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Abstract 

Lost circulation occurs when mud or cement is lost to the formation while drilling. Lost 

circulation has been a huge problem and may cause heavy financial costs in the form of lost rig 

time, mud fluid and in severe cases, well blowout with serious environmental and safety 

consequences. Despite extensive advances in the last couple of decades, lost circulation materials 

used today still have disadvantages such as damaging production zones, plugging drilling tools 

or failing to seal the fractures. Here, we propose a new class of smart expandable lost circulation 

material (LCM) to remotely control the expanding force and functionality of injected LCM. The 

utilized smart LCM is made out of anionic shape memory polymers and becomes activated by 

formation natural heat; hence it can effectively seal fractures’ width without damaging 

production zones and strengthen the wellbore. The activation temperature of the LCMs can be 

adjusted based on the formation temperature.  

In this work, a series of experiments were conducted using a HPHT permeability-plugging 

apparatus (PPA) to measure the sealing efficiency of the smart LCMs as a proof of concept. 

Various slot disc sizes were used to mimic different size fractures in the formation. The API RP 

13 B-1&2 have been followed as standard test methods to evaluate fluid loss in water based 

muds. In addition, a fully coupled CFD-DEM model is developed to further study the 

effectiveness of different size distribution of smart LCMs and to calculate compressional stresses 

acting on the wellbore from their expansion. These tests will then allow us to improve the design 

of the smart LCM and also allow us to see if the smart LCM can be implemented in the field.
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Chapter 1: Introduction 

1.1 Background 

Lost circulation has been a problem since early days of rotary drilling. One of the most important 

decisions that need to be made in drilling operations is choosing the right type and density of 

drilling fluids. Drilling fluids are used in drilling operations to provide a pressure overbalance in 

the bottomhole and prevent the wellbore from collapsing.  Drilling fluids are also supposed to be 

circulated down to the bottomhole and come back to the surface for cutting transport and cooling 

the bit (White, 1956). However, when lost circulation occurs, drilling fluids are lost and lost 

circulation materials (LCMs) need to be added to the mud to stop further fluid loss. A lost-

circulation incident may have a heavy financial and environmental cost that justifies the price of 

LCM products to treat the problem. Rig nonproductive time is another financial burden in these 

incidents (Whitfill and Hemphill, 2003). Table 1.1 shows the costs of lost circulation according 

to API/Marlin Energy and service companies.  

Table 1.1. Cost of Lost Circulation 
 Onshore Drilling 

Operation 
Offshore Drilling 

Operation 
Number of days spent to control 

lost circulation 
 

3 7 

 
Cost per day of the drilling 

operation ($) 

65,000 120,000 

 

It can be seen that controlling a lost circulation incident can take from 3 to 7 days. It becomes 

more expensive if the lost circulation is on an offshore rig than an onshore rig. It was seen that 

most lost circulation incidents occur in highly permeable, karsted and naturally fractured 
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formations (Al-Saba et al, 2014). According to Marlin Energy Recourses, 26% of the wells 

around the world experience such problems. Therefore, a solution to such problems should be 

found. 

 In addition, lost circulation leads to the mud levels falling, which can cause the well to be in an 

underbalance pressure state, and in severe cases a kick or even a blowout may occur (Arshad et 

al., 2014). Since lost circulation is a very important issue, a lot of research has been made to 

minimize this problem. Lost circulation materials are materials that seal the fractures and 

minimize mud loss. In this work, a new smart lost circulation material is introduced to 

effectively seal fractures and strengthen the wellbore.  

The smart LCM in this case is activated via the temperature of the bottomhole and can 

effectively seal the mouth of the fracture as seen in Figure 1.1 or in some cases at the tip of the 

fracture. 

 

Figure 1.1- Smart LCM sealing fracture mouth and providing compressional forces to strengthen 
the wellbore 

The smart LCM is programmed to be activated at a certain formation temperature based on the 

lost circulation zone. Since the fracture needs to be sealed properly, our proposed LCM will be 

made out of anionic shape memory polymers. The bridging and the recovered stress of the shape 

memory polymers ensure the sealing of the fracture mouth and according to the stress cage 
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theory it provides compressional forces to strengthen the wellbore (Cook et al., 2012). Therefore, 

experimental procedures and numerical simulations will be made to test the sealing efficiency of 

the smart LCM. It is notable that the recovered stress should not be very large to prevent the 

crack from further propagation. Therefore, a recovered stress ranging from 5-30 MPa is expected 

and it is reachable with shape memory polymers. 

1.2 Motivation 

A lot of research and experiments have been made to make sure that LCMs can seal fractures 

effectively and to minimize loss and non-productive time. However, LCMs still have 

disadvantages like limited applicability in high-pressure and high-temperature (HPHT) 

formations or causing damage to producing zones (Brandl et al., 2011). Some LCMs work only 

for specific formations while fail in others. These LCMs fail because in some formations, the 

fractures are very large to seal and these LCMs are not designed for big fractures. Therefore, it is 

important to find a material that can supplement a LCM or be used as an LCM and can seal big 

fractures and save losses and non-productive time. Drilling engineers have also reported 

clogging of drilling equipment from LCMs due to their large sizes. They used large size of 

LCMs because the small ones could not bridge effectively to seal the fractures efficiently. 

The smart LCM that is proposed in this thesis has a lot of competitive advantages when 

compared to the LCMs used today in the field. First, the smart LCM does not only seal the 

fracture but also provides compressional circumferential stress that acts like a stress cage around 

the wellbore to strengthen it and to sustain higher mud weight. Second, the developed smart 

LCM will be programmed through its chemical composition and has the ability to withstand 

HPHT formations since its shape memory effect is activated through phase transformation by 

temperature and pressure. Therefore, the smart LCM will be activated at a specific temperature 
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based on knowing the temperature profile of the wellbore. This will therefore, lower the cost of 

producing different LCMs for different types of formations. Thirdly, the smart LCM here will be 

able to work well with all types of muds and it will not dissolve in the mud or fail to change 

shape while activated. Fourthly, the smart LCM can expand in volume at a certain temperature. 

Knowing the temperature profile of the wellbore and understanding that the mud temperature is 

lower than the formation temperature, the equipment used in the field will therefore not be 

plugged. The LCMs will activate when they leave the bit nozzle and will be able to take the 

shape of the fracture and seal it. Finally, the smart LCM is acid soluble and therefore, will not 

cause any damage to production zones. The smart LCM is planned to work with all formations, 

especially naturally fractured carbonate reservoirs in the Middle East, and depleted zones in the 

United States such as the formations in the Gulf of Mexico. 

1.3 Research Objectives 

The research objectives of this thesis are listed below: 

1. Conduct experiments to verify the applicability of shape memory polymers as a lost 

circulation material. 

a) Test the smart LCMs at temperatures below, at and above activation temperature. 

This will help develop a correlation between temperature and smart LCM sealing. 

b) Test LCM sample with different size distributions and fracture sizes to optimize 

LCM selection. 

c) Test the expansion of the smart LCM under several different pressures. 

2. Simulate LCM bridging and sealing using discrete element methods. 

a) Create a realistic elliptical shape of the fracture through SOLIDWORKS. 
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b) Model the fracture with LCMs flowing in it through LIGGGHTS (LAMMPS 

Improved Granular and Granular Heat Transfer Simulations). 

c) Measure cumulative fluid losses after inserting the smart LCMs in the fracture 

using coupling element methods with computational fluid dynamics. 

d) Calculate the stress recovery of the smart LCM to verify that it will lead to 

wellbore strengthening. 

e) Validate simulation results with the lab experiment measurements. 

f) Measure the concentration of LCMs required to seal the fracture in order to 

optimize LCM size and distribution. 

3. Integrate numerical simulation into lab experiments to improve the design of the SMP as 

a LCM and therefore, save time and money. 

a) Predict the behavior of the sealing efficiency values based on the experimental 

results and simulations 

b) Predict the well performance when the shape memory polymer (SMP) is used as 

an LCM in a drilling operation that includes fluid loss.  
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Chapter 2: Theory and Literature Review 

This chapter provides a review on what lost circulation is and how it is utilized. An economic 

analysis section has also been added to help to understand the cost of lost circulation. 

Experimental and numerical procedures from previous studies are also included for comparison. 

Finally, a review of what shape memory polymers are and how they are programmed is 

presented at the end of this chapter. 

2.1 Lost Circulation  

As mentioned before, lost circulation is the loss of mud or cement to the formation. There are 

four categories in which lost circulation can be divided into and these are seepage loss, partial 

loss, severe loss and total loss (Ghalambor et al., 2014). These types of losses are explained with 

respect to loss rate in Table 2.1 below. 

Table 2.1. Fluid loss classifications 

Classification Typical Loss Rate (bbl/hr) 
Seepage <10 
Partial 10 to 50 
Severe >50 
Total No Returns 

 
There are a lot of different procedures that can be done in order to minimize or cure lost 

circulation. According to Cook et al. (2012), lost circulation is usually managed through a four-

tiered approach. The first tier is usually making sure that the drilling engineer has worked on a 

predrill simulation and has made the correct calculations concerning mud density. The drilling 

engineer should also build a geo-mechanical model to understand the type of formation being 

penetrated and the possibility of any fluid losses. The second tier represents the best selection of 

drilling fluids. The drilling fluid should have the correct rheological properties that can minimize 

lost circulation. Properties include viscosity, density and the type of chemicals added to create 
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the mud. The third tier represents the correct use of wellbore strengthening materials. This tier 

could also be named as the preventive method and is defined as treatments that are applied 

before lost circulation occurs in order to prevent mud loss. Wellbore strengthening is defined as a 

technique to plug and seal induced fractures efficiently while drilling to increase the fracture 

gradient and widen the mud weight window (Salehi and Nygaard, 2012). Wellbore strengthening 

materials are mixtures of materials when picked in the correct size, are able to enter the fractures 

and form a bridge to isolate these fractures from the wellbore (Cook et al., 2012). Finally, the 

last tier is using lost circulation materials to fix an ongoing lost circulation problem (Cook et al, 

2012). This tier could be named as the corrective treatment and is defined as the treatments used 

after mud loss has occurred (Kumar and Savari, 2011). 

Lost circulation materials work in a way to ensure that the mud has big enough particles to plug 

the pores or cracks that mud alone can’t seal. This then prevents mud from being lost to the 

formation (White, 1956). These materials must have special size distributions to ensure efficient 

fracture sealing (White, 1956). If the size of the particles is too small, the particles will not be 

able to plug the fracture and will go right through it. Similarly, if the size of the particles is too 

large, the particles will not be able to enter the fracture and will also not be able to seal it. 

