
Louisiana State University Louisiana State University 

LSU Scholarly Repository LSU Scholarly Repository 

LSU Master's Theses Graduate School 

2017 

Development of Laboratory Scale Conical Spouted Bed Reactors Development of Laboratory Scale Conical Spouted Bed Reactors 

James Blake Gegenheimer 
Louisiana State University and Agricultural and Mechanical College 

Follow this and additional works at: https://repository.lsu.edu/gradschool_theses 

 Part of the Mechanical Engineering Commons 

Recommended Citation Recommended Citation 
Gegenheimer, James Blake, "Development of Laboratory Scale Conical Spouted Bed Reactors" (2017). 
LSU Master's Theses. 4414. 
https://repository.lsu.edu/gradschool_theses/4414 

This Thesis is brought to you for free and open access by the Graduate School at LSU Scholarly Repository. It has 
been accepted for inclusion in LSU Master's Theses by an authorized graduate school editor of LSU Scholarly 
Repository. For more information, please contact gradetd@lsu.edu. 

https://repository.lsu.edu/
https://repository.lsu.edu/gradschool_theses
https://repository.lsu.edu/gradschool
https://repository.lsu.edu/gradschool_theses?utm_source=repository.lsu.edu%2Fgradschool_theses%2F4414&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/293?utm_source=repository.lsu.edu%2Fgradschool_theses%2F4414&utm_medium=PDF&utm_campaign=PDFCoverPages
https://repository.lsu.edu/gradschool_theses/4414?utm_source=repository.lsu.edu%2Fgradschool_theses%2F4414&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:gradetd@lsu.edu


 
 

i 
 

DEVELOPMENT ON LABORATORY SCALE CONICAL SPOUTED BEDS 

 

 

 

 

 

 

 

 

 

 

 

 

A Thesis   

 

Submitted to the Graduate Faculty of the   

Louisiana State University and   

Agricultural and Mechanical College  

in partial fulfillment of the  

requirements for the degree of  

Master of Science  

 

in  

 

The Department of Mechanical Engineering              

 

 

 

 

 

 

 

 

 

 

 

by 

James Blake Gegenheimer 

B.S.M.E., Louisiana State University, 2016 

May 2017 



 
 

ii 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Dedicated to my mother and father, Mr. and Mrs. David Gegenheimer 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 
 

iii 
 

ACKNOWLEDGEMENTS  

 

This thesis would not have been possible without the encouragement and support of my 

major professor, Dr. Ingmar Schoegl. Since beginning of my career in the graduate school, he 

has been more than generous with making sure I was able to complete my degree in the allotted 

time. This thesis would not have been possible without his consistent support and input.  

I would like to thank the members of my committee, Dr. Ram Devireddy, Dr. Keith 

Gonthier and Lt Col William Magee. Dr. Devireddy sparked my knowledge in thermal-fluid 

systems early in my undergraduate career and Dr. Gonthier solidified it through both of their 

rigorous and challenging lectures.  

I would like to thank the Air Force for allowing me an educational delay so that I would 

be able to complete my master’s degree. The Air Force has been generous enough to pay for my 

undergraduate degree and free me from the financial burdens that allowed me to focus on my 

academics and attain a master’s degree. 

I would like to give a special thanks to Charlie Wilson, who gave me constant support 

and was an amazing resource when writing this thesis. Without him, this work would not be what 

at the current standard.  

I am especially grateful of my parents, David and Kristen Gegenheimer, who have 

continuously supported me throughout my career and have been willing to give everything so 

that I may pursue my educational and personal goals. I would not be where I am without the 

drive that they have always instilled in me. 

 

 



 
 

iv 
 

TABLE OF CONTENTS 

ACKNOWLEDGEMENTS ........................................................................................................... iii 

LIST OF TABLES ......................................................................................................................... vi 

LIST OF FIGURES ...................................................................................................................... vii 

ABSTRACT ................................................................................................................................... ix 
 

CHAPTER 

1 INTRODUCTION ....................................................................................................................... 1 

1.1 Research Motivation and Problem Statement ....................................................................... 1 

1.2 History ................................................................................................................................... 2 

1.3 Fluidized and Spouted Bed Characteristics ........................................................................... 3 

1.4 Thesis Structure ..................................................................................................................... 5 

2 SPOUTING FUNDAMENTALS ................................................................................................ 7 

2.1 Flow Regimes ........................................................................................................................ 7 

2.2 Flow Hysteresis ................................................................................................................... 10 

2.2.1 Internal Spouting .......................................................................................................... 11 

2.2.2 Peak Pressure Drop ....................................................................................................... 12 

2.3 Geometric System Description............................................................................................ 13 

2.4 Unstable Spouting ............................................................................................................... 14 

2.4.1 Inlet Diameter/Particle Diameter Ratio (Di/dp) ............................................................ 14 

2.4.2 Inlet Diameter/Cone Bottom Diameter (Di/Do) ............................................................ 14 

2.4.3 Cone Angle ................................................................................................................... 15 

2.4.4 Maximum Spoutable Bed Height ................................................................................. 15 

2.5 Existing Correlations for Minimum Spouting Velocity ...................................................... 16 

3 METHODS ................................................................................................................................ 18 

3.1 CSB Design ......................................................................................................................... 18 

3.1.1 CSB Production ................................................................................................................ 20 

3.2 Control System .................................................................................................................... 21 

3.2.1 Mass Flow Controller ................................................................................................... 21 

3.2.2 Pressure Transducer ...................................................................................................... 22 

3.3 Experimental Parameters..................................................................................................... 22 

3.3.1 Spouting Media............................................................................................................. 22 

3.3.2 Stagnated Bed Height ................................................................................................... 23 

3.3.3 Working Fluid............................................................................................................... 23 

3.3.4 Inlet Diameter ............................................................................................................... 23 

3.4 Data Acquisition .................................................................................................................. 24 

3.5 Data Processing ................................................................................................................... 25 

3.5.1 Spouting Velocity Determination ................................................................................. 25 

3.6 Sources of Uncertainty ........................................................................................................ 27 



v 

3.6.1 Instrumentation Uncertainty ......................................................................................... 28 

3.6.2 Spouting Point Determination Uncertainty .................................................................. 28 

3.7 Statistical Methods .............................................................................................................. 30 

4 RESULTS AND DISCUSSION ................................................................................................ 32 

4.1 Minimum Spouting Velocity ............................................................................................... 32 

4.1.1 Pressure Curves ............................................................................................................ 33 

4.1.2 Minimum Velocity as a Function of Bed Height ......................................................... 34 

4.1.2.1 Aluminum Oxide Spouting Media, Air, 60° Cone Angle ...................................... 35 

4.1.2.2 Porcelain Spouting Media ...................................................................................... 36 

4.1.2.3 45° Cone Angle ...................................................................................................... 37 

4.1.2.4 Helium and Argon.................................................................................................. 38 

4.3 Evaluation of Correlations for Minimum Spouting Velocity.............................................. 39 

4.4 Parameter Correlations ........................................................................................................ 45 

4.4.1 Stagnated Bed Height and Inlet Diameter (H0/D0) ....................................................... 46 

4.4.2 Solid-Gas Properties ..................................................................................................... 47 

4.4.2.1 Archimedes Number .............................................................................................. 48 

4.4.2.1 Particle Diameter ................................................................................................... 49 

4.4.2.2 Stagnated Bed Voidage (ɛ) .................................................................................... 49 

4.4.3 Cone Angle ................................................................................................................... 52 

4.4.4 Correlation Error ........................................................................................................... 53 

4.4.4.1 Particle Density Uncertainty .................................................................................. 54 

4.5 Correlation Comparison to Previous Study ......................................................................... 55 

4.6 Spouting Instabilities ........................................................................................................... 57 

4.7 Internal Spouting Trends ..................................................................................................... 58 

5 CONCLUSION .......................................................................................................................... 64 

5.1 Conclusion ........................................................................................................................... 64 

5.2 Future Work and Recommendations ................................................................................... 65 

REFERENCES ............................................................................................................................. 66 

APPENDIX ................................................................................................................................... 71 

DATA ACQUISITION AND PROGRAMMING........................................................................ 71 

A.1 Mass Flow Controller ......................................................................................................... 71 

A.2 Pressure Transducer ........................................................................................................... 72 

A.3 SD Card Reader .................................................................................................................. 73 

A.4 Digital to Analog Converter ............................................................................................... 73 

A.5 Flow Rate of Change .......................................................................................................... 74 

A.6 Arduino Code ..................................................................................................................... 74 

Vita ................................................................................................................................................ 78 



 
 

vi 
 

LIST OF TABLES 

Table 1: Existing Spouting Velocity Correlations [2, 3, 4, 5, 6, 7, 8, 9] ...................................... 16 

Table 2: Parameters of Various Correlations Found in Table 1 ................................................... 17 

Table 3: Parameter Comparison Between the Previous and Present Study [31] .......................... 22 

Table 4: Spouting Media Properties ............................................................................................. 23 

Table 5: Changing Parameters for Current Study ......................................................................... 24 

Table 6: Figures 23-30 Legend ..................................................................................................... 39 

Table 7: Correlation Error ............................................................................................................. 45 

Table 8: Stagnated Bed Voidage Values ...................................................................................... 50 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 
 

vii 
 

LIST OF FIGURES 

Figure 1: CSB Fountain Geometry [1]............................................................................................ 1 

Figure 2: Typical Flow Phases Found for a Fluidized Bed [19] ..................................................... 4 

Figure 3: Typical Spout Produced in a Conventional Spouted Bed [20] ........................................ 5 

Figure 4: Spouting regimes for different inlet velocity: fixed bed (a), stable spouting operation 

(b), transition regime (c), and jet spouting (d) [2] .......................................................................... 7 

Figure 5: Theoretical Pressure-Velocity Curve for CSB [31] ........................................................ 9 

Figure 6: Pressure Curves Found for Gorshtein (1964) [34, 2] .................................................... 11 

Figure 7: CSB Geometry [31] ....................................................................................................... 13 

Figure 8: Conical Section of the Designed CSB ........................................................................... 19 

Figure 9: Base Section of the Designed CSB ............................................................................... 19 

Figure 10: Final CSB Design and Testing Apparatus ................................................................... 20 

Figure 11: Final CSB Design with Spouting Media ..................................................................... 20 

Figure 12: Typical Pressure Curve found in the study (H0=50mm, D0=6.35mm, θ=60°, dp=686 

μm, Gas=Air, ρp=3950)................................................................................................................. 27 

Figure 13: Static Cling Observed by Porcelain Particles .............................................................. 29 

Figure 14: Pressure Curve for D0=6.35mm, θ=60°, dp=686μm, Gas=Air, ρp=3950kg/m3 ........... 33 

Figure 15: Pressure Curve for D0=4.468mm, θ=60°, dp=686μm, Gas=Air, ρp=3950kg/m3 ......... 33 

Figure 16: Results for θ=60°, Gas=Air, Aluminum Oxide Particles ............................................ 35 

Figure 17: Results for θ=60°, Gas=Air, Aluminum Oxide Particles ............................................ 35 

Figure 18: Results for Gas=Air, Porcelain Particles ..................................................................... 36 

Figure 19: Results for θ=45°, Gas=Air, ρp=3950kg/m3 ................................................................ 37 

Figure 20: Results for θ=60°, Aluminum Oxide Particles ............................................................ 38 

Figure 21: Various Correlations Predictive Power Compared to Measured Results .................... 39 

