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ABSTRACT 

 

 The addition of serum to embryo culture media may alter gene expression 

and trigger development of Large Offspring Syndrome.  The objectives of this study 

were to determine gene expression levels in embryos cultured in the absence or 

presence of 5% calf serum and compare these expression patterns to in vivo derived 

embryos (IVD), and to determine the effects of serum on the length of day-14 embryos.  

Abattoir derived oocytes were fertilized and cultured in mSOFaa.  At 72 hours post-

insemination (hpi), embryos were randomly allocated into two treatments: mSOFaa 

without and with 5% calf serum.  Embryos were then cultured to 168 hpi and blastocyst 

rates were assessed. In experiment 1, blastocysts from each treatment were pooled 

and stored at -80°C. In experiment 2, blastocysts (n=5-10) from each treatment were 

transferred into synchronized recipients, and were recovered 7 days post-transfer. 

Embryos were photographed, measured, and immediately stored at -80°C. Isolation of 

mRNA, reverse transcription and quantitative PCR were performed to determine 

transcript abundance for COX6A, IFNT1a, PLAC8, IGF2R and GAPDH for each 

sample. In both experiments, blastocyst development rates were higher in embryos 

cultured with serum compared to the no-serum treatment (14.9 and 7.4% respectively, 

P<0.001). In experiment 1, no differences were found in the expression of COX6A, 

IFNT1a, IGF2R and PLAC8; however upregulated expression of IGF2R, COX6A and 

IFNT1a were observed in some samples in both IVP treatments. In experiment 2, 

lengths of elongated embryos from the serum and no-serum culture treatments differed 

from the IVD treatment. Mean expression levels for COX6A, IFNT1a, PLAC8 and 

IGF2R did not differ across treatment groups. However, in the serum treatment 3 of 11 
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embryos over-expressed IFNT1a, 4 of 11 over-expressed IGF2R and 2 of 11 over-

expressed PLAC8, over-expression being defined as two standard deviations above the 

mean of the IVD treatment for each respective gene.  While mean expression levels 

were not affected by culture with serum under these conditions, very high expression of 

IFNT1a, IGF2R and PLAC8 in experiment  2 and IGF2R and IFNT1a in experiment 1 

was observed in some embryos cultured with serum, but not in embryos cultured 

without serum or in in vivo derived embryos.  
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CHAPTER I 

 

INTRODUCTION 

 

Large sized calves have been observed with different assisted reproductive 

technologies (ART) such as embryo transfer, somatic cell nuclear transfer (SCNT) and 

in vitro produced calves (Kruip and den Daas, 1997; van Wagtendonk-de Leeuw et al., 

2000; Rooke et al., 2007). In general, large size calves is an undesirable trait, which 

increases the incidence of dystocia and costs of production. The observation of a 

syndrome known as large offspring syndrome (LOS), more recently referred to as 

abnormal offspring syndrome (Farin et al., 2010) has been observed in cows and 

sheep derived from ART that use in vitro culture. 

Although, the most obvious sign of LOS is large sized calves, other 

characteristics have been documented such as: weaker calves, breathing difficulties, 

high stillbirth rates, high prenatal loss rates (first third of gestation), sudden perinatal 

death, increased dystocia incidence, congenital malformations, organomegaly, 

placental abnormalities and skeletal abnormalities. 

There are different factors that may trigger LOS, such as high urea diets 

(McEvoy et al., 1997; Sinclair et al., 1998b), asynchronous embryos transfers (Sinclair 

et al., 1998a), high levels of exogenous progesterone (Kleemann et al., 1994), somatic 

cell nuclear transfer (Constant et al., 2006; Everts et al., 2008), co-culture of embryos 

with somatic cells (Sinclair et al., 1998b) and culture of embryos with serum (Sinclair et 

al., 1998b; Rooke et al., 2007). The mechanism by which each of these factors cause 

LOS is unknown. It is possible that the mechanism or mechanisms that cause LOS can 

vary according to the nutritional and environmental conditions to which embryos are 
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exposed. Substantiation of this theory can be found in the differential gene expression 

of SCNT, in vivo derived (IVD) and in vitro produced (IVP) embryos obtained in 

genomic microarray analysis, which showed that genes expressed by SCNT embryos 

and IVP embryos are different, even when both groups were subjected to the same 

culture conditions (Ushizawa et al., 2004; Smith et al., 2009). Although there are 

several factors that may trigger LOS, the studies presented herein focus on the effects 

of serum addition during in vitro culture of bovine embryos. 

Embryo culture is a technique used in both SCNT and in vitro production of 

embryos. These techniques are in commercial high demand. Data from the 

international embryo transfer society (IETS) indicate that in 2006 approximately of 

291,845 of IVP embryos were transferred (Thibier, 2007). Demand for IVP embryos, 

compared to IVD embryos, may increase in the future especially in emerging countries 

like Brazil, China and South  Korea  (Thibier, 2007). Serum is frequently added to 

culture media during in vitro production to increase blastocyst rates and stimulate 

faster blastulation; however, serum addition has been linked to LOS. 
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CHAPTER II 

 

LITERATURE REVIEW 

Introduction to Culture Media 

 Culture Media 

 Initially embryo culture was performed in traditional cell culture media, which 

were found to not be appropriate conditions for embryo development. The addition of 

serum to these media was the standard for cell culture as well as for co-culture of 

embryos with somatic cells, an example of these media is tissue culture media 199 

(TCM-199). Later, other media such as Synthetic Oviduct Fluid (SOF), Charles 

Rosenkrans medium (CR1) and potassium simplex optimized medium (KSOM) were 

developed specifically for culture of mice, ovine and bovine embryos. The development 

of these media were based on the simplex optimization method (Lawitts and Biggers, 

1991) or by experimental changes in media based on previous studies (Rosenkrans et 

al., 1991; Gardner et al., 1998, 1999). These methods basically consisted of changing 

the concentrations of certain components of the medium and observing embryo 

development under the altered conditions. More recently, embryo culture media can be 

classified as non-sequential and sequential media. Sequential media like G medium 

(Gardner, 1999) were developed with the premise that in vivo nutritional requirements 

change as embryos migrate from the oviduct to the uterine environment.  

 Currently, there are several culture media available with some variation between 

media or a particular medium can be modified according to the needs of the laboratory 

or researcher. A good example of this is the synthetic oviduct fluid medium, which has 
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been extensively modified compared to its original formulation (Tervit et al., 1972; 

Takahashi and First, 1992; Gardner et al., 1994; Holm et al., 1999; Sinclair et al., 1999; 

Gandhi et al., 2000). Generally, medium additives and components used are 

standardized and come from the same commercial sources. However, medium 

modifications can have either beneficial or detrimental effects on embryo development. 

For instance, phosphate inhibits early cleavage of preimplantation embryos (Schini and 

Bavister, 1988), glucose above 0.56 mM inhibits early cleavage (Warzych et al., 2007; 

Hasler, 2010) and sperm capacitation (Parrish et al., 1989), and sodium chloride 

content above 95 mM can be detrimental for embryo development due to 

hyperosmolarity of the medium. Variations between media formulations in some of the 

most used culture media are presented in Table 1. 

Table 1. Composition of culture media used for IVP of bovine embryos (molar weight)      

Comp. 
1SOF

aa

 2KSOM
aa

 3CR1
aa

 4G1 4G2 

Na 126.15 130.2 143.8 126.15 121.3 

Cl 119.26 100.9 117.08 99.18 99.18 

K 8.35 2.85 3.1 5.5 5.5 

PO
4
 1.19 0.35 - 0.25 0.25 

Ca 1.71 1.7 5 1.8 1.8 

HCO
3
 25.07 25 26.2 25 25 

Mg 0.49 0.2 - 1 1 

SO
4
 - 0.2 - 1 1 

Pyruvate 0.33 0.2 0.4 0.32 0.1 

Lactate 3.3 10 2.5 10.5 5.87 

Glucose 1.5 0.2 - 0.5 3.15 

Amino acids yes yes yes yes yes 

EDTA - 0.01 - 0.01 No 
1
 (Tervit et al., 1972)                                                                                                                                                                                                                                                        

2
 (Lawitts and Biggers, 1991)                                                                                                                                                                        

3
 (Rosenkrans Jr and First, 1991)                                                                                                                                                                      

4
 (Lane et al., 2003)  
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 Protein Sources 

 The sources of protein added to culture media are serum, bovine serum albumin 

(BSA), and essential and non-essential amino acids. These sources not only provide 

the amino acids necessary for embryo development, but also function as chelators, pH 

buffers, molecule carriers, and increase surface tension of culture media (Gardner, 

1998, 2008; Hasler, 2010). 

 The amount and the time of inclusion of a protein source play an important role in 

stimulating embryo development. For instance, the addition of non-essential amino 

acids before the 8-cell stage stimulates cleavage, increases cell numbers and enhances 

early embryo development; but the addition of essential amino acids during this same 

stage does not have positive effects on early embryo development. Moreover, it has 

been reported that essential amino acids reduce embryo cell numbers (Gardner, 2008). 

In contrast, the addition of essential amino acids after the 8-cell stage stimulates the 

number of inner cell mass (ICM) cells (Steeves and Gardner, 1999; Gardner, 2008). 

 Besides containing amino acids and other protein sources, serum and BSA also 

provide usually unquantified growth factors and energy sources that may stimulate 

embryo development. Additionally, the use of these animal derived sources may 

increase the risk of disease transmission. Therefore, a recent tendency is to use little, if 

any animal-derived products. In order to solve this problem, replacements for serum 

and BSA, known as macromolecules, have been introduced in the market, which can be 

from natural and synthetic sources. Examples of macromolecules are polyvinyl alcohol, 

polyvinyl pyrrolidone, hyaluronic acid and other serum replacers (Wrenzycki et al., 1999; 

Yaseen et al., 2001; Moore et al., 2007b; Warzych et al., 2007) 
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Serum Sources  

 There are many kinds of sera available in the market today, which differ in 

processing and source. Generally, serum is heat inactivated, but can also be purified by 

charcoal treatment. It has been shown that type of serum, timing of serum addition and 

serum processing method have an impact in embryo development during in vitro culture 

(Pinyopummintr and Bavister, 1994; Thompson, 1997). The most commonly used sera 

for in vitro culture are calf serum, new-born calf serum and fetal calf serum. Some 

researchers have used estrous cow serum, steer serum and human serum. However, 

the presence of human serum during in vitro culture has been associated with several 

developmental abnormalities, such as larger blastocysts with more lipid droplets, large 

sized calves and high prenatal loss (Gardner et al., 1994; Thompson et al., 1995). 

Some studies that have showed that the addition of serum to in vitro culture media may 

increase the incidence of LOS (Rooke et al., 2007; Young et al., 1999). However, other 

studies found no difference between embryos produced in the absence or presence of 

serum. One factor that might be related to the tendency for abnormal development and 

may explain the variation between these studies, is the amount of ammonium in sera. It 

has been shown that supplementation of urea increase ammonium concentration in 

blood, which affects embryos development (McEvoy et al., 1997; Sinclair et al., 1998b). 

 Energy Sources 

 The most frequently used energy sources are sodium pyruvate, sodium lactate, 

glucose, fatty acids found in serum and bovine BSA fraction V. It has been 

demonstrated that pyruvate and lactate are the preferred energy source for murine 

embryos (Leese and Barton, 1984). Similarly, Takahashi and First (1992) stated that 
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lactate as well as pyruvate can support bovine embryo development in the absence of 

glucose. In this study lactate was the preferred energy source for early (2-8 cell stages) 

bovine embryos. Lactate levels in the ovine oviductal fluid range between 2-4 mM 

(Takahashi and First, 1992). 

 In early embryo culture studies, researchers used cell culture media which 

contained high levels of glucose (4.5-5.6 mM), which is comparable to glucose 

concentrations found in the blood of monogastric species and to that of fetal calf serum. 

However, blood glucose concentration of  adult ruminants is much lower (3-3.5 mM) 

than that of monogastric species (Barcelo-Fimbres and Seidel, 2007a). Furthermore, 

glucose levels in the reproductive tract of the cow are significantly lower than in the 

peripheral circulation. For example, glucose levels in the bovine oviductal fluid ranged 

from 0.05 to 0.2 mM (Takahashi and First, 1992), but the uterine glucose levels tend to 

be higher. It is also important to remember that adding serum to culture media provides 

an additional source of glucose to the formulation. For instance, the addition of 5% calf 

serum can provide between 0.15 to 0.22 mM of glucose to the medium. Several authors 

have observed that glucose has detrimental effects on sperm capacitation (Parrish et 

al., 1989) and embryo development prior to the 8-cell stage (Schini and Bavister, 1988; 

Ellington et al., 1990; Takahashi and First, 1992). However, glucose has favorable 

effects on embryo development when added after the 8-cell stage (Robl et al., 1991). 