Therefore, the perfect size of the material’s particles is very important so that losses could be 

treated properly (Jain et al, 2013). The type, shape, composition and strength of the materials are 

also very important when trying to design the most efficient solution for lost circulation (White, 

1956). The materials should also be able to adapt to a wide range of environments, temperatures 

and pressures. The seal formed by the LCMs should be able to withstand mechanical forces that 

occur due to drilling operations, erosional forces that occur due to fluid flow and hydrodynamic 

forces that come from swab and surge (Cook et al, 2012). LCMs include materials such as 
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cement, cross-linked cement, chemically activated pills (Bruton et al, 2001), lost circulation 

materials that can change in shape and deform (Whitfill and Wang, 2005), graphite and gunk 

squeezes  (Lecolier et al, 2005). The LCMs in the field are usually mixed with the drilling fluid 

and then pumped to the bottomhole to seal the fractures and prevent an ongoing fluid loss (Al-

Saba et al, 2014).  

Understanding the efficiency of an LCM and evaluating its performance is a critical part when 

trying to decrease or prevent fluid losses in the bottomhole. Howard et al. (1951) first classified 

the LCMs according to their physical properties. He divided them into four groups being 1) 

granular 2) fibrous 3) lamellated and 4) dehydratable. White (1956) modified these 

classifications by adding a new classification where the LCMs are flaky and where also the 

LCMs can be mixed together to provide better sealing results. Nygaard et al. (2014) modified the 

last two theories and classified LCMs into seven categories being: fibrous, granular, flaky, 

acid/water soluble, mixture, high fluid loss LCM squeeze, swellable/hydratable LCM 

combinations and nanoparticles.  

1) Fibrous materials - a type of LCM that is slender, long and has low stiffness. It can exist in 

different sizes and lengths. These materials are very cheap and have proven to efficiently 

plug fractures. Examples of fibrous materials would be cellulose fibers and saw dust. 

2) Granular materials – a type of LCM that is rigid, has high stiffness and crushing resistance. 

They are often used for wellbore strengthening applications or as preventive treatments. 

An example of granular materials would be course bentonite. 

3) Flaky materials - a type of LCM that has a thin, flat shape with a large surface area. Their 

stiffness level is similar to fibrous materials and is still capable of sealing the fracture. 

Examples of flaky materials would be mica and flaked calcium carbonate. 
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4) Acid or water soluble LCMs – these are LCMs that do not damage the reservoir’s 

permeability. Examples of acid soluble LCMs would be materials that are acid soluble 

such as calcium carbonate. 

5) Mixtures – a combination of different types of lost circulation materials. 

6) Swellable/Dehydratable LCMs- these are LCMs that can change in shape. They are usually 

made out of polymers due to the materials elasticity. 

7) Nanoparticles – extremely small and fine particles. Examples of nanoparticles used in the 

field would be silica, calcium carbonate and iron hydroxide. 

2.2 Lost Circulation Materials Market 

In terms of economic perspective, it is notable that mud loss to the formation is one of the most 

costly and undesired encounters in the petroleum industry. It could be induced by drilling or 

could occur due to the natural fractures of the reservoir itself. It causes a large amount of 

nonproductive time, which includes all services that support the drilling operation as well as the 

cost of the rig time. Therefore, since a lost circulation incident costs more than treating it, the 

industry has been developing new techniques in minimizing lost circulation. 

 It was estimated that lost circulation alone accounted for US$2- $4 billion annual costs due to 

lost time (Cook et al., 2012). It’s not just non-productive time that lost circulation accounts for 

but uncontrolled loss of fluid can damage the reservoir’s formation and have a negative effect on 

its production potential and therefore, even more future losses (Cook et al., 2012). In the Gulf of 

Mexico, lost circulation, stuck pipe, sloughing shales and wellbore collapse account for 44% of 

the total non-productive time (Cook et al., 2012). Drilling engineers in this area use synthetic-

base muds that range from $100 to $200 per barrel and therefore, losing these fluids can be 

extremely costly. The more the non-productive time, the higher the cost. 
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According to Industrial Hemp Manufacturing company, the cost of lost circulation materials 

can be as low as $0.2/lb and reach to over $10/lb. Usually, the expensive LCMs are the plug 

types that are used as pills while the cheap LCMs are made out of a very cheap material such as 

sawdust. With cases where the LCMs need to be added continuously to the mud, it is estimated 

that between 15 lb. to 30 lb. of LCM per barrel of mud should be pumped on every stand, 

according to Halliburton. The US Energy Information Administration website monitored the 

costs of drilling from 2002 to 2007. It was reported that the cost per well in 2002 for all wells 

was about 1 million dollars and by the end of 2007 the cost per well was about 3 and a half 

million dollars. This means that the cost increased more than triple the amount in just 5 years. 

The administration also reported the cost of drilling per foot for these 5 years and in 2002 it was 

$187.46/ft. and almost quadrupled in 2007 to be $574.46/ft. This increase in the cost per foot was 

caused due to increase in horizontal drilling, lost circulation problems due to fractured 

formations and other drilling-encountered problems.  

The costs of most LCMs used today, as seen above, are very expensive and they could also not 

work properly in certain formations. This is why a new smart LCM is proposed and it is much 

cheaper than the LCMs used now. It is almost equivalent to the price of resin which ranges from 

0.01$/lb to 0.9$/lb. Having an effective LCM at this cost will save companies even more money 

specially when the oil prices are about 40$/bbl in 2017.  

2.3 LCMs Experimental Testing  

There are different experiments that have been made to evaluate the sealing efficiency of LCMs. 

Kelsey (1981) came up with the first apparatus to test LCM performance. The apparatus used 

had a maximum temperature of 300 degrees Fahrenheit and a maximum operating pressure of 

1000 psi. The LCM was tested with slot discs of various widths that represent fractures in 
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different types of formations. The efficiency of the LCM was based on the maximum pressure 

that the seal can withstand in these slot discs.  

White (1956) designed criteria to decide which apparatus were perfect for testing the sealing 

efficiency. The criteria were based on LCM concentrations, volume of fluid loss and pressure 

build-up of the seal. He also tested the LCMs based on these criteria. The concentration of the 

LCMs and the fracture sizes was varied to verify LCMs sealing efficiency. 

Kumar and Savari (2011) and Savari et al. (2013) tested LCMs using the high-pressure high-

temperature permeability plugging apparatus ((HPHT-PPA) in Figure 2.1 and a normal 

permeability plugging apparatus (PPA) in Figure 2.2a. They analyzed the results based on 30 

minutes of total fluid loss and the time it takes for the tight seal to form.  For the PPA, the 

pressure is applied from the top and for the HPHT-PPA; pressure is applied from the bottom. 

These apparatus usually are composed of a bed that represents the formation fracture; where 

fluid mixed with LCMs flows through this bed under a specific pressure and the LCMs try to 

form a seal to prevent fluid loss. The beds can be slot or tapered discs, as seen in Figure 2.2b-

2.2e, which represent either natural or induced fractures. They can also be ceramic discs that 

provide porous formations (Al-Saba et al, 2014).  

Al-Saba et al. (2014) and Mostavafi et al. (2011) tested the LCM sealing efficiency using 

HPHT-PPA. The LCM sealing efficiency in this experiment was based on the total fluid loss and 

the maximum pressure the seal can withstand before breaking. They tested different size 

distributions, fracture sizes and LCM concentrations. Both of the experiments were able to 

handle up to 10,000 psi and 300 degrees Fahrenheit. Having such an apparatus is effective for 

imitating conditions in the bottomhole. Matsui et al. (2012) also tested LCMs using the HPHT-
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PPA and analyzed the results based on seeing the highest temperature and pressure at which the 

seal can withstand before breaking. 

According to White (1956), gravel, sand and marbles can also be other types of beds that fluid 

loss can be tested on. The type of bed used depends on the conditions that are expected in the 

bottomhole and each bed under different pressures provides different results. For example, 

fibrous materials seal ceramic discs efficiently and therefore are usually used in porous 

formations. While granular materials are not as good with ceramic discs but can seal slot discs 

efficiently. Therefore, granular materials should be used for sealing bigger fractures (White, 

1956). 

 

  

Figure 2.1. High Pressure and High Temperature Permeability Plugging Apparatus  
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Sanders et al. (2010) modified the PPA by trying to determine if the LCM can withstand high 

shear stress. The main objective of the experiment was to see the maximum shear stress that the 

LCM can hold before the particles decrease in size and the bridges break. This was tested by a 

method named the Push-out test where a hydraulic piston pressure is applied at a constant rate 

and the LCMs are monitored. Whenever the LCMs decrease in size, this will be the highest shear 

stress that they can withstand. 

 

Figure 2.2. (a) Low pressure LCM testing particle plugging apparatus (b) Snug-fit spacer, (c) 
TS1, (d) TS3, (e) Sealed tapered disc, (f) Modified particle plugging apparatus (I) Plastic 
accumulator to transfer drilling fluid to ii. II) A metal accumulator used to inject fluids into the 
cell. III) HPHT Testing Cell that holds pressures up to 10,000 psi. Can also be heated till up to 
300 degrees F using the heating blanket. (The PPA modification) IV) ISCO pump (DX100) used 
for fluid injection and connected to a computer for data logging. (Al-Saba et al, 2014) 

2.4 Wellbore Strengthening 

Wellbore strengthening in the case of lost circulation focuses on increasing the fracture gradient 

and therefore, allows the mud weight window to be increased. To be able to understand how mud 

is lost to the formation and how to strengthen and stabilize the wellbore, the stresses around the 

wellbore need to be analyzed. In an isotropic stress field there are 3 different types of stresses 
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acting around the wellbore. These are the vertical overburden stress (𝜎!) occurring from the 

layers above the formation, the maximum horizontal stress (𝜎!) and the minimum horizontal 

stress (𝜎!). Whenever mud pressure becomes too high, tensile stresses occur at the wellbore and 

a fracture becomes induced perpendicular to the 𝜎! direction as seen in Figure 2.3. Whenever 

such fracture is induced, lost circulation occurs and needs to be treated.  

 

Figure 2.3. Horizontal stresses acting on the wellbore 

Considering a vertical well in an anisotropic stress field, the stresses around the wellbore could 

be defined in the radial (r) and tangential direction (𝜃) (Peng and Zhang, 2007). They are defined 

in Equations 2.1 and 2.2 as follow:  

 
𝜎! =

𝜎! + 𝜎!
2 1−

𝑅!

𝑟! +   
𝜎! − 𝜎!

2 1−
4𝑅!

𝑟! +
3𝑅!

𝑟! 𝑐𝑜𝑠2𝜃

+ 𝑝!
𝑅!

𝑟!  

(2.1) 
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𝜎! =

𝜎! + 𝜎!
2 1−

𝑅!

𝑟! −   
𝜎! − 𝜎!

2 1−
4𝑅!

𝑟! +
3𝑅!

𝑟! 𝑐𝑜𝑠2𝜃

+ 𝑝!
𝑅!

𝑟!  