Figure 22: Mukhlenov Correlation ............................................................................................... 40 

Figure 23: Tsvik Correlation ......................................................................................................... 41 



 
 

viii 
 

Figure 24: Olazar Correlation I ..................................................................................................... 41 

Figure 25: Olazar Correlation II ................................................................................................... 42 

Figure 26: Gorshtein Correlation .................................................................................................. 42 

Figure 27: Markowski Correlation................................................................................................ 43 

Figure 28: Choi Correlation .......................................................................................................... 43 

Figure 29: Bi Correlation .............................................................................................................. 44 

Figure 30: H0 Power Law Comparison (D0=6.35mm, θ=60°, dp=686μm, Gas=Air, Aluminum 

Oxide Particles) ............................................................................................................................. 46 

Figure 31: Porcelain Spouting Media ........................................................................................... 50 

Figure 32: Aluminum Oxide Spouting Media (dp=1.092mm) ...................................................... 51 

Figure 33: Aluminum Oxide Spouting Media (dp=0.483mm) ...................................................... 51 

Figure 34: Correlation Error with 90% Confidence Interval ........................................................ 53 

Figure 35: Correlation Error ......................................................................................................... 54 

Figure 36: Sharma Correlation...................................................................................................... 56 

Figure 37: Unfiltered/Raw Pressure Curve for H0=40mm, D0=6.35mm, θ=60°, dp=1092μm, 

Gas=Air, Aluminum Oxide Particles ............................................................................................ 59 

Figure 38: Unfiltered/Raw Pressure Curve for H0=40mm, D0=4.47mm, θ=60°, dp=1092μm, 

Gas=Air, Aluminum Oxide Particles ............................................................................................ 59 

Figure 39: Unfiltered/Raw Pressure Curve for H0=40mm, D0=4.47mm, θ=60°, dp=483μm, 

Gas=Air, Aluminum Oxide Particles ............................................................................................ 61 

Figure 40: Unfiltered/Raw Pressure Curve for H0=45mm, D0=6.35mm, θ=60°, dp=1000μm, 

Gas=Air, Porcelain Particles ......................................................................................................... 62 

Figure 41: Unfiltered/Raw Pressure Curve for H0=40mm, D0=3.30mm, θ=60°, dp=1000μm, 

Gas=Air, Porcelain Particles ......................................................................................................... 62 

Figure 42: Block Diagram of DAQ System Communication ....................................................... 71 

 

 

 

 



 
 

ix 
 

ABSTRACT 

Conical spouted beds (CSBs) are a form of a fluidized bed that is characteristic of its 

spouting behaviors. The conical spouted bed has a small inlet that diverges through a conical 

section towards a larger fixed-diameter column which is filled with static spouting media. By 

injecting a fluid at a sufficient velocity, a small spout will form in which the spouting media will 

become entrained by the fluid particles and carried to the top of the system where it will circulate 

back into the system. It has been shown that CSB reactors have the potential for increasing the 

heat circulation in fuel reforming techniques used for the production of hydrogen rich syngas. 

This thesis investigates the design and behavior of a cold-flow laboratory scaled conical spouted 

bed (CSB) including the effects of system parameters such as the stagnated bed height, inlet 

diameter, cone angle, particle selection and fluid selection. These parameters were varied 

through a series of test in which the pressure was measured with respect to the inlet gas velocity 

to determine the minimum spouting point. Previous correlations are compared to measured data 

and it was found that these correlations were insufficient at predicting the measured points 

accurately. This is due to separate parameters being used and scaled differently than the current 

study. Therefore, a new correlation is presented with an average error of 8.2% - significantly less 

than that of other correlations. The behaviors found were expected based on the physical 

hydrodynamic behavior as well as other behaviors being detailed including the effects of internal 

spouting and unstable spouting. With a fundamental hydrodynamic study complete, the addition 

of chemical reactions may be introduced to further understand the effects of CSB reactors for 

more efficient production of eco-friendly fuel sources. 
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CHAPTER 1 

INTRODUCTION 

1.1 Research Motivation and Problem Statement 

With constant fluctuations in the fossil fuel industry, an increasing demand for alternative 

energy sources  has been a rising concern for the last few decades. Many chemical fuels such as 

hydrogen and syngas (mixture of hydrogen and carbon monoxide), have processes developed for 

production, but need further, more efficient developments. A proposal for such a development is 

for the use of conical spouted bed (CSB) reactors.  

The conical spouted bed, as shown in Figure 1 is a vessel that has a small inlet that 

diverges through a conical section towards a larger fixed-diameter column which is filled with 

static spouting media. By injecting a fluid with enough momentum, a small hollowed channel, 

that has similar dimensions to the inlet diameter, can form. Once the fluid exists the channel 

formed by spouting media, it will diffuse rapidly into the larger column region. As spouting 

media fall from the annular region into the core, they are carried by the fluid to the top of the bed 

where they will fall back into the column or annular region creating a circulatory pattern.  

 

Figure 1: CSB Fountain Geometry [1] 
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A CSB may be used for fuel production by utilizing fuel reforming techniques in its core. 

The introduction of a spouting media can further promote heat transfer in the particles from the 

dense fluid-particle interaction giving it an advantage over traditional reactors. However, before 

this study can begin, an investigation into the hydrodynamic behavior of CSBs must be 

performed without the occurrence of chemical reactions. To simulate the high temperature flow 

that would occur in a CSB reactor, different gases will be used to vary the fluid density and 

viscosity – the predominant fluid properties affecting the hydrodynamic CSB behavior. 

The particular point of interest is the minimum velocity required for spouting as this point 

yields the largest gas residence time (time in which the fluid and spouting media are in contact) 

while providing solid particle circulation. While a multitude of correlations for the minimum 

spouting velocity can be found in current literature, none of the experimental apparatuses used 

were scaled comparably to the current research needs [2, 3, 4, 5, 6, 7, 8, 9]. It is therefore the 

goal of this study to develop a non-diminsionalized correlation that accurately predicts velocity 

required to achieve stable spouting. A range of solid particle sizes and densities, gases, inlet 

diameters, and bed heights will be used to frame the correlation. With the development of an 

analytical correlation and sufficient trends, this work may be used to further research into the 

development of small scale CSB reactors used for fuel reforming techniques such as pyrolysis.  

1.2 History 

Fluidized beds have been in use in industry since 1879 with applications such as ore 

roasting, drying of grains and pneumatic conveying in which particles can be circulated into a 

system where the fluid momentum pushes particles through to a collection port at the top. In the 

process of particle transport, the particles may be dried or heated by the fluid based on its 

physical properties [10]. The idea of the spouted bed, a subset to the fluidized bed, was first 
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introduced to the research community by Gishler and Mathur in 1954 at the National Research 

Council of Canada (NRCC) as a denser solid phase alternative [11, 12]. The fluidized bed was 

insufficient for drying of wheat particles as the wheat was less characterized in shape and had a 

mean particle size too large for fluidization, where of slugging, an unwanted phase of fluidized 

beds, would often occur [12]. It was at this point that the NRCC initiated further research and 

found that the spouted bed “appears to achieve the same purpose for coarse particles as 

fluidization does for fine materials” [13]. However, as the application of spouted beds have 

widened in the 50 years since, this has been shown to not be the case as fluidization and spouting 

having separate features that will be discussed in the next section [14].  

Spouted beds gained much more popularity in 1959 with the book titled Fluidization in 

which the spouted bed was introduced as its own chapter [15]. Since then, over 1300 works have 

been published with a variety of applications, such as: coal combustion, solid blending, cooling, 

granulation and coating, electrolysis in liquid spouted beds and drying of grains and evaporative 

solutions [14, 16, 17]. In more recent years, there has been a major shift from using spouted beds 

for industrial purposes towards laboratory experiments where the effectiveness of various 

purposes can be accurately studied.  

1.3 Fluidized and Spouted Bed Characteristics  

The fluidized bed and spouted bed have similar features and have been used to achieve 

similar results until only recently (1954-present) with findings showing each variation exceling 

at separate task [14]. The fluidized bed is a very general term that characterizes a multitude of 

sub-systems where it utilizes multi-phase mixing in which a gas is sent through a solid spouting 

media similarly to the spouted bed. The most classic fluidized beds use finer spouting media (20-
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600μm), larger gas inlet offices and smaller particle densities (1.4-4g/cm3) in which the goal is 

not to not create a spout, but to entrain the particles in a fluidized state [18].  

 

 

Figure 2: Typical Flow Phases Found for a Fluidized Bed [19] 

Depending on the momentum of the fluid, the bed can have multiple phases of solid-fluid 

interaction as shown in Figure 2. These phases generally include: incipient fluidization, a fluid 

bed, a floating bed and pneumatic transportation. As discusses previously, when larger, coarser, 

and less characterized particles were placed into fluidized beds the fluid momentum was not 

sufficient in creating a fluidized state giving birth to the conventional spouted bed.  

The conventional spouted bed is based on a cylindrical cone that diffuses to a fixed 

diameter column as shown in Figure 3. Conventional spouted beds require higher flow rates due 

to spouting media being located at a pre-determined height in the column. The conical spouted 

bed (CSB), a variation of the conventional bed is a newer field of study that has been developed 

as the research needs of spouted beds has evolved [21]. CSBs, as seen Figure 1, have spouting 

media located only in the conical region of the bed allowing for larger, courser and less uniform 

spouting media to be used compared to the conventional spouted bed [13].  
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Figure 3: Typical Spout Produced in a Conventional Spouted Bed [20] 

Though these coarser, larger particles create a more chaotic and random motion, it also 

increases the circulation of the particles which can allow for shorter gas-solid contact, or 

residence time, useful in certain applications [21]. Due to these modifications of the CSB, it has 

been shown to be more useful in applications such as coal gasification, pyrolysis, and catalytic 

polymerization [22, 23, 24, 25, 26]. Additional features of CSBs include less particle segregation 

compared to a fluidized bed. However, while particle segregation is a positive feature that could 

reduce the residence time of the gas, it can also be a challenge when agglomeration occurs due to 

fusing particles [27, 28, 29, 30].  

1.4 Thesis Structure 

Now that the basic structure of the conical spouted bed has been detailed, more specific 

topics may be addressed. Chapter 2 will be a literature review describing the fundamentals of 

spouting. It will describe the system and flow regimes commonly found as well as the hysteresis 

observed. The hysteresis is the separate paths taken by the fluid between the ascending and 

descending velocity processes and the separate spouting point that can be achieved as a result. 
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While it is important to understand both aspects, the descending process will be used as the 

scope of the research as it is the absolute minimum velocity required for spouting as discussed in 

Chapter 2. Unstable spouting will also be discussed as it should be taken into account when 

designing the test parameters for the CSB. The chapter will end with existing empirical 

correlations that can be found in the literature. 

Chapter 3 will deal with the methods used to build and test the CSB. Included is the 

design used for the control system to create an automated process to operate testing. 

Experimental parameters will also be explained in greater detail and how they vary compared to 

the existing literature. Data processing is discussed in the determination of the minimum 

spouting velocity and the statistical methods used to determine the validity of the results.  

