysis compared to the other two pyrolysis sets, which can be explained with the ready 

availability of naphthyl, naphthylmethyl, and propargyl radicals as well as C4 species during 1-

butene pyrolysis.  Further contributing to the formation of benzenoid product PAH is the reaction 

of phenalenyl-type radicals with C3 radicals, for example, pyrene formation from combination of 

phenalenyl radical with propargyl, shown in Reaction 26.  Again, the higher abundance of 

propargyl and phenalenyl radicals in the reaction environment of 1-butene compared to 

 

(26) 

propylene and 1-pentene, leads to the formation of a higher yield of pyrene from 1-butene pyrolysis 

than from either 1-pentene or propylene pyrolysis, as shown in Figure 4.5f.  Other phenalene-type 

compounds are 7H-benz[de]anthracene, and 6H-benzo[cd]pyrene, whose structures are show in 

grey in Figure 4.2 and whose yields are shown in Figures 4.13b and 4.13c, respectively.  Analogous 

to phenalene, the methylene C-H bond of these compounds can easily be broken and lead to the 

CH≡C-CH2+
- 2H

CH≡C-CH2+
- 3H
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formation of the benz[de]anthracenyl and benzo[cd]pyrenyl radical, both of which are resonantly 

stabilized radicals.  Benz[de]anthracenyl can react with propargyl to form either benzo[e]pyrene, 

whose yields are shown in Figure 4.7b, or perylene, whose yields are shown in Figure 4.7c.  

Reaction of benzo[cd]pyrenyl with propylene leads to the formation of benzo[ghi]perylene, whose 

yields are revealed in Figure 4.7f.   

Similar to phenalene-type compounds, indene benzologues are susceptible to ring-growth 

reactions, since breaking their relatively weak methylene C-H bond leads to the formation of 

resonantly stabilized indenyl radicals.  The individual product yields of the indene benzologues—

whose structures appeared in light green in Figure 4.2—are shown in Figures 4.3a, 4.8, and 4.9, 

and the sum of these yields is presented in Figure 4.14b.  Indene benzologues are formed by 

reaction of acetylene with arylmethyl radicals, analogous to the formation of indene, shown in 

Reaction 18.  Furthermore, reaction of C4 species with indene benzologues can lead to the 

formation of higher-ring-number indene benzologues.  For example, fluorene reaction with a C4 

species, such as the butadienyl radical can lead to the formation of benzo[a]fluorene, whose 

yields—summed with benzo[b]fluorene’s yields—are shown in Figure 4.8d.   

Methyl-substituted PAH, structures that are depicted in light blue in Figure 4.2, are also 

susceptible to losing a hydrogen atom at their methyl site and forming a resonantly stabilized 

radical.  The yield of methyl-substituted products from the three pyrolysis sets are shown in Figures 

4.3c, 4.3d, and 4.10, and the sum of these product yields is shown in Figure 4.14c.  Methyl-

substituted PAH can be formed by methyl addition to aryl radicals, or by reaction of C4 species 

with methyl-substituted product PAH to form higher-ring-number methyl-substituted PAH.   

The yields of the products shown in the Figures 4.4c and 4.11c-f, whose structures are 

shown in red in Figure 4.2, are the cyclopenta-fused product PAH.  The sum of the yields of 
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cyclopenta-fused product PAH is shown in Figure 4.14e, and it can be seen that between 950 and 

1000 °C, 1-butene pyrolysis leads to the formation of up to 2 times more cyclopenta-fused PAH 

than 1-pentene pyrolysis does, and up to 6 times more than propylene does.  Analogous to Reaction 

21, cyclopenta-fused PAH are formed by acetylene addition to aryl radicals, whose radical site is 

located at the valley carbon.  For example, acetylene addition to the 1-pyrenyl radical leads to the 

formation of cyclopenta[cd]pyrene, whose yields are shown in Figure 4.11f.  Furthermore, 

cyclopenta-fused PAH can be formed by the addition of resonance-stabilized C3 radicals to 

indenyl-type radicals [80,82,83]. The formation of higher amounts of cyclopenta-fused PAH 

during 1-butene pyrolysis compared to the other two pyrolysis sets is an important finding, since 

C4 addition to a cyclopenta-fused PAH can lead to the formation of fluoranthene benzologues [80].   

 

(27) 

 

 

(28) 

 

The individual yields of fluoranthene benzologues—whose structures are depicted in dark 

blue in Figure 4.2—are shown in Figure 4.12, and the summed yield of fluoranthene benzologues 

is revealed in Figure 4.14f.  As shown in Reaction 27, the butadienyl radical can attack the isolated 

double bond of acephenanthrylene and form benzo[b]fluoranthene, whose yields are shown in 

Figure 4.12b.  Benzo[b]fluoranthene can furthermore be formed by Reaction 28, phenyl addition  

+
- 3H

- 3H
+  C4H5

●
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to phenanthrene [80].  Since 1-butene produces higher amounts of all the ingredients leading to 

the formation of fluoranthene benzologues, 1-butene produces fluoranthene benzologues in yields 

up to 4 higher than 1-pentene does and up to 25 times higher than propylene does. 
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Chapter V. Conclusions and Recommendations for Future Work 

