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Abstract

Hydraulic fracturing is recognized as the primary technique to achieve economic

oil and gas production from low permeability reservoirs like shale and tight-sand

formations. One of the main challenges facing the oil and gas industry is maintain-

ing the proppant functionality in the subsurface where replacement of proppant is

only possible by expensive refracturing operations. Proppant crushing and prop-

pant embedment have posed challenges for sustainable production from stimulated

wells especially in soft and deep formations like Haynesville Shales. Experimental

measurements show the strong impact of proppant stress and proppant embedment

on reducing fracture conductivity.

In this work, we introduce a new class of smart ”Expandable Proppants” (EP)

to remotely control the expanding force and maintain the functionality of injected

placed proppants. Our smart proppants are made out of thermoset shape mem-

ory polymers which are activated by formations in situ temperature to effectively

maintain or even increase fractures width. A fully coupled CFD-DEM model is

developed to study the effectiveness of expandable proppants and evaluate frac-

ture conductivity enhancement via different combination and distribution of EP.

In addition, a series of experiments were conducted in a modified API conduc-

tivity cell to measure the increase in fracture conductivity. Different conditions of

temperature, confining stress, proppant size and concentrations are carried out to

verify the optimum conditions.

x



Chapter 1
Introduction

1.1 Background

This research includes experimental measurement and numerical analysis to in-

vestigate effectiveness of expandable proppants made out of the shape memory

polymers for hydraulic fracturing treatments. Hydraulic fracturing has helped the

United States enhance its domestic energy supplies by shifting hydrocarbon pro-

duction in places that were not considerate viable in the past. Nowadays, half of

the oil production from the country comes from hydraulic fractured wells (approx-

imately 4.5MMbbl/day) as presented in Figure 1.1.

FIGURE 1.1. Comparative between oil production from hydraulic fractured wells and
non-hydraulic fractured wells. (Source: US Energy Information Administration)

Proppants are solid materials required to hold fractures open after a hydraulic

fracturing treatment. The primary purpose of the induced fractures is to increase

the permeability of the rock and allow hydrocarbon production in formations of

very low permeability, especially shale. Although sand is the proppant that is most
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commonly used due to low costs and high availability, sand grains may collapse and

generate fines when subjected to compressive stress. If not well consolidated, these

fines can migrate and affect the permeability of the proppant bed. There are some

treatments to avoid this type of problems and other materials such as ceramics

or polymers can be used as proppant, for instance. Sand proppant is considered

ideal for closure stresses up to 6000psi, while resin coat treated sands can resist to

closure stresses up to 8000psi. Ceramic proppants depend on the sintered bauxite

resistance and can resist to closure stresses of more than 10,000psi. Hence, proper

proppant selection impacts hydrocarbon production in the long term, treatment

size and job economics. Additionally, many other factors need to be considered,

for example during production the effective stress is not constant, its value may

increase with time (Zhang and Hou, 2014).

The fracture conductivity is the product of the permeability of the propping

agent and the propped fracture width. Conductivity is a function of proppant

properties (strength, size, composition, roundness, sphericity, distribution, concen-

tration and content of fines), closure stress, pressure drawdown, and production

rate. Fracture conductivity is considered as the most important factor for post

operational performance and thus effectivity of hydraulic fracturing stimulation

(Mader, 1989). Low conductivity can lead to low well productivity and poten-

tially economical failure. In laboratory, fracture conductivity measurements can

be performed in an API conductivity cell. The experiment consists in placing the

proppant pack between two conductivity rock cores, simulating a fracture, and

injecting fluid under different conditions of pressure and temperature.

The main factors affecting proppant pack permeability are fine generation, prop-

pant crushing and proppant embedment (Fig. 1.2) into the formation. They all have

been well documented in the literature. The variation in fracture conductivity can
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reach two orders of magnitude, depending on the properties of the formation and

the proppant pack (Fredd et al., 2001). Therefore, one of the key challenges in the

industry is to predict the long term conductivity of the propped fractures. Plastic

deformations and the effects of rock creep on hydraulic fractures in the long term

are hard to be reproduced by experiments. Fracture conductivity tends to decrease

over time and in extreme cases the induced fracture can even close. Such fact can

take more than a year to occur while long term conductivity tests can last for only

a few days.

FIGURE 1.2. Proppant embedment into soft formations (Barree et al., 2003)

Lately, many improvements were made in proppants to increase their resistance

to crush and embedment but they still cannot prevent the creep behavior from the

formation. Based on these facts, we propose the utilization of a new material as

proppant, a thermosetting polymer that can expand when placed in the fracture.

The main purpose of the expansion of the proppant is to reduce and even cancel

the effect of the creep behavior of the rock, responsible for rock closure. A series

of experiments conducted with this proppant will be performed under different

fracture widths, confining stresses, pressure and temperatures. Later, a discrete

element model, based upon a granular simulator, of a proppant bed will be pre-

sented to simulate the same conditions as the experiment and verify the efficiency

3



of the new material as proppants. Considering proppants to be spheres, the model

will be based on a soft contact model, largely applied to molecular simulations.

The studied proppants in this research are made out of shape memory polymers

(SMPs). SMPs are a type of polymeric material that can be programmed to a

different size and shape and then later return to the original shape. This change is

activated by an external stimulus, such as light, heat or pH. The developed smart

EP would respond to in-situ heating during its service conditions, without any need

to halt production and refracturing the well. This smart EP has the capability

to be programmed changing its conformational entropy, and its shape memory

effect is activated through phase transformation by temperature, ultrasonic or

electricity current. Fig. 1.3 shows a typical recording of the bottomhole pressure

and temperature measurement during and after a typical fracture stimulation.

Fluid and proppants have been pumped for a period of time. The termination of

the pumping period is marked by a red line and followed by an extended period of

shut-in that lasts much longer than the pumping time. Of particular interest here

is that temperature of fracturing fluid and surrounding rock decrease till shut-

in time. The following increase in temperature leads to activation of the smart

proppants.

1.2 Motivation

In hydraulic fracturing operations, billions of grains (couple hundred thousands of

pounds) are pumped along the fracking fluid. So small improvements in proppants

are enough to enhance production of a hydraulic fractured well. Recent studies

show that the operators have been investing more in high quality proppants and

the industry is putting more effort on its development (Vincent et al., 2002). It

is notorious that the global market size of the proppants is currently about 9

billion dollars while is not addressing the issues that can be solved by the proposed

4



FIGURE 1.3. Bottomhole net pressure and temperature history during a typical frac-
turing treatment. Red line marks the end of pumping and, consequently, increase in
temperature that would activate the EP.

expandable proppant. The developed smart EP would respond to in-situ heating

during its service conditions, without any need to halt production and refracturing

the well. In terms of economic perspective, it is notable that the combination of

hydraulic fracturing and horizontal drilling technologies has enabled the production

of oil and gas from tight sand and shale formations, also known as unconventional

reservoirs. Shale gas has emerged as a major new energy source in North America

in the past decade. In 2000, shale gas contributed only one percent to the U.S.

natural gas production; this number grew to over 20 percent by 2010. Similar

gains are being observed in Canada, and promising shale gas resources are being

investigated now in China.