Chapter 4 will describe the results found from testing. This includes comparing results to 

existing correlations and the accuracy and precision of the results. An empirical correlation based 

on measured results is also presented where each parameter is discussed on its effect to the 

minimum spouting velocity. Other topics in this chapter include instabilities found in certain 

testing parameters and internal spouting. Chapter 5 will end with conclusions of the work and 

future recommendations when the next phase of research begins utilizing fuel reforming 

techniques.  
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CHAPTER 2 

SPOUTING FUNDAMENTALS 
 

With the introduction of the CSB in 1954, an assortment of literature has been published 

that detail the behavior and physics of the CSB from a variety of contexts. This chapter is 

essentially a literature review and will focus on the previous trends and results found and their 

importance to accomplishing the goals of the current research. These topics include the system 

description and flow regimes followed by other possible CSB features including unstable 

spouting, internal spouting and the pressure drops felt across the bed. All of these aspects must 

be studied to understand the geometric specifications to which the CSB should be built as well as 

proper parameter selection. These aspects will also be important to understand the physical 

meaning behind the results that will be presented in Chapter 4. 

2.1 Flow Regimes 

 

 

 

 

Figure 4: Spouting regimes for different inlet velocity: fixed bed (a), stable spouting operation 

(b), transition regime (c), and jet spouting (d) [2] 
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As the gas inlet velocity is increased, an evolution will occur in the spouting media as 

shown in Figure 4. This evolution is described as happening in four dominant flow phases. The 

first phase, a static or fixed bed, would be found at low flow rates where the fluid momentum is 

insufficient to break through the spouting media. At a sufficient fluid momentum, a channel will 

form breaking through from the base of the CSB to the top of the bed of particles thus creating a 

stable spout. The spout will create a circulatory pattern in the spouting media where the particles 

agglomerate on the walls where they diffuse to the hollowed core and are then carried to the top 

of the channel by the fluid momentum [14].  

The third, or transition, phase is not as well characterized compared to the first two 

phases. This phase is the intermediate process between the formation of the spout and the fourth 

phase, jet or dilute spouting. The last phase is characterized when there is no agglomeration of 

particles on the conical walls of the CSB. While jet spouting is similar to a fluidized state, 

significant differences still exist between a CSB and fluidized bed. A fluidized bed is 

characterized by the solid particles acting in a state of disorder while the jet spouting phase still 

has a circulatory pattern as seen in (d) of Figure 4. It should also be noted that additional 

bubbling and slugging phases can exist at higher bed heights in the conventional spouted bed. 

These phases are undesirable for most applications as they are non-uniform and non-

axisymmetric giving the conical spouted bed an advantage over the conventional spouted bed 

[14]. 
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Figure 5: Theoretical Pressure-Velocity Curve for CSB [31] 

While Figure 4 shows a visual representation of the spouting phases, the most common 

method used to determine the phase is not by visual means, but by measuring the pressure with 

respect to fluid velocity which yields Figure 5. The spouting phase is characterized at the end of 

the peak pressure drop, or at approximately 5m/s in this example. The transition region is much 

less defined as it happens over a range of inlet velocities eventually leading to jet or dilute 

spouting. It is often found that the transition region is even less noticeable than seen in Figure 5 

making it difficult to decipher [4, 32, 33]. Visual determination can even be more reliable in 

some cases depending on instrument sensitivity. Also notice the pressure drop across at the 

formation of spouting or pressure needed to break through the bed of particles represented as the 

breaking  

Further, other aspects of Figure 5 also do not portray a perfect representation of the phase 

diagram. The individual geometry of each apparatus can cause deviations in the pressure curves; 

however, it is accepted as a theoretical curve one would expect to obtain.  
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2.2 Flow Hysteresis  

Similar to the concept of a static and dynamic coefficient of friction, flow hysteresis is 

present in CSBs creating a separate ascending and descending process with respect to the gas 

velocity. The hysteresis is caused due to channeling in the bed, or the internal spout evolution. 

As the fluid momentum forges a path through the spouting media, a compacted dome at the top 

of the bed is formed as a product forcing particles to an unpacked state from the bottom up and 

therefore, causing more resistance. On the other hand, the uncompacted dome (particles 

collapsing from an unpacked circulatory state to a packed state) transpires when the channeling 

bed is decreasing where the particles become packed from the top down which causes less 

resistance [34, 35]. Put simply, it is easier to let the particles be packed together from the top 

down, than unpacked from the top up.  

The resulting change in resistance can be evident through a reduced frictional pressure 

drop and a reduced minimum velocity. Further studies from Wang, interrupted the spout in the 

ascending process and dropped it to a lower value to find that the pressure drop was 

discontinuous and began to follow the descending path [34]. Near similar effects were found 

when interrupting the descending process, but the original ascending pressure was never reached. 

Whether ascending or descending, once the process was placed back on the correct path, it 

returned to the original pressure thus confirming the internal spouts role in the flow hysteresis. 

Both ascending and descending paths will converge once the spout has been formed due to flow 

hysteresis being a function of the internal spout alone [14, 34].  
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2.2.1 Internal Spouting 

As previously stated, an internal spout must develop before external spouting can occur. 

However, the degree of internal spouting is dependent on the explicit geometry of the CSB.   

Stagnated internal spouting, or internal spouts that remain in place for a moderate range of flow 

rates, can have a role in the formation of the external spout and the observed pressure drop [34]. 

Most literature points to pressure curves seen in Figure 5, in which the peak pressure is the onset 

of internal spouting and the lack of a further drop in pressure represents the fully realized 

external spout [7, 33, 5, 36, 37, 38]. In these cases, internal spouting is rapid, but some authors 

have found internal spouting to happen over a wider range [2, 3, 4, 32].  

 

Figure 6: Pressure Curves Found for Gorshtein (1964) [34, 2] 

 Gorshtein and Mukhlenov found the onset of external spouting (Ui,2) to be located after 

the frictional pressure drop (Figure 6), once transitional spouting occurred [2]. In this case, an 

external spout has formed with the peak pressure drop and remained stagnated between Ui,1  and 

Ui,2 until the external spout formed. Note that the pressure drop representing external spouting 

significantly smaller and can almost be overlooked compared to the internal spout. 
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2.2.2 Peak Pressure Drop 

While multiple pressure drops occur over the flow regimes of CSBs, the maximum 

pressure drop occurring between the onset of internal and external spouting is a point of interest 

as it is an indicator of the internal friction and spouting. Unlike the onset velocity of external 

spouting, the related pressure drop is a contested facet in the spouted bed field. Mukhlenov and 

others have made obvious positive correlations between bed height and the peak pressure drop; 

however, this has been contested by Olazar and Gelprin who have received criticism for their 

negative correlation [3, 38, 39, 14]. Other contested points include cone angle and the role it 

plays [40, 41]. There also seems to be objections into the repeatability of the peak pressure drop. 

While Wang found that the descending peak pressure drop was repeatable, this was not the case 

for the ascending process giving way to the idea that the initial packed state of the bed is crucial 

to the frictional pressure drop occurred in the ascending process [34]. Some studies have gone 

into further depth in the formation of internal spouts by measuring the pressure gradient at 

various heights from the inlet diameter to the maximum bed height [40].  

It should be noted that the order of magnitude of peak pressure drop expected for the 

current experiment scale is ~1kPa. This change in pressure would correspond to a 1% change in 

fluid density and temperature for air and comparably small amounts for other fluids. Coupled 

with large pressure drops found upstream to drive the flow, the peak pressure drop is not in the 

scope of the current study in a quantitative manner; rather, the essential trends will be analyzed.  
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2.3 Geometric System Description 

  

  
 

Figure 7: CSB Geometry [31] 

 

 A range of parameters exist that characterize the CSB and can be groups into three 

categories: geometric, fluid, and spouting media properties. Figure 7 shows the standard 

nomenclature used to represent the geometric parameters. Di represents the diameter of the inlet 

air pipe while D0 represents the inlet diameter of the cone which may be separate values. H0 

represents the stagnated bed height of the particles. If H0 > Hc, then the system is described as a 

conventional spouted bed, whereas for this study, H0 < Hc so the system remains defined as a 

conical spouted bed (CSB). Dc is the diameter of the column. 

 The fluid properties used include the viscosity (μ) and density (ρ) while the spouting 

media is characterized by the particle density (ρp) and mean particle diameter (dp). Combined, 

these properties characterize the CSB with a well followed nomenclature in the literature. 
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2.4 Unstable Spouting 

The phenomenon of unstable spouting is also a condition to be considered in spouted 

beds and commonly happens for two reasons. The first is due to the periphery of the external 

spout continuously opening and closing while the second is due to spouting media sinusoidaly 

collapsing into the core of the spout [14]. Though these features are separate and unique, a 

combination of the two is most common as they are near indistinguishable without the assistance 

of an optical study. 

Unstable spouting is undesirable as it interrupts the normal circulation of the spouted bed 

and is more difficult to determine from the pressure due to high fluctuations from the 

continuously opening and closing spout. Certain factors have been shown to affect the spouting 

velocity in which the main focus is the geometric conditions of the CSB [7]. These factors 

include the ratio of Di/dp, Di/Do, θ, and a maximum spoutable bed height and will be discussed 

below.  

2.4.1 Inlet Diameter/Particle Diameter Ratio (Di/dp) 

Mathur found strong differences between conventional and conical spouted beds in the 

inlet diameter/particle diameter ratio (Di/dp) [35]. For conventional beds, this ratio was said to be 

less than 30 for stable spouting while 2-60 for conical beds. This hints that this 

nondimensionalized factor may be a weak function of stability in CSBs as compared to 

conventional beds. This also supports the idea that CSBs can use a larger variety of particle sizes. 

2.4.2 Inlet Diameter/Cone Bottom Diameter (Di/Do) 

It was found by Olazar that a minimum and maximum value exist for the inlet 

diameter/cone diameter (Di/Do) [7]. A minimum intuitively exists due to flow separation – a dead 

space for the fluid created from the sudden expansion. Seemingly, this can create circulatory 
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issues at the base of the spout causing instabilities [42]. The minimum ratio was found to be 0.5 

while a maximum was found to be 0.83. However, an upper limit is not as intuitive as the lower 

limit. Olazar stated that this limit may be exceeded, but will be less likely in producing a stable 

spout [7]. This effect is due to non-agglomerating particles at the base of the discontinuity of the 

inlet diameter. 

2.4.3 Cone Angle 

Intuition can once again lead to a minimum cone angle to produce spouting. A cone angle 

of 0° would results in a straight column which would hinder the circulation of any particles and 

defeat the purpose of the spouted bed by creating a fluidized bed. Instability, however, is a factor 

in the CSB due to larger, coarser particles. The lower limit has been found to be 28° by Olazar 

and was confirmed by Sharma at 30° in the previous study at LSU with a model scaled exactly as 

the current study [7, 31]. It should be noted that while an upper limit does not exist, higher 

angles (approaching 180°) provide little to no circulation also defeating the purpose of the 

spouted bed [14]. 

2.4.4 Maximum Spoutable Bed Height  

While the phases of slugging and bubbling beds were avoided in CSBs compared to 

conventional beds, it can still occur if the bed heights are sufficiently large and have larger 

particle sizes. While a quantitative correlation has not been deduced, qualitative correlations state 

that the maximum spoutable bed height increases as: particle diameter decreases, Di/Do 

decreases, and the cone angle increases [43]. Due to the small scale nature of the apparatus used 

in the current study, the maximum spoutable bed height was never of serious concern.  
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2.5 Existing Correlations for Minimum Spouting Velocity 

A multitude of correlations can be found to determine the minimum spouting velocity for 

conical spouted beds. A non-diminsionalized Reynolds number ((Rems)0), is generally used with 

a power law curve fit with non-diminsionalized parameters. Table 1 shows the correlations that 

will be used as a reference in this study. A parameter occasionally used, but not specified to this 

point is Db, or the diameter of the spouting media at the bed height of H0. This can easily be 

determined from geometry of the system. 