 Other energy sources have been examined as a replacement for glucose. The 

addition of fructose at a concentration of 1.5 to 2 mM increased the number of 

blastocysts and cell numbers compared to the same culture medium when glucose was 

used as the energy source (Kwun et al., 2003; Barcelo-Fimbres and Seidel, 2007a, b). 
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Sodium acetate also has been also added  to culture media (0.61mM) in addition to 

lactate and pyruvate for culture of bovine embryos with good results (Moore and 

Bondioli, 1993). Similarly, Holm et al., (1999) increased lactate and pyruvate 

concentrations (5.35mM and 7.27mM, respectively), and replaced glucose with sodium 

citrate and myo-inositol (0.34 and 2.77 mM, respectively). These changes resulted in 

similar blastocyst rates as serum-supplemented medium for bovine embryos. 

Role of Serum in Embryo Culture 

Serum and Embryo Development 

 Several authors (Thompson et al., 1998; Rizos et al., 2003; Rooke et al., 2007) 

have observed a dual effect of serum in in vitro culture, which is commonly known as 

the “biphasic effect” of serum. This effect consists of the inhibition of cleavage and 

embryo development (first cleavages through the 4-cell stage) when zygotes are 

exposed to serum, and stimulation of embryo development after the 8-cell to 16-cell 

stage.  

 The addition of serum (5 - 20% concentration) in the culture medium accelerates 

blastocyst development compared to embryos produced with high (16 mg/ml) or low (3 

mg/ml) levels of BSA fraction V (Rizos et al., 2003). Data obtained in our laboratory 

corroborates this tendency, in which embryos cultured with 5% calf serum have higher 

blastocyst rates than those cultured with 6 mg/ml of BSA (Puerpera et al., 2007). 

Similarly, IVP embryos cultured with serum had faster developmental rates than 

embryos cultured in oviducts of synchronized ewes (Enright et al., 2000). However, 

when serum is added during later stages, such as day 5 post-insemination, blastocyst 
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rates were greater (40.1% vs 21.6%) than the serum-free control (Pinyopummintr and 

Bavister, 1994; Thompson et al., 1998). 

 Although day-7 blastocyst rates increased when serum was added to medium 

during the 4 to 16-cell stage compared to BSA-supplemented medium, the cumulative 

blastocyst rates at day 9 were similar between serum and BSA treatments (Rizos et al., 

2003).These investigators also showed that the capability of a fertilized oocyte to 

develop into a blastocyst is innate to the oocyte, and culture medium conditions will 

determine blastocyst quality. Therefore, oocyte quality (molecular, cytoplasmatic and 

meiotic maturation accomplished) is the key factor determining embryo development 

(Rizos et al., 2002b). 

 It has been observed that embryos reaching the blastocyst stage by day 7 of in 

vitro culture are more competent and have higher cell numbers than those becoming 

blastocysts after day 7 (Hasler et al., 1995). Only day-7 and day-8 blastocysts are 

normally used for embryo transfer (Hasler et al., 1995; Sommerfeld and Niemann, 1999) 

because these blastocysts tend to yield higher pregnancy rates and have higher cell 

numbers than embryos that become blastocysts after day eight of culture (Byrne et al., 

1999; Enright et al., 2000). Furthermore, embryos that cleave faster are generally the 

embryos that become blastocysts sooner, and have fewer apoptotic blastomeres than 

those with slower cleavage rates (Byrne et al., 1999). 

 Serum and Embryo Morphology 

 Several authors (Thompson et al., 1995; Thompson, 1997; Ferguson and Leese, 

1999; Crosier et al., 2000, 2001; Rizos et al., 2002a) have demonstrated that the 
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exposure of in vitro cultured embryos to serum can alter embryo metabolism, 

morphology and biochemistry. Doubts exist on the effect of serum in in vitro culture on 

embryo cell numbers. Some studies suggest that embryos cultured in vitro with serum 

have higher total cell numbers than in vivo counterparts (Marquant-Le Guienne et al., 

1989; Lazzari et al., 2002). Other studies indicate that there is no difference in cell 

numbers between embryo culture with serum and without serum (Thompson et al., 

1998; Enright et al., 2000; Kubisch et al., 2001).  Others (Carolan et al., 1995; Van 

Langendonckt et al., 1997) have observed higher cell numbers in IVP embryos cultured 

with serum than those cultured in the absence of serum. On the other hand, other 

authors (Gardner et al., 1994; Byrne et al., 1999) found reduced total cell number of IVP 

embryos cultured with serum compared to in vivo embryos cultured without serum. 

Similarly, Byrne et al., (1999) demonstrated that embryos with low cell numbers had 

more apoptotic cells than embryos with higher cell numbers, and vice versa. This finding 

suggests that these differences in cell number may be influenced by variations in culture 

media conditions and formulations between different laboratories and studies. Although, 

there are contradictory reports about the effect of serum on total cell number, most 

authors concur that addition of serum accelerates blastocyst formation and increases 

the size of the blastocyst compared to in vitro produced (IVP) without serum and in vivo 

derived (IVD) embryos. 

 One possible explanation for faster blastocyst formation after serum addition to 

the culture medium may be high content of lipids in serum, possibly due to preferential 

trophoblastic cell development by lipid stimulation. This finding can be supported by the 

observation that embryos cultured with serum had lower ICM:Tropectoderm cell ratio 
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than IVD blastocysts (Iwasaki and Nakahara, 1990; Du et al., 1996). It is probable that 

this faster blastulation could be due to the overgrowth of  trophoblastic cells and 

increased apoptosis of ICM cells (Byrne et al., 1999). As stated by Thompson (1997) 

the result of serum addition is large diameter blastocysts with reduced cell numbers.  

 It has been shown (Prather and First, 1993; Plante and King, 1994; Thompson, 

1997) that IVP morulas have a reduced cell coupling (gap junctions) and are poorly 

compacted compared to IVD embryos. Non-physiological conditions found in culture 

media, and possibly the addition of serum, may alter the expression of some genes 

responsible for morula compaction (Wrenzycki et al., 1999; Enright et al., 2000; 

Wrenzycki et al., 2001).  

 Embryonic cell compaction and blastocyst formation are important processes of 

early embryonic development leading to differentiation of the ICM and trophectoderm 

cells, which eventually give rise to the embryo proper and extraembryonic membranes, 

respectively. Similarly, IVP embryos cultured with serum contained more apoptotic 

blastomeres than IVP embryos cultured in serum free medium (Byrne et al., 1999; 

Pomar et al., 2005). In addition, Byrne et al., (1999) observed that the majority of 

apoptotic cells were localized within the inner cell mass and not in the trophectoderm 

(TE). 

 Embryos produced in vitro with or without serum showed an increased proportion 

of lipids compared to in vivo derived embryos (Crosier et al., 2000, 2001). Likewise, 

Thompson et al (1995) found more lipid droplets in ovine embryos cultured with human 

serum than those embryos cultured without serum using synthetic oviduct fluid medium 
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with aminoacids (SOFaa) + BSA. Based on nile red staining pattern, embryos produced 

with 10% serum had higher lipid content than those produced with 0.3% BSA (Leroy et 

al., 2005). Similarly, Farin et al., (2001) observed a higher density of lipids in IVP 

embryos cultured with serum regardless of the time of exposure to serum (from day 1 to 

7 of culture or from day 3 to 7 of culture) compared to IVD embryos. Ferguson and 

Leese (1999) demonstrated that triglyceride content of day-7 in vitro serum-

supplemented embryos was 36% (45 ng/embryo) greater than that of in vivo derived 

and no-serum supplemented IVP embryos (33 ng/embryo). Also in this study, 

triglyceride content was measured from the oocyte stage to the blastocyst stage. 

Initially, there was no difference in triglyceride content between oocytes matured in vitro 

and in vivo; however, at the 8 to 16-cell stage, embryos cultured with serum began to 

produce and store triglycerides. Even though triglyceride content does not account for 

the total lipid content in embryos, lipids tends to increase when serum is added to 

culture medium. 

 Other morphological effects of serum addition have been described in elongated 

early conceptus. There are some studies in which the length of elongated 

preimplantation bovine embryos have been documented at different stages of 

development (Menezo et al., 1982; Bertolini et al., 2002; Carter et al., 2008; Rodriguez-

Alvarez et al., 2009; Rodriguez-Alvarez et al., 2010a; Rodriguez-Alvarez et al., 2010b). 

However, there are few studies that compare the length of IVP and IVD embryos (Table 

2). 
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Table 2 Length of elongated embryos 

 
Stage 

IVD (mm) IVP (mm) Cloned (mm) Reference 

Day-12 0.6-2.5 
  

(Menezo et al., 1982) 

Day-13 0.4-2 
  

(Menezo et al., 1982) 

Day-13 1.1±0.6 
  

(Carter et al., 2008) 

Day-14 0.8-2.5 
  

(Menezo et al., 1982) 

Day-14 
 

5.4±5.5 
 

(Block et al., 2007) 

Day-16 75.0 37.3 
 

(Bertolini et al., 2002) 

Day-17 174±50 
 

91.8±45.8 
(Rodriguez-Alvarez et al., 

2010b) 

 

 Serum, Lipids and Cryopreservation    

 Cryopreservation of IVD embryos has allowed the expansion of embryo transfer 

worldwide, opening new markets for the cattle industry. However, IVP embryos have 

reduced cryotolerance, survival after thawing and subsequent pregnancy rates, limiting 

the use of IVP embryos to fresh (immediate) transfer. Nevertheless, freezing and post-

thaw in vitro culture of IVP embryos can be used as an evaluation method to quantify 

development capacities of IVP embryos. 

 IVP embryos cultured with serum have high lipid content (Pollard and Leibo, 

1994; Ferguson and Leese, 1999) and low survival rate after cryopreservation (Enright 

et al., 2000). For example, Leibo and Loskutoff (1993) observed that 80% of IVD 

embryos survived and hatched in culture media after cryopreservation and warming 

compared to only 20% for similarly treated IVP embryos. Likewise, Barcelo-Fimbres and 
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Seidel ( 2007b) observed that IVP embryos cultured in Chemical Define Medium (CDM) 

without serum had a higher survival rate after cryopreservation (thawed and then 

cultured) than IVP embryos cultured in CDM with 10% fetal calf serum (84.9% vs. 

60.2%, respectively). In this same study, embryos cultured in medium supplemented 

with serum and Phenazine Ethosulfate (PES), a chemical that reduces lipid production 

and accumulation in IVP embryos, had a higher survival rate after cryopreservation and 

post-thaw embryo culture than embryos cultured with serum-supplemented medium 

alone. The comparison of these treatments suggests that embryo cryotolerance can be 

increased by reducing the accumulation of lipids in embryos or by avoiding the use of 

serum during in vitro culture. Nevertheless, despite a reduction in the lipid content and 

an improvement in cryotolerance, pregnancy rates accomplish with these treatments 

are still reduced compared to IVD embryos (De La Torre-Sanchez et al., 2006; Barcelo-

Fimbres and Seidel, 2007b). This evidence suggests that factors other than lipid 

accumulation during in vitro culture cause developmental gaps between IVP and IVD 

embryos.  An inappropriate concentration of phosphate (Schini and Bavister, 1988; 

Lawitts and Biggers, 1991), increased osmolarity of culture media to non-physiological 

conditions (Hasler, 2010), use of non-physiological concentrations of energy and protein 

sources (Schini and Bavister, 1988),  absence of amino acids and growth factors 

(Rosenkrans Jr and First, 1991; Moore and Bondioli, 1993; Gardner, 2008; Hansen et 

al., 2010), content of ammonium in serum (Sinclair et al., 1998b) and oocyte 

competence and quality (Enright et al., 2000; Khurana and Niemann, 2000; Rizos et al., 

2002b) have all been implicated as factors impacting the developmental competence of 

IVP embryos.  
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 Some reports demonstrate that independently of the oocyte source (in vivo or in 

vitro matured oocytes), culture conditions determine embryo morphology and gene 

expression (Enright et al., 2000; Rizos et al., 2002b). Rizos et al., (2002b) stated that 

“the intrinsic quality of the oocyte is the main factor affecting blastocyst yields, while the 

conditions of embryo culture have a crucial role in determining blastocyst quality”. Lipid 

content affects the buoyant density of embryos. In vivo derived embryos tend to sink 

(higher embryo density) at an specific density, while, IVP embryos cultured with serum 

tend to float (lower embryo density) in the same density solution (Leibo and Loskutoff, 

1993). Given that the specific gravity of lipids is less than water, this observation was 

attributed to a higher lipid concentration in IVP embryos cultured with serum. Breed also 

affects lipid content of oocytes and embryos. Brahman and Jersey IVD embryos have 

greater lipid content, and decreased survival and subsequent pregnancies after 

cryopreservation compared to non-cryopreserved IVD Brahman embryos (Ballard et al., 

2006; Pryor et al., 2007). 