(2.2) 

Where R is the wellbore radius, r is the distance from the wellbore, 𝑝! is the mud weight and 𝜃 

is the angle at which the stresses are acting. After knowing these stresses, the Terzaghi effective 

stress theory can be applied and it includes temperature and pore pressure effects (𝑝!). The 

effective stresses that are in the tangential direction (𝜎!′) are also known as the hoop or 

circumferential stresses around the wellbore. The hoop stresses are the stresses of most interest 

when trying to prevent or treat mud losses. According to Peng and Zhang (2007), the effective 

tangential stress for a vertical well in an anisotropic stress field can be defined by Equation 2.3 

as: 

 𝜎!! = 𝜎! + 𝜎! − 𝑝! − 𝑝! − 𝜎! − 2 𝜎! − 𝜎! 𝑐𝑜𝑠2𝜃   (2.3) 

Where 𝜎! is the thermal stress due to temperature effects and can be defined in Equation 2.4 as: 

 𝜎! =
𝛼!𝐸∆𝑇
1− 𝑣    (2.4) 

It can be seen that the only parameter that the drilling engineer can control in Equation 2.3 is 

the mud weight (𝑝!). When the mud weight becomes too high, it can be seen that the tangential 

stress decreases. Whenever the tangential stress starts to become negative or goes in tension, this 

is when the fracture is induced. Lost circulation materials are supposed to increase the tangential 

stress by isolating the fracture from the wellbore. Increasing the tangential stress will prevent the 

fracture from propagating and prevent fluid losses. The smart LCM as mentioned above has the 
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ability to seal the tip of the fracture and cause compressive stresses on the wellbore due to its 

expansive properties. These forces increase the effective tangential stress and therefore lead to 

wellbore strengthening. 

2.5 Understanding and Modeling LCM Performance 

2.5.1 Wellbore Hoop Stress Enhancement and Strengthening Theories 

Enhancing the stress around the wellbore is a part of our proposed smart LCM. This section will 

therefore describe the different types of theories that have been proposed to strengthen the 

wellbore and increase the stress around the wellbore. Wellbore strengthening theories is a set of 

techniques that could increase the fracture gradient by effectively sealing and plugging fractures 

using LCMs. (Salehi and Nygaard, 2012).  

Fuh et al. (1992) tested LCMs performance using theoretical approaches and field trials. They 

created a fracture pressure inhibitor model. This model suggested that LCMs screen out at the 

fracture tip, form a seal and increase fracture initiation and propagation pressures. Van Oort et al. 

(2011) introduced the fracture propagation resistance model using results presented by Morita et 

al. (1990). The model also suggests that when the fracture tip is isolated and sealed by the LCM, 

the fracture propagation pressure increases and therefore, the wellbore is strengthened due to the 

increase in the mud weight window. 

Dupriest (2005) introduced the fracture closure stress model. This model describes the stress on 

the fracture plane that keeps the fracture faces in contact. Increasing the fracture width and 

sealing the fracture tip could increase this stress. When the fracture tip is sealed, adjacent rocks 

are compressed and near wellbore hoop stresses change. Therefore, a lot of theories have focused 

more on fracture tip sealing. However, Alberty and Mclean (2004) presented a stress cage model 

using linear elastic fracture mechanics model. The model explains that the hoop stress around the 
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wellbore is enhanced and increased when LCMs seal the fracture mouth. Salehi (2012) tested the 

wellbore hoop stress enhancement theory using a 3D poro-elastic, finite element model. This 

model simulated initiation, and propagation pressures of the fracture when the mouth is sealed. 

Simulation results showed that if the fracture mouth is effectively sealed, the hoop stress around 

the wellbore would be increased and restored. Therefore, researchers have come up with theories 

to see which out of the fracture mouth or tip if sealed will be the most effective.  

Aadnoy and Belayneh (2004) presented the elastic-plastic fracture model. This model explains 

how fracture propagation can be decreased through plastic deformation of the mud cake building 

a seal on the fracture’s mouth. The material type and number of particles used affected the 

fracture propagation pressure significantly. Using this model, the right concentration to seal the 

fracture efficiently can be picked accordingly. 

2.5.2 Bridging of Particles in Flow 

Bridging of particles is defined as buildup of solids in porous formations. Bridging mostly occurs 

from cohesion between particles and this happens because of electrostatic forces, capillary forces 

or Van Der Waal forces (Israelachvelli, 2015).  

Electrostatic forces occur when there is friction between particles. This friction causes electrons 

to be transferred from one particle to another, which therefore leaves the particles with some sort 

of charge. These forces can still occur even if there is no contact between particles and the 

distance between these particles is relatively long. (Rhodes, 2008). Coulomb’s Law describes the 

most dominant electrostatic force that causes particles to be charged and this dominant force 

could be referred to as the Coulomb force. Seville et al. (2012) describes the Coulomb force to 

be 
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 𝐹!" =
𝑄!𝑄!

4𝜋𝑆!𝜖!𝜖!
 (2.5) 

Where Q is the particle charge, S is the distance between the centers of the particles, 𝜖! is the 

free space permittivity and 𝜖! is the interstitial fluid’s relative permeability. Capillary forces 

occur due to the formation of liquid bridges between particles. (Rhodes, 2008). The capillary 

forces are given by 

 𝐹!"#$%%"&' = 2𝜋𝛽𝛾𝑅𝑠𝑖𝑛![1+
𝑅∆𝑃
2𝛾 ] (2.6) 

Where 𝛽 is half of the filling angle, 𝛾 is the fluid’s surface tension, R is the radius of the 

particle and P is the pressure. Since the particles will be moving with a special velocity when 

submerged in the fluid, viscous forces need to be accounted for. Viscous forces can be split into 

a tangential force and a normal force. The tangential force is described by Goldman et al. (1967) 

to be 

 𝐹!"#$%&$"'#( = 6𝜋𝑅𝑣!𝜇(0.9588+
8
15 𝑙𝑛

𝑅
𝑆) 

(2.7) 

Where 𝑣! is the tangential velocity of the particles, 𝜇 is the viscosity of the liquid between the 

particles and S is the distance between the particles. The normal viscous force is described by 

Adams and Perchard (1985) to be 

 𝐹!"#$%&' = 6𝜋𝑅𝑣!𝜇
𝑅
𝑆  (2.8) 

Where  𝑣! is the normal velocity of the particles. Finally, Van Der Waal forces occur when 

electrostatic attractions are induced between the molecules in the particles. These forces depend 

on the molecules’ spacing within the particles. They occur due to the rearrangement of electrons 

in their orbitals which leads to the molecule to have opposite charges on each side 
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(Israelachvelli, 2015). According to Seville et al. (2012) the Van Der Waal forces occurring 

between the particles are given by 

 𝐹!"# =
𝑑𝑊(𝑆)
𝑑𝑆  (2.9) 

Where W is the potential for two molecules to pair up. Seville et al. (2012) suggests that given 

an entire body and integrating the interaction of the molecules will derive Van Der Waal forces 

that can work for larger distances. Therefore, calculating the Van Der Waal forces between the 

particles and the surface of the body is done by 

 𝐹!"# =
𝑅𝐴
12𝑆! (2.10) 

Where R is the particle’s radius, S is the distance between the surface of the body and the 

particle and A is a Hamakar constant that describes the particles’ interactions and relies on the 

density of the particles. 

2.5.3 Particle Size Selection Theories for Bridging 

Picking the correct LCM size can increase the chance for the LCMs to bridge and seal the 

fracture. Various bridging theories for LCMs are available and their main goal is to increase the 

particles’ capability to bridge and seal the fracture. 

Abrams (1977) proposed a theory to minimize formation damage due to lost circulation and 

mud invasion. Knowing the average size of the formation’s pore throat, the LCMs average size 

should be equal to or larger than a third of the pore size. The concentration of LCMs in the mud 

formulation should be larger than 5% of the volume of the total solids added to the mud.  
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Whitfill (2008) proposed another theory to optimize LCM selection and ensure bridging and 

sealing of the fracture. The LCM’s average size should have the same size as the fracture width 

to make sure that the fracture is effectively plugged. 

Vickers (2006) suggested that D10, D25, D50, D75 and D90 should all be taken into 

consideration when picking the diameter of the LCM particle. He suggests that 1) 90% of the 

LCMs added to the mud should be greater than the smallest pore size 2) 75% of the LCMs added 

should have a size that is a seventh of the average pore size 3) 50% of the LCMs added should 

have the sizes that were suggested by Abrams (1997) 4) 25% of the LCMs added should have 

sizes that are less than two third of the largest pore size 5) 10% of the LCMs added should have 

sizes equal to the largest pore size. 

2.5.4 Fracture Width and Length Modeling  

Fracture width estimation and modeling is very important when it comes to picking the right size 

of LCM. A lot of research and models have been made to try and estimate the fracture width.  

Alberty and McLean (2004) created a 2-D line fracture solution, shown in Equation 2.11, 

which compares fracture width results to finite element analysis results. They created this 

solution through applying theories from continuum fracture mechanics. The solution could 

estimate the fracture width at any distance form the mouth of the fracture. However, the length of 

the fracture needs to be known in order to estimate the fracture width 

 𝑊 = !(!!!!)
!

(𝑝! − 𝜎!) (𝐿 + 𝑟!)! − 𝑥! ,      (2.11) 

Where W is the fracture width,  𝑣 is the Poisson Ratio, E is the Young Modulus, 𝑝! is the 

wellbore pressure, 𝜎! is the maximum horizontal stress, L is the length of the fracture,  𝑟! is the 

wellbore radius and x is any distance from the fracture mouth. 
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Wang et al. (2008) developed a semi analytical solution for fracture width and length as seen in 

Equation 2.12. They modified an earlier work done by (Deeg and Wang, 2004). In this equation 

𝑝! stands for pore pressure. The length (L) and width (W) in the equation can be calculated by 

having a system of two equations and two unknowns from which in the first equation the stress 

intensity factor of the fracture is known and the second equation the critical intensity factor of 

the formation is known. 

 
𝑊 = !(!!!!)!

!"
[
!
!! !!!!! !(!!!!!)(!"! !"# !!" (! !"#$ !!" !!!!"#  (!!")!"

⋈
!!!

!!!! (!!!!)
]  (2.12) 

Where a= 1− (!!
!
)! , and b= 𝑠𝑖𝑛!!(!!

!
). Using both equations 2.11 and 2.12, an estimated 

fracture width under specific bottomhole conditions can be picked to simulate particle bridging 

and plugging of LCMs. 

2.6 Shape Memory Polymers  

The shape memory effect was first discovered by Chang and Read in 1932. Shape memory 

polymers (SMPs) are polymers that have the ability to be deformed and fixed into a temporary 

shape. They are then able to recover to their original permanent shape only when they are 

exposed to a specific external stimulus such as light, magnetic field, temperature, moisture, or 

pH. Not all polymers can be fixed in a temporary shape. For example, rubber can change shape 

whenever it’s loaded, but when the load is removed the rubber goes back instantaneously to its 

original shape and no fixing of the temporary loaded shape has occurred. However, when the 

shape memory polymers are deformed when loaded, they have the ability to trap mechanical 

energy as internal energy, and release this energy whenever an external stimulus causes a change 

in the molecular relaxation rate or in material morphology (Li, 2014). Shape memory polymers 
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do not only have this shape-changing advantage but they are also cheap, lightweight, nontoxic, 

biocompatible and biodegradable (Ratna and Karger-Kocsis, 2008). 