 

Table 1: Existing Spouting Velocity Correlations [2, 3, 4, 5, 6, 7, 8, 9] 

Source Correlation 

Bi et al. (1997) (Reo)ms = [0.30 − 0.27 (Db Do⁄ )2⁄ ]√Ar (Db Do⁄ )[(Db Do⁄ )2 + (Db Do⁄ ) + 1]/3 

Choi (1992) (uo)ms = √2gHo 0.147((ρp − ρ) ρ ⁄ )
0.477

(dp Dc⁄ )
0.61

(Ho Dc⁄ )0.508 (Do Dc⁄ )0.243 

Gorshtein (1964) (Reo)ms = 0.174 Ar0.5[1 + 2 tan(γ 2⁄ ) (Ho Do⁄ )]0.25  tan(γ 2⁄ )−1.25 

Markowski (1983) (Reo)ms = 0.028 Ar0.57 (Ho Do⁄ )0.48 (Dc Do⁄ )1.27 

Mukhlenov (1965) (Reo)ms = 3.32 Ar0.33(Ho Do⁄ )1.25  tan(γ 2⁄ )0.55 

Sharma (2011) (Reo)ms = 717.26 (Ar)0.08 (Ho Do⁄ )0.85 (dp Do⁄ )
1.23

 

Tsvik et al. (1967) (Reo)ms = 0.4 Ar0.52(Ho Do⁄ )1.24  tan(γ 2⁄ )0.42 

Olazar et al. (1992) (Reo)ms = 0.126 Ar0.5(Db Do⁄ )1.68  tan(γ 2⁄ )−0.57      dp > 1 mm 

Olazar et al. (1996) (Reo)ms = 0.126 Ar0.39(Db Do⁄ )1.68  tan(γ 2⁄ )−0.57, dp ≤ 1 mm 

 

The characteristic length used for the Reynolds number is dp leading too: 

 

                                                          (Rems)0 =
(ums)0dpρ

μ
                                                           (1)                               

The Archimedes number is a parameter classically used to characterize systems of 

different fluid densities and has been modified to be used in gas-solid mixed systems with the 

following correlation:  

                                                              Ar =
gdp

3ρ(ρp−ρ)

μ2                                                               (2) 
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Based on Table 1, there is significant deviation from correlation to correlation [2, 3, 4, 5, 

6, 7, 8, 9]. This can be most accurately explained by the wide variety of system geometries and 

spouting media used in each respective experiments as shown in Table 2. 

 

Table 2: Parameters of Various Correlations Found in Table 1 

 

Source 

Particle size 

(mm) 

D0  

(mm) 

Dc  

(mm) 

Di  

(mm) 

 

θ 

(deg) 

Ho  

(mm) 

 

H0/D0 

 

Markowski 
 

3.41 - 10.35 
 

5.6 - 300 
300 - 

1100 

5.6 - 

300 

 

37 
 

3.36 - 690 
0.6 - 

2.3 
 

Choi   
 

2.1 - 2.8 
 

21 - 35 
 

240 - 450 
 

38 
 

60 
 

240 - 400 
6.86 - 

19.05 
 

Olazar  
 

0.95 - 25 
 

30 - 60 
 

360 
 

60 
28 - 

45 

 

70 - 300 
0.33 - 

6.67 
 

Bi et al. 
 

1.16 
12.7 - 

25.4 

 

65 - 95.8 
 

38.1 
30 - 

60 

 

80 - 335 
3.15 - 

26.38 
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CHAPTER 3 

METHODS 
 

Before testing could begin, the CSB had to be designed based on the guiding principles to 

avoid instability discussed in Chapter 2 which include the ratios of Di/Do, Di/dp, and θ. Testing 

parameters were then chosen and expanded based on the previous study by Mandeep Sharma in 

2011 where only D0, H0 and dp were varied [31]. The test parameters were expanded to vary ρp, 

ρ, μ, and θ as well as create an automated system to control the test and continuously operate the 

system for multiple cycles. The control system consisted of a mass flow controller and pressure 

transducer to study the system.  

Once the automated system was complete, measurements were taken in which the 

procedure will be discussed along with the definition and methods used to determine the 

minimum spouting velocity. Once measurements were completed, they were compared to other 

correlations found in the literature (Table 1) in which the statistical methods will be discussed.  

3.1 CSB Design 

In terms of the physical apparatus used for the CSB, only two parameters would be 

changed regularly – Di and θ. Therefore, the CSB was subdivided into two portions consisting of 

a base and conical section. While these two pieces could be built in one continuous design, 

separating them allows for more efficient manufacturing as Di and θ could be matched 

independently.  
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Figure 8: Conical Section of the Designed CSB 

 

 

 

     

Figure 9: Base Section of the Designed CSB 

 

The conical piece is the cone of the CSB while the bottom houses the pressure transducer 

port, flow inlet and establishes the inlet diameter as seen in Figure 8 and 9. Two conical sections 

were made for two separate cone angels (45° and 60°) and 4 bottom pieces for 3.30mm, 4.47mm, 

6.0mm, and 6.35mm. The diameter of the cylindrical section, Dc, was determined to be 

69.85mm, or 2 3/4''. The total height of the cone, or maximum height particles can be placed in 

the system is the addition of Hc1 and Hc2. Because Dc was held constant, the maximum height of 

the particles is dependent Di and θ. The CSB was designed such that a maximum height of 50mm 

Pressure Transducer Port 

Di=D0 

Hc1 

Flow Inlet 

Hc2 

Mesh 

Dc 
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can be reached for and Di and θ. Further, a mesh will be placed at the location shown in Figure 9 

so that the spouting media does not travel into the flow inlet pipe.  

3.1.1 CSB Production  

 

Figure 10: Final CSB Design and Testing Apparatus  

 

Figure 11: Final CSB Design with Spouting Media 

Since the scope of the study is cold flow, 3D printing was used for ease of manufacturing. 

Classic fused deposition modeling, or plastic extrusion was not an option in the printing due to 

leaks being present when running simple gases through the system. Stereolithography was used 

Flow Inlet Flow Inlet 

Cylindrical 

Cone 

Pressure Port 
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instead with a FormLabs printer in which no leaks would be present. The accuracy of the prints 

range from 0.1-0.5mm depending on the axis of printing [44]. These accuracies are significant 

when made on the inlet diameter; therefore, the inlet diameter was measured with the measured 

value being used if differing from the design. Figure 10 shows the testing apparatus used for the 

CSB while Figure 11 shows the inside of the conical section with spouting media inserted. 

3.2 Control System 

While multiple control systems exist that could perform the required task, an Arduino 

Uno was chosen based on simplicity [45]. A program was designed to govern a mass flow 

controller while reading the pressure transducer while writing the data onto an SD card. While 

this section gives a brief overview of the data acquisition system, a more detailed analysis can be 

found in Appendix A. 

3.2.1 Mass Flow Controller 

A mass flow controller (Omega, Inc.) was used in which the volumetric flow rate ranged 

between 0-100L/min. The reported error is 0.25L/min, though for low flow conditions (<3L/min) 

the error seen was much larger [46]. Due to this factor, a separate flow controller would need to 

be used if the minimum spouting flow-rate entered this range.  

Based on the Arduino pulse width modulation (PWM) that was used to govern the mass 

flow controller, it could be increased in 20mV increments giving the controller a resolution of 

0.4% of the total flow rate. Preliminary testing found that this was insufficient as too few data 

points were taken across the pressure drop observed at the spout formation. Therefore, a digital 

to analog converter (DAC) was used in which the resolution was increased to 1mV increments, 

increasing the resolution from to 0.02% increments of the total flow rate [47].  
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3.2.2 Pressure Transducer  

A Barometric pressure sensor (SparkFun Electronics) was used due to a high accuracy for 

a low cost. The sensor has a reported accuracy of 10Pa while the experimentally observed error 

was closer to 25Pa [47]. The sensor was hermetically sealed in a PVC structure with a line 

running to the pressure port located on the base of the CSB.  

3.3 Experimental Parameters 

The previous study conducted by Mandeep Sharma took a total of 30 data points across a 

narrow range of parameters. A goal of this study was to increase the parameters of the cone 

angle, fluid density and viscosity and the particle density. Table 3 shows the parameters that 

have been expanded to the current study and will be discussed in the following sections. 

 

Table 3: Parameter Comparison Between the Previous and Present Study [31] 

 
Source 

 

Particle size 
(mm) 

Particle 
Density 
(kg/m3) 

 
D0 (mm) 

 

Dc 
(mm) 

 

θ 

(deg) 

 

Ho 
(mm) 

 
Gas 

Previous 
Study 

 

0.483, 1.092 
 

3920 

 

3.302, 4.572, 
6.35  

 

69.9 
 

60 
 

10 - 50 
 

Air 

 

Present 
Study 

 

0.483, 0.686, 
1.0, 1.092 2002 - 3520 

 

3.30, 4.47, 6.0,  
6.35  

 
69.9 

 
45, 60 

 
10 - 70 

Air, 
Argon, 
Helium 

 

 

3.3.1 Spouting Media 

Two types of particles were used for the spouting media to vary the density. The first was 

an aluminum oxide lapping grain with a reported density of 3950 kg/m3 [48]. Though the density 

of solid aluminum oxide is 3950 kg/m3, the material was found to be internally porous in which 

the working fluid did not percolate through the surface. Therefore three separate density values 

could be found for the three particle sizes were chosen consisting of 483μm, 686μm, and 

1092μm. These values are reported in Table 4. The second particle chosen was a porcelain 
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finishing media with a density of 2418 kg/m3 and a particle size of 1mm [48]. From these 

parameters, the Archimedes number ranges from 15,919-183,969.  

Table 4: Spouting Media Properties 

Particle Composition   Particle Diameter (mm) Density (kg/m3) 

Aluminum Oxide 0.483 3520 

Aluminum Oxide 0.686 3380 

Aluminum Oxide 1.092 3340 

Porcelain 1 2418 

 

3.3.2 Stagnated Bed Height 

The stagnated height of the spouting media was varied in 10mm increments between 

10mm and 50mm for most experiments in the 60° cone due to 50mm being equal to Hc. If a 

higher height was used, the system would become a conventional spouted bed, which is not in 

the scope of this study. The 45° was able to achieve higher heights at 70mm before the column 

was reached due to the steeper angle.  

3.3.3 Working Fluid 

Three gases were used in the study: Air, Argon, and Helium, as to vary the gas density 

and viscosity as shown in Table 5. By changing these fluid properties, the Archimedes number 

was varied to study low density flow. This flow can simulate a flow under elevated temperature 

which is the subsequent goal of the study.  