5.1. Summary and Conclusions 

The purpose of this experimental study has been to better understand the role of 1-alkenes 

and allylic radicals in the formation and growth reactions of PAH.  To this end, pyrolysis 

experiments have been performed at nine temperatures between 600 and 1000 °C and a fixed 

residence time of 0.31 s, with three 1-alkene fuels:  propylene (CH2=CH–CH3), 1-butene  

(CH2=CH–CH2–CH3), and 1-pentene (CH2=CH–CH2–CH2–CH3).  The experiments have been 

carried out in an isothermal laminar-flow quartz tube reactor, and the gas- and condensed-phase 

products have been analyzed in detail by GC/FID, for the C1 – C6 aliphatic hydrocarbon products; 

GC/TCD, for product H2; GC/FID/MS, for one- and two-ring aromatic hydrocarbon products; and 

HPLC/UV, for PAH products.   

The propylene pyrolysis experiments reveal that propylene conversion becomes significant 

at temperatures ≥ 850 °C and that it steeply increases with rising temperatures up to 1000 °C, 

where 98.8 % of propylene is converted.  Propylene is found to produce acetylene, propadiene, 

and propyne in high yields and the radical pool of propylene pyrolysis is made up mostly of allyl 

and propargyl radicals.  The abundantly produced C2 and C3 species participate in reactions leading 

to the formation of one-ring aromatic products, which are formed above 850 °C.  At 1000 °C, 13.9 

% of the carbon fed to the reactor from propylene pyrolysis is made up of one-ring aromatic 

products, the majority of which is accounted for by benzene, which is less reactive than its 

substituted counterparts.  PAH products are found to be formed during propylene pyrolysis at 

temperatures ≥ 900 °C, and the PAH yield increases with a rise in temperature up to 1000 °C, 

where it reaches 1.7 % of the fed carbon.  Extensive HPLC/UV analyses of the propylene pyrolysis 
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product mixtures have led to the identification of 59 two- to seven-ring PAH products, 35 of which 

are reported here for the first time as products of propylene pyrolysis.   

The 1-butene pyrolysis experiments show that 1-butene is more reactive than propylene is.  

1-butene conversion becomes appreciable at temperatures > 700 °C and is almost fully complete 

(99.9%) by 850 °C, a temperature at which merely 10.3 % of propylene is converted during 

propylene pyrolysis.  The major products of 1-butene pyrolysis are found to be methane, ethylene, 

acetylene, propylene, propadiene, propyne, and 1,3-butadiene.  Since 1-butene’s conversion begins 

at much lower temperatures compared to propylene, aliphatic products are formed at lower 

temperatures from 1-butene pyrolysis compared to propylene pyrolysis.  At 850 °C, a temperature 

at which aliphatic products from propylene pyrolysis make up only 9.1% of the fed carbon, 92.1 

% of the carbon fed to the reactor from 1-butene pyrolysis is accounted for by aliphatic 

hydrocarbon products.  Therefore, important radicals that participate in aromatic formation 

reactions, such as allyl and propargyl, are available at lower temperatures for 1-butene pyrolysis 

than for propylene pyrolysis.  Additionally, 1-butene readily produces methylallyl, a radical that 

is not present in the propylene pyrolysis environment.  Furthermore, the yield of 1,3-butadiene 

from 1-butene pyrolysis is much higher than from propylene pyrolysis, resulting in the presence 

of ample amounts of butadienyl radicals, which contribute to the formation of one-ring aromatic 

products and PAH products.  One-ring aromatic products are formed at ≥ 750 °C, and at 1000 °C, 

they make up 13 % of the carbon fed to the reactor from 1-butene pyrolysis.  The facile formation, 

at relatively low temperatures, of one-ring aromatics from 1-butene pyrolysis—especially the more 

reactive substituted one-ring aromatics—leads to a higher yield of PAH products from 1-butene 

pyrolysis than from propylene pyrolysis.  For 1-butene pyrolysis, PAH are produced at 

temperatures as low as 850 °C and rise in yield with increasing temperature, accounting, at 1000 
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°C, for 3.1 % of the 1-butene fuel carbon.  (For propylene pyrolysis, product PAH account for only 

1.7 % of the propylene fuel carbon at 1000 °C.)  Furthermore, 1-butene produces a higher number 

of PAH products than propylene does.  At 1000 °C and 0.31 s, 69 two- to seven-ring PAH products 

from 1-butene pyrolysis have been identified, in this study, by extensive HPLC/UV analyses; 67 

of these 69 product PAH have never before been reported as products of 1-butene pyrolysis. 