 Although, there are several differences between IVP and IVD embryos in 

morphology and composition, the optimum freezing rate (0.6°C/minute) from -7°C to -

35°C for both IVP and IVD embryos is the same (Leibo and Loskutoff, 1993). However, 

the developmental stage at which IVP embryos are frozen plays an important role in 

embryo survival post-thaw and during culture ( 0% and 63.5%, embryo survival for 

morulas and blastocyst, respectively) (Pollard and Leibo, 1993). Conversely, blastocysts 

cultured in SOF medium had a low survival after being frozen-thawed and cultured for 

72 hours compared to IVD embryos (Enright et al., 2000).  
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 Pregnancy Rates of IVP Embryos 

Table 3. Pregnancy rates of in vitro produced embryos by different culture conditions     
     

Medium Treatment Pregnancy rate Source 

Co-culture Slow frozen 38% (312/866) (Kajihara et al., 1992) 

SOF Fresh transfer 37.5% (21/56) (Enright et al., 2000) 

SOF Fresh transfer 41.8% (367/877) (Van Langendonckt et al., 1997) 

SOF Slow frozen 35% (156/446) (Van Langendonckt et al., 1997) 

Co-culture Fresh transfer 56% (1064/1884) (Hasler et al., 1995) 

Co-culture Slow frozen 43% (10/23) (Sommerfeld and Niemann, 1999) 

 

Serum and Large Offspring Syndrome (LOS) 

 Manipulation and exposure of gametes and pre-implantation embryos to non 

physiological environments cause perturbations in the later development of the 

conceptus (Jacobsen et al., 2000; Rooke et al., 2007). One such disturbance is the 

Large Offspring Syndrome (LOS), which is a pathological combination of features. 

Although increased fetal and calf size is the most notable characteristic of this 

syndrome, other features have been recognized such as: longer gestation periods, 

weaker calves, respiratory difficulties, high stillbirth rates, high embryo and early fetal 

loss rates, sudden perinatal death, increased dystocia incidence, congenital 

malformations, increased sized of certain organs (heart, liver and kidney), plantaris 

muscle enlargement,  placental (edema, hydrallantois, reduce number, but larger 
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cotyledons, decreased feto-maternal contact) and skeletal abnormalities (Young et al., 

1998; Farin et al., 2001; Constant et al., 2006). 

Risk factors that may contribute to the occurrence of LOS have been identified, 

but the exact mechanism or mechanisms which cause LOS are still unknown 

(Thompson, 1997; Young et al., 1998; Farin et al., 2001).  These factors may be the 

presence of serum, somatic cell co-culture, growth factors, free radicals, ammonia 

during embryo culture and exogenous progesterone. The present study focuses on the 

effects of serum and its components on the expression of genes. 

The poor understanding of the mechanisms that generate the appearance of 

LOS, as well as the presence of more than one of the factors that have been proposed 

to trigger LOS during in vitro maturation, fertilization and culture have not allowed the 

elucidation of the degree of influence any one of these factors have on the occurrence 

of large offspring syndrome. For instance, co-culture of pre-implantation embryos with 

somatic cells appears to stimulates the occurrence of LOS (Sinclair et al., 1997; Sinclair 

et al., 1998b; Jacobsen et al., 2000; van Wagtendonk-de Leeuw et al., 2000); however, 

co-culture is typically performed in the presence of a high proportion of serum (10-20%) 

(Sinclair et al., 1998b). This leaves open the question of whether co-culture, serum or 

the combination of the two conditions triggers LOS.  

Similarly, embryos produced by SCNT are likely to develop LOS (Constant et al., 

2006). It has been observed that the range of calf birth weight of nuclear transfer and 

IVP embryos are similar (Kruip and den Daas, 1997; Young et al., 1998). LOS has been 

observed in ovine and bovine species, but has not been observed in humans and mice. 
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This could be due to the variations in the in vitro protocols between species. In the 

mouse, it is speculated that this phenomenon is due to mice gametes and embryos not 

being exposed to serum. Similarly, in human in vitro production systems, the exposure 

of embryos to non-physiological culture conditions is very brief because human 

embryos are generally transferred at the 2 to 4-cell stage. Thus, human embryos 

experience embryo genomic activation, morula compaction and blastulation in vivo 

rather than in vitro as do ovine and bovine embryos during the extended in vitro culture 

period (5 to 7 days). 

 Rooke (2007) observed that even though serum was absent during in vitro 

culture of in vivo fertilized ovine zygotes, there was a high rate of large size fetuses after 

embryo transfer, but was reduced when serum-free culture conditions were utilized  

(Rooke et al., 2007).  In this study, and in the majority of studies with ewes, maturation 

and fertilization are performed in vivo; the remainder of the culture is performed in vitro 

for 5 to 6 days. This research demonstrated that in addition to the effects of serum on 

the occurrence of LOS, there are other, as yet undefined, factors in the in vitro culture 

system, which could be responsible for the overgrowth of offspring. 

Genes Potentially Altered by Culture in the Presence of Serum 

 Gene expression of preimplantation embryos can be altered by culture media 

(Sagirkaya et al., 2006) and protein sources within culture media (Wrenzycki et al., 

2001; Yaseen et al., 2001; Warzych et al., 2007). Therefore, the present study focused 

on the effects of the presence of serum in SOF medium on the expression of candidate 
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genes, which previously have been implicated in the development of LOS (Bertolini et 

al., 2002; Niemann and Wrenzycki, 2000; Young et al., 2001).  

 Interferon tau (IFNT) 

 Interferon tau is a polypeptide secreted by trophectoderm cells of bovine and 

ovine embryos (Roberts et al., 1992). Production of IFNT starts at the blastocyst stage 

and continues until day 25 to 36 of gestation (Godkin et al., 1988; Farin et al., 1990; 

Hernandez-Ledezma et al., 1992). In the cow, IFNT production peaks around day 15 to 

16 of pregnancy (Farin et al., 1990; Hernandez-Ledezma et al., 1992; Roberts et al., 

1992; Wrenzycki et al., 1999; Lonergan et al., 2003). The antiluteolytic effect of IFNT is 

due to inhibition of Cyclooxygenase-2 pathway and by down-regulation of the 

endometrial and oxytocin receptor, thereby inhibiting oxytocin-induced secretion of 

prostaglandins by the endometrium. IFNT also stimulates the production of endometrial 

proteins such as histotroph, which nurture and stimulate embryo development.  

 In a recent study, all elongated embryos (day 17) expressed IFNT; however, the 

expression of this gene varied when bovine blastocysts were cultured in a homologous 

(bovine) or in a heterologous uterus (ewe or goat) (Rodriguez-Alvarez et al., 2009). 

Based on this finding, it was recommended that the study of gene expression in 

elongated embryos be performed in a homologous environment (with respect to the 

embryos specie) because non-physiological conditions can alter transcripts of IFNT. 

IFNT may subsequently affect (positive or negative) the expression of other genes. It 

has been suggested that IFNT expression is mediated through other genes, such as 

caudal type homeobox 2 (CDX2) (Farin et al., 2010). Similarly, other authors have 
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observed that all embryos that expressed IFNT also expressed CDX2 (Rodriguez-

Alvarez et al., 2009). Also, IFNT can influence transcription levels (up or down-

regulation) of several genes in preimplantation embryos and in the endometrium 

(Satterfield, 2008; Mansouri-Attia et al., 2009a; Mansouri-Attia et al., 2009b).  

 In vitro produced 6 to 8-day bovine blastocysts cultured in SOF medium with 

serum or BSA have higher expression of IFNT than IVD embryos and embryos cultured 

with serum expressed greater IFNT than those cultured with BSA (Wrenzycki et al., 

2001). Based on these data, it has been suggested that over-expression of IFNT may 

be an indicator of poor embryo development. Furthermore, up-regulation of IFNT in IVP 

embryos is associated with poor developmental competence (Kubisch et al., 1998). 

Similarly, higher transcript levels of IFNT were observed in elongated (day 17) cloned 

bovine embryos compared to IVP embryos, despite the same culture medium being 

used for each kind of embryo (Rodriguez-Alvarez et al., 2010b). 

 IVP embryos reaching the blastocyst stage before day 8 of culture, express 

significantly lower amounts of IFNT compared to day-9 and day-10 blastocysts (Kubisch 

et al., 1998; Kubisch et al., 2001), and were more competent than embryos developing 

to blastocysts after 9 days of culture (Hasler et al., 1995). Conversely, Kubisch et al., 

(2001) did not find a difference in IFNT production between IVP embryos that become 

blastocysts on day 7 or 8 of culture compared to in IVD embryos. Reports show that 

IFNT expression varies between embryos regardless of origin, with larger and more 

elongated embryos producing more IFNT (Rodriguez-Alvarez et al., 2009; Rodriguez-

Alvarez et al., 2010a; Rodriguez-Alvarez et al., 2010b). It is important to note that 
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differences exist in IFNT secretion of embryos which are derived from different oocyte 

batches, independent of vitro production protocol (Kubisch et al., 2001).  

 Kubisch et al., (2001) did not find a difference in IFNT transcripts between 

blastocysts cultured in SOF with serum or BSA. In contrast, (Rizos et al., 2003) found 

that IFNT was down-regulated in blastocysts cultured with serum compared to embryos 

produced with BSA. Likewise, Bertolini et al., (2002) stated that IVP embryos have 

lower transcripts levels of IFNT than day-7 IVD blastocysts. On the other hand, 

(Lonergan et al., 2003) found an up-regulation of IFNT in embryos cultured in SOF with 

serum compared to embryos cultured in ewe oviducts at the blastocyst stage. Using 

microarray analysis, Ushizawa et al., (2004) found an up-regulation of IFNT of day-14 

embryos compared to day-7 in vivo derived embryos, indicating that IFNT increased 

from day-7 to day-14 as mentioned before.  

 Insulin-like Growth Factor 2 receptor (IGF2R) 

 IGF2R is an imprinted gene that is expressed from the maternal allele, and has 

been implicated in the control of fetal and placental overgrowth (Niemann and 

Wrenzycki, 2000). Studies in mice support the relationship between down-regulation of 

IGF2R and fetal overgrowth, but in cattle, there is no clear information that corroborates 

this conclusion.  

 Up-regulation of IGF2R in IVD blastocysts from Bos taurus and Bos indicus 

donors, compared to their IVP counterparts, has been observed (Bertolini et al., 2002; 

Nasser et al., 2008). IGF2R was down-regulated in tissues from ovine fetuses affected 

with LOS at 80% gestation, and there was no altered IGF2R expression at normal 
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weight fetuses by this method of embryo production  (Young et al., 2001). This 

observation suggests that not all offspring produced in vitro in the presence of serum 

will develop LOS, but those affected with LOS display altered gene expression. 

 Bertolini et al., (2002) described a differential pattern of transcripts with stage of 

development, in which IGF2R was higher at the blastocyst stage and decreased in day-

16 elongated embryos (transfered on day 7 and subsequently collected at day 16 of 

gestation). The size of individual embryos was inversely correlated with lower IGF2R 

and higher insulin-like growth factor 2 (IGF2) expressions. High levels of IGF2R alone 

do not trigger overgrowth; however, high levels of IGF2 and low levels of IGF2R may 

lead to the development of LOS (Lau et al., 1994). In a recent study, there was no 

significant difference of transcript levels of IGF2R and IGF2 at the blastocyst stage 

between IVD and IVP embryos, although the IGF2R transcripts had a tendency to be 

higher in IVD blastocyst pools (Moore et al., 2007a). Other authors did not find a 

difference in the expression of IGF2R between culture in SOF with and without serum or 

IVD blastocysts (Lazzari et al., 2002). In another study transcript levels of IGF2R varied 

between IVP and IVD blastocysts, but did not differ between day-16 IVP and IVD 

elongated embryos (Bertolini et al., 2002) 

 Although there is abundant information about IGF2R transcripts at the blastocyst 

stage, there is little information about the effect of presence or absence of serum during 

embryo culture at the blastocyst stage and subsequently in elongated embryos. 

Warzych et al., (2007) reported that IGF2R transcription in blastocysts was influenced 

by the protein source (free fatty acid BSA or fetal calf serum) used in the media for in 

vitro maturation. Likewise, the addition of polyvinyl alcohol (Yaseen et al., 2001)  and 
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polyvinyl pyrrolidone (Warzych et al., 2007) to culture medium may affect IGF2R 

transcriptions levels. 

 It was suggested that IGF2R can bind IGF1 as well as IGF2, albeit with different 

efficiencies (Warzych et al., 2007). Alternatively, Farin et al., (2010) proposed that the 

mechanism responsible for triggering LOS could be the abundance of IGF binding 

proteins and the effects of differential demethylation of imprinted regions that change 

the abundance of IGF2R during embryonic development.  

 Cytochrome c oxidase subunit VIa (COX6A) 

 According to Everts et al., (2008), COX6A was upregulated five fold in 

placentomes from IVP (cultured without serum) pregnancies compared to placentomes 

derived from IVD or SCNT pregnancies. It is suggested that this is due to the effects of 

in vitro fertilization, as SCNT and IVD placentomes did not over express COX6A (Everts 

et al., 2008). 