3.3.4 Inlet Diameter 

The inlet diameter was varied between 4 separate values: 3.30mm, 4.47mm, 6.0mm, and 

6.35mm. While the original scope of the study was to study only three diameters, a misprint at 

6.0mm occurred allowing additional data to be taken. Table 5 shows a summary of all 

parameters changed in the CSB. 
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Table 5: Changing Parameters for Current Study 

Parameters   Symbol Range Units 

Diameter of particle dp 0.483, 0.686, 1.0, 1.092 mm 

Diameter of inlet air pipe Do 3.3, 4.47, 6.0, 6.35 mm 

Diameter of the upper part of the cone Dc 69.85 mm 

Diameter of the lower part of the cone Di 3.302, 4.47, 6.0, 6.35 mm 

Diameter of column Dc 69.85  mm 

Height of the cone Hc 55.04 – 80.4 mm 

Cone angle θ 45, 60 deg 

Stagnated height of bed Ho 10 – 50, 10 – 60, 10 – 70   mm 

Minimum spouting velocity at Do (ums)o 4.9 – 139.9 m/s 

Reynolds number at minimum spouting (Rems)o 156.7 – 1296.8 - 

Archimedes number Ar 14615 – 183969 - 

Density of particles ρp 2002 – 3520 kg/m3 

Fluid Density ρ 0.1664, 1.184, 1.661 kg/m3 

Fluid Viscosity µ 1.96, 1.81, 2.23 x 10-5 Pa s 

 

3.4 Data Acquisition 

Once all parameters were set, the automated process was started in which the controller 

would ramp the data from zero flow, to the prescribed value. Once the peak flow was reached, it 

would ramp the flow back down to zero flow conditions and begin the process again. This was 

repeated five times minimally to establish error. Due to flow hysteresis, it is important to 

differentiate between the ascending and descending results. For this study, the descending results 

will be used as it is the absolute minimum point at which spouting can be achieved as discussed 

in Section 2.2. A more comprehensive description of the process used to acquire data is detailed 

in Appendix A. 
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3.5 Data Processing  

3.5.1 Spouting Velocity Determination 

Once the data were recorded, the corrected pressure and set velocity were used to 

determine the minimum spouting velocity. Calibrations for the pressure transducer found a 

systematic drift that would occur. Though the drift was unquantifiable with exact precision, 

corrections that assumed linearity between the beginning and ending of each test were found to 

dampen the effect and therefore, a corrected pressure was calculated. The pressure measurements 

were corrected at the beginning and end of each cycle where zero flow conditions occurred and 

the gauge pressure was known to be zero. At larger velocities, the static pressure would 

eventually decrease below atmospheric conditions due to an increased dynamic pressure. For this 

reason, the stagnation pressure was used instead so that only the pressure losses felt across the 

bed would be observed.  

 

                                      ∆𝑃0 = (𝑃 − 𝑃𝑖) − [
𝑃𝑖−𝑃𝑒

2 𝑉𝑚𝑎𝑥
] 𝑉 +

𝜌𝑉2

2
                                             (3) 

 

The calculation used to determine the pressure loss across the bed is presented in 

Equation 3 where ΔP0 represents the stagnation pressure, P and V represent the concurrently 

measured pressure and velocity, Vmax represents the maximum velocity the system was tested 

towards, and Pi and Pe represent the pressures at the beginning and ending of the test.  

It should be noted that independent of the pressure value used (gauge, corrected, or 

stagnation), the pressure drop observed from the spout formation will be clearly visible (as it 

happens over a narrow range of velocities (~1m/s)) and will not change in location. Therefore, 

the minimum spouting point is independent of the pressure formulation used.  
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 While there are multiple values that can be used for the pressure, the velocity is the 

simpler, independent variable. Two velocities were recorded including the set and measured 

velocity. The set velocity is the commanded value given to the flow controller while the 

measured velocity is the value the controller reads back to the system. These values should be 

one and the same, but the measured value can have small fluctuations from noise. The set value 

and was used over the measured velocity to reduce this noise. Similarly to the pressure, 

minimum spouting point is independent of the velocity value used. For all data, the set and 

measured velocities were calibrated to verify that there were no deviations. 

Once the velocity and corrected pressure were recorded for each test, they were sent 

through a digital low pass filter in MATLAB where the noise was reduced to produce a 

continuous curve [49]. The filter is described in detail in Appendix A. At this point the minimum 

velocity was able to be determined.  

Throughout the literature, there are a multitude of methods to determine the spouting 

velocity as discussed in Section 2.2.2 [2, 3, 4, 33, 36, 5, 7]. Nevertheless, the results will be near 

similar. For this study, the definition of the minimum spouting velocity is at the center point of 

the external spouting pressure drop. This point is defined as average between the maximum and 

minimum second derivatives of pressure or where the curvature has peaked. Due to miniscule 

discontinuities still being present after the filtering process, these points were determined 

visually.  

 

                                                (𝑈𝑚𝑠)0 =

𝑈
(

𝑑2𝑃

𝑑𝑢2 )
𝑚𝑖𝑛

+𝑈
(

𝑑2𝑃

𝑑𝑢2 )
𝑚𝑎𝑥

2
                                             (4) 
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Figure 12: Typical Pressure Curve found in the study (H0=50mm, D0=6.35mm, θ=60°, dp=686 

μm, Gas=Air, ρp=3950)  
 
 

Figure 12 shows an example of one such graph in which the minimum spouting velocity 

was determined to be 19.9m/s.  

 

3.6 Sources of Uncertainty 

Error is a serious concern in any study and how it is reported. For this study, 

measurement error is reported based on a 95% confidence interval which leads to the question: 

what has caused the error? The first aspect is instrumentation, a source of error always found. 

The two other major aspects of error are in the minimum velocity determination and the spouting 

media. Each source of error is important to understand not only by the uncertainty, but if the 

uncertainty is stochastic which is random with a mean of 0, or systematic, having a nonzero 

mean. 
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3.6.1 Instrumentation Uncertainty 

The first aspect of error is to discuss instrumentation uncertainty. The reported 

uncertainty of the flow controller is ±0.25L/min with a resolution of 0.01L/min which would 

translate to ±0.132m/s (D0=6.35mm), ±0.266m/s (D0=4.47mm) and ±0.488m/s (D0=3.30mm) 

uncertainty across the separate D0 values used.  

The pressure transducer also added to the error by a reported ±12 Pa with a resolution of 

1 Pa giving the overall uncertainty as ±12.04 Pa This uncertainty was felt intensely at low bed 

heights where the maximum pressure drops were <50 Pa, inevitably causing data at low bed 

heights to be discarded as a spouting point was not discernable. At higher bed heights, a 

systematic drift in the pressure transducer led to more uncertainties mainly being the path of the 

pressure loss across the bed after the spouting point was reached. However, the minimum 

spouting point is nearly independent of these uncertainties as the shape of the pressure curve is 

more important than the absolute value of the pressure itself.   

3.6.2 Spouting Point Determination Uncertainty 

Error is also present from the spouting point determination. This point was determined 

based on visual representation leading to some amount of human error. The author determined 

every spout across the data for consistency. Additional error is present from the separation across 

the pressure drop. The separation (usually 1 – 2m/s) is caused by the internal spout beginning to 

chisel a path through the spouting media towards the bed height. Additional uncertainty is added 

due to the human aspect of determining the maximum and minimum peaks twice per 

observation.  
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3.6.3 Spouting Media Uncertainty 

An additional error noted is that found from the spouting media in which the aluminum 

oxide and porcelain have separate error sources. The aluminum oxide grains lost mass due to 

attrition throughout the five test that were performed. This is evident from a fine powder 

accumulating in the cylindrical column over time. A clear trend also exist across all aluminum 

oxide test showing that the minimum spouting velocity will decrease between tests 1 – 5. The 

rate at which the velocity decreased was found to be scaled to the bed height, or amount of 

particles in the system, inferring that all particles were losing mass. This was discovered early in 

testing and particles were therefore discarded after being run to avoid a change in particle size 

and further error.  

 

Figure 13: Static Cling Observed by Porcelain Particles 

The porcelain particles did not have an issue of mass loss, but instead, static cling. 

Interactions between the air, porcelain and plastic surface of the CSB led to a small amount of 

static cling in which only the smaller particles were affected. Based on observation, the static 

cling seemed to occur throughout all 5 test and therefore, no positive or negative trend is evident 

in the minimum spouting velocity. This will effectively reduce the bed height by a factor of z   



 
 

30 
 

(H0 – z) and may possibly interrupt the circulatory motion. This could make significant effects at 

lower bed heights; however, test for porcelain were only done at high bed heights (H0 > 40mm) 

due to less resolution based on instrument error. Therefore the static cling is not expected to be a 

significant source of error found in the observable data. 

3.7 Statistical Methods 

 In the results, the correlations that are currently present in literature will be compared to 

the measured values obtained from experiments. Therefore, standard statistical tools must be 

used to properly analyze and discuss the results. There will be two methods used which are 

confidence intervals and the Student’s t variables, which are related, but used in separate 

manners.  

 

                                                                 Error = ± 𝑡𝜐,𝑃  
𝑠𝑥

√𝑁
                                                          (5) 

 

 Most tests taken, were repeated 5 times to establish a sample standard deviation. Since the 

sample size is finite, the standard error, or sample standard deviation by the square root of N, is 

multiplied by the Student’s t variable which provides an additional coverage factor. This term 

represents a precision interval, or probability in which the data will fall. For the error calculated 

for data points, a t variable representing 95% probability was used. 

    

                                                 Confidence Interval = ± 𝑡𝜐,𝑃  
𝑠𝑦𝑥

√𝑁
                                               (6) 
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 The confidence interval is shown above in Equation 6 and is very similar to the error used 

in Equation 5. The difference is the confidence interval will be used in regression analysis over a 

series of data points to determine the wellness of the fit.  

 

                                                                   𝑡 =
∑(𝑦𝑖−𝑥𝑖)

√𝑁∗𝑆(𝑦𝑖−𝑥𝑖)

                                                         (7) 

 

 In another circumstance, a two-tailed paired t-test will be used which is represented in 

Equation 7. The paired t-test tests the probability of the difference between two correlations [50]. 

In this case, it will be used to measure the applicability of previous correlations found compared 

to measured data. yi is represented as the predicted value from other correlations while xi is the 

measured value obtained in the study. S(yi-xi) is the standard deviation of the difference. The 

difference is expected to be 0 if the correlation perfectly represents the given data. Based on the 

t-value, the probability of the difference (p=p (t, N)) can be found. Low p-values indicate a 

strong probability that there is difference between the groups of data. For example, p=0.001 

would indicate 0.1% probability of correlation between the data sets, or a 99.9% probability that 

the values, are not the same.  
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CHAPTER 4  

RESULTS AND DISCUSSION  
 

The results were obtained based on the methods presented in Chapter 3 including testing 

procedure and analytical methods. The raw data results (84 total data points) will first be 

presented and discussed. The results will then be compared to existing correlations to determine 

the accuracy in using these correlations to predict the measured values. A power law fit is then 

presented and discussed on each parameters contribution to the minimum spouting velocity.  

Other trends are also presented and discussed on the effect of the minimum spouting 

velocity. These effects include internal and unstable spouting as well as system error.  

4.1 Minimum Spouting Velocity 

To first introduce the minimum spouting velocity, we will examine a few examples of the 

pressure curves obtained and what the results indicate. Raw data will then be presented as a 

function of bed height with the appropriate error and trends to indicate expected correlations to 

be found. 
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4.1.1 Pressure Curves 

 
Figure 14: Pressure Curve for D0=6.35mm, θ=60°, dp=686μm, Gas=Air, ρp=3950kg/m3 

 
Figure 15: Pressure Curve for D0=4.468mm, θ=60°, dp=686μm, Gas=Air, ρp=3950kg/m3 
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As shown in Figure 12, pressure curves are used to determine the minimum spouting 

velocity from the stable pressure drop. Examples of these curves are shown in Figure 14 and 15 

where all parameters excluding the stagnated bed height were held constant. The major pressure 

drop is apparent and increases in location as the bed height increases, as expected. The path the 

curves take is expected to be horizontal or a decrease. The paths taken by the 40mm and 50mm 

bed heights in Figure 15 show that the stagnation pressure increases with an increasing velocity. 