The smart LCMs proposed in this thesis will have temperature as an external stimulus. Shape 

memory polymers with temperature as an external stimulus can be either thermoset or 

thermoplastic. Thermoset SMPs are physically or chemically cross-linked polymers.  They are 

usually preferred in engineering structures due to their high stiffness, high strength, high 

thermostability, high dimensional stability and high corrosion resistance as compared to 

thermoplastic SMPs. During the shape recovery process, thermoplastic SMPs melt when exposed 

to very high temperatures and therefore, may not be a good chemical to use for the smart LCM. 

The smart LCMs proposed here will have characteristics that stand between the thermoset and 

thermoplastic SMPs and is called an anionic SMP.  

Before explaining how the smart LCM will recover, seal fractures and strengthen the wellbore, 

there is a process called SMP programming that needs to be done to achieve such advantages. 

Programming is the process that fixes the SMP in the temporary shape. A five-step 

thermomechanical cycle can explain how the SMP is programmed as seen in Figure 2.4.  

 

Figure 2.4. Cold-Programming for thermoset SMPs (G. Li, 2014) 
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Such programming is called cold programming because the programming is conducted in the 

glassy state (Li and Xu, 2011; Li et al., 2013). From Figure 2.4, the original shape of the SMP is 

pre-stressed and put under compression at a temperature below the glass transition temperature 

(𝑇!). The glass transition temperature is the temperature at which the SMPs go from being in a 

glassy state to a rubbery state. The second step is called stress relaxation and it happens while 

keeping the strain constant but relaxing the stress. The third step is removing the load. This 

completes the programming. As for recovery, it has two representative modes. One is free shape 

recovery, as shown in the fourth step in Figure 2.4. This happens whenever the SMP is heated to 

above 𝑇!. It can also show stress recovery, as illustrated in step 5 in Figure 2.4. Step five happens 

when the recovery is constrained and it is called constrained overall stress recovery.  

Noticing the programming of the shape memory polymers, it can be seen that such shape-

changing properties will benefit the smart LCM to seal big fractures without plugging drilling 

tools or damaging production zones. The smart LCM will be small in size when entering the tool 

and then expand at a specific temperature within the fracture due to the difference between mud 

and formation temperature. Therefore, sealing the fracture and preventing plugging of tools. 

Because the smart LCM will also have stress recovery due to the constraint expansion, these 

compressional forces can strengthen the wellbore. 

Siskind and Smith (2008) developed an equation to calculate the overall stress recovery from 

the SMP. Equation 2.13 shows the overall stress recovery from the SMP. The authors explain 

that the SMP has an initial volume and when this volume changes due to temperature there will 

be a frozen volume portion (∅!) and an active volume portion (∅!). The active volume is the 

sum of the strain from the entropic and thermal components, while the frozen volume is the 

stable shape recovery. The active volume represents the portion of rubbery state of the SMP 
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while the frozen volume represents the glassy state of the SMP during shape transition at a 

specific temperature. The strains from both components are then subtracted from the total strain 

(𝜖) of the SMP and multiplied by the Young’s Modulus (E) to calculate the overall stress 

recovery of the SMP. The total strain can be calculated using Equation 2.14.  

 𝜎!"#$%&& = 𝐸(𝜖 − 𝜖!! 𝑥
∅!
! 𝑑∅− [∅!𝛼! + (1−

!!
!!

∅!)𝛼!]𝑑𝑇) (2.13) 

 
𝜖 =

1
𝑉 𝜖!!

!!"#

!
𝑑𝑉 + [∅!𝜖!! + 1− ∅! 𝜖!!]+ [∅!𝜖!! + 1− ∅! 𝜖!!] (2.14) 

Where 𝜖!! is the entropic frozen strain, x is a position vector, 𝑇! is the initial temperature, 𝛼! is 

the thermal expansion coefficient for the frozen portion, 𝛼! is the thermal expansion coefficient 

for the active portion, T is the temperature, ∅! is the frozen fraction, 𝑉!"# the actual frozen 

volume, V is the total volume, 𝜖!!  is the internal energetic strain in the frozen portion, 𝜖!! is the 

stress induced entropic strain in the active portion, 𝜖!! is the thermal strain in the frozen portion 

and 𝜖!! is the thermal strain in the active portion. 

Liu et al. (2006) developed another equation to calculate the overall stress recovery of the 

SMP, which is given as 

 
𝜎!"#$%&& = 𝐸  (  𝜀 − 𝜀! − 𝛼𝑑𝑇

!

!!
  ) (2.15) 

Where  𝜀 is the total strain, 𝜀! is the strain from the free strain recovery test, 𝑇! is the maximum 

temperature, T is the temperature, 𝛼 is the thermal coefficient and E is given by Equation 2.16 as 

 𝐸 = 1
(
∅!
𝐸!
+
1− ∅!
𝐸!

)
             

(2.16) 
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Where 𝐸!  is the Young’ modulus related to the internal energetic deformation, 𝐸!  is the 

Young’s modulus related to the entropic deformation and ∅! is the volume fraction of the frozen 

phase given by Equation 2.17 as  

 ∅! =
𝜀!
𝜀!"#

 (2.17) 

Where 𝜀!"# is the pre-strain. According to Wang and Li (2015), the overall stress recovery can 

be divided into four components: relaxed stress, thermal stress, memorized stress and residual 

programming stress. The relaxed stress occurs due to the particles being constrained from 

expansion and it reduces the overall stress recovery. The relaxed stress is given in Equation 2.18 

to be 

 
𝜎!"#$%"& = 𝜎!""(1− exp(−

𝑡
𝜏!
))

!

!!!

 (2.18) 

Where 𝜎!"" is the effective relaxed stress, t is the time and 𝜏! is the effective relaxation time. 

The thermal stress occurs due to temperature rising. Since this is a constrained environment and 

free expansion is prohibited, thermal stress is released. Thermal stress can increase or decrease 

the overall stress based on the type of programming occurring. For example, it can be seen in 

Figure 2.4 that the stress in step 5 will peak then decrease again; this peak is because of the 

thermal and entropic stresses. Subtracting the thermal stress will give a constant and more 

reliable stress release from the SMP. The thermal stress is calculated in Equation 2.19 to be  

 
𝜎!!!"#$% = 𝐸 𝑇 𝛼 𝑇 𝑑𝑡

!!

!!
 (2.19) 
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Where 𝛼 is the thermal coefficient, T is the temperature and E(t) is given by Equation 2.16. The 

memorized stress is the stress produced in the loading phase of the shape memory polymer. It is 

calculated by 

 𝜎!"!#$%&"' = 𝐸 𝑇 . 𝜀! . (1− ∅!) (2.20) 

Where 𝜀! is the strain that occurs when the particle undergoes free recovery. Finally, the 

residual programming stress is considered to be zero whenever there is an unloading phase in the 

programming of the SMP. The overall recovery stress in a confined environment is given by 

 𝜎!"#$%&& = 𝜎!!!"#$% + 𝜎!"!#$%&"' + 𝜎!"#$%&'( − 𝜎!"#$%"& (2.21) 

Li and Xu (2011) tried to calculate the memorized stress by considering the stress relaxation 

effect during stress recovery. They proposed that the memorized stress is the difference between 

the measured stress by the MTS machine and the thermal stress and stress relaxation. They used 

a simple stress relaxation equation to calculate the relaxed stress.  

According to Li (2014), the relaxed stress was measured using an MTS Q-TEST 150 machine 

with a fully constrained recovery. Figure 2.5 shows the relaxed stress of the SMP in particle form 

versus foam (Li and Nettles, 2010).  

Both of these SMPs were also pre-stressed with two different stress values. It can be seen that 

the more the SMP is pre-stressed, the higher the relaxed stress. The relaxed stress is unstable and 

should therefore be subtracted for a more stable overall stress recovery. Even after all of these 

subtractions are made the SMP can release up to 13 MPa of stress in porous media, meaning that 

it will cause compressional forces on the wellbore hoop stress. These compressional forces could 

help prevent the hoop stress from going into tension and could lead to wellbore strengthening. 

Finally, whenever a bundle of SMPs are present and are activated above 𝑇!, their rubbery state 
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allows them to bridge and connect together, forming an effective strong seal that isolates the 

fracture from the wellbore. When activated, the shape memory polymers use their ductility 

property to form bridges that are extremely hard to break (Li, 2014). Therefore, there is a stress 

recovery advantage and a bridging advantage for having LCMs made out of SMPs. 

 

Figure 2.5. Measured stress of different types of SMPs pre-stressed at different values (Li and 
Nettles, 2010). 

It is also important to note that the smart LCMs will float in the mud due to their density. 

Adding surfactants to reduce the surface tension of the mud and disperse the particles will 

prevent such floating from occurring. SMPs have also been used as proppants (Santos et al., 

2016), for re-fracturing operations (Santos et al., 2017) and in cementing applications (Taleghani 

et al., 2017). 
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Chapter 3: Experimental Procedure  

The objective of running this experiment is to create a field environment of lost circulation at a 

small scale and see how effective our smart expandable LCM will seal it. This chapter describes 

the apparatus used to evaluate lost circulation, the LCM used and the procedures made. The 

apparatus components can also be seen in Appendix B. 

3.1 Experimental Design 

The experiment done to test the smart LCMs was permeability plugging apparatus (PPA) as seen 

in Figure 3.1.  

 
Figure 3.1. HPHT PPA with LCM Receiver 

The permeability plugging apparatus that was used is a high-pressure high-temperature 

instrument that has a maximum operating temperature of 500 degrees Fahrenheit and a 

maximum operating pressure of 5000 psi. The PPA assembly consists of a hydraulic hand pump 

assembly to supply pressure, a 5000 psi stainless steel PPA cell where the fluid and LCM will be 

placed as seen in Figure 3.2, a PPA heating jacket to heat up the apparatus to specific 

temperatures, a dial thermometer to measure the temperature, a LCM PPA Receiver to measure 

fluid loss through its collection valve as seen in Figure 3.3, a backpressure receiver and this is 
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used only if the temperature exceeds bubble point of the fluid, a carbon dioxide pressurizing 

assembly or nitrogen pressurizing assembly to work with the backpressure receiver, a graduated 

cylinder to measure the fluid loss and finally, slot discs and tapered discs to represent fractures.  

 

Figure 3.2. PPA cell schematic 

 

Figure 3.3. PPA LCM receiver schematic 
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3.2 Smart LCMs 

The lost circulation material used in these experiments is made out of anionic shape memory 

polymers. The smart LCMs have a disc shape and their activation temperature is 70℃. This is 

the temperature where the smart LCM starts to expand. Figure 3.4 shows the smart LCMs before 

and after activation. 