The 1-pentene pyrolysis experiments reveal that 1-pentene conversion begins at even lower 

temperatures than 1-butene conversion during 1-butene pyrolysis.  At 600 °C, 1-pentene 

conversion has already reached 3.7 %, and it rapidly increases so that at 800 °C, 99.9 % of 1-

pentene has reacted.  This observed behavior is largely due to the facile formation of the reactive 

ethyl radical during the decomposition of 1-pentene.  This ethyl radical readily loses a hydrogen 

atom to form ethylene so that at all investigated temperatures, ethylene is found to be the single 

highest-yield decomposition product of 1-pentene pyrolysis.  Between 750 and 1000 °C, ethylene 

formed from 1-pentene pyrolysis accounts for 42 – 51% of the carbon fed to the reactor, while 

ethylene’s yield from 1-butene or propylene pyrolysis never exceeds 30 % of the fuel carbon at 

any investigated temperature.  Therefore, a large portion of the fuel carbon from 1-pentene 

pyrolysis is “tied up” in ethylene and unavailable for aromatic-formation and -growth reactions.  

Of the carbon that is not trapped in ethylene, a large portion is accounted for by 1-pentene’s other 

high-yield products acetylene, propylene, propadiene, propyne, 1-butene, and 1,3-butadiene, and 

ample amounts of allyl, propargyl, methylallyl, butadienyl, and ethylallyl radicals are formed.  At 

temperatures between 750 and 900 °C, the yields of these C2 – C4 species from 1-pentene pyrolysis 

are higher than they are from propylene pyrolysis, but lower than they are from 1-butene pyrolysis.  

Consequently, the yields of one-ring aromatic products at temperatures between 800 and 900 °C 

are up to 50 times higher from 1-pentene pyrolysis than they are from propylene pyrolysis, but up 
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to 60 % lower compared to 1-butene pyrolysis.  Thus, both the number and yield of PAH products 

from 1-pentene pyrolysis are higher than they are from propylene pyrolysis but lower compared 

to 1-butene pyrolysis.  HPLC/UV analyses of the 1-pentene pyrolysis product mixtures reveal that 

at 1000 °C, 2 % of the carbon fed to the reactor is accounted for in the PAH products—a yield 

which, on a %-fed-carbon basis, is 1.8 times higher than that from propylene pyrolysis and 35 % 

lower than that from 1-butene pyrolysis.  Furthermore, 64 individual two- to seven-ring PAH 

products have been identified from 1-pentene pyrolysis at 1000 °C, all of which are reported here 

as first-time identifications of PAH products from 1-pentene pyrolysis.  

This experimental study of propylene pyrolysis, 1-butene pyrolysis, and 1-pentene 

pyrolysis has helped to elucidate the role allylic radicals play in the formation- and growth- 

reactions of one-ring aromatics and PAH.  Not only have we learned that the allyl radical can 

participate in radical/radical combination reactions leading to the formation and growth of various 

aromatic products, but this study has also shown that the allyl radical is a rich source of the C3H4 

isomers propadiene and propyne, which themselves readily form propargyl radical, a key player 

in aromatic-formation and -growth reactions.  Moreover, we have established that the methylallyl 

radical not only participates in formation reactions leading to one-ring aromatic products, it also 

is a rich source of the C4H6 hydrocarbon 1,3-butadiene.  Lastly, this study shows that ethylallyl 

radical also readily forms 1,3-butadiene, a product that easily dehydrogenates to form butadienyl 

radical, which plays an important role in reactions leading to the formation and growth of PAH. 

With respect to fuel-specific differences, this study shows that it is not possible to make 

the assumption that 1-alkene fuels with higher carbon numbers or weaker bonds automatically lead 

to greater production of PAH.  Rather, the experiments show that—even though 1-pentene has the 

highest number of carbons and its decomposition begins at the lowest temperature of the three 1-
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alkene fuels investigated—1-pentene does not produce the highest yield or number of PAH 

products.  The ready formation of the ethyl radical during the first decomposition reaction of 1-

pentene leads to the formation of extremely high yields of ethylene, which proves to be 

unconducive to PAH formation in this reaction environment.  This finding means that the fuel 

fragments formed during the initial decomposition reactions of a fuel have a crucial impact on the 

fuel’s propensity to form one-ring aromatic products and PAH products.  

All of the products that are identified in this study as major products and are shown to be 

key players in the reactions leading to the formation and growth of PAH from 1-alkene pyrolysis—

acetylene, propylene, propadiene, propyne, 1-butene, and 1,3-butadiene—are also present in the 

devolatilization products of solid fuels.  Therefore, this study’s findings about the temperature-

dependent yield behavior of these C2 – C4 products and the resonantly stabilized radical species 

they produce—allyl, propargyl, methylallyl, and butadienyl—are important for understanding the 

PAH formation- and growth-mechanisms from the combustion of solid fuels.  Furthermore, since 

the thermal decomposition products from the three 1-alkene fuels investigated are also produced 

from many gaseous and liquid practical fuels, the findings uncovered in this study—both the 

effects of fuel structure on the yields and distribution of products as well as their temperature-

dependent yield behavior—have extended applicability to the field of liquid and gaseous fuel 

combustion.   

5.2. Recommendations for Future Work 

This present study can be expanded by performing pyrolysis experiments of the three fuels 

at varying residence times, while keeping the pyrolysis temperature constant.  Residence-time 

experiments are especially of interest for 1-pentene pyrolysis, due to the extremely high yields of 

ethylene formed from 1-pentene pyrolysis at 0.31 s.  Particularly at higher temperatures, where 
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ethylene can readily dehydrogenate and form acetylene (a key player in aromatic-formation and  

-growth reactions), 1-pentene pyrolysis experiments at higher residence times would be of interest.  