 Placenta-specific factor 8 (PLAC8) 

 The exposure to non-physiological progesterone levels during early gestation 

may trigger the development of LOS as well as promoting upregulation of IFNT (Wilmut 

and Sales, 1981; Garrett et al., 1988; Kleemann et al., 1994; Carter et al., 2008). 

PLAC8 was upregulated in day-12 pre-implantation embryos from ewes receiving 25 mg 

of progesterone from days 2 to 12 of gestation (Satterfield, 2008), and PLAC8 

expression is mediated through the expression of IFNT (Mansouri-Attia et al., 2009a). 

These studies suggest that high levels of progesterone as well as the expression of 

IFNT may mediate the expression of PLAC8 by the trophoblastic layer of the pre-
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implantation embryos. On the other hand, PLAC8 is expressed in caruncular tissue 

during early stages of gestation and at implantation (Mansouri-Attia et al., 2009a; 

Mansouri-Attia et al., 2009b). No difference was observed in the level of expression of 

PLAC8 between IVD and IVP blastocysts (Nasser et al., 2008), and no difference in 

PLAC8 transcripts levels were detected between female and male IVP embryos at day 

15 of gestation (Dode, 2009). 

 Interestingly, embryo density during culture in CR1aa increased the transcript 

levels of PLAC8 (Hoelker et al., 2009). PLAC8 expression was greater when cultured 

singly in groups of 50 and 16 embryos compared to IVD blastocyst and IVP embryos 

cultured in a system known as well of the well (WOW). The number of cells also 

increased when embryos were cultured at higher densities (Hoelker et al., 2009). 
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CHAPTER III 

 

EFFECTS OF SERUM ADDITION TO CULTURE MEDIUM ON GENE 

EXPRESSION OF DAY-7 AND DAY-14 BOVINE EMBRYOS 

 

Introduction 

  

 During the last four decades development of techniques for in vitro 

production of embryos has facilitated the understanding of embryo development. 

Recently, modifications to improve media to more closely mimic the reproductive 

tract environment have increased the efficiency of in vitro production techniques 

and developmental competence of in vitro produced embryos. However, 

considerably progress is needed to produce IVP embryos equal in competence 

to IVD embryos, which are consider as the “gold standard”. In some countries the 

availability of recipients and cattle genetics have stimulated the use of follicle 

aspiration and in vitro production of embryos in order to obtained as many 

offspring as possible from valuable donor cows. Similarly, the use of embryo IVP 

from domestic species can be used as for research purposes in general, and as 

research models to study diseases and syndromes that may affect humans and 

other species, and preservation of endangered species.  These assisted 

reproductive techniques are an alternative to multiple ovulation and embryos 

transfer techniques (MOET), which have been reliable during the past 40 years. 

 The addition of serum has been extensively applied in in vitro culture 

media to favor embryo development. However, serum addition to culture media 

has been implicated as a cause for abnormal offspring from cows and sheep. 

These offspring are characterized by weaker calves, respiratory difficulties, high 
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stillbirth rates, high embryonic and early fetal loss, sudden perinatal death, 

increased dystocia incidence, congenital malformations, organomegaly, placental 

abnormalities and skeletal abnormalities.  

 The study of large offspring syndrome (LOS) is a difficult task because, in 

addition to serum addition, there are other factors in culture media that may lead 

to LOS. Also, in order to obtain significant differences in the effects of culture 

conditions on LOS, large number of IVP embryo transfers are needed. Research 

stations do not typically maintain the large numbers of recipients necessary to 

perform embryo transfer. From the welfare standpoint, these trials are difficult to 

obtain approval from Animal Care and Use Committees due to the incidence of 

dystocia. Thus, the application of molecular techniques as polymerase change 

reaction (PCR) allows examination of gene expression from embryos cultured 

under specific conditions. Embryo transcript levels of genes of interest can be 

analyzed to discern the possible effects of culture conditions on gene expression. 

Such as approach can reduce the number of samples, increase the accuracy of 

results, and reduce the costs, and allow results to be obtained in a shorter period 

of time. 

 

Material and Methods 

 

Experimental Design 

 Experiment 1 

 Pools of in vitro produced day-7 blastocyst (5-10 blastocysts per pool) were 

produced for each treatment. Pools were also generated from in vivo derived 
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blastocysts collected from superovulated cows, which were inseminated with the same 

semen used to generate the in vitro produced embryos. For IVP embryos, IVF was 

performed and at 18 hours post-insemination, presumptive zygotes were cultured in 

mSOFaa. At 72 hours post-insemination, embryos were allocated to two treatments 

(mSOFaa and mSOFaa with 5% calf serum). At day 7 post-insemination, blastocyst rates 

were assessed for each treatment. Embryos were moved and pooled into 1.5 ml vials 

with 3 µl of PBS containing 0.1% polyvinyl alcohol (PVA), and immediately stored at -

80ºC. In order to collect IVD blastocyst, cows were non-surgically flushed on day 8 after 

artificial insemination (AI). IVD embryos were pooled, and processed in the same 

manner as IVP embryos. mRNA was isolated, reversed transcribed to cDNA, and gene 

expression was analyzed by quantitative PCR (Q-PCR) from all embryo pools. 

 Experiment 2 

 In vitro produced day-14 embryos were produced for each treatment. Also in vivo 

derived day-14 embryos were generated from superovulated cows, which were 

inseminated with the same semen used to generate the IVP embryos. For IVP embryos, 

IVF and IVC was performed as described in Experiment 1. At day 7 post-insemination 

blastocyst rates were assessed for each treatment. Blastocysts were transferred into 

synchronized recipients, and were recovered 7 days after transfer. The IVD embryos 

were collected on day 15 after AI. At embryo recovery, all IVP and IVD elongated 

embryos were photographed, measured and stored independently in a minimum volume 

(30-60 µl) of PBS + 0.1% PVA into a 1.5 ml vial, and were stored at -80ºC. mRNA was 

isolated, reversed transcribed to cDNA, and gene expression analyzed by Q-PCR.  
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           In Vitro Production of Embryos 

 In vitro matured (IVM) oocytes were shipped overnight from a commercial 

supplier (Trans Ova Genetics, Long Prairie, MN, USA) in a Biotherm™ portable 

incubator (CryoLogic, Victoria, Australia) at 38.5ºC, in 1.5 ml vials containing IVM 

medium (TCM-199, 10% fetal bovine serum (FBS), 0.1% Penicillin/Streptomycin (P/S), 

Na pyruvate, L-glutamine, 50 ng/ml of epidermal growth factor, FSH, LH and Estradiol) 

and cumulus oocyte complexes (COCs). At arrival, vials were transferred into a CO2 

incubator for a total elapse time of IVM of 22-24 hours, at which point IVF was 

performed. Later, COCs were washed twice in HEPES-TALP (tyrode albumin lactate 

pyruvate), then washed twice in IVF-TALP and finally transferred into fertilization wells 

with 425 µl of IVF-TALP. Fertilization was performed with a single Holstein bull with a 

history of proven fertility in our IVF program. One straw of semen was thawed at 37ºC 

for 30 seconds in a water bath. The semen was layered on top of the Isolate® (Irvine 

Scientifics) density gradient and centrifuged for 12 min at 700 x g, isolating motile 

spermatozoa in the bottom of the tube. Following aspiration of the supernatant, motile 

spermatozoa were washed with 5 ml of Sperm-TALP and re-centrifuged for 5 min at 700 

x g. Sperm concentration was assessed (with an hemocytometer) and a fertilization 

suspension of IVF-TALP and sperm was prepared at a concentration of 1x106 

sperm/ml. During fertilization 20 µl of PHE (1 mM epinephrine, 10 μM hypotaurine, 20 

μM penicillamine), 20 µl of heparin (2 μg/ml of heparin) and 20 µl of sperm suspension 

(1x106 sperm/ml) were added to each fertilization well containing COCs. Fertilization 

was performed at 39°C in a humidified atmosphere of 5% CO2 in air. 
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 Eighteen hours post-insemination, presumptive zygotes were denuded by 

vortexing at maximum speed for 2 min in 2 ml of HEPES-TALP. Embryos were washed 

twice in HEPES-TALP and four times in mSOFaa. Fifteen presumptive zygotes were 

cultured in a 30 µl drop until 72 hours post-insemination, at which point cleavage rate 

was assessed. Fifty percent of the embryos were allocated to treatment 1 (mSOFaa) and 

the remainder to treatment 2 (mSOFaa + 5% calf serum) until 168 hours post-

insemination.           

           In Vivo Derived Embryos 

 A group of Angus cows were examined by transrectal ultrasonography in 

order to select donor cows. Selection was based on the presence of an active 

corpus luteum, the presence of a dominant follicle and at least 8 antral follicles. 

Selected cows received a superstimulatiion protocol which began with the insertion 

of a CIDR-B, and 100 µg of GnRH, IM (Cystorelin® Merial Canada Inc.).Thirty six 

hours later, a new follicular wave was enhanced by administration of 200 mg of 

Follicle Stimulating Hormone (400 mg Folltropin, Bioniche Animal Health) every 12 

h for 4 consecutive days in decreasing doses. Dinoprost Tromethamine (Lutalyse® 

Pfizer, USA) was administered with the last two doses of FSH, and the CIDR was 

removed with the last FSH dose (Table 4).  
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Table 4 Superstimulation protocol used to produce in vivo derived embryos. 

Day  Treatment      Time 

1  CIDR + GnRH    PM 

3  FSH (36 mg)     AM 

  FSH (36 mg)     PM 

4  FSH (30 mg)     AM 

  FSH (30 mg)     PM 

5  FSH (22 mg)     AM 

  FSH (22 mg)     PM 

6  FSH (12 mg) + PG (25 mg)  AM 

7  CIDR + FSH (12 mg) + PG (25 mg) PM  

 

 Estrus was detected using an electronic system (HeatWatch® system CowChips, 

LLC Manalapan, NJ). Cows were artificially inseminated with 2 straws at 12 h after first 

standing heat and another AI at 24 h (1 straw). The semen of the same bull was used 

for IVF. 

 mRNA Isolation and Reverse Transcription 

 Poly(A) RNA was isolated from day 7 and day 14 embryos using a commercial 

isolation system (Dynabeads® mRNA Direct Kit™, Invitrogen, Carlsbad, CA, USA) as 

described previously (Wrenzycki et al., 2001). Messenger RNA was immediately used 

for reverse transcription (RT). Reverse transcription was performed in a total volume of 

20 μl using a commercial transcription system (iScript™ cDNA Synthesis Kit, Bio-Rad 

Laboratories, Inc., Hercules, CA, USA) according to manufacturer’s instructions. The 

reaction mix contained 4 μl of iScript reaction mix, 1 μl of reverse transcriptase, 4 μl of 

nuclease-free water and 11 μl of mRNA.  
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 PCR Validation 

 A day-14 IVD embryo was used to obtained amplicon of each gene of interest, 

which was electrophoresed on a 2% agarose gel and sequenced to confirm the 

amplification of the proper product (see product length in table 5 and Figure 2). To 

demonstrate that the primers amplified only cDNA and not genomic DNA, 1 ng of 

genomic DNA was used as a template for the amplification of the target genes. No 

products were recovered after RT-PCR. The amplicon of each gene was purified using 

a commercial kit (PureLink™ PCR Purification Kit, Invitrogen). To determine if the 

primers amplified a single product in a quantitative manner, cDNA at six serial dilutions 

from the PCR product  (0.4, 0.04, 0.004, 0.0004, 0.00004, 0.000004 pg/ µl )  and from 

each gene were analyzed by Q-PCR (Figure 1). All the target genes led to a PCR 

efficiencies between 88.3-100.3% and correlation coefficients between 0.98-0.999.  
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Figure 1. Standard curve, correlation and melting curve of serial dilutions for the gene         
      COX6A 
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 Quantitative-PCR 

 The following PCR primers COX6A1, IFNT1, IGF2R, PLAC8 and GAPDH 

(Bosnakovski et al., 2005) were designed from bovine gene sequences using a 

commercial primer design software (Beacon Designer 6.8, PREMIER Biosoft 

International, Table 4). cDNA was amplified using SsoFast™ EvaGreen® Supermix 2X 

(Bio-Rad Laboratories, Inc., Hercules, CA, USA, Cat. No. 172-5202).The final reaction 

volume was 20 μl consisting of 10 μl of 2X supermix,  2 μl of cDNA, 6 μl water, and 2 μl 

of forward and reverse primer pairs (10 ρmol/µl) for each gene (Experiment 1). 

  A reaction mix was formulated for the samples and for a control reaction. In the 

case of day-7 blastocyst pools and day-14 ovoid embryos, the cDNA was used directly 

in the Q-PCR. For the elongated day-14 embryos, the cDNA was diluted with 20 µl of 

DEPC-treated water for a final reaction volume of 40 µl. The thermocycler used was a 

Bio-Rad MyiQ (Bio-Rad Laboratories, Inc., Hercules, CA,), and the program used for the 

amplification of all the genes consisted of an enzyme activation cycle of 30 seconds at 

95°C, 40 cycles of PCR (denaturation at 95°C for 5 sec, and annealing/extension at 

55°C for 30 sec), a melting curve consisting of 95°C for 1 min followed by 55°C for 1 

min, a step cycle starting at 55°C for 10 sec with a 0.5°C/sec transition rate, and cooling 

at 4°C. 