 
Figure 3.4. (a) Smart LCM before activation (b) after activation. 

The smart LCMs have a density of 950 kg/𝑚!, Poisson’s Ratio of 0.4, pre-strain (the maximum 

strain the LCM can achieve) of 25% and Young’s Modulus of 655 MPa, 260 MPa, 2.4 MPa at 

temperatures of -23℃, 23℃ and 80℃ respectively. All experiments were done with the same 

type of smart LCMs. 

3.3 Experimental Procedure 

The drilling fluid was made by adding 38 grams of bentonite to 350 ml of water. The mud had a 

density of 8.9 ppg and its formulation can be seen in Table 3.1.  

Table 3.1. Mud formulation 

Products lb/gal % By weight %By volume 

Water 8.35 90.19 95.76 

Bentonite 21.0 9.81 4.25 
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A mud rheogram was made by an Anton Paar modular compact rheometer to see the behavior 

of mud with shear stress. The test was made at 23℃ and 80℃. Figure 3.5 shows the shear stress 

versus shear rate and Figure 3.6 shows the viscosity versus shear rate and the apparent viscosity 

can be found. 

 

Figure 2.5. Shear stress versus shear rate for the mud used in the experiments 

 

Figure 3.6. Viscosity versus shear rate 
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170 ml of this mud was taken and the smart LCMs were added to the mud at a concentration of 

0.3 pounds of LCM per gallon of mud. This concentration of LCM is equivalent to almost 50 

particles. The PPA cell is then filled with this mixture of drilling fluid and LCMs. The particle 

sizes were varied according to each experiment. 

A slot disc or tapered disc as seen in Figure 3.7 is inserted on top of this mixture and on the top 

of the cell. The slot and tapered disc descriptions can be seen in Table 3.2.  

Table 3.2. Dimensions for discs 

Type Length (Inches) Width (Inches) 
Slot Disc 0.279 0.1 

Tapered Disc 1.700 0.04 to 0.1 
 

 

Figure 3.7. a) Slot disc b) Tapered disc 

The PPA cell has a floating piston as seen in Figure 3.2 that separates the oil coming from the 

hydraulic pump from the mixture of mud and LCM.  The LCM-Receiver is then tightly capped at 

the top of the PPA cell. The PPA cell is then inserted in the heating jacket were the temperature 

is adjusted according to the test made. The hydraulic pump is then connected to the bottom of the 

PPA cell, where oil pushes the floating piston and if the slot or tapered discs are sufficiently 

sealed, pressure builds up; if not, then fluid is lost and collected from the collection valve of the 

LCM-Receiver. Five different tests were made using the PPA and will be discussed in Chapter 5. 
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Chapter 4: Numerical Simulation  

This chapter explains the interaction between fluid, between particles and between a mixture of 

fluid and particles. This chapter also explains the boundary conditions and the procedures of the 

numerical model made to test the sealing efficiency of the smart LCMs. It also explains the 

calculation of concentration of LCMs required to seal a specific size of fracture and the 

measurement of the compressional forces that will be acting on the wellbore from the LCMs’ 

stress recovery. 

4.1 Introduction 

Fluid-particle interaction is important when trying to understand engineering applications in 

granular and porous media. Discrete element method (DEM) and computational fluid dynamics 

(CFD) have played an important role in understanding the fluid-particle interactions. CFD-DEM 

method usually solves Darcy’s law or Navier-Stokes equation for the CFD part and Newton’s 

equations for particle motion using the DEM part. It also considers force interactions between 

the CFD and the DEM. An example of these forces will be buoyancy, hydrostatic and drag forces 

(Zhu et al., 2007). 

4.2 Discrete Element Methods 

Discrete Element methods is a numerical method that explains granular particle interactions. 

Cundall and Strack (1979) were one of the first people to propose such a model to help them 

understand particle interactions and solve tough rock mechanic problems. This simulation 

generates new contact points as it progresses to be able to adjust for the interaction between 

particles. The time integration has a smaller time scale than the typical contact time to prevent 

propagation of the particle disturbance and stop it from going further than its immediate 

neighbors. The motion of each element is described using Newton’s second law.  
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According to Santos (2016) there are four steps required to finish a DEM simulation. First step 

includes defining the particles’ initial configuration, building the geometry of the shape used and 

setting its boundary conditions. Second step is where the forces are applied and these forces 

include gravity, friction between particles and pressures. Third step is calculating the forces that 

occur due to boundary conditions. This is when the forces mentioned in the previous step lead to 

the calculation of the velocities and acceleration of particles through solving the momentum 

equation. Fourth step includes the integration of these forces. The position and velocity of each 

particle are calculated and updated according to a time step defined by the user. Fifth step is 

analyzing the results and including thermal and mechanical parameters based on each time step. 

Each step from 1 to 4 is then repeated until the solution is solved and is complete. Finally, the 

last step is post-processing and this is the part where the output data is processed to be 

graphically visualized. 

LIGGGHTS is a software used to run the simulation in this paper and it is an improved discrete 

element code for general granular and granular heat transfer simulations. By solving dynamics 

equation for particles, LIGGGHTS determines particle interactions, positions and velocities 

through discrete element method in each time step. LIGGGHTS has an input file that consists of 

C++ codes with no graphical user interface. When the code is executed, LIGGGHTS creates an 

output file for each time step. This file contains the particle interactions, velocities and position 

for each particle at each individual time step. The files are then post-processed so that they can 

be graphically seen and that the data can be visually interpreted (Santos, 2016). 

4.2.1 Governing Equations 

In LIGGGHTS, The rotational and translational motions are calculated using equation 4.1. This 

equation explains how the motion of particle “i” is affected by a wall or by particle “j”. The 
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Hertizian or Hook contact law working with Coulomb’s friction law describes the contact 

behavior of the particles in a DEM simulation (Zhao and Shan, 2013). 

 
𝑚!

𝑑𝑈!!

𝑑𝑡 = 𝐹!"!
!!
!

!!!

+ 𝐹!
! + 𝐹!

! 

(4.1) 
 

𝐼!
𝑑𝑤!
𝑑𝑡 = 𝑀!"

!!
!

!!!

 

Where 𝑚! is the mass of the particle, !!!
!

!"
 is the velocity of the particle with respect to time, 𝐹!"!  

is the particle-particle contact force, 𝐹!
!is the tangential particle-fluid contact force and 𝐹!

!is the 

gravitational force, 𝐼! is the moment of inertia, !!!
!"

 is the change of angular velocity with respect 

to time and 𝑀!" is the torque force.  

4.2.2 Heat Transfer Between Particles 

Tstory et al. (2013) describes the heat transfer in a DEM simulation using the lumped heat 

capacity approach in a DEM simulation. They state that the heat transfer occurs through 

conduction between the contact surfaces of the particles and also occurs through conduction 

between the walls and the particles. The model assumed that the particle temperature is uniform 

at each time step. Equation 4.2 shows the particle energy equation. 

 
𝑚!𝑐!

𝑑𝑇!
𝑑𝑡  (4.2) 

Where 𝑐! is the particle thermal capacity, 𝑇! is the particle temperature and 𝑚! is the mass of 

the particle.  
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4.3 Computational Fluid Dynamics 

OpenFOAM (Open Source Field Operation and Manipulation) is another software used to run 

the simulations in this thesis and it is a computational fluid dynamics (CFD) simulator.  

Computational fluid dynamics studies fluid flow through simulations. There are three steps 

needed to successfully complete a CFD simulation. According to Santos (2016) the first step is 

setting fluid properties and boundary conditions such as fluid density, fluid viscosity, and 

pressure at the walls for the fluid to enter. Second the simulation uses finite element method to 

generate partial differential equations. The partial differential equations are transformed to 

algebraic equations where they are solved using an iterative method. Each value is calculated 

based on a discrete place according to the mesh geometry. Finally, the data is post-processed and 

the solution is graphically visualized. 

OpenFOAM divides the fluid domain into cells and variables such as pressure, density and 

fluid velocity. These variables are then averaged for each cell. The CFD code solves the 

continuity equation along with the locally averaged Navier-Stokes equation as seen in Equation 

4.3 to calculate the variables for each cell and understand fluid motion (Zhu et al., 2007). 

 𝑑(∅𝜌𝑈!)
𝑑𝑡

+ ∇. ∅𝜌𝑈!𝑈! − ∅∇. (𝜇∇𝑈!) = −∇𝑝 − 𝑓! + ∅𝜌𝑔 (4.3) 

Where ∅ is the porosity, 𝜌 is the density, 𝑈!is the average velocity of the fluid cell, 𝜇 is the 

viscosity, 𝑝 is the pressure, 𝑓! is the average force that the particle exert on the fluid in a cell and 

g is the gravitational acceleration. 

4.4 Computational Fluid Dynamics and Discrete Element Methods (CFD-DEM) 

The CFD-DEM coupling can couple solid particle and fluid system simulations together. The 

particles’ motions are modeled using the discrete element method approach and the fluid flow is 
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modeled using the CFD approach previously described. Both of these approaches are coupled 

and a system of solid particles and fluids is formed were the conservation of momentum and 

mass is achieved (Zhu et al., 2007). Figure 4.1 shows a flowchart to describe the steps required 

to complete a CFD-DEM simulation.  

 

Figure 4.1. Steps to complete CFD-DEM simulation (Santos, 2016) 

4.4.1 Particle-Fluid Interaction 

Hydrodynamic and hydrostatic forces act on particles whenever they are submerged in a fluid. 

Hydrodynamic forces include virtual mass force, drag force and lift force. (Zhu et al., 2007). The 

most dominant out of all forces is the drag force (O’Sullivan, 2011). According to Di Felice 

(1994), the drag force can be calculated using the following:  

 𝐹! = 𝐶!𝜋𝜌!𝑑!!|𝑉! − 𝑉!|
𝑉! − 𝑉!
8 𝜀!!! (4.4) 

Where, 

 𝐶! = (0.63+
4.8
𝑅!
)! (4.5) 

 
𝑅! =

𝜌𝑑!𝜀|𝑉! − 𝑉!|
𝜇  

(4.6) 

 𝑥 = 3.7− 0.65exp  [!(!.!!!"#!!)
!

!
] (4.7) 
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Where 𝜀!!! is a function that considers other particles’ presence in the system and corrects the 

equation,  𝐶! is the drag coefficient, 𝜌! is the fluid’s density, 𝑑𝑝 is the particle’s diameter size, 𝑉! 

is the fluid volume, 𝑉!  is the particle volume, 𝜌 is the density of the mixture and 𝜇 is the 

viscosity of the mixture. 

4.4.2 Particle-Fluid Heat Transfer 

Li and Mason (2000) proposed a model to describe convective heat transfer between fluid and 

particles. This model is described by 

 𝜕𝑇!
𝜕𝑡 +   ∇. 𝑇! . 𝜇! =   ∇. 𝑘!""∇𝑇! + 𝑆!   