In comparison to 1-pentene pyrolysis experiments at 1000 °C and 0.31 s, preliminary experiments 

of 1-pentene pyrolysis at 1000 °C and 0.51 s have shown that the yield of ethylene is significantly 

lower, but the yield of PAH is higher.  Experiments at a wider range of residence times would have 

to be performed in order to be able to adequately observe the effects of residence time on the 

product yields of 1-pentene pyrolysis.  

To further extend the findings about the influence of molecular fuel-structure on the 

formation and growth reactions of PAH, it would be helpful to conduct pyrolysis experiments with 

an alkene fuel that is not a 1-alkene.  A good candidate for such experiments would be the C4 

alkene 2-butene, since it has the same number of carbon and hydrogen atoms as 1-butene and only 

differs from its isomer by the position of the double bond within the fuel structure.  The position 

of the double bond has a large influence on the bond-dissociation energies of the different 

molecular bonds within the fuel, and the decomposition behavior of the fuel is greatly affected by 

those bond-dissociation energies.  Since, as we have shown in this study, the initial decomposition 

reactions of the fuel have a significant impact on the fuel’s pyrolytic behavior, 2-butene pyrolysis 

experiments could help uncover the effects of the double bond placement on:  1) the conversion of 

the fuel, 2) the temperature-dependent yields of major aliphatic species produced, and 3) the fuel’s 

propensity to form one-ring aromatic and PAH products. 

The findings uncovered in this dissertation highlight the importance of resonantly 

stabilized radicals—especially allyl, propargyl, methylallyl, butadienyl, and ethylallyl, but also 

benzyl, indenyl, and phenalenyl—in the reactions leading to the formation and growth of aromatic 

compounds.  Additionally, the 1-alkene pyrolysis experiments show that each of the investigated 
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fuels produce a small amount of the C5 hydrocarbon cyclopentadiene, which can readily undergo 

hydrogen-atom loss and form cyclopentadienyl radical.  Cyclopentadienyl is another radical with 

resonance stability that can participate in reactions leading to the formation of one-ring aromatic 

products, as shown in Reaction 17 in Section 3.3, and PAH.  Therefore, it would be useful to 

further investigate the role of cyclopentadienyl in the formation of aromatic compounds.  To this 

end, 1-butene/dicyclopentadiene co-pyrolysis experiments could prove to be useful.  

Dicyclopentadiene is a compound that readily forms cyclopentadienyl radicals, and 1-butene 

would be a good choice for the co-pyrolysis experiments with dicyclopentadiene, since it reacts at 

relatively low temperatures and provides, as this study shows, many C2 – C4 species important for 

aromatic growth.  The increase in concentration of cyclopentadienyl radicals provided from 

dicyclopentadiene could help elucidate the importance of reactions leading to one-ring aromatic 

products—such as the cross-reaction of cyclopentadienyl radicals with propargyl radicals to form 

styrene (Reaction 17)—and PAH.  
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Appendix: Supplemental Materials 

Table A.1. Temperature calibrations of furnace at nine temperatures between 600 and 1000 °C.  

Desired 
Temp-
erature 

(°C) 

Temperature (°C) at Distance from Front of Reactor (inch) 

9 11 13 15 17 19 21 23 25 27 29 31 

600 592 596 602 599 600 600 600 600 600 601 600 598 

650 647 649 653 648 651 650 649 650 650 652 650 644 

700 686 694 703 698 700 700 700 701 700 702 700 698 

750 738 744 752 748 750 749 750 750 750 752 750 744 

800 797 798 903 799 801 800 800 800 800 803 800 798 

850 841 849 851 852 850 852 850 850 850 852 850 843 

900 893 898 903 899 900 900 900 900 900 903 901 893 

950 938 945 951 949 951 953 952 951 952 953 950 942 

1000 991 997 1002 1000 1001 1001 1000 1000 999 1003 1001 991 
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Table A.2. Response factors and GC retention times for the C1 – C6 hydrocarbons (FID) and for 
H2 (TCD). 

Compound 
Retention 
Time 

Response 
Factor 
(ppm/area) 

methane 0.95 5.063 

ethane 1.40 2.672 

ethylene 1.76 2.656 

acetylene 2.88 2.043 

propane 3.73 1.725 

propylene 6.88 1.833 

propadiene 7.05 1.830 

1-butene 12.88 1.383 

propyne 12.92 1.718 

1,3-butadiene 13.87 1.376 

trans-2-butene 14.12 1.383 

isobutene 14.33 1.383 

cis-2-butene 14.60 1.383 

vinylacetylene 15.79 1.376 

1-pentene  17.70 1.073 

1-butyne  18.06 1.376 

isoprene 19.08 1.172 

cyclopentadiene 19.32 1.172 

trans-1,3-pentadiene 19.80 1.172 

cis-1,3-pentadiene 19.87 1.172 

2-butyne 20.67 1.376 

1,5-hexadiene 21.87 0.967 

benzene 22.60 0.967 

H2 1.56 35.080 
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Table A.3. Response factors and GC retention times for one- and two-ring aromatics. 