 Final quantification was done using the relative standard curve method. Standard 

curves were constructed for each individual gene, using six ten-fold serial dilutions 

(beginning at 0.4 pg/ µl) of its respective PCR product. Amplicon concentrations were 

calculated using a spectrophotometer (Nanovue, General Electric, USA). Transcript 

concentrations of each gene within each sample were provided by My IQ software 
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(BioRad, USA) and were normalized by comparing the transcript concentration of the 

internal standard gene, GAPDH. The relative expression of each gene was obtained by 

dividing the quantity of each gene by the quantity of the standard gene. 

 

Table 5 Primers used for PCR analysis 

Gene      Accession N° Primers           Amplicon Length          

                               (bp) 

 

COX6A1    NM_001077831 Forward CGGCTATGAAGACGAATAAAG                         158 

               Reverse AATGGTCCTCAAGTGTAATGG                                                  

IFNT1A      M31557  Forward CAGTGATGGGAGAGAAAGAC                           167  

    Reverse GGTGGTTGATGAAGAGAGG 

IGF2R       NM_174352 Forward ATTCAGAGTAGCATCACCTTC                       225  

    Reverse GTCGTCCACCAAGTAAGC 

PLAC8       NM_001076987   Forward CTGATATGAATGAATGCTGTCTG                      177  

               Reverse AAGTGCGATTGGCTCTCC 

GAPDH      U85042  Forward CCTTCATTGACCTTCACTACATGGTCTA            127 

                                               Reverse TGGAAGATGGTGATGGCCTTTCCATTG 

Bovine sequences were used to design the primers  
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Figure 2. Agarose gel showing the expression and product length of each gene of    
      interest  

  

 Statistical Analysis 

 The analysis of difference in the expression of the genes was performed using 

one-way ANOVA. Gene expressions of IVP embryos cultured with serum, without 

serum and IVD embryos at two different stages, blastocyst and day-14 embryos, were 

compared. Descriptive statistics were used to determine embryos that were upregulated 

or downregulated above two standard deviations from the mean of IVD treatment in 

each gene of interest. In order to accomplish this, a 95% confidence interval was 

constructed for in vivo derived embryo expressions for each gene of interest. If the 

relative expression of a sample (gene of interest/ GAPDH expression) did not fall within 
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the confidence interval for the in vivo embryos for each gene of interest, the sample was 

considered either significantly upregulated or downregulated. 

 Blastocyst rates for IVP treatments were analyzed using chi square. The length 

of day 14 embryos of each treatment was analyzed using ANOVA. Pearson correlation 

was performed in order to observe any relationship between genes of interest. Variance 

in gene expression between stages was performed using one-way ANOVA. Statistical 

analysis was run using SAS software (SAS Institute Inc.). Differences of P≤0.05 were 

considered to be significant. 

 
Results 

 In Vitro Production of Embryos 

 In vitro culture results from both experiments are summarized in Table 6. The 

addition of 5% calf serum to the culture medium at 72 hours post-insemination 

increased blastocyst rates compared to embryos that were cultured in mSOFaa 

only(P<0.001). In every replicate, an approximately 50-100 oocytes were used for other 

procedures. Based on that information, the maturation rate of the total number of 

oocytes was 68.2 percent. Although, it is not the maturation rate of the fertilized 

oocytes, this data could give an approximate maturation rate for oocytes that were 

fertilized due to the fact that all oocytes were treated under the same conditions. 
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Table 6 Day-7 blastocyst rates for embryos cultured in mSOFaa in the absence or  
   presence of calf serum 

Treatment Oocytes Blastocyst Blastocyst (%)  

No-serum 1939 143 7.4% a 

Serum 1054 157 14.9%  b 

ab Values within row with different superscript are significantly different (P<0.001) 

                                                                                                                         

 Experiment 1 

 The numbers of day-7 blastocyst pools obtained per treatment were 7 pools for 

serum treatment, 6 pools for no-serum and 5 pools for IVD. Serum treatment averaged 

9.4 blastocysts per pool, no-serum average 6.3 blastocysts per pool and IVD pools 

average 5.8 blastocysts per pool. The number of blastocysts per pool did not influence 

gene expression due to the fact that relative expression was calculated as a ratio of the 

genes of interest and GAPDH transcripts of the same sample. 

 There was no difference in the mean expression for COX6A, IFNT1a, IGF2R and 

PLAC8 among serum, no-serum and IVD day-7 blastocyst pools (P≥0.21; Figure 3). 

Mean relative levels may not be the best method of analysis of gene expression data, in 

particular when sample size is small, the mean reported values are low, and the 

distribution of expression is well spread. Therefore, in order to observe the incidence of 

abnormal expression in each treatment and gene of interest a confidence interval based 

on expression of IVD embryos was constructed, whith relative expression either two 
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standard deviations above or below the mean was considered as altered expression 

pattern. 

 With this descriptive statistical method, the expression of COX6A, IFNT1a and 

IGF2R were upregulated in some samples of the IVP treatments (serum and non-

serum) (Figure 4, 5, 6 and 7; Table 7). The expression of PLAC8 in all samples of all 

treatments was considered as normal expressions. Also a significant correlation was 

observed among PLAC8 and IFNT1a across all treatments (r ≥ 0.84; P≤0.03).                                                                                                                                

 

 

 

 

 

 

 

 

 

 

 

 

 

 

                                                                                                                                                                  



39 
 

                                                                     

Figure 3 Relative expression of COX6A, IFNT1a, IGF2R and PLAC8 in each treatment        
     in day-7 blastocyst pools (LSM ± SE) 
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Table 7 Day-7 blastocyst pool expression based on IVD 95% confidence interval for   
   each gene of interest 

Gene Expression* Serum No-serum IVD 

 
Upregulated 0 1 0 

COX6A Normal 
 

7 5 5 

 
Downregulated 0 0 0 

     

 
Upregulated 1 2 1 

IFNT1a Normal 
 

6 4 4 

 
Downregulated 0 0 0 

     

 
Upregulated 1 1 0 

IGF2R Normal 
 

6 5 5 

 
Downregulated 0 0 0 

     

 
Upregulated 0 0 0 

PLAC8 Normal 
 

7 6 5 

 
Downregulated 0 0 0 

*Upregulated and dowregulated samples are those that are two standard deviations 

above or below the of the IVD mean for each gene of interest, respectively
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Figure 4 Distribution of IGF2R expression levels and 95% confidence interval for day-7 blastocyst pools (-0.39 to 0.93) 
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Figure 5 Distribution of COX6A expression levels and 95% confidence interval for day-7 blastocyst pools (-1.02 to 7.7) 
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Figure 6 Distribution of IFNT1a expression levels and 95% confidence interval for day-7 blastocyst pools (-0.53 to 1.11) 
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Figure 7 Distribution of PLAC8 expression levels and 95% confidence interval for day-7 blastocyst pools (-4.19 to 6.89)
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 Experiment 2 

 Day-14 embryos were classified as elongated and ovoid according to their stage 

of development. Initially, the serum treatment consisted of 22 embryos (16 elongated 

and 6 ovoid), the no-serum treatment consisted of 10 embryos (5 elongated and 5 

ovoid) and the IVD group consisted of 11 embryos (6 elongated and 5 ovoid). However, 

after evaluating photographs taken to all embryos and the expected length at this stage, 

it was decided to exclude all the ovoid embryos from all treatments. Similarly, five 

elongated embryos from the serum treatment were withdrawn from gene expression 

analysis because the mRNA was isolated by a different method. See figure 8 and 9 to 

observe the difference in shape and length between these two stages of development. 

There was no difference (P=0.19) in the length of all day-14 embryos (Table 8); 

however, there was a significant difference (P<0.002) of embryo length between 

elongated IVD embryos and both treatments groups of IVP elongated embryos (Table 

9). No significant difference were observed between recovery rate for embryos culture 

with and without serum (P = 0.194). Mean expression for COX6A, IFNT1a, IGF2R and 

PLAC8 did not differ among treatments (P≤0.32; fig.10). The same method previously 

described was used in treatment 2 to observe gene expression distribution of the genes 

of interest. In this way, altered expressions can be more easily observed. In the IVP 

serum treatment, 3 out of 11 samples had upregulated IFNT1a expression over two fold 

standard deviation above the mean of IVD embryos (fig.12). In PLAC8 expression, 2 out 

of 11 samples were upregulated two fold above IVD mean (fig.13). In IGF2R expression 

of serum treatment 4 out of 11 samples were above 2 standard deviations above IVD 
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mean (fig. 14). However, there was not any COX6A abnormal expression at this stage 

(fig.11). 

 

 

Figure 8 Day-14 elongated and ovoid embryos from IVP with serum treatment  

 

 

Figure 9. Day-14 elongated and ovoid in vivo derived embryos 
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Table 8 Length of all day-14 embryos (ovoid and elongated) 

Treatment Embryos Length (µm)  SE (µm) 

No Serum 11 1761.1 a 716.3 

Serum 22 2663.7 a 482.9 

In vivo 11 3595.0 a 682.9 

a Means with different subscripts are statistically significant 

 

 

Table 9 Length of elongated day-14 embryos  

Treatment Embryos Length (µm) SE (µm) 

No Serum 5 2784.8 a 741.8 

Serum 16 3395.3 a 414.7 

In vivo 6 6297.7 b 677.2 

 ab Means with different superscript are statistically different (P<0.002) 

 

Table 10 Embryos transferred on day 7 and recovered on day 14 of gestation 

 Serum No-serum 

Transferred 28 30 

Recovered 16 11 

Recovery rate (%) 57 a 37 a 

a Percentages with different subscripts are statistically significant 
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Figure 10  Relative expression of COX6A, IFNT1a, IGF2R and PLAC8 in each        
        treatment in day-14 elongated embryos (LSM ± SE) 

 

3.39 2.46 4.56
0

2

4

6

R
e

la
ti

ve
 e

xp
re

ss
io

n

COX6A expression of day-14 embryos

Serum No-serum IVD

8.32 3.28 5.01
0

5

10

15

R
e

la
ti

ve
 e

xp
re

ss
io

n

IFNT1a expression of day-14 embryos

Serum No-serum IVD

0.82

0.02 0.0530

0.5

1

1.5

R
e

la
ti

ve
 E

xp
re

ss
io

n

IGF2R expression of day-14 embryos

Serum No-serum IVD

1.28
0.2

1.06
0

0.5

1

1.5

2

R
e

la
ti

ve
 e

xp
re

ss
io

n

PLAC8 expression of day-14 embryos

Serum No-serum IVD



49 
 

 

 

 

 

 

 

 

Table 11 Elongated embryos expression based on IVD 95% confidence interval for   
     each gene of interest 

Gene Expression* Serum No-serum IVD 

 upregulated 0 0 0 

COX6A normal  11 5 6 

 downregulated 0 0 0 

     

 upregulated 3 0 1 

IFNT1a normal  8 5 5 

 downregulated 0 0 0 

     

 upregulated 4 0 0 

IGF2R normal  7 5 6 

 downregulated 0 0 0 

     

 upregulated 2 0 0 

PLAC8 normal  9 5 6 

 downregulated 0 0 0 

* Upregulated and dowregulated samples are those that are two standard deviations                               

above or below the of the IVD mean for each gene of interest, respectively. 
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Figure 11  Distribution of COX6A expression levels and 95% confidence intervals for elongated embryos (-2.13 to 11.25) 
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Figure 12. Distribution of IFNT1a expression levels and 95% confidence intervals for elongated embryos (-5.53 to 15.55) 
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Figure 13. Distribution of PLAC8 expression levels and 95% confidence intervals for elongated embryos (-0.73 to 2.85) 
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Figure 14. Distribution of IGF2R expression levels and 95% confidence intervals for elongated embryos (-0.02 to 0.125)
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 Pattern of IFNT1a 

 IFNT transcripts increased significantly between day 7 pools and day 14 

elongated embryos across all treatments (P<0.004; Table 12), but the other genes 

analized did not differ. No treatment interaction was found across stages. 

Table 12 Transcript levels of IFNT1 at two developmental stages 

Stage Mean SE 

Day 7 1.02 a 1.14 

Day 14 6.27 b 1.27 

ab Means with different superscripts are different  (P<0.004) 

Discussion 

 There is abundant information about the short term effects of the addition 

of serum to culture media. These short term effects could be beneficial or detrimental 

depending on the time of inclusion and the dose. It has been demonstrated that early 

addition of serum and high levels of glucose inhibits early cleavage, but the addition of 

these components to culture medium will stimulate embryo development at later stages 

(Schini and Bavister, 1988; Pinyopummintr and Bavister, 1991; Takahashi and First, 

1992; Thompson et al., 1998; Rizos et al., 2002b; Rooke et al., 2007). For these 

reasons, the culture medium used in the present study was modified in order to fulfill 

embryo nutritional requirements by excluding the use of serum and low levels of 

glucose (0.4 mM) during the first 72 hours of culture. After 72 hours post-insemination 

glucose level was increased to 1.5 mM in all treatments. Under these conditions, the 
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addition of 5% calf serum increased the proportion of day-7 blastocysts compared to 

mSOFaa without serum. 