(4.8) 

Where 𝑇! is the fluid temperature, 𝜇! is the fluid viscosity, 𝑘!"" is the thermal diffusivity and 

𝑆! is a source term and is described by 

 𝑆! =   
!!

!!!!"##
  , (4.9) 

Where 𝑉!"## is the volume of the cell, 𝜌! is the fluid density and 𝑞! is the heat transfer ratio 

described by 

 

 

 

𝑞! =   ℎ  𝐴!(𝑇! − 𝑇!). (4.10) 

𝐴! is the area of the particle and h is the heat transfer coefficient calculated through Nusselt 

number which is a function of Reynolds and Prandtl numbers. 

4.5 Simulation Procedure 

Four different simulations were made in this paper. The objectives of the simulations as 

mentioned above were to measure the cumulative fluid loss in a specific sized fracture, the 

concentration of particles required to seal this fracture and to quantify the compressional stress 

that will be acting on the wellbore from the stress recovery of the smart LCM. 
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4.5.1 Simulation Validation 

The objective of this simulation is to validate that the results from the simulation are correct and 

match the experimental results. The steps made to complete this simulation are as follows: 

A simulation region in the DEM is defined by building a tapered disc through SOLIDWORKS 

as seen in Figure 4.2 that has the same dimensions as the tapered disc used in the experiment. 

 

Figure 3.2. Tapered disc designed in the simulation 

Pressure at the inlet of the tapered disc was set to 100 psi and pressure at the outlet of the 

tapered disc was set to zero. The particles were spherical as opposed to discs in experiments and 

the change in radius leads to change in volume. The particles had properties the same as the ones 

used in the experiment as seen in Table 4.1. The particles had sizes of 3mm and 5mm at a 1:1 

ratio. The particles were mixed with 170  𝑐𝑚! drilling fluid that had a viscosity of 15 cp and a 

density of 8.9 ppg just like in the experiment and they were inserted in the fracture. The viscosity 

is assumed constant since the shear rate is high. 

The initial temperature of the fracture is 72℃ and the temperature increases at a rate of 0.5 

℃/min. when the particles are inserted in the fracture they are activated and undergo thermal 

expansion. Equation 4.11 gives this thermal expansion.  
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 𝐸 = 𝛼∆𝑇 (4.11) 

Where 𝛼 is the thermal coefficient and ∆𝑇 is the change in temperature. The simulation ran for 

6.5 minutes and the concentration of LCMs required to seal the fracture, fluid loss versus time 

and pressure buildup versus time is recorded in the simulation and compared with the 

experimental results from Chapter 5.1.2 

Table 4.1. Properties of the smart LCMs 

Properties Value 
Young’s Modulus @23℃ (Mpa) 260 
Young’s Modulus @80℃ (Mpa) 2.4 

Poissions Ratio 0.4 
Density (kg/𝑚!) 950 

Activation Temperature (℃) 70 
  

4.5.2 Cumulative Fluid Loss 

The objective of this simulation is to measure the effectiveness of the seal made by the smart 

LCMs. The fluid loss is recorded every 30 seconds, if the fracture is sealed then the simulation 

will stop. If the fracture is not sealed the simulation will keep working and will terminate at 12 

minutes. The particles used here had a perfectly spherical shape as opposed to disc shape in the 

experimental work. Different particle sizes were chosen to form a relationship between particle 

size and sealing efficiency. Particles with different sizes were also mixed together to see if it is 

more efficient to use just one size or mix different sizes. Since the fracture will be under pressure 

in the bottomhole, the amount of its expansion will depend on how much pressure is acting on it. 

An experiment called strain measurement test that will be discussed in Chapter 5 was made to 

test the expansion of particles versus pressure. These volumetric expansion values were used in 
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the simulations to create realistic values of concentrations required. The steps made to complete 

this simulation are as follows: 

A simulation region in the DEM is defined by building a new bigger fracture than the one used 

in the experiment through SOLIDWORKS. The fracture was in a cuboid box representing the 

rock and had an elliptical shape with one side having diameters of 40mm and 12mm and the 

other side has diameters of 20mm and 6mm. The fracture walls are rigid and the length between 

both sides was 30 cm as seen in Figure 4.3. 

 

     

Figure 4.3. Simulation fracture shape where the inlet is on the right side of the fracture and the 
outlet is on the left side of the fracture 

The pressure at the inlet of the fracture and from which the fluid and particles mixture enters 

was varied. This inlet pressure represents the pressure of the mud and particles at a specific 

distance beneath the surface. The pressure at the outlet was also varied to keep a constant 200 psi 

of pressure difference between the inlet and the outlet. The pressure at the outlet is supposed to 

be the reservoir pressure. The differential pressure represents a realistic amount of pressure 

overbalance that the well be in when drilled. Table 4.2 shows the pressure variations used in the 
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simulation. Figure 4.4 shows the inlet pressure of 2000 psi and outlet pressure of 1800 psi for 

one of the pressure variations.  

Table 4.2. Pressure variations in the simulation 

  
Pressure At The 

Inlet 
Pressure At the 

Outlet 
Case 1 1000 800 
Case 2 2000 1800 
Case 3 3000 2800 

 

 

Figure 4.4. Boundary conditions for pressure. Inlet (right side) is set to 2000 psi while outlet (left 
side) is set to 1800 psi 

Four different particle sizes were used in this simulation and they had a diameter of 1.25mm, 

1.5mm, 2mm and 2.5mm. A mixture of particle sizes of 1.5mm and 2mm were also used and the 

mixture had a particle size ratio of 1:1 respectively. The properties of the particles were the same 

as the properties of the smart LCMs used in the experiment and these properties can be seen in 

Table 4.1. 

The particles were then mixed with 250  𝑐𝑚! drilling fluid that had a viscosity of 15 cp and a 

density of 10 ppg and they were inserted in the fracture. The viscosity is assumed constant since 

the shear rate is high. The flow rate is calculated in the simulation according to the pressure 

difference. The initial temperature of the fracture is 70℃ and the temperature increases at a rate 
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of 5 ℃/min. when the particles are inserted in the fracture they are activated and undergo thermal 

expansion as seen in Equation 4.11. 

The total volumetric expansion allowed for the particle and the thermal coefficient used in the 

simulation is determined by the experimental strain measurement test in Chapter 5. The 

temperature stops increasing when the particle has reached its maximum size allowed. The 

thermal coefficient is considered to be constant because according to Liu et al. (2006) the 

thermal coefficient is a specific constant value below 𝑇! and then increases to a constant value 

when temperature goes above 𝑇! . Figure 4.5 shows the behavior of the thermal coefficient with 

temperature. Since here the initial temperature of the fracture is 70℃ (𝑇!) and the maximum 

temperature is  90℃, the thermal strain will remain constant. 

 

Figure 4.5. Thermal coefficient above 𝑇! 
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4.5.3 Concentration of Particles Required to Seal The Fracture 

For this simulation the objective is to measure concentration of particles in pounds per gallon 

that are required to seal the fracture. This is achieved by measuring the number of particles that 

sealed the fracture in Chapter 4.5.2 and converting it into concentration values. Sealing the 

fracture means that fluid loss is less than 3 𝑐𝑚!/min. 

4.5.4 Stress Recovered from Smart LCMs 

The objective of this simulation is to measure the stress recovery of the smart LCM. The same 

boundary conditions, particle expansion procedure applied in Chapter 4.5.1 are applied in this 

section too. The particle size used here is only 2mm and the sizes were not varied or mixed. The 

simulation measured the compressional stress that the particles will cause on the wellbore. This 

stress was calculated using Equation 2.15. 
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Chapter 5: Results and Discussions 

The objective of this section is to understand how effective the smart LCMs are in sealing the 

fracture and strengthening the wellbore. This chapter will explain the experimental tests and 

numerical simulations made and then the results will be analyzed and discussed. 

5.1 Experimental Results and Discussions 

This section will explain the experimental tests made using the particle plugging apparatus and 

discuss the results obtained. Five different experimental tests are present in this section. 

5.1.1 Sealing Efficiency Test 

The objective of this test is to compare fluid loss and pressure buildup below, at and above 

activation temperature. This experiment is supposed to represent what smart LCMs will do once 

they get activated in the bottomhole. Therefore, 3 temperatures of 60℃, 70℃ and 80℃ were 

chosen. The smart LCMs used in this test were a mixture of two different diameter sizes. These 

sizes were 2.5mm and 5mm from which 0.15 ppg of each smart LCM size was added to 170 ml 

of water-based mud. The PPA cell was filled with this mixture and the test was done with a slot 

disc and a tapered disc.  

The fluid loss was measured by pumping hydraulic fluid in the cell until pressure started to 

buildup. The fluid that came out before the pressure buildup is the fluid loss regardless of the 

time. The maximum pressure buildup is the maximum pressure the seal can hold before the seal 

is broken and fluid is lost again. Table 5.1 shows the results that were obtained from this 

experiment. 
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Table 5.1. Pressure buildup and cumulative fluid loss 

Type Temperature 
(Degrees Celsius) 

Pressure Buildup 
(Psi) 

Cumulative Fluid 
Loss (ml) 

Slot Disc 60 100 47 

70 2000 22 

80 4500 7 

Tapered Disc 60 0 58 

70 2500 18 

80 5000 0 

 
It can be seen from the results that below activation temperature (60℃) fluid loss is very high. 

However, when the smart LCM got activated the fluid loss decreased significantly. At 80℃, all 

the smart LCMs were activated and the fracture was effectively sealed. The particles bridged 

together as seen in Figures 5.1 and 5.2 and were able to withstand extremely high pressures. 

 

 
Figure 5.1. Effectively Sealed Slot Disc by the smart LCMs. 
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Figure 5.2. Effectively Sealed Tapered Disc by the Smart LCMs. 

5.1.2 Fluid Loss and Pressure Buildup Test 

The objective of this test is to measure fluid loss and pressure buildup once the LCM is activated 

with respect to time. This experiment is supposed to show the decrease in fluid loss that the 

drilling engineer will see once the fracture is effectively sealed. The heating jacket was preheated 

to 75 Degrees Celsius. The smart LCMs used in this test were a mixture of two different 

diameter sizes. These sizes were 3mm and 5mm from which 0.15 ppg of each smart LCM size 

was added to 170 ml of water-based mud and inserted in the PPA cell. The PPA cell was then 

inserted in the heating jacket and left there for 30 minutes before applying pressure, to allow the 

heat to be transferred to the cell for the activation of the smart LCMs. The fluid loss and the 

maximum pressure the seal can hold with respect to time were recorded. The fluid loss was 

measured by pumping hydraulic fluid in the cell at a rate of 1 stroke per 15 seconds. Since the 

fracture was sealing with time, fluid was being prevented from going through the fracture and the 

pressure was building up. This pressure build up was also recorded with respect to time. Figure 

5.3 shows the results that were obtained from this experiment for the slot disc. Figure 5.4 shows 

the results obtained from the tapered disc.  
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Figure 5.3. Results for slot disc @ 75 Degrees Celsius 

 
Figure 5.4 Results for tapered disc @ 75 Degrees Celsius 
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It can be seen from the results that the fluid loss decreased gradually to zero as the particles 

expanded and started bridging. The seal was very effective and was able to withstand very high 

pressures.  