Compound 
Retention 
Time 

Response 
Factor 
((mg/ml)/area) 

toluene 7.2 3.87E-09 

ethylbenzene 10.4 3.82E-09 

phenylacetylene 11.0 3.74E-09 

styrene 11.5 3.80E-09 

indene 17.9 6.08E-09 

naphthalene 22.7 5.43E-09 

2-methylnaphthalene 26.5 5.29E-09 

1-methylnaphthalene 27.1 5.29E-09 

biphenyl 29.3 6.13E-09 

2-vinylnaphthalene 29.9 5.29E-09 

2-ethynylnaphthalene 30.9 5.29E-09 

acenaphthylene 31.5 5.33E-09 

fluorene 35.4 5.24E-09 

phenanthrene 40.8 5.23E-09 

anthracene 41.0 5.47E-09 
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Table A.4. Response factors and HPLC retention times for PAH. 

Compound 
Retention 
Time 

Linear Range              
Concentration (mg/ml) 

= m * area 

Non-linear Range     
Concentration (mg/ml) =     m1 * 

area + m2 *area ^2 

m m1 m2 

naphthalene 15.3 2.08E-05 3.38E-08 3.56E-05 

acenaphthylene 17.1 2.09E-05 1.02E-08 3.19E-05 

acenaphthene 19.9 1.68E-05 2.21E-08 3.08E-05 

fluorene 20.8 1.37E-05 1.41E-08 3.39E-05 

phenanthrene 22.6 9.10E-06 8.18E-09 2.00E-05 

anthracene 24.4 3.75E-06 1.34E-08 1.78E-05 

fluoranthene 26.4 1.60E-05 3.06E-09 2.12E-05 

pyrene 28.0 1.49E-05 3.61E-09 2.04E-05 

benz[a]anthracene 33.2 1.10E-05 2.76E-09 1.63E-05 

chrysene 34.3 1.16E-05 3.59E-09 1.69E-05 

benzo[b]fluoranthene 38.7 1.19E-05 1.34E-09 1.56E-05 

benzo[k]fluoranthene 40.6 1.16E-05 1.22E-09 1.47E-05 

benzo[a]pyrene 42.2 1.67E-05 1.02E-09 2.00E-05 

dibenz[a,h]anthracene 45.1 1.30E-05 1.77E-09 1.62E-05 

benzo[ghi]perylene 46.8 1.82E-05 1.17E-09 2.26E-05 
indeno[1,2,3-cd]-
pyrene 48.2 1.36E-05 5.14E-10 1.61E-05 
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Table A.5. PAH products of 1-butene pyrolysis in Figure 4.2. 

Product Name (by Class) Formula Structure 
First-Time Identification 

as Product of  

1-Butene Pyrolysis? 

Benzenoid PAH (black structures in Figure 4.2.) 

Naphthalene C10H8   

Phenanthrene C14H10  � 

Anthracene C14H10  � 

Pyrene C16H10 
 

� 

Benzo[c]phenanthrene C18H12 
 

� 

Triphenylene C18H12 
 

� 

Benz[a]anthracene C18H12 
 

� 

Chrysene C18H12  � 

Benzo[e]pyrene C20H12 
 

� 

Perylene C20H12 
 

� 

Benzo[a]pyrene C20H12 
 

� 
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Table A.5. (continued) 

Product Name (by Class) Formula Structure 
First-Time Identification 

as Product of  

1-Butene Pyrolysis? 

Benzo[ghi]perylene C22H12 

 
� 

Anthanthrene C22H12 
 

� 

Dibenz[a,j]anthracene C22H14 

 
� 

Dibenz[a,h]anthracene C22H14 
 

� 

Benzo[b]chrysene C22H14 
 

� 

Picene C22H14  � 

Coronene C24H12 
 

� 

Naphtho[1,2-a]pyrene C24H14 
 

� 

Dibenzo[a,e]pyrene C24H14 

 

� 

Naphtho[2,1-a]pyrene C24H14 
 

� 
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Table A.5. (continued) 

Product Name (by Class) Formula Structure 
First-Time Identification 

as Product of  

1-Butene Pyrolysis? 

Naphtho[2,3-a]pyrene C24H14 
 

� 

Dibenzo[cd,lm]perylene C26H14 
 

� 

Fluoranthene Benzologues (dark blue structures in Figure 4.2.) 

Fluoranthene C16H10 
 

� 

Benzo[a]fluoranthene C20H12 

 
� 

Benzo[j]fluoranthene C20H12 
 

� 

Benzo[b]fluoranthene C20H12 
 

� 

Benzo[k]fluoranthene C20H12 
 

� 

Indeno[1,2,3-cd]pyrene C22H12 
 

� 

Indeno[1,2,3-cd]fluoranthenea C22H12 
 

� 
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Table A.5. (continued) 

Product Name (by Class) Formula Structure 
First-Time Identification 

as Product of  

1-Butene Pyrolysis? 