 A favorable effect has been observed when serum is added from 8-cell to 

the early morula stage in terms of blastocyst rates (Khurana and Niemann, 2000; Rizos 

et al., 2002b; Rooke et al., 2007). Although in this study blastocyst rates for day-8 and 

day-9 embryos were not recorded and analyzed. Other authors have observed that 

either serum or no-serum culture treatments yield similar cumulative blastocyst rates 

from day 7 to day 9 of culture; however, when only day-7 blastocyst rates are taken into 

account, blastocyst rates tend to be greater with serum treatment than with no-serum 

treatment (Enright et al., 2000; Rizos et al., 2003). Therefore, it was concluded that 

greater blastocyst rates obtained with serum treatments were due to a faster 

blastulation, which does not imply that addition of serum improves embryo development 

because, blastocyst derived from culture system with serum may have altered embryo 

metabolism, morphology and biochemistry (Thompson et al., 1995; Thompson, 1997; 

Ferguson and Leese, 1999; Crosier et al., 2000, 2001; Rizos et al., 2002a). However, 

embryos that become blastocysts earlier during in vitro culture have higher cell numbers 

and less apoptotic cells than embryos that become blastocyst after day 9 of culture 

(Hasler et al., 1995; Byrne et al., 1999; Enright et al., 2000). Nevertheless, the addition 

of serum can cause alterations in embryo morphology and metabolism, such as 

increased lipid droplets, increased size blastocysts, increased number of apoptotic cells 

and alteration in mitochondria distribution (Thompson, 1997; Byrne et al., 1999; Crosier 

et al., 2000, 2001). 
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 The shape of day-14 embryos have been described to be spherical, ovoid 

and elongated (Alexopoulos and French, 2009). These findings are in agreement with 

embryo shapes observed in the present study. However, the day-14 ovoid embryos 

collected were excluded from the present study due to they were considered as 

degenerated embryos because according to previous studies the length of day-14 

embryos should be at least 0.85 mm in length (Block et al., 2007; Menezo et al., 1982). 

The length of day-14 IVD elongated embryos differed (P<0.002) from either serum or 

no-serum treatments; although there were no significant difference between both IVP 

treatments, embryos cultured with serum tend to be larger than embryos cultured 

without serum (3395.3 vs 2784.8, for serum and no-serum, respectively). Results 

concur with those presented by Bertolini et al. (2002), who observed that IVD embryos 

were larger than IVP embryos at day-16 after fertilization. 

 The expressions of COX6A, IFNT1a, IGF2R and PLAC8 were detected in 

all of the single embryos or embryo pools analyzed in the present study, but no 

differences were found in transcript levels between serum, no serum and IVD embryos 

in either blastocyst pools or elongated embryos. These results are in agreement with 

the results obtained by other authors (Kubisch et al., 2001). On the other hand, 

conflicting gene expression differences have been observed between in vitro produced 

embryos with serum, no-serum and IVD embryos (Kubisch et al., 1998; Wrenzycki et 

al., 2001; Lonergan et al., 2003; Rizos et al., 2003). However, the majority of these 

studies tend to show that embryos cultured with serum have higher transcripts of 

IFNT1a and lower transcript levels of IGF2R than no-serum and IVD embryos.  
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 When low relative expression with high variance is obtained during gene 

expression studies, it is difficult to find differences between treatments using the mean 

relative expression level method. Therefore, a confidence interval was utilized in order 

to observe altered expressions (upregulated or downregulated) of individual samples in 

each treatment. Several upregulated samples were observed at the two different 

stages, but none of the genes of interest were downregulated throughout the study. In 

day-7 embryos, two IGF2R, one COX6A and three IFNT1a upregulations were 

observed. In day-14 elongated embryos, upregulated expressions of IFNT, IGF2R and 

PLAC8 on elongated day-14 embryos produced with serum compared to the no-serum 

and IVD elongated embryos were observed. 

 IFNT is secreted predominantly by trophoblastic cells, it is possible that 

embryos cultured with serum may produce more IFNT because embryos cultured with 

serum have an increased ratio of TE:ICM cells (Iwasaki et al., 1990; Du et al., 1996). 

However, no difference was found in IFNT1a expression between treatments in this 

study. On the other hand, a higher proportion of elongated embryos cultured with serum 

were considered to be upregulated compared to no-serum and IVD embryos, and the 

relative levels of IFNT1a differed between day-7 and day-14 embryos across all 

treatments (P<0.004); there was not treatment interaction, and all treatments and 

developmental stages showed the same trend. This data confirms that transcript levels 

of IFNT1a increased from the blastocyst stage to the day-14 embryos, which is in 

agreement with previous data (Bertolini et al., 2002; Ushizawa et al., 2004; Rodriguez-

Alvarez et al., 2009; Rodriguez-Alvarez et al., 2010a; Rodriguez-Alvarez et al., 2010b). 

These results and the methods used to analyzed gene expression in the present study 
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suggest that the secretion of IFNT1a increase per cell base from the blastocyst stage to 

the elongated stage, regardless of the cell number increment. 

 No differences in IGF2R were observed at the blastocyst stage and at the 

elongated stage, but more frequent abnormal transcript levels of IGF2R were observed 

in the IVP treatments. This was evident at the elongated stage were 3 out of 11 

embryos had upregulated expression. Similar results have been obtained by others; 

however, more abnormal expressions were found in IVP treatments (Moore et al., 

2007a). On the other hand, some studies have observed that IGF2R was 

downregulated in IVP embryos cultured with serum compared to IVD embryos (Young 

et al., 2001; Bertolini et al., 2002; Nasser et al., 2008), and fetuses with overgrowth 

have been associated with low levels of IGF2R and high levels of IGF2 (Lau et al., 

1994; Bertolini et al., 2002). It has been suggested that in IGF2R expression studies, 

IGF2 and IGF2BP expression should be examined in order to obtain a stronger analysis 

base on these correlations (Lau et al., 1994; Young et al., 2001; Farin et al., 2010). 

 

 Transcript levels of COX6A did not differ across treatments and between 

stages (day-7 and day-14), just one sample was upregulated in the no-serum treatment 

at the day-7 stage. However, Everts et al., (2008) observed 5-fold higher expression of 

COX6A in placental tissues derived from artificial insemination compare to IVP placental 

tissues from close to term pregnancies. It is possible that expression levels of COX6A 

differ between IVP and IVD until late developmental stages of pregnancy, and it may not 

differ or have abnormal expressions between IVP and IVD at the preimplantation 

embryonic stages.  
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 Similar to previous studies (Nasser et al., 2008), transcript levels of 

PLAC8 did not differ between IVD and IVP embryos. It also has been observed that 

either IVP and IVD embryos that progressed to term gestation expresses similar PLAC8 

expression levels at the blastocyst stage (Tesfaye et al., 2009). Although in the present 

study day-14 elongated embryos did not differ between treatments, 2 out of 11 embryos 

were consider to have upregulated expression of PLAC8; however, no PLAC8 

upregulations were found in the IVP without serum and IVD elongated embryos. Even 

though IVD embryos were larger and have more TE cells, the IVP embryos cultured 

with serum had 18% of its samples upregulated. 

 At the blastocyst stage, a correlation among PLAC8 and IFNT1a was 

observed, which suggests that the activation or secretion of these two trophectoderm-

originated proteins may be activated at the same developmental time or that they are 

regulated by the same mechanism or mechanisms. This finding agrees with previous 

studies that showed that IFNT can affect the transcription levels of other genes in the 

preimplantation embryos and in the endometrium (Satterfield, 2008; Mansouri-Attia et 

al., 2009a; Mansouri-Attia et al., 2009b).However, PLAC8 and IFNT1a correlation was 

not observed at the elongated stage. This suggest that even though  these genes may 

both be activated blastocyst stage, the PLAC8 transcripts of day-14 elongated embryos 

did not increased from the blastocyst to the elongated stage as occur with IFNT 

transcripts.  
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CHAPTER IV 

CONCLUSIONS 

 

 In the present study, serum addition stimulated earlier blastulation as has 

been showed by previous studies. At day-14 of gestation two shapes of embryos can be 

recovered ovoid and elongated, these two kinds of embryos were observed in both IVP 

treatments and IVD embryos. This finding suggests that even though IVD embryos are 

considered as the “gold standard”, it is possible to find non-competent embryo even 

when they are in vivo derived. Thus, caution should be excercised when embryos are 

selected for gene expression analysis. 

 At day 14, IVD embryos tended to be larger and looked more uniform than 

IVP embryos. Although no significant differences in gene expression were observed 

either at the blastocysts stage or at the elongated stage, some upregulated samples 

were observed in IVP treatments, specifically for the IGF2R, PLAC8 and IFNT 

expression of day-14 embryos cultured with serum. This suggests that culture with 

serum may increase the frequency of abnormal gene expression at elongated stages. It 

is probable that some of the effects of non-physiological maturation, fertilization and 

culture conditions may not occur immediately, but that they may occur at later 

developmental stages. 

 The increased IFNT transcript levels from the blastocyst stage to the 

elongated stage observed in this study is in agreement with previous studies. However, 

other proteins of trophoblastic origin like PLAC8 may not increased in the same manner 

as IFNT. Although PLAC8 and COX6A have been associated with developmental 
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competence in other studies, in the present study no difference in gene expression or 

gene pattern was observed.  

 In this study, no significant differences in gene expression were observed 

between treatments at the blastocyst and at the elongated stage. However, IGF2R 

expressions of IVP embryos cultured with serum have more upregulated samples 

(embryos) than IVD embryos; meanwhile, previous studies have showed an association 

between IGF2R downregulation and overgrowth. The upregulation of some samples 

cultured with serum warrant further studies in this area.  
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APPENDIX A: PROTOCOLS 

 

BOVINE IVF PROTOCOL 

Preparations: 

 

1. Prepare and label IVF-TALP, Sperm-TALP and HEPES-TALP (Appendix B) in        

    advance, but the same day that fertilization will be performed  

 

2. Move two centrifuge carriers to oven (39°C). 

 

3. Make fertilization plates 

    a. Prepare a washing and a fertilization plate (4 wells Nunc® plate) with 425 μl of        

        IVF-Talp per each well. 

    b. Equilibrate in CO2 incubator (39°C) at least 3 hours. 

 

4. Move the tube containing  IVF-TALP medium to the CO2 incubator  (loose cap). 

 

5. Fill 1 conical tube with 5 ml Sperm-TALP from the previously prepared Sperm-TALP 

 

6. Transfer the 20 ml HEPES-TALP (cap tight) and 5 ml SP-TALP (cap tight) to the               

    39°C oven. 

 

7. Prepare Isolate density gradient: 

    a. Label 1 conical tube “Isolate sperm gradient” and fill the tube with 1.5 ml of Isolate    

        lower layer (90%) and very carefully and slowly dispense the 1.5 ml of Isolate   

        upper layer (50%)   

 

8. Carefully, transfer the Isolate gradient to the pre-warmed centrifuge carrier within the 

      oven. 
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9. Move PHE (100 μl) (Appendix B) and heparin (100 μl) (Appendix B) from freezer 

    to oven (39°C) with 15 minutes before starting the procedure. PHE should be covered   

    with aluminum foil (light sensitive). 
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Procedures: 

 

1. At 22-24 hours post-maturation thaw 1 straw of semen in water at 39°C for 30 

    seconds. When getting semen straws out of the liquid nitrogen tank, make sure 

    not to raise anything above the frost line. Use semen forceps. 

 

2. Dry a straw, hold it in a kimwipe to keep it warm and dark, cut the sealed end off 

    and slowly layer thawed semen on top of the Isolate gradient by gently pushing 

    the plug in the straw with a metal rod. Place the conical tube back into the 

    centrifuge carrier and centrifuge at 1200 rpm for 12 min at 37ºC. 

 

3. Check viability of the thawed semen by placing a drop remaining in the straw on 

    a slide. View at 40X magnification to assure that motile sperm are present. 

 

4. While centrifuge is running, pour 2 ml of HEPES-TALP (from conical tubes in 

    oven) into Petri dish (35 mm). Remove oocytes from maturation medium (plate/vial)     

    and transfer to a separate corner in the HEPES-TALP. Thoroughly wash oocytes   

    through 2 dishes of HEPES-TALP to remove any glucose from the maturation   

    medium, which is detrimental to fertilization. 