5.1.3 Strain Expansion Measurement Test 

The objective of this test is to analyze the volumetric change property of the LCM as a function 

of pressure. Since the wellbore is a partially constrained environment, the smart LCM will not be 

able to fully recover to its shape due to pressure from the bottomhole. Therefore, this experiment 

will help the drilling engineer understand how the smart LCMs will expand under various 

pressures. Two particles were picked and their diameter, thickness and mass were measured. 

These two particles were then mixed with a water-based mud and put in the PPA cell. A disc 

with no fractures was used instead of a slot disc to allow the pressure to build up in the PPA Cell. 

Oil was pumped from the hydraulic pump to raise the pressure until 3000 psi and then the 

temperature was raised to 80℃ and kept constant for 30 minutes. The pressure was then dropped 

gradually until it reached zero and the particles were then cooled down to room temperature, 

23℃. The particles were then taken out from the PPA cell and their diameter, thickness and mass 

were measured. This experiment was repeated for pressures of 0 psi, 1000 psi and 2000 psi. Each 

experiment was also repeated twice to decrease the chance of error. It was noticed that there 

were no changes in mass. Table 5.2 shows the results of the experiments and Figure 5.5 shows 

the size of the smart LCM before and after expansion at 3000 psi. 

The change in volume (dv/v) was calculated by its variation with respect to changes in its 

radius and thickness as seen in equation 5.1 

 
(
𝑑𝑣

𝑣
)
𝑆𝑀𝑃

= 2
𝛿𝑟

𝑟
+
𝛿ℎ

ℎ
 

(5.1) 
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Table 5.2. Results for the strain measurement test 

First Experiment 

 
0 psi 1000 psi 2000 psi 3000 psi 

Initial Diameter (mm) 5.05 5.21 6.14 4.29 
Thickness (mm) 1.82 1.96 2.02 1.81 

Diameter After Expansion (mm) 4.82 4.97 5.49 4.2 
Thickness After Expansion 

(mm) 3.36 3.33 2.84 1.95 
Dv/v 0.755 0.607 0.194 0.0354 

Second Experiment 

 
0 psi 1000 psi 2000 psi 3000 psi 

Initial Diameter (mm) 5.55 4.91 5.07 5.5 
Thickness (mm) 2.39 1.79 2.03 2.01 

Diameter After Expansion (mm) 5.23 4.17 4.67 5.47 
Thickness After Expansion 

(mm) 4.65 3.21 2.69 2.07 
Dv/v 0.830 0.492 0.167 0.019 

Average Dv/v for both Tests 
Average dv/v 0.79 0.55 0.18 0.03 

 

 

Figure 5.5. Change of Smart LCM size before and after experiment at 3000 psi 
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The average dv/v was then plotted versus the surrounding hydrostatic fluid pressure as seen in 

Figure 5.6. It can be seen that the higher the pressure is, the harder it is for the SMP to expand 

and recover its original shape. Drawing a line of best fit, a linear correlation can be calculated for 

such behavior. At atmospheric conditions, maximum recovery occurs.  

 

Figure 5.6. Change in volume of smart LCM versus pressure 

5.1.4 Permeability Plugging Test 

The objective of this test is to measure the sealing efficiency of the smart LCM at 80℃ and 

23℃  with respect to time and compare the results. This experiment will help drilling engineers 

understand the difference between the smart LCM and a normal LCM that has no expansive 

properties. Table 5.3 shows the test parameters. The smart LCMs had an average diameter size of 

5.87mm and an average thickness size of 1.63mm. The LCMs were added to 170 ml of mud at a 

concentration of 0.3 ppg. The mixture was then placed in the PPA Cell. Only a slot disc was used 

and it was placed on top of the PPA cell. The LCM receiver was then tightly capped to the PPA 

cell and the hydraulic pump was attached. The thermostat was then adjusted to 80℃ and the 
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mixture was left to settle at this temperature for 30 minutes. After that, oil was pumped from the 

hydraulic pump at a rate of 1 stroke per 10 seconds. 

Table 5.3. Test Parameters 

 Test 1 @80℃ Test 2 @23℃ Test 3 @23℃ 

Average Particle 
Diameter Size (mm) 

5.87 5.87 5.48 

Average Particle 
Thickness size 

(mm) 

1.63 1.63 1.87 

Every 30 seconds, the fluid loss and the pressure that the seal can hold were recorded as seen in 

Figure 5.7. The pressure reached to 3000 psi and was not allowed to exceed it. 

 

 
Figure 4.7. Fluid loss and pressure buildup at 80℃ 
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From Figure 5.6, it is known that the particles expand by about 3% when the pressure is 3000 

psi. Therefore, to understand if these particles can plug the fracture below activation temperature 

(23℃), two experiments were made. The first experiment was to see if the particles at a non-

expanded size of 5.87 mm diameter and 1.63 mm thickness can seal the fracture alone without 

expanding and without needing temperature to activate them. For the second test, assuming that 

the only reason the smart LCMs sealed the particles was because they expanded in size, the 

expanded size of the LCM (5.48 mm diameter size and 1.87 mm thickness at room temperature) 

were mixed with the mud and tested to see if it will plug the fracture. Figure 5.8 and Figure 5.9 

shows the results of these two tests. 

It can be seen from the results that it is not only the expansive property that the LCM has that 

allows it to seal the fracture. What makes the smart LCM an excellent choice for sealing 

fractures is that it has the ability to take the shape of the fracture by bridging and sticking 

together. The cohesive property of this material allows it to withstand extremely high pressures. 

 

Figure 5.8. Results for normal size non-activated LCM @23℃ 
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Figure 5.9. Results for expanded size non-activated LCM @23℃ 

5.1.5 Concentration Required for Sealing  

The objective of this experiment is to test different concentrations of LCMs through the slot and 

tapered disc and see how much LCM is required to seal the fracture efficiently. The LCM 

particles used here had a shape of a thin sheet as opposed to disc shape in previous experiments. 

They were also much smaller in size ranging from 0.25mm to 1mm. They are made out of the 

same material but they have a different shape. So another objective of this experiment is to see if 

the shape of the material matters when trying to seal the fracture. The difference between LCMs 

shape can be seen in Figure 5.10. 

These smart LCMs were mixed with 170 ml of the drilling fluid at concentrations of 0.24 

lb/gal, 0.48 lb/gal and 0.96 lb/gal with the slot disc and the tapered disc. The heating jacket was 

set to a temperature of 85℃ and the mixture was left there to settle for 30 minutes before running 

the test. 
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Figure 5.10. LCMs used in this experiment (top) vs. LCMs used in previous experiments 
(bottom) 

Figure 5.11 and Figure 5.12 shows the fluid loss versus time and the pressure buildup versus 

time for the slot disc at each concentration respectively.  It can be seen that as the concentration 

increases fluid loss does decrease but not by a large amount. The pressure that the seal can hold 

was also not very high as opposed to previous experiments.  

 

Figure 5.11. Fluid loss versus time for slot disc 
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Figure 5.12. Pressure buildup versus time for slot disc 

Figure 5.13 shows the slot disc sealed at two different concentrations. It can be seen that as the 

concentration increases, particles start to buildup beneath the actual fracture and form bridges 

within each other.  

 

Figure 5.13. Slot disc sealed with 0.24 lb/gal of LCMs (top) versus 0.48 lb/gal bottom 
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Figure 5.14 and Figure 5.15 shows the fluid loss versus time and the pressure buildup versus 

time for the tapered disc at each concentration respectively. It can be seen that fluid loss 

decreases with increasing concentration and the pressure that the seal can hold increases with 

increasing concentration. However, the particles here caused a higher pressure buildup than in 

the slot disc. The particles tend to cause lower fluid losses and higher pressure buildups when the 

fracture is long in length as opposed to short in length.  

The concentration of the LCMs and their shape can therefore have an effect on the 

effectiveness the smart LCMs’ seal. The bridges that this shape formed were not as strong as the 

bridges that the disc shapes formed. Even though the pressure buildups were not as high as the 

previous experiments that used 3 lb/gal for concentration of LCMs, they still show a decrease in 

fluid loss and were able to withstand a reasonable differential pressure that will be seen in the 

wellbore whenever it is in an overbalance state.  

 

Figure 5.14. Fluid loss versus time for tapered disc 
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Figure 5.15. Pressure buildup for tapered disc 

5.2 Numerical Simulation Results and Discussions 

This section explains the numerical simulations made using the CFD-DEM coupling and the 

results obtained. The objective of the simulation is to test for the sealing efficiency of the smart 

LCMs by measuring fluid loss, estimate the concentration of particles required for fracture 

sealing (one-size particles or a mixture of sizes) and finally, measure the overall stress recovery 

of the smart LCM.  

5.2.1 Simulation Validation 

The objective of this simulation is to validate that the results from the simulation are correct and 

match the experimental results from Chapter 5.1.2. For this simulation, the particle undergoes 

thermal expansion and since the seal was withstanding up to 5000 psi in the experiment, the 

particles are only allowed to expand by up to 3% according to the strain expansion measurement 

test. 
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The seal made by the particles and the change in volume from the particles’ expansion can be 

seen in Figure 5.16.  

 

Figure 5.16. Sealing of tapered disc in the simulation 

Figure 5.17 shows the comparison between the concentration required to seal the fracture in the 

experiment and the concentration required to seal the fracture in the simulation. It can be seen 

that they are very similar.  

Figure 5.18 shows the comparison of the fluid loss versus time between the experiment and the 

simulation. Figure 5.19 shows the comparison of the pressure build-up versus time between the 

experiment and simulation. Both of Figure 5.18 and Figure 5.19 show that the results are 

matching for both the simulation and the experiment. The simulation can be trusted to generate 

results for a new sized fracture. The simulation was also repeated with particles that did not have 

any expansive or cohesive properties. This simulation was made for comparison with results 

from Chapter 5.1.4. It was seen that these particles failed to seal the tapered disc and they were 

not able to minimize fluid loss.  
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Figure 5.17. Concentration of particles comparison 

 

Figure 5.18. Cumulative fluid loss comparison 
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Figure 5.19. Pressure build-up comparison 

5.2.2 Cumulative Fluid Loss 

The objective of this simulation is to see how effective the smart LCMs are at sealing the 

fracture by comparing different particle sizes and mixed size distributions. This simulation 

extends the work done in the experiments using a different fracture size. For this simulation, the 

particle undergoes thermal expansion. The maximum volumetric strain allowed is the strain 

measured in strain expansion measurement test in Chapter 5.1.3. From this test and for one of the 

results, an arbitrary ∆𝑇 was chosen and the thermal coefficient was then calculated. ∆𝑇 was then 

changed for the other results to maintain the volumetric strain at each pressure. Table 5.4 shows 

the temperatures used, volumetric expansion allowed and radius expansion (𝚫𝑹
𝑹

 ) for the 

spherically shaped particles at each inlet pressure. This expansion procedure was also used in 

Chapter 5.2.1. 