Indene Benzologues (green structures in Figure 4.2.) 

Indene C9H8   

Fluorene C13H10  � 

Benz[e]indene C13H10  � 

Benz[f]indene C13H10  � 

4H-Cyclopenta[def]phenanthrene C15H10 
 

� 

Inden[2,1-a]indene C16H10  � 

Benzo[a]fluorene C17H12 
 

� 

Benzo[b]fluorene C17H12 
 

� 

4H-Cyclopenta[def]chrysene C19H12 
 

� 

4H-Benzo[def]-
cyclopenta[mno]chrysene 

C21H12 
 

� 

Cyclopenta-Fused PAH (red structures in Figure 4.2.) 

Acenaphthylene C12H8  � 
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Table A.5. (continued) 

Product Name (by Class) Formula Structure 
First-Time Identification 

as Product of  

1-Butene Pyrolysis? 

Pyracylene C14H8 
 

� 

Acephenanthrylene C16H10 
 

� 

Aceanthrylene  C16H10  � 

Cyclopent[hi]acephenanthrylene C18H10 
 

� 

Cyclopenta[cd]pyrene C18H10 

 
� 

Cyclopenta[cd]fluoranthene C18H10 
 

� 

Ethynyl-Substituted Species (purple structures in Figure 4.2.) 

2-Ethynylnaphthalene C12H8  � 

1-Ethynylacenaphthylene C14H8 
 

� 

3-Ethynylphenanthrene C16H10 
 

� 

2-Ethynylanthracene C16H10  � 
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Table A.5. (continued) 

Product Name (by Class) Formula Structure 
First-Time Identification 

as Product of  

1-Butene Pyrolysis? 

2-Ethynylpyrene C18H10 
 

� 

Bi-aryls (gray structures in Figure 4.2.) 

Biphenyl C12H10  � 

1-Phenylnaphthalene  C16H12 
 

� 

2-Phenylnaphthalene C16H12 
 

� 

Methyl-Substituted Aromatics and Acenaphthene (light blue structures in Figure 4.2.) 

1-Methylnaphthalene C11H10 
 

� 

2-Methylnaphthalene C11H10  � 

3-Methylphenanthrene C15H12 
 

� 

1-Methylanthracene C15H12  
� 

2-Methylanthracene C15H12  � 

1-Methylpyrene C17H12 
 

� 
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Table A.5. (continued) 

Product Name (by Class) Formula Structure 
First-Time Identification 

as Product of  

1-Butene Pyrolysis? 

2-Methylpyrene C17H12 
 

� 

4-Methylpyrene C17H12 
 

� 

Acenaphthene C12H10  � 

Vinyl-Substituted Aromatics (pink structures in Figure 4.2.) 

1-Vinylnaphthalene C12H10 
 

� 

2-Vinylnaphthalene C12H10  � 

Phenalene-Type Compounds (olive structures in Figure 4.2.) 

Phenalene C13H10 
 

� 

7H-Benz[de]anthracene C17H12  
� 

6H-Benzo[cd]pyrene C19H12 
 

� 

aIndeno[1,2,3-cd]fluoranthene is an indeno-fused fluoranthene. 
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Table A.6. PAH products of propylene pyrolysis in Figure A.3. 

Product Name (by Class) Formula Structure 
First-Time Identification 

as Product of  

Propylene Pyrolysis? 

Benzenoid PAH (black structures in Figure A.3.) 

Naphthalene C10H8   

Phenanthrene C14H10   

Anthracene C14H10   

Pyrene C16H10 
 

 

Benzo[c]phenanthrene C18H12 
 

� 

Triphenylene C18H12 
 

� 

Benz[a]anthracene C18H12 
 

 

Chrysene C18H12   

Benzo[e]pyrene C20H12 
 

 

Perylene C20H12 
 

 

Benzo[a]pyrene C20H12 
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Table A.6. (continued) 

Product Name (by Class) Formula Structure 
First-Time Identification 

as Product of  

Propylene Pyrolysis? 

Benzo[ghi]perylene C22H12 

 

 

Anthanthrene C22H12 
 

 

Dibenz[a,h]anthracene C22H14 
 

� 

Benzo[b]chrysene C22H14 
 

� 

Coronene C24H12 
 

 

Fluoranthene Benzologues (dark blue structures in Figure A.3.) 

Fluoranthene C16H10 
 

 

Benzo[a]fluoranthene C20H12 

 
� 

Benzo[j]fluoranthene C20H12 
 

� 

Benzo[b]fluoranthene C20H12 
 

� 

Benzo[k]fluoranthene C20H12 
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Table A.6. (continued) 

Product Name (by Class) Formula Structure 
First-Time Identification 

as Product of  

Propylene Pyrolysis? 

Indeno[1,2,3-cd]pyrene C22H12 
 

 

Indene Benzologues (green structures in Figure A.3.) 