This is attributed to the pressure drift experienced in the pressure transducer which will not alter 

the minimum spouting point.  

In the lower velocity ranges, separate peaks can be seen which represent internal spouts 

being formed. These pressure drops formed from the internal spouts were actually much higher 

than shown, but were short-lived causing them to be filtered out by the low-pass filter. 

Nevertheless, these peaks all occur at near similar points which could infer that internal spouting 

is a weak function of the bed height. 

4.1.2 Minimum Velocity as a Function of Bed Height  

The following section will contain the raw data found and the error associated with that 

value. The data are presented as a function of bed height and organized by other changing 

variables. Trend lines are also included as a power law to show the effect bed height has on the 

minimum spouting velocity. The trend lines are averaged across each plot to be the average 

trend. This is done so that in cases of low statistical significance, i.e. where only two data points 

were taken, there is more certainty in the found results.  
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     4.1.2.1 Aluminum Oxide Spouting Media, Air, 60° Cone Angle 

 
Figure 16: Results for θ=60°, Gas=Air, Aluminum Oxide Particles  

 
Figure 17: Results for θ=60°, Gas=Air, Aluminum Oxide Particles 
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The most extensive data was taken for a cone angle of 60° with air as the working fluid 

and aluminum oxide particles as the spouting media as shown in Figure 16 and 17. Due to 

uncertainty in the pressure transducer a discernable pressure drop was not always observed at the 

lower bed heights. For this reason, data was not used at H0=10mm where the pressure drops were 

low. Some data for H0=20mm also had this issue and were not included. 

     4.1.2.2 Porcelain Spouting Media 

 
Figure 18: Results for Gas=Air, Porcelain Particles 

 

Figure 18 shows data taken for the porcelain spouting media. Though a range of particle 

sizes can be found with the only mean particle diameter being 1mm, all particles are spherical 

compared to the less characterized shape of the aluminum oxide. This may cause the state of 

packing to be different than that of the aluminum oxide grains which can change the internal 
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friction as the air may have a separate resistance when traveling through the bed. The porcelain 

media was found to have smaller frictional pressure drops when compared to the aluminum 

oxide. Only higher bed heights could be tested when the pressure drop reached was observable. 

It is also observed that the power law has exponential values greater and less than one. 

While this has been reported in previous data, it does not fit with other testing results [5, 31]. 

Since there are few data points that are also near each other, there is much less certainty in the 

result compared to other Figures. The reason data points were only taken at higher bed heights is 

due to the resolution of the external spout being difficult to discern for porcelain particles.  

 

     4.1.2.3 45° Cone Angle 

As shown in Figure 19, the 45° cone angle had data taken at bed heights up to 70mm. 

This is due to holding Dc constant, therefore allowing for higher heights. Two data points were 

taken at a minimum so that a fit could be determined. 

 
Figure 19: Results for θ=45°, Gas=Air, ρp=3950kg/m3 
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     4.1.2.4 Helium and Argon 

Helium and argon were chosen as separate fluids to use in addition to air for the cost and 

fluid properties. Helium was used to simulate flow at elevated temperatures due to its lower 

density and viscosity. Testing results from argon found that it behaved near similar to air as the 

minimum spouting velocities were practically identical which can be attributed to similar 

physical properties.  

 
Figure 20: Results for θ=60°, Aluminum Oxide Particles 
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4.3 Evaluation of Correlations for Minimum Spouting Velocity 

 
Figure 21: Various Correlations Predictive Power Compared to Measured Results 

It was originally hypothesized that the correlations listed in Table 1 would be insufficient 

in estimating the minimum spouting velocities required for the current CSB due to the 

inconsistencies found across the fits – leading to the motivation behind this research. However, 

the question still remains as to the applicability of the fits. Figure 21 gives insight by examining 

a 60° angle, 6.35mm inlet diameter, air as the working fluid, and a 686μm spouting media 

particle size for varying stagnated bed heights and the evolution different curves take with 

respect to the data. While Choi’s prediction method may be accurate in Figure 21, this is only a 

small representation of the large data set and is insufficient when examining the big picture. 

As shown in Figure 22 – 29, a visual representation is given into the error found in other 

correlations. Unity is plotted as the straight horizontal line and represents the accuracy of the 

data. A curve fit was also applied to get an idea of data precision along with 50% confidence 

intervals. 
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Table 6: Figures 23-30 Legend 

6.35mm=D0, Air, θ=60°, Aluminum Oxide  

6.0mm=D0, Air, θ=60°, Aluminum Oxide  

4.47mm=D0, Air, θ=60°, Aluminum Oxide  

3.30mm=D0, Air, θ=60°, Aluminum Oxide  

Argon, θ=60°, Aluminum Oxide  

Helium, θ=60°, Aluminum Oxide  

Air, θ=60°, Porcelain  

6.35mm=D0, Air, θ=45°, Aluminum Oxide  

4.47mm=D0, Air, θ=45°, Aluminum Oxide  

3.30mm=D0, Air, θ=45°, Aluminum Oxide  

Air, θ=45°, Porcelain  

 

 

 
Figure 22: Mukhlenov Correlation  
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   Figure 23: Tsvik Correlation 
 

 
                                                       Figure 24: Olazar Correlation I 
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Figure 25: Olazar Correlation II

 

             
             Figure 26: Gorshtein Correlation 
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        Figure 27: Markowski Correlation 

 

 

 
Figure 28: Choi Correlation 
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Figure 29: Bi Correlation 

 

 

While the curve fits provide a visual understanding into the applicability of the fits and 

their precision, they lack clarity in the accuracy with respect to unity. To get an idea of the total 

error, a paired t-test was performed as described in Section 3.7. Larger the t-value indicate a less 

accurate the fit. The probability of the difference is also shown which is a function of the t-value. 

Smaller p-values (< 0.001) indicate that there is more certainty that there is a statistical 

difference between the correlations.  
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Table 7: Correlation Error 

 

Source 
[(Ums)cor. – 

(Ums)meas.]avg. 

Standard 

Deviation 

 

t-value 
 

p-value 

Gorshtein (1964) -19.312 23.646 -7.485 6.8 x 10-11 

Mukhlenov (1965) 13.513 27.230 4.548 1.43 x 10-17 

Tsvik et al. (1967) -1.972 18.535 -0.975 1.55 x 10-18 

Olazar et al. (1992) 21.708 34.621 5.747 1.56 x 10-15 

Olazar et al. (1996) -17.823 20.981 -7.786 2.94 x 10-14 

Bi et al. (1997)  0.849 22.194 0.350 1.76 x 10-16 

Choi (1992) 6.251 21.388 2.679 4.9 x 10-15 

Markowski (1983) -3.531 19.711 -1.642 4.27 x 10-19 

 

 
 

As seen in Table 7, the largest p-value is 6.8*10-11 meaning that there are far too 

significant differences between the correlations and measured data to accurately predict future 

data points. Thus, a new correlation is required and will be discussed in the following section. 

4.4 Parameter Correlations  

With other correlation now deemed insufficient to represent the current data, a correlation 

must be found to summarize the results. Similar to the previous correlations, a power law fit will 

be used and will resemble the structure shown in Equation 8 in which each parameter will be 

discussed. C, a, b, c, d, and e represent the exponential power law values to be determined from 

the experimentally found data. The terms were chosen by observing other empirically derived 

work found in Table 1, then trial and error to take care of the discrepancies from correlation to 

correlation. Additional terms were explored based on the Buckingham Pi theorem and one such 

term was found to significantly reduce the error [42].  Each term in Equation 8 will be discussed 

in the subsequent sections detailing why the term was chosen, the power law value and the 

physical meaning behind the behavior.  

 

                                    (𝑅𝑒𝑚𝑠)𝑜 = 0.053 (𝐴𝑟)0.8 (
𝐻0

𝐷0
)

1.36

tan (
𝜃

2
)

.54

ɛ1.78                             (8) 
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4.4.1 Stagnated Bed Height and Inlet Diameter (H0/D0) 

The term used to represent the stagnated bed height is nondimensionalized with the inlet 

diameter as done by Markowski, Gorshtein, Mukhlenov, and Tsvik [5, 2, 3, 4]. Based on the 

results shown in Section 4.1.2, it is expected that the power law value will be greater than 1 

indicating that as the height grows, the required momentum needed for spouting increases non-

linearly. The power law value is 1.3551 giving the expected value as greater than one. This 

contradicts Markowski who had power laws raised to 0.48 [5]. The information does seem to 

have stronger agreement with Tsvik and Mukhlenov who had power law values of 1.24 and 1.25 

respectively [4, 3].  

 

Figure 30: H0 Power Law Comparison (D0=6.35mm, θ=60°, dp=686μm, Gas=Air, Aluminum 

Oxide Particles) 

 

Intuitively, the power law should be greater than 1 as any lesser value would imply that 
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figure, the Tsvik, Mukhlenov and current velocity seem to have agreement in the path, though 

the absolute values show deviation. The Tsvik velocity however, shows initial agreement, but 

will begin to diverge significantly at higher bed heights. 

Having a power law less than 1 is counter-intuitive because the weight (or volume) of the 

particles should have a positive correlation with the spouting velocity. Further, the weight (or 

volume) of the spouting media is proportional to the height cubed due to the diverging nozzle; 

therefore, the spouting velocity would need to be proportional to less than 1/3 the power of the 

weight for this to be true, which is an intuitively low value. 

The inlet diameter was also analyzed to have a negative correlation with the spouting 

velocity. This is expected because an increase in the inlet diameter, and therefore inlet area 

requires a velocity decrease to hold the equivalent momentum needed to maintain the spout. 

Though the momentum is not expected to hold at the exact same value as other parameters are 

changing, a general trend can still be expected.  

 The stagnated bed height was initially hypothesized to be combined with the inlet 

diameter for a nondimensionalized term. This was verified by separating the terms as other 

correlation have done using the cone diameter which led to Equation 9. It can be seen that both 

values share similar power law values leading to the change in total error being insignificant 

between the use of either term. The H0/D0 term was inevitable used based on its conciseness.   

 

                                         (
𝐻0

𝐷0
)

1.36
~      (

𝐻0

𝐷𝑐
)

1.39
∗    (

𝐷𝑐

𝐷0
)

1.33
                                       (9) 

4.4.2 Solid-Gas Properties  

The solid particle and fluid properties make up the majority of terms found in the 

correlation with the Archimedes number (Ar), non-diminsionalized particle diameter (dp/D0) and 
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the stagnated bed voidage (ɛ). The fluid properties are completely summarized by the 

Archimedes number in conjunction with the solid particle properties. However, it was found that 

addition properties beyond the Archimedes number were required to describe the interaction 

created by the solid particles. Each of these terms will be discussed in the sections below.  

     4.4.2.1 Archimedes Number 

As discussed previously, the solid-gas properties are consolidated into one term – the 

Archimedes number. The Archimedes number, shown in Section 2.5 is proportional to the gas 

density and particle density while inversely proportional to the fluid viscosity squared .This 

aspect is the most consistent term included in the determination of spouting velocities across the 

literature with the power law ranging from 0.33-0.57.  The exponential power law fit constant 

was found to be 0.8, higher than previous correlations found.  