The market pain point in recovering oil and gas from shale plays is the fast

and sudden drop in production due to post-treatment fracture closure. In other

words, in some soft shale plays, hydrocarbon production in fractured wells show

5



no difference from non-fractured wells after a few months of production. Among

different shale plays in North America, the most distinguishable ones with proppant

related challenges are Haynesville shale, Eagleford shale, Tuscaloosa Marine Shale

and Woodford shale which are contributing to 42% of current natural gas produced

in the United States.

1.3 Research Objectives

The research objectives of this work are listed as below

1. To conduct experiments to verify the applicability of the shape memory poly-
mers (SMPs) as proppant for hydraulic fracturing treatments.

(a) To design the experimental apparatus for fracture conductivity mea-
surement following modified API RP 61 (Recommended Practices for
Evaluating Short Term Proppant Pack Conductivity).

(b) To build the experimental apparatus to measure the hydraulic conduc-
tivity of regular and expandable proppants.

(c) To run hydraulic conductivity experiments under different closure stresses
to understand the potential impacts of the reservoir temperature and
its closure stresses.

(d) To test proppant samples with different grain size distributions, Young’s
modulus, strength, and activation temperature to achieve more optimal
proppant selection.

2. To simulate proppant-pack conductivity using fully coupled computational
fluid dynamics - discrete element methods.

(a) To model the proppant-pack expansion in LIGGGHTS (Lammps Im-
proved for General Granular and Granular Heat Transfer Simulations).

(b) To calculate fracture conductivity due to proppant expansion using cou-
pling of discrete element methods with computational fluid dynamics.

(c) To validate simulation results with the lab experiment measurements.

(d) To conduct virtual experiments to determine more effective proppant
size and size distribution to achieve a higher proppant-bed permeability
for given stress conditions.

3. To integrate numerical simulation into lab experiments to improve SMP de-
sign as proppant and save time and costs .

(a) Predict the behavior of the fracture conductivity values based on the
results of tests and simulations.

6



(b) To implement a fracturing job design and predict the well performance
with SMP as propping agent.
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Chapter 2
Theory and Literature Review

This section provides a review on the experimental methodology to measure frac-

ture conductivity. The influence of the parameters, such as temperature, closure

stress, time and proppant size are discussed based on the results acquired from

previous studies. A brief review on shape memory polymers is also presented in

the end of this section.

2.1 Fracture Conductivity

The main objective of hydraulic fracturing is to create a highly conductive flow

path for hydrocarbon production. When this flow path is created, proppants are

injected to assure that the popped fracture will not close. Fracture conductivity

measures can be performed in laboratory and have been under investigation since

the development of fracturing techniques. Cooke (1973) was one of the first to

measure proppant pack permeability by using a conductivity cell. While previous

experiments neglected temperature and flow rate effects, Cooke investigated both

factors in a vertical fracture filled with proppants in the conductivity cell. The

schematic of the apparatus can be seen in Figure 2.1. Data was obtained by ap-

plying closure stress with two pistons directly to the proppant pack for one hour

under low flow rates, to avoid non-Darcy effects. Through his investigations he

came to a conclusion that fracture conductivity has an inverse relationship with

reservoir temperature and closure stress. Also, the author indicated the importance

of non-Darcy flow at high gas flow rates and pointed that for extended times the

permeability would certainly decrease.

8



FIGURE 2.1. Schematic of the conductivity cell built by Cooke

Later, Cooke (1975) also evaluated the effects of fracturing fluids on fracture

conductivity. One of the additives of the fracturing fluid has the purpose to seal

pore spaces at the rock to avoid fluid loss but could potentially affect permeability.

By placing two rock cores this time to simulate a fracture wall and filling them

with proppant, he found that the effects of these fluid additives are negligible. In

addition, that conductivity reduction is strongly related to the concentration and

porosity of the proppant pack.

McDaniel (1986) extended the experiments duration from one to 18 hours to

observe the decrease in fracture conductivity. He also tested different proppant

sizes and variations in temperature and closure stress. As a result, conductivity

decreased by an order of three in extended tests.

A different approach was introduced by Penny (1987), the author used multiple

cells to evaluate proppant pack conductivity using dynamic testing. That means

that instead of placing the proppant manually in the core, the proppant is pumped

along with the fracture fluid, dynamically placing the proppant at the fracture, just

like in the field. A wide variety of proppants were tested, including sands, resin

coted sands and ceramic. Embedment, temperature and time of closure showed big

effects on proppant permeability and conductivity.
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In 1989, the procedures, apparatus and conditions for conductivity measurement

in a conductivity cell were developed by American Petroleum Institute (API) and

documented in API RP 61 (Marpaung et al., 2008). This method considers short

term proppant pack conductivity. Since the introduction of the procedure, it has

become standard for propped hydraulic fracture conductivity in laboratory mea-

surements. Recent advances in technology combined with the need of acquisition of

more realistic data leaded to the creation of new standards for measuring proppant

conductivity. In 2001, International Organization for Standardization (ISO) and

API formed a committee to define new procedures (Kaufman et al., 2007). The

main modification is the inclusion of the long term conductivity test, where the

time settled is 50 hours, which was established as time when the proppant pack

reaches a semi-steady state.

Laboratory experiments conducted by Milton-Taylor (1992) verified the impact

of fracture width on fracture stability. The results show that width up to six prop-

pant diameters can keep the proppant pack stable and avoid proppant production.

Although the experiments ignored some parameters, this rule was successfully ap-

plied to several hydraulic fracture treatments. However, factures can take more

time to close. Blauer (1997) performed tests in sandstone to verify the effects of

fracture closure. He observed that the fractures start closing after 90 days.

Numerical simulations of hydraulic fracturing treatments in naturally fractured

reservoirs have shown that fracture opening at the intersection of fractures is prone

to larger amount of compressional stress in comparison to the rest of the induced

fracture (Dahi Taleghani and Olson, 2014; Dahi Taleghani, 2010). The strong com-

pressional stress at the intersection (branching) point may reduce fracture con-

ducitivity at these points, hence branching points may act as bottleneck during

the production life of the wellbore (Asala et al., 2016).
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The formation generated fines have big impact in the proppant pack perme-

ability, plugging pores when they are submitted to high pressure and flow rate

conditions. In order to prevent fines from entering the proppant pack and assure

sustained conductivity during production the grains can be treated with a surface

modification agent (SMA). SMA can be formulated using liquid resin to consolidate

the proppant pack. In addition, resins increase the consolidation of the proppant

pack and avoid proppant production. A 10 to 30% increase in conductivity occurs

in laboratory experiments in the conductivity cell using SMA-treated proppant

(Dewprashad et al., 1999). The treatment has to be planned carefully because the

resin is very sensitive to pressure and temperature. In 1996, an epoxy resin treat-

ment was able to eliminate proppant production of 14 out of 22 gas wells in the

Hugoton gas field in North America (Cole, Amundson, and Allen, 1999).

2.2 Numerical Model

Considerable time and efforts are required for conducting experiments, thus we

tried to developed some numerical tools to simulate the performance of SMP EP.