Indene C9H8   

Fluorene C13H10   

Benz[e]indene C13H10  � 

Benz[f]indene C13H10  � 

4H-Cyclopenta[def]phenanthrene C15H10 
 

 

Inden[2,1-a]indene C16H10  � 

Benzo[a]fluorene C17H12 
 

� 

Benzo[b]fluorene C17H12 
 

� 

4H-Cyclopenta[def]chrysene C19H12 
 

 

Cyclopenta-Fused PAH (red structures in Figure A.3.) 

Acenaphthylene C12H8   
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Table A.6. (continued) 

Product Name (by Class) Formula Structure 
First-Time Identification 

as Product of  

Propylene Pyrolysis? 

Pyracylene C14H8 
 

� 

Acephenanthrylene C16H10 
 

 

Aceanthrylene  C16H10  � 

Cyclopent[hi]acephenanthrylene C18H10 
 

� 

Cyclopenta[cd]pyrene C18H10 

 
� 

Cyclopenta[cd]fluoranthene C18H10 
 

� 

Ethynyl-Substituted Species (purple structures in Figure A.3.) 

2-Ethynylnaphthalene C12H8  � 

1-Ethynylacenaphthylene C14H8 
 

� 

3-Ethynylphenanthrene C16H10 
 

� 

2-Ethynylanthracene C16H10  � 
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Table A.6. (continued) 

Product Name (by Class) Formula Structure 
First-Time Identification 

as Product of  

Propylene Pyrolysis? 

Bi-aryls (gray structures in Figure A.3.) 

Biphenyl C12H10  � 

1-Phenylnaphthalene  C16H12 
 

� 

2-Phenylnaphthalene C16H12 
 

 

Methyl-Substituted Aromatics and Acenaphthene (light blue structures in Figure A.3.) 

1-Methylnaphthalene C11H10 
 

 

2-Methylnaphthalene C11H10   

3-Methylphenanthrene C15H12 
 

� 

1-Methylanthracene C15H12 
 

� 

2-Methylanthracene C15H12  � 

1-Methylpyrene C17H12 
 

� 

2-Methylpyrene C17H12 
 

� 
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Table A.6. (continued) 

Product Name (by Class) Formula Structure 
First-Time Identification 

as Product of  

Propylene Pyrolysis? 

4-Methylpyrene C17H12 
 

� 

Acenaphthene C12H10  � 

Vinyl-Substituted Aromatics (pink structures in Figure A.3.) 

1-Vinylnaphthalene C12H10 
 

� 

2-Vinylnaphthalene C12H10  � 

Phenalene-Type Compounds (olive structures in Figure A.3.) 

Phenalene C13H10 
 

� 

7H-Benz[de]anthracene C17H12 
 

� 

6H-Benzo[cd]pyrene C19H12 
 

� 

  



95 
 

Table A.7. PAH products of 1-pentene pyrolysis in Figure A.4. 

Product Name (by Class) Formula Structure 
First-Time Identification 

as Product of  

1-Pentene Pyrolysis? 

Benzenoid PAH (black structures in Figure A.4.) 

Naphthalene C10H8  � 

Phenanthrene C14H10  � 

Anthracene C14H10  � 

Pyrene C16H10 
 

� 

Benzo[c]phenanthrene C18H12 
 

� 

Triphenylene C18H12 
 

� 

Benz[a]anthracene C18H12 
 

� 

Chrysene C18H12  � 

Benzo[e]pyrene C20H12 
 

� 

Perylene C20H12 
 

� 

Benzo[a]pyrene C20H12 
 

� 
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Table A.7. (continued) 

Product Name (by Class) Formula Structure 
First-Time Identification 

as Product of  

1-Pentene Pyrolysis? 

Benzo[ghi]perylene C22H12 

 
� 

Anthanthrene C22H12 
 

� 

Dibenz[a,j]anthracene C22H14 

 
� 

Dibenz[a,h]anthracene C22H14 
 

� 

Benzo[b]chrysene C22H14 
 

� 

Coronene C24H12 
 

� 

Naphtho[2,1-a]pyrene C24H14 
 

� 

Dibenzo[cd,lm]perylene C26H14 
 

� 

Fluoranthene Benzologues (dark blue structures in Figure A.4.) 

Fluoranthene C16H10 
 

� 

Benzo[a]fluoranthene C20H12 

 
� 
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Table A.7. (continued) 

Product Name (by Class) Formula Structure 
First-Time Identification 

as Product of  

1-Pentene Pyrolysis? 

Benzo[j]fluoranthene C20H12 
 

� 

Benzo[b]fluoranthene C20H12 
 

� 

Benzo[k]fluoranthene C20H12 
 

� 

Indeno[1,2,3-cd]pyrene C22H12 
 

� 

Indene Benzologues (green structures in Figure A.4.) 

Indene C9H8  � 

Fluorene C13H10  � 

Benz[e]indene C13H10  � 

Benz[f]indene C13H10  � 

4H-Cyclopenta[def]phenanthrene C15H10 
 

� 

Inden[2,1-a]indene C16H10  � 

Benzo[a]fluorene C17H12 
 

� 
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Table A.7. (continued) 

Product Name (by Class) Formula Structure 
First-Time Identification 

as Product of  

1-Pentene Pyrolysis? 