 

5. Transfer 50 oocytes to each well with 425 μl in a 4-well dish (first in washing plate     

    and later move them to the fertilization plate) return IVF plate back to incubator when    

    finished. *You only have 15 min to wash and transfer all oocytes to IVF 4-well plates.    

    Set a timer and ask for help if necessary. 

 

6. After centrifuge stops, carefully remove carrier with the Isolate gradient from 

    centrifuge. There should now be a sperm pellet, if not you must start completely 

    over with new gradient and semen. 

 

7. Within the laminar flow hood and a sterile pasteur pipette, aspirate the Isolate down    

    to the sperm pellet. Slowly add the 5 ml of pre-warmed Sperm-TALP to the conical   
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    tube containing the sperm pellet. Put the tube into a second pre-warmed centrifuge   

    carrier and centrifuge at 1,200 rpm for an additional 5 min. 

 

8. After the centrifuge stops, aspirate the Sperm-TALP down to the sperm pellet. 

    Return the conical tube with the sperm pellet to the oven. 

 

9. Determine sperm pellet concentration  

 

A. Gently swirl the sperm pellet to mix the sperm with any remaining 

    medium. Use a clean pipette tip to transfer 5 μl of sperm into 95 μl of 

    water, pipetting gently to mix. Label this vial as “hemocytometer” 

 

B. Clean the hemocytometer and coverslip by washing with water followed 

     by 70% EtOH; dry with a Kimwipe. 

 

C. Using a new pipette tip, transfer 10 μl of diluted sperm into each 

     chamber (each side) of the hemocytometer. 

 

D. Use 40X magnification to count sperm cells in the 5 squares arranged 

     diagonally across the central square on one side of the hemocytometer. 

     Use an event counter to keep track of how many cells are counted. 

     Record the count on the “Sperm Dilution Work Sheet” (see below) 

 

E. Continue counting on the second side of the hemocytometer counting 5 

     diagonally arranged squares to obtain the total hemocytometer count. If 

     the count of one side varies more than 10% from the other side, then 

     the diluted sample was not properly mixed. Repeat procedure starting 

     at step 1. When the count is consistent, record the total count and 

     continue the procedures.  

 

F. Clean hemocytometer and coverslip with water followed by EtOH. 
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10. Preparing sperm suspension for insemination (See “Explanation of Sperm 

      Suspension”) 

      Note: The final sperm suspension used to IVF is composed of fertilization 

      medium and sperm pellet produced by Isolate separation gradient. A worksheet is 

      attached and can be duplicated and used to assist in calculating sperm 

      suspensions (see below). 

 

A. Calculations are based on the following parameters: 

  

 a. 300 μl of final sperm suspension will be prepared 

 b. 1 x 106 sperm/ml is desired in the final fertilization medium 

               (this concentration can be adjusted if needed using Step 3 below) 

 

B. Calculate the volume of sperm pellet needed per 300 μl of final sperm 

     suspension using the formula: 

 

     7,500/X = μl of sperm pellet to make 300 μl of final sperm suspension 

     when inseminating with 1 x 106 sperm/ml 

 

     Where X is the average hemocytometer count (total hemocytometer 

     count divided by 2) 

 

C. Adjust for desired sperm concentration: If a concentration other than 1 x 

    106 sperm/ml is desired; To adjust this volume perform the following calculation: 

 

     Divide the average hemocytometer count calculated by the adjustment      

     factor to yield the volume sperm pellet needed to prepare 300 μl of final sperm    

     suspension at the desired concentration. 

       Example: If a bull requires are 2 x 106 sperm/ml rather than 1 x 106 

       sperm/ml = adjustment the conversion factor to 15,000/X in step 10 
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D. Calculate volume of fertilization medium needed in the final sperm 

    suspension: Subtract the volume found in Step 10C from 300 μl 

 

E. Place the calculated amount of fertilization medium (D) into and 

     Eppendorf microcentrifuge tube. Then add the calculated amount of 

    sperm pellet (C) to the tube. Sperm stick to plastic, so add the 

    fertilization medium to the tube first. Mix gently by pipetting up and 

    down several times within the tube. Immediately begin fertilizing each                       

    well since the pH of this solution will change rapidly. 

 

Fertilization 

 

1. Add 20 μl heparin (for a final concentration of 2 μg/ml of heparin in the 

    fertilization medium), 2 μl of PHE and 2 μl of final sperm suspension to 

    each well. 

 

2. Record time and date on each fertilization dish. 

 

3. Incubate for 18 h at 39°C in a humidified atmosphere of 5% CO2 

   

Culture 

1. Make five 30 µl drops of culture medium (SOFaa) in a 35 mm Petri dish. Cover the    

    drops with equilibrated oil. Make sure of equilibrate the culture medium for at least 30   

    minutes in the CO2 incubator before preparing the culture and washing plate. 

 

Note: The culture (five 30 µL drops of SOF) and washing (four 70 µl drops of SOF) 

plates    

           should be prepared after fertilization (between 15 and 18 hours in   advance to       

           moving the embryos into culture medium) and put them in the CO2 incubator. 
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2. Thaw one vial of hyalorunidase (1 mg/ml). Place the solution in a 15 ml tube and   

    vortex at maximum speed for 2 minutes. 

 

3. Rinse the tube with HEPES-TALP and transfer the oocytes to a 35mm Petri dish.  

 

4. Rinse the presumptive embryos two times in HEPES-TALP in a 35mm Petri dish 

 

5. Wash the oocytes in every 70 µl drop of SOFaa  

 

6. Move 15 presumptive zygotes in every culture drop (30 µl SOFaa)  
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BLASTOCYST POOLS mRNA ISOLATION PROTOCOL 

 

1. Store pools of embryos (5-10 blastocyst per pool for Experiment 1 in approximately   

    3µl of PBS plus 0.1% polyvinyl alcohol in 1.5 ml siliconized tubes. 

 

2. Bring Dynabeads mRNA® DIRECT™ Kit (Dynal Biotech, Inc., Lake Success, NY, 

    USA, Cat No. 610.11) to room temperature. 

 

3. Lyse the the blastocyst pool in 50 μl of lysis/binding buffer (100 mM Tris HCl, pH 8.0,    

    500 mM LiCl, 10 mM EDTA, 1% lithium dodecylsulfate, 5 mM dithiothreitol) and   

    vortex for 10 seconds. 

 

4. Centrifuge the samples at maximum speed for 15 seconds and incubate at room 

    temperature for 10 minutes. 

 

5. Add 10 μl of pre-washed oligo dT Dynabeads (dT25) to the sample. Pre-wash beads    

    In lysis/binding buffer. 

 

6. Incubate the Dynabeads and sample by rotating on a mixer or roller for 10 min at 

     room temperature. 

 

7. Place the tubes in a Dynal MPC-E-1 magnetic separator for 2 minutes. 

 

8. After removal of the supernatant, wash the beads once with 100 μl of buffer A (10   

    mM Tris HCl (pH 8.0), 150 mM LiCl, 1 mM EDTA, 0.1% lithium dodecylsulfate) and    

    three times with 100 μl of buffer B (10 mM Tris HCl (pH 8.0), 150 mM LiCl, 1 mM    

    EDTA). 

 

9. Elute the RNA from the beads by adding 11 μl of sterile water and heating the sample 

    at 70°C for 2 minutes. 
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10. Use the sample directly for reverse transcription. 

 

- Protocol from Wrenzycki et al., (1999, 2001) 
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DAY-14 EMBRYO mRNA ISOLATION PROTOCOL 

 

1. Store day-14 embryos  a minimal volume of PBS plus 0.1% polyvinyl alcohol in 1.5 ml   

    siliconized tubes. 

 

2. Bring Dynabeads mRNA® DIRECT™ Kit (Dynal Biotech, Inc., Lake Success, NY, 

    USA, Cat No. 610.11) to room temperature. 

 

3. Lyse the day-14 embryo in 150 μl of lysis/binding buffer (100 mM Tris HCl, pH 8.0,    

    500 mM LiCl, 10 mM EDTA, 1% lithium dodecylsulfate, 5 mM dithiothreitol) and    

    vortexing for 10 seconds. 

 

4. Centrifuge the samples at maximum speed for 15 sec and incubate at room 

    temperature for 10 minutes. 

 

5. Add 50 μl of pre-washed oligo dT Dynabeads to the sample. Pre-wash beads    

    In lysis/binding buffer. 

 

6. Incubate the Dynabeads and sample by rotating on a mixer or roller for 10 min at 

     room temperature. 

 

7. Place the tubes in a Dynal MPC-E-1 magnetic separator for 2 minutes. 

 

8. After removal of the supernatant, wash the beads once with 100 μl of buffer A (10    

    mM Tris HCl (pH 8.0), 150 mM LiCl, 1 mM EDTA, 0.1% lithium dodecylsulfate) and   

    three times with 100 μl of buffer B (10 mM Tris HCl (pH = 8.0), 150 mM LiCl, 1 mM  

    EDTA). 

 

9. Elute the RNA from the beads by adding 11 μl of sterile water and heating the sample 

    at 75°C for 2 minutes. 
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10. Use the sample directly for reverse transcription. 

 

- Protocol from Wrenzycki et al.,(1999, 2001) 
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cDNA SYNTHESIS PROTOCOL (iSCRIPT) 

 

1. Mix 4 μl of iScript reaction mix, 1 μl of reverse transcriptase, 4 μl of nuclease-free 

    water (Appendix B) (Bio-Rad Laboratories, Inc., Hercules, CA, Cat No. 170-    

    8891). 

 

2. Make master mixers when possible. 

 

3. Add 11 μl of mRNA sample. 

 

4. Extra mix should be prepared for the no mRNA template negative control. 

 

5. Total volume mix should be 20 μl. 

 

6. Place the mix in the thermocycler. 

 

7. Run the thermocycler at 25°C for 5 minutes, 42°C for 30 minutes, denaturation at    

    85°C for 5 minutes, and a final hold at 4°C. 

 

8. Label and store the cDNA samples in a -80ºC freezer.  
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RT-PCR PROTOCOL 

 

1. Prepare a RT-PCR Mix  of 19 μl auclaved water, 2 μl cDNA sample and 25 μl    

    JumpStart™ REDTaq® ReadyMix™ Reaction Mix for PCR (Sigma-Aldrich, Inc., St.    

    Louis, MO, Cat. No. P-0982) Make a bigger volume for multiple samples when       

    necessary  (Master Master-MM; Appendix B). 

 

2. Add 1 μl of both sense and antisense primers (20 ρmol) to the RT-PCR Mix of each   

    gene.  

 

3. Place the 96-well plate in the thermocycler. 

 

4. Run one cycle of 1 minute at 95°C; 35 cycles of PCR (95°C for 30 seconds, 55°C for    

    30 seconds, and 72°C for 30 seconds); followed by 72°C for 4 minutes; with a final   

    hold at 4°C. 
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Q-PCR PROTOCOL 

 

1. Prepare a Q-PCR Mix with 10 μl of SsoFast™ EvaGreen® Supermix 2X (Bio-Rad     

    Laboratories, Inc., Hercules, CA, Cat. No. 172-5200) and 6 μl of water    

   (Appendix B)  

 

2. Make sure to prepare enough Q-PCR Mix per cDNA sample/Calibrator/H2O for the 6    

    genes). 

 

3. Prepare a Q-PCR Master Mix by adding 1 μl of each primer (20 pmol of sense and  

    antisense) (Appendix B) for each gene. 

 

4. Prepare a Q-PCR Reaction Mix by adding cDNA/Calibrator/ H2O. 

 

5. Place the sample in it respective well and put the plate in the thermocycler 

 

6.  Run one cycle of 3 minutes at 95°C; 40 cycles of PCR (95°C for 10 seconds and  

     55°C for 45 seconds); a melting curve consisting of 95°C for 1 minutes followed by  

     55°C for 1 minute, a step cycle with 80 repeats starting at 55°C for 10 seconds with a  

    +0.5°C/seconds transition rate; and a final hold at 4°C. 
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GENE EXPRESSION QUANTIFICATION PROTOCOL 

  

1. Use a mix of cDNA from an elongated day-14 in vivo derived embryo was used as a 

    calibrator for the target genes. The same calibrator mix should be used throughout all 

    the experiments and plates. 

 

2. Use GAPDH as the endogenous control gene. 

 

3. Use the signal of the reference gene GAPDH to normalize the target gene signals of 

    each sample. 

 

4. Calibrate the ΔCT for gene transcription against the sample used as calibrator. 

 

5. Report gene quantification as relative transcription or the n-fold difference relative to    

    a calibrator. 

 

6. Calculate the relative linear amount of target molecules relative to the calibrator by 

    using the following equation.  

 

 n-fold difference =  Efficiency Target GeneΔCTT        

                                           Efficiency Reference GeneΔCTR 

 

7. Efficiencies are obtained via a 10-fold dilution standard curve performed prior to 

    analysis. 

 

8. Calculate the ΔCTT value by subtracting the sample CT value of the target gene from 

    the calibrator CT value of the target gene. 

