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ABSTRACT 

 

An increasing number of studies suggest that the complex microbial community of the 

human gut may have an important role in human health and disease conditions such as obesity and 

diabetes. However, the causal relationship among gut microbiota, obesity, weight loss, and the 

influence of bariatric surgery remains largely unknown. This study investigated the correlation 

between human gut microbiota and obesity via determining how gut microbiota is associated with 

obesity improvement induced by bariatric surgeries (BRS) and low-calorie diet (LCD) treatment. 

Specifically, we investigated the effects of various bariatric surgery (BRS) procedures and a low-

calorie diet (LCD) treatment on the diversity, composition, and metabolism of the gut microbiota 

of obese patients using a combination of robust, high-throughput metagenomic technologies, 

(Illumina sequencing and HuMiChip microarray), quantitative polymerase chain reaction (qPCR), 

and gas chromatography.  

We discovered that following BRS procedures or LCD treatment the gut microbial 

community structure significantly altered, along with efficient, persistent obesity improvement 

after bariatric surgeries and, to a lesser degree, LCD treatment. First, microbial richness and 

diversity were significantly increased after both treatments. Second, the distribution and 

composition of microbial community were switched toward a healthier profile. For instance, 

phylum Actinobacteria was significantly reduced, while phylum Verrucomicrobia was 

significantly increased at week 52 after BRS. Phylum Firmicutes was significantly reduced, while 

phylum Bacteroidetes was significantly increased after LCD treatment. Microbial community 

structure at different taxonomic levels and their connectivity were significantly correlated with 

obesity-related physiological variables, and high-molecular-weight adiponectin (ADPHMW) 

seemed to be an important factor that links to the correlation. Third, microbial functional gene 

profile was significantly altered at week 7 post treatments, with the BRS group showing 

significantly higher gene richness and diversity than the LCD group. Over half of the gene 

categories showed significant correlations with obesity-related physiological variables, and the 

entire gene community significantly correlated with obesity-related hormones (adiponectin [ADP], 

APHMW and active Ghrelin [GHRA]), with the gene richness and diversity significantly 

negatively correlated with the active hunger hormone GHRA. In addition, we found that genus 

Akkermansia was significantly correlated with better health condition. It significantly increased 

after BRS treatment, and its change showed a significantly negative correlation with a change of 

obesity conditions following the treatments. Moreover, the concentrations of gut microbial 

metabolites (short-chain fatty acids [SCFAs]) were significantly altered. Total SCFAs and acetate 

were significantly reduced after both treatments. Following BRS, the proportion of acetate was 

significantly reduced, while proportions of propionate and butyrate were significantly increased. 

Correspondingly, the relative abundance of most butyrate-producing genera was significantly 

increased after BRS, and the gene communities relevant to the metabolism of SCFAs significantly 

correlated with obesity-related hormones (ADP, ADPHW, peptide tyrosine tyrosine [PYY] and 

GHRA).  

Using a combination of multiple approaches, this research revealed that both taxonomical 

and functional gut microbial communities significantly correlate with obesity-related variables. 

The study indicates that weight-loss treatments might induce the alteration of gut microbial 

community structure toward a healthier profile, which then further fosters the weight loss and 

better health condition and thus form a positive loop. Obesity-related hormones, including 

ADPHMW, ADP, glucagon-like peptide-1 (GLP-1), PYY, GHR, and GHRA, in particular, 
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ADPHMW, might play important roles in linking gut microbiota and obesity. A pathway of gut 

microbiota-ADPHMW-obesity could be one of the important mechanisms that underlie the 

substantial and persistent weight loss following bariatric surgeries.  

The study suggests several potential therapeutic methods that could be developed for 

treatment and/or prevention of obesity and obesity-related health conditions, including (1) 

supplying obese people with prebiotics (materials that boost beneficial microbes) and/or probiotics 

(beneficial microbes, such as Akkermansia and butyrate-producing bacteria) that can improve the 

healthiness of gut microbial community structure, (2) supplying human subjects with beneficial 

gut microbial products, such as butyrate and propionate that can increase the level of GLP-1 and 

PYY which have been proven to signal satiety, and (3) direct use of hormones such as ADPHMW, 

GLP-1, and PYY with caution of other possible health effects.  
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CHAPTER ONE: INTRODUCTION 

 
1.1 Obesity 

 

Obesity and type 2 diabetes are a growing epidemic worldwide. Among the adults in the 

world’s population in 2008, around 35% were overweight and 12% were obese, nearly doubled 

when compared to the obesity rate of 6.5% in 1980 (WHO). In the United States, the prevalence 

of obesity among adults has increased from 15% to 33% during 1980-2004 and currently more 

than one in three US adults are obese and the prevalence remains stable (Ogden et al., 2007, Ogden 

et al., 2014). 

Obesity has been shown to be associated with multiple comorbidities, including diabetes 

mellitus type 2 (Eckel et al., 2011), metabolic abnormalities (Chang et al., 2012), cardiovascular 

diseases (Nakamura et al., 2014), carcinomas in colon, renal, gallbladder, pancreas, esophageal 

glands, endometria, bone marrow, and breast, malignant melanoma (Dobbins et al., 2013), hepatic 

adipose infiltration (Fabbrini et al., 2010), fertility (Pasquali et al., 2007), and psychological well-

being (Jorm et al., 2003). Type 2 diabetes accounts for 90-95% of all cases of diabetes. With an 

estimated over 300 million affected individuals by 2025, the lifetime risk of developing type 2 

diabetes will approximate 20% (King et al., 1998).  The rapidly growing prevalence of obesity and 

type 2 diabetes impairs the patients’ life quality greatly and places a severe burden on our society’s 

economy. A better understanding of the forming mechanism of obesity is critical to developing 

efficient preventive and therapeutic approaches. 

Obesity is a medical status that surplus body fat has accrued to the degree that it may have 

negative effects on health, causing increased health problems and/or reduced longevity (Haslam 

and James, 2005). The degree of obesity is often measured by body mass index (BMI), the weight 

divided by the height (kg/m2), due to low cost and simplicity, although BMI cannot tell the body 

fat percentage. The World Health Organization (WHO) has characterized overweight as having a 

BMI ≥25.0 kg/m2 and obesity as having a BMI ≥30.0 kg/m2. 

Obesity is well-known as an outcome of energy expenditure and intake imbalance; an 

increased intake of energy-dense foods, especially when combined with reduced physical activity, 

surely predisposes obesity. However, the existence of complex systems that regulate energy 

balance requires that this paradigm is considered in a more comprehensive context (Morton et al., 

2006). Other involved factors may include personal genetics (Vaisse et al., 1998, Clement et al., 

1998) and health status. Moreover, increasing studies have evidenced the links between gut 

microbiota and adiposity (Backhed et al., 2004, Ley et al., 2005, Turnbaugh et al., 2006, DiBaise 

et al., 2008, Zhang et al., 2009, de La Serre et al., 2010, Caesar et al., 2010, Sanz et al., 2010, 

Musso et al., 2011, Tremaroli and Backhed, 2012, Nicholson et al., 2012). 

 

1.1.1 History of Obesity 

 

The term ‘obesity’ was coined during the 1610s. Its origin is the Latin word ‘obesus’, the 

past participle of ‘obdere’, where ‘ob’ means ‘over’ and ‘edere’ means ‘eat’.1 Today obesity is 

                                                             
1 Dictionary.com Unabridged. Retrieved December 8, 2016 from Dictionary.com 

website http://www.dictionary.com/browse/obesity 

http://en.wikipedia.org/wiki/Metabolic_syndrome#Diabetes_mellitus_type_2
http://en.wikipedia.org/wiki/Metabolic_syndrome#Diabetes_mellitus_type_2
http://www.iciba.com/esophageal_glands
http://www.iciba.com/esophageal_glands
http://www.iciba.com/endometria
http://www.iciba.com/hepatic_adipose_infiltration
http://www.iciba.com/hepatic_adipose_infiltration
http://www.dictionary.com/browse/obesity
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defined as a medical condition associated with a variety of adverse health effects and reduced 

longevity due to the accumulation of excessive amounts of surplus body fat (Haslam and James, 

2005). The degree of obesity is often measured by the body mass index (BMI), the weight divided 

by the square of the height (kg/m2) of the individual. Measuring the BMI is simple and inexpensive. 

However, the BMI does not reveal the percentage of body fat. The World Health Organization 

(WHO) has associated the condition of being overweight with a BMI of 25–30 and obese with a 

BMI of 30–35. 

Before the Neolithic revolution, which began in the Middle East about 12,000 years ago, 

people obtained food mainly by hunting and gathering. The Neolithic revolution resulted in a 

transition in the methods of obtaining food to farming (agriculture of crops and domestication of 

animals). During that period, however, food production was a limiting factor to the human 

population, as was the primitive state of medicine and poor living conditions. As a result, being 

corpulent was difficult and was seen as a sign of health and good fortune. After the Industrial 

Revolution, Medical Revolution, and Green Revolution in the 19th and 20th centuries, the 

availability of food increased greatly, and living conditions improved dramatically. One the 

consequence of these revolutions was the increases in the chances for people to lead a sedentary 

lifestyle and to live a long life. The result was a dramatic increase in the incidence of obesity in 

the human population.  

Obesity has recently become a growing epidemic worldwide. The incidence of being 

overweight or obese increased markedly worldwide between 1980 and 2013. Among adults in the 

world’s population in 2008, around 35% were overweight, and 12% were obese. The latter 

percentage was nearly double the corresponding figure of 6.5% in 1980. In the United States, the 

prevalence of obesity among adults increased from 15% to 33% from 1980 to 2004. Currently, 

about 35% of US adults are obese, and another 6% are extremely obese (BMI > 40) (Ogden et al., 

2007, Ogden et al., 2014). Since 2005, those percentages have been stable. 

 

1.1.2 Causes of Obesity 

 

The storing of adipose tissue (i.e., body fat) in the human body is a result of evolution.  

During prehistoric times, when people survived by hunting and gathering food in a harsh 

environment, the food was scarce, and the supply was irregular. Natural selection favored a 

phenotype that was able to store large amounts of fat from a small supply of food and to release it 

as frugally as possible over the long run. Thus, those individuals who could store fat easily had an 

evolutionary advantage. However, with the advancement of science and technology, and in 

particular with the significant changes in the methods of obtaining food as a result of the Neolithic 

Revolution and Green Revolution, food became much less of a limiting resource, and those thrifty 

genes and the function of storing fat made people liable to become obese. Body fat was defined as 

an organ that contained its own genetics, cellular biology, hormones, and receptors, instead of a 

place that could only passively store energy (Kershaw and Flier, 2004). 

Advances in the understanding of the thermodynamics of food utilization and of the 

nutritional aspects of the metabolism of food have refined the understanding of obesity. After the 

introduction of chemical analytical methods at the end of the 18th century, the thermodynamics of 

the nutrition of the human body was elucidated based on the pioneering studies of respiration, the 

acquisition of nitrogen required for tissue synthesis, and the association of muscular mechanical 

work with the generation of heat, concomitant with milestone discoveries related to the physiology 

of digestion. These advances in understanding began with the studies of William Beaumount on 
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gastric physiology (Beaumont, 1977, Eknoyan, 2006) and the early studies of hunger, beginning 

with Walter Cannon’s studies of hunger sensation (Cannon and Washburn, 1993, Eknoyan, 2006). 

This research was followed by studies of gastrointestinal absorption, feelings of satiety, disorders 

related to nutritional deficiencies, and in particular the effects of vitamin and trace mineral 

deficiencies (Wilmshurst and Crawley, 1980, Krotkiewski, 1984, Wisen and Hellstrom, 1995, 

Bottiglieri, 1996, Jovanovic-Peterson and Peterson, 1996, Suchner et al., 1996, Eknoyan, 2006).        

Currently, obesity is understood to be the result of an imbalance between energy 

expenditure and caloric intake. An excessive intake of energy-dense foods (e.g., high-fat and high-

sugar foods), especially when combined with a lack of physical activity (e.g., much time spent 

sitting), predisposes a person to obesity. However, the pathogenesis of obesity is not as simple as 

that. The existence of complex systems that regulate energy balance requires that this paradigm is 

considered in a more comprehensive context (Fabricatore and Wadden, 2003). Other relevant 

factors include the following. 

1. Genetic susceptibility (Clement et al., 1998). For example, Prader-Willi syndrome caused 

by several deleted or unexpressed genes on paternal chromosome 15 (Kishimoto et al., 

2015), miR-26b mutation (Xu et al., 2015), or whole genome epigenetic changes (Franks 

and Ling, 2010); 

2. Maternal pre-pregnancy obesity (Daraki et al., 2015); 

3. Other diseases, for example, tumor-induced hypothalamic damage (Steele et al., 2013), 

decreased integration of brain regions for awareness of body and emotional states leading 

to less successful self-regulation (Paolini et al., 2015), and mental disorders (Fezeu et al., 

2015); 

4. Short sleep duration was identified as an independent risk factor for overweight and obesity 

(Beccuti and Pannain, 2011, Knutson, 2012) for children and adults (Rutters et al., 2010, 

Liu et al., 2012). Short sleep duration may trigger increased food intake to meet the energy 

needs during the elongated awake time (Hasler et al., 2004), impact hormones regulating 

appetite, and lead to an increase of the appetite for carbohydrate-rich food (Spiegel et al., 

2004). Short sleep duration is also related to reduced glucose tolerance, another risk factor 

for overweight and obesity (Van Cauter and Knutson, 2008). In addition, habitual sleep 

variability but not habitual sleep duration was found significantly correlated with 

abdominal obesity, which may result from elevated caloric intake, especially carbohydrates 

(He et al., 2005).  

5. Medical practices such as the use of steroids (Merritt et al., 1986). 

6. Environmental stress. For instance, chemical exposure to di-(2-ethylhexyl) phthalate 

(DEHP) increases the risk of obesity (Lee et al., 2016).  

 

1.1.2.1 The Microbiota in Human Gut May Have an Important Role in the Regulation of 

Energy Balance and Weight 

Obesity arises as a consequence of alterations in energy balance, i.e., how the body 

regulates energy intake, expenditure, and storage.  An increased intake of energy-dense foods, 

especially when combined with reduced physical activity, surely contributes to the high prevalence 

of obesity, however, the existence of complex systems that regulate energy balance requires that 

this paradigm is considered in a larger context (Morton et al., 2006). There are 10 trillion to 100 

trillion microorganisms normally residing within the human gastrointestinal tract, collectively 

referred to as the gut microbiota. Recent studies suggest that obesity may affect the diversity of 

the gut microbiota (Ley et al., 2005), which in turn may play a role in the pathogenesis of obesity 
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by increasing the host’s energy-harvesting efficiency (Ley et al., 2005, Ley et al., 2006). A review 

article by DiBaise and colleagues (DiBaise et al., 2008) examined the evidence supporting these 

claims; much of it obtained recently using tools such as sequencing of 16S rRNA gene clone 

libraries, metagenomics, DNA microarrays, microbiota transplant, and gnotobiotic knockout mice. 

It concluded that the gut microbiota has a role in the regulation of energy balance and weight. The 

evidence further suggests a role for a gut-derived factor, such as lipopolysaccharide (LPS), in the 

pathogenesis of obesity-related type 2 diabetes (DiBaise et al., 2008).  A study observed a large 

bacterial population shift in the post-RYGB individuals, with the decreased level of interspecies 

H2 transfer between bacterial and archaeal species that is possibly an important mechanism for 

increasing energy uptake by the human large intestine in the obese patient; it provides another 

perspective about the link between the gut microbiota and host energy balance (Zhang et al., 2009). 

Despite these very implicative findings, studies are needed to better understand the causal 

relationship among gut microbiota, obesity, weight loss, and the influence of various bariatric 

surgery procedures. 

 

1.1.3 Harmful Effects of Obesity 

 

Attitudes to obesity began to be negative in the 18th century, mainly for esthetic reasons. 

Since the 18th century, the negative impacts of obesity on a person’s quality of life have started to 

be documented. In the middle of the 18th century, obesity was recognized as a cause of 

compromised health. Morbidity and mortality related to obesity have been reported from the 

beginning of the 20th century.  

Obesity has been shown to be associated with multiple co-morbidities, including the 

following: 

 diabetes mellitus type 2 (Kahn et al., 2006);  

 insulin resistance (Kahn and Flier, 2000);  

 metabolic syndrome (MetS)2;  

 immune dysregulation (Rizzo and Sen, 2015); 

 chronic kidney disease (CKD) (e.g. glomerular hyperfiltration) (associated with non-

diabetic obesity) (Srivastava, 2006, Hsu et al., 2006, Gore et al., 2006, Ogna et al., 2016); 

 cardiovascular diseases (CVD) (e.g. Myocardial dysfunction) (Nakamura et al., 2014); 

 atherosclerosis (Kim et al., 2015, Gustafson and Smith, 2015); 

 non-alcohol fatty liver disease (NAFLD) (Fabbrini et al., 2010); 

 malignant melanoma (Morpurgo et al., 2012); 

 cancers such carcinomas in the colon (Chen and Huang, 2015), kidneys (Wilson and Cho, 

2016), bladder (Sun et al., 2015), pancreas (Wang et al., 2015), esophageal glands (Chen 

et al., 2012), endometria (Kaaks et al., 2002), and postclimacteric breast tissue (Dobbins et 

al., 2013)  and prostate (Joshu et al., 2011); 

 hepatic adipose infiltration (Fabbrini et al., 2010); 

 increased fracture risk (Gonnelli et al., 2014); 

 gout (Lee et al., 2015); 

                                                             
2 A cluster of associated metabolic traits that collectively confer unsurpassed risk for development of cardiovascular 

disease (CVD) and type 2 diabetes compared to any single CVD risk factor CHANG, Y., RYU, S., SUH, B. S., YUN, 

K. E., KIM, C. W. & CHO, S. I. 2012. Impact of BMI on the incidence of metabolic abnormalities in metabolically 

healthy men. Int J Obes (Lond), 36, 1187-94. 

http://en.wikipedia.org/wiki/Metabolic_syndrome#Diabetes_mellitus_type_2
http://www.iciba.com/esophageal_glands
http://www.iciba.com/endometria
http://www.iciba.com/hepatic_adipose_infiltration
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 osteoarthritis (OA) (Messier, 2009); 

 obstructive sleep apnea (Schwartz et al., 2008); 

 asthma (Delgado et al., 2008); 

 chronic systemic inflammation (Gogebakan et al., 2015, Todendi et al., 2016); 

 increased reproductive disorder such as incipient secondary hypogonadism in middle-aged 

men (Pasquali et al., 2007) and polycystic ovarian syndrome in women (Sam, 2007); 

 malaise (Fabricatore and Wadden, 2003); 

 infertility (Pasquali et al., 2007); 

 poor pregnancy outcomes, including gestational diabetes, fetal macrosomia, stillbirth, post-

term pregnancy, and cesarean delivery (Mission et al., 2015); 

 reduced telomere length and accelerated aging (Kim et al., 2009); 

 lower back pain (Shiri et al., 2010); 

 decreased postural control and aiming performance (Boucher et al., 2015). Aiming tasks 

of pointing to two different sizes of targets were given to obese and normal-weight children 

in standing and sitting conditions. The measured hand movement time and mean speed of 

the pressure center switch were used for evaluating their postural stability during the 

movement, and obese children showed significantly higher values for both two 

measurements, which may be caused by longer slowdown period during the aiming 

performance. It indicated that obesity should have added a postural curb to obese children 

and lead them to spend longer time to correct their movements owing to their body’s higher 

postural instability during the aiming performance test.  

 increased risk of neurodegenerative disorders (e.g. Alzheimer disease (AD)) (Petrov et al., 

2016); 

 psychiatry disorders (e.g. mood and anxiety disorders) (Vieira et al., 2015);  

 and social stigmatization.  

 

Thus, the quality of life of an obese person may be greatly impaired. The numerous 

monetary costs associated with obesity and its rapidly growing prevalence have led to very 

significant public health costs. Development of efficient preventive approaches and therapeutic 

treatments for obesity would, therefore, be highly desirable. However, such developments will 

require a better understanding of the causes of obesity. 

 

1.1.4 Treatment of Obesity 

 

Limiting calorie intake and increasing energy expenditure are well-known methods of 

treating obesity. As more components involved in the pathogenesis of obesity are identified, more 

methods for preventing or treating obesity may become available. For example, identification of 

the relative deficiencies of various nutrients can provide a basis for medical therapy of obesity 

with drugs. Now a variety of medicines and dietary supplements are available to help people lose 

weight. Dietary supplements, for example, include vitamins, trace minerals, fiber, probiotics 

(beneficial microorganisms), and/or prebiotics (substances that can support the growth of the 

probiotics). Because the severity of obesity in some groups of people has begun to seriously impact 

morbidity and mortality, treatments are urgently needed, and surgical intervention has been 

introduced to help people lose weight because it is more efficacious than other traditional methods 

such as calorie restriction, exercise, and prescription medication, all of which are limited with 

respect to their impact on weight. The evolution of methods for treating obesity is reflected in the 
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changes of the name of the society for obesity management. The National Obesity Society was 

first established in the 1950s; it was then renamed the National Glandular Society, then the 

American College of Endocrinology and Nutrition, and finally the American Society of Bariatrics3 

in 1961. The Society subsequently divided into the American Association of Bariatrics Surgery4 

and the American Society of Bariatrics Physicians (Eknoyan, 2006).  

 

1.2 Gut Microbiota 

 

1.2.1 Microbiota 

 

‘Microbiota’ was coined by American molecular biologist Joshua Lederberg in 2001, by 

combining ‘micro(be)’, which means microorganisms, and ‘biota’, which means life of a region, 

and was defined as ‘the ecological community of commensal, symbiotic and pathogenic 

microorganisms that literally share our body space’ (Lederberg and McCray, 2001). Lederberg 

also coined the term ‘microbiome’ and was defined as ‘the totality of microorganisms and their 

collective genetic material present in or on the human body or in another environment’, by 

combining ‘micro(be)’, which means microorganisms, and ‘biome’ which means a complex biotic 

community characterized by distinctive species and maintained under the environmental 

conditions of a region. The terms were coined to emphasize the importance of the microbial 

inhabitants of human in human health and disease. The difference between these two terms are 

that the microbiome includes the genetic material of the microbes, but they have been used as 

synonymous concepts in most cases.   

 

1.2.2 Human Microbiota 

 

There is indigenous microbiota in skin, eyes, respiratory system, oral cavity, the 

gastrointestinal tract, the urinary system, and the reproductive system in human (Wilson, 2005). 

There are a variety of environmental determinants at differential locations of the skin and the main 

determinants that influence the survival and growth of the microbial inhabitants of the skin are 

temperature, moisture content, pH, oxygen, and carbon dioxide concentration, light, nutrient 

availability, interactions with other microbes and host defense systems. Different environmental 

conditions of the different skin locations (e.g. forehead, ear, hands, arm, leg, foot sole, etc) make 

their community composition different. There are some diseases caused by members of the skin 

microbiota, such as acne, wound infection, and erythrasma.  

Each location site has its specific anatomy and physiology of the respiratory tract and its 

specific antimicrobial defense mechanisms, environmental determinants at different regions of that 

location; Indigenous microbiota of the location (1. key members of that location; 2. ways to the 

acquisition of the respiratory microbiota, 3. community composition at different sites within the 

location, 4. Interactions among members, 5. Dissemination of organisms, 6. Effects of antibiotics 

and other interventions on the location); diseases caused by members of the microbiota.  

 

1.2.3 Human Intestinal Microbiota  

 

                                                             
3 Bariatrics reflects the evolution of the methods for treating obesity via appetite control, calorie restriction, and 

exercise. 
4 Bariatric surgery is the use of surgical intervention to treat obesity. 
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Human intestinal microbiota is an aggregation of microbes dwelling in human 

Gastrointestinal (GI) tract, including the mouth, esophagus, stomach, small intestine (duodenum, 

jejunum and ileum), large intestine (caecum, ascending colon, transverse colon, descending colon 

and sigmoid colon), rectum and anal canal. Gut microbiota is composed of around 300-1000 

species and can be bacteria, archaea, yeast, fungi and protozoa, while 99% of them are made up of 

30-40 species, and 1/3 of their components is common among the population. The net weight of 

the microbial components of human being are around 1.25 kg (1-2 kg; 60% of dry feces.), and 

their cell numbers are around 1014, which is 10 times of the human being’s cell number, and 100 

times as many genes as the human genome, most of which confer physiological function. 

In the human gastrointestinal (GI) tract there are normally about 100 trillion 

microorganisms, collectively referred to as the gut microbiota (Dore et al., 2013). The gut flora 

can be derived via early colonization from the mother during delivery, diet, the environment in 

which the person lives, and medical practices such as vaccination, administration of antibiotics, 

and poor hygiene (Guarner and Malagelada, 2003). The gut community is typically dominated by 

30–40 bacterial species but is composed of 300–1000 species spanning the kingdoms of bacteria, 

archaea, yeast, fungi, and protozoa (Sears, 2005, Guarner and Malagelada, 2003). Gut microbes 

exist in human GI systems as symbionts and may exert either beneficial or harmful effect on human 

health under different scenarios (Sekirov et al., 2010). On the one hand, some gut species (1) help 

the host process certain components of the host’s diet that would otherwise be indigestible for the 

host by converting the organic compounds into usable forms (Cummings and Macfarlane, 1997), 

(2) synthesize vitamins in the B and K groups (Hill, 1997, LeBlanc et al., 2011), (3) metabolize 

primary bile acids into secondary bile acids (Sayin et al., 2013), (4) inhibit the growth of 

pathogenic microbes (Kamada et al., 2013),  and (5) maintain the homeostasis of the immune 

system (Arrieta and Finlay, 2012). On the other hand, some species may interfere with the 

excretion of xenobiotics by causing them to enter an enterohepatic cycle (Bjorkholm et al., 2009), 

induce inflammatory bowel disease (IBD) (Frank et al., 2007),  and even influence brain functions 

and behavior via neural, endocrine, and immune pathways (Cryan and Dinan, 2012). 

 

1.2.4 The Microbiota in Human Gut May Play an Important Role in Regulating Adiposity  

 

In addition, increasing research results support the functions of gut microbiota in energy 

balance and fat storage regulation. Some human gut microbes take part in the metabolism of bile 

acids whose main activity is to facilitate the metabolism of dietary fat, affecting signaling pathways 

complicated in the metabolism of energy and lipid, and leading to changes in lipid peroxidation, 

hepatic fatty acid production, and triglyceride deposition (Nicholson et al., 2012). Also, it has been 

found that gut microbiota in mice increase the process of dietary polysaccharides by microbial 

glycosylhydrolases, promote increased monosaccharides uptake from the gut to the liver by 

doubling of the density of capillaries that underlie the small intestinal villus epithelium, increase 

transactivation of lipogenic enzymes by transcription factors such as ChREBP leading to the 

enhancement of the hepatic triglyceride production, and suppress Fiaf, a circulating LPL inhibitor 

gene of intestinal villus epithelial cells promoting LPL-directed incorporation of these extra 

triglycerides into adipocytes of peripheral tissues (Backhed et al., 2004). Besides, it has been 

discovered that gut microbiota from obese mice helped the host harvest more energy from the diet 

compared with the counterpart from lean ones and transplantation of germ-free mice with ‘obese 

microbiota’ leaded to a significant boost in total body fat than transplantation with ‘lean 

microbiota’, indicating gut microbiota could be a factor contributing to obesity by enhancing the 
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host’s energy-harvesting efficiency (Turnbaugh et al., 2006). Furthermore, gut microbiota changes 

induced by prebiotics in genetic obese mice significantly reduced fat/lean ratio, lowered plasma 

triglycerides and muscle lipid content, reduced food intake, reduced fasting glycemia, and 

advanced glucose tolerance; the mechanisms may involve the increased muscle lipoprotein lipase 

level (Amandine 2011). Gut microbiota changes induced by the administration of prebiotics such 

as oligofructose markedly reduced body weight and fat, and improved glucose homeostasis in diet-

induced obese, although food intake was not significantly changed; the involved mechanisms may 

relate to the significantly increased portal plasma glucagon-like peptide-1 (GLP-1) levels and 

colon proglucagon, as well as the improved sensitivities of leptin in its anorectic, weight-loss, and 

lipogenesis-reducing effects (Everard et al., 2011). Additionally, a large bacteria population shift 

was observed in the post-RYGB individuals, with the decreased level of interspecies H2 transfer 

between bacterial and archaeal species that is possibly an important mechanism for increasing 

energy uptake by the human large intestine in the obese patient (Zhang et al., 2009).  

 

1.3 Bariatric Surgeries (BRS) 
 

1.3.1 Bariatric Surgical Treatments Show Extremely Promising Results in Severe Obesity 

  

Although lifestyle intervention programs with or without pharmacotherapy induce weight 

loss and attenuate insulin resistance, these interventions have limited success, especially in 

severely obese people. Gastric bypass surgery is currently the most effective treatment for 

advanced obesity (BMI > 40), and lesser obesity (BMI > 35) if associated with type 2 diabetes, 

cardiopulmonary insufficiency, sleep apnea, or other comorbidities. Last year alone, there were 

about 200,000 procedures carried out in the US (Mechanick et al., 2008). A meta-analysis of 

135,246 patients from 621 studies over 16 years concluded that after bariatric surgery, overall 

weight loss was 38.5 kg (55.9% of excess weight lost) and that diabetes was improved or resolved 

in 86.6% of the patients (Buchwald et al., 2009). The growing pool of patients undergoing bariatric 

surgery is increasingly recruited to study possible mechanisms underlying the large and sustained 

weight loss and has led to several useful hypotheses (Korner et al., 2006).  

 

1.3.2 A Comparison between Gastric Bypass, Sleeve Gastrectomy, and Gastric Banding 

 

Although gastric bypass as an open surgical procedure has been practiced since the 1980’s, 

a laparoscopic approach to the procedure was not developed until the mid-1990’s (Lonroth et al., 

1996).  Roux-en-Y gastric bypass (RYGB) is an irreversible procedure which alters the intestine 

anatomy and has the greatest operative risk when compared to the other two procedures.  Also, it 

requires supplements after the operation. Of all the bariatric procedures, it produces the most 

effectiveness in terms of safe and sustained weight loss and relieves diabetes effectively, and needs 

lesser requirement for compliance. A review showed excess weight loss achieved via the 

laparoscopic gastric bypass was 26% greater than laparoscopic gastric banding one year after 

treatment (Tice et al., 2008). The laparoscopic gastric bypass is recognized as the standard of care 

for obesity surgery in the United States and is the predominant surgical procedure that has been 

carried out currently. Gastric bypass is also recognized as being the superior procedure for 

reversing type 2 diabetes mellitus. Pories et al. reported that 121 of 146 subjects (83%) with type 

2 diabetes and 150 of 152 subjects (99%) with impaired fasting glucose maintained normal levels 

of glucose, glycosylated hemoglobin, and insulin following the surgery (Pories et al., 1995). 

http://en.wikipedia.org/wiki/Glucagon-like_peptide-1
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Figure 1.3.2.1 A comparison among gastric bypass, sleeve gastrectomy, and gastric banding. 

 

Sleeve gastrectomy (SGx) is an irreversible procedure which alters the intestinal anatomy 

and has less operative risk than RYGB and higher operative risk than Gastric banding. It produces 

slower and less weight loss when compared to RYGB, but faster and more weight loss than the 

gastric band. It needs lesser requirements for compliance than gastric banding. No supplements 

are required after its operation. A case series with many sleeve gastrectomy cases reported a 59% 

excess weight loss after one year and a 62% excess weight loss after two years. A study compared 

35 diabetic subjects who had a sleeve gastrectomy procedure with 50 subjects who had a gastric 

bypass procedure and showed that 4-month after surgery, both groups achieved similar weight 

losses and comparable improvement of their diabetic condition. Within U.S. academic medical 

centers, the use of laparoscopic sleeve gastrectomy is significantly increased and has surpassed the 

adoption of laparoscopic gastric bypass since 2013. Laparoscopic sleeve gastrectomy is now the 

most commonly performed bariatric surgery nationally in academic centers (Esteban Varela and 

Nguyen, 2015). 

Bands placed by an open approach have been utilized since the 1980’s, but the adjustable 

laparoscopic gastric band was not introduced until 1994 (Belachew et al., 1994). The laparoscopic 

approach reduced the complication rate of the surgery from 18.5% to 9.5% and has become the 

procedure of choice for gastric banding (Fried and Peskova, 1995). Gastric banding (GBa) is a 

reversible procedure which does not alter the intestinal anatomy and has the least operative risk 

when compared to the other two procedures. It has the slowest and least total weight loss and needs 

greater compliance after its operation. No supplements are required after its operation. It causes 

weight loss by restriction of caloric intake but the amount of weight loss is less spectacular and 

the weight of individuals are more likely to relapse when they do not follow the compliance. 

Furthermore, in a small study, sleeve gastrectomy was shown to increase PYY levels, a gut 

hormone associated with satiety, to a similar extent as gastric bypass but reduced ghrelin to a 
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greater extent than gastric bypass.  Sleeve gastrectomy gave a statistically significant greater 

reduction in excess body weight (70% vs. 60%) at one year. 

Some studies showed that although gastric bypass produces greater weight loss within a 

year, the adjustable gastric band produces slower weight loss over a longer period so that over the 

long term, its weight loss effect becomes comparable to that of the gastric bypass. Biagini and 

Karam reported a one-year post surgery of 66.7% excess weight loss increased to 76% after 2 years 

and 82% after 4 years, and was maintained after 10 years (Biagini and Karam, 2008).  A review 

reported a 56% excess weight loss at five years with the GBa treatment compared to a 59% excess 

weight loss with the RYGB treatment (O'Brien and Dixon, 2003).   

Also, the adjustable laparoscopically-placed gastric band has been shown to reverse type 2 

diabetes two years postoperatively in 73% in individuals with type 2 diabetes for two years or less 

prior to the procedure (Dixon et al., 2008). The adjustable gastric band treatment has also been 

compared to intensive medical weight loss treatment (a very low-calorie dieting, pharmacologic 

therapy, and a lifestyle change program). After two years, the laparoscopic adjustable band group 

lost 22% of body weight and 87% of excess body weight, which is much higher than the intensive 

medical group (5.5% of initial body weight loss and 22% of excess body weight loss), and reversal 

of the metabolic syndrome and improvement of the life quality was also greater in the laparoscopic 

adjustable gastric band group (O'Brien et al., 2006).    

 

1.3.3 Bariatric Surgeries Help Weight Loss 

 

The mechanisms behind the weight-loss effect by bariatric surgery may include restrictive 

and/or malabsorptive methods (Rubino, 2006). Malabsorptive method bypasses a portion of the 

small intestine and results in malabsorption by reducing the functional size of the absorptive 

surface (Tadross and le Roux, 2009). Gastric bypass and sleeve gastrectomy operations involve 

both restrictive and malabsorptive procedures; they reduce the effective stomach size and/or 

rearrange small intestine causing incoming food bypassing most parts of the stomach, the entire 

duodenum, and a section of the jejunum (Tadross and le Roux, 2009), leading to the reduced the 

amount food that the individual can take and decreased absorption of the food they can consume, 

and therefore achieve the substantial weight loss. The gastric band operation causes weight loss 

by the restrictive method; it reduces energy intake mainly by gastric restriction, and the other 

mechanism underlying these bariatric surgeries may include decreases appetite (Tadross and le 

Roux, 2009), decreases leptin level (Abbott et al., 2005), and increases fasting and postprandial 

satiety (Dixon et al., 2005).  

In addition, sleeve gastrectomy can cause ghrelin, a hormone secreted from the stomach to 

stimulate food intake, to drop by two-thirds and this reduction was maintained over the six-month 

study. It might be caused by the exclusion of the gastric fundus, resulting in the reduced contact 

between the mucosal cells which secretes ghrelin, and nutrients. Ghrelin is predominantly secreted 

in stomach and pancreas, and its secretion is stimulated by the empty stomach. Ghrelin stimulates 

appetite, increase hunger, increase gastric emptying and gastrointestinal motility for preparing for 

eating, induce the release of growth hormone, and hinders the glucose-stimulated insulin 

production. Sleeve gastrectomy can also cause increased levels of postprandial glucagon-

like peptide-1 (GLP-1) and peptide tyrosine tyrosine (PYY), both of which are beneficial to obesity 

improvement by increasing the host’s feeling of satiety (Dimitriadis et al., 2013). GLP-1 is secreted 

in L cells in distal ileum and colon and its secretion is stimulated by the nutrients in the gut lumen. 

It stimulates the production of incretin hormone, promotes the production and release of insulin in 

http://topics.sciencedirect.com/topics/page/Glucagon
http://topics.sciencedirect.com/topics/page/Peptides
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the pancreas, reduces gastric emptying and intestinal motility, and promotes the feeling of satiety. 

PYY is secreted in L cells in distal small intestine and colon and its secretion is stimulated by 

nutrients in the gut lumen. It promotes a feeling of satiety, reduces gastric emptying and intestinal 

motility. That postprandial PYY in obese people was lower than the healthy people and PYY 

infusion reduced calorie intake have resulted in the hypothesis that obesity is a status of PYY 

deficiency (Meek et al., 2016).  

Both RYGB and sleeve gastrectomy groups showed increased postprandial 

Cholecystokinin (CCK) levels after treatment when compared to the pre-operative levels, and the 

sleeve gastrectomy showed a greater increased level of CCK than the RYGB group. CCK is 

secreted in I cells in duodenal mucosa and its secretion can be induced by fatty acids or amino 

acids in the duodenum (Meek et al., 2016). It contracts the gallbladder for releasing bile. It induces 

the secretion of pancreatic enzymes, insulins, glucagon and pancreatic polypeptide (PP). It also 

slows gastric emptying and promotes the feeling of satiety (Meek et al., 2016).  

Patients after gastric bypass are less hungry and prefer healthier food options (le Roux et 

al., 2006, Miras and le Roux, 2013, Sweeney and Morton, 2014, Behary and Miras, 2015). It may 

be achieved by the below mechanisms. 1) Increased/more intense taste acuity (Bueter et al., 2011). 

2) The appeal of sweet fatty food reduces by a corresponding decrease in activation of the brain 

reward to high-energy food cues (functional MRI studies). 3) Patients experiencing post-ingestive 

symptoms with sweet and fatty food develop conditioned aversive behaviors towards the triggers. 

4) Elevation of gut hormones and their effect on the appetite centers of the brain: The enhanced 

nutrient sensing by  the L cells of the distal ileum promote the exaggerated release of the gut 

hormones glucagon-like peptide-1 (GLP-1), peptide tyrosine tyrosine (PYY), and oxyntomodulin 

in response to a meal, which has been shown to reduce hunger and promote satiety and reduce 

food intake; they are likely mediators of the beneficial effects of RYGB on appetite, taste functions 

and food preferences (le Roux et al., 2006, Borg et al., 2006). Also, the reduced postprandial level 

of gastrin after RYGB was observed after two weeks (Stoeckli et al., 2004) and a year (Dirksen et 

al., 2013).  

Gastrin is produced in enteroendocrine G cells mainly in gastric antrum and duodenum and 

its secretion is stimulated by gastric distension & food in the stomach. It increases productions of 

hydrochloric acid, pepsinogen, intrinsic factor, pancreatic secretions and bile, and promotes the 

feeling of satiety. The fall after RYGB might be caused by that RYGB excluded gastric antrum 

and duodenum, and so reduced the contact between nutrients and the cells in the gastric antrum 

and duodenum. The production of hydrochloric acid in the remaining stomach stimulates the 

secretion of secretin and somatostatin, which further hinder the production of gastrin. Reduced 

ghrelin level was also observed after RYGB treatment. It might be caused by the exclusion of the 

gastric fundus, resulting in the reduced contact between the mucosal cells which secretes ghrelin, 

and nutrients (Meek et al., 2016). Oxyntomodulin showed a significant increase after RYGB 

treatment. Oxyntomodulin is secreted in L cells in ileum and its secretion is stimulated by nutrients 

in the gut lumen. It promotes the feeling of satiety, competes for the receptors of GLP-1 and 

glucagon, and increase energy expenditure. An increase in insulin sensitivity (Falken et al., 2011, 

Umeda et al., 2011, Jacobsen et al., 2012) and improved beta cell function (Umeda et al., 2011, 

Jorgensen et al., 2012) after RYGB was observed. A significant decrease in fasting glucose, insulin, 

and improvements of beta-cells sensitivity was observed one week after RYGB treatment 

(Jorgensen et al., 2012) and the effects may result from the benefits of GLP-1 (Jorgensen et al., 

2013). Improved condition of type-2 diabetes was observed in all these three types of bariatric 

surgeries (Brethauer et al., 2013). The gastric band operation causes weight loss by the restrictive 
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method; it reduces energy intake by gastric restriction, decreases appetite (Tadross and le Roux, 

2009), decreases leptin level (Dixon et al., 2005), and increases fasting and postprandial satiety 

(Dixon et al., 2005). However, it is reported that ghrelin was not reduced, but increased after GBa 

treatment (Fruhbeck et al., 2004).  

There could be some other gut hormones and/or mechanisms contributing to the weight 

loss effect of bariatric surgeries. More studies need to be done to disclose them. Recently, 

increasing data has supported that gut microbiota composition is altered after bariatric surgeries 

and the changed gut microbiota might also contribute to the weight loss effect of bariatric surgeries. 

1.4 Low-Calorie Diet Treatment (LCD) 
 

During the 1970s it was noted that starvation was the fastest way to lose weight, but had 

the disadvantage of negative nitrogen balance. Attempts were made to replace the protein lost and 

to substitute some of that protein with carbohydrate to optimize weight loss while minimizing 

nitrogen loss. In the mid-1970s, the success of the diets of consuming around 400 kcal per day was 

reported and people lost an average of 1.5 kg or 1.5% of body weight per week on these regimens 

(Vertes et al., 1977). Not long after this report, a diet containing a poor quality of protein made 

from collagen was related with sudden death, and the pathology of the heart are alike the hearts of 

patients dying of starvation (Sours et al., 1981).  Pringle demonstrated that electrocardiographic 

voltage started to decrease seven weeks after starting starvation, and in the following weeks, a 

prolonged QT interval (a measure of the time between the beginning of the Q wave and the end of 

the T wave in the heart’s electrical cycle), which is a harbinger of malignant ventricular 

arrhythmias, was observed (Pringle et al., 1983). Subsequently, it was discovered that not only 

high-quality protein but also at least 600 kcal per day was necessary to keep the 

electrocardiographic voltage from falling (Greenway et al., 1994).  Diets of between 400 and 800 

kcal per day were shown to make the same effect on weight loss and appetite suppression (Foster 

et al., 1992).  Therefore, low-calorie diets are now classified as those that are 800 kcal per day or 

more, and diets containing less than this or containing poor quality protein are not recommended.  

As with all rapid weight loss of 1.5 kg or more per week, gallstone is easier to formed (Weinsier 

and Ullmann, 1993). Ten grams of fat given with one meal per day can induce maximal contraction 

of the gall bladder and counteracts stasis as a cause of gallstone formation (Stone et al., 1992).  

Thus, the rate of weight loss seen with obesity surgery could be reproduced safely with a low-

calorie diet of 800 kcal per day containing 70 grams of high-quality protein along with 10 grams 

of fat at one meal per day.   

Finally, low-calorie diets (LCD) are still prescribed to those who do not qualify for bariatric 

surgery with mixed success and poorer weight outcomes at the longer term. An alternative dietary 

approach is the use of resistant starch, a carbohydrate that is not digested in the lower intestine but 

is fermented in the colon.  This shift in the substrate for the large intestine alters the microbiota 

profile to one that produces more butyrate and other short-chain fatty acids (Keenan et al., 2006), 

and increases the production PYY and GLP-1 in rodents (Zhou et al., 2008b) and humans 

(Greenway et al., 2007). PYY and GLP-1 have both been shown to decrease food intake and reduce 

body weight while GLP-1 has been shown to increase insulin sensitivity in rodents and human in 

addition to increasing metabolic rate in rodents (Zhou et al., 2008b). 

The low-calorie diet program in this research used the standard of 800 kcal per day by 

using the meal plan including 5 servings of Health one meal replacement shake with added a 

tablespoon of canola oil for protection of the gallbladder, following by weight maintenance by 

prescription of a balanced diet containing 500 kcal/day less than required for body weight 
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maintenance (measured energy expenditure at week 7–500 kcal/day). The participants needed to 

have weekly clinic visits with a dietician for the first 7 weeks and monthly thereafter. 

 

1.5 The ‘BARIA’ Project 

 

The project “Effect of Bariatric Surgery and Weight Loss on Energy Metabolism and 

Insulin Sensitivity” (BARIA) is funded by Endo-Surgery, Inc., and compares the four weight loss 

treatments (RYGB, SGx, GBa, and LCD) on energy expenditure, body composition, insulin 

sensitivity, and the response of gastrointestinal peptides to a standard meal. This $2.4 million 

project performs the most comprehensive and in-depth study so far regarding the bariatric 

procedures and energy metabolism and insulin sensitivity. However, there exists a main scientific 

knowledge gap in how human gut microbiota is impacted by various bariatric procedures and what 

the role of the gut microbiota in obesity and the weight loss process after the surgeries is. 

The mechanistic observations on the relation of gut microbiota profile change by resistant 

starch and their effect on the increased release of GLP-1 and PYY, and the association of RYGB 

with increased GLP-1 and PYY, along with the evidence that suggests the correlation between gut 

microbiota and host energy balance, bring about our central hypothesis that successful weight loss 

following gastric bypass surgery may be partially credited to the alteration of gut microbiota after 

the surgical procedure.  

Twenty-four participants seeking bariatric surgery for weight loss in the Baton Rouge area 

enrolled to the “BARIA” project is included in this study. Four groups will be studied before, and 

7 and 52 weeks after bariatric surgery (RYGB, SGx, and GBa) or low-calorie diet program (LCD): 

1) 5 patients eligible for Roux-en-Y gastric bypass (RYGB) 

2) 9 patients eligible for sleeve gastrectomy (SGx) 

3) 2 patients eligible for gastric banding (GBa) 

4) 8 patients medically eligible for surgery but put on a low-calorie diet program (LCD) 

The inclusion criteria include men and women between the ages of 18–65 years, body mass 

index (BMI) > 40 kg/m2 or BMI > 35 kg/m2 with obesity-associated diseases that should improve 

with weight loss (diabetes, hypertension, dyslipidemia and sleep apnea), medically qualified for 

obesity surgery by our collaborator group of surgeons Drs LeBlanc or Hausmann (groups 1, 2 and 

3 only), and meeting the NIH criteria for bariatric surgery (group 4 only). The exclusion criteria 

include chronic gastrointestinal disease and chronic medications that have the potential for altering 

the human gut microbiota.  

Our research takes advantages of the “BARIA” project at two levels: (a) obtaining stool 

samples before, 7 weeks and 52 weeks after the four weight loss treatments from the 48 participants 

seeking weight loss treatments in the Baton Rouge area that complete the “BARIA” project, and 

(b) correlating the microbial data with the physiological data obtained from the physiologic tests 

done on these participants by the “BARIA”. We examine and compare the composition, diversity, 

and metabolism of the human gut microbial community for difference across the four groups 

(RYGB, SGx, GBa, and LCD) before, and 7 weeks and 52 weeks after the treatments. 

 

1.6 Hypotheses and Experimental Design 

 

Hypothesis 1: Gut microbial community structure is altered after BRS and LCD treatments 

a. Gut microbial diversity is increased.  
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b. Gut microbial distribution and composition is altered, with increased relative abundance of 

beneficial microbial groups and reduced harmful microbial groups. 

c. The functional gene community involved in metabolic processes of gut microbiota was 

altered, with increased relative abundance of beneficial microbial genes. 

Hypothesis 2: Genus Akkermansia is increased after BRS treatment and correlates with 

obesity improvement. 

Hypothesis 3: The amount and constitution of short-chain fatty acids (SCFAs) are altered 

after treatments, with reduced acetate and increased propionate and butyrate. 

Overall experimental design: Stool sample collection for the proposed human gut 

microbiota study will be carried out in parallel to the “BARIA” project. The overall experimental 

design of the “BARIA” project is shown in Figure 1. Briefly, following the screening, the study 

includes both outpatient and inpatient/overnight visits. The major testing periods are conducted at 

Baseline, at weeks 7 and 52 post-surgery/LCD as described: 

1) Baseline (conducted 1–6 weeks prior to surgery or LCD) 

2) Week 7 (conducted 6–8 weeks after surgery or LCD) 

3) Week 52 (48-56 weeks after surgery or LCD)  

 

 

Figure 1.6.1 Experimental design of the BARIA project. 

Each testing period includes four outpatient visits and one overnight stay. During each 

testing period, energy expenditure (24-hour metabolic chamber stay for oxygen consumption and 

fat oxidation, doubly labeled water study for free-living energy expenditure and accelerometry for 

activity energy expenditure), body composition (echo magnetic resonance imaging for body fat 

and lean tissue, multi-slice computerized tomography for visceral fat quantitation, and magnetic 

resonance spectroscopy for intra-hepatic and intra-myocellular lipid), insulin sensitivity (2-stage 

euglycemic hyperinsulinemic clamp for insulin sensitivity and hepatic glucose output), and the 

response of gastrointestinal peptides to a standard meal (glucose, insulin, ghrelin, GLP-1, and PYY) 

will be measured in all four groups.  Changes will be compared across the four groups and between 

baseline, and 7 and 52 weeks post-operatively. These physiologic data generated by the “BARIA” 

project will be made available to interpret gut microbial data obtained on these patients in the 

human gut microbiota research. 

After obtaining informed consent, stool samples will be collected in the four groups 

(RYGB, SGx, GBa, and LCD) at baseline (prior to surgery or LCD) and 7 weeks (after surgery or 
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LCD) when the “BARIA” project is in its first two major testing periods. Based on previous studies, 

the people would lose about 11-12% of their body weight (about 12-15kg) over the 7 weeks after 

surgery or LCD (Greenway et al., 1994, Andrew et al., 2006, Laferrere et al., 2007). This would 

be sufficient to get the changes in gut microbiota in response to the weight loss as we previously 

observed in our study of mice fed resistant starch (Bae et al., 2009). A longer duration (week 52, 

the third testing period of the “BARIA” project) would assess longer term compliance of subjects 

to the weight loss treatments and the sustainability of changes in gut microbiota.   

The DNA extracted from the stool samples collected from the 24 participants at baseline 

and 7 and 52 weeks after the surgery or LCD, will be used for the following microbial analyses: 

1) Community structure change (e.g. diversity) of gut microbiota and the microbial 

populations changed by the 4 weight loss treatments using Illumina sequencing 

targeting on the hypervariable V4 regions of the 16S rRNA gene. 

2) Change of functional genes involved in the metabolic processes of gut microbiota using 

HuMiChip. 

3) Abundance of microbial groups of interest, which have been previously indicated to 

associate with obese people and/or to be involved in energy metabolism and the groups 

that are identified to respond to the 4 weight loss procedures in this research), e.g. 

Firmicute, and Bacteroidetes, Archaea, the archaeal subgroups, using real-time PCR. 

4) Short-chain fatty acids (SCFA) including butyrate, lactate, and acetate, using gas 

chromatography. 
 

Data integration. Integrated analysis of Illumina sequencing, HuMiChip, and physiologic 

data (including those generated by the “BARIA” project) represents an immense challenge. We 

used various statistical approaches to identify relationships within the complexity. First, we used 

multivariate analyses, such as principal component analysis (PCA), for data reduction. Also, 

Mantel test was used for variation partition analysis to determine the relative influence of the 

physiologic variables. These analyses help us to identify any possible overall significant 

relationships among microbial community structure, physiologic activities, and various metabolic 

functional processes. In addition, we will examine the relationships between those key 

genes/populations with gut environmental conditions and host health conditions using the Mantel 

test, Pearson and/or Spearman correlation analysis and various other statistical approaches. 

Expected results. We expect to identify the microbial populations that are responsive 

(stimulated or inhibited) to the weight loss procedure (surgery or LCD) by comparing changes 

between baseline and 7 and 52 weeks after the procedures.  We also expect the four weight loss 

procedures (RYGB, SGx, GBa, and LCD) that cure obesity/ diabetes with varying effectiveness 

to have different effects on the gut microbial community structure and metabolism, and the altered 

gut microbiota, in turn, to be responsible in part for the greater efficacy in weight loss and 

improvement in diabetes with gastric bypass and sleeve gastrectomy compared to laparoscopic 

banding and low-calorie dieting.  We anticipate that this research will help better understand 

metabolic pathways uncovered by bariatric surgery and weight loss in a larger context; it will 

provide a first step towards intentionally manipulating gut microbial community structure to 

regulate energy balance in obese/diabetic individuals in future studies.   

Overall summary of the research. The synergism of working as a multidisciplinary team 

(encompassing the areas of microbial ecology, clinical research, gut nutrition and physiology, 

molecular biology, and molecular analytic techniques) will result in a comprehensive 

understanding of the role of human gut microbiota in obesity and diabetes. This research may 

ultimately close the loop in understanding the varying effectiveness of different bariatric surgery 
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and weight loss procedures and lay the groundwork for the analytic methodologies used in the 

future human gut microbiome and diseases studies.   
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CHAPTER TWO: MATERIALS AND METHODS 

 

2.1 Stool Sample Collection 

 

Stool samples were used for studying gut microbiota in this research. The subjects were 

given stool collection “pilgrim hats” that fit inside the toilet to collect stools. All stools were 

collected at baseline (bl), week 7 (w7), and week 52 (w52) post treatment. The stools were placed 

directly into Ziplock® plastic bags and frozen at –80C immediately after being collected. 

In total, 38 prepared samples from the fecal samples of 16 participants obtained before and 

after bariatric surgeries (Band, Sleeve, and Bypass) and 20 samples from the fecal samples of 8 

participants collected before and post low-calorie diet program treatment were processed for 

Illumina sequencing. Samples from every individual include baseline, and week 7 or week 52 or 

both week 7 and week 52 post treatments. The participants included 3 males and 21 females, aged 

from 22 to 62 years old. Two participants had diabetes mellitus (DM); two had pre-DM/insulin 

resistance; seven had dyslipidemia; 14 suffered from hypertension. None of the patients had a 

metabolic syndrome. 

 

2.2 DNA Extraction 

 

Genomic DNA was isolated from the stool samples with a fecal DNA extraction kit 

(MoBio) following the manufacturer’s instructions. The extracted DNA was stored at –80C until 

the molecular analyses were conducted. 

 

2.3 Illumina Sequencing 

 

16S ribosomal RNA (16S rRNA) is the component of the 30S small submit of a prokaryotic 

ribosome. 16S rRNA gene is the gene coding for 16S rRNA and its sequence has been widely used 

for building phylogenetic trees, owing to 1) it is highly conserved in all most all bacteria and 

archaea species; 2) its slow evolution rate (its function has not changed over time, suggesting that 

random changes of sequences are a more accurate measurement of time or evolution; and 3) the 

1500 bp of its gene sequence is long enough for informatics analysis. (Janda and Abbott, 2007). 

Now it has been widely accepted that 16s rRNA gene sequence is sufficient to classify microbes, 

and has greatly saved researcher’s s workload when compared to the traditional methods such as 

culture and microscopy.  

Sequencing technology has been greatly advanced since its invention. The first generation 

of sequencing method (e.g. Sanger sequencing) enabled sequencing of clonal DNA populations. 

The second generation of sequencing methods is high-throughput by enabling the process of 

multiple reactions simultaneously (e.g. Illumina sequencing). The third generation of sequencing 

method is capable of sequencing single DNA molecules (Heather and Chain, 2016). 

Previous metagenomic studies of human gut microbiota have mainly relied on the 

generation of clone libraries of the 16S rRNA genes. First, genomic DNA will be extracted by 

DNA extraction kit. Then Taq polymerase and universal primers will be used for amplifying a 

fragment of the microbial 16S rRNA gene sequence of PCR reactions. Then the amplified 

sequences will often be cloned by using a cloning kit, which contains linearized vector, DNA 

ligase, DNA ligase buffer, PCR buffer, dNTPs, control DNA template, control PCR primers, sterile 

water as well as competent cells and corresponding reagents. Since Taq polymerase can add single 
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deoxyadenosine (A) to the 3’ ends of amplified PCR products independent of a template, and the 

kit-supplied linearized vector has single 3’deoxythymidine (T) residues. This allows the PCR-

amplified 16S rRNA gene sequence fragment to ligate with the vector. First, the PCR products are 

ligated into the supplied linear vector in a commercial clone kit and then transformed into 

competent E. coli cells. Next step is to select colonies and isolate plasmid DNA. After that, analyze 

plasmid DNA for the presence and orientation of the PCR product by either restriction digestion 

or sequencing method. Individual recombinant plasmids are required to be analyzed for the 

confirmation of the right direction because the PCR-amplified 16S rRNA gene sequence can be 

ligated into the vector in either orientation. The correct recombinant plasmid is then purified for 

further subcloning for characterization. After that, the traditional sequencing method, Sanger 

sequencing will be used. Sanger sequencing is developed by Frederick Sanger and his colleagues 

in 1977, and it is based on the selective incorporation of chain-terminating dideoxynucleotides by 

DNA polymerase in the process of in vitro DNA replication.  

This traditional method can only produce a limited number of bacterial sequences. To our 

knowledge, none of these human gut microbial diversity surveys that used this methodology has 

generated more than 20,000 bacterial sequences (Eckburg et al., 2005, Ley et al., 2006, Frank et 

al., 2007). According to nonparametric estimations and extrapolations from rarefaction curves, 

however, obtaining a much higher number of sequences may reveal as many as 500-15,000 species 

(Eckburg et al., 2005, Frank et al., 2007), which include relatively rare members of the microbial 

community that collectively could have a profound impact on gut health and disease, including 

obesity (Zhang et al., 2009).  

Around a decade ago, several new high-throughput sequencing approaches have been 

developed. One of the most promising high-throughput 2nd generation sequencing technologies is 

Illumina sequencing, which is based on the sequence by synthesis approach. It is a highly parallel 

non-cloning Illumina sequencing system capable of sequencing up to 100 million bases in one 

four-hour run on a Miseq system. Illumina sequencing has the potential to revolutionize 

sequencing studies, including characterizing microbial community diversity with a sample tagging 

approach. Currently, this sequencing method has been successfully used to study the microbial 

community in animals, humans, soils and oceans.   

A recent study analyzing the human gut microbiota with the traditional Sanger and the 

Illumina pyrosequencing methods revealed that in general, the two methods were in good 

agreement for the more abundant taxa while the Illumina sequencing could capture the rare taxa 

missed by Sanger sequencing. Although Illumina sequencing produces relatively short sequences 

(~250 bp for the Miseq system), recent studies have shown that those short sequences are sufficient 

to statistically determine significant differences among microbial genomes that reflect the most 

likely biology occurring in each environment. In addition, multiplexed high-throughput Illumina 

sequencing of individual genes (e.g., 16S rRNA gene) by tagging or barcoding with short 

nucleotides has been developed to process many samples simultaneously. Zhou’s lab also used a 

tagged Illumina sequencing approach to characterize several microbial communities.  

Many published studies have demonstrated that the Miseq platform (Illumina) may 

generate tremendous sequencing information and is a powerful tool for studying microbial 

diversity. Therefore, this study chose Illumina sequencing for studying the effect of bariatric 

surgery and weight loss on the structure of the human gut microbial community. 

Next sequencing techniques will determine the sequences. Then the sequences will be 

compared with reference sequences in databases and denoted as the same reference sequence if 

their similarity is greater than 98%. Type strains of 16S rRNA gene sequences of most bacteria 
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and archaea are available in public databases (e.g. NCBI). However, the quality of the sequences 

found in these databases is not often validated. Thus, secondary databases that collect only 

16SrRNA gene sequences are used widely, and Ribosomal Database Project (RDP) is one of the 

popular ones. 

The problem still exists because, for example, studies on fecal samples found that lots of 

detected sequences (around 3/4 of the sequences) do not show 98% similarity with any sequences 

in the reference databases. Their sequences will be deposited into the public database and their 

classification and identification might be uncovered by the future research. 

The PCR primers F515 (GTGCCAGCMGCCGCGGTAA) and 806R 

(GGACTACHVGGGTWTCTAAT) were selected to target the V4 hypervariable regions of the 

bacterial 16S rRNA genes. To pool multiple samples for one run of Illumina sequencing, a sample 

tagging approach was used (Binladen et al., 2007, Hamady et al., 2008). Each tag (12 mer) was 

added to the 5'-end of both forward and reverse primers, synthesized by Invitrogen (Carlsbad, CA, 

USA), and then used for the generation of PCR amplicons. PCR amplifications were conducted 

with Accuprime high-fidelity Taq polymerase. The amplification mix contained 0.1 µl AccuTag 

polymerase, 2.5 µl reaction buffer II, 1 µl of each primer, and a 2.5–5.0 ng template in a volume 

of 25 µl. Cycling conditions were an initial denaturation at 94C for 1 min, 30 cycles of 94C for 

20 s, 53C for 25 s, 68C for 45 s, and a final 10-min extension at 68C. All the amplified PCR 

products from each tagged primer were pooled and purified by 1% agarose gel electrophoresis, 

followed by quantification by PicoGreen (Ahn et al., 1996). Finally, amplicons of all samples were 

pooled in an equimolar concentration for Illumina sequencing. All sequencing reads were initially 

processed using the Galaxy sequencing pipeline (http://zhoulab5.rccc.ou.edu/). Raw sequences 

were sorted and distinguished by unique sample tags. All sequences for each sample were aligned 

by RDP Infernal aligner, a fast secondary-structure aware aligner (Ribosomal Database Project, 

Michigan State University, East Lansing, MI, USA) (Nawrocki and Eddy, 2007), and then Uclust 

was used to define operational taxonomic units (OTUs) within a 0.03 difference. A 97% identify 

was used as the cutoff, and singleton sequence reads were removed. Each OTU contained more 

than two sequence reads from at least two samples. The sequence reads within an OTU were 

partitioned into individual samples based on the original sample-tagging information. A total of 

3,422,989 V4 regions of 16S rRNA raw sequence reads were generated from the 55 microcosm 

samples. After removing the undetermined nucleotides and trimming the sequences, a total of 

3,413,843 sequences were derived and were clustered into 11,314 unique OTUs without singlet 

based on 97% sequence similarity. Considering that the sequence numbers of the individual OTUs 

varied significantly among different samples and the sequence abundance of the sample with the 

lowest sequence abundance is 13,780, a resampled dataset with a final total of 13,780 sequence 

abundance of each sample for subsequent analysis (Zhou et al., 2011), was employed to reduce the 

sampling bias. After resampling, all samples in the baseline, week 7 and week 52 post-treatment 

samples have a sequence abundance of 13,780. Then assign taxonomy to the representative 

sequences with the RDP classier (Wang et al., 2007) with a confidence cutoff of 0.5. The lineage 

of each OTU was summarized with all phylogenetic information. 

 

2.4 HumiChip Analysis 

 

Although the microbial diversity can provide information both on which organisms are 

present and what metabolic processes are possible in the community, they have limits in giving a 

full picture of microbial activities and dynamics, especially on a large scale and in a parallel and 

http://zhoulab5.rccc.ou.edu/
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high throughput fashion. To overcome such obstacles for studying microbial communities in 

natural settings, Zhou and He have been dedicated to developing a microarray-based, high-

throughput technology, functional gene arrays (FGAs). Over the last decade, many technical 

difficulties relating to applications of microarray technologies to environmental studies with regard 

to oligonucleotide probe design, development of computer program, specificity, sensitivity, 

quantitative capability, and amplification of the target DNA and RNA at the nano-scale were 

solved (Wu et al., 2001, Rhee et al., 2004, Tiquia et al., 2004, Wu et al., 2004, Zhou et al., 2004, 

He et al., 2005, Wu et al., 2006, Liebich et al., 2006, Gao et al., 2007, Deng, 2008). With a newly 

developed computer program, several generations of functional gene arrays or GeoChip have been 

designed. Comparing with 16S rRNA gene-based microarrays (e.g., PhyloChip), the GeoChip is 

particularly useful in linking microbial community structure to community function in 

environmental studies. So far, the GeoChip has been used in a variety of studies such as 

characterizing marine sediment community structure, characterizing grassland microbial 

community structure under elevated CO2, examining the effects of contaminants on microbial 

communities, assessing spatial scaling of microbial community diversity in a forest soil (Zhou et 

al., 2008a), and assessing microbial fuel cells (MFC) for hydrogen production. The results from 

various studies demonstrate that GeoChip works very well with the natural environmental samples, 

such as soils, marine sediments, and groundwater, and is a powerful tool for profiling microbial 

community differences in general, and for linking community structure to functions. To our 

knowledge, this was the first and most comprehensive array currently available for studying 

various biogeochemical, ecological and environmental processes. With the urgent need for such 

technique in studying the metabolism of the human gut microbial community, a GeoChip-like 

technique, HuMiChip has been developed.  

Although human gut microbial studies based on 16S rRNA clone libraries or high-through-

put next generation sequencing (e.g. Illumina sequencing) technique are very powerful, but they 

have limited usefulness in determining the metabolic function of the human gut microbiota. 

Metagenomic analysis among different healthy individuals microbial composition is highly varied 

but their metabolic pathways and gene content are relatively stable, based on the Human 

Microbiome Project (Consortium, 2012) and some other related studies (Turnbaugh et al., 2009, 

Caporaso et al., 2011, Gevers et al., 2012). Using functional gene array-based technologies to 

characterize human microbiota is a novel and promising tool for human microbiome studies. It is 

our expectation that the HuMiChip would be a new platform that overcomes the major limitations 

of many traditional methods (e.g. PCR-based functional gene analysis) currently available for 

human microbiome studies, and is expected to provide insights into physiologic and ecological 

mechanisms of human microbiota at the community level. Thus, we applied HuMiChip to 

determine the effect of bariatric surgery and weight loss on the metabolism of the human gut 

microbial community.  

The current version of HuMiChip (HuMichip2) contains two different types of probes, 

functional gene probes for identifying functional profiling of human microbiota and strain/species-

specific probes for identifying strain or species (Tu et al., 2016). The evaluations of the microarray 

have been done both computationally and experimentally by using single strains/species and mock 

communities, as well as pure culture DNA and mock community DNA (Tu et al., 2014, Tu et al., 

2016). In total, 2063 sequenced microbial genomes and around 2.5 gigabytes (GB) assembled 

shotgun metagenome sequences from 14 different human body sites were retrieved from the 

Human Microbiome Project Data Analysis and Coordination Center (http://hmpdacc.org). The 

sequenced microbial genomes were employed for designing probes for detection of both microbial 

http://hmpdacc.org/
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functional gene families and specific strains. The metagenome data were employed for designing 

probes targeting microbial functional gene families. Another 3327 sequenced microbial genomes 

and human genome sequences were downloaded from the National Center for Biotechnology 

Information (NCBI) ftp site, were further employed for specificity check to ensure the specificity 

of strain-specific probes against non-human microbes and the human genome. For detection of the 

microbial functional gene profile, it included 94,387 sequence-specific probes, 39,537 group-

specific probes, and covers 276,240 coding sequences (CDS) of 157 gene families, which are 

involved in 11 microbial functional processes that they play important roles in human (Table 2.1). 

 

Table 2.1 Summary of the microbial functional process and the numbers of gene families, 

sequence-specific probes, group-specific probes, and covered coding sequence on the current 

version of HuMiChip (HuMiChip2). Gene families targeting human microbiomes are selected 

from KEGG pathway database, and may participate in multiple pathways (In other words, the 

overlap of functional genes may occur among different functional processes.). The total number 

of probes and covered coding sequences is based on non-redundant genes included in all pathways.  

 

Microbial functional process 

No. of  

gene 

families 

No. of 

sequence-

specific probes 

No. of group-

specific 

probes 

No. of 

targeted 

CDS 

Antibiotic 18 0 13,567 32,168 

Amino acid metabolism 36 24,314 5,723 59,392 

Carbohydrate metabolism 27 15,322 4,442 40,173 

Energy metabolism 5 7,115 1,878 16,799 

Glycan metabolism and biosynthesis 10 6,010 2,560 20,277 

Lipid metabolism 5 3,262 1,173 8,984 

Non-essential amino acids metabolism 20 14,420 4,040 37,656 

Cofactors and vitamins metabolism 16 9,700 2,605 25,854 

Terpenoids and polyketides metabolism 5 3,644 861 8,398 

Nucleotide metabolism 13 8,523 2,061 20,485 

Translation 2 2,077 627 6,054 

Sum 157 94,387 39,537 276,240 

 

Target preparation, microarray hybridization, and image processing were carried out as 

previously described (He et al., 2007). Briefly, about 100 ng of purified DNA from each sample 

were amplified using whole-community genome amplification (WCGA), labeled with Cy3, and 

then hybridized with the HuMiChip. Microarray hybridizations were carried out under the 

stringent condition of 50˚C plus 50% formamide using TECAN Hybridization Station ProHS4800 

(TECAN US). After hybridization, microarray image and data processing were carried out as 

described previously (Rhee et al., 2004, Wu et al., 2006). Briefly, poor or irregular spots were first 

automatically removed using the software ImaGene® (Biodiscovery, Inc). Second, hybridization 

spots with a signal-noise ratio (SNR) < 2 (He and Zhou, 2008) were removed from further analysis. 

In addition, the outlying spots were removed after normalization (Wu et al., 2006). Generally, 

absolute hybridization signal intensity data are used for statistical analysis. 

In total, 27 prepared samples from 10 participants’ fecal samples obtained before and post 

Bariatric surgeries (Band, Sleeve, and Bypass), and 21 samples from 8 participants’ fecal samples 



22 
 

collected before and post low-calorie diet program treatment were processed for HumiChip 

analysis. Samples from every individual include baseline, week 7 or week 52 or both week 7 and 

week 52 post treatments, except one without a baseline. 

 

2.5 Quantitative Polymerase Chain Reaction (qPCR) 

 

Quantitative PCR is carried out in a thermal cycler with the capacity to illuminate each 

sample with a beam of light of at least one specified wavelength and detect the fluorescence 

emitted by the excited fluorophore. The thermal cycler is also able to rapidly heat and chill samples, 

thereby taking advantage of the physicochemical properties of the nucleic acids and DNA 

polymerase. 

We used non-specific fluorescent reporter detection of PCR products: a double-stranded 

DNA (dsDNA)-binding dye is used as a reporter. The dye can bind to all dsDNA in the PCR 

reaction, causing fluorescence of the dye after being excited by a laser. Thus, an increase in DNA 

product during PCR will produce an increase in measured signal intensity of fluorescence at each 

cycle. However, dsDNA dyes (e.g. SYBR Green) can bind to all dsDNAs, including non-specific 

PCR products and/or primer dimers, preventing from obtaining an accurate result of the amount 

of the anticipated PCR products. For running the real-time PCR experiment using this method, the 

reaction mix is prepared as that for regular PCR, with the supplement of fluorescent dsDNA dye. 

Next, the reaction is run in a real-time PCR instrument, and the signal intensity of fluorescence, 

which is produced when dye binds to the dsDNA, is measured by a detector in real time.  

For our experiment, qPCR was performed in a CFX Connect Optics Module real-time PCR 

detection system from Bio-Rad. A total volume of 600 µl of reaction mixture was made by mixing 

thoroughly 95 µl of nuclease-free water (NFW), 5 µl each of 100 µM forward and reverse 

primers, and 500 µl of 2 × concentrated, ready-to-use SsoAdvanced™ Universal SYBR® Green 

Supermix, which contains antibody-mediated hot start Sso7d-fusion polymerase, dNTPs, MgCl2, 

SYBR Green I dye, enhancers, stabilizers, and a blend of passive reference dyes, to a final 1 × 

concentration of SYBR® Green Supermix and 500 µM concentration of primers. Each 6-µl aliquot 

was dispensed into a well of a 96-well PCR plate, followed by 4 µl of DNA templates (around 

0.05 ng/µl) to each well, making each well incorporating 10 µl reaction mixture composed of 5 µl 

of 2 × SYBR® Green Supermix, 0.05 µl of each primer (100 µM), 4 µl of DNA template, and 0.95 

µl of NFW to bring the total volume to 10 µl. Wells with 4 µl of NFW was served as no template 

controls (NTC). Three replicates of each sample were applied. The thermal cycling conditions 

were as follows: 3 min at 98 ˚C for enzyme activation/initial DNA denaturation, followed by 40 

cycles of 15 s for denaturation at 95 ˚C and 30 s annealing at 60 ˚C for annealing and final melt 

curve analysis from 65 ˚C to 95 ˚C in 0.5 ˚C increments for 5 ˚C per step. 338f (5'-ACTCCTACG 

GGAGGCAGCAG-3') and 518r (5 '-ATTACCGCGGCTGCTGG-3') were used as the forward 

and reverse primers for total bacteria detection (Ovreas et al., 1997, Buckeridge et al., 2013). 5'- 

ACTCCTACGGGAGGCAGCAGTGGGGAATATTGCACAATGGGCGAAAGCCTGATG 

CAGCGACGCCGCGTGAGCGAAGAAGTATTTCGGTATGTAAAGCTCTATCAGCAGGG

AAGATAATGACGGTACCTGACTAAGAAGCACCGGCTAAATACGTGCCAGCAG 

CCGCGGTAAT-3', was the DNA sequence used for standard curve construction to quantify total 

bacteria abundance and the complete, and this sequence fragment was selected by combining the 

sequence information of the complete genome of Eubacterium rectale ATCC 33656 

(http://www.ncbi.nlm.nih.gov/nuccore/238922432?report=fasta) with those of forward and 

reverse primers we applied in this research by the online software Sequence Extractor at 

https://en.wikipedia.org/wiki/Thermal_cycler
https://en.wikipedia.org/wiki/Fluorophore
https://en.wikipedia.org/wiki/Nucleic_acid
https://en.wikipedia.org/wiki/DNA_polymerase
https://en.wikipedia.org/wiki/DNA_polymerase
https://en.wikipedia.org/wiki/DNA
https://en.wikipedia.org/wiki/SYBR_Green
https://en.wikipedia.org/wiki/Primer_dimer
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http://www.bioinformatics.org/seqext/ (Guo et al., 2008). The beginning nanograms and copy 

numbers of the loaded Eubacterium rectale standard DNA in each cell are 2 × 10–3, 2 × 10–4, 2 × 

10–5, 2 × 10–6, 2 × 10–7, and 2 × 10–8 (2.02 × 107, 2.02 × 106, 2.02 × 105, 2.02 × 104, 2.02 × 103, 

and 2.02 × 102). For designing the primers of detection of the genus Akkermansia, first the 

fragment of Akkermansia muciniphila strain ATCC BAA-835 16S ribosomal RNA gene, complete 

sequence (NR_042817.1, http://www.ncbi.nlm.nih.gov/nuccore/343202494?report=fasta) 

corresponding to these 42 detected Akkermansia sequences were identified, then this fragment 

sequence was used as reference sequence for aligning all of the 42 16SrRNA sequences of the 

genus Akkermansia detected in our samples by Illumina sequencing and the known Akkermansia 

sequences which have been deposited in the NCBI reference sequence database were aligned and 

viewed by multiple sequence alignment with the one of the Clustal series of programs (Mview) 

run on the web server at the EBI (European Bioinformatics Institute) 

(http://www.ebi.ac.uk/Tools/msa/mview/) (Chenna et al., 2003). Based on this alignment, a 16S 

rRNA oligonucleotide fragment of the reference sequence which starts from the first segment to 

the last segment, both of which contains consecutive nucleotides (18 -22 bp) (S. Patricia, 2009) 

and covers the most highly variable among these sequences, was extracted and used as the 

reference gene for making the standard curve. The two sequence fragments at the beginning and 

the end of the sequence were used for designing the primer sequences for real-time PCR 

amplification to amplify as many of these sequences as possible. Three sets of primers were 

designed from these two sequence fragments and synthesized by Integrated DNA technologies 

(IDT), and they are the forward primer for the 1st set of primer (5’-

AATCACTGGGCGTAAAGCGT-3’), the reverse primer for the 1nd set of primer (5’-

TCTCGCAGTATCATGTGCCG-3’), the forward primer for the 2nd set of primer 

(GAATCACTGGGCGTAAAGCG), the reverse primer for the 2nd set of primer 

(TTCCGGTTCCCCCTCCATTA), the forward primer for the 3rd set of primers 

(TCGGAATCACTGGGCGTAAA), the reverse primer for the 3rd set of primers 

(CGGTTCCCCCTCCATTACTC). The forward primer 5’-AATCACTGGGCGTAAAGCGT-3’ 

and the reverse primer 5’-TCTCGCAGTATCATGTGCCG-3’ were used for the detection of 

species Akkermansia Muciniphila. The specificity of the primers was checked by using the 

National Center for Biotechnology Information (NCBI) online software primer-baselineAST at 

http://www.ncbi.nlm.nih.gov/tools/primer-blast/ (Ye et al., 2012) for making sure that the primers 

would only bind with Akkermansia, but not other organisms. The primer-baselineAST result only 

showed Akkermansia muciniphila and several uncultured bacterium clones, the top hit of all of 

which were Akkermansia muciniphila reference sequence (with sequence similarity of equaling to 

or greater than 98%) after blasting them using standard nucleotide baselineAST against the 16S 

ribosomal RNA sequences (Bacteria and Archaea) database. 5'- 

TTCGGAATCACTGGGCGTAAAGCGTGCGTAGGCTGTTTCGTAAGTCGTGTGTGAAAG

GCGCGGGCTCAACCCGCGGACGGCACATGATACTGCGAGACTAGAGTAATGGAGGG

GGAACCGGAATTC-3', was the DNA sequence used for standard curve construction to quantify 

Akkermansia muciniphila abundance, and this sequence fragment was selected by combining the 

sequence information of the complete 16S ribosomal RNA (rRNA) gene of Akkermansia 

muciniphila ATCC BAA-835 (http://www.ncbi.nlm.nih.gov/nuccore/343202494?report=fasta) 

with those of forward and reverse primers we applied in this research by the online software 

Sequence Extractor at http://www.bioinformatics.org/seqext/. The DNA sequences used for 

standard curve constructions in the real-time PCR assays were double-stranded linear 

gBlocks® gene fragments synthesized by Integrated DNA technologies (IDT). The beginning 

http://www.bioinformatics.org/seqext/
http://www.ncbi.nlm.nih.gov/tools/primer-blast/
http://www.bioinformatics.org/seqext/
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nanograms and copy numbers of the loaded Akkermansia muciniphila standard DNA in each cell 

are 2 × 10–3, 2 × 10–4, 2 × 10–5, 2 × 10–6, 2 × 10–7, and 2 × 10–8 (1.17 × 108, 1.17 × 107, 1.17 × 106, 

1.17 × 105, 1.17 × 104, and 1.17 × 103).  

In addition, the forward primer 5'-TCTCGGTGTAGCAGTGAAATG-3' and the reverse 

primer 5'-GTGCCTCAGCGTCAGTTAAT-3', the produced top-ranked primers pairs designed by 

using the sequence fragments of Akkermansia muciniphila ATCC BAA-835 that fall within the 

amplification region of the our Illumina sequencing result, and the IDT online software 

PrimerQuest at https://www.idtdna.com/Primerquest/Home/Index following by the same above-

mentioned procedure for specificity double-check, were also used for double-check the result. The 

DNA sequence used for standard curve construction was identified by the above-mentioned 

method and its sequence is 5'-

TCGTGTGTGAAAGGCGCGGGCTCAACCCGCGGACGGCACATGATACTGCGAGACTA

GAGTAATGGAGGGGGAACCGGAATTCTCGGTGTAGCAGTGAAATGCGTAGATATCG

AGAGGAACACTCGTGGCGAAGGCGGGTTCCTGGACATTAACTGACGCTGAGGCAC-

3'. The beginning nanograms and copy numbers of the loaded Akkermansia muciniphila standard 

DNA in each cell are 2 × 10–3, 2 × 10–4, 2 × 10–5, 2 × 10–6, 2 × 10–7, and 2 × 10–8 (1.17 × 108, 1.17 

× 107, 1.17 × 106, 1.17 × 105, 1.17 × 104, and 1.17 × 103). The result obtained by using this pair of 

primers showed the similar pattern as that obtained by using the first set of primer described above. 

The specificity of the primers for running qPCR was further confirmed by sequencing the qPCR 

products by the Sanger sequencing, and the sequence results showed that they shared 100% 

similarity with Akkermansia muciniphila ATCC BAA-835. 

 

2.6 Gas Chromatography 

 

Chromatography is a technique used for separating compounds in mixtures. The phase that 

the sample mixture is dissolved in is called the mobile phase, and the other phase that holds the 

sample is called the stationary phase. The substances in the mixture are separated owing to that 

different substances have different solubility in these two different phases, or in other words, each 

constituent has a different partition coefficient (the ratio of a compound’s concentrations in two 

phases at equilibrium; It measures the difference in solubility of a compound in these two phases). 

Different components in a mixture have different physical structure’s characteristics, making them 

having different solubility in mobile and stationary phase, so these components move along the 

mobile phase with different rates and separate from each other gradually.  

There are many different types of chromatography technologies existing, based on different 

methods and techniques. For example, based on the physical states of the mobile phase and 

stationary phase, it can be classified as homogeneous (e.g. liquid-liquid chromatography) or 

heterogeneous (e.g. liquid-gas chromatography). Based on the shape of stationary phase, it can be 

classified as column chromatography (the shape of stationary phase is a column) (e.g. gas 

chromatography) and planar chromatography (the shape of stationary phases is planar). 

Gas chromatography (GC) is a common type of chromatography used in analytical 

chemistry for the separation and analysis of substances that can be vaporized without 

decomposition. It has been wildly used to evaluate volatile compounds such as fatty acid, essential 

oils, etc.  Its mobile phase is gas (usually an unreactive gas (e.g. nitrogen) or inert gas (e.g.) helium), 

and its stationary phase is a microscopic layer of liquid or polymer on an inert solid support, inside 

a piece of the column which is made of glass or metal. The gaseous sample constituents interact 

with the walls of the column, which is coated with a stationary phase, causing each constituent to 

https://www.idtdna.com/Primerquest/Home/Index
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elute at a different time, which is called the retention time for that constituent. Retention times can 

be used to calibrate the concentrations of the components in samples by several different methods. 

For quantitative analysis by GC, 1) the GC system performance should be stable and consistent. 

2), a calibration curve for each analyte of interest is needed because, for most GC detectors, they 

have a different response to different analytes given their different molecular composition and/or 

size. 3) The range of the concentration of the standard analyte of the calibration curve should 

include the expected range of the analyte concentration in the samples being measured. The 

quantitative results for sample analyses that fall outside the calibration range are not trustable, 

especially when the calibration curve is not linear. 

The gas chromatograph is the name of the instrument used to perform gas chromatography. 

The basic instrument components of gas chromatograph contain the mobile phase gas in a cylinder, 

the sample injection system, column of gas chromatography, the detector, the computer for 

recording data, and the thermal chamber for controlling temperature. We used the microFAST™ 

GC for our experiments. It is a small, fast GC designed to promote analytical efficiency in the 

laboratory and in the field. It can precisely and efficiently separate different types of compounds 

in a sample by using real-time microprocessor control of temperatures and pressures. Low thermal 

mass conduction heater technology is employed by the column heater for precise and fast 

temperature programming and cool-down of dual, high-resolution separation columns. A trap-

based injection system is also used for concentrating and then desorbing the compounds in samples 

for injection onto the narrow bore capillary columns.  

There are several approaches for calibrating the unknown concentrations of an analyte 

using the calibration curve. The choice depends on many aspects such as the type of the sample 

and the protocol for sample preparation, the configuration of the instrumentation system, etc. 

These approaches are 1) external calibration which uses the function of the signal intensity of the 

detector response versus (vs) analyte’s concentration.  The external calibration is the most 

straightforward method and is used most often. 2) internal standard calibration which uses a 

relative signal intensity of the detector response function of the analyte of interest to another 

reference substance (it has similar chemical characteristics of the analyte of interest) that is added 

to the sample prior to any sample preparation and /or analysis. The internal standard calibration 

method is designed to compensate for the potential sources of errors that may result from sample 

preparation and inherent variability of the GC system as well as the analysis method. 3) standard 

addition, which uses the function of the signal intensity of the detector response vs the amount of 

the concentration of known incremental amounts of the analyte of interest that are added to a 

sample to calculate the original concentration of the analyte, which has a concentration value of 0 

for the added amount of the standard. The standard addition method is like the internal standard 

calibration method, but it adds different standard concentrations of the analyte of interest to the 

samples, instead of the reference substance which has similar chemical characteristics as the 

analyte of interest. This method is developed to overcome inaccurate quantification caused by the 

baseline noise (The signal intensity may not be inaccurate if the unknown concentration is close 

to the limit of the detection because that region has great noise) and/or attenuated or magnified 

response resulting from sample matrix (sample matrix inhibits linear activity). 

Calibration curves can be a linear, non-linear, or mixed (e.g. linear in the low concentration 

region, while curved in the higher concentration). A linear function can be expressed using the 

form ‘y = ax+b’, where ‘y’ is the signal intensity of the response of the detector, ‘x’ is the 

concentration of the analyte, ‘a’ is the slope of the linear line and ‘b’ is the intercept of the linear 

line on y-axis given x equals to 0. The calibration curve can be made based on the retention time 
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and concentrations of a series known different concentrations of the solution for each component. 

The concentration of the compounds in each sample can be calculated based on the corresponding 

standard curve.  

In most cases, the relationship between the signal intensity and analyte concentration is 

linear. Then, the values of a and b can be derived by using several pairs of the known 

concentrations of the standard compounds for each analyte of interest and their corresponding 

signal intensity under the same running condition as that for running the real samples which 

contain analytes of interest with unknown concentrations waiting to be determined. Although two 

sets of data are enough to draw a line, researchers cannot see whether the relationship is curved or 

not. Thus, at least three sets of standard concentrations are needed to develop a usable calibration 

curve; one standard concentration should be close to the limit of determination, one should be the 

high limit of the concentration estimated for the samples, and others is supposed to be spread 

evenly across the calibration range. More numbers of standard concentrations, more accurate 

standard curve can be derived. Sometimes, the detected signal intensity for the analyte of interest 

falls outside of the range of the signal intensity derived from the standard concentrations. Then 

another standard concentration or several other standard concentrations may need to be added to 

let the detected signal intensity for the analytes with unknown concentrations fall within the range 

of the calibration curve.  

 

2.6.1 Instrumentation 

 

A model microFAST™ GC from Analytical Specialists, Inc was used in all experiments 

and equipped with dual flame ionization detectors (FID). The separation columns were 2 meters 

in length by 100 µ ID fused silica capillaries coated with 0.4 µ of DB-5 and DB-1701 liquid phases.  

Sample volumes of 1 µl were injected with a 10-µl glass syringe. The injected analytes were 

trapped on a Tenax GR absorbent microtrap maintained at 40°C and desorbed at ~240°C. 

 

2.6.2 GC condition 

 

The ready and desorb temperature for concentrator were set at 40 °C and 240 °C and the 

pre-heat, cleanout and prepurge time were set as 18 s, 50 s, and 10 s. The initial and final column 

temperatures were set at 35°C and 200°C, and the temperature program heated the capillary 

columns at a rate 3°C per second, with initial and final hold time for 3 s and 5 s, giving a total run 

time of 60 s.  The initial pressure, final pressure, and pressure programming rate were set at 15 psi, 

33 psi, and 0.4 psi per second; with initial and final hold time for 30 s, and 10 s. The Liquid/SPME 

mode was used for injection with an inject time of 1500 ms and the injector temperature was 

maintained at 150°C. The detector temperature, fuel pressure, and data acquisition were set at 

150°C, 35 psi, and 60s. 

 

2.6.3 Reagents  

 

Acetonitrile (99.8+%, 250 ml), propionic acid (99% 500 ml) and butyric acid (99%+, 100 

ml) were obtained from Alfa Aesar, acetic acid (ACS grade, 500 ml) from Amresco, valeric acid 

(99%, 100 ml) from ACROS ORGANICS MS, and diethyl ether (ACS Grade, 1L) were obtained 

from BDH SOLVENTS - B&J. 
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2.6.4 Sample Preparation  
 

After thawing and homogenization of the fecal samples, 0.5 gram of each sample was 

measured and put into a 2-ml plastic vial. Then 1 ml of DNAase-free water was added to each vial 

containing the measured biological samples, followed by 2-minute inversion mix for reaching a 

homogenous state. Next, the vials were centrifuged at 2500 x g at 10 °C for 5 minutes. Then the 

top layer was transferred to a 1.5-dram (16 x 50 mm) VWR®, borosilicate glass vials with phenolic 

screw cap from VWR International, using a 100-µl micropipette and stored in the -20 °C freezer 

till the next step. 1 ml of diethyl ether was added to each vial, followed by 30-second vortex and 

2-minute centrifuge at 2000 x g. The upper organic layer was then transferred to a new glass vial 

with caution for avoiding any lower aqueous material. The procedure was repeated for another 

four times for elevating the extraction efficiency. The vials containing organic extracts were placed 

in a chemical hood overnight for allowing the ether to evaporate, followed by storage in the 4 °C 

refrigerator.  

 

2.6.5 Standard Solution Preparation 

 

2 ml VWR® 9-425 screw thread glass vials with borosilicate glass and a maximum fill 

volume of 1.8 ml and 9-425 polypropylene cap with ivory PTFE/red rubber septa from VWR 

International, were used to contain standard solutions.  The stock solution of 4000 mg/l of short-

chain fatty acids acetic acid, propionic acid, and butyric acid were all prepared in acetonitrile. 

Standards with lower concentrations 0.25, 0.5, 1, 5, 10, 25, 50, 100, 150, 200, 500, 1000, 1500, 

2000, 2500, 3000, and 3500 ppm for experiments were obtained by series dilution starting from 

the 4000 mg/l stock. All standard solutions were stored at -20 °C. 

 

2.7 Obesity-related Physiological Variables 

 

Measured obesity-related physiological variables contain 1) obesity indicators including 

weight, fat mass, lean mass, fat%, 24-hour energy expenditure (24HourEE), body mass index 

(BMI), and subcutaneous fat size (SubcutMeanSize); 2) insulin resistance indicators, fasting 

glucose (GLU), fasting insulin (INS), and glucose disposal rate (GDR1/Weight and 

GDR2/Weight); 3) lipid profile, including triglyceride (TRIG), low-density lipoprotein (LDL), 

high-density lipoprotein (HDL), and cholesterol (CHOL); 4) hormones, including adiponectin 

(ADP), high-molecular-weight adiponectin (ADPHMW), ghrelin (GHR), active ghrelin (GHRA), 

glucagon-like peptide 1 (GLP-1), peptide tyrosine tyrosine (PYY), and leptin (LEP); and 5) 

inflammation indicator, high-sensitivity C-reactive protein (hsCRP). 

Height was measured with a wall-mounted stadiometer and metabolic weight with a digital 

scale. Body mass index was equated to weight in kilograms divided by height in meters. Excess 

weight losses (% EWL) were estimated as follows: 

BL Wk7
Wk7

BL BL

BL Wk52
Wk52

BL BL

W W
EWL 100%

W IBW

W W
EWL 100%

W IBW


 




 


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where EWLWk7 and EWLWk52 are the excess weight losses at week 7 and week 52, respectively, 

and IBWbaseline is the ideal body weight at the baseline. Whole-body percent body fat was measured 

by Dual Energy X-ray absorptiometry (DXA) (Hologics QDR 4500A; Hologics, Bedford, MA). 

The mass of fat tissue and lean tissue (kg) were obtained by QuickScan. Twenty-four-hour energy 

expenditure (24HourEE) (kcal/d) was measured with a metabolic chamber. Plasma glucose (mg/dl) 

was analyzed with a Yellow Springs Instruments 2300 STAT Glucose Analyzer (Yellow Springs 

Instruments Inc., Yellow Springs, OH). Plasma insulin (U/dl) was measured by 

chemiluminescent immunoassays on an Immulite 2000 Analyzer (Diagnostic Products). Total 

fasting cholesterol (CHOL) (mg/dl) and fasting high-density lipoprotein (HDL) (mg/dl) 

concentrations were measured with a Beckman Coulter Synchron DXC 600 Pro. Fasting low-

density lipoprotein (LDL) (mg/dl) was determined with a Friedewald calculation. Fasting 

triglyceride concentrations (TRIG) (mg/dl) were measured by computed tomography and magnetic 

resonance spectroscopy. Fasting high-sensitivity C-reactive protein (hsCRP) (mg/dl) was 

determined by a chemiluminescent immunoassay (Immulite 2000TM, Siemens Healthcare 

Diagnostics, Deerfield, IL, USA). In vivo insulin sensitivity was measured with a two-step 

hyperinsulinemic-euglycemic clamp (low insulin, 20 mU/m2/min for 180 min; high insulin, 80 

mU/m2/min for 120 min), and the glucose disposal rate (GDR) (mg/kg/min) was calculated. The 

units for adiponectin (ADP) and high molecular weight ADP (ADPHMW) are mg/dl, and the units 

for Ghrelin (GHR), active Ghrelin (GHRA), glucagon-like peptide-1 (GLP-1), and peptide 

tyrosine tyrosine (PYY) are mg/l. The unit for subcutaneous adipocyte size is l and the unit for 

leptin is ng/ml. IDXA weight, IDXA fat mass, and IDXA lean mass were measured directly or 

calculated indirectly from dual-energy X-ray absorptiometry methods. Values and descriptions of 

physiological variables and patient information were provided in the supplemental data.  

 

2.8 Statistical Methods 

 

Multivariate analyses, including Detrended correspondence analysis (DCA) and canonical 

correlation analysis (CCA), were used to determine the differences in overall microbial community 

structure among different groups. Mantel test was based on Euclidean dissimilarity and was also 

performed by R version 3.3.2 for examining the correlation between microbial community and 

environmental factors. BioEnv was used to identify the most significant environmental factors 

important to microbial community structure. Alpha diversity as measured by Shannon index and 

inversed Simpson index was calculated by the Mothur package. Beta diversity was 

calculated based on Jaccard's incidence-based dissimilarity matrices and Bray-Curtis's abundance-

based dissimilarity matrices and were compared with three complementary dissimilarity 

tests, including permutational multivariate analysis of variance (Adonis), multiresponse 

permutation procedure (MRPP) and analysis of similarity (ANOSIM), and performed by the 

Vegan package in R 3.3.2 (http://www.r-project.org/). Shapiro-Wilk test performed in R was used 

for the normality test of the data distribution. Non-parametric Wilcoxon rank sum test and 

parametric unpaired student's t-test were used for analysis of variance between unpaired 

groups, and non-parametric Wilcoxon signed rank test and parametric paired student's t-test were 

carried out in R version 3.3.2 for analysis of variance between paired groups. Non-parametric 

Spearman rank correlation test, spearman rank partial correlation test, parametric Pearson 

correlation test and Pearson partial correlation test were carried out in R version 3.3.2 to determine 

the correlation between variables. Statistical significance was set as α = 0.1. 
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CHAPTER THREE: STATISTICAL METHODS IN ECOLOGY STUDIES 
 

3.1 Analysis of Variance 

 

3.1.1 Abstract 
 

When investigating whether there is a difference between two groups of data, it is important 

to employ statistical tests to check whether the result is statistically meaningful. Various statistical 

methods, for example, analysis of variance (ANOVA), have been used in microbiological research 

to determine whether the mean of one group is significantly different from another one. However, 

data do not always satisfy the assumptions that underlie these tests. In other words, these tests may 

not always be appropriate for the targeted datasets. Specific tests need to be chosen with sufficient 

caution, and the results of the analysis need to be explained reasonably for validating the 

explanation of the data pattern. However, it has been observed that many published studies used 

inappropriate ANOVA tests for their data sets and explained their test result with limited 

description. In this writing, we compared the premises for different types of paired or unpaired and 

parametric or non-parametric tests for determining whether two populations were significantly 

different and compared their analysis results. The result showed that there are some differences 

which were detected by all tests, but each test detected the differences that other test did not, based 

on its specialized underlying theory. We concluded that employing different statistical methods 

can disclose more facts of the actual data and discover more meaningful differences from distinct 

angles of viewpoints. We suggest that researchers should take caution in choosing which specific 

ANOVA test they are going to use and give a more detailed explanation of the corresponding 

results related to the specific test.  

 

3.1.2 Introduction 

 

The variance of X, ( )V X , is technically defined to be the expected value of the difference

2( ) (( ( )) )V X E X E X  , where X is a group of observations and E is the expectation value. The 

expectation value is supposed to be obtained by the following steps: 1) repeat the experiment 

infinite number of times, 2) calculate the expression every time, and then 3) take the average of 

that. The expression

2

2
( )

1

X X
S

N







 calculates an estimate of the variance of X. It represents the 

average of the squared deviations of a group of observations from their respective mean. The 

division by N – 1 rather than N corrects for the bias created by using the average of X rather than 

E(X) in the expression. It measures how much a set of data deviate from their mean. Analysis of 

variance (ANOVA) is a group of statistical methods used to analyze the differences between group 

means and their associated procedures. 

 

3.1.2.1 Parametric versus Non-parametric ANOVA Tests 

 

1) Parametric statistical tests assume that the measured parameters of the population are 

normally distributed, while non-parametric tests do not. However, parametric tests can perform 

well with continuous data that are not normally distributed if the sample size satisfies the 
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guidelines (Frost, 2015). For example, a one-sample t-test needs a sample size greater than 20, and 

a two-sample t-test needs each group to have a sample size greater than 15.   

2) Parametric statistical tests assume that the variance of the measurement is homogeneous, 

while non-parametric tests do not.  

3) Parametric tests are typically used to test continuous (ratio or interval) data. However, 

non-parametric statistical tests are designed for analysis of ordinal, ranked, or nominal data. The 

existence of outliers can greatly affect the results of parametric tests, but not in the case of non-

parametric tests.  

4) The best measure of the central tendency of data is not always the mathematical mean. 

The center of a skewed distribution can be better represented by the median. Half of the data are 

below the median, and half of the data are above the median. If several extremely large or small 

data points are added to a sample, the mathematical mean would be impacted strongly, even though 

most of the typical data do not change, whereas such additions have relatively little effect on the 

median, which is a metric of the center of the distribution. Thus, in this case, even if parametric 

tests result in a significant difference between the two groups and non-parametric test do not, the 

non-parametric test would be more suitable to choose to analyze and explain the difference 

between these two groups. 

Decisions on choosing parametric or non-parametric tests are often made based on whether 

the mean or median more accurately represents the center of the data distribution. 1) If the mean 

can more accurately represent the center of the distribution and the sample size is large enough, 

then a parametric test should be valid and preferred because parametric tests are more powerful. 

2) If the median can represent the center of the distribution, no matter whether the sample size is 

large or small, the non-parametric test should be considered. 3) If the sample size is very small, 

then a non-parametric test should be considered. Considering that when sample size is small, the 

distribution of the data is difficult to ascertain because the distribution test does not have sufficient 

power to give meaningful results (Frost, 2015), and non-parametric test tend to make a test weak, 

the chance of detecting a significant difference when these two conditions coexist would be very 

low. This explains why collecting as many data as possible is important and can make a big 

difference to the result of the analysis, considering that 15 or 20 samples are the threshold for 

validating the parametric tests, and only a few more samples need to be collected to satisfy this 

requirement if the sample number is below 15 or 20. 

 

Table 3.1 Comparisons between parametric and non-parametric ANOVA tests.  

 

 Parametric Non-parametric 

Assumed data distribution Normal Any 

Assumed variance Homogeneous  Any 

Data type Continuous Ordinal or ranked or nominal 

Dataset relationships Independent Any 

Measure of central tendency Mean Median 

Advantages 
More conclusions; more 

statistical powerful 

Simple conclusions; less statistical 

powerful; Less impacted by outliers 

 

 

http://www.syque.com/improvement/Normal%20distribution.htm
http://changingminds.org/explanations/research/analysis/variance_homogeneity.htm
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The foregoing points are general differences between parametric and non-parametric 

analysis of variance statistical tests. However, different analysis of variance statistical tests have 

specific assumptions, and they need to be checked before using the corresponding test.   

 

3.1.2.2 Wilcoxon Signed Rank Test  

 

It is a paired non-parametric test. It is usually used for comparing observations that can be 

grouped in pairs.  

Assumptions: 1) Data are paired and come from the same continuous population. 2) Each 

pair is independent. 3) The values of xi and yi are logically paired, so the comparisons (greater 

than, less than or equal to) are meaningful. 

Hypotheses: Designate x and y to be the paired observations and (xi, yi) to be a random 

pair. Null hypothesis (H0) states that difference between the pairs follows a symmetric distribution 

around 0. This distribution has an expected mean value of 0 and a variance of 
( 1)(2 1)

6

n n n 
. 

The alternative hypothesis (H1) states that the difference between the pairs does not follow a 

symmetric distribution around 0. 

Method: The method involves calculating the difference between the paired datasets (xi, yi) 

and ordering them based on their absolute value from the smallest to the largest value. Pairs with 

no difference are removed. Then rank the pairs, with the starting number being 1. For ties, when 

the absolute values of the differences are equal, the ranks equal the average of the ranks (e.g., if 

they rank as 5th and 6th, then they will get the rank of (5+6)/2 = 5.5 for each). Then calculate the 

test statistic W, which is the sum of the sign of the difference multiplied by the rank. The calculated 

W will be compared with the critical values in a reference table. If |W| is greater than or equal to 

the critical value, and then H0 would be rejected (the two-sided test) (Wilcoxon, 1946). 

 

3.1.2.3 Wilcoxon Rank Sum Test  
 

This is an unpaired non-parametric test and is also called a Mann-Whitney U test. 

Assumptions: 1) All the observations from both groups are independent of each other. 2) 

Data can be ordinal. 

Hypotheses: The null hypothesis H0 states that the probability of an observation from the 

population group x being greater than an observation from the second population group y equals 

the probability of an observation from the group y being greater than an observation from the x 

group (Fay and Proschan, 2010).  

In the two-sided test, the alternative hypothesis (H1) states that the probability of an 

observation from the population group x being greater than an observation from the second 

population group y is different from the probability of an observation from the group y being 

greater than an observation from the group x. In the left-tail or right-tail one-sided test, the H1 

states that the probability of an observation from the population group x being greater than an 

observation from the second population group y is greater (or less) than the probability of an 

observation from the group y being greater than an observation from the group x (Mann and 

Whitney, 1947). 

Method 1: For each measurement in one group, count the number of times the first value 

is greater than any measurements in the other group and count 0.5 for any ties. Then the sum of 
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the counts is the statistic U for the first dataset. Its converse is the U for the second data set. If the 

calculated U is greater than the value of U in the reference table, then the H0 is rejected.  

Method 2: Rank all observations in the two groups with the starting number 1 for the 

smallest value. Ties will be ranked with the average of the ranks they span. Then calculate the sum 

of the ranks for the observations in group 1 and designate it as R1. Then U1 = R1 – n1(n1 + 1)/2 (Zar, 

1998). If U1 is greater than the U-value in the reference table, then the H0 is rejected. 

 

3.1.2.4 Sign Test  
 

This test is a type of paired non-parametric test. It is usually used for testing for consistent 

differences between pairs of observations, for example, the abundance of a genus before and after 

bariatric surgeries. The consistent difference means one group is consistently greater or smaller 

than the other group. 

Hypotheses: Designate x and y to be the paired observations and (xi, yi) to be a random 

pair. Null hypothesis (H0) states that the probability for xi being greater than yi equals 0.5 (p = 

Pr(X > Y) = 0.5). 1) For the left tail one-sided test, the alternative hypothesis (H1) states that the x 

measurements tend to be higher than y measurements (p < 0.5). 2) For the right-tailed one-sided 

test, H1 states that the x measurements tend to be lower than y measurements (p > 0.5). 3) For a 

two-sided test, the H1 states that there is a difference between x measurements and y measurements. 

It means x measurements may be either greater than or less than y measurements. The p-value is 

twice as the smaller tail value. 

Assumptions: 1) the differences wi (wi  =  yi – xi) are supposed to be independent. 2) Each 

wi is from the same continuous population. 3) The values of xi and yi are paired logically, so the 

comparisons (greater than, less than or equal to) are meaningful.  

Method: The differences of the paired datasets (xi, yi) are calculated and labeled as positive 

‘+’ or negative ‘–’ sign. Pairs with no difference are removed. Assuming H0 is true, then w follows 

a binomial distribution. Suppose there are 10 (n) pairs of x and y. The probability of the conditions 

that there are k (0, 1, 2, 3, 4, 5, 6, 7, 8, 9, and 10) numbers of x greater than y is Pr = ( ) (1 )n k n k

k p p  . 

If the difference w is binomially distributed, p is 0.5. The probability of 9 or more cases of one 

variable being greater than the other variable is Pr(0)+Pr(1)+Pr(9)+Pr(10) = 0.0215. In this case, 

the result shows that the difference is significant (Whitley and Ball, 2002).  

 

3.1.2.5 Independent (Unpaired) Two-sample T Test  

 

Hypotheses: The null hypothesis (H0) states that the means of the two populations are equal. 

The alternative (H1) states that the means of the two populations are unequal. 

Assumptions: 1) Each of the two sets of data should follow a normal distribution. 2) If 

using the original definition of the Student’s t-test, the two populations being compared should 

have the same variance, no matter the two sample sizes are equal or not. If the variances are 

unequal, the original Student’s t-test is robust enough in case the sample sizes are equal. If the 

variances are unequal, no matter the sample sizes are unequal or not, Welch’s t-test is a better 

alternative. 3) The data from the two populations should be sampled independently. 

Methods: For equal and unequal variance conditions, no matter whether the sample sizes 

are equal or unequal, the value of the test statistic t will be calculated by the below two different 

formulas. Then the calculated t value will be compared with the critical value for Student’s t-

distribution, which can be calculated by the software, such as MATLAB, automatically or be found 
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in a traditional reference table. If the calculated t value is not as large as the critical t value, then 

H0 is not rejected. Otherwise, H0 is rejected (Student, 1908).  
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n1 - 1 and n2 - 1 are the numbers of the degrees of freedom for these two groups and n1 + n2 – 2 is 

the total number of degrees of freedom.            

b) Unequal variance 
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3.1.2.6 Dependent (Paired) T-test for Paired Samples 

Hypotheses: H0: the mean of the differences between the paired populations is equal to a 

specific value 0 . H1: the mean of the differences between the paired populations is unequal to a 

specific value 0  (Student, 1908).  

Assumptions: 1) Each of the two data populations should follow a normal distribution. 2) 

The data from the two populations should be sampled independently. 

Method: The differences between pairs of the datasets are calculated. Then the test statistic 

t will be calculated by the formula below. Then the calculated t value will be compared with the 

critical value for Student’s t-distribution. If the calculated t value is not as large as the critical t 

value, then H0 is not rejected. Otherwise, H0 is rejected.  

0D

D

X
t

S

n


  where DX is the average of the differences, 0 is a constant that the user wants to 

check whether the average of the differences is significantly different from, and DS is the standard 

deviation of those differences. 

 

3.1.2.7 Randomization Test on Two Dependent Samples (Paired)  
 

Hypotheses: H0: there is no difference between treatments for any subject. H1: there is a 

difference between treatments for at least one subject. 

Assumptions: This test makes no assumptions because we have not randomly sampled 

from any population. With respect to this point, this test is very different from standard parametric 

tests (e.g. Student’s t test), for which it is assumed that the data are randomly sampled from 

populations. With no random sampling, there is no basis for making inferences about the 
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corresponding parameters, so the test only answers the question whether there is an effect of the 

treatment, instead of whether the means of the two populations are different.  

Method: Pick a test statistic (e.g., the difference of sample averages) and calculate the 

observed value. Then create all possible rearrangements of the data between the two groups, 

keeping the pairs of observations together. Then calculate the test statistic for each rearrangement 

and construct the distribution using all these test statistics. Then compare the observed test statistic 

to the distribution just created by assuming H0 is true (The assignments are randomly distributed, 

in which case the probability distribution function is the histogram of all the values from all 

possible ways that the observations could have been randomly assigned to groups, keeping pairs 

of observations together.). The p-value will be the proportion of test statistics in the randomization 

distribution that are as much or more extreme than the observed test statistic. If the p-value is 

smaller than the threshold α value (e.g. 0.05), then the H0 is rejected (Dwass, 1957, Verbyla and 

Litvaitis, 1989, Nichols and Holmes, 2002). 

 

3.1.2.8 Randomization Test on Two Independent Samples (Unpaired)  

 

Hypotheses: H0: there is no difference between treatments for any subject. H1: there is a 

difference between treatments for at least one subject. H1 can be true in several different ways. A) 

One treatment results in a fixed additive change in response for all subjects; B) one treatment 

results in a greater mean of the responses across subjects; C) one treatment results in a greater 

variance in response across subjects and D) one treatment results in more skewness in response 

across subjects. 

Assumptions: There are no assumptions because we have not randomly sampled from any 

population. With respect to this point, the assumption is very different from standard parametric 

tests (e.g. Student’s t test), for which it is assumed that the data are randomly sampled from 

populations. With no random sampling, there is no basis for making inferences about the 

corresponding parameters, so the test only answers the question whether there is an effect of the 

treatment, instead of whether the means of the two populations are different.  

Method: Pick a test statistic (e.g., the difference in sample averages) and calculate the 

observed value. Then compare the observed test statistic to the randomization distribution of the 

test statistic obtained by assuming H0 is true (The probability distribution function is the histogram 

of all the values from all possible ways that the observations could have been randomly assigned 

to groups.). The p-value will be the proportion of test statistics in the randomization distribution 

that are as extreme as or more extreme than the observed test statistic. If the p-value is smaller than 

the threshold α value (e.g. 0.05), then the H0 is rejected (Dwass, 1957, Verbyla and Litvaitis, 1989, 

Nichols and Holmes, 2002). 

 

3.1.3 Materials and Methods 

 

The abundance of genera (a taxonomic level in microbiology) detected by Illumina 

sequencing (Illumina Miseq platform) from the genomic DNA samples extracted from fecal 

samples obtained at baseline before bariatric surgeries and fecal samples obtained at week 52 post 

bariatric surgeries were used. There were 11 bariatric surgery participants included, and 11 pairs 

of relative abundance data for each genus. In total, 247 genera were detected. 

Non-parametric tests including Wilcoxon signed rank test, Wilcoxon rank sum test and 

sign test, as well as parametric tests including paired t-test, unpaired t-test, randomization test, and 
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unpaired randomization test in MATLAB (R2013b), were employed for checking whether each 

genus was significantly different between baseline and week 52 samples. 

 

3.1.4 Results and Discussions 

 

Below tables showed the genera whose abundances were identified as different between 

baseline and week 52 by Wilcoxon signed rank test, Wilcoxon rank sum test, sign test, paired t-

test, unpaired t-test, paired randomization test, and unpaired randomization test.  

A paired t-test requires that the difference between the two samples to be compared must 

be normally distributed. The unpaired t-test requires that both variables be normally distributed. 

The data were therefore first checked for normality by using Kolmogorov-Smirnov, Lilliefors or 

Jarque-Bera test. For the t-tests, several genera that showed the significant difference after the 

power 1/5 transformation were still not normally distributed based on a Kolmogorov-Smirnov test 

after data transformation. However, the transformed data were judged to be normal based on either 

a Lilliefors test or a Jarque-Bera test. In these cases, the conservative approach was to look for 

differences using non-parametric tests, which showed that the differences were significant. 

Randomized test circumvents the normality issue and allows one to do parametric tests in 

cases where it would not be allowed otherwise. The randomization tests were done in two ways. 

For the paired randomization test, the baseline and week 52 results were scrambled randomly but 

for each patient separately. The program just calculated the number of times in the original data 

that baseline exceeded week 52 and that week 52 exceeded baseline. Baseline got +1 if it exceeded 

week 52, and week 52 got +1 if it exceeded baseline. If there were ties, both baseline and week 52 

got 0.5. Whichever got the highest score, baseline or week 52, that score became the criterion. 

Then the baseline and week 52 numbers for each patient were randomly scrambled, and the statistic 

was calculated. If the statistic equaled or exceeded the criterion 10% of the time or less, the original 

result was considered significant.  

For the unpaired randomization test, the baseline and week 52 data for all the patients 

combined were scrambled. The criterion was the greater of the number of counts in the baseline 

or week 52 data. Take Arsenicicoccus as an example. It showed up a total of 7 times in the baseline 

patients and zero times in the week 52 patients. So, the criterion would be 7. Then the assignments 

of baseline and week 52 were randomly scrambled for each of the patients. Each time the larger of 

the total counts in the baseline and week 52 patients was determined, and that number was 

compared to 7. If the number equaled or exceeded 7 10% of the time or less, the result with the 

original data was significant. In this case, there is no way the number could have exceeded 7, but 

it could have equaled 7 some of the time. 

 

Table 3.2 Wilcoxon signed rank test detected 16 genera, the abundance of which was shown to be 

significantly different between baseline and week 52 samples (p < 0.1). The genera were ordered 

from the smallest to the largest p-value. 
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Table 3.3 Wilcoxon rank sum test detected 18 genera, the abundance of which was found to be 

significantly different between baseline and week 52 samples (p < 0.1). The genera were ordered 

from the smallest p-value to the largest one. 

 

 
 

Genus Wilcoxon signed rank (p) 

Ruminococcus 0.051 

Sporobacter 0.051 

Anaerosporobacter 0.0513 

Arsenicicoccus 0.0654 

Desulfovibrio 0.066 

Parasutterella 0.073 

Lactonifactor 0.073 

Anaerofustis 0.074 

Bifidobacterium 0.0742 

Anaerotruncus 0.082 

Oscillibacter 0.083 

Subdoligranulum 0.083 

Eubacterium 0.0858 

Clostridium IV 0.0862 

Parabacteroides 0.098 

Bilophila 0.0985 

 

Genus Wilcoxon rank sum (p) 

Pseudomonas 0.001 

Clostridium XII 0.001 

Anaerofustis 0.002 

Desulfovibrio 0.0029 

Arsenicicoccus 0.003 

Acinetobacter 0.0117 

Rudaea 0.0293 

Alloscardovia 0.034 

Anaerosporobacter 0.0388 

Robinsoniella 0.0483 

Lactonifactor 0.057 

Sporobacter 0.0654 

Ruminococcus 0.0658 

Akkermansia 0.0674 

Acetanaerobacterium 0.0674 

Anaerotruncus 0.073 

Eubacterium 0.073 

Bilophila 0.098 
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Table 3.4 Sign test detected 11 genera, the abundance of which was shown to be significantly 

different between baseline and week 52 samples (p < 0.1). The genera were ordered from the 

smallest p-value to the largest one. 

 

 
 

Table 3.5 The paired t test detected 15 genera, the abundance of which was shown to be 

significantly different between baseline and week 52 samples (p < 0.1). The data were raised to 

the power 1/5 to produce numbers that passed the normality test. The genera were ordered from 

the smallest p-value to the largest one.  

 

 
 

Table 3.6 The unpaired t test detected 16 genera, the abundance of which was shown to be 

significantly different between baseline and week 52 samples. The data were raised to the power 

1/5 to produce numbers that passed the normality test. The genera were ordered from the smallest 

p-value to the largest one.  

Genus Sign (p) 

Bilophila 0.0039 

Desulfovibrio 0.0039 

Anaerosporobacter 0.005 

Subdoligranulum 0.026 

Lactonifactor 0.0295 

Sporobacter 0.0382 

Akkermansia 0.0702 

Eubacterium 0.076 

Ruminococcus 0.085 

Anaerotruncus 0.085 

Arsenicicoccus 0.099 

 

Genus Paired t (p) 

Hydrogenoanaerobacterium 0.0152 

Rudaea 0.016 

Anaerofustis 0.033 

Bifidobacterium 0.046 

Eubacterium 0.047 

Arsenicicoccus 0.0625 

Alloscardovia 0.0625 

Anaerosporobacter 0.0781 

Oscillibacter 0.0784 

Lactonifactor 0.084 

Sporobacter 0.091 

Subdoligranulum 0.098 

Clostridium IV 0.0989 

Desulfovibrio 0.0999 

Anaerovorax 0.1 
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Table 3.7 Paired randomization test detected 17 genera, the abundance of which was shown to be 

significantly altered in week 52 samples when compared to the baseline samples (p < 0.1). The 

genera were ordered from the smallest p-value to the largest one.  

 

 
 

Table 3.8 Unpaired randomization test detected 16 genera, the abundance of which was 

significantly different between baseline and week 52 samples (p < 0.1). The genera were ordered 

from the smallest p-value to the largest one.  

Genus Unpaired t (p) 

Anaerovorax 0.0107 

Anaerosporobacter 0.0117 

Clostridium IV 0.0195 

Desulfovibrio 0.021 

Alloscardovia 0.0323 

Eubacterium 0.0348 

Arsenicicoccus 0.037 

Rudaea 0.037 

Acinetobacter 0.0414 

Oscillibacter 0.0438 

Anaerofustis 0.046 

Lactonifactor 0.047 

Subdoligranulum 0.048 

Caulobacter 0.0592 

Sporobacter 0.0654 

Bifidobacterium 0.1 

 

Genus Paired randomization (p) 

Parabacteroides 0.017 

Anaerostipes 0.0251 

Anaerotruncus 0.0268 

Parasutterella 0.031 

Oscillibacter 0.0348 

Subdoligranulum 0.0379 

Bifidobacterium 0.041 

Clostridium IV 0.041 

Clostridium sensu stricto 0.062 

Desulfovibrio 0.0671 

Lactonifactor 0.0774 

Sporobacter 0.0816 

Anaerosporobacter 0.0816 

Methanobrevibacter 0.084 

Eubacterium 0.084 

Arsenicicoccus 0.084 

Bilophila 0.09 
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All these analyses were looking at the data in different ways. The genera that were found 

to be significantly different based on one metric might not be screened out based on another. Only 

5 genera (Sporobacter, Eubacterium, Lactonifactor, Desulfovibrio, and Anaerosporobacter) were 

judged to be significantly different based all these tests, while each specific test detected several 

cases that the other tests missed.  

We found that the paired tests tended to identify fewer significant differences than the 

unpaired tests in this study. Also, the genera identified in the paired tests were not always just a 

subset of the genera identified in the unpaired tests. The Wilcoxon signed rank test, for example, 

identified several genera that were not flagged by the Wilcoxon rank sum test, Parasutterella, 

Bifidobacterium, Oscillibacter, Subdoligranulum, Clostridium IV and Parabacteroides. However, 

the Wilcoxon rank sum test identified the abundance of Clostridium XII, Pseudomonas, 

Acinetobacter, Rudaea, Alloscardovia, Robinsoniella, Acetanaerobacterium and Akkermansia as 

being different between baseline and week 52. The reason was that a few large differences counted 

heavily in an unpaired test, but their magnitude was ignored, for example, in a simple sign test; 

however, if one dataset was consistently higher or lower than another but by a small amount each 

time, that counted heavily in the case of a paired test but tended to get lost in the noise of an 

unpaired test. In this study, the chance of the existence of a few large differences might be a little 

higher than the chance of the existence of consistently higher or lower differences, the result being 

that the unpaired tests detected more differences. The trend that unpaired tests detected more 

differences was not fixed, and it could become opposite in other studies.  

To determine whether a paired or unpaired test was reasonable, other possible factors 

that could impact the results should be considered. For instance, if 11 individuals were employed 

as replicates in the study because the variance among them had negligible effects on the research 

Genus Unpaired randomization (p) 

Caulobacter 0.028 

Bifidobacterium 0.0313 

Clostridium sensu stricto 0.0313 

Clostridium IV 0.0317 

Lactonifactor 0.033 

Acinetobacter 0.0377 

Anaerosporobacter 0.039 

Arsenicicoccus 0.042 

Rhizobium 0.0552 

Paracoccus 0.067 

Alloscardovia 0.0736 

Oscillibacter 0.079 

Eubacterium 0.079 

Desulfovibrio 0.08 

Sporobacter 0.083 

Subdoligranulum 0.0885 

Anaerofustis 0.0938 

Azoarcus 0.0964 
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target (gut microbiota in our case), then both unpaired and paired tests would be reasonable to use. 

Otherwise, paired tests would be more reasonable than unpaired tests. 

 

Table 3.9 The number of genera the abundance of which was found to be significantly different 

between baseline and week 52 samples by different types of analysis of variance tests. 

 

 
 

If we just counted the number of genera found to be significantly different, I would get 

the same results (18) with the unpaired Wilcoxon rank sum and unpaired randomization tests. 

However, the genera found to be different were not entirely the same. If we look at the actual data, 

we can see why some genera were found to be different by some tests and not by others. 

For example, there were more Akkermansia at week 52 than at baseline for 9 of the 11 

patients. The probability of 9 or more patients having more Akkermansia at week 52 than at 

baseline was only 0.0325. If there was no difference between baseline and week 52, that result was 

significant at p = 0.065 by a two-sided test. Thus, the non-parametric test, e.g. Wilcoxon rank sum 

and sign tests, detected the difference. However, the two unusual cases had a lot more Akkermansia 

at baseline than week 52, so if the test was based on the actual data, the difference was not 

significant, as concluded by the parametric Student’s t and randomization tests.  

The results of different types of non-parametric tests could also be different, and some 

genera that were found to be significantly different by one test but not by another test. For example, 

the genus Akkermansia was more abundant at week 52 in 9 of the 11 patients. That was significant 

at p = 0.0654 by a simple two-sided sign test. The reason the Wilcoxon signed test did not pick it 

up was that the two exceptions were very different—they were the second and third largest 

differences in magnitude. Thus, although the Wilcoxon signed rank test was nominally a non-

parametric test, it was looking at ranks, whereas the sign test just looked at pluses and minuses and 

paid no attention to the magnitude of the numbers.  

Another example is the genus bifidobacterium, which was identified as having changed 

only by the Wilcoxon signed rank test, but not the Wilcoxon rank sum and sign tests. It actually 

decreased in 7 of the 11 patients between baseline and week 52. In 3 other cases, there was either 

no change or a change of only 1. There was only one case of it increasing by more than 1 (1225). 

The sign test did not detect a difference because the sign test ignored the magnitude of the decrease 

in those 7 patients. The Wilcoxon rank sum test did not detect a difference because it tests counted 

the number of times the first value in one group was greater than any measurements in the other 

group and counted 0.5 for any ties. Considering that before treatment the levels of this genus were 

variable and this test neglected the initial variance among these 11 patients and that the data in 

these two groups were not completely independent, this test is not the most reasonable and 

powerful test in this scenario.  

The results of different types of parametric tests could also be different, and some genera 

that were found to be significantly different by one test might not be detected by another test. The 

  Non-parametric   Parametric  

 Paired  
Wilcoxon signed rank Sign Paired t Paired randomization 

16 11 15 17 

Unpaired Wilcoxon rank sum  Unpaired t 

Unpaired 

randomization 

18  16 18 
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traditional parametric test such as Student’s t-test could be greatly influenced by outliers when 

compared to the randomization tests, although both tests are based on actual data. For example, 

the genus Parabacteroides was only detected by paired randomization test among all above-

mentioned parametric tests. Actually, its abundance in 8 patients increased, but its levels in three 

other patients were reduced by some small amounts. A small outlier could have a great influence 

on the significance of the traditional parametric tests.  

For the ANOVA analyses in microbial studies, the researchers should first take enough 

carefulness in choosing which ANOVA test is more reasonable or appropriate to use. Then, when 

explaining their test results, more details of the statistical test results relating to the corresponding 

tests should be researched, described, and explained by. In this way, more detailed, reasonable and 

trustable information or discoveries could be disclosed, and the understandings of their conclusions 

made based on these tests could be more accurate and thorough. 

 

3.2 Analysis of Covariance 

 

3.2.1 Abstract 
 

Because data on human subjects in the field of medical research are limited by ethical 

and practical considerations, data from every human subject are valuable, and the inclusion of any 

valid human subject in a medical study enhances the probability of making important discoveries. 

Hence there is an incentive to make the best use of available information by combining data from 

different groups of human subjects if possible. Analysis of covariance (ANCOVA) has been 

widely used as a statistical tool to determine whether data from two or more groups of subjects 

can be combined. However, typical ANCOVA software programs test only the null hypothesis 

that the regression slopes of different groups are homogeneous. However, if the slopes appear to 

be homogeneous, it is appropriate to ask whether there is a difference among the groups in the 

elevations of the relationships. Typical ANCOVA software programs do not address this question. 

Failure to do so could result in an inappropriate combining of datasets. Here we report the use of 

an improved ANCOVA program that tests for the homogeneity of regression elevations if the 

slopes of regression lines are judged to be homogeneous. Use of this program allows decisions 

about combining datasets to be made in a more informed way and in particular, lowers the 

probability that different datasets may be inappropriately combined.  

 

3.2.2 Introduction 

 

Analysis of covariance (ANCOVA) is a general linear model that integrates analysis of 

variance and regression. It has been used to assess whether mean of a population of a dependent 

variable is equal across all levels of a categorical independent variable (e.g., a treatment) while 

statistically controlling for the effects of other continuous variables (covariates) that are not of 

primary interest. It can be employed to increase statistical power and to adjust for preexisting 

differences between unequal groups. But its application in the latter case requires that the 

regression slopes be homogeneous. This application aims at correcting for initial differences (prior 

to group assignments) that exist among several groups of the dependent variable. Categorical 

variables are used to adjust scores to make them more similar than was the case without taking 

account of the categorical variable.  

Some research groups have used only before-treatment baseline data to perform 

correlation tests to check whether there are significant correlations between the relative abundance 
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of specific microbial component such as the genus Akkermansia and physiological variables such 

as the fasting glucose level (Ding et al., 2010, Collado et al., 2010, Marlene et al., 2013, Everard 

et al., 2013, Everard et al., 2014, Damms-Machado and Mitra, 2015, Zhang et al., 2015, 

Schneeberger et al., 2015, Dao et al., 2016, Louis et al., 2016). This method is rather conservative 

and does not make good use of all the available information, such as post-treatment datasets. Some 

other groups have done the correlations by combining all of the before-and-after treatment data 

points without even bothering to test if the before-and-after treatment datasets are statistically 

different from one another (In other words, the linear relationships within the groups have slopes 

and elevations that are not significantly different) by using the analysis of covariance test (Marlene 

et al., 2013). The same concern applies to regression tests.  

Most software, for example, SAS, performs analysis of covariance by only checking to 

determine if there is a significant difference between or among the slopes of different lines fit to 

each data set. These tests do not determine if the intercepts or elevations are significantly different 

or not. Thus, by using this software, when the ANCOVA test finds no significant difference for 

the slopes among different groups, then the researchers may combine the two different datasets 

because they suppose that the ANCOVA results showed that these different datasets are from the 

same population and can be combined. However, that is not always the case. When the intercepts 

or the elevations of the different linear relationships (lines) are different, even though they have 

the same slope, the implication is that these different datasets are not from the same population, so 

it is not reasonable to combine these different datasets and carry out statistical analyses such as 

correlation and regression tests.  

We created a MATLAB program for the ANCOVA test that includes the steps of testing 

both the slopes and elevations of the linear relations belonging to different datasets. This program 

added an additional step that was designed for checking the difference of the elevations of the lines, 

on the basis of the original ANCOVA test, which only checks for significant differences in the 

slopes of the lines for different datasets. In short, to check if the two different datasets are from the 

same dataset, this new program checks 1) whether the slopes of the two datasets are parallel. 

(Hypothesis 1: whether they are separate or parallel lines). 2) if the slopes are parallel, then whether 

their elevations are the same (Hypothesis 2: whether there is only one line). 

 

3.2.3 Materials and Methods 

 

The abundances of genera (a taxonomic level in microbiology) detected by Illumina 

sequencing (Illumina Miseq platform) from the genomic DNA samples extracted from fecal 

samples obtained at baseline before bariatric surgeries (procedures used to alter the anatomy of the 

human digestive system, to limit the food amount that can be taken in and digested for obesity 

reduction) and fecal samples obtained at week 52 post bariatric surgeries were used. There were 

11 bariatric surgery participants included, and 11 pairs of relative abundance data for each genus. 

In total, 247 genera were detected. All statistical analyses and programming were carried out using 

MATLAB R2016a software. 

 

3.2.4 Results and Discussions 

 

To illustrate how to perform the analysis step by step, we used the before-treatment 

baseline and week 52 post bariatric surgery data for the relative abundance of the genus 

Akkermansia and the corresponding host’s body weight as an example. For instance, the issue we 
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are trying to investigate is whether there is a significant correlation between the relative abundance 

of the genus Akkermansia in the gut and body weight. Instead of using only baseline data or 

combining all the baseline and week 52 datasets, I used the following program to determine 

whether the two datasets seemed to come from the same population. If the answer is yes, then I 

can go ahead and combine all the baseline and week 52 data to determine the significance of the 

correlation. This method can help make the best use of all the data I have (i.e., not waste any data).  

 

Table 3.2.4.1 The relative abundance of the genus Akkermansia in the gut microbiota and the 

weights of 11 participants before and after bariatric surgeries.   

 

 
 

The analysis can be divided into three steps. 1) The first step is to determine the equation 

of a best-fit line using linear regression for each dataset (i.e., a separate regression line for each 

dataset). Specifically, the slope and intercept for each dataset is calculated to determine the 

equation (Y = A + BX) for each dataset. The equation for calculating the slope of the regression 

line is  

2

(x x)(y y)
B

(x x)
 

where x  and y  are the averages of the x and y values, respectively. Using the data in Table 3.2.4.1, 

I found that B1 = (–1.0487)/0.0048 = –220.8, and B2 = (–0.2238)/0.0055 = –40.6, where the 

subscripts 1 and 2 refer to the baseline data and week 52 data, respectively.  The equation for 

calculating the corresponding intercept is 
 A = y - Bx . Using the data in Table 3.2.4.1, I found that 

A1 = 135.1, and A2 = 90.1. Thus, the equations of these two lines are Y1 = 135.1 – 220.8X1, and Y2 

= 90.1 – 40.6X2. 2) The second step is to determine whether the null hypothesis that the slopes of 

the two straight lines for the two datasets (e.g., the baseline and week 52 groups) are the same 

should be accepted or rejected based on an F-test. The alternative hypothesis states that the slopes 

of the two straight lines for the two datasets are not the same. To carry out the analysis, two parallel 

 Baseline  Week 52 

BRS participants Akkermansia  Weight (kg)   Akkermansia  Weight (kg) 

 (X1)  (Y1)  (X2)   (Y2) 

P1 0 124.2  1.59E-02 99.8 

P2 1.07E-02 110.5  4.85E-02 60.3 

P3 0 126.1  2.18E-04 88.2 

P4 1.35E-02 126.6  5.30E-02 89.1 

P5 0 123  4.14E-03 80.3 

P6 0 151  3.03E-02 111 

P7 1.09E-03 159.1  3.16E-02 90.1 

P8 7.26E-05 152.9  2.83E-03 103.4 

P9 0 140.4  6.50E-02 94.8 

P10 4.33E-02 102.4  7.26E-05 81.1 

P11 6.48E-02 140.7  8.56E-03 82.2 
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lines are fit to the two datasets. Their common slope was calculated using the equation B = (–

1.0487 – 0.2238) / (0.0048 + 0.0055) = –123.5. Then the intercept for each straight line was 

calculated using the equation
 A = y - Bx , so 1 1 1A y ( 123.5)x   = 132.4 + (123.5) × (0.0121) = 

133.9, and 2 2 2A y ( 123.5)x      = 89.1 + (123.5) × (0.0236) = 92. Thus, the equations for these 

two lines are Yp1 = 133.9 – 123.5X1 and Yp2 = 92 – 123.5X2. To test if the difference of the slopes 

of the two lines is significant, an F test was used, and for this step I first calculated the normalized 

difference of the sums of squares between the baseline and week 52 groups when the two lines 

were parallel and the sums of squares between the two groups when the two lines were separate, 

(SSp – SSsep) / (dfp – dfsep). This normalized difference is then compared with the normalized sum 

of squares of the two groups when the two lines are separate (SSsep/dfs). The F-value is calculated 

using the equation 

 

F =
(SS

p
- SS

sep
) / (df

p
- df

sep
)

SS
sep

/ df
sep

= F
df

p
-df

sep
,df

sep
      (3.2.1) 

In equation 4.1,  

2 2

p 1 p1 2 p2
ˆ ˆSS (y y ) (y y ) = 3034 + 1880 = 4914    (3.2.2) 

2 2

sep 1 s1 2 s2
ˆ ˆSS (y y (y ) ) y = 2989 + 1842 = 4831   (3.2.3)  

In equations 4.1, 4.2 and 4.3, y is the measured value of y given a value of x (y1 indicates 

the baseline dataset and y2 the week 52 dataset),  ŷ
p
is the calculated or predicted value of y given 

a value of x using the equations obtained from forcing the two lines to be parallel in the second 

step (yp1 indicates the baseline dataset and yp2 the week 52 data), and ŷs  represents the predicted 

value of y calculated by using the equations obtained from the separate lines obtained in the 1st 

step ( ŷ
s1

 indicates the baseline dataset and ŷ
s2

 the week 52 dataset). SS stands for the sum of the 

squares of the deviations: SSsep stands for the SS value when the two lines are separate, and SSp is 

the SS value when the two lines are parallel. The degrees of freedom are equal to the number of 

data points minus the number of coefficients in the linear model. For example, there is a total of 

22 data points, and 2 intercepts and 2 slopes for the separate lines, so dfsep = 22 – 2 – 2 = 18. There 

are 2 intercepts and 1 slope for the parallel lines, so dfp = 22 – 2 – 1 = 19. Therefore,  

   p sep p sep

sep sep

SS SS df df (4914 4831) / (19 18)
F 0.309

SS df 4831/18

   
    

This F-value is to be compared with the threshold value of F(1,18) = 4.41 for α = 0.05. If 

the F-value is greater than the threshold F-values for the relevant degrees of freedoms in the 

reference table, then the null hypothesis is rejected. In that case, the implication would be that the 

slopes of the two regression lines were different, and it would be illogical to go forward to the next 

step (i.e., it would be illogical to ask if the two lines were one line because they clearly would not). 

If the F-value is less than the threshold F-value, then the null hypothesis is accepted. The 

implication is that the slopes of the two regression lines are not significantly different. In this case, 

the next step would be needed, so it is necessary to go ahead to test the second hypothesis. 3) The 
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third step is to determine if the two parallel lines are the same line. In other words, the test is to 

determine if the intercepts (or elevations) of the two parallel lines are the same. To test if the 

difference between the elevations of the two lines is significant, an F test is used, and for this step 

one calculates the normalized difference of the sums of squared deviations of the baseline and 

week 52 groups when the two lines are one line, and the sums of squared deviations of the baseline 

and week 52 when the two lines are parallel (SS1 – SSp) / (df1 – dfp). This difference is then 

compared with the normalized sums of squares when the two lines are parallel (SSp/dfp). In the 

equation, SS1 represents the SS value calculated when fitting one line to all the data. The value of 

F is calculated with the equation  

F =
(SS1 -SSp) (df 1 - dfp)

(SSp dfp)
 

2 2

1 1 11 2 12
ˆ ˆSS (y y ) (y y ) .To get the equation to calculate the values of y11 and y12, 

which are the predicted y values given the x values on the assumption that the two lines are one 

line (y11 is for the baseline dataset, and y12 is for the week 52 dataset.), the slope and the intercept 

of the regression line for the dataset obtained by combining the data in both the baseline and week 

52 groups need to be calculated first. B = 365.6, A = y - Bx  = 117.3, so the equation for the 

combined dataset is Y = 117.3 – 365.6X; 2 2

1 1 11 2 12
ˆ ˆSS (y y ) (y y )  = 13,929. When 

there is only one line, there are only two coefficients (one slope and one intercept), so the 

corresponding degrees of freedom, represented as df1, is 22 – 1 – 1 = 20. F = ((13929 – 4914)/(20 

–19))/(4914/19) = 34.9, which is greater than the threshold value for F(9-8,19)  = F(1,19)  = 4.38 for α 

= 0.05. The implication is that the null hypothesis should be rejected because the intercepts of the 

two parallel lines are different. It is, therefore, unreasonable to combine these two datasets for 

further statistical analyses. If the F-value were smaller than the threshold value, then the null 

hypothesis would be accepted because the intercepts of the two lines would not appear to be 

different. Thus, it would be reasonable to combine the two datasets for further analyses. Further 

analysis using each dataset separately would be unnecessary. For our datasets, the results of the 

analysis of covariance showed that the baseline and week 52 data should not be combined for 

further statistical analysis because it is very likely that the data came from different populations.  

Below is a plot produced by an analysis of covariance program written in Matlab (Figure 3.2.4.1). 

For the 1st null hypothesis, the F-value is 0.3096, and the p-value is 0.5848. For the 2nd null 

hypothesis, the F-value is 34.854, and the p-value is 1.1  10–5. The relevant computer programs 

are attached in the supplemental data. 
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Figure 3.2.4.1 The parallel regression lines for the relative abundance of the genus Akkermansia 

vs weight at baseline (black) and week 52 (red).  

 

The equation  

E(Σ(y – ŷ)2) = V(y|x)df + Σ(E(y – ŷ))2                    (3.2.4) 

follows from the definition of the variance of the variable y. In Eq. (4.4), df is the degrees of 

freedom, ŷ is the value of y estimated using an analytical equation that contains parameters that 

were chosen to give the best fit to the data, and V(y|x) is the variance of y given x. Because the 

parameters in the model were deliberately chosen to minimize Σ(y – ŷ)2, the expectation value of 

that sum is less than would be the case if the true parameter values (which are never known) were 

used to calculate ŷ. The result is that V(y|x) in Eq. (4.4) must be multiplied by the df, which is 

equal to N, the number of data, minus the number of parameters in the model. 

Equation (4.4) follows from the formal definition of the variance of a variable y: 

2 2 2V(y) E(y E(y)) E(y ) (E(y))
                     (3.2.5) 

which can be rearranged to give 

2 2E(y ) V(y) + (E(y))
                                   (3.2.6) 

When applying this expression to a dataset that contains finite data points (xk, yk), this equation 
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2

k k k

k k k k

k

2 2

2 2

k kk k

ˆ ˆN | ( y E( y )) )

ˆ ˆE(( y ) ) (E( y ))

E(( ) ) (E( ))

V y x E( y y

 y y

y x y x   



 

           (3.2.7)

 

biased estimate because A and B were chosen to minimize the sum of the squared differences ŷk
 

– A – BxK. Alpha and beta are the expectation values of A and B if A and B are unbiased estimates 

of  and .  A and B must be used because we do not know the values of  and . The problem 

with A and B is that they were calculated to minimize the sum of the squared deviations every 

time we do the experiment, so we are getting a smaller expression for the sum of the squared 

deviations than we would if we used the values of  and . The correction for this bias is to 

multiply V(y|x) by df rather than N in Eq. 4.7, where df represents the degrees of freedom. In other 

words, an unbiased estimate of V(y|x) is the right-hand side of Eq. 4.7 divided by df.  After 

modification, the above expression becomes the following one:  
2

k k k

k k k k

k

k

2

2

kk

2

2

k

ˆ ˆdf | ( y E( y )) )

ˆ ˆE(( y ) ) (E( y ))

E(( A B ) ) (E( A B )

V y x E( y y

 y y

y x y x )



 

 
    (3.2.8) 

Rearranging Eq. 4.8 gives 
2 2

kk kkE(( A B ) ) (E( A B ))dfV(y | x) y x y x 
    (3.2.9) 

In ANCOVA, an important question is whether  

k k
ˆE(y y ) 0

         (3.2.10)
 

For the condition of two separate lines, Eq. 4.10 can be expressed as

ss s

2 2ˆ ˆE( (y y ) ) V(y | x)df   (E(y y ))  

For the condition of two parallel lines, the equation can be expressed as 

pp p

2 2ˆ ˆE( (y y ) ) V(y | x)df   (E(y y ))  

For the condition of one single line, the equation can be expressed as 

1 1 1

2 2ˆ ˆE( (y y ) ) V(y | x)df   (E(y y ))  

For testing if the two lines are parallel or not 
2 2

p S p s p s
ˆ ˆE SS SS V y x df df   E| ( ( )) (y y E y y( ))  (3.2.11) 

and 

 

F =
(SS

p
- SS

s
) / (df

p
- df

s
)

SS
s
/ df

s

 

If the lines are parallel, then  
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both  

p

2ˆ(E(y y ))
 

and 

s

2ˆ(E(y y ))  

are zero. 

In that case, both the numerator and denominator of the quotient used to calculate F are unbiased 

estimates of V(y|x), and the calculated F-value would be expected to be less than or equal to the 

critical F-value 95% of the time and greater than the critical F-value 5% of the time.  

If the lines are separate (i.e., not parallel), then  

p

2ˆ(E(y y ))  

would be greater than 0, but  

s

2ˆ(E(y y ))  

would still be 0, so p s

2 2ˆ ˆ(E(y y )) (E(y y ))
 would be greater than 0. In that case, the 

numerator of the quotient used to calculate the F ratio would be an overestimate of V(y|x), and the 

calculated F-value would be expected to be greater than the critical F-value more than 5% of the 

time. That is the reason why the null hypothesis would be rejected when the calculated F-value is 

greater than the critical F if the type I error rate is 5%.  

For testing whether the two lines are one single line or not, 
2 2

1 p 1 p 1 p
ˆ ˆSS SS df df )  E yE( ) V(y | x)( ( ( )) ( ( ))y E y y  

and 

1 p 1 p

p p

(SS SS ) / (df df )
F

SS / df
 

If the two parallel lines are in fact one single line, then both 

1

2ˆ(E(y y ))   

and  

p

2ˆ(E(y y ))
 

are 0. In that case, both the numerator and denominator of the quotient used to calculate F are 

unbiased estimates of V(y|x), and the calculated F-value would be expected to be less than or equal 

to the critical F-value 95% of the time and greater than the critical F-value 5% of the time.  

If the lines are not the same line, then  
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1

2ˆ(E(y y ))  

would be greater than 0, but  

p

2ˆ(E(y y ))
 

would still be zero, so 1 p

2 2ˆ ˆ(E(y y )) (E(y y )) would be greater than zero, and the 

numerator of the quotient used to calculate the F ratio would be an overestimate of V(y|x). The 

calculated F-value would, therefore, be expected to be greater than the critical F-value more than 

5% of the time. That is the reason why the null hypothesis would be rejected when the calculated 

F-value is greater than the critical F if the type I error rate is 5%.  

In this case, if we use the current ANCOVA program would lead to the conclusion that 

it is valid to combine the data from the data from baseline and week 52 post treatment to do other 

intended tests (e.g. correlation tests). However, based on the test results of our program, it is not 

reasonable to combine these two data sets. Therefore, it is meaningful to employ this ANCOVA 

program for examining homogeneity of the regression intercepts for the validity of data 

combination and we suggest that it could be used in other related research for reducing the chances 

of making error conclusions and/or increasing the chances of making more discoveries.  

 

3.3 Principal Component Analysis 

 

3.3.1 Abstract  

 

It is important to investigate the differences between the ecological communities in 

different experimental samples (e.g., samples before and after specific treatments) because those 

differences provide information about the relationships between environment factors and 

community ecology. This information can be used to guide manipulations of environmental factors 

to maintain or control ecological communities in a desirable way. Principal component analysis 

(PCA) analysis is one of the commonly used methods for analyzing and visualizing ecology 

distance. However, no programs have been created to test whether the ecological distance between 

samples or groups represented in a PCA plot is statistically significant or not. To address this issue, 

a program to determine the statistical significance of the ecological distances between groups 

represented in a PCA plot was developed. Another issue in applying PCA to the field of microbial 

ecology is that PCA cannot include all variables (e.g., all species) in the analyses when the variable 

size (the number of variables) is greater than the sample size (the number of samples) because in 

that case for n data points there can only be (n-1) principal components (no remaining variation 

can be assigned to the extra principal components). This issue can be addressed by employing 

dissimilarity tests, which can be used to compare the ecological distances between different sample 

groups, including all microbial components. Use of the program to examine whether two microbial 

community structures were significantly different showed that both the program and the 

dissimilarity test detected statistically significant differences between microbial community 

structure of samples before and after treatment. We conclude that both the dissimilarity tests and 

PCA analyses with a significance test for ecological distances are useful for determining the 

significance of the ecological distance between two communities. 

 

3.3.2 Introduction 
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Principal component analysis (PCA) is one of the oldest ordination methods used as a 

tool in exploratory data analysis and for making predictive models. It has been used, for example, 

to calculate so-called ecological distances in the context of microbial composition and abundance. 

Ecology can be defined as the study of all processes that influence the distributions, abundances, 

and interactions of organisms with one another and with their environment (Begon, 2006). 

Differences in microbial composition and abundance are reflected in the ecological distance 

between samples. PCA analysis is one way to calculate ecological distances, and a scatter diagram 

of the PCA scores on the first two principal components is one way to visualize ecological 

distances. The scores are basically the representation of the centered, normalized matrix of 

observations (rows) and variables (columns) in principal component space. The distance between 

a pair of points on this graph is a measure of the ecological distance between the pair of 

observations. If the variables are patients and the observations are the numbers of specific kinds 

of flora in their guts, then patients that are close together on the graph are interpreted as having gut 

flora that are similar in composition, whereas patients that are far apart on the graph are interpreted 

as having gut flora that is different in composition. However, currently no published tests to 

determine whether the ecological distances are significantly different from zero in a statistical 

sense.  

 

3.3.3 Materials and Methods 

 

The abundance of genera detected by Illumina sequencing (Illumina Miseq platform) of 

the genomic DNA samples extracted from human feces at baseline before bariatric surgery and at 

week 52 post bariatric surgery was used. Eleven bariatric surgery patients participated in the study, 

and 11 pairs of relative abundance data for each of 247 genera were analyzed.  

PCA analyses and the tests for significance of the ecological distances were performed 

using MATLAB (R2013b). Three complementary non-parametric dissimilarity tests, including 

MRPP (multiresponse permutation procedure) (Sickle, 1997), ANOSIM (analysis of similarity) 

(Clarke, 1993) and Adonis (permutational multivariate analysis of variance) (Anderson, 2001) 

were performed using the Vegan package in R 3.1.2 (http://www.r-project.org/) based on the Bray-

Curtis or Jaccard similarity distance matrices.  

 

3.3.4 Results and Discussions 

 

A PCA analysis can be carried out only when the number of columns (e.g., genera) is 

less than or equal to the number of rows (e.g., patients). Otherwise, the matrix that must be inverted 

to carry out the PCA is singular (i.e., has a determinant of zero) and cannot be inverted. Therefore, 

microbial study researchers usually include only the microbial components that are found to be 

significantly different among patients. Since 247 genera were detected in all baseline and week 52 

samples obtained from the 11 participants, these genera could not all be included in the PCA 

analysis. Thus, we chose to include only the 16 genera for which the abundances were judged to 

be significantly different between baseline and week 52 samples by a Wilcoxon signed rank test. 

The relevant matrix, therefore, contained 16 columns and 22 rows (11 baseline patients and 11 

week 52 patients). The PCA plot below showed that the baseline samples were more clustered 

together than the week 52 samples, the indication being that the relative abundances of these 16 

genera were more similar among the baseline samples than among the week 52 samples, in other 

https://en.wikipedia.org/wiki/Exploratory_data_analysis
https://en.wikipedia.org/wiki/Predictive_modeling
http://www.r-project.org/
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words, the difference between the baseline and week 52 groups was greater than the difference 

between the baseline or within the week 52 group, the indication being that the relative abundances 

of the 16 genera in the baseline and week 52 groups were different.  

 

 
Figure 3.3.4.1 PCA plot of the 16 genera that were determined to be significantly different (p < 

0.1) between the baseline and week 52 groups based on Wilcoxon signed rank test. Principal 

component 1 explained 38.8% of the total variance and principal component 2 explained 16.3% of 

the total variance. 

 

3.3.5 The Significance of the PCA Result 

 

The observation that the distance between the baseline and week 52 groups was larger than 

the distance within the baseline group and within the week 52 group indicated that the relative 

abundances of the genera in the baseline and week 52 samples were different, but whether the 

difference between the relative abundance of the genera in the baseline and week 52 samples is 

statistically significant was not investigated or reported by researchers.  

To solve this problem, we coded a Matlab program (supplemental data) that scrambled the 

genera data randomly between baseline and week 52 and determined in what percentage of the 

cases the distance between baseline and week 52 was as large as or larger than the observed 

distance in the score analysis. The 16 genera that were judged to be significantly different by a 

Wilcoxon signed rank test were chosen for this analysis. Because there were only 11 patients, 

when the data were scrambled between baseline and week 52, there were only 211 = 2048 

possibilities. Systematic consideration of these possibilities revealed that only two of the possible 

permutations produced a distance equal to or greater than the observed distance. One was the 

observed assignment of weeks, and the other corresponded to reversing the baseline and week 52 

assignments for all the genera. The type I error rate was therefore 2/2048 = 0.00098.  It’s 

unnecessary to write a program that went through all those possibilities in a systematic way. 

Instead, the baseline and week 52 data for each patient were scrambled 4000 times. This 

undoubtedly produced many repeat scenarios. However, it was enough to get good convergence 

on the type I error rate, which was about 7.5E−04. We need to know what the type I error rate 

would have to be if we did 18 independent tests and came up with an overall type I error rate of 

1%. To be correct 99% of the time after making 18 tests, we would need (1-p)^18 = 0.99, where p 
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is the type I error rate for an individual test. Then p = 0.00056. The p-value of 7.5E−04 we obtained 

was smaller than 0.00056, so it indicated that the result of the test was statistically significant. In 

other words, it meant that for the community of the genera whose abundance was significantly 

altered between the baseline and week 52 groups, their difference was statistically significant. The 

null hypothesis that the relative abundance of the 16 bacterial genera was the same for the baseline 

and week 52 samples can, therefore, be rejected with a high degree of confidence.  

In detail, to test whether the difference between the two treatment groups (baseline and 

week 52) was significantly different, we first calculated the distance between these two groups by 

using the mean value on axis PC1 and the mean value on axis PC2 (DISTANCE = sqrt((xb-

x7)^2+(yb-y7)^2)). 

Then we permuted the two sets of data (baseline and week 52 groups in this case) in 

each column in matrix X randomly to make a new matrix and obtained the corresponding PC 

scores and calculated the distance between these two groups again, by using the code ‘distance = 

sqrt((xb-x7)^2+(yb-y7)^2)’ and ran this procedure for 4000 times. The ratio of the probability of 

times to get the distance which is greater or equal to the distance that we obtained from our PCA 

solution to the total times we permutated will be calculated and displayed.  

The above PCA analysis answered the question of whether there was a significant 

difference in the relative abundances of the 16 genera between baseline and week 52. However, 

the gut flora consisted of 247 genera, not just 16 genera. It was obviously of interest to determine 

whether the entire microbial community was significantly different between baseline and week 52 

samples. 

 

3.3.6 Limitation of PCA Analysis  

 

PCA analysis usually cannot give much meaningful information for the analysis of the 

OTU table because usually, the number of variables (microbes) is greater than the number of 

samples (patients). To overcome this problem, the microbes can be clustered at specific taxonomic 

levels (e.g., using HCluster in R) and then one chosen from each cluster and the PCA performed 

on the representatives from the different clusters. Also, as in the example above, an ANOVA can 

be used to identify OTUs that are different between baseline and week 52. The PCA can then be 

carried out using the samples and the variables identified from the ANOVA. A PCA plot can then 

be made, but the plot cannot reveal whether the baseline and week 52 groups are different or not. 

Eventually, the p values from a statistical analysis will be needed to reach a conclusion. 

 

3.3.7 Dissimilarity Tests 

 

To determine whether there was a significant difference between the entire microbial 

community at baseline and week 52, a distance matrix was produced based on either the Bray-

Curtis dissimilarity index or the Jaccard similarity index, followed by application of three non-

parametric dissimilarity tests, including analysis of variance (Adonis), analysis of similarity 

(ANOSIM), and a multiresponse permutation procedure (MRPP). The Jaccard index includes only 

presence or absence information, while Bray-Curtis index includes both presence/absence and 

abundance information. The results showed that there was a significant difference between 

baseline and week 52 based on all three dissimilarity tests using the matrix based on the Jaccard 

similarity index (Table 3.3.7.1). 
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Table 3.3.7.1 The results of the dissimilarity tests to determine whether the ecological distance 

associated with the gut bacterial genera at baseline and week 52 were significantly different.  

 

 

 
 

Two different programs, Jaccard and Bray-Curtis, were used to make the distance matrix, 

and three different programs, MRPP, Anosim, and Adonis, were used to test the statistical 

significance of the distance.  

The Jaccard index, which can also be called the Jaccard similarity coefficient, measures 

the similarity between sample groups, and it can be used to compare the similarity of data sets 

(Jaccard, 1901). It is calculated by calculating the size of the intersection divided by the size of the 

union of the sample sets. The letters A and B stand for two datasets. J stands for the Jaccard index. 

 

 

The Jaccard distance measures the dissimilarity between sample groups. It is obtained 

by subtracting the Jaccard coefficient from 1, that is, the difference of the sizes of the union and 

the intersection of the two datasets divided by the size of their union. dJ stands for the Jaccard 

distance. 

J

A B A B
d (A,B) 1 J(A,B)=

A B

  
 


 

The Bray-Curtis dissimilarity index is a statistic used to quantify the compositional 

dissimilarity between two different sites, based on the counts at each site.  

 

Cij is the sum of the lesser values for the units of interest, which is a genus in this case, in common 

between the baseline and week 52 groups. Si and Sj are the number of genera in these two datasets, 

respectively (Bray and Curtis 1957). 

 

3.3.8 Conclusion 

 

PCA is a useful way to determine whether groups have different microbial components, 

when the number of the microbial components is less than the number of samples or, alternatively, 

when using only the significantly different microbial components. It can provide a way to visualize 

the difference directly. Dissimilarity tests must be used to investigate the differences when the 

number of microbial components exceeds the number of samples and if all microbial components 

are to be taken into consideration.  

 

3.4 Measurement of Biodiversity 

 

BRS_BL vs W52 MRPP ANOSIM Adonis 

Genus Delta p R p F p 

Jaccard 0.602 0.079 0.073 0.064 1.344 0.055 

Bray-Curtis 0.551 0.164 0.059 0.159 1.572 0.154 

 

A B A
J(A,B)=

A B A B A B

B 


   

ij

ij

i j

2C
BC 1

S +S
 
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3.4.1 Abstract 

 

There are many types of diversity indices used to describe the diversity in the ecology 

studies, and usually, researchers choose the most popular ones, for example, Shannon diversity or 

Simpson diversity to use. However, these different diversity indices were all developed from true 

diversity index with different selected. Choosing the different value of the parameters in the true 

diversity equation could make the produced diversity index have specific stresses on a specific 

group of the interested entities. Thus, by using this methodology the true diversity index can be 

customized by the users to meet their specific emphasis and make more discoveries. This paper 

reviewed the true diversity and the group that it emphasizes when the different parameter is chosen. 

We conclude that researchers can tailor the true diversity index by applying different parameters 

to make more discoveries on the diversity with the emphasis on some specific group of the entities 

that they are interested in.  

 

3.4.2 Introduction 

 

In the field of ecology, three different types of diversity, alpha diversity (α diversity), 

beta diversity (β diversity) and gamma diversity (γ diversity) were developed for describing 

species diversity. Gamma diversity was defined as the total species diversity in a geological area, 

and it is determined by alpha diversity and beta diversity. Alpha diversity was referred as the 

diversity in a particular local ecosystem or habitat, or the mean of the diversity in particular local 

sites and beta diversity is the distinction or diversity among those different habitats.  

When diversity indices are used in ecology, the types of interest are usually species, but they can 

also be other categories, such as other taxonomic levels including classes, orders, families, and 

genera. The interested entities are usually individual plants, animals, and microbes, and the 

measure of abundance can be, for example, the number of individuals.  

Researchers often use diversity indices to measure alpha diversity. A diversity index is 

a quantitative measure that considers both species richness (the number of different types) and 

their evenness. For example, the Shannon index or the Simpson index are most commonly used. 

However, it might be more reasonable to use true diversity, which is the effective number species, 

as the measurement of species diversity because this method can weight abundant and rare species 

in differential means (weight more on abundant species, weight more on rare species or weight 

abundant and rare species equally), and its implication can be understood intuitively easier. The 

Shannon index and the Simpson index, are simple transformations of true diversity, which is the 

effective number of types, but different diversity indices can explain the diversity from different 

angles. True diversity is the effective number of species, which is the number of equally distributed 

types required to obtain the equal average relative abundance of types as that observed in the 

investigated dataset in which the abundance of all types may not be equally abundant.  

Suppose species diversity is the effective number of species. Alpha diversity is the mean species 

diversity per subunit and can be calculated by first taking the weighted generalized mean Mq-1 of 

the proportional abundances within subunits, and then taking its inverse. The equation is
R

q q 1/(1 q)

i
R q 1q 1 i 1q 1

i ii 1

1 1
D ( p )

M p p
 (Tuomisto, 2010). In the equation, the denominator 

Mq-1 equals the average proportional abundance of the types in the dataset as calculated with the 

weighted generalized mean with exponent q-1. R is richness, the total number of types that were 
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contained in the dataset of interest, and pi is the proportional abundance of the ith type. The 

nominal weights are the proportional abundances.  

The form 

R
q q 1/(1 q)

i

i 1

D ( p )  is usually written as the general expression of true diversity 

(Hill, 1973, Jost, 2006). The term q is usually referred to as the order of the diversity. By changing 

its value the measurement of the true diversity can adjust the weight put on abundant or rare types, 

to customize its sensitivity to abundant or rare species. In general, a higher q value leads to the 

higher effective weight given to the most abundant types, and thus result in a greater Mq-1 value 

and a smaller true diversity value. When q = 1, the weighted geometric mean of the pi values is 

used, and each type is exactly weighted by its proportional abundance. When q > 1, more weight 

was given to abundant types, and when q < 1, more weight was given to rare types. Some prevalent 

diversity indices such as Shannon index and Simpson index are transformations of the true 

diversity with different q values (Jost, 2006).  

As q equals 1, the weighted geometric mean of the pi values is used, and each type is 

exactly weighted by its proportional abundance. Although the equation of true diversity is 

undefined when q = 1, it can be defined as q approaches to 1 infinitely. Below is its equation.  

i

31 2 R

31 2 R

1 2 3 R

31 2 R

1 2 3 R

i

R R
p

i i i

i 1 i 1

pp p p

1 2 3 R

pp p p

pp p p

pR

i 1 i

H ' p ln p ln p

(ln p ln p ln p ln p )

ln p p p ...p

1
ln( )

p p p ...p

1
ln( )

p

 

Shannon index quantifies the uncertainty in predicting the identity of an entity that is 

taken at random from the dataset (Shannon 1948). In the field of ecology, pi in the equation stands 

for the proportion abundance of the ith type in the dataset of interest. The sum of the pi values 

equals unit by definition, so the denominator equals the weighted geometric mean of the pi values, 

with the pi values themselves being used as the weights. The term inside of the parentheses is true 

diversity 1D, so H’ = ln(1D) (Hill, 1973, Tuomisto, 2010).  

When the proportional abundance of each type in the dataset is equal, all pi equals to 

1/R, the Shannon index equals ln(R). The more different types there are, the more equal their 

proportional abundances in the dataset of interest. As the proportional abundance becomes more 

even, the smaller the weighted geometric mean of the pi value is, and the greater the Shannon 

index is. Conversely, the more uneven proportional abundance becomes, the greater the weighted 

geometric mean of the pi value is, and the smaller the Shannon index is.  As the degree of the 

extent for the proportional abundance becomes uneven increases, the intensity becomes more 

focused on one type, and the Shannon index approaches to 0. When there is only one type, the 

Shannon index equal to 0, suggesting that there should be no indeterminacy in predicting the 

identity of the following type taken from the dataset at random. 
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Moreover, the Renyi entropy is a generalization of the Shannon index to other q values. 

Its expression is
R

q q q

i
R q 1q 1i 1

i ii 1

1 1
H ln( p ) ln( ) ln( D)

1 q p p
 (Beck and Schlögl, 1993), 

and it is the logarithm of true diversity with any values of q. 
 

On the contrary to the the Shannon index, which measures the probability to get a 

different type of the next draw when taking the individuals randomly from the dataset with 

replacement, the Simpson index (λ) measures the probability that two entities chosen from the 

interested dataset randomly belong to the same type instead (Simpson 1049). Its equation is
R

2

i

i 1

= p . It equals the weighted arithmetic mean of the proportional abundances of the types in 

the dataset of the interest, with the proportional abundances themselves as the weights.  

However, the above formula needs to do some modification when the size of the dataset 

is small. This is because when the size of the dataset is large enough, the calculated result using 

the above equation could be the same. However, for small size dataset, the result of calculation 

using the above equation could be very different. In this case, the formula was modified to
R

i ii 1
n (n 1)

l
N(N 1)

. In the equation, ni is the number of entities for the ith type and N is the total 

number of entities in the dataset. In the field of microbiology, the Hunter–Gaston index is another 

name for this form of Simpson index.  

Based on the measurement of Simpson index (λ), the diversity index increases when the diversity 

reduces. It counteracts with the human intuitive, leading to inversed Simpson index (1/λ) or Gini-

Simpson index (1- λ), whose value increases with increasing diversity, was used more popularly 

(Hill 1973; Jost 2006). The inversed Simpson index is 2

R 2

ii 1

1
1/ D

p
 , which is equated 

with the true diversity with q = 2. For example, the effective number of types that is obtained when 

the weighted arithmetic mean is used to quantify the average proportional abundance of types in 

the dataset of interest. Gini–Simpson index, which was written as 1 – λ, measures the probability 

that the two entities are taken from a dataset represent different types. Its equation is 
R

2 2

i

i 1

1 1 p 1 1/ D  and it can be expressed as a transformation of true diversity with q 

= 2. 

 

3.4.3 Materials and Methods 

 

The abundances of genera (a taxonomic level in microbiology) detected by Illumina 

sequencing (Illumina Miseq platform) from the genomic DNA samples extracted from fecal 

samples obtained at baseline before bariatric surgeries and fecal samples obtained at week 52 post 

bariatric surgeries were used. There were 11 bariatric surgery participants included, and 11 pairs 

of relative abundance data for each genus. In total, 247 genera were detected. 

 

3.4.4 Results and Discussions 
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To illustrate the values and differences of these different diversity indices, we used the 

genus data for the baseline and week 52 post bariatric surgery treatment as an example to calculate 

them and make comparisons among them. The true diversity is calculated by the formula
R

q q 1/(1 q)

i

i 1

D ( p ) . If choosing q = 1 to not give more weight to either abundant or rare type, and 

then the true diversity equals to the Shannon index, that is, 

R
1

i i

i 1

D p ln p


  . If choosing a q value 

greater than 1, then the true diversity becomes more sensitive to abundant types and more weight 

will be given to abundant types. For example, when choosing q = 2, the true diversity is the 

inversed Simpson index in this case and equals to
2

R
2

i

i 1

1
D

( p )

. If choosing a q value less than 1, 

and then the true diversity becomes more sensitive to rare types, and more weight will be given to 

rare types. For instance, when choosing q = 0.5, the true diversity will be equal to

R
0.5 2

i

i 1

D ( p ) . 

Below are the results of the calculations for the diversity indices in the above-mentioned conditions.  

 

Table 3.4.4.1 The richness of genus for each baseline and week 52 post bariatric surgery sample. 

The means sand standard deviations for the genus richness of these two groups were listed at the 

bottom.   

 

 
 

Table 3.4.4.2 The result of tests for comparing whether the difference between the genus richness 

in baseline and week 52 post bariatric surgery samples are statistically significant. 

BRS Genus richness 

Participant ID BL W52 

Band0186 61 83 

Bypass0610 54 63 

Bypass9968 67 90 

Sleeve1517 82 79 

Sleeve2069 65 80 

Sleeve2104 56 69 

Sleeve3036 66 81 

Sleeve3289 83 85 

Sleeve5155 58 47 

Sleeve7603 32 61 

Sleeve8684 59 75 

Mean 62.09 73.91 

Std 13.85 12.70 

 



58 
 

 
 

The result showed that the mean genus richness of the week 52 samples was higher than 

the mean genus richness of the baseline samples (Table 3.4.4.1), and both paired t-test and paired 

u test results showed that the increase was statistically significant (Table 3.4.4.2). In other words, 

the genus richness at baseline was significantly lower when compared to the week 52 samples, and 

the genus richness at week 52 post-treatment was significantly higher when compared to the 

baseline samples. 

 

Table 3.4.4.3 The values of the true diversities of the genus community in baseline and 

week 52 post bariatric surgery samples, when calculated with different q values, were listed. The 

means and standard deviations of the true diversities for the genus community in the baseline and 

week 52 groups were listed at the bottom of the table. 

 

 

 
 

Table 3.4.4.4 The test results for comparing whether there is a statistically significant difference 

between the true diversities for the genus community in the baseline and week 52 post bariatric 

surgery samples when calculated with different q values, were listed. 

 

 
 

Genus richness_BL vs W52  p 

Paired t test 0.008 

Paired u test 0.018 

 

BRS Genus diversity at BL Genus diversity at W52 

Participant ID q = 1 q = 2 q = 0.5 q = 1 q = 2 q = 0.5 

Band0186 1.728 3.297 12.286 2.602 8.474 25.526 

Bypass0610 2.150 6.250 13.729 2.720 10.742 24.089 

Bypass9968 2.183 4.749 17.655 2.548 7.247 25.479 

Sleeve1517 2.626 8.417 26.184 2.957 12.224 30.432 

Sleeve2069 2.418 5.762 20.633 2.212 4.381 21.413 

Sleeve2104 2.129 4.295 16.511 2.738 9.710 24.699 

Sleeve3036 1.801 3.924 12.999 1.957 3.964 17.471 

Sleeve3289 2.178 4.738 19.729 2.270 5.084 21.835 

Sleeve5155 2.609 9.858 20.501 2.093 5.757 12.764 

Sleeve7603 1.368 2.385 7.640 1.522 2.529 11.350 

Sleeve8684 1.765 3.366 13.429 1.960 3.718 17.599 

Mean 2.087 5.186 16.482 2.325 6.712 21.151 

Std 0.391 2.263 5.141 0.428 3.194 5.817 

 

BRS_BL vs W52 p 

True diversity of genus q = 1 q = 2 q = 0.5 

Paried t test 0.067 0.123 0.019 

Paired u test 0.083 0.083 0.019 
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The results showed that the average of the true diversity was increased at week 52 when 

compared to the baseline level (Table 3.4.4.3). In addition, both paired t-test and paired u test 

results showed that when choosing smaller q values, the difference of the true diversity between 

baseline and week 52 samples become more statistically significant. For example, when q was set 

as 0.5 to emphasize the rarer genera, the baseline diversity was significantly lower than the week 

52 diversity (p = 0.019), while when q was set as 2 to emphasize the abundant genera, the p-value, 

which is equal to 0.083, was not as significant as the p-value calculated when q was set as 0.5 

(Table 3.4.4.4). It indicates that the difference for the rare genera between before and after 

treatment was more significant when compared to the difference for the abundant genera. In other 

words, it indicates that the changes in the gut flora have been mainly in the comparatively rare 

genera. 

Therefore, we conclude that it would be meaningful for researchers to employ different 

types of diversity indices or the true diversity with different q values when comparing the 

diversities between different groups. This methodology can help the researchers to dig out more 

detailed information, for example, whether the difference in diversities is more concentrated on 

abundant types or rare types in the dataset we are interested in.  
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CHAPTER FOUR: OBESITY IMPROVEMENT WAS EFFICIENT AND 

PERSISTENT AFTER BRS AND IT WAS LESS EFFICIENT AND 

PERSISTENT AFTER LCD 

 

4.1 Obesity Improvement after BRS Was Efficient and Persistent 

 

We observed that almost all physiological variables were significantly improved at week 

7 and week 52 after BRS. Weight, fat mass, lean mass, fat%, BMI, 24HourEE, SubcutMeanSize, 

GLU, INS, GHRA, ADP, ADPHMW, and hsCRP were all significantly improved at week 7 and 

week 52 post BRS, and CHOL and GHR were significantly improved at week 7 post BRS, 

GDR1/Weight, GDR2/Weight, TRIG, HDL, were significantly improved at week 52 post BRS.  

More specifically, weight was significantly reduced from mean of 128.36 kg (std = 4.94 

kg) at baseline to mean of 111.99 kg (std = 4.14 kg) at week 7 to mean of 85.62 kg (std =3.34 kg) 

at week 52 post BRS (p =3.05E−05 for baseline and week 7; p =1.22E−04 for baseline and week 

52; p = 0.0001 for week 7 and week 52). Similarly, IDXA weight was significantly reduced from 

baseline mean of 129.6 kg (std =20.6 kg) to week 7 mean of 115.0 kg (std =17.19 kg) to week 52 

mean of 86.92 kg (std =13.72 kg) (p = 4.37E−04 for baseline & week 7, p = 4.38E−04 for baseline 

& week 52 and week 7 & week 52). Fat mass was significantly reduced from mean of 69.56 kg 

(std = 11.86 kg) at baseline to mean of 60.48 kg (std = 10.70 kg) at week 7 (p = 1.22E−04), and 

from mean of 67.48 kg (std = 14.30 kg) at baseline to mean of 37.02 kg (std = 9.44 kg) at week 52 

(p = 0.0156), and from mean of 59.69 kg (std = 13.78 kg) at week 7 to mean of 37.02 kg (std = 

9.44 kg) at week 52 (p = 0.0156). IDXA fat mass was significantly reduced from baseline mean 

of 67.36 kg (std = 13.17 kg) to week 7 mean of 58.15 kg (std = 11.43 kg) (p = 6.10E−05), from 

baseline mean of 67.36 kg (std = 13.17 kg) to week 52 mean of 33.93 kg (std = 10.42 kg) (p = 

6.10E−05), and from week 7 mean of 57.28 kg (std = 11.57 kg) to week 52 mean of 33.22 kg (std 

= 10.46 kg) (p = 4.38E−04). Lean mass was also significantly reduced from mean of 54.13 kg (std 

= 13.02 kg) at baseline to mean of 48.65 kg (std = 10.25 kg) at week 7 (p = 1.22E−04), from 

baseline mean of 50.72 kg (std = 16.46 kg) to week 52 mean of 44.52 kg (std = 11.63 kg) (p = 

0.0156). IDXA lean mass was significantly reduced from baseline mean of 57.49 kg (std = 8.53 

kg) to week 7 mean of 52.86 kg (std = 7.45 kg) (p = 6.10E−05), from baseline mean of 57.66 kg 

(std = 8.82 kg) to week 52 mean of 50.32 kg (std = 6.08 kg) (p = 2.44E−04), and from week 7 

mean of 54.67 kg (std = 9.87 kg) to week 52 mean of 52.07 kg (std = 8.96 kg) (p =0.0054). Fat% 

was significantly reduced from baseline mean of 53.81 (std = 4.67) to week 7 mean of 52.21 (std 

= 4.90) (p = 0.0054), from baseline mean of 53.81 (std = 4.67) to week 52 mean of 39.80 (std = 

7.59) (p = 6.10E−05), and from week 7 mean of 51.02 (std = 6.71) to week 52 mean of 38.61 (std 

= 8.73) (p = 4.38E−04). 24HourEE was significantly reduced from baseline mean of 2453.56 

kcal/day (std = 418.48 kcal/day) to week 7 mean of 2085.5 kcal/day (std = 261.66 kcal/day) (p = 

4.38E−04), from baseline mean of 2451.4 kcal/day (std = 433.08 kcal/day) to week 52 mean of 

1918.13 kcal/day (std = 304.80 kcal/day) (p = 6.10E−05), and from week 7 mean of 2087 kcal/day 

(std = 270.78 kcal/day) to week 52 mean of 1918.13 kcal/day (std = 304.80 kcal/day) (p = 0.0014). 

BMI was significantly reduced from baseline mean of 45.83 kg/m2 (std = 6.56 kg/m2) to week 7 

mean of 40.02 kg/m2 (std = 5.77 kg/m2) to week 52 mean of 30.57 kg/m2 (std = 4.44 kg/m2) (p = 

4.38E−04) for baseline & week 7, baseline & week 52, and week 7 & week 52). Subcutaneous fat 

size was significantly reduced from baseline mean of 1.52 µl (std = 0.657 µl) to week 7 mean of 

1.203 µl (std = 0.23 µl) (p = 0.064), from week 7 mean of 1.251 µl (std = 0.222 µl) to week 52 

mean of 0.829 µl (std = 0.230 µl) (p = 0.0098), from baseline mean of 1.543 µl (std = 0.718 µl) to 



61 
 

week 52 mean of 0.829 µl (std = 0.230 µl) (p = 0.0039). It indicated that after BRS, obesity was 

significantly improved. 

Fasting glucose was significantly reduced from baseline mean of 100.59 mg/dl (std = 11.40 

mg/dl) to week 7 mean of 91.19 mg/dl (std = 13.48 mg/dl) to week 52 mean of 86.09 mg/dl (std = 

8.38 mg/dl) (p = 0.0034 for baseline & week 7; p = 6.10E−05 for baseline & week 52). INS was 

significantly reduced from baseline mean of 13.24 uU/dl (std = 8.57 uU/dl) to week 7 mean of 

5.77 uU/dl (std = 3.03 uU/dl) to week 52 mean of 5.34 uU/dl (std = 6.80 uU/dl) (p = 9.35E−04 for 

baseline & week 7; p = 7.76E−04 for baseline & week 52; p = 0.0494 for week 7 & week 52). 

GDR1/Weight was not significantly altered during baseline and week 7, but was significantly 

increased from week 7 mean of 2.49 mg/kg/min (std = 0.83 mg/kg/min) to week 52 mean of 4.91 

mg/kg/min (std = 1.13 mg/kg/min) (p = 4.37E−04) and from baseline mean of 2.57 mg/kg/min 

(std = 0.84 mg/kg/min) to week 52 mean of 4.91 mg/kg/min (std = 1.13 mg/kg/min) (p = 

4.38E−04). Similarly, GDR2/Weight was not significantly altered during baseline and week 7, but 

was significantly increased from week 7 mean of 7.11 mg/kg/min (std = 1.88 mg/kg/min) to week 

52 mean of 12.93 mg/kg/min (std = 1.58 mg/kg/min) (p = 4.38E−04) and from baseline mean of 

7.29 mg/kg/min (std = 2.27 mg/kg/min) to week 52 mean of 12.93 mg/kg/min (std = 1.58 

mg/kg/min) (p = 4.38E−04). It indicated that after BRS, the insulin resistance was significantly 

improved. 

Triglycerides were significantly reduced from baseline mean of 143.47 mg/dl (std = 86.11 

mg/dl), to week 7 mean of 96.67 mg/dl (std = 37.04 mg/dl) (p = 0.0291), from baseline mean of 

140.06 mg/dl (std = 84.29 mg/dl), to week 52 mean of 75.63 mg/dl (std = 35.62 mg/dl) (p = 0.0023), 

and from week 7 mean of 96.67 mg/dl (std = 37.04 mg/dl) to week 52 mean of 78 mg/dl (std = 

35.53 mg/dl) (p = 0.0946). HDL was significantly reduced from baseline mean of 51.43 mg/dl (std 

= 10.32 mg/dl) to week 7 mean of 44.58 mg/dl (std = 10.66 mg/dl) (p = 0.174), but was 

significantly increased from baseline mean of 51.43 mg/dl (std = 10.32 mg/dl) to week 52 mean 

of 61.89 mg/dl (std = 10.90 mg/dl) (p = 0.0025), and from week 7 mean of 44.58 mg/dl (std = 

10.66 mg/dl) to week 52 mean of 61.89 mg/dl (std = 10.90 mg/dl) (p = 4.38E−04). Cholesterol 

was significantly reduced from baseline mean of 173.88 mg/dl (std = 47.19 mg/dl) to week 7 mean 

of 148.56 mg/dl (std = 37.36 mg/dl) (p = 0.014), but was significantly increased from week 7 mean 

of 148.56 mg/dl (std = 37.36 mg/dl) to week 52 mean of 170.69 mg/dl (std = 32.54 mg/dl) (p = 

0.0057), but it was still less than the baseline mean and there was no statistically significant 

difference between baseline and week 52 levels. No significant alteration of LDL was observed 

during the three periods. It indicated that after BRS, the lipid profile became significantly 

improved. 

Hormone adiponectin (ADP) was significantly increased from baseline mean of 8.19 mg/dl 

(std = 5.09 mg/dl) to week 52 mean of 16.45 mg/dl (std = 11.60 mg/dl) (p = 0.037), and from week 

7 mean of 10.13 mg/dl (std = 5.69 mg/dl) to week 52 mean of 16.76 mg/dl (std = 11.27 mg/dl) (p 

= 6.42E−04). The normal range of adiponectin for individuals with BMI > 30 kg/m2 is 2-20 mg/dl 

for males and 4-22 for females (Mayo medical laboratories 2017). The patients who had over 10 

years of diabetic mellitus type 2 showed abnormally higher level of ADP, and after excluding it 

from the analysis, ADP showed significant increased at week 7 (mean = 9.7 mg/dl, std = 5.62 

mg/dl), when comparing to baseline (mean = 8.19 mg/dl, std = 5.09 mg/dl) (p = 0.037). Meanwhile, 

this patient also showed least lean mass (but not IDXA lean mass), biggest SubcutMeanSize, 

highest GLU, lowest INS, highest ADPHMW, and lowest LEP. Similarly, the active form of ADP, 

high-molecular-weight adiponectin (ADPHMW) was significantly increased from mean week 7 

mean of 5435.73 mg/dl (std = 3343.05 mg/dl) to week 52 mean of 9780 mg/dl (std = 6893.75 
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mg/dl) (p = 0.0072), and from baseline mean of 5795.56 mg/dl (std =7138.77 mg/dl) to week 52 

mean of 10029 mg/dl (std = 6734.06 mg/dl) (p = 4.38E−04), and after excluding the patient with 

greater than 10-year diabetics, ADPHMW was significantly increased from at week 7 (mean = 

5435.73 mg/dl, std = 3343.05 mg/dl), when comparing with baseline (mean = 4162.07 mg/dl, std 

= 2976.53 mg/dl) (p = 0.0012). GHR was significantly reduced from baseline mean of 550.44 

mg/dl (std = 129.68 mg/dl) to week 7 mean of 407.81 mg/dl (std = 182.06) to week 52 mean of 

479.88 mg/dl (std = 240.29 mg/dl) (p = 0.0027 for baseline & week 7; p = 0.098 for baseline & 

week 52). GHRA was significantly reduced from baseline mean of 119.67 mg/dl (std = 60.11 

mg/dl) to week 7 mean of 61.6 mg/dl (std = 16.78 mg/dl) (p = 9.16E−04), but was significantly 

increased from week 7 mean of 59.03 mg/dl (std = 19.19 mg/dl) to week 52 mean of 85.88 mg/dl 

(std = 41.54 mg/dl) (p = 0.0067); However, the week 52 level was still lower than the baseline 

level. There were many GLP-1 values were below 2 mg/dl, making the comparison between 

baseline, week 7 and week 52 inaccurate, so it was not reported. No significant alteration of PYY 

levels were observed among the three periods. Leptin was significantly reduced from baseline 

mean of 53.76 mg/dl (std = 20.76 mg/dl) to week 7 mean of 32.88 mg/dl (std = 13.34 mg/dl) to 

week 52 mean of 21.56 mg/dl (std = 13.33 mg/dl) (p = 9.35E−04 for baseline & week 7; p = 

5.30E−04 for baseline & week 52; p = 0.0032 for week 7 & week 52). It indicated the significant 

improvement of obesity-related hormones after BRS.  

HsCRP was significantly reduced from baseline mean of 10.01 mg/l (std = 8.86 mg/l) to 

week 7 mean of 7.31 mg/l (std = 5.59 mg/l) (p = 0.098), from baseline mean of 10.46 mg/l (std = 

8.97 mg/l) to week 52 mean of 2.97 mg/l (std = 3.17 mg/l) (p = 6.10E−05), and from week 7 mean 

of 7.27 mg/l (std = 5.79 mg/l) to week 52 mean of 3.14 mg/l (std = 3.21 mg/l) (p = 6.10E−05). 

HsCRP measures general inflammation levels, and the normal range of hsCRP in healthy human 

beings is below 10 mg/l. At week 52 post BRS, all patients showed hsCRP levels less than 10 mg/l, 

except one patient showed hsCRP level equaling to 10 mg/l. Considering that obesity is usually 

linked with increased inflammation levels and the significant reduction of hsCRP further supported 

the signinificant improvement of obesity condition. 
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Figure 4.1.1 Changing patterns of obesity-related physiological variables in the BRS group. 

Different letters (a, b, and c) stand for statistical significance. 

 

4.2 Obesity Improvement after LCD Was Less Efficient and Persistent 

 

For the LCD group, we also observed significant improvement of obesity-related 

physiological variables, but the number of significantly improved variables and the degree of their 

improvements were much less than the BRS group. Weight, fat mass, lean mass, and ADP were 

all significantly improved at week 7 and week 52 post LCD treatment, and BMI, 24HourEE, GLU, 

INS, and CHOL were significantly reduced at week 7 post LCD, and SubcutMeanSize and hsCRP 

were significantly reduced at week 52 post LCD. 
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More specifically, weight was significantly reduced from baseline mean of 130.01 kg (std 

= 30.59 kg) (p = 0.0078). IDXA weight was significantly reduced from baseline mean of 129.91 

kg (std = 30.19 kg) to week 7 mean of 122.94 kg (std = 31.92 kg) to week 52 mean of 125.05 kg 

(std = 30.13 kg) (p = 0.0078 for baseline & week 7 and p = 0.0781 for baseline & week 52). Fat 

mass was significantly reduced from baseline mean of 70.17 kg (std = 19.98 kg) to week 7 mean 

of 65.32 kg (std = 20.56 kg) (p = 0.0078), and from baseline mean of 74.35 kg (std = 21.78 kg) to 

week 52 mean of 68.9 kg (std = 21.33 kg) (p =0.0625). IDXA fat mass was significantly reduced 

from baseline mean of 57.51 kg (std = 8.97 kg) to week 7 mean of 53.70 kg (std = 7.71 kg) (p = 

0.0625), but was significantly increased from week 7 mean of 56.32 kg (std = 9.43 kg) to week 52 

mean of 59.37 kg (std = 10.02 kg) (p = 0.0313). Lean mass was significantly reduced from baseline 

mean of 52.61 kg (std = 11.87 kg) to week 7 mean of 49.97 kg (std = 10.84 kg) (p = 0.0078), and 

from baseline mean of 54.98 kg (std = 12.78 kg) to week 52 mean of 51.53 kg (std = 12.79 kg) (p 

= 0.0313). IDXA lean mass was significantly reduced from baseline mean of 51.22 kg (std = 3.06 

kg) to week 7 mean of 47.38 kg (std = 3.77 kg) (p = 0.0625). No significant alteration of fat% or 

SubcutMeanSize was observed after LCD. 24HourEE was significantly reduced from baseline 

mean of 2365.13 kcal/day (std = 363.84 kcal/day) to week 7 mean of 2160.25 kg (std = 351.60 kg) 

(p = 0.0156). BMI was significantly reduced from baseline mean of 47.19 kg/m2 (std = 8.76 kg/m2) 

to week 7 mean of 44.11 kg/m2 (std = 9.41 kg/m2) (p = 0.0078). It indicated that obesity was 

significantly improved after LCD treatment.  

GLU was significantly reduced from baseline mean of 98 mg/dl (std = 9.25 mg/dl) to week 

7 mean of 92.69 mg/dl (std = 9.12 mg/dl) (p = 0.0234). INS was significantly reduced from 

baseline mean of 14.18 uU/dl (std = 9.06 uU/dl) to week 7 mean of 9.35 uU/dl (std = 6.83 uU/dl) 

(p = 0.0391). No significant alteration of GDR1/weight or GDR2/Weight was observed after LCD. 

It indicated during LCD treatment, the insulin resistance was significantly improved, but the 

improvement disappeared after the cease of the LCD treatment. 

No significant alteration of TRIG or LDL was observed. HDL was significantly reduced 

from baseline mean of 51.28 mg/dl (std = 5.80 mg/dl) to week 7 mean of 45.6 mg/dl (std = 5.67 

mg/dl) (p = 0.0781), but was significantly increased from week 7 mean of 45.6 mg/dl (std = 5.67 

mg/dl) to week 52 mean of 50.48 mg/dl (std = 8.53 mg/dl) (p = 0.0547); no significant difference 

between baseline and week 52 levels. CHOL was significantly increased from week 7 mean of 

165.13 mg/dl (std = 26.14 mg/dl) to week 52 mean of 189.63 mg/dl (std = 42.48 mg/dl) (p = 

0.0858), but no significant difference between baseline and week 52 levels. It indicated that lipid 

profile was not significantly altered after LCD.  

ADP was significantly increased from baseline mean of 9.06 mg/dl (std = 4.61 mg/dl) to 

week 7 mean of 11.2 mg/dl (std = 6.08 mg/dl) (p = 0.0313). LEP was significantly reduced from 

baseline mean of 67.16 mg/dl (std = 27.27 mg/dl) to week 7 mean of 49.21 mg/dl (std = 8.58 mg/dl) 

(p = 0.0391), but was significantly increased from week 7 mean of 49.21 mg/dl (std = 8.58 mg/dl) 

to week 52 mean of 68.01 mg/dl (std = 19.25 mg/dl) (p = 0.0156); no significant difference of 

LEP between baseline and week 52 post LCD. No significant alteration of ADPHMW, GHR, 

GHRA, GLP-1, or PYY was observed. It indicated the significant improvement of obesity-related 

hormone during LCD treatment, but the significant improvement was short-term, considering that 

it was disappeared after the cease of LCD treatment.  

No significant alteration of the hsCRP level was observed after LCD.  

 



66 
 

 

 

 

 

 
 



67 
 

 

 
 

Figure 4.2.1 Changing patterns of obesity-related physiological variables in the LCD group. 

Different letters (a, b, and c) stand for statistical significance. 
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CHAPTER FIVE: MICROBIAL COMMUNITY STRUCTURE WAS 

SIGNIFICANTLY ALTERED AFTER TREATMENTS 

 

5.1 Gut Microbial Richness and Diversity Was Significantly Increased 

 

Richness measures how many different types of categories existing in the sample, and it 

increases as the number of different category type increases. The genus richness was significantly 

from around 60 to 80, and OTU richness was significantly increased from around 800 to 100. 

Diversity considers both richness and evenness, and it increases as richness and evenness increase. 

Alpha-diversity measures local diversity, and here it was measured by Shannon index and inversed 

Simpson index, both of which showed significantly increase at genus and OTU level. Combining 

them together, it indicated that microbial richness and diversity were significantly increased at 

genus and OTU levels. 

 

 
 

Figure 5.1.1 Genus richness was significantly increased at week 52 after BRS treatment. 

 

 
 

Figure 5.1.2 Genus alpha diversity was significantly increased at week 52 after BRS treatment. 
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Figure 5.1.3 OTU richness was significantly increased at week 52 after BRS treatment. 

 

 
 

Figure 5.1.4 OTU diversity was significantly increased at week 52 after BRS treatment. 

 

Similarly, we observed that the significant increase of genus diversity at week 52 post LCD 

treatment, although no significant increase of genus richness was observed. At OTU level, we did 

not observe a statistically significant increase of richness and diversity, but all the 4 LCD 

participants whose microbial data were available showed increased OTU richness and diversity.  

 

 
 

Figure 5.1.5 Genus diversity was significantly increased at week 52 post LCD treatment.  
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Figure 5.1.6 OTU richness was not statistically significantly increased, but they were all increased 

in all 4 LCD participants whose microbial data was available. 

 

 
 

Figure 5.1.7 OTU diversity was not statistically significantly increased, but they were all increased 

in all 4 LCD participants whose microbial data was available. 

 

Taken together, it indicated that the richness and alpha diversity of the entire microbial 

community structure were significantly increased after both BRS and LCD treatments, and degree 

of their increase was higher in the BRS group than the LCD group.  

Like all healthy ecosystems, the richness of gut microbiota characterizes the healthy status, 

and a loss of diversity is linked to several disease statuses (Ott and Schreiber, 2006). Here, our 

results supported that the increased microbial richness and diversity was linked to the improved 

obesity condition, and greater increased microbial richness and diversity was linked to greater 

improved obesity condition in the severely obese subjects. It was reported that fasting treatment 

increased gut microbial diversity (Remely et al., 2015), and considering that bariatric surgeries 

induced different degrees of calorie restriction (the direct effect of BRS), so our result confirmed 

this link and indicated that the calorie restriction induced by BRS could be one of the mechanisms 

that contributed to the increased microbial diversity. Besides, considering that the main 

physiological alteration of the patients after BRS was weight loss and better healthiness status 

(indirect effects of BRS), so the increased microbial diversity could be induced by weight loss or 

improved health condition. In addition, there could be some other alteration of physiological 
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alterations initiated by BRS, such as hormone levels, alteration of pH levels, temperature etc, etc 

that could be contributed to the increased microbial diversity.     

 

5.2 Gut Microbial Distribution and Composition Was Altered at Different Taxonomic Levels 

 

The overall microbial taxonomy represented by the fecal microcosm in vitro was 

distributed amongst defined phyla, classes, orders, families, genera, and some undefined taxa. 

Around 99.86% of sequences belong to bacteria and 0.14% sequences belong to Archaea. The 

phylum was dominated by Firmicutes (70.37%), Bacteroidetes (14.40%), Actinobacteria (7.67%), 

Proteobacteria (5.51%), Verrucomicrobia (1.49%) and others (0.56%, including Euryarchaeota, 

Fusobacteria, Acidobacteria, CyanobacteriaChloroplast, Spirochaetes, Synergistetes, 

Gemmatimonadetes, Nitrospira, Planctomycetes, TM7, Deinococcus-Thermus, Chloroflexi, 

Thermotogae, Chlorobi, Deferribacteres, Armatimonadetes and unclassified).  

The phylum Actinobacteria was significantly reduced, while the phylum Verrucomicrobia 

was significantly increased at week 52 after BRS treatment (Figure 5.2.3). 

 

 
  

Figure 5.2.1 Phylum distribution at baseline post-BRS treatment.  

 

 
 

Figure 5.2.2 Phylum distribution at week 52 post-BRS treatment.  
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Figure 5.2.3 Phyla Actinobacteria and Verrucomicrobia were significantly altered at week 52 after 

BRS treatment. 

 

It has been reported that the phylum Actinobacteria increased its relative abundance in the 

gut of mice fed a high-fat diet (Clarke et al., 2012). Also, it has been reported that it was higher in 

the gut microbiota belonging to the obese ones in the twins than the lean ones (Turnbaugh et al., 

2009). Additionally, it has been reported that it was reduced after RYGB treatment (Graessler et 

al., 2013).  

It has been reported that the obese individuals had a lower relative abundance of 

Verrucomicrobia (Clarke et al., 2012), and it was increased after RYGB (Liou et al., 2013). It was 

also reported that it was more abundant in normal-weight and post-gastric bypass individuals than 

the obese individuals (Zhang et al., 2009). 

In addition, we observed that Proteobacteria was significantly increased from baseline 

mean of 6.3% (std = 14.5%) to week 7 mean of 13.1% (std = 21.5%) post BRS treatment (p = 

0.0029) and this observation was consistent with the finding reported by other groups which found 

that Proteobacteria was enriched after RYGB in the individual’s distal gut (Sweeney and Morton, 

2014, Tremaroli et al., 2015). 

We did not observe significant alteration of the relative abundance of any phyla at week 7 

post LCD treatment. However, at week 52 post LCD treatment, we observed that phylum 

Firmicutes were significantly reduced, while phylum Bacteroidetes was significantly increased 

(Figure 5.2.6). 
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Figure 5.2.4 Phylum distribution at baseline post LCD treatment.  

 
 

Figure 5.2.5 Phylum distribution at week 52 post LCD treatment.  

 

 
Figure 5.2.6 Phylum Firmicutes and Bacteroidetes were significantly altered at week 52 post LCD 

treatment. 

 

At class level, Clostridia (60.67%) dominated, followed by Bacteroidia (14.3%), 

Actinobacteria (7.67%), Bacilli (5.53%), Gammaproteobacteria (4%), Erysipelotrichia (3.17%), 

Verrucomicrobiae (1.48%), Alphaproteobacteria (1.19%), and others (1.98%, including 

Negativicutes, Betaproteobacteria, Methanobacteria, Deltaproteobacteria, Fusobacteria, 

Flavobacteria, Sphingobacteria, Chloroplast, Spirochaetes, Synergistia, Acidobacteria Gp4, 

Acidobacteria Gp6, Acidobacteria Gp1, Gemmatimonadetes, Nitrospira, Planctomycetacia, 

Spartobacteria, Acidobacteria Gp7, Deinococci, Acidobacteria Gp3, Bacteroidetes incertae sedis, 

Subdivision3, Anaerolineae, Epsilonproteobacteria, Thermotogae, Acidobacteria Gp18, 

Acidobacteria Gp16, Deferribacteres, Holophagae, Ignavibacteria, Cyanobacteria, Acidobacteria 

Gp10, Acidobacteria Gp17, Methanococci, Zetaproteobacteria and unclassified).  

We observed that the class Gammaproteobacteria was significantly increased at week 7 

after BRS treatment, and it was consistent with the finding reported by the other group and they 

also found after RYGB, Gammaproteobacteria was significantly increased (Zhang et al., 2009). 

Also, the class Actinobacteria was significantly reduced, and Verrucomicrobiae was significantly 

increased at week 52 after BRS treatment. 
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Table 5.2.1 Class Gammaproteobacteria was significantly increased at week 7 post-BRS treatment. 

 

 
 

Table 5.2.2 Class Actinobacteria was significantly reduced, while Verrucomicrobiae was 

significantly increased at week 52 after BRS treatment. 

 

 
 

We did not a significant alteration of the relative abundance of any classes at week 7 post 

LCD treatment, but it was detected that at week 52, class Clostridia was significantly reduced and 

Deltaproteobacteria was significantly increased when comparing with the baseline level. 

Reduction of clostridia was reported to be correlated with weight loss.  

 

Table 5.2.3 Classes which were significantly altered at week 52 post LCD treatment. 

 

 
 

At genus level, Blautia dominated (26.20%), followed by Bacteroides (11.82%), 

Lachnospiracea incertae sedis (8.89%), Bifidobacterium (4.68%), Dorea (3.82%), Roseburia 

(3.28%), EscherichiaShigella (2.84%), Streptococcus (2.51%), Anaerostipes (2.47%), Collinsella 

(2.25%), Faecalibacterium (2.20%), Clostridium IV (1.89%), Akkermansia (1.48%), Alistipes 

(1.14%), Granulicatella (1.13%), Gemmiger (1.12%), Clostridium XVIII (1.03%), and others 

(12.59%, including Erysipelotrichaceae incertae sedis, Clostridium XlVa, Ruminococcus, 

Lactobacillus, Clostridium sensu stricto, Coprococcus, Clostridium XI, Parabacteroides, 

Prevotella, Megasphaera, Enterococcus, Lactococcus, Catenibacterium, Eggerthella, Pantoea, 

Haemophilus, Oscillibacter, Sporobacter, Dialister, Anaerotruncus, Turicibacter, Eubacterium, 

Mogibacterium, Subdoligranulum, Methanobrevibacter, Butyricicoccus, Dysgonomonas, 

Paraprevotella, Veillonella, Actinomyces, Slackia, Fusobacterium, Peptococcus, Flavonifractor, 

BRS Gammaproteobacteria 

Class Mean Std 

BL 6.5% 1.51% 

W7 1.14% 2.32% 

Wilcoxon signed rank (p) 0.0273 

 

BRS Actinobacteria Verrucomicrobiae 

Class Mean Std Mean Std 

BL 12.97% 13.54% 1.21% 2.18% 

W52 5.21% 6.12% 2.36% 2.35% 

Wilcoxon signed rank (p) 0.0537 9.77E-04 

 

Class Clostridia Deltaproteobacteria 

LCD BL W52 BL W52 

Mean 76.37% 68.07% 0.06% 0.16% 

Std 14.34% 18.15% 0.10% 0.30% 

Wilcoxon signed rank (p) 0.091 0.0629 
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Clostridium XlVb, Barnesiella, Phascolarctobacterium, Pediococcus, Acetanaerobacterium, 

Coprobacillus, Lachnobacterium, Burkholderia, Gordonibacter, Sutterella, Acidaminococcus, 

Odoribacter, Parasutterella, Lactonifactor, Morganella, Chryseobacterium, Bilophila, 

Stenotrophomonas, Rothia, Succiniclasticum, Desulfovibrio, Rhodanobacter, 

Pseudoflavonifractor, Hespellia, Butyricimonas, Acinetobacter, Pseudoflavonifractor, Hespellia, 

Acinetobacter, Butyricimonas, Olsenella, Leuconostoc, Gemella, Allisonella, Thiobacillus, 

Clostridium III, Citrobacter, Streptophyta, Bulleidia, Enterorhabdus, Anaerosporobacter, Dyella, 

Tannerella, Comamonas, Howardella, Nakamurella, Tepidimonas, Holdemania, Anaerofustis, 

Anaerovorax, Anaerofilum, Peptostreptococcus, Pseudobutyrivibrio, Variovorax, Zoogloea, 

Acetitomaculum, Papillibacter, Robinsoniella, Bradyrhizobium, Atopobium, Peptoniphilus, 

Pseudomonas, Treponema, Lysobacter, Brevundimonas, Methyloversatilis, Delftia, 

Rummeliibacillus, Staphylococcus, Rhizobium, Cloacibacillus, Solobacterium, Corynebacterium, 

Ethanoligenens, Sphingomonas, Paracoccus, Weissella, Arsenicicoccus, Bosea, Megamonas, 

Methanosphaera, Acidovorax, Caulobacter, Alcaligenes, Gp6, Gp4, Caulobacter, Alcaligenes, 

Gp4, Gp6, Azoarcus, Clostridium XII, Anaerococcus, Finegoldia, Gemmatimonas, 

Methylobacterium, Lactovum, Parvimonas, Alloscardovia, Gp1, Herbaspirillum, Nitrospira, 

Ralstonia, Aquamicrobium, Mitsuokella, Pseudorhodoferax, Spartobacteria  genera incertae sedis, 

Tsukamurella, Vampirovibrio, Varibaculum, Hydrogenoanaerobacterium, Solirubrobacter, 

Thauera, Anaerorhabdus, Xanthobacter, Limnobacter, Rudaea, Terrimonas, Gp7, Mycobacterium, 

Naxibacter, Paludibacter, Porphyromonas, Sphingobacterium, Sphingopyxis, TM7 genera 

incertae sedis, Vagococcus, Williamsia, Dechloromonas, Ensifer, Ferruginibacter, 

Flavisolibacter, Moryella, Pseudoxanthomonas, Singulisphaera, Syntrophococcus, Dyadobacter, 

Gp3, Rhodobacter, Sphingosinicella, Acetivibrio, Aeromonas, Arthrobacter, Cellulosilyticum, 

Mucilaginibacter, Inquilinus, Arthrobacter, Cellulosilyticum, Inquilinus, Mucilaginibacter, 

Ohtaekwangia, Pandoraea, Pedomicrobium, Salmonella, Subdivision3 genera incertae sedis, 

Auritidibacter, Cryptobacterium, Mesorhizobium, Pasteuria, Phenylobacterium, Roseomonas, 

Sarcina, Skermanella, Sporichthya, Thermus, Acidisoma, Anaeroglobus, Anaeromyxobacter, 

Aquabacterium, Bacillariophyta, Conexibacter, Devosia, Duganella, Flavobacterium, Janibacter, 

Labrys, Nocardioides, Petrimonas, Thermotoga, Alkaliphilus, Bacillus, Bellilinea, Blastococcus, 

Caldithrix, Chelatococcus, Chondromyces, Cupriavidus, Edaphobacter, Ferribacterium, Geothrix, 

Gp16, Gp18, Hallella, Ignavibacterium, Kaistia, Kofleria, Luteimonas, Micrococcus, 

Oribacterium, Oxobacter, Pedobacter, Roseateles, Steroidobacter, Thiohalophilus, 

Achromobacter, Abiotrophia, Steroidobacter, Thiohalophilus, Abiotrophia, Achromobacter, 

Actinobaculum, Aminobacter, Asticcacaulis, Brucella, Cellulomonas, Deinococcus, 

Denitratisoma, Desulfobulbus, Fusibacter, Gallicola, Geobacillus, GpIX, Gracilibacter, 

Hydrocarboniphaga, Luteibacter, Marvinbryantia, Pseudolabrys, Pseudoramibacter, 

Rhizomicrobium, Rhodococcus, Rhodoplanes, Rhodovulum, Rikenella, Schlegelella, Spirosoma, 

Streptomyces, Thiohalobacter, Actinomadura, Alicyclobacillus, Amycolatopsis, Ancylobacter, 

Armatimonadetes gp5, Azonexus, Azospirillum, Beijerinckia, Blastochloris, Brevibacterium, 
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Catenulispora, Chitinophaga, Cloacibacterium, Curvibacter, Cystobacter, Desulfocapsa, 

Desulfuromonas, Dokdonella, Dongia, Enhydrobacter, Gardnerella, Gemmata, Geobacter, 

Globicatella, Gp10, Gp17, Haliangium, Kocuria, Hydrogenophaga, Gp17, Haliangium, 

Hydrogenophaga, Kocuria, Luteolibacter, Mariprofundus, Methanococcus, 

Methanothermobacter, Methylococcus, Methylomonas, Methylosarcina, Neisseria, 

Novosphingobium, Nubsella, Oxalicibacterium, Parascardovia, Parasporobacterium, 

Phaeobacter, Piscicoccus, Planctomyces, Porphyrobacter, Propionivibrio, Prosthecobacter, 

Pseudonocardia, Rhodoblastus, Rhodopseudomonas, Saxeibacter, Scardovia, Sediminibacter, 

Sharpea, Stella, Syntrophus, Terribacillus, Terriglobus, Truepera, Virgisporangium, and 

Zavarzinella).  

Beta-diversity measuring the dissimilarity for every pair of samples were calculated based 

on the incidence-based Jaccard dissimilarity index and abundance-based Bray-Curtis dissimilarity 

index. Then the permutational multivariate analysis of variance test (Adonis) detected the 

significant dissimilarity between the baseline and week 52 genus community after both BRS and 

LCD treatments. As shown in the two PCA plots, the distance between the baseline and week 52 

groups were further than the distances within the baseline and week 52 groups. Also, it showed 

that most of the significantly altered genera were increased and were the ones associating with 

better obesity or health condition, such as Oscillibacter (Tims et al., 2013, Hu et al., 2015), 

Desulfovibrio (Karlsson et al., 2012), Subdoligranulum (Louis et al., 2016) and Akkermansia 

(Everard et al., 2013, Schneeberger et al., 2015), and were increased significantly. The number of 

the significantly reduced genera was much less and most of them were the ones associating with 

worse obesity or health conditions, such as Arsenicicoccus (rho = 0.4636, p = 0.0298 with GLU; 

rho = 0.4382, p = 0.0414 with INS; rho = 0.362, p = 0.0978 with TRIG), Parasutterella (Zhang 

et al., 2012, Yeom et al., 2016, Dao et al., 2016) and Rudaea. There were a few exceptions, for 

example, Bifidobacterium was significantly reduced; its reduction after gastric bypass surgery was 

also reported by the other group (Furet et al., 2010) and it was also reported the decreased 

Bifidobacterium species after calorie restriction treatment (Santacruz et al., 2009, Queipo-Ortuno 

et al., 2013). 

 

Table 5.2.4 Dissimilarity test between the baseline and week 52 genus community in the BRS 

group. 

 

 

BRS_genus Adonis 

BL vs W52 F p 

Jaccard 1.346 0.042 

Bray-Curtis 0.929 0.448 
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Figure 5.2.7 PCA plots for the genus community at baseline and week 52 in the BRS group. 

 

The similar pattern was shown in the LCD group. The genus community structure at week 

52 was significantly different from the genus community structure at week 52 post LCD treatment 

based on the dissimilarity test. Also, most of the significantly increased genera belong to 

commensal microbes. For example, the significantly increased genera include Streptococcus, wich 

produce lactate (Pessione, 2012), Faecalibacterium (Sokol et al., 2008, Machiels et al., 2014), 

which produces butyric acid, and Coprococcus which produce both butyrate and acetate, and 

commensal genera Subdoligranulum (cor = −0.3667, p = 0.0932 with TRIG; cor = −0.3958, p = 

0.0683 with CHOL) and Bilophila (rho = −0.4592, p = 0.0316 with LDL), both of which showed 

significant negative correlations with obesity based on correlation tests. 

 

Table 5.2.5 Dissimilarity test between the genus community at baseline and week 52 post LCD. 

 

 

LCD_genus  Adonis  

BL vs W52 F p 

Jaccard 0.742 0.945 

Bray-Curtis 1.735 0.095 
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Figure 5.2.8 PCA plots for the genus community at baseline and week 52 in the LCD group. 

 

Taken Together, it indicated that the microbial community structure at different taxonomic 

levels was significantly altered after both BRS and LCD treatments, and appeared to switch toward 

a healthier community with a higher relative abundance of beneficial microbial groups and lower 

relative abundance of harmful microbial groups. 

 

5.3 Gut Microbial Community at Different Taxonomic Levels Were Significantly Correlated 

with Obesity-related Physiological Variables 

 

We examined the correlation between the entire microbial community structure at different 

taxonomic levels and obesity-related physiological variables, using the baseline data from the 

combined BRS and LCD groups, with mantel test based on the Euclidean distance matrix. The 

result showed that the microbial community at different taxonomic levels was significantly 

correlated with the obesity-related variables, including subcutaneous fat size, fat mass, glucose, 

and hormones GLP-1, ADP, and ADPHMW (Table 5.3.1).  

In addition, the partial mantel test detected that ADPHMW and subcutaneous fat size were 

the two main factors that were significantly correlated with the entire microbial community at 

OTU level (Table5.3.2).  

 

Table 5.3.1 The correlation between the genus community at different taxonomic levels and 

obesity-related variables in the combined BRS and LCD groups at baseline, based on mantel test. 
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Table 5.3.2 The correlation between the OTU community and obesity-related variables in the 

combined BRS and LCD groups at baseline, based on mantel test.  

 

  
 

Table 5.2.10 The partial mantel test detected that the correlation between the entire microbial 

community at OTU level and ADPHMW and SubcutMeanSize were still significant when 

partialling out ADP, GLU, and GLP-1 respectively.  

 

Next, to examine the correlation between microbial connectivity and obesity, we 

constructed the ecology association network through the random matrix theory-based methods 

(Deng et al., 2012) using the baseline data in the combined BRS and LCD groups at the genus 
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level, and it is visualized by the software Cytoscape (Figure 5.3.1). Then the mantel test was used 

to examine the correlation between the genus connectivity and obesity-related physiological 

variables, and it detected that the genus connectivity was significantly correlated with fat% and 

insulin (Table 5.3.3); it further confirmed the significant correlation between the entire microbial 

community and obesity. 

 

Table 5.3.3 Genus connectivity was significantly correlated with fat% and INS at baseline in the 

combined BRS and LCD groups.   
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Figure 5.3.1 Ecology association network at genus level visualized by the Cytoscape software.  

 

Taken together, it supported that the entire gut microbial community at different taxonomic 

levels and microbial connectivity were significantly correlated with obesity, and the hormone 

ADPHMW might be one of the important players that were involved in their correlation. 

 

5.4 Microbial Functional Gene Community Structure Was Significantly Altered at Week 7 

after BRS and LCD Treatments 

 

To test the hypothesis on gene community structure, beta-diversity of the gene community 

structure before and after treatments were calculated for pairs of samples using Jaccard and Bray-

Curtis dissimilarity indices to make the dissimilarity matrix and was then compared by the Adonis 

test. It showed that, at week 7 post treatments, the gene community structure was significantly 

altered in both treatment groups, indicating that the two treatments did have a significant effect on 

the gut microbial gene community structure. Also, the gene community structure of two treatment 

groups at week 7 also became significantly different, considering that there was no detected 

significance between these two groups at baseline, indicating that the effect of the alteration of the 

gut microbial gene community by the BRS and LCD treatments was significantly different. For 

example, these two treatments may have two totally different effects on the gene community, or 

two same effects, but the degree of the same effect was significantly different. It suggested that 

the underlying mechanisms for the change of gut microbial gene community after the two 

treatments might be significantly different. 

 

 Table 5.4.1 Gene community structure was significantly altered at week 7 after BRS and LCD 

treatments, and at week 7 post treatments, the BRS gene community was significantly different 

from the LCD group.  

 

 
 

 
 

To examine how the gene community was altered at week 7 after both BRS and LCD 

treatments, we compared the gene richness and diversity but did not find they were significantly 

altered in both groups. Then we examined the relative abundance of the gene communities under 

different gene categories and found that many of them were significantly altered at week 7, and 

this may explain the significantly altered gene community structure. 

Gene community Adonis Gene community  Adonis  

BRS_BL vs W7 F p LCD_BL vs W7 F p 

Jaccard 1 0.08 Jaccard 2.66 0.06 

Bray-Curtis 1.6 0.07 Bray-Curtis 1.53 0.18 

 

Gene community Adonis 

BRS vs LCD_W7 F p 

Jaccard 3.8 0.04 

Bray-Curtis 2.35 0.07 
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Next, we examined how the week 7 BRS group was significantly different from the week 

7 LCD group, by comparing the richness and alpha diversity of the gene community. As shown in 

the figure, at week 7 post treatments, the gene richness in the BRS group was significantly higher, 

with about 2000 more genes on average, compared to the LCD group. The alpha diversity was also 

significantly higher in the BRS group than in the LCD group as measured by Shannon index and 

inversed Simpson index. It indicated that no matter what kind of mechanisms contributed to the 

significant alteration of the gene community structure involved in the BRS and LCD treatments, 

the BRS treatment had a better effect on gene community structure than the LCD group. 

 

 
 

Figure 5.4.1 Gene richness was significantly higher at week 7 in the BRS group than the LCD 

group. 

 

 
 

Figure 5.4.2 Gene diversity was significantly higher at week 7 in the BRS group than the LCD 

group. 

 

The above results indicated that accompanying with significant obesity improvement at 

week 7 after both BRS and LCD treatments, the microbial functional gene community structure 

became significantly different from the baseline. Moreover, the functional gene community 

structure at week 7 was significantly different between the BRS and LCD groups, with 

significantly higher gene richness and gene diversity in the BRS group. 
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5.5 Functional Microbial Gene Community Was Significantly Correlated with Obesity-

related Physiological Variables 

 

Considering that at week 7 post treatments, the BRS group showed significantly lower 

levels of GHR and GHRA (Figure 5.5.1). It indicated that the significantly lower GHR and GHRA 

in the BRS group than the LCD group might be linked to the significantly higher microbial gene 

richness and diversity in the BRS group than the LCD group). Thus, we examined the correlation 

between gene richness and diversity, and obesity-related physiological variables by using the 

baseline data from the combined BRS and LCD groups, with the non-parametric spearman rank 

correlation test. The result showed that both gene richness and diversity were significantly 

negatively correlated with hunger hormone ghrelin (GHR) and its active form GHRA (Table 5.5.1 

and Table 5.5.2).  

 

 
  

Figure 5.5.1 At week 7 post treatment, GHR and GHRA was significantly lower in the BRS group 

than the LCD group. 

 

Table 5.5.1 Gene richness was significantly negatively correlated with GHRA and GHR. 

 

 
 

Table 5.5.2 Alpha diversity of the functional microbial gene community measured by Shannon 

index was significantly negatively correlated with GHRA and GHR. 

 

 
 

Next, the correlation between the entire functional microbial gene community and 

physiological variables was examined by mantel test, and it showed that the entire functional 

Gene richness Spearman 

BRS+LCD_BL rho p 

GHRA −0.53 0.04 

GHR −0.41 0.09 

 

Shannon Spearman   

BRS+LCD_BL rho p   

GHRA −0.53 0.04   

GHR −0.41 0.09   
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microbial gene community was significantly correlated with obesity-related hormones, including 

ADP, ADPHMW, and GHRA (Table 5.5.3). 

 

Table 5.5.3 The entire microbial gene community was significantly correlated with ADP, 

ADPHMW, and GHRA. 

 

 
 

Next, mantel test was also applied to check the correlations between each gene community 

under different gene categories and obesity-related physiological variables, and the result showed 

that over half of them were shown significant correlations with obesity-related physiological 

variables. These gene categories showing significant correlations with obesity-related 

physiological variables include the gene categories involved in the metabolism of amino acid, lipid, 

energy, carbohydrate, glycan, cofactors and vitamins, and antibiotic resistance. We also noticed 

that the gene communities involved in metabolisms of short-chain fatty acids, such as acetate 

kinase, propionate kinase, butyrate kinase, L-lactate dehydrogenase, and acetyl-CoA 

acyltransferase were also significantly correlated with obesity-related variables. These results 

supported that functional microbial gene communities under over half of the gene categories 

involved in gut microbial metabolisms were significantly correlated with obesity. 

 

5.6 Conclusions 

 

In summary, accompanying with significant obesity improvement after the BRS and LCD 

treatments, microbial community structure was significantly altered. First, microbial richness and 

diversity were significantly increased after both treatments, with the BRS group showing a higher 

degree of increase of the microbial richness and diversity than the LCD group. Second, microbial 

distribution and compositions at different taxonomic levels were switched toward a healthier 

profile with increased beneficial microbial groups and reduced harmful groups. Third, the 

functional microbial gene community was significantly altered at week 7 after both BRS and LCD 

treatments, with significantly higher gene richness and gene diversity at week 7 post treatment in 

the BRS group than the LCD group. 

In addition, the entire microbial community structure at different taxonomic levels was 

significantly correlated with obesity-related variables, and ADPHMW might be an important 

contributing factor that linked their correlation. Also, over half of the gene categories involved in 

gut microbial metabolisms were significantly correlated with obesity-related physiological 

variables, and the entire functional microbial gene community was significantly correlated with 

obesity-related hormones, including ADP, ADPHMW, and GHRA, with gene richness and gene 

diversity significantly negatively correlated with GHR and GHRA. 

 

Gene community Mantel test 

BRS+LCD_BL r p 

ADP 0.31 0.06 

ADPHMW 0.22 0.07 

GHRA 0.27 0.09 
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CHAPTER SIX: GENUS AKKERMANSIA WAS SIGNIFICANTLY 

INCREASED AFTER BARIATRIC SURGERIES AND CORRELATED 

WITH OBESITY 

 

6.1 Abstract 

 

Mechanisms underlying the weight loss effect of bariatric surgery are not fully understood. 

Recently, several studies suggested that Akkermansia may play a role in obesity in mammalian 

models; however, limited relevant research has been conducted in human subjects. This study aims 

to investigate the correlation between genus Akkermansia and obesity and how Akkermansia was 

involved in obesity improvement after BRS and LCD treatments. We hypothesize that the relative 

abundance of gut Akkermansia is increased after BRS treatment and associated with obesity 

improvement. 

In the bariatric surgery participants, obesity improvement was significantly improved, and 

the relative abundance of gut Akkermansia was significantly increased at week 52 post-BRS. 

Significant negative correlations were observed between the relative abundance of gut 

Akkermansia and ADPHMW, PYY and fat%. Similar correlations were also seen between changes 

in the relative abundance of gut Akkermansia and changes in several obesity-related physiological 

variables after BRS. Significant negative correlations were shown between the change of the 

relative abundance of Akkermansia and change of weight, IDXA weight, IDXA fat mass, IDXA 

lean mass, BMI, 24HourEE, GLU, INS, and GHRA. Significant positive correlations were shown 

between the change of the relative abundance of gut Akkermansia and change of high-dose glucose 

rate (GDR2/Weight). Change in the relative abundance of Akkermansia was also positively 

correlated with percentage excess weight loss (% EWL), ADP, ADPHMW, GLP-1, and PYY. 

The well-known effect of bariatric surgery to reduce body weight was paralleled by an 

increase in the relative abundance of gut Akkermansia. The significant inverse correlation between 

the relative abundance of gut Akkermansia and human obesity indicates that a decrease in weight 

loss caused by bariatric surgery may increase gut Akkermansia’s relative abundance, which may, 

in turn, further foster weight loss and forms a positive loop contributing to the maintenance of 

weight loss.  

 

6.2 Introduction 

 

In 2004, the Akkermansia muciniphila MucT strain was isolated from a human intestinal 

tract and its physical and genetical information was characterized (Derrien et al., 2004). It was 

reported that Akkermansia muciniphila MucT strain is non-motile, Gram-negative, strictly 

anaerobic, chemo-organotrophic, and mucolytic, and the cells can use mucin as a carbon, nitrogen, 

and energy source, and release sulfate in a free form from fermenting mucin (Derrien et al., 2004).  

In 2011, based on 37 human GI tract metagenome libraries, Mark’s group found that the 

relative abundance of Akkermansia (abundance of Akkermansia’s 16S rDNA divided by the total 

abundance of 16S rDNA) varied from less than 0.01% to 4%, and 30% of the 37 libraries contained 

Akkermansia species shared greater than 95% similarity of the 16S rRNA gene sequence with A. 

muciniphila, and eight distinct species of the genus Akkermansia were discovered. They also found 

that A. muciniphila’s genome contains many mucinase-encoding gene candidates, supporting the 

proposed mucin-degrading capability of Akkermansia (van Passel et al., 2011). 
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Next, increasing number of studies indicate that Akkermansia residing in human GI tract 

may participate in obesity regulation. In 2013, Patrice’s group reported that A. muciniphila 

abundance decreased in both genetically leptin-deficient obese mice and high-fat-fed (HF-fed) 

mice (Everard et al., 2013), and administration of viable A. muciniphila improved metabolic profile 

of HF-fed mice, including ameliorated diet-induced fasting hyperglycemia by a mechanism related 

to glucose-6-phosphatase expression shrink in liver, the indication being that there had been a 

reduction of gluconeogenesis, and reduced the insulin resistance index, increased the levels of 

adipocyte differentiation and lipid oxidation marker (but not lipogenesis markers), and offset the 

diminution  of  the mucus layer (Everard et al., 2013). The involved mechanism might include that 

A. muciniphila administration raised intestinal levels of acylglycerols, including 2-oleoylglylcerol 

(2-OG), 2-arachidonoylglycerol (2-AG), and 2-palmitoylglycerol (2-PG), which are involved in 

intestinal and glucose homeostasis, such as inflammation, gut barrier, and gut peptide secretion 

(Everard et al., 2013).  

In 2014, the Bae’s group reported that after HFD-fed mice were treated with metformin, 

the abundance of the mucin-degrading genus Akkermansia and the number of mucin-producing 

goblet cells was significantly increased (Shin et al., 2014). Also, administration of Akkermansia to 

HFD-fed mice without metformin treatment significantly increased glucose tolerance and 

attenuated adipose tissue inflammation by inducing adipose tissue-resistant CD4 Foxp3 regulatory 

T cells (Shin et al., 2014). 

In 2014, the Roeselers’s group reported that A. muciniphila and its metabolites propionate, 

modulate the levels of expression of important regulators of lipolysis, satiety, transcription factor, 

and cell cycle control, including Fasting-induced adipose factor (Fiaf), G protein-coupled receptor 

43 (Gpr43), histone deacetylases (HDACs), and peroxisome proliferator-activated receptor 

gamma (Pparγ) in the intestinal epithelial organoids of mice (Lukovac et al., 2014). Dao et al. 

(2016) have also reported that A. muciniphila was related to a healthier metabolic status and better 

clinical outcomes after calorie restriction in overweight or obese adults (Dao et al., 2016). 

Based on the above findings, we hypothesize that genus Akkermansia might have increased 

after bariatric surgeries and associated with the substantial and persistent obesity improvement 

after bariatric surgeries. 

 

6.3 Genus Akkermansia Was Associated with Better Health Status 
 

To examine the correlation between Akkermansia and obesity-related variables at baseline, 

we first median split the participants into the group with lower Akkermansia abundance and the 

group with higher Akkermansia abundance, and then the non-parametric Wilcoxon rank sum test 

was used to detect whether the physiological variables in these two group were significantly 

different, and the result showed that a number of physiological variables (weight, IDXA weight, 

fat mass, IDXA fat mass, lean mass, 24HourEE and HDL) showed significantly better conditions 

in the higher Akkermansia group than the lower Akkermansia group (Figure 6.3.1). The similar 

pattern was observed when the diabetic participants were not included in the analysis (Figure 6.3.2). 

These results indicated that the individuals whose GI tract harbored a higher relative abundance of 

genus Akkermansia had lighter obesity conditions, indicated that Akkermansia was associated 

better health condition.  
In addition, the non-parametric Spearman and parametric Pearson correlation tests detected 

that Akkermansia was significantly correlated with better conditions of hormones PYY, GLP-1 

and ADPHMW (Table 6.3.1). When applying the partial correlation test for checking the 

correlations between each hormone and Akkermansia when partialling out the other two factors, 
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these three factors still show significant correlations with Akkermansia, indicating that their 

correlations with Akkermansia were independent (Table 6.3.2). The similar pattern was observed 

when the diabetic participants were not included, but fat% replaced ADPHMW (Table 6.3.3). 

These results further confirmed the significant negative correlation between Akkermansia and 

obesity conditions. 

 

 
 

Figure 6.3.1 The higher Akkermansia group showed better obesity conditions. Diabetic 

participants were included in the analysis. 

 

Table 6.3.1 Akkermansia at baseline in the combined BRS and LCD group showed significant 

correlation with obesity-related hormones. Diabetic participants were included in the analysis. 

 

 
 

Table 6.3.2 Partial correlation test showed that Akkermansia at baseline in the combined BRS and 

LCD group were significantly correlation with each hormone when controlling the other two 

hormones. Diabetic participants were included in the analysis. 

 

 

BL_BRS+LCD Spearman Pearson 

Akk rho p cor p 

PYY 0.29 0.278 0.558 0.007 

GLP-1 0.191 0.395 0.527 0.012 

ADPHMW 0.29 0.236 0.395 0.069 
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Figure 6.3.2 The higher Akkermansia group showed better obesity conditions. Diabetic 

participants were not included in the analysis. 

 

Table 6.3.3 Akkermansia at baseline in the combined BRS and LCD group showed significant 

correlation with obesity-related hormones. Diabetic participants were not included in the analysis. 

 

 
 

6.4 Genus Akkermansia Was Increased after BRS and Associated with Obesity Improvement 

 

6.4.1 Genus Akkermansia Was Significantly Increased after BRS 

 

Considering that the relative abundance of Akkermansia was not shown as normally 

distributed, non-parametric sign test was performed to check whether there was a significant 

alteration of the relative abundance of Akkermansia after BRS treatment. The result showed that 

the relative abundance of gut Akkermansia was significantly enhanced (p = 0.0654) from the 

baseline level of 1.21% (std = 2.18%) to 2.36% (std = 2.35%) at week 52 after bariatric surgeries. 

Meantime, we observed that weight was significantly reduced (p = 0.001) from the baseline of 

132.45 kg (std = 17.95 kg) to week 52 of 89.12 kg (std = 13.61 kg).  

Partial correlation ADPHMW PYY GLP-1 

Spearman 
rho 0.3692 0.3797 −0.1237 

p 0.1091 0.0987 0.6032 

Pearson 
cor 0.5489 0.7077 0.4117 

p 0.0122 0.0005 0.0713 

 

BRS+LCD_BL (No DM) Spearman Pearson 

Akk rho p cor p 

Fat% -0.485 0.048 -0.421 0.092 

PYY 0.29 0.202 0.661 0.001 

GLP-1 0.031 0.893 0.47 0.032 
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Figure 6.4.1.1 The relative abundance of Akkermansia (column plot) was significantly increased, 

accompanying with the significant weight reduction (line plot) at week 52 post-BRS. The error 

bars were made based on the standard errors. The sign test was used to calculate the p values.  

 

6.4.2 Increase of Akkermansia after BRS Was Significantly Associated with Obesity 

Improvement 

 

That the coincidence of significant weight loss after BRS and significantly increased 

relative abundance of Akkermansia suggested that there could be correlations between the relative 

abundance of Akkermansia and obesity status.  Then, correlation tests were performed to check 

the correlations between the change of Akkermansia (Akk) after BRS and change of obesity-related 

physiological variables. The results showed that change of Akk at week 7 post-BRS was 

significantly positively correlated with obesity-related hormones including ADP, ADPHMW, and 

PYY, while significantly negatively correlated with hormone GHRA (Table 6.4.2.1), indicating 

the change of Akk at week 7 was associated with improvement of obesity-related hormones. Also, 

it showed that change of week 52 post-BRS was significantly negatively correlated with change 

in fasting glucose and insulin levels (Table 6.4.2.2), indicating the increase of Akk at week 52 after 

BRS was associated with improvement of insulin resistance.  

 

Table 6.4.2.1 Change of Akkermansia during baseline and week 7 post-BRS showed significant 

correlations with the improvement of obesity-related hormones. 

 

 
 

Table 6.4.2.2 Change of Akkermansia during baseline and week 52 post-BRS showed significant 

correlations with the improvement of GLU and INS. 

BRS_W7−BL Spearman Pearson 

∆ Akk rho p cor p 

∆ ADP 0.38 0.31 0.76 0.02 

∆ ADPHMW 0.21 0.59 0.7 0.04 

∆ GHRA −0.68 0.06 −0.51 0.19 

∆ PYY 0.61 0.08 0.36 0.35 
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After combining all the changes of Akkermansia during baseline and week 7, during 

baseline and week 52, and during week 7 and week 52 post BRS, and then check their correlation 

with the corresponding change of obesity-related physiological variables, the result showed that 

the change of the relative abundance of genus Akkermansia was significantly negatively correlated 

with change in the fasting glucose level (Table 6.4.2.3) (the combination was also validated by 

ANCOVA tests). As shown in the regression plot (Figure 6.4.2.1), the change of Akkermansia 

after BRS was significantly negatively correlated with the change of fasting glucose level; greater 

increase of the relative abundance of genus Akkermansia after BRS, greater reduction of the fasting 

glucose level. It further confirmed that increase in the relative abundance of Akkermansia after 

BRS was associated with obesity improvement, and it also indicated that obesity-related hormones 

(ADP, ADPHMW, GHRA, and PYY) might be important factors that linked their association. 

 

Table 6.4.2.3 The correlation between change of Akkermansia and change of GLU after BRS 

treatment. 

 

 
 

 

BRS_W52−BL Spearman 

∆ Akk rho p 

∆ GLU −0.57 0.07 

∆ INS −0.55 0.09 

 

BRS_W7−BL, W52−BL, W52−W7 Δ Akk Δ GLU 

Spearman rho −0.41 

p 0.03 

Pearson cor −0.45 

p 0.02 
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Figure 6.4.2.1 The regression plot showed that a greater increase of Akkermansia was associated 

with a greater reduction of GLU.  

 

6.4.3 Change of Akkermansia Was Significantly Negatively Correlated with Change of 

Obesity Condition 

 

We did not observe significant alteration of the relative abundance of genus Akkermansia 

after the LCD treatment. However, after combining the BRS and LCD groups, the change of 

Akkermansia at week 7 and week 52 still showed significant negative correlation with a change in 

obesity. 

After median splitting the participants based on the change of the relative abundance of 

genus Akkermansia, the group with higher change of the relative abundance of genus Akkermansia 

at week 7 after BRS and LCD treatments showed significantly greater improvement of GLP-1 and 

PYY levels, than the group with lower change of the relative abundance of Akkermansia (Table 

6.4.3.1). Also, the change of the relative abundance of genus Akkermansia at week 7 after BRS 

and LCD treatments showed significant positive correlations with a change of GLP-1 and PYY 

(Table 6.4.3.2), indicating a significant correlation between change of Akkermansia and 

improvement of obesity-related hormones at week 7 after BRS and LCD treatments.  

Moreover, the group with a higher change of the relative abundance of genus Akkermansia 

at week 52 after BRS and LCD treatments showed significantly greater improvement of obesity-

related physiological variables, including weight, IDXA weight, EWL, BMI, GLU, INS, 

GDR1/Weight, GDR2/Weight, and TRIG (Table 6.4.3.3). Also, the change of the relative 

abundance of genus Akkermansia at week 52 after BRS and LCD treatments showed significant 

negative correlations with change of weight, GLU, and INS, and significant positive correlation 

with change of GDR2/Weight (Table 6.4.3.4), indicating the significant negative correlation 

between change of Akkermansia and change of obesity condition at week 52 post BRS and LCD 

treatments.  

 

Table 6.4.3.1 The group with a higher change of the relative abundance of genus Akkermansia at 

week 7 after BRS and LCD treatments showed significantly greater improvement of GLP-1 and 

PYY levels. 

 

 
 

Table 6.4.3.2 Change of Akkermansia during baseline and week 7 in the combined BRS and LCD 

groups showed significant correlation with a change of GLP-1 and PYY. 

 

 

BRS & LCD Low ∆ Akk High ∆ Akk Wilcoxon rank sum 

W7−BL Mean Std Mean Std p 

∆ GLP-1 −0.35 0.64 0.37 0.94 0.067 

∆ PYY −21 24 17 31.14 0.032 

 

BRS & LCD_W7−BL Spearman 

Δ Akk rho p 

 Δ GLP-1 0.55 0.05 

Δ PYY 0.59 0.03 
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Table 6.4.3.3 The group with a higher change of Akkermansia during baseline and week 52 in 

the combined BRS and LCD groups showed significantly better obesity conditions. 

 

 
 

Table 6.4.3.4 Change of Akkermansia at week 52 after BRS and LCD treatments showed 

significant correlation with a change of obesity condition. 

 

 
 

 

Additionally, after combination of the change of the relative abundance of Akkermansia 

during baseline and week 7, during baseline and week 52, and during week 7 and week 52 post 

BRS and LCD treatments, change of the relative abundance of Akkermansia after BRS and LCD 

treatments showed significant correlations with improvements of obesity-related physiological 

variables, including weight, BMI, and GLU (the combination was also validated by the ANOVA 

test). As shown in the regression plot (Figure 6.4.3.1), change of Akkermansia after BRS and LCD 

treatments was significantly negatively correlated with the change of GLU; the greater increase of 

the relative abundance of genus Akkermansia, the greater reduction of GLU after BRS and LCD 

treatments. It further confirmed the negative correlation between change of Akkermansia and 

change of obesity condition after BRS and LCD treatments. 

 

Table 6.4.3.5 Change of Akkermansia after BRS and LCD treatments showed significant 

correlations with improvements obesity-related physiological variables.  

 

BRS & LCD Low Δ Akk High Δ Akk Wilcoxon rank sum 

W52−BL Mean Std Mean Std p 

∆Weight  −15 20 −45 13 0.004 

∆ IDXA weight −16 20 −40 19 0.017 

EWL 32 43 69 24 0.055 

∆ BMI −6 7 −16 5 0.012 

∆ GLU −4 6 −18 11 0.004 

∆ INS −1 5 −8 8 0.079 

∆ GDR1/Weight 1 2 2 1 0.059 

∆ GDR2/Weight 2 3 6 3 0.009 

∆ TRIG −11 40 −61 67 0.079 

 

BRS & LCD_W52−BL Spearman 

Δ Akk rho p 

Δ Weight −0.49 0.039 

Δ GLU −0.66 0.002 

Δ INS −0.52 0.023 

Δ GDR2/Weight 0.45 0.061 
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Figure 6.4.3.1 The regression plot showed the significant negative correlation between change in 

the relative abundance of Akkermansia and change of GLU after BRS and LCD treatments. 

 

In addition, no significant difference of the obesity-related physiological variables was 

observed between the BRS and LCD groups at baseline, but the BRS group showed significantly 

more improvement of the obesity-related physiological variables, when comparing with the LCD 

group, including significantly more reduction of weight (p = 8.16E−06), IDXA weight (p = 

2.71E−06), fat mass (p = 0.0012), IDXA fat mass (p = 0.0001), IDXA lean mass (p = 0.0194), 

fat% (p = 0.0001), 24HourEE (p = 0.0011), BMI (p = 8.16E−06), IDXA BMI (p = 2.72E−06), 

GLU (p = 0.0141), INS (p = 0.0143), TRIG (p = 0.0017), LEP (p = 0.0064) and hsCRP (p = 

0.061), and significant more increase of GDR1/Weight (p = 0.0024), GDR2/Weight (p = 0.0011), 

HDL (p = 0.0087), ADP (p = 0.0926), and ADPHMW (p = 0.0007). Meanwhile, there was no 

significant difference of the relative abundance of the genus Akkermansia between the BRS and 

LCD group at baseline; however, at week 52 post treatment, the BRS group showed a significantly 

higher relative abundance of Akkermansia than the LCD group (p = 0.0059). Also, the increase of 

the relative abundance of the genus Akkermansia during baseline to week 52 in the BRS group 

was significantly higher than the LCD group (p = 0.0317). In short, there was no significant obesity 

difference between BRS and LCD group at baseline, but after treatments, the improvement of 

obesity and increase of relative abundance of Akkermansia after BRS were both significantly 

higher than the LCD group. It supports that significant increase of the relative abundance of genus 

Akkermansia may be involved in the substantial and persistent weight loss process induced by 

bariatric surgeries.  

BRS & LCD_W7−BL, W52−W7, W52−BL Δ Akk Δ Weight   Δ BMI Δ GLU 

Spearman 
rho −0.2934 −0.3044 −0.3912 

p 0.0562 0.0472 0.0087 

Pearson 
cor −0.2524 −0.2577 −0.4027 

p 0.1024 0.0953 0.0067 
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6.4.4 Other than Akkermansia muciniphila, There Might be Other Akkermansia Species 

Contributing to the Significant Increase of Genus Akkermansia after BRS 

 

The Illumina sequencing result detected 42 different OTUs belonging to the genus 

Akkermansia using 97% nucleotide sequence similarity as the clustering threshold. It was further 

confirmed by using the online software nucleotide baselineAST (Basic Local Alignment Search 

Tool) (baselineASTN 2.5.0+) (Zhang et al., 2000) to search these 42 OTU sequences 

(http://blast.ncbi.nlm.nih.gov/Blast.cgi) against the database 

rRNA_typestrains/prokaryotic_16S_ribosomal_RNA (16S ribosomal RNA (Bacteria and 

Archaea)) (16S ribosomal RNA sequences from bacteria and archaea; update date: 2016/08/02; 

number of sequence: 18928)) for identifying them and found that the resulted top hit for all of 

them are Akkermansia muciniphila strain ATCC BAA-835 16S ribosomal RNA gene (Accession 

NR_074436.1) or Akkermansia muciniphila strain Muc 16S ribosomal RNA gene 

(Accession NR_042817.1), but many of their nucleotide sequence similarity were lower than 97%. 

That we detected 42 Akkermansia OTUs in total, and most of them were altered to the same 

direction after BRS, indicating that the increase of genus Akkermansia may be also owing to the 

other Akkermansia species, besides the known species Akkermansia muciniphila. 

 

6.4.5 Quantitative PCR Results Showed the Similar Patterns as the Above-mentioned 

Illumina Sequencing Results 

 

The quantitative PCR result showed the similar pattern as Illumina sequencing results. At 

baseline, the group with a higher abundance of Akkermansia had significantly smaller 

subcutaneous fat size than the group with lower Akkermansia abundance (Table 6.4.5.1), and the 

baseline relative abundance of Akkermansia was significantly positively correlated with hormones 

ADP and ADPHMW (Table 6.4.5.2). 

 

Table 6.4.5.1 The group with a higher abundance of genus Akkermansia showed significant 

smaller subcutaneous fat size than the group with lower Akkermansia abundance. 

 

 

 
 

Table 6.4.5.2 At baseline, the relative abundance of genus Akkermansia showed significant 

positive correlations with ADP and ADPHMW. 

 

 
 

In addition, the qPCR result showed that the relative abundance of genus Akkermansia was 

significantly increased at both week 7 and week 52 post BRS treatment (Figure 6.4.5.1 and Figure 

BRS+LCD_BL SubcutMeanSize Wilcoxon rank sum (p) 

Low Akk 1.37 0.32 
0.09 

High Akk 1.11 0.31 

 

BRS+LCD_BL Akkermansia ADP ADPHMW 

Pearson cor 0.5 0.53 

p 0.04 0.03 

 

http://blast.ncbi.nlm.nih.gov/Blast.cgi
http://www.ncbi.nlm.nih.gov/nucleotide/444304012?report=genbank&log$=nucltop&blast_rank=1&RID=U4KDD1D301R
http://www.ncbi.nlm.nih.gov/nucleotide/343202494?report=genbank&log$=nucltop&blast_rank=2&RID=U4KDD1D301R
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6.4.5.2), and the change of Akkermansia after BRS showed significant correlations with the 

improvement of several obesity-related physiological variables, including weight, IDXA weight, 

IDXA fat mass, IDXA lean mass, BMI, 24HourEE, GLU, INS and GHRA (Figure 6.4.5.3). These 

results further confirmed the negative correlation between Akkermansia and obesity. 

 

 
 

Figure 6.4.5.1 The relative abundance of Akkermansia was significantly increased at week 7 after 

BRS. 

 

 
 

Figure 6.4.5.2 The relative abundance of Akkermansia was significantly increased at week 52 after 

BRS. 

 

Table 6.4.5.3 Change of Akkermansia after BRS showed significant negative correlations of 

change of obesity conditions, including weight, IDXA weight, IDXA fat mass, IDXA lean mass, 

BMI, 24HourEE, GLU, INS, and GHRA. 

 

 



96 
 

 
 

6.5 Conclusions 

 

In conclusion, the relative abundance of genus Akkermansia was significantly correlated 

with better health status, and it was significantly increased after the BRS, accompanying with the 

substantial and long-lasting effect of obesity improvement. Also, alteration of the relative 

abundance of Akkermansia was significantly negatively correlated with alterations of obesity 

condition, and the obesity-related hormones might be important factors that contribute to their 

correlation. 

It indicates that bariatric surgeries may directly or indirectly cause the increase of the 

relative abundance of genus Akkermansia, which may, in turn, further boost the obesity-improving 

effect of BRS, forming a positive loop contributing to their persistent effects in alleviating obesity 

conditions. In addition, the obesity-related hormones might be involved in the correlation between 

Akkermansia and obesity. For example, Akkermansia might contribute to the improvement of 

obesity and insulin resistance after BRS treatment through improving the levels of obesity-related 

hormones such as ADP, ADPHMW, PYY, and GHRA. 

Moreover, based on our observation of several different OTUs in the genus Akkermansia, 

we conclude that except for Akkermansia muciniphila, there may exist other Akkermansia species 

contributing to the increase in the relative abundance of genus Akkermansia after BRS. 

 

 

 

 

 

 

 

BRS Spearman Pearson 

∆ Akk rho p cor p 

∆ Weight   −0.29 0.226 −0.46 0.047 

∆ IDXA weight −0.24 0.329 −0.42 0.077 

∆ IDXA fat −0.13 0.613 −0.42 0.094 

∆ IDXA lean −0.67 0.003 −0.58 0.015 

∆ BMI −0.27 0.26 −0.47 0.042 

∆ 24HourEE −0.38 0.119 −0.41 0.093 

∆ GLU −0.23 0.336 −0.43 0.069 

∆ INS −0.72 5.26E−04 −0.65 0.003 

∆ GHRA −0.73 8.70E−04 −0.78 2.16E−04 
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CHAPTER SEVEN: THE AMOUNT AND CONSTITUTION OF SHORT-

CHAIN FATTY ACIDS (SCFAS) WERE SIGNIFICANTLY ALTERED 

AFTER TREATMENTS 
 

7.1 Abstract 

 

Bariatric surgeries have been shown to be efficient in reducing obesity, but the underlying 

mechanisms have not been completely disclosed. Meanwhile, increasing evidence has shown that 

human gut microbiota is involved in obesity, and their metabolites, i.e., short-chain fatty acids 

(SCFAs), might be one of the factors that link their correlation. We hypothesize that the 

concentration and composition of SCFAs are altered after BRS, and may contribute to its 

substantial and persistent obesity alleviation effect. Here we used a microFAST™ gas 

chromatography (GC) to quantitate the concentrations of SCFAs and compare their levels in 

participants before and after BRS and LCD treatments. The result showed that the total SCFAs 

was significantly decreased at week 52 after both treatments, and the acetate concentration was 

significantly reduced at week 7 and week 52 after both BRS and LCD treatments. In addition, after 

BRS treatment, the percentage of acetate (the ratio of acetate concentration to total SCFAs 

concentration) was significantly reduced during baseline and week 7, baseline and week 52, and 

week 7 and week 52, respectively, while the percentage of propionate was significantly increased 

during week 7 and week 52 and the percentage of butyrate was significantly increased during 

baseline and week 52. We also identified some butyrate-producing genera and propionate-

producing genera which were significantly increased after BRS and LCD treatments. These 

bacteria may have potential to be developed as probiotics for sustaining weight loss. 

 
7.2 Introduction 

 

SCFAs are saturated aliphatic organic fatty acids with fewer than 6 carbon atoms and they 

are mainly formed by gut microbial fermentation of carbohydrates, proteins, peptides and amino 

acids (Gibson et al., 1996). About 95% of SCFAs are composed of acetate (C2), propionate (C3), 

and butyrate (C4) with a ratio of 3:1:1 (Puddu et al., 2014). They are absorbed by the colonic 

mucosa and metabolized by the host to provide up to 5-10% of total energy intake in healthy 

individuals (Du et al., 2010); they contribute to 60-80% of the colon’s energy requirement, with 

butyrate as the primary energy source for colonocytes. The ones that escape metabolism in the 

colon may enter the hepatic portal blood or be excreted with feces. It was reported that the amount 

of total SCFAs was significantly higher in obese human subjects than the lean counterparts. The 

reduced luminal pH by SCFAs may help counteract against pathogenic microbes (Alicia and 

Mercedes 2013), stimulate mineral absorption through increased mineral solubility (Younes et al., 

1996, Coudray et al., 1997), and reduce secondary bile acid formation (Macdonald et al., 1978), 

which may accumulate as a result of enterohepatic circulation, leading to GI problems, such as the 

formation of gallstone and colonic cancer (Jason et al. 2006). Also, different SCFAs can have 

different physiological effects. Acetate is less metabolized in the colon and is easy to be absorbed 

and transported to the liver (Cook and Sellin, 1998); it is a substrate for lipogenesis and cholesterol 

synthesis (Wong et al., 2006). Propionate can prevent GI inflammation, lower fatty acid production 

in liver (Nishina and Freedland, 1990, Demigne et al., 1995) and plasma (Chen et al., 1984, 

DiCostanzo et al., 1999), and improve insulin resistance (Al-Lahham et al., 2010). Butyrate 

contributes to about 70% total energy demand of colon and can stimulate the growth of colonic 
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mucosa. It also showed a preventive and remedial effect in colonic diseases such as colonic 

ulcerative colitis and colon cancer (Canani et al., 2011), and diet-induced insulin resistance (Gao 

et al., 2009). In addition, propionate and butyrate can function as signaling molecules to interact 

with their intestinal receptors in intestinal epithelial cells, inducing the release of gut hormones 

GLP-1 and PYY, both of which can signal brain the feeling of satiety (Lin et al., 2012, Kuwahara, 

2014). Therefore, we hypothesize that the amount and constitution of SCFAs are altered after BRS 

treatment, with reduced acetate and increased propionate and butyrate, and their alteration may 

contribute to the efficient obesity alleviation effect by bariatric surgeries.   

 

7.3 Retention Time and Calibration Curve for Each SCFA 

 

The retention time (RT: the time from injection to elution) for each SCFA (acetate, 

propionate, and butyrate) was obtained from the respective gas chromatogram after injection of 

the standard solution containing only one type of SCFA into the GC instrument, and the RTs are 

shown in table 7.3.1. Usually, the compound with a smaller molecular weight elutes out earlier 

than the compound with a larger molecular weight and thus has a shorter RT. The standard curve 

for each SCFA was produced based on 6 data sets of known concentrations and their corresponding 

GC peak areas of the standard solutions for each SCFA, which distributes evenly in the range that 

covers the measurements of the real samples. GC has different detection specificities for each 

SCFA, so the selected 6 sets of standard concentrations for each SCFA may not always be the 

same.  

 

Table 7.3.1 Retention time for each SCFA. 

 

 
 

 
 

SCFAs Retention time (seconds) 

Acetate 8.6 

Propionate 17.5 

Butyrate 22.0 
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Figure 7.3.1 The calibration curve for each SCFA. 

 

7.4 Concentrations of Total SCFAs and Acetate Were Significantly Reduced after both BRS 

and LCD Treatments 
 

The total SCFAs amount in the BRS group was significantly reduced at week 52 post 

treatment (mean = 515.59 ppm, std = 170.21 ppm) when compared with the baseline level (mean 

= 737.79 ppm, std = 382.98 ppm) (p = 0.1094 by Wilcoxon signed rank test, and p = 0.0724 by 

paired t-test) (Figure 7.4.1). In addition, the total SCFAs amount was significantly reduced (p = 

0.0781 by Wilcoxon signed rank test, and p = 0.0612 by paired t-test) at week 52 in the combined 

RYGB and SGx group, and it also showed the tendency to decrease at week 7 based on the 

observation that 6 out of 7 individuals in the combined RYGB and SGx group showed reduced 

total SCFA at week 7. This observation was similar to the pattern reported previously that total 

SCFAs tended to decrease 9 years after bariatric surgeries (Tremaroli et al., 2015). Considering 

that BRS treatment reduced the amount of total food intake, as well as its absorption, and the food 

is the main source of the gut microbial production of total SCFAs, it is reasonable that after BRS 

treatment the amount of total SCFAs was significantly reduced. The SCFAs extract extra energy 

from the indigestible and non-digested food and provide more energy to the host, and thus increase 
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the harvesting efficiency of the host. It has been reported that the amount of total SCFAs was 

positively correlated with obesity and was reduced after gastric bypass and gastric band surgeries 

(Tremaroli et al., 2015). 

 

 
 

Figure 7.4.1 Total SCFAs concentration was significantly reduced at week 52 post-BRS treatment. 

 

Similarly, there was a significant reduction of total SCFAs at week 52 post LCD treatment 

(mean = 474.49 ppm, std = 215.42 ppm), when compared with the baseline level (mean = 646.44 

ppm, std = 286.82 ppm) (p = 0.0391 by Wilcoxon signed rank test) (Figure 7.4.2). In addition, 

total SCFAs in the four individuals, whose baseline and week 7 data of total SCFAs were available, 

were all reduced although the p values calculated by Wilcoxon signed rank and sign test were both 

0.125. That the increase cannot be determined as statistically significant could be caused by the 

small sample size of 4. These results indicated that the LCD treatment might be associated with 

the reduction of the amount of total SCFAs. Since the LCD treatment reduced the total food intake 

of the participants and food is the main source of gut microbial production of SCFAs, it is 

reasonable that the amount of total SCFAs was significantly reduced after the LCD treatment.  

 

 
Figure 7.4.2 Total SCFAs concentration was significantly reduced at week 52 post-LCD treatment. 
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Given that SCFAs can supply more energy to individuals and that obese individuals have 

a higher total SCFAs amount than the lean group, the significantly reduced total SCFAs after both 

BRS and LCD treatments might have also contributed to the obesity alleviation.  

Moreover, the acetate concentration of the BRS group was significantly reduced at week 7 

(mean = 330.12 ppm, std = 235.16 ppm) when compared with the baseline level (mean = 452.56 

ppm, std = 305.25 ppm) (p = 0.0703 by sign test) (Figure 7.4.3). The significant reduction was 

also observed at week 52 (mean = 191.59 ppm, std = 15.36 ppm), when compared with the week 

7 level (mean = 248.28 ppm, std = 54.50 ppm) (p = 0.0469 by Wilcoxon signed rank test) (Figure 

7.4.3). Significant reduction was observed at week 52 as well (mean = 195.93 ppm, std = 28.52 

ppm), when compared with the baseline level (mean = 384.90 ppm, std = 283.94 ppm) (p = 0.0039 

by Wilcoxon signed rank test). In summary, the results showed that acetate concentration was 

significantly reduced from the baseline to week 7, week 7 to week 52, and baseline to week 52 

after BRS treatment. The pattern of change of acetate concentration after BRS treatment was 

similar to the pattern of change of obesity condition, which was significantly reduced during the 

three periods after BRS treatment. The results indicated that the reduced obesity after BRS might 

be linked to the reduced acetate concentration. 

 

 
Figure 7.4.3 Acetate concentration was significantly reduced during baseline and week 7, and 

week 7 and week 52, and baseline and week 52 in the BRS group.  

 

Similar to BRS, LCD significantly reduced the acetate concentration at week 7 (mean = 

238.81 ppm, std = 82.87 ppm), in comparison to the baseline level (mean = 312.97 ppm, std = 

89.59 ppm) (p = 0.125 by Wilcoxon signed rank test and p = 0.0713 by paired t test), as well as at 

week 52 (mean = 215.94 ppm, std = 62.40 ppm), when compared with the baseline level (mean = 

299.42 ppm, std = 76.17 ppm) (p = 0.0078 by Wilcoxon rank sum test) (Figure 7.4.4). However, 

we did not observe a significant reduction of acetate concentration during week 7 and week 52 

after LCD treatment. The pattern of change of acetate concentration after LCD treatment 

corresponded to the pattern of change of obesity condition, which was significantly reduced at 

week 7 and week 52 after LCD treatment, but not during week 7 and week 52, supporting that 

obesity improvement after LCD treatment might be linked to the reduction of acetate concentration. 

Also, the pattern that there was a significant reduction of acetate concentration during week 

7 and week 52 in the BRS group, but not in the LCD group, was similar to the pattern that there 

was a significant reduction of obesity during week 7 and week 52 in the BRS group, but not in the 
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LCD group, further supporting that the significant improvement of obesity was associated with the 

significant reduction of acetate concentration after BRS and LCD treatments.  

 

 
 

Figure 7.4.4 Acetate concentration was significantly reduced at week 7 and week 52 in the LCD 

group.  

 

We did not observe a significant alteration of propionate and butyrate concentrations after 

BRS and LCD treatment. Considering that acetate is the main component of SCFAs and it was 

significantly reduced while the other two SCFAs were not significantly altered, the observed 

significant reduction of the total SCFAs after BRS and LCD treatments should be mainly owing 

to the significant reduction of acetate.  

Similarly, considering that both BRS and LCD reduced the amount of the participants’ 

food intake (and their absorption), which is the main source for gut microbial production of acetate, 

it is reasonable that after both treatments, acetate concentration was significantly reduced; also 

considering the amount the food intake during week 7 and week 52 post BRS treatment was still 

limited in comparison to the LCD group, it is reasonable that the concentration of acetate during 

week 7 and week 52 post BRS was significantly reduced, but not in the LCD group. Compared to 

other SCFAs, acetate is less metabolized in colon since it can be easily absorbed and transported 

to liver (Cook and Sellin, 1998), and once it enters the systemic circulation, it can be converted to 

acetyl-CoA, which is the starting material for fatty acid synthesis (Wong et al., 2006). Besides its 

involvement in lipogenesis, acetate is also the principal substrate for cholesterol synthesis, so its 

significant reduction might further contribute to the decreased adiposity post-treatment because of 

the decreased acetate repertory for lipogenesis. The results suggested one possible pathway that 

the BRS treatment induced a significant reduction of acetate concentration, which further 

supported the weight loss and formed a positive loop for persistent weight loss after the treatment. 

Propionate and butyrate are more metabolized in the GI tract and provide energy and 

nutrition to the intestinal cells, and thus maintain their healthiness. If they are significantly 

increased, they may provide more energy to the patient, and if they are significantly reduced, the 

healthiness of the GI tract might be compromised. In our study, these two SCFAs were not 

significantly altered, so they might have helped the maintenance of the healthiness of the GI tract.  

 

7.5 Percentage of Acetate Was Significantly Reduced after BRS treatment 

 

The percentage of acetate was significantly reduced at week 52 post BRS treatment (mean 

= 53.45%, std = 14.31%), when compared with the baseline level (mean = 40.17%, std = 8.46%) 
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(p = 0.0547 by Wilcoxon signed rank test) (Figure 7.5.1), and it was also significantly reduced 

from week 7 (mean = 50.91%, std = 8.96%) to week 52 (mean = 37.54%, std = 12.50%) after BRS 

treatment (p = 0.0781 by Wilcoxon signed rank test) (Figure 7.5.2).  

 

 
 

Figure 7.5.1 The percentage of acetate was significantly reduced at week 52 post-BRS treatment. 

 

 
 

Figure 7.5.2 The percentage of acetate was significantly reduced during week 7 and week 52 post-

BRS treatment. 

 

As the above discussion on the reduction of acetate concentration, considering that acetate 

might not be as good as propionate and butyrate for improving obesity, the significant reduction 

of the percentage of acetate after BRS treatment might help further weight loss. In addition, the 

coincidence of the significant reduction of the relative abundance of Bifidobacteria, the main 

fermentation products of which are acetate and lactate, and the significant reduction of the relative 

proportion of acetate in total SCFAs indicated that one possible underlying mechanism for the 

weight loss effect of BRS might be that the significant decrease of the relative abundance of 

acetate-producing bacteria (e.g. Bifidobacteria) after BRS results in the significant decrease of the 

relative proportion of acetate in total SCFAs, which further helps weight loss. 
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7.6 Percentage of Propionate Was Significantly Increased during Week 7 and Week 52 after 

BRS treatment 

 

We did not observe significant alteration of propionate concentration after BRS or LCD 

treatment. However, the percentage of propionate was significantly increased during week 7 (mean 

= 17.58%, std = 5.58%) and week 52 (mean = 30.25%, std = 13.35%) after BRS treatment (p = 

0.0313 by Wilcoxon signed rank test) (Figure 7.6.1). That the coincidence of the significantly 

increased percentage of propionate and significantly reduced obesity during week 7 and week 52 

post-BRS treatment indicated that the efficient and persistent obesity improvement during week 7 

and week 52 after BRS treatment might be linked to the significant increase in the percentage of 

propionate among the total SCFAs.  

 

 
 

Figure 7.6.1 Propionate percentage was significantly increased during week 7 and week 52 post-

BRS treatment. 

 

Propionate has been reported to show protection against diet-induced obesity via inducing 

the secretion of gastrointestinal hormones that regulate satiety and inhibition of food intake in mice 

(Lin et al., 2012). It can also inhibit the lipogenesis from acetate in the liver and adipose tissue, 

which facilitates the weight loss effect of bariatric surgeries (Wolever et al., 1991). In addition, 

propionate is a substrate for hepatic gluconeogenesis and can inhibit cholesterol synthesis in the 

liver (Venter et al., 1990, Cheng and Lai, 2000). Therefore, the increased relative proportion of 

propionate during week 7 and week 52 post-BRS might further help weight loss during this period. 

Since genus Akkermansia produces propionate and the significant increase in the relative 

abundance of genus Akkermansia at week 52 post-BRS treatment might have contributed to the 

significant increase in the relative proportion of propionate during week 7 and week 52 after BRS 

treatment. Thus, the possible mechanism underlying the significant weight loss after BRS might 

include that the BRS treatment induced significantly increased relative abundance of propionate-

producing bacteria (e.g. Akkermansia) during week 7 and week 52, resulting in significantly 

increased the relative proportion of propionate, which might further help weight loss during week 

7 and week 52 post BRS treatment. 
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7.7 Percentage of Butyrate and Relative Abundance of Butyrate-producing Genera Were 

Significantly Increased after BRS treatment 

 
We did not observe significant alteration of butyrate concentration after BRS or LCD 

treatment. However, although there was no significant difference of the butyrate concentration 

between the BRS and LCD group at baseline, the butyrate concentration in the BRS group (mean 

= 166.74 ppm, std = 63.33 ppm) was significantly higher than the LCD group (mean = 95.80 ppm, 

std = 45.13 ppm) (p = 0.0582 by Wilcoxon rank sum test) at week 7 post treatments (Figure 7.7.1).  

 

 
 

Figure 7.7.1 Butyrate concentration at week 7 post-BRS treatment was significantly higher than 

that in the LCD group. 

 
Moreover, we observed that the percentage of butyrate was significantly increased at week 

52 (mean = 35.79%, std = 5.74%) post BRS treatment when comparing with the baseline level 

(mean = 28.92%, std = 11.03%) (p = 0.0703 by Wilcoxon signed rank test) (Figure 7.7.2). That 

the coincidence of significantly increased of butyrate percentage among total SCFAs and 

significantly reduced obesity at week 52 post-BRS treatment indicated that the significant obesity 

improvement after BRS might be linked with the significant increase in the percentage of butyrate 

among the total SCFAs.   
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Figure 7.7.2 The percentage of butyrate was significantly increased at week 52 post-BRS treatment. 

 

It was reported that butyrate and propionate, but not acetate, induce gastrointestinal 

hormones which can signal brain feeling of satiety to reduce food intake (Lin et al. 2012). Butyrate 

has been reported to improve insulin sensitivity and increase energy expenditure in mice (Gao et 

al. 2009). In addition, both propionic acid and butyric acid showed protection against diet-induced 

obesity via induction of gut hormones and inhibition of food intake independent of free fatty acid 

receptor3 (FFAR3) in mice (Lin et al., 2012). 

Moreover, we found that most butyrate-producing genera were significantly increased at 

week 52 after BRS treatment (Figure 7.7.3), and were significantly negatively correlated with 

obesity based on non-parametric Spearman correlation test and/or parametric Pearson correlation 

test using the baseline data from the combined BRS and LCD groups. For example, Eubacterium 

was significantly negatively correlated with GLU (cor = −0.3611, p = 0.0987), LDL (rho = 

−0.4076, p = 0.0597) and CHOL (rho = −0.5283, p = 0.0115). Anaerotruncus was significantly 

positively correlated with GDR1/Weight (cor = 0.4136, p = 0.0557) and GDR2/Weight (cor = 

0.3923, p = 0.071), Anaerostipes was significantly correlated with GLU (rho = −0.5123, p = 

0.0148) and LEP (rho = 0.4213, p = 0.0508), and subdoligranulum was significantly correlated 

with TRIG (cor = −0.3667, p = 0.0932) and CHOL (cor = −0.3958, p = 0.0683). It indicated that 

the significant increase in the percentage of butyrate among total SCFAs might result from the 

significant increase in the relative abundance of these butyrate-producing genera.  

 

 
 

Figure 7.7.3 The relative abundance of butyrate-producing genera were significantly increased 

after BRS. 

 

7.8 Functional Microbial Gene Communities Involved in Metabolism of SCFAs Were 

Significantly Correlated with Obesity-related Hormones 

 

Mantel test was used to check the correlations between the gene categories involved in the 

metabolism of SCFAs, including acetate kinase, acetyl-CoA acyltransferase, propionate kinase, 

and butyrate kinase, and obesity-related physiological variables, by using the baseline data in the 

combined BRS and LCD group. The result showed that the SCFA-related gene communities were 
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significantly correlated with obesity-related hormones, including ADP, ADPHMW, PYY and 

GHRA (Figure 7.8.1), indicating that obesity-related hormones might be important factors that 

linked obesity and gut microbiota.  The possible underlying mechanism could be like the loop of 

SCFA-producing microbes----metabolism of SCFAs----obesity-related hormones----obesity. That 

is, 1) SCFA-producing microbes produce SCFAs; 2) the produced SCFAs induce the alteration of 

obesity-related hormones; 3) the altered obesity-related hormones alter the obesity condition. In 

the case of BRS treatment, it is possible that BRS treatment induced the significant alteration of 

the SCFA profile, including the significant reduction of total SCFAs and acetate concentration, 

and significant reduction of the percentage of acetate, and significant increase in the percentage of 

propionate and butyrate, which induced the significant improvement of obesity-related hormones, 

(especially ADP and ADPHMW, both were significantly increased after BRS treatment), and then 

the significantly improved hormones (e.g. increased ADP and ADPHMW) contributed to the 

significant obesity improvement after BRS treatment. 

 

Table 7.8.1 Gene communities under the gene categories involved in the metabolisms of short-

chain fatty acids were significantly correlated with obesity-related hormones including ADP, 

ADPHMW, PYY and GHRA. 
 

 
 

 
 

 
 

 
 

7.9 Conclusions 
 

In summary, accompanied with significant obesity improvement by BRS and LCD 

treatments, the concentrations of total SCFAs was significantly reduced at week 52 post both BRS 

and LCD treatments. Acetate concentration was significantly reduced at week 7 and week 52 after 

BRS and LCD treatments, and it was also significantly reduced during week 7 and week 52 after 

BRS treatment.  

After BRS treatment, the relative proportion of acetate in total SCFAs was significantly 

decreased during baseline and week 52, and during week 7 and week 52, while that of propionate 

was significantly increased during week 7 and week 52 and that of butyrate was significantly 

BRS & LCD_BL Acetate kinase ADP ADPHMW