Benzo[b]fluorene C17H12 
 

� 

4H-Cyclopenta[def]chrysene C19H12 
 

� 

4H-Benzo[def]-
cyclopenta[mno]chrysene 

C21H12 
 

� 

Cyclopenta-Fused PAH (red structures in Figure A.4.) 

Acenaphthylene C12H8  � 

Pyracylene C14H8 
 

� 

Acephenanthrylene C16H10 
 

� 

Aceanthrylene  C16H10  � 

Cyclopent[hi]acephenanthrylene C18H10 
 

� 

Cyclopenta[cd]pyrene C18H10 

 
� 

Cyclopenta[cd]fluoranthene C18H10 
 

� 
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Table A.7. (continued) 

Product Name (by Class) Formula Structure 
First-Time Identification 

as Product of  

1-Pentene Pyrolysis? 

Ethynyl-Substituted Species (purple structures in Figure A.4.) 

2-Ethynylnaphthalene C12H8  � 

1-Ethynylacenaphthylene C14H8 
 

� 

3-Ethynylphenanthrene C16H10 
 

� 

2-Ethynylanthracene C16H10  � 

2-Ethynylpyrene C18H10 
 

� 

Bi-aryls (gray structures in Figure A.4.) 

Biphenyl C12H10  � 

1-Phenylnaphthalene  C16H12 
 

� 

2-Phenylnaphthalene C16H12 
 

� 

Methyl-Substituted Aromatics and Acenaphthene (light blue structures in Figure A.4.) 

1-Methylnaphthalene C11H10  
� 
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Table A.7. (continued) 

Product Name (by Class) Formula Structure 
First-Time Identification 

as Product of  

1-Pentene Pyrolysis? 

2-Methylnaphthalene C11H10  � 

3-Methylphenanthrene C15H12 
 

� 

1-Methylanthracene C15H12 
 

� 

2-Methylanthracene C15H12  � 

1-Methylpyrene C17H12 
 

� 

2-Methylpyrene C17H12 
 

� 

4-Methylpyrene C17H12 
 

� 

Acenaphthene C12H10  � 

Vinyl-Substituted Aromatics (pink structures in Figure A.4.) 

1-Vinylnaphthalene C12H10 
 

� 

2-Vinylnaphthalene C12H10  � 
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Table A.7. (continued) 

Product Name (by Class) Formula Structure 
First-Time Identification 

as Product of  

1-Pentene Pyrolysis? 

Phenalene-Type Compounds (olive structures in Figure A.4.) 

Phenalene C13H10 
 

� 

7H-Benz[de]anthracene C17H12 
 

� 

6H-Benzo[cd]pyrene C19H12 
 

� 
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Figure A.1. (a) carbon-atom balance and (b) hydrogen-atom balance of propylene pyrolysis (blue 
bars), 1-butene pyrolysis (red bars), and 1-pentene pyrolysis (green bars) at 0.31 s.  

 

 

 

 

0

20

40

60

80

100

120

6
0

0

6
5

0

7
0

0

7
5

0

8
0

0

8
5

0

9
0

0

9
5

0

1
0

0
0

%
 F

e
d

 H
 a

s
 H

 i
n

 M
e

a
s

u
re

d
 P

ro
d

u
c

ts

Temperature (°C)

Hydrogen-Atom Balance

0

20

40

60

80

100

120

6
0

0

6
5

0

7
0

0

7
5

0

8
0

0

8
5

0

9
0

0

9
5

0

1
0

0
0

%
 F

e
d

 C
 a

s
 C

 i
n

 M
e

a
s

u
re

d
 P

ro
d

u
c

ts

Temperature (°C)

Carbon-Atom Balance (a) (b)



103 
 

 

Figure A.2. Yield, as function of temperature, of product H2 from propylene pyrolysis (blue 
squares and curve), 1-butene pyrolysis (red circles and curve), and 1-pentene pyrolysis (green 
triangles and curve) at 0.31 s. 
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Figure A.3. HPLC chromatogram of the products of 1-pentene pyrolysis at 1000 °C and 0.31 s. The product compounds are color-coded 
by structural class: benzenoid PAH (black), ethynyl-substituted species (purple), vinyl-substituted PAH (pink), cyclopenta-fused PAH 
(red), fluoranthene benzologues (dark blue), indene benzologues (green), methyl substituted aromatics and acenaphthene (light blue), 
bi-aryls (grey), and phenalene-type compounds (olive).  The names, molecular formulae, and structures of all the PAH products from 
propylene pyrolysis appear in Table A.6 in the Appendix. 
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Figure A.4. HPLC chromatogram of the products of propylene pyrolysis at 1000 °C and 0.31 s. The product compounds are color-coded 
by structural class: benzenoid PAH (black), ethynyl-substituted species (purple), vinyl-substituted PAH (pink), cyclopenta-fused PAH 
(red), fluoranthene benzologues (dark blue), indene benzologues (green), methyl substituted aromatics and acenaphthene (light blue), 
bi-aryls (grey), and phenalene-type compounds (olive).  The names, molecular formulae, and structures of all the PAH products from 
1-pentene pyrolysis appear in Table A.7 in the Appendix. 
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