 

9. Calculate the ΔCTR value by subtracting the sample CT value of the reference gene 

     (GAPDH) from the calibrator CT value of the reference gene. 
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IN VIVO EMBRYO PRODUCTION – SYNCHRONIZATION AND SUPEROVULATION 

 

1. Administer an injection of 15 mg progesterone and 2.5 g estradiol-17β    

    intramuscular (IM) at CIDR insertion (day 0), or start of treatment to each donor. 

 

2. Administer IM Follitropin-V (Bioniche Animal Health, ON) FSH injections (20 mg/ml) 

to each donor as follows: 

 

 Day 4: A.M. 1.8 ml 

  P.M.  1.8 ml 

 Day 5: A.M. 1.5 ml 

   P.M. 1.5 ml 

 Day 6: A.M. 1.1 ml 

   P.M. 1.1 ml 

 Day 7: A.M. 0.6 ml + PGF2α 

   P.M. 0.6 ml + PGF2α 

  Total FSH Dose: 10 ml 

 

3. Administer Lutalyse PGF2α injections (5 mg/ml) IM to each donor in the morning and    

    night of day 7 of  treatment. 

 

4. On the P.M. of day 7 of treatment remove the CIDR inserts. 

 

5. Check for estrus (AI is performed 12 and 24 hours after the onset of standing estrus). 

 

6. Nonsurgically collect embryos from donors on day 8 post-AI 
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APPENDIX B 

 

MEDIA FORMULATIONS AND STOCK SOLUTIONS 

 

SPERM – TL1 

 

Component   Product Number  Company  Final (mM)  mg/100 ml 

 

NaCl    S-5886   Sigma  100   582 

KCl    P-5405   Sigma  3.1   23 

NaHCO3   S-5761   Sigma  25            209 

NaH2PO4   S-5011   Sigma  0.29   3.48 

HEPES   H-3375   Sigma  10   238 

Lactic acid   L-7900   Sigma  21.6   183.4 μl 

Phenol red   P-0290   Sigma  1 μl/ml  100 μl 

*CaCl2·2H20  C-7902   Sigma  2.1   29 

*MgCl2·6H20  M-2393   Sigma  1.5   31 

 

1Add NaCl, KCl, NaHCO3, NaH2PO4, HEPES, lactic acid, and phenol red 

into a beaker. Bring volume to 90ml with ddH2O and dissolve completely. 

*CaCl2·2H2O and MgCl2·6H2O should be dissolved in a small amount of ddH2O 

before added to other ingredients. Adjust volume to 100ml with ddH2O.Vacuum-filter 

into a plastic bottle. Date, label “SP-TL”, and store at 4oC for one month. 
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IVF – TL1 

 

Component  Product Number  Company  Final (mM)  mg/100 ml 

 

NaCl    S-5886   Sigma  114   666 

KCl    P-5405   Sigma  3.2   23.5 

NaHCO3   S-5761   Sigma  25   210.4 

NaH2PO4   S-5011   Sigma  0.34   4.08 

Lactic acid   L-7900   Sigma  10   84.92 μl 

Phenol red   P-0290   Sigma  1 μl/ml  100 μl 

*CaCl2·2H20  C-7902   Sigma   2   30 

*MgCl2·6H20  M-2393   Sigma  0.5   10 

 

1Add NaCl, KCl, NaHCO3, NaH2PO4, lactic acid, and phenol red into a beaker. 

Bring volume to 90ml with ddH2O and dissolve completely. *CaCl2·2H2O and 

MgCl2·6H2O should be dissolved in a small amount of ddH2O before added to 

other ingredients. Adjust volume to 100ml with ddH2O. Vacuum-filter into a 

plastic bottle. Date, label “IVF-TL”, and store at 4°C for one month. 
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HEPES – TL1 

 

Component   Product Number  Company  Final (mM)  mg/500 ml 

 

NaCl    S-5886   Sigma  114   3330 

KCl    P-5405   Sigma  3.2   120 

NaHCO3   S-5761   Sigma  2   84 

NaH2PO4   S-5011   Sigma  0.34   20.4 

HEPES   H-4034   Sigma  10   1200 

Lactic acid   L-7900   Sigma  10   424.6 μl 

Phenol red   P-0290   Sigma  1 μl/ml  500 μl 

*CaCl2·2H20  C-7902   Sigma  2   150 

*MgCl2·6H20  M-2393   Sigma  0.5   50 

 

1Add NaCl, KCl, NaHCO3, NaH2PO4, HEPES, lactic acid, and phenol red into a 

beaker. Bring volume to 480 ml with ddH2O and dissolve completely. 

*CaCl2·2H2O and MgCl2·6H2O should be dissolved in a small amount of ddH2O 

before added to other ingredients. Adjust volume to 500 ml with ddH2O.Vacuum-filter 

into a plastic bottle. Date, label “HEPES-TL”, and store at 4°C for one month. 

 

IVF – TALP1 

 

Component     Product Number  Company   Amount 

 

BSA, EFAF     A-6003   Sigma   60 mg 

IVF-TL     -    -    9.8 ml 

Na pyruvate (20 mM stock) -    -    100 μl 

Pen/Strep     15140-122  Gibco    100 μl 

 

1pH should be ~7.4 – Sterile-filter. Date, label “IVF-TALP”, and store at 4°C for one  

  week. 
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HEPES – TALP1 

 

Component     Product Number  Company   Amount 

 

BSA, Fraction V    A-4503   Sigma   60 mg 

HEPES-TL     -    -    20 ml 

Na pyruvate (20 mM stock) -    -    200 μl 

Pen/Strep     15140-122   Gibco    200 μl 

 

1pH should be ~7.4 – Sterile-filter. Date, label “HEPES-TALP”, and store at 4°C for one  

  week. 

 

 

SPERM – TALP1 

 

Component     Product Number  Company   Amount 

 

BSA, Fraction V    A-4503   Sigma   60 mg 

SPERM-TL     -    -    9.5 ml 

Na pyruvate (20mM stock)  -    -    500 μl 

Pen/Strep     15140-122   Gibco    100 μl 

 

1pH should be ~7.4 – Sterile-filter. Date, label “SP-TALP”, and store at 4°C for one   

  week. 
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SOF STOCK1 

 

Component   Product Number  Company  Final (mM)   mg/100 ml 

 

EDTA (add first)  E-5134   Sigma  0.01    100 μl stock 

NaCl    S-5886   Sigma  107.7    629.4 

KCl    P-5405   Sigma  7.16    53.38 

KH2PO4   P-5655   Sigma  1.19    16.2 

NaHCO3   S-5761   Sigma  25.07    210.6 

DL-lactic acid  L-7900   Sigma  3.3    47.33 μl 

*MgCl2·6H2O  M-2393   Sigma  0.49    9.96 

*CaCl2·2H2O  C-7902   Sigma  1.71    25.14 

Phenol red   P-0290   Sigma  1 μl/ml   100 μl 

 

1Add all components except CaCl2·2H2O and MgCl2·6H2O to 90 ml ddH2O and 

dissolve completely. *Separately, dissolve CaCl2·2H2O into ~5ml ddH2O and 

then combine with other ingredients. Separately, dissolve MgCl2·6H2O into ~5ml 

ddH2O and then combine with other ingredients. Bring pH to 7.3 (Osmolarity of 

~270 mOsm) and volume to 100 ml. Vacuum filter stock solution into a plastic 

bottle; store at 4°C for up to one month. 
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SOFaa MEDIUM1 

 

Component    Product Number   Company   Amount 

 

SOF Stock    -     -    4.542 ml 

L-glutamine    G-8540    Sigma   25 μl stock 

Na pyruvate    P-4562    Sigma   82.5 μl stock 

Glucose    G-7021    Sigma   150 μl stock 

BSA EFAF    A-6003    Sigma   15 mg 

Pen/Strep    15140-122    Gibco    50 μl 

BME Essential 

Amino acids, 50X  B-6766    Sigma   100 μl 

MEM Nonessential 

Amino acids, 100X   M-7145    Sigma   50 μl 

 

1Made medium on day of use; medium should be pink color. Sterilize the solution 

by filtration and store at 4°C for one week. 

 

 

HEPARIN STOCK1 

 

Component    Product Number   Company   Amount 

 

Heparin    H-3149    Sigma   1 mg 

0.9% Saline    -     -    20 ml 

 

1Sterile filter and aliquot 100 μl into sterile 0.5 ml microcentrifuge tubes. Store at -20°C 

indefinitely. 
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PHE STOCK1 

 

Component    Product Number   Company   Amount 

 

1 mM Hypotaurine   H-1384    Sigma   5 ml 

2 mM Penicillamine   P-4875    Sigma   5 ml 

250 mM Epinephrine  E-1635    Sigma   2 ml 

0.9% Saline    -     -    8 ml 

 

1Prepare primary stocks of 1 mM hypotaurine (Sigma H-1384) (1.09 mg/10 ml 

saline), 2 mM penicillamine (Sigma P-4875) (3 mg/10 ml saline) and 250 mM 

epinephrine (Sigma E-1635) [1.83 mg/ 40 ml of the following solution (165 mg 

60% Na lactate syrup, 50 mg Na metabisulfite (Sigma S-9000) and 50 ml water]. 

Epinephrine is easily oxidized by direct light so take precautions to avoid this 

problem (wrap in aluminum foil or place in dark container). Sterile filter and 

aliquot 100 μl into sterile 0.5 ml microcentrifuge tubes. Store in a light resistant 

container at -20°C indefinitely. 

 

 

EDTA STOCK1 (0.1 mM) 

 

Component    Product Number   Company   Amount 

 

EDTA     E-5134    Sigma   3.8 mg 

ddH2O    -     -    1 ml 

 

1Do not filter. Make fresh each time. 
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Na PYRUVATE STOCK1 (20 mM) 

 

Component    Product Number   Company   Amount 

 

Pyruvic acid    P-4562    Sigma   22 mg 

ddH2O    -     -    10 ml 

 

1Sterile filter into aluminum foil wrapped 15 ml tube. Store at 4°C for two months. 

 

 

HYALURONIDASE SOLUTION1 

 

Component    Product Number   Company   Amount 

 

HEPES-TALP    -      -    10 ml 

Hyaluronidase   H-3506    Sigma   10 mg 

 

1Filter and aliquot 1 ml into 1.5 ml tubes. Solution may be stored at -80°C 

indefinitely. 

 

 

L- GLUTAMINE STOCK1 (200 mM) 

 

Component    Product Number   Company   Amount 

L-glutamine    G-8540    Sigma   2.923 g 

0.9% Saline    -     -    100 ml 

 

1Sterile filter into 100 μl aliquots in sterile 0.5 ml microcentrifuge tubes. Store at -20°C 

indefinitely. 
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GLUCOSE STOCK1 (50 mM) 

 

Component    Product Number   Company   Amount 

 

D-glucose    G-7021    Sigma   90.08 mg 

ddH2O    -     -    10 ml 

 

1Sterile-filter into 15 ml tube. Store at 4°C for 2 months. 
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iSCRIPT RT MIX 

 

Component    Product Number   Company   Amount 

 

iScript Rxn Mix   170-8891    BioRad   4 μl 

ReverseTranscriptase  170-8891    BioRad   1 μl 

mRNA                                 -     -    11 μl  

H2O     170-8891    BioRad   4 μl 

 

RT-PCR  MIX (M) 

 

Component    Product Number  Company             Amount 

                  

H2O
1                  -     -    19 μl 

Jump Start™ ReadyMix™  P-0982     Sigma   25 μl 

cDNA sample   -    -   2 μl 

 

1Autoclave the water before use. 

 

 

RT-PCR REACTION MIX (RM) 

 

Component    Product Number  Company   Amount 

                 (Per Sample) 

RT-PCR M               -     -    46 μl 

Primer 1                -     Invitrogen   2 μl 

Primer 2      -     Invitrogen   2 μl 
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Q-PCR MIX  

 

Component    Product Number   Company   Amount 

           (Per Well) 

SsoFast™  

EvaGreen® Supermix 172-5201    BioRad   10 μl  

H2O
1      -     -     6 μl 

 

1Autoclave the water before use. 

 

 

Q-PCR MASTER MIX (MM)  

 

Component    Product Number   Company   Amount  

           (PerSample/Pool)1 

Q-PCR M   -    -    16 μl 

Primer 1    -     Invitrogen    1 μl 

Primer 2    -     Invitrogen    1 μl 

 

1Analyzing 6 genes; Multiplied per well values by 6.2 to ensure enough. 

Note: To make a mix for all pools of embryos, leave out the cDNA/Calibrator/ 

H2O and multiply by the number of pools. Again overcompensate for loss 

in pipetting. For example, if analyzing 12 pools, multiply by 12.5. 

 

Q-PCR REACTION MIX (RM) 

 

Component    Product Number   Company   Amount  

            (PerSample/Pool) 

 

Q-PCR MM    -     -    18 μl 

cDNA/Calibrator/ H2O  -    -   2 μl 
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