 

                                                                    (𝑢𝑚𝑠)𝑜~ 𝜌−0.2                                                         (10) 

                                                                    (𝑢𝑚𝑠)𝑜~ 𝜇−0.6                                                         (11) 

 

Equations 10 and 11 show the relationship between the spouting velocity and fluid 

properties based on the Archimedes and Reynolds number. For the fluid density, this result is 

expected as a reduction in density should result in an increase in the required velocity to achieve 

the same momentum since the momentum has a positive correlation with density and velocity. 

With the small ranges of viscosities used (1.81 – 2.23 *105 Pa s), it would be unlikely that it is 

playing a role in the Archimedes number compared to the larger parameter ranges of dp, ρ, and 

ρp. However, the result is still expected – as the viscosity decreases, the shear stress will decrease 
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at the fluid-particle interface therefore, requiring a higher velocity to achieve the same 

momentum required for spouting.  

     4.4.2.1 Particle Diameter 

From a classical perspective, choice in spouting media affects the spouted bed through 

the two physical parameters of density and particle size. These two parameters are generally 

taken into account by the Archimedes number (with the exclusion of Choi) [2, 3, 4, 5, 6, 7, 8, 9]. 

Upon inspection of the Archimedes number, the ratio of the exponents of dp and ρp is 3 assuming 

that ρp > > ρ. This means that the particle size effects can outweigh the density in the correlation 

and has been studied by Olazar [7, 51]. To examine this for the current study, the additional term 

of dp/D0 was considered in which the power law value is 0.097. Without the addition of this term, 

an average error of 0.2% would be added across the 84 data points which shows a small 

necessity for the term and was not used due to over parameterization. This affirms the idea that 

the Archimedes number properly characterizes all solid particle interactions except for the 

stagnated bed voidage to be discussed below. 

 

                                                                  (𝑢𝑚𝑠)𝑜~ 𝑑𝑝
1.4                                                            (12) 

 

Equation 12 shows the relationship between the mean particle size and the spouting 

velocity. The particle size has a similar relationship to the height in that as the size and weight of 

each particle increases, the momentum required for spouting will increase at a rate larger than 

each independent variable.  

     4.4.2.2 Stagnated Bed Voidage (ɛ) 

While the bed voidage is discussed in the literature, it is not commonly used in spouting 

velocity correlations. The stagnated bed voidage (ɛ) was added based on the author’s intuition to 
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take into account the difference in packing between the aluminum oxide and porcelain particles 

and is therefore defined as:  

 

                                                                𝜀 =
𝜌𝑏

𝜌𝑝
                                                               (13) 

 

where ρb is the density of the particles in their packed state which accounts for the air in the gaps 

of the spouting media. ɛ should therefore, range between 0 and 1.  

Though the bed voidage is a function of the particles (ρp), ρb is dependent on the sizes 

and shapes of the particles. Therefore, the way the particles pack is based on the distribution of 

the particle sizes and shapes which is what this term will take into account. Four values were 

recorded and are summarized in Table 8. 

Table 8: Stagnated Bed Voidage Values 

Particle 
dp 

(mm) 
ɛ 

Aluminum Oxide 0.483 0.5763 

Aluminum Oxide 0.686 0.5503 

Aluminum Oxide 1.092 0.5767 

Porcelain 1 0.6622 

 

 

Figure 31: Porcelain Spouting Media 
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Figure 32: Aluminum Oxide Spouting Media (dp=1.092mm) 

 

Figure 33: Aluminum Oxide Spouting Media (dp=0.483mm) 

It is evident that the porcelain has less gaps between the particles than the aluminum 

oxide. This is most likely due to a larger distribution of particle sizes. Figure 31 – 34 show a 

range of the particle sizes used. The porcelain particles have a well characterized spherical shape 

while the aluminum oxide does not. The porcelain seems to have a wider distribution of particle 

sizes however, allowing the smaller particles to fit into the crevasses between larger particles 

thus having a larger ɛ.  

With the addition of this term, the exponential value found for the stagnated bed voidage 

was found to be 1.781. Since the stagnated bed density (ρp) will be influenced most heavily by 

the distribution of smaller particles, it seems that this effect is the driving force behind this term 

making the distribution of particle sizes a significant factor. 
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4.4.3 Cone Angle 

The final term to be analyzed is the cone angle, which is most commonly represented as 

the tangent of half of the cone angle. This is often referred to as the coefficient of internal 

friction and represents the ratio of the bed height diameter by the stagnated bed height. The 

coefficient of internal friction represents the normal force provided by the CSB structure.  

The correlation found is expected to be positive and be less than 1. As the cone angle 

increases, the amount of particles that can be fit into the system for the same operating 

conditions can increase, therefore increasing the required spouting velocity. As the cone angle 

approaches larger angles though, the spout will be less dependent are the particles to the edge of 

the system as the re-circulatory value will be weak thus making the power law value less than 

one. The exponential value found for the power law value was an expected value of 0.5433. The 

cone angle can also be written as shown in Equation 14 as a function of the spouting media 

where Db is the diameter at the bed height. 

 

                                                     (𝑢𝑚𝑠)𝑜~ tan0.54 (
𝜃

2
) = (

1

2

𝐷𝑏−𝐷0

𝐻0
)

0.54

                                    (14) 
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4.4.4 Correlation Error 

 
Figure 34: Correlation Error with 90% Confidence Interval 

While the correlation presents the best found model for the data, error is still present 

though not as significant as found in other correlations. Figure 34 shows the predicted minimum 

spouting velocity determined from the correlation as a function of the measured values with a 

90% confidence interval. The maximum error is 38.8% while the minimum is -23.8%. While the 

minimum error is slightly above the range of expected engineering error, the maximum error is 

much too high. However, the value represented as 38.8% error is one of the smallest recorded 

Reynolds numbers making any fluctuation be felt especially harsh. Figure 35 shows a breakdown 

of the error found in the 84 data points in which 73 points of the data (87%) falls within a 

standard engineering error of 15%. The total error is represented by the summation of all error is 

685% giving an average error of 8.2%. 
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Figure 35: Correlation Error 

 It should be noted that while the maximum and minimum error can be dominated by 

small data points, the confidence interval is dominated by larger data points with the five largest 

points in Figure 34 making up 81.8% of the standard deviation, or interval observed.  

     4.4.4.1 Particle Density Uncertainty 

The manufacturer reported density (McMaster-Carr) for the aluminum oxide and 

porcelain were both found to have errors after testing. The aluminum oxide density was reported 

as its solid state of 3950 kg/m3. After examination, it was found that there were pores inside the 

particles causing the density to be less than the reported value. The internal porosity (ρp/ρAl2O3) 

was found to range between 0.85 – 0.89. While there is no porosity in the porcelain particles, it 

was found that the reported density was incorrect by 400 kg/m3. 

Because this was discovered late in the design process and the laboratory scale was 

malfunctioning, a low resolution (±.5g) scale was used to roughly determine these values thus 

presenting additional error in the correlation. 
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4.5 Correlation Comparison to Previous Study 

 

Table 3: Parameter Comparison Between the Previous and Present Study [31] 

 
Source 

 

Particle size 
(mm) 

Particle 
Density 
(kg/m3) 

 
D0 (mm) 

 

Dc 
(mm) 

 

θ 

(deg) 

 

Ho 
(mm) 

 
Gas 

Previous 
Study 

 

0.483, 1.092 
 

3920 

 

3.302, 4.572, 
6.35  

 

69.9 
 

60 
 

10 - 50 
 

Air 

 

Present 
Study 

 

0.483, 0.686, 
1.0, 1.092 2002, 3920 

 

3.30, 4.47, 6.0,  
6.35  

 
69.9 

 
45, 60 

 
10 - 70 

Air, 
Argon, 
Helium 

 

As shown in Table 3, the parameter selection was increased significantly between the 

previous and present study. The effects of parameter selection can be observed more clearly by 

looking at the previous correlation (Equation 15) found from the parameters shown in Table 3 

[31].  

                                               (𝑅𝑒𝑚𝑠)𝑜 = 717.26 (𝐴𝑟)0.08 (𝐻𝑜 𝐷𝑜⁄ )0.85 (𝑑𝑝 𝐷𝑜⁄ )
1.23

                            (15) 

 

 One major difference that can be found is the coefficient the Archimedes number is raised 

towards which is a factor of 10 times less than the value proposed for the current study. This is 

related to the particle size which is a factor of 10 times larger than that of the current study. The 

cause of this difference is due to the Archimedes number only being varied as a function of the 

particle diameter since the particle density or fluid was never changed. Therefore, particle effects 

were only placed in the dp/D0 term as it was varied near independently of the Archimedes 

number. The current study changed these values between a wider range in which a multitude of 

variables are changing within the Archimedes number. The current study indicated that the 

Archimedes number is a better term to use to indicate spouting media properties compared to 

dp/D0.  
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Another interesting trend is that the coefficient found for H0/D0 is less than 1. This is 

interesting because data collected in the current study at the same conditions indicated a 

coefficient greater than 1 while Sharma’s data shows that the data has correlations less than 1 

[31]. It is likely that data measurements were less confident as a significantly smaller amount of 

data points were taken and were done manually compared to the autonomous system used in the 

current study.  

Two terms were not included being the term relating cone angle (θ) and the stagnated bed 

voidage which would be frivolous in the previous study as these terms were not varied.  

 

Figure 36: Sharma Correlation 

 

The graphical representation as shown with other correlations can be seen in Figure 36. 

As seen, the 50% confidence interval is substantial as well as the p value which is 4.5 x 10-8. 

While this p-value is better than any other correlations presented, it still shows no statistical 
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significance between the two correlations. This sharp contrast between results for CSBs of the 

same scale shows the importance of parameter selection and variance.  

4.6 Spouting Instabilities 

The three parameters presented in literature to achieve stable spouting were the ratios of 

Di/dp, Di/D0 and θ [14]. The first ratio of Di/dp was varied with a minimum of 3.024 and 

maximum of 13.147. Mathur had found that the ratio required for stable spouting was less than a 

value ranging from 2-60 – an uncertain claim at best [35]. However, with stable spouting found 

when operating in this region, the claim does hold and it seems the ratio may be on the lower end 

at a value closer to 2. Like most other aspects of the CSB, it is likely heavily influenced by the 

design and scale of the system.  

According to Olazar, Di/D0 was tested in a marginally unstable range for all results as the 

ratio was kept as 1. Olazar stated that the value must lie between 0.5 and 0.83 for conclusive 

stable spouting while results are inconclusive outside of this range [7]. This deals with the 

agglomeration of particles in the discontinuity that separate Di and D0 values would create – but 

this was found to not affect the stability of the system under the current parameters. θ was not 

tested as previous work by Sharma found that instability occurred in the region predicted by the 

literature near 30° [31].  

Instability was found however as a function of the gas used. When testing helium at 

D0=3.30mm, dp=0.483mm, θ=60° and at and H0, the fountain periphery closed and opened 

rapidly creating an instability. Interestingly enough, the phenomenon faded as the particle 

diameter was increased to dp=0.686mm and disappeared at dp=1.092mm. The instability was 

tested for a range of bed height and found have no dependence. Even more interesting was that 

this phenomenon disappeared for all particle sizes used when the inlet diameter was increased to 
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and beyond D0=4.468mm. A fluid to geometric interaction is therefore occurring causing the 

instability, most likely a function of (ρ, D0, dp). Due to the design, the instability occurred at the 

smallest D0 and dp available making further exploration impractical. It is the author’s suggestion 

that this be further studied in future literature as no text could be found suggesting fluid to 

geometric stability issues.  