 



 62 

Table 5.4. Thermal expansion for smart LCM 

 1000 psi 2000 psi 3000 psi 

!!
!

 (%) 55 18 3 

!!
!

 (%) 16.5 5.5 1 

𝛼 0.00825 0.00825 0.00825 

Δ𝑇 (℃) 20 7 2 

 

The cumulative fluid loss versus time at 1000 psi for the 2mm particles was one of the data 

measured and can be seen in Figure 5.20. It can be seen that at about 3 minutes the particles have 

been fully activated and were big enough to form a tight seal that prevented the fluid from being 

lost. Figure 5.21 shows the temperature of the fluid at the beginning and at the end of the 

simulation. This increase in temperature is what caused the activation. Fluid loss was high at the 

beginning since the smart LCMs were still in the process of activation.  

 

Figure 5.20. Fluid loss for 2mm particles at 1000 psi 
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Figure 5.21. Temperature of fluid before (top) and after (bottom) activation 

The fracture was efficiently sealed and the velocity of the fluid before and after was recorded as 

seen in Figure 5.22. The velocity decreased after the fracture got plugged.  

Table 5.5 shows the cumulative losses for each particle size at each pressure. It can be seen that 

as the particles increase in size, fluid loss decreases. Fluid loss increases when pressure increases 

because the particle sizes are expanding in smaller amounts as opposed to expansions in lower 

pressures. Therefore, this decrease in size requires more LCMs and it takes more time for the 

fracture to be sealed. This extra time required accounts for more fluid loss. However, it was seen 

that all smart LCMs were able to seal the fracture effectively and stop any further losses. 
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Figure 5.22.Velocity of fluid in m/s before (top) and after (bottom) plugging 

Table 5.5. Cumulative fluid loss for each particle size at different inlet pressures 

  1000 Psi 2000 psi 3000 psi 
1.25mm 158 cc 197 cc 220 cc 
1.5mm 128 cc 169 cc 181 cc 
2mm 79 cc 94 cc 122 cc 

2.5mm 22 cc 46 cc 67 cc 
 

The cumulative fluid loss for the mixture of 1.25mm and 2mm particle sizes versus time at 

1000 psi can be seen in Figure 5.23. It can be seen that the fluid loss is decreasing with time and 

the total fluid loss for the mixed particle sizes is less than having a 2mm particle size by itself or 

a 1.25 mm particle size by itself. It can also be seen that it takes less time for the mixture to stop 

fluid losses than it does for having just one sized particle. Table 5.6 shows the cumulative fluid 

losses for the mixture at each pressure. 
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Figure 5.23. Cumulative fluid loss versus time for the mixed particles (1.5mm and 2mm) at 2000 
psi 

Table 5.6. Cumulative fluid loss for the mixed particle sizes at each pressure 

  1000 Psi 2000 psi 3000 psi 
Mixture of 1.25mm and 

2mm 
47 cc 83 cc 106 cc 

 

Figure 5.24 compares the cumulative fluid losses for each particle size and for the mixture. It 

can be seen that the mixture of particles is much better at sealing the fracture than having one-

sized particles. This can be explained by how the mixed particles were packed compared to the 

packing of the single sized particles. 

Figure 5.25 shows the porosity of the mixture of particle sizes compared to the porosity of only 

2mm particles at 1000 psi. It can be seen that the porosity is extremely small in the mixture due 

to better packing between the particle sizes and therefore, it is much harder for the fluid to pass 

as opposed to the porosity and packing in the 2mm particles.  
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Figure 5.24. Comparison of cumulative fluid loss for each particle and mixture 

 

                     

Figure 5.25. Porosity and packing of mixed particles (top) versus 2mm particles (bottom) 
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5.2.3 Concentration of Particles Required to Seal the Fracture 

The objective of this simulation is to measure the number of particles required to plug the 

fracture. This was made by measuring the concentration of smart LCMs needed to bring fluid 

loss to less than 3  𝑐𝑚!/min in Chapter 5.2.1.  

At 1000 psi, 142 particles of 2mm radius size were required to efficiently seal the fracture and 

prevent fluid loss as seen in Figure 5.26.  Which means that for this fracture shape, a 

concentration of 0.195 lb/gal of 2mm smart LCMs is required to seal it. 

 

 

Figure 5.26. Number of 2mm particles required for plugging a fracture at 2000 psi. 

The concentration of particles in pounds per gallon for each size at each pressure required to 

plug the fracture can be seen in Figure 5.27. It can be seen that as the particles increase in size, 
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the concentration of particles required to seal the fracture decreases. It can also be seen that as 

the pressure increases more particles are required to seal the fracture and this is because the 

particles expand by less due to higher pressures and therefore, more particles are required to 

effectively seal the fracture. 

  

Figure 5.27. Number of particles required to seal the fracture. 

For the mixed particles, the number required to seal the fracture at 1000 psi was a total of 220 

from which 110 particles were 2 mm size and 110 particles were 1.5 mm size as seen in Figure 

5.28. Which means that for this fracture, a concentration of 0.22 lb/gal of 2mm and 1.5mm smart 

LCMs is required to seal it.  

The concentration of particles for this mixture required to plug the fracture at each pressure can 

be seen in Figure 5.29. It can be seen that the concentration of smart LCMs increase with 

increasing pressure. However, less particles of each size are required to seal the fracture at a 

given pressure when in a mixture compared to single sized particles. 
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Figure 5.28. Mixture of 1.5mm and 2mm (ratio 1:1) particles at 1000 psi 

 

Figure 5.29. Number of mixed particles (1.5mm and 2mm) to seal the fracture 
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5.2.4 Stress Recovery of Smart LCM 

The objective of this simulation is to calculate the stress recovery during shape transformation of 

the smart LCMs. The stress was calculated in the simulation using Equations 2.15-2.17. The 

strain values are given from the experimental strain measurement test. The input parameters for 

the simulation can be seen in Table 5.7 and they are based on the material properties and the 

results in the experiment. The material here is a perfect sphere and is considered elastically 

isotropic. The radius is the only variable that changes and leads to the volumetric expansion 

calculated in the experiment. 

Table 5.7. Input parameters for recovered stress  
 0 psi 1000 psi 2000 psi 3000 psi 

𝜀! 0.79 0.79 0.79 0.79 

𝜀!"# 0.25 0.25 0.25 0.25 

𝐸! (MPa) 260 260 260 260 

𝐸! (MPa) 2.4 2.4 2.4 2.4 

∆!
!

 (from 

experiment) 

0.79 0.55 0.18 0.03 

𝜀- 𝛼𝑑𝑇!
!!

 (from 

experiment) 

0.23 0.165 0.055 0.01 

 

The overall recovery stress that the particles apply on walls of the fracture at 1000 psi was 1.77 

MPa as seen in Figure 5.26. 
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Figure 5.30. Recovery stress of the smart LCMs at 1000 psi 

It can be seen that stress recovered is considerably high and could therefore, help strengthen the 

wellbore. Figure 5.27 shows the stresses at each inlet pressure for the 2mm particle. The stresses 

increase with increasing pressure and this is because the smart LCM’s strain recovery is limited 

due to the confined environment and is transformed to recovered stress. 

  

Figure 5.31. Recovery stress of smart LCM 
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Chapter 6: Conclusions and Recommendations for Future Work 

To reduce or prevent fluid loss and strengthen the wellbore, a new type of smart expandable lost 

circulation material is introduced in this research. The smart expandable LCM was tested 

experimentally via permeability plugging apparatus to evaluate the LCM’s sealing efficiency. A 

fully coupled CFD-DEM model was also built to measure the cumulative fluid loss, 

concentration required to seal the fracture and the recovered stress that will act on the wellbore 

wall due to the shape deformation of the smart LCM. The main parameters considered in this 

study were LCM size, various temperatures including LCM activation temperature and various 

confining bottomhole pressures.  

The expansive properties of the proposed LCM makes it an effective solution not only in 

bridging and sealing vugs and fractures but also inducing compressive stresses to strengthen the 

wellbore without damaging the reservoir permeability. It was seen that temperature plays an 

important role in impacting the performance of LCM as it gets activated above a specific 

temperature. For instance, at 60°C, the smart LCM is beneath activation temperature and can’t 

seal the fracture as opposed to 80°C where it was activated and the fracture was effectively 

sealed. This seal is also able to withstand up to 5000 psi differential pressure without breaking. 

The smart LCMs have the ability to stick together and bridge effectively when activated and that 

gives it an advantage above other types of LCMs. It was also seen that confining pressure 

strongly affects the expansion of the smart LCM. The higher the confining pressure, the less 

expansion the smart LCM shows. However, as the expansion decreased, the recovered stress 

increased. The smart LCM’s recovered stress reached up to 6 MPa. The concentration of the 

smart LCMs depends on the particle size and the confining pressure. Mixing particle sizes was 

seen to be one of the most efficient ways to seal a fracture due to the packing of the particles. 
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The experiment was limited to only static fluid loss and does not fully imitate the circulation in 

the wellbore. There were no bigger slot disc sizes available for testing and therefore, plugging of 

bigger fractures had to be simulated. Overall, the experimental and numerical simulation results 

were good which suggests that the material should be further investigated for a possibility to be 

implemented in the field. For instance, having such recovered stress could reduce the chances of 

the wellbore in going in tension and strengthen it. Also, the expansive and chemical properties of 

the LCM should allow it to fill the shape of the fracture and seal it even if it has a big shape. 

Improvements in the experiments and the numerical model, as well as recommendations for 

future work include  

1. Measure the three different components of stress (memorized stress, relaxed stress 

and thermal stress) that are released from the smart LCM. This could be done by 

performing lab experiments using dynamic mechanical analysis tester and using 

the values collected to construct a MATLAB code using the equation in chapter 

2.6. 

2. Further recommendations for the experimental tests are 

a) Investigation of smart LCMs with different activation temperatures to see if there 

is a link between activation temperature and sealing efficiency. 

b) Measure the strain volume changes for another type of smart LCM that has a 

different pre-strain value. 

c) Testing more disc sizes to see how effective the smart LCM is at sealing bigger 

fracture sizes. 
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3. Further recommendations for the numerical simulations are 

a) Test more mixed particle sizes in the CFD-DEM model to confirm that mixed 

particle sizes have better packing than single sized particles. 

b) Test different mixed particle ratios using the bridging theories listed in the 

literature. 

c) Test bigger sized fractures to confirm that the smart LCM can seal bigger 

fractures. 

d) Vary the differential pressure between the inlet and the outlet and see if it affects 

concentration and fluid loss. 
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Appendix B: Experimental Components 

 

 

Figure B1- Permeability Plugging Apparatus 
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Figure B2- LCM Receiver that gets attached to the PPA cell instead of the backpressure 
receiver. 
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