Having a robust numerical tool will give us an opportunity to come with more

effective and optimal utilization of EP for field application before field trials. Con-

sidering the nature of this problem, we chose Discrete Element Methods (DEM) to

simulate the proppant bed permeability before and after activation, which includes

study of particles individual motion, tracking their location, temperature changes,

as well as tectonic forces and deformations associated with each step. Instead of a

continuum, DEM considers granular materials as a collection of distinct particles.

The energy is directly transferred between elements and their movement is tracked

individually. By combining this technique with Computational Fluid Dynamics

(CFD), it is possible to model the fluid flow through the proppant pack. Tsuji el

al. (1993) was the first to implement a CFD-DEM model, followed then by so many
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others. The authors carried out a 2-D model of a gas-solid fluidized bed of spherical

particles. There are other methods to simulate fluid-particle interaction but consid-

ering computational efficency and numerical convenience, CFD-DEM has proved

to be advantageous over other approaches such as Direct Numerical Simulations

coupled with DEM (DNS-DEM) or Lattice Boltzmann Method coupled with DEM

(LBM-DEM) (Zhu et al., 2007).

Previous works used the discrete approach to model proppant behaviour in a

fracture. Mattson et al. (2014) built a 2-D DEM model to investigate the rear-

rangement of proppants in an API conductivity cell. The rearrangement causes

non-uniform stress distribution along the cell and may overestimate fracture con-

ductivity values. Asgian et al. (1995) conducted a numerical study to evaluate

proppant flowback, an undesired condition where some some of the proppant is

produced along the hydrocarbon. Performing eight simulations in DEM he veri-

fied which proppant properties and closures stress are more sensitive to proppant

production. Later Shor and Sharma (2014) extended this work to a wider rage of

confining stresses. Through their simulations they were able to quantify the depen-

dence of proppant flowback on confining stress and proppant size. These works,

though, use a drag force in DEM to simulate the fluid-particle interaction.

A 3-D numerical model to evaluate fracture conductivity was proposed by Shamsi

(2015), coupling DEM with Lattice Boltzmann Method (LBM). The proppant pack

is modelled using DEM while LBM is used to calculate the interstitial fluid flow.

LBM is an alternative to classic CFD methods, where the kinetic equation for the

particle distribution function is solved instead of solving Navier-Stokes equations.

In their work the fracture conductivity is computed for different proppant sizes

distribution and different confining stresses. Deng (2014) developed a DEM code

to study the interaction between shale and proppant. The code is also coupled with

12



CFD to simulate a hydraulic fracture. Different shale properties (Young’s modulus)

and proppant sizes were tested.

2.3 Shape Memory Polymers

Thermosetting polymers are chemically or physically cross-linked polymers, mean-

ing they have chemical bonds linking one polymer chain to another. As examples:

epoxy, vinyl ester, polyester etc. They depend on temperature and loading rate

and, like most polymers, they are amorphous (Li, 2014). These kind of polymers

show different behaviors at different temperatures. Thus, when heated to the glass

transition region (Tg), the mobility of the molecules increase and the motion of

the segments along the loading direction becomes possible. This property can be

explained by the free volume theory. This means that the occupied volume does

not change with temperature, but the interstitial free volume may change linearly

with temperature. In addition, there is the hole free volume, that expands nonlin-

early with temperature. Thermosetting polymers usually consist of two parts, the

liquid resin and curing agent mixed together.

(a) Before (b) After

FIGURE 2.2. A popped fracture with smart proppants before and after the activation

Shape memory polymer was first developed in 1984, with the creation of the

polynorbornene based SMP by the French company CDF Chimie Company (Xie,

2011). However, its application in the industry are recent due to new advances in
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(a) (b)

FIGURE 2.3. Smart proppants a)Before activation; b)after activation

the field. The driving force for shape recovery is the conformational entropy of the

molecular segments in terms of micro-Brownian thermal motion. With temperature

increasing above Tg, there is a reduction in the viscosity and an increment in the

molecule mobility, which leads to reel of molecules to their original configuration.

Macroscopically, the polymer recovers to its original shape. Thermodynamically,

the molecular segments experience a change from a temporary and ordered config-

uration to its random and coiled configuration during the shape recovery process.

Since this process is accompanied by an increase in entropy, the process an au-

tonomous (Li, 2014).

They are part of a smart class of materials with shape memory effect, along

with shape memory ceramic and shape memory alloy, but have the advantage

of being cheap, easier to process, non-toxic, biodegradable and can achieve much

higher degrees of deformation (Li, 2014). Such characteristics made them ideal for

many applications, including medical devices, sports clothing, temperature sen-

sors, connectors and shrinkable tubes, for instance (Baghani, Mohammadi, and

Naghdabadi, 2014). SMP foam has been used as a sand management alternative

to gravel packing, the screen can shrink up to 70% of its original size when in place

to prevent sand production (Carrejo, Johnson, and Horner, 2011). In a recent study

by Dahi Taleghani et al. (2016), SMP particles are used as an expansive cement
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additive to seal cement voids and fractures in the well annulus. The application of

SMP particles in the petroleum industry can be considered unprecedented and a

clear understanding of the SMP thermomechanical behaviour is critical to ensure

a good proppant pack permeability during oil and gas production.

SMPs need to be programmed to change into the memorized shape and return

to the original shape. The classical programming method is presented in Fig. 2.4,

and it is a four step thermomechanical cycle, involving changes in temperature (T),

stress (σ) and strain (ε). The process starts at temperatures above Tg, applying

a high strain deformation (pre-deformation, or pre-strain). Then it is followed by

the maintenance of the pre-strain while cooling down below Tg. The third step

is the removal of the stress in the glassy state. After that, reheating the SMP to

its initial temperature without applying constraint, brings the pre strain back to

zero (unconstrained recovery) and recovers the initial shape. This is defined as free

shape recovery. The low temperature unloading process may be accompanied by

spring back, which is pre-strain rebounded. The amount of spring back reflects the

shape fixity capability of the polymer. The shape fixity ratio can also be calculated.

After the deformation the entropy will reduce (negative entropy change).
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(a) (b)

FIGURE 2.4. a)Schematic of the classical programming method; b)Procedures to pro-
gram SMP (Li, 2014)
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Chapter 3
Materials and Experimental Procedure

The objective of running experiments is to reproduce field conditions in a hydraulic

fracturing treatment in a very smaller scale. This chapter describes the equipment

built to evaluate fracture conductivity, the material used and the procedures.

3.1 Experimental Setup

The equipment and materials used in the experiment are listed below (see figures

6.1, 6.2, 6.3 and 6.4 in Appendix A for more details)

� Sieve shaker (W. S. Tyler Ro-Tap RX-29)

� High pressure syringe pump (Teledyne Isco 500D)

� Modified RP-61 conductivity cell and 2 sandstone rock core samples

� Silicon heat tape, to heat to cell up to 400oF (Briskheat)

� Load frame (Dake B-10)

� 3 Pressure transducers to measure the absolute and differential pressure
across the cell

� Thermocouple to measure the temperature inside the cell

� NI USB 6000 data acquisition system

� NI USB-TC01 data acquisition system

3.1.1 Conductivity cell

The fracture conductivity cell consists of a cell body made of 316 grade stainless

steel (Fig. 3.1) and two side pistons to hold the cores and apply confining stress

(Fig. 3.2). The proppant is placed between the cores inside the cell, simulating

a popped fracture. At the ends of the cell there is an inlet and an outlet port,

allowing test fluid to flown along the cell body by the pump at a defined constant

flow rate. On one side of the cell, three pressure transducers are connected to the

17



pressure ports. The transducer in the middle measures the absolute cell pressure,

while the other two measures pressure across the cell (inlet and outlet pressures) at

regular time steps. Filters are used to prevent the slurry from entering the pressure

ports and protect the sensors. The filters used have a 140 microns screen.

On the other side, the port in the middle is connected to a thermocouple, which

measure temperature inside the cell. Rupture disks are connected to the other

two ports to ensure that the pressure inside the cell do not surpass 3000psi. The

apparatus need to be in the load frame and carefully positioned at the center of

the equipment so that stress is applied uniformly.

FIGURE 3.1. Conductivity cell loaded with smart proppants

FIGURE 3.2. Side piston and sandstone conductivity core
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3.1.2 Data Acquisition System

Honeywell pressure transducers were used to record the pressure evolution data

along the pressure cells with two transducers on each cell. All pressure transducers

were calibrated using a dead weight tester (Ashcroft 1305D as shown in Fig. 6.3a)

to ensure proper pressure measurements. The dead weight tester apparatus uses

identifiable weights to apply pressure to a fluid to verify and adjust the accuracy of

the readings of the pressure transducers. The pressure transducers are connected

to NI USB 6000 data acquisition system.

The thermocouple used are type K, from Omega. A thermocouple produces a

temperature-dependent voltage as a result of the thermoelectric effect. This volt-

age is measured by the NI USB-TC01 data acquisition system and interpreted to

measure temperature. All measurements are recorded by National Instruments’

proprietary software LabVIEW.

3.1.3 Syringe Pump

High pressure syringe pump Teledyne Isco 500D was used to ensure constant flow

rate. It is capable of providing flow rates from 0.001 to 204 ml/min and can store

up to 507ml of fluid. The pump can produce pressures up to 3750psi. The pump

is shown in Fig. 6.1 in appendix A.

3.2 Experimental Conditions

The experiments were performed following API RP 61, Recommended Practices

for Evaluating Short Term Proppant Pack Conductivity 1989.

3.2.1 Proppants

Proppants have to be sieved because depending of the size, shape and distribution

of the particles, there may be errors or variability involved in sampling due segre-

gation. These particles tend to naturally find the path with less resistance when a

force is applied (Kaufman et al., 2007). So firstly, the proppant sample is placed in
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a sieve shaker, with 7 sieves with mesh distribution between 20-120 mesh, for 10

minutes to obtain particles with uniform sizes. Mesh is a measure of particle size

distribution of granular material and the sieve sizes are regulated by standards.

The sieves used in this experiment were:

The proppants are made of SMPs and are loaded in the cell with concentration of

2lbm/ft2 (9.76kg/m2). As the density of the proppants is 950kg/m2, we loaded the

cell with 0.063kg of proppants. High concentration leads to wider propped fractures

so slurry concentrations are usually designed to be above 1 lbm/ft2 (Economides,

1992).

3.2.2 Rock Cores

The conductivity core (7 in. long, 1.5in. wide and 0.4 in. high) chosen was the Ohio

sandstone because of its low permeability, similar to a tight sand reservoir (around

0.010 mD).

3.2.3 Test Fluid

The test fluid used in this experiment is distilled water at room temperature, as

recommended by API RP 61. The syringe pump ensure constant flow rate.

3.2.4 Confining Stress

The values for confining stress were set to 5, 10 and 15MPa, applied by the hy-

draulic press.

3.2.5 Temperature

The experiment starts at room temperature and then the cell is heated to 90oC in

order to reproduce reservoir conditions and activate the proppant expansion. Tem-

perature have a large effect on proppant properties, and consequently on fracture

conductivity.

20



TABLE 3.1. Test parameters
Closure Stress
(MPa)

Flow Rates
(cm3/min)

Time at Stress
(h)

Temperatures
(Co)

5 10.0 0.25 23, 90
10 10.0 0.25 23, 90
15 10.0 0.25 23, 90

3.3 Experimental Procedures

To begin the experiment, two sandstone cores (previously saturated) are assembled

in the fracture conductivity cell, one in each piston of the fracture conductivity

cell as show in Fig. 5b. The samples have a rectangular shape with rounded edges

and they have to be wrapped in Teflon tape to prevent leakage. The bottom piston

is inserted first, then, the proppant is placed between the cores, making sure that

the fracture is in the middle of the conductivity cell. The quantity of proppant

determines the fracture width and is important to measure the conductivity. The

top core sample with the piston is inserted after with the aid of the hydraulic press.

Once this setup is ready, the leak off port of the pistons need to be sealed. The

heating tape is wrapped around the conductivity cell and adjusted to the desired

temperature.

The next step is placing the cell in the center of the hydraulic press and pump

until achieve the desired confining stress. The fracture width is measured with a

calliper at each end of the test unit to make sure the level is uniform. After that, the

conductivity cell is ready for the experiment. The inlet of the conductivity cell is

then open and the pump can be started at a constant desired flow rate. Figs. 3.3, 3.4

and 3.5 show the LabVIEW screens to set the flow rate and monitor temperature

and pressure, respectively. After accumulating some pressure and checking for leaks

we open the outlet valve and wait for the pressure to stabilize. Pressure readings

are recorded at regular intervals by the software. After 15 minutes we increase the
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flow and record the pressure readings. The time is sufficient for the proppant bed

to reach a semi-steady condition.

To verify the fracture conductivity of the expanded proppant we set the tem-

perature in the heating tape to 90o. The process can take up to one hour and,

after that, we measure the fracture width and repeat the procedures described

previously.

3.4 Fracture Conductivity Calculation

Under laminar conditions, the proppant pack conductivity is calculated using Dar-

cys equation (considering the test unit width 1.5in and the length between the

pressure ports 5in)

kWf =
26.78µQ

∆P
(3.1)

To calculate the proppant pack permeability use

k =
321.4µQ

∆PWf

(3.2)

Where k is the proppant pack permeability in mD, µ is the viscosity of test

liquid at test temperature, in cP, Q denotes flowrate in cm3/min, Wf is the pack

width in inches and ∆P is the pressure drop in psi. Since the flow rate is very low,

non-Darcy flow effects are negligible.
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FIGURE 3.3. Pump settings

FIGURE 3.4. Temperature log

FIGURE 3.5. Instantaneous pressure readings
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Chapter 4
Numerical Model Description

This chapter details the numerical model developed to verify the efficiency of the

smart proppants. The interaction between particles and also between fluid and

particles are thoroughly described.

4.1 Discrete Element Method (DEM)

Discrete element methods, also known as distinct element methods, is a numer-

ical method to simulate motion and effect of granular particles. This model was

proposed by Cundall in 1971 to solve rock mechanics problems and allow us to un-

derstand the underlying interactions between particles (Cundall and Strack, 1979).

Although most particles are not spherical, the discrete model can be applied to

study their mechanical behaviour. The interaction between particles occurs only

at contact points and they are simulated individually, thus new contacts are recog-

nized as the simulation progresses (Shor and Sharma, 2014). The time integration

is done on a time scale much smaller than the typical contact time. These minor

steps ensure that for each time step the disturbance do not propagate from the

particle and fluid farther than its immediate neighbours. To describe the motion

of each element, Newtons second law is applied. Below, the main steps to complete

a DEM simulation are listed:

� Initialization: First, initial configuration of particles, geometry and boundary
conditions are defined. Position, radius and shape of the particles (usually
spheres).

� Application of forces: The contacting particles are identified, then force is
calculated in each particle (pressure, gravity, friction caused by neighbour
particles, for example).
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� Force calculations: From the forces mentioned above, the resultant force and
momentum or torque acting in each particle is computed, including body
forces and external forces.

� Integration: The acceleration of each particle are calculated and integrated
to define their velocities.

� Analysis: For each time step, mechanical and thermal parameters are com-
puted. The previous steps are repeated until the solution is complete.

� Post processing: Generates output data and graphical visualization of the
simulation.

Initially, the particle velocities and incremental displacements are computed con-

sidering equilibrium of each particle in sequence. Then, after updating the system

geometry the force at contact points are calculated.

FIGURE 4.1. Flowchart of the steps to complete a DEM simulation

The model was built in a granular simulator, LIGGGHTS (LAMMMPS Im-

proved for General Granular and Granular Heat Transfer Simulations, LAMMPS

is an open source successful molecular dynamics code). Kloss (Kloss et al., 2012)

describes the simulator thoroughly. LIGGGHTS is executed by reading the code

from an input file, there is no graphical interface. After running the code, the

software generates an output file for each time step, containing information of the

position of the particles in that particular time step. These files have to be post

processed so they can be visualized graphically.
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4.1.1 Governing Equations

DEM is a Lagrangian method, which by definition means that the particles inside

the domain are tracked by following their trajectories (Kloss et al., 2012). The

governing equations for rotational and translational motions are

miẍi = Fi,n + Fi,t + Fi,f + Fi,b (4.1)

Ii
dωi
dt

= ri,c × Fi,t + Ti,r (4.2)

Where Fi,n denotes the normal particle-particle contact force, Fi,t is the tangen-

tial particle-particle contact force, Fi,f is particle-fluid interaction and Fi,b is the

sum of other forces such as gravity, electrostatic and magnetic. Ti,r is the torque

acting on the particle. The forces and torques are calculated on each particle posi-

tion, thus equations 4.1 and 4.2 can give rotational and translational acceleration,

ω̇i and ẍi.

4.1.2 Contact Force Model

The soft sphere model considered for this work, unlike the hard sphere model, rec-

ognizes deformations and penetrations between spheres. The principle behind this

model is to solve the equations guiding the angular and linear equilibrium of the

spheres in minor steps. These spheres interact through a spatial overlap (Figure

4.2), which represents the particle deformation, causing transference of normal (Fn)

and tangential forces (Ft) through a linear spring and dashpot model, as shown

in Figure 4.3. The spring constants are function of the material and dampening

properties are function of the viscosity of the medium (Shor and Sharma, 2014).

As outlined by OSullivan (2011), the normal component is calculated considering

either the particle overlap or separation (for compressive and tensile forces, respec-

tively). Tangential forces are calculated from the cumulative relative displacement

at contact points, in the orthogonal direction to normal orientation. Each element
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interacts only with its neighbors because the simulator has neighbors list for each

element.

FIGURE 4.2. Overlap between particles, representing the deformation given by δ

FIGURE 4.3. Linear spring dashpot model assumed for DEM, including a dissipative
viscous dashpot at the contact point to account for energy dissipation due to plastic
deformation

~Fn = kn~δ + cn
−−→
∆vn (4.3)

~Ft = kt|
∫ t

tc,0

∆vt(τ)dτ |~t+ ct
−−→
∆vt (4.4)

where ∆vn and ∆vt are normal relative velocity and tangential relative velocity

at the contact point, respectively, t is tangential vector at the contact point, is

time at which the contact begins. kn and kt are elastic constants for normal and

tangential contacts and they are function of Youngs modulus and Poisson Ratio.

Cn is the dissipative term.

The magnitude of the tangential force is bounded by the frictional force.
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max(|~Ft|) = |µc ~Fn| (4.5)

Where µc is the friction coefficient.

4.1.3 Particle-Particle heat transfer

The particleparticle heat conduction model is based on the work of Chaudhuri et al

(2006), which describes heat transfer in three dimensional DEM. The work accounts

for thermal conduction through the contact area between two particles in contact.

The model considers initial material temperature, wall temperature, granular heat

capacity, granular heat transfer coefficient and granular flow properties. The heat

transfer simulations use a linear model. Assuming constant temperature within the

particle for each time step, the energy equation for a particle is given by

micp,j
dTi
dt

=
∑
j

Qij +Qsrc,i (4.6)

Where Ti denotes particle temperature, cp,j is particle thermal capacity, Qij is

heat flux between the particles and Qsrc,i is heat source for the particle.

Qij = Hij(Tj − Ti) (4.7)

Hij is the heat transfer coefficient and it is calculated from the thermal conduc-

tivities and is given by

Hij = 4
kikj
ki + kj

√
Ac,ij (4.8)

and Ac,ij is the contact area between the the particles

Ac,ij = −π
4

(cij − ri − rj)(cij + ri − rj)(cij − ri + rj)(cij + ri + rj)

c2ij
(4.9)
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where

cij = δn,ij − ri − rj (4.10)

4.2 Computational Fluid Dynamics

Computational fluid dynamics (CFD) is the study of systems involving fluid flow,

heat transfer and associated fluid phenomena through computer-based simulations.

This technique is very powerful and can be applied in a wide range of fields.

CFD codes are composed of numerical algorithms to solve fluid flow problems

and they are divided in three main parts. The first one is pre-processing, where

the input data like the geometry, grid size, fluid properties, chemical and physical

phenomena are defined. The second is the solver, which uses finite volume method

(FVM) to evaluate PDE in the form of algebraic equations and then solve the

algebraic equations by an iterative method. The values are calculated at discrete

places on a meshed geometry, but the FVM is distinct from other techniques such

as finite difference due to the integration of the governing equations over all the

control volumes of the domain (Versteeg and Malalasekera, 2006). Finally, the post

processing includes tools for data visualization.

We used the CFD framework OpenFOAM, which stands for ”Open Source Field

Operation and Manipulation. OpenFOAM is open source and has a wide variety

of solvers, but our focus will be on incompressible steady-state flow.

4.3 Computational Fluid Dynamics Discrete Element Methods
model

The CFD-DEM (Computational Fluid Dynamics Discrete Element Methods)

model can couple solid particles simulations with fluid systems. In this research we

used CFDEM coupling, an open source CFD-DEM engine, coupling LIGGGHTS

with OpenFOAM. The software can simulate also momentum, heat and mass ex-
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change between phases. The motion of the particles are modeled by solving New-

tons equation in the discrete approach DEM, as described before, while the inter-

stitial incompressible fluid flow uses the continuum approach CFD, based on local

averaged Navier-Stokes equations, assuring conservation of momentum and mass

(Zhu et al., 2007).

∂εf
∂t

+∇.(εfuf ) = 0 (4.11)

∂(εfuf )

∂t
+∇.(εfufuf ) = εf∇

p

ρf
−Rpf +∇.τ (4.12)

where uf and p are, respectively, the fluid velocity and pressure, τ , εf and Rpf are

the fluid viscous stress tensor, volume fraction occupied by the fluid and momentum

exchange with the particulate phase. Considering only the laminar conditions, the

fluid moves in an orderly manner and maintain the same position relative to pipe

bounding flow.

Equations 4.11 and 4.12 are solved using the PISO algorithm, which for numer-

ical reasons divide the particle-fluid momentum exchange in implicit and explicit

terms. This way

Rpf = Kpf (uf − 〈up〉) (4.13)

Kpf =

∑
i Fd

Vcell|uf − 〈up〉|
(4.14)

where Kpf is the momentum exchange coefficient, 〈up〉 is a cell based enseble

averaged particle velocity and Fd is the drag force, explained in the next section.

4.3.1 Fluid-Particle Interaction

Different types of forces act on particles submerged in fluids, hydrostatic or hy-

drodynamics (Zhu et al., 2007). The hydrostatic force is the buoyancy force due
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to pressure gradient around the particle.

Fb =
1

6
πρd3pg (4.15)

Hydrodynamics forces include drag force, virtual mass force and lift force. The

dominant fluid-particle force is the drag force (O’Sullivan, 2011), and it depends

on a drag coefficient Cd, the particle fluid relative velocity and the particle diam-

eter dp. The drag force is defined usually by both theoretical analysis and fits to

experimental data. The expression 4.16 was proposed by Di Felice (1994) and does

not depend on the flow regime.

Fd = Cdπρfd
2
p|Vf − Vp|

Vf − Vp
8

ε1−χ (4.16)

Cd =

(
0.63 +

4.8√
Rp

)2

(4.17)

Rp =
ερdp|Vf − Vp|

µ
(4.18)

χ = 3.7− 0.65 exp

[
−(1.5− logRp)

2

2

]
(4.19)

Here, ε−χ is a corrective function that consider other particles present in the

system.

In the literature, there are three distinct formulations describing the particle-

fluid flow, as described by Zhou et al. (2010). Besides theses forces, others forces

have been neglected in this work, like Magnus force (particle rotation), Saffman

force (fluid velocity gradient leading to shear) or pressure force (pressure gradient

in the flow field.

The coupling of both models is calculated in time steps. For each time step, the

position and velocities of the solid particles are given by DEM, then the information
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is evaluated for porosity and drag force data in a computational cell. CFD can

obtain the fluid flow from this data and incorporate the fluid drag forces on the

individual particles, which will lead DEM to calculate the motion of the particles

for the next time step (Yu and Xu, 2003; Zhu et al., 2007). This process follows

Newtons third law of motion, which states that the force acting of the solid phase

acting on the liquid phase should be equal to the force of the liquid phase acting

on the solid phase but in the opposite direction.

FIGURE 4.4. Simplified flowchart of the steps to complete a CFD-DEM simulation

The software allows two different approaches, the unresolved approach (Fig.

4.5a) where the particle sizes are smaller than the computational grid and the

resolved approach (Fig.4.5b), with particles sizes bigger than the computational

grid. The last one give more accurate flow calculations, but with greater compu-

tational expense due to the extra cells generated. n our simulations we used the

unresolved approach. In this case, CFD and DEM time steps can be defined sep-

arately from each other. The DEM time steps need to be set at least one order

of magnitude smaller than CFD because of the high intensity of particle collisions

and overlapping (Kloss et al., 2012).

4.3.2 Fluid-Particle Heat-Transfer

The model for convective heat transfer between particulate phase and fluid phase

is based on Li & Mason (2000) calculated by

∂Tf
∂t

+∇.(Tf .uf ) = ∇.(κeff∇Tf ) + St (4.20)
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FIGURE 4.5. a)Unresolved CFD-DEM approach, where the computational grid is big-
ger than the particles; b)Resolved CFD-DEM approach, with the computational grid is
smaller than the particles (Kloss et al., 2012)

Where κ is the thermal diffusivity and ST is the source term given by

ST = − qp
ρfCVcell

(4.21)

qp is the heat transfer ratio given by

qp = hAp(Tf − Tp) (4.22)

And h is the heat transfer coefficient

h =
λNup
dp

(4.23)

Nup denotes the particle Nusselt number and is a function of the particle

Reynolds number Rep and the Prandtl number Pr. For Rep < 200

Nup = 2 + 6r1/2p Pr1/3 (4.24)
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4.4 Simulation Procedure

The simulation involves the creation of a proppant pack, application of confining

pressure from the formation, proppant expansion,and fluid flow in one direction.

1. A simulation region in DEM is defined. In order to minimze computational
efforts a representative volume is taken. The fracture is represented by a
rectangular box with 5.0mm in width, 5.0mm in height and 8.0mm in width.

2. A proppant pack is generated with a previously defined size (Table 4.1).

3. A normal force is applied by a servo controlled wall (z-direction) while the
other walls remain immobile, with constant confining stress. The proppant
pack consolidate under the applied external pressure that is mimicking for-
mation closure stress.

4. Test fluid (water) is pumped in the x-direction, keeping a constant low flow
rate. Inlet and outlet pressures are registered for regular interval of time
steps.

5. Then, as the temperature increase, the proppant starts to expand.

The CFD-DEM solver used to solve the simulations was cfdemSolverPisoScalar

which solves Navier-Stokes equation considering the momentum exchange and vol-

ume displacement of the particles, calculated by DEM. All simulations were run

in a dual quad core processor Intel i7 with 15.6B of memory and can take up to

72 hours depending on the particle size.

The results are presented in plots that follow and show the response of the

porosity, permeability and fracture width to confining stress. A verification case,

comparing the numerical result to an analytical solution is run in order to check

the accuracy of the model.

TABLE 4.1. Proppant size

Size
Minimum diameter
(mm)

Maximum Diameter
(mm)

Particles

12/20 0.85 1.41 98
16/30 0.6 1.0 318
20/40 0.425 0.71 950
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Chapter 5
Results

In this chapter, the project results will be presented and discussed. The results are

displayed in terms of porosity, permeability and fracture aperture under a range

of confining stresses. The influence of proppant size and stiffness is also discussed.

5.1 Preliminary Analysis

The properties of the first samples of EP are listed in Table 5.1. Simulations under

high compressive strength and with small particles have proven to be very lengthy.

In order to reduce computational time, simulations were run with proppants mesh

size 12/20, 16/30 and 20/40.

TABLE 5.1. EP parameters for the numerical simulations
Parameters Values
Density (ρ) 950 kg/m3

Young’s Modulus (E) 260 MPa
Possion’s Ratio (ν) 0.45
Friction coefficient (µc) 0.5

The proppant pack without expansion and under confining stress, generated by

DEM simulations is shown in Fig. 5.1. In these examples the confining stress is 20

MPa.

Coupling CFD and DEM generates the fluid flow through the proppant bed.

The temperature increment in the fluid and pressure differential are displayed in

Fig. 5.2. It is important to notice that OpenFOAM works with kinematic pressure

(p
ρ
) and its units are m2

s2
.

The parameters analysed in this study were porosity, permeability and fracture

opening. Initial porosity is higher than the porosity of a packed bed of spheres due

to the wall effect, the porosity increases when in contact with a solid boundary.
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(a) (b)

(c)

FIGURE 5.1. Different mesh sizes of proppant pack bed under confining stress a)12/20
b)16/30 c)20/40

Porosity is given by the void space of the CFD cell. As the proppants are com-

pressible, the reduction in fracture width is not only due to closure of pore spaces.

Preliminary results suggests that the particles are too soft our purpose. High prop-

pant deformation under closure stresses were observed, causing a big decrease in

porosity and permeability. These results can be seem in Figs. 5.3 and 5.4.

The same fact was observed in the experiments, where the compaction and

following proppant expansion leaded to closure of the pores, as shown in Fig.

5.1. The proppants used in the experiments were also too large (around 2mm of

diameter) so the results cannot be used in comparison with the numerical model.

But the images can confirm the effect observed in the simulations

As observed in Fig. 9 for both cases at 20MPa confining stress, the porosity of

the proppant pack is smaller than 10% and the permeability is smaller than 10

Darcy, which is not acceptable for proppants of this size and will not allow good

flow. The permeability reduction under these high stresses are due to the deforma-
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(a)

(b)

(c)

FIGURE 5.2. a)Stream lines representing the fluid flow through the proppant pack
b)Fluid temperature increasing in the fracture c)Fluid pressure differential, allowing
us to calculate fracture the permeability of the pack

tion the particle, reducing their sphericity and partially plugging the pore spaces.

So, in addition to reduction in permeability, the fracture width also decreased

substantially, resulting in large fracture conductivity reduction.

5.2 Incremented Young’s Modulus

An attempt to obtain better results was made by increasing the Youngs modulus

to 520MP. A clear indication of the improvement is the larger values obtained for
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FIGURE 5.3. Porosity versus confining stress for two sample of proppants
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FIGURE 5.4. Permeability versus confining stress for two sample of proppants

fracture width, which means a smaller deformation of the proppants. Fig. 5.6 dis-

plays both fracture width values, with the dashed line representing the proppants

with higher Young’s modulus.

Mesh size 20/40 was included for the following simulations. The porosities and

permeabilities, as well as the fracture width obtained are much larger than previous

results, subsequently, achieved better fracture conductivity. The manufacturing of
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(a)

(b)

FIGURE 5.5. Proppant bed after running the experiment. Soft proppant pack lead to
lower rather than higher porosity after running the experiment. High Youngs modulus
is critical for proppant functionality.
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FIGURE 5.6. Comparison between the fracture width for the premilinary sample of
proppants and the ones with increased strength

the proppants with various Youngs modulus is currently underway to have effective

proppant system for different formation in-situ conditions. The Youngs modulus
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is still small if compared to sand, for instance. As a result, permeability values

obtained are smaller than regular proppants of the same size.

Proppant size has a significant effect on permeability. For lower values of clo-

sure stress, the permeability of the 12/20 proppant is much larger than the other

ones. This is the result of larger flow capacity due to the pore sizes. However,

this advantage reduces with the increase in closure stress as observed in Fig. 5.8.

Coarser proppants have lower strength and can even crush when subjected to higher

pressures because of the fewer contact points between them. Other disadvantages

include higher settling rate, which means that large proppants will not penetrate

in deep fractures, and risk of premature screenout bicause of larger particle size

(Economides, 1992). For this reason smaller proppants are more commonly used

in the industry.
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FIGURE 5.7. Porosity versus confining stress for three sample of proppants with in-
creased strength

Te decline of porosity with the increasing confining pressure is almost linear,

with exception to the proppants mesh size 12/20. The small sample plus the large
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size of the particles may have affected the rearrangement of the pack and do not

represent well the proppant bed.
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FIGURE 5.8. Permeability versus confining stress for three sample of proppants with
increased strength

5.3 Model Verification

A second analysis was performed in order to validate our model. By comparing

permeability results with an analytical solution we can measure the accuracy of

the model. Carman-Kozeny correlation was chosen for this purpose. The equation

is based on power-law, it is widely accepted and is one of the simplest models. It

can relate the permeability of the porous medium with porosity. In addition Car-

man -Kozeny correlation can give reasonable results for very porous, consolidated

and anisotropic media (Mauran, Rigaud, and Coudevylle, 2001). There are several

modifications of this model for more specific cases, involving different mechanical

or geometrical parameters.

k =
d2φ3

72τ(1− φ)2
(5.1)
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Here, τ is the tortuosity of the porous medium. Tortuosity can be defined as an

average elongation of the fluid path. One way to calculate is based on the velocity

values (Koponen, Kataja, and Timonen, 1996)

τ =
〈Umag〉
〈Ux〉

(5.2)

where 〈Umag〉 is the intrinsic velocity over the entire system volume and 〈Ux〉

is the volumetric average of the velocity component in the flow direction. Fig. 5.9

presents the comparison between the two models, with the dashed line being the

analytical result and the continuous line is the numerical value. The tortuosity

values obtained were close to one due to the unresolved approach used for the

simulations. The fluid path is approximately a straight line.
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FIGURE 5.9. Comparison between permeability versus confining stress values given by
the numerical and analytical models

The results show good agreement between the numerical and the Carman-

Kozeny correlation. While for coarser particles the permeability differs, due to
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the sudden drop in porosity as explained earlier in this work, for smaller particles

the values for the full range of porosities follow the same trend.
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5.4 Proppant expansion

After heating the proppants to 90oC we can observe their expansion. The smart

proppants are programmed to expand 10% and 20% in size. To capture nonlinear

contact between particles and its changes, we need to have a small enough time

increments for simulating particles’ activation.

5.4.1 Mesh size 12/20

(a) (b)

(c)

FIGURE 5.10. Example of a 12/20 proppant pack under 20MPa of confining stress
a)With no expansion b)Expanding 10% c)Expanding 20%

The expansion of 12/20 mesh size proppants resulted in a large increment in

fracture width (Fig. 5.13). The larger increment was at 5MPa, where the width

reached 7.78 mm but it did not guaranteed an increase in porosity. For higher

confining stresses the porosity is higher for the expanded proppant but there are

no big differences between 10 and 20% expansion (Fig 5.11). The permeability

of the expanded proppant is also higher in comparison with the not expanded,

reaching an incremental of up to 50%.
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FIGURE 5.11. Porosity of proppants mesh size 12/20 and expanded proppants over a
range of confining pressure
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FIGURE 5.12. Permeability of proppants mesh size 12/20 and expanded proppants over
a range of confining pressure
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FIGURE 5.13. Fracture width of proppants mesh size 12/20 and expanded proppants
over a range of confining pressure
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5.4.2 Mesh size 16/30

(a) (b)

(c)

FIGURE 5.14. Example of a 16/30 proppant pack under 20MPa of confining stress
a)With no expansion b)Expanding 10% c)Expanding 20%

The results obtained at the 16/30 mesh size simulations follow a better trend.

Again, Fig. 5.17 shows that 20% of expansion of the proppant increased the fracture

width in 50%, while the 10% expansion only by 10%. Regarding the porosity, the

10% expansion of the proppant resulted in an increase between 2-4% and the 20%

leaded to 3-6% increments (Fig. 5.15). Finally, the permeability can increase up to

83% under 5MPa of confining pressure, but as the pressure increase the increment

in permeability tend to be around 60% (Fig. 5.16).
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FIGURE 5.15. Porosity of proppants mesh size 16/30 and expanded proppants over a
range of confining pressure
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FIGURE 5.16. Permeability of proppants mesh size 16/30 and expanded proppants over
a range of confining pressure
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FIGURE 5.17. Fracture width of proppants mesh size 16/30 and expanded proppants
over a range of confining pressure
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5.4.3 Mesh size 20/40

(a) (b)

(c)

FIGURE 5.18. Example of a 20/40 proppant pack under 20MPa of confining stress
a)With no expansion b)Expanding 10% c)Expanding 20%

Porosity plots follow similar trends as the previous ones, with up to 4% in-

crements considering both expansion cases (Fig. 5.19). As presented in Fig. 5.21,

the fracture width results show constant increase for the range of confining pres-

sure, with 35% and 65% enlargement for the 10% and 20% expansion, respectively.

Lastly, Permeability can increase more than 100% when 25MPa of confining stress

is applied, from 6.28 to 14.63 Darcy, for instance. The original permeability was

very low, but in general increments are around 30 and 60% for each case.
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FIGURE 5.19. Porosity of proppants mesh size 20/40 and expanded proppants over a
range of confining pressure
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FIGURE 5.20. Permeability of proppants mesh size 20/40 and expanded proppants over
a range of confining pressure
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FIGURE 5.21. Fracture width of proppants mesh size 20/40 and expanded proppants
over a range of confining pressure
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5.5 General Discussion of the Results

The higher stiffness of the material has proved to compensate the large deforma-

tions experienced by the original proppant. The shrinkage of the proppant pack

volume is reduced, resulting in better fracture conductivity. As expected, porosity

and permeability decrease with confining stress.

The results displayed in Figs 5.11, 5.15 and 5.19 show that proppant expan-

sion cause porosity increments of up to 5%, with the 20% expansion increasing

slightly more than the 10% expansion. Again, this fact can be caused by the low

values of the Youngs modulus, leading to proppant deformations under these high

stresses. This suggests that programming the proppant to expand even more will

not have strong effects in porous space gains. Although porosity and permeability

are distinct physical properties of the solids, they are closely related. Permeability

increments were more significant, between 25 to 100%.

While small differences in permeabilities between the cases with 10% and 20%

expansion are observed, the fracture width increases considerably, more than 1 mm

in all three cases. This implies that the fracture conductivity can be much larger

even if there are few gains in permeability. High conductivity fractures not only

increases production but also can mitigate sand production, asphaltene deposition,

paraffin build up and even reduce scaling tendencies by redistributing the pressure

drawdown (Vincent et al., 2002). As anticipated, the stress released during the

expansion is enough to cause a small increase in the fracture width, generating

bigger pore throats. Wide fractures are less prone to proppant embedment. In

addition, proppant size have a big influence in all these properties. Bigger particles

leaded to larger values of permeability and porosity but the results were not very

consistent, probably due to low number of particles and the rearrangement of the

grains. Small size proppants are more commonly used and have the advantage of

53



penetrating deeper in the fractures, but after the expansion they behave like larger

particles.

Permeability values may be underestimated in this study as few cells were used

in the CFD simulation. Additionally, the tortuosity is also underestimated and

consider almost a straight path for the fluid in the proppant bed. The resolved

approach, with particle sizes bigger than the computational grid, could lead to

more precise values, however with more computational time.
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Chapter 6
Conclusions and Recomendations for
Future Work

To prevent reduction in fracture conductivity and enhance production of hydrauli-

cally fractured wells, a new type of smart proppant is introduced in this research.

A fracture conductivity cell was built to test these proppants and a coupled CFD-

DEM model is also presented and verified, to evaluate the proppant pack proper-

ties, such as porosity and permeability under uniform confining stress and laminar

flow. The main parameters considered for this study were proppant size, stiffness,

porosity, permeability, confining pressure and fracture aperture.

Our preliminary laboratory results indicate that the Youngs Modulus and re-

leased stress of the SMP have strong influences on the results. Experiments per-

formed in the conductivity cell confirmed preliminary predicts and in good agree-

ment with our numerical model. In order to improve the performance of the prop-

pants, we proposed a range for the value of the Youngs Modulus. Proppant ex-

pansion due to temperature can increase permeability up to 100% by only 10%

expansion of SMP particles. However little difference was observed between cases

with 10% and 20% expansion. The fracture width increased 1 mm in average for

all cases, resulting in higher fracture conductivity. Although these values are still

smaller than regular proppants, they are a good indication that the smart prop-

pants work and can be improved.

The focus of this work was on testing the viability of the new smart proppant. We

verified the porosity and permeability of different sizes of proppant and how much

they can increase with expansion. Improvements in either the numerical model and

experiments, as well as recommendations for future work include
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1. Investigation of proppants with a range of Young’s modulus to determine the
ideal ones for each formation.

2. Test smaller particles up to mesh 140, providing complete information about
the proppant properties.

3. Conduct tests mixing regular proppants (sand) with EP, with different con-
centrations. This will allow the operation to become more economic viable.

4. Further improvement of the experimental apparatus involve

(a) Use of fracturing fluid (gel), instead of water, to build a filter-cake and
give more realistic results.

(b) Conduct experiments with shale cores, simulating shale reservoirs and
compare with sandstone results

5. Further recommendations of the numerical model shoould include

(a) Development of the code to model anisotropic expansion of the prop-
pant, which will result in a similar behaviour as the real particles

(b) Model non-Darcy flow in the fracture. Non-Darcy effects have big impact
in the fracture conductivity even in low flow rates.
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Appendix A: Experimental Setup

(a) (b)

FIGURE 6.1. Equipments a)Syringe pump to ensure constant flow rate b) Hydraulic
press to apply confining pressure
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(a)

(b)

FIGURE 6.2. a)Ro-Tap sieve shaker b)Sieves

(a) (b)

FIGURE 6.3. a)Deadweight tester used to calibrate the pressure transducers b)Pressure
transducer and valve

(a) (b)

FIGURE 6.4. Data acquisition system a)Pressure; b)Temperature
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