4.7 Internal Spouting Trends 

Internal spouting was suspected when experimentation first began due to the large 

pressure drops that were observed with a lack of spouting. This was later confirmed by using a 

transparent cone in which circulation occurred only at certain height less than H0. Based on the 

presence of internal spouting, less significance is given to the pressure drop observed to attain 

stable spouting (breaking force friction) because the pressure drop required is not just a function 

of H0, but a function of the remaining bed height to which the internal spout has not yet formed.  

This is interesting as it can suggest that there may be circulation patterns available at 

speeds less than (Ums)0. However, it was found that internal spouting trends are much less 

predictable than the external spout and will be discussed below.  
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4.7.1 D0 and H0 

 
Figure 37: Unfiltered/Raw Pressure Curve for H0=40mm, D0=6.35mm, θ=60°, dp=1092μm, 

Gas=Air, Aluminum Oxide Particles 

 
Figure 38: Unfiltered/Raw Pressure Curve for H0=40mm, D0=4.47mm, θ=60°, dp=1092μm, 

Gas=Air, Aluminum Oxide Particles 
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Internal spouting can be seen in pressure curves as sudden increases in pressure (reading 

from right to left) from the spout collapsing to a certain height where the momentum is still 

sufficient to keep the rest of the spout formed. Therefore, larger jumps in pressure indicate a 

taller path cleared for internal spouting until the external spout is reached. The data is presented 

as the linearly corrected pressure recorded before sending the data through a low pass filter and 

removing the noise due to the filter often dampening the observed internal spouting. Figure 37 

and 38 show examples of pressure curves with constant parameters excluding D0. It seems that as 

D0 decreases, more internal spouts can be seen at smaller degrees compared to the one major 

internal spout at 6.35mm leading to a negative correlation between internal spouting and D0. 

For H0, it has been shown and noted in Section 4.1.1 that the internal spout is not a 

function of this parameter as it formed at the same position regardless of the bed height.  

4.7.2 dp 

It seems that the particle diameter can also have an even more substantial effect than D0. 

As seen in Figure 38 and 39, all parameters are kept constant excluding dp. For the smaller 

particle diameter, there seems to be only one internal spout formed that is short lived compared 

to the multitude of internal spouts observed in the larger dp value. This is most likely due to the 

larger weight per particle at larger sizes and thus, a positive correlation is established between dp 

and internal spouting.  
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Figure 39: Unfiltered/Raw Pressure Curve for H0=40mm, D0=4.47mm, θ=60°, dp=483μm, 

Gas=Air, Aluminum Oxide Particles 

 

4.7.3 Effect of Particle Packing State 

It could be said that there is an effect of the particle choice, represented by the density 

(ρp), but it is much more likely that differences observed between the porcelain and aluminum 

oxide particles are due to the different packing states and characteristic geometries. Figure 40 

shows porcelain particles at the largest inlet diameter used which has two pressure increases 

indicating internal spouting. More interesting is Figure 41 in which the parameters are the same 

with the smallest inlet diameter being used. It seems that the pressure remained constant over a 

range of velocities (12m/s – 75m/s) giving a very different curve than yet observed. It is likely 

that the fluid was able to circumvent through the spouting media for a long range of velocities.  
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Figure 40: Unfiltered/Raw Pressure Curve for H0=45mm, D0=6.35mm, θ=60°, dp=1000μm, 

Gas=Air, Porcelain Particles 

 

 
Figure 41: Unfiltered/Raw Pressure Curve for H0=40mm, D0=3.30mm, θ=60°, dp=1000μm, 

Gas=Air, Porcelain Particles 
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It should be noted however, that internal spouting can still occur without a major visible 

effect in the pressure. If a spout forms slowly, its effect in the pressure may not be seen 

compared to larger spikes being indicative of a rapidly occurring spout. This implies that the 

formation of internal spouts is qualitative in nature.  
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CHAPTER 5  

CONCLUSION 

5.1 Conclusion 

The purpose of the study was to develop a conical spouted bed with which to analyze its 

behavior at a small-laboratory scale. To test this, previous experiments were expanded on by use 

of an automated data acquisition system suitable for testing a multitude of parameters. The 

parameters varied include the stagnated bed height (H0), inlet diameter (D0), particle density (ρp), 

mean particle size (dp), fluid density (ρ), fluid viscosity (μ), and cone angle (θ). Through the 

varying of these parameters over 84 test, a comprehensive correlation was created with an 

average error of 7.6%.  

Other correlations were also explored detailing the uncertainty in the field between 

parameters chosen for the correlations and results. All correlations presented extensive error and 

had no statistical correlation when compared to the experimental results obtained for the current 

apparatus. This verified the need for a new correlation specific to the testing parameters.  

A further goal of the study was to study the effects of gasses at low densities as to 

simulate elevated temperature conditions that would be experienced in the next phase of research 

involving a CSB reactor. Helium was chosen to accomplish this task by decreasing the density 

and viscosity. An average error of 6% is recorded across the low density measurements showing 

a sufficient correlation.  

With the completion of this study and an elemental understanding of how parameters 

affect the flow in cold flow and simulated heated flow conditions, the next phase of the study can 

begin with recommendations for the study below.  
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5.2 Future Work and Recommendations 

The results and proposed correlation provide a significantly better predictive method 

compared to other correlations as well as the difference in increasing parameter selection being 

shown. However, many factors lie ahead for the future work of using the CSB as a reactor. The 

first is in the CSB design and DAQ. The basic CSB geometry should be sufficient for use, 

though new pieces will need manufacturing as 3D printed plastic structures will not be able to 

withstand the high temperatures required in the reactor. A new method must also be used to 

secure the mesh that holds the particles from flowing upstream. It is recommended to use a 

hollowed metallic cylinder which is held in place by an internal retaining ring. The DAQ must 

also be updated to a new system. It is unlikely an Arduino will be able to handle the various 

needs of multiple thermocouples and flow meters required. 

The stability of the system was also a factor that was not properly analyzed in the current 

study. Because instability was only found in low density gases (ρ=0.1664 kg/m3), the smallest 

inlet diameter (D0=3.3mm) and the smallest particle size (dp=0.483mm), studying further effects 

of the instability was out of the scope of the parameters used in the current study. However, it is 

recognized that the issue is a function of low density gases that will commonly be observed in 

the CSB reactor. Testing under these conditions should be monitored in the next study by a 

combination of visual determination in which oscillatory opening and closing of the spout will be 

apparent and by the pressure which will also oscillate heavily.  
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APPENDIX 

DATA ACQUISITION AND PROGRAMMING 

An Arduino Uno was used as the central unit to control and read the experimental 

measurements. The devices used include a mass flow controller, pressure transducer, SD card 

reader and digital to analog converter. Each of these devices will be discussed below and how 

digital communication with Arduino proceeded. Figure 42 gives a visual representation with how 

digital communication took place. 

 

 

Figure 42: Block Diagram of DAQ System Communication 

 

A.1 Mass Flow Controller 

This device was one of the simplest devices to operate as it used basic Arduino functions. 

The flow controller was governed by the PWM (pulse width modulation) feature which pulses a 

digital signal at a high frequency to give a voltage output. PWM operators in integers between 0 

(0 Volts) and 255 (5 Volts). The code was designed so that once the system was turned on, it 

would start at a flow rate of 0 and ramp up to a max flow rate (integer of 255) or a designated 

value. For example, most experiments did not need to achieve the maximum flow rate, so an 

integer less than 255 could be chosen as the max. Once the designated max flow was achieved, it 

would then ramp down back to 0. Time intervals existed between each integer so that a quasi-



 
 

72 
 

equilibrium state could be reached. The time intervals could also be chosen independently in the 

ramping up and down process so that the process could be expedited as ascending (ramping up) 

data was not as useful in the current study.  

Additionally, the mass flow controller had a read back feature. The values were read from 

the controller by using an analog pin in which 5 volts indicated a maximum flow rate of 

100L/min and 0 volts indicated zero flow. The Arduino reads analog inputs as integers between 0 

(0 volts) and 1023 (5 volts). For every data set, the commanded velocity and read back velocity 

were plotted and checked for agreement. In some cases, agreement did not occur usually due to 

an error which caused a discontinuity. These errors were usually short lived, meaning only 1 of 

the 5 test would be corrupted and could then be repeated.  

Additionally, the mass flow controller, which was designed for Air as a working fluid, 

could be used for other gases, including the Helium and Argon used. A correction factor (K) was 

placed into the code and multiplied by the mass flow rate based on the gas. The K factor is given 

in the technical data by the manufacturer.  

A.2 Pressure Transducer 

The pressure transducer used was a barometric pressure sensor (SparkFun). Other gauge 

pressure transducers were initially experimented with, but were not used with the current 

experiment as the voltage output was too small and required an amplification factor of 600 – far 

too large to use without skewing data. Other pressure transducers were explored, but found to not 

provide a significant increase in resolution for the cost based on the design needs of the 

experiments. The pressure transducer was hermitically sealed in a PVC structure and connected 

to the Arduino. The transducer used a 3.3 volt power source and two analog pins over the I2C 

interface. Open source code was modified to read the pressure directly instead of the altitude, 
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which the transducer was designed for. At this point, the data could be read and any further 

modifications, such as the conversion to the stagnated pressure, could be done after the initial 

data acquisition.  

A.3 SD Card Reader 

The SD card reader recorded 4 values during the testing process and stored them into a 

(.csv) file which could be read by Microsoft Excel. The first value was the read-back mass flow 

rate as a function of integers between 0 and 1023 which was rarely used. The next value was the 

absolute pressure. This pressure would later be converted to a gauge and corrected pressure as 

discussed in above. The final two values were the measured and set velocities. These were 

initially recorded a flow rates in the Arduino program and converted to velocities prior to being 

deposited onto the SD card. Therefore, the inlet diameter had to be specified in the code before 

beginning all test. 

A.4 Digital to Analog Converter 

The digital to analog converter allows increased resolution across the mass flow 

controller. Based on the Arduino pulse width modulation (PWM) that was used to govern the 

mass flow controller, it could be increased in integers ranging between 0 and 255, giving the 

controller a resolution of 0.4% of the total flow rate. Preliminary testing found that this was 

insufficient as too few data points were taken across the pressure drop observed at the spout 

formation. Therefore, a digital to analog converter (DAC) was used in which the resolution was 

increased to integers ranging between 0 and 4096 by using a 12 bit system, increasing the 

resolution from to 0.02% increments of the total flow rate. 
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A.5 Flow Rate of Change  

An additional feature of the code not yet discussed is the time increments used to change 

the flow rate. The time desired is a point at which the system reached a quasi-equilibrium state 

while being the smallest possible amount for an expedited testing process. This time was found 

to be 300 milliseconds for each integer between 0 and 4096. This leads to the rate of change of 

the flow rate as 0.08 l/min per second.  

Additional time delays were added at the beginning and end of the ascending and 

descending processes. A first delay was added for 20 seconds when the test began so that zero 

flow was established. The pressure was then taken at the end of this time which would be used to 

calculate the gauge pressure. At the end of the ascending process, the system was held at a 

constant flow for 10 seconds before beginning the descending process. Once the process reached 

zero flow, the 20 second time delay would be started again and the cycle would continue until 

halted.  

A.6 Arduino Code 

The code used to operate the Arduino is specified below. Note that comments (in gray) 

are placed throughout the code specifying the purpose of each part. Three aspects of the code 

were varied between each test which include the diameter and k value located in the beginning of 

the code as well as the initial voltage (max flow rate of system) at the end of the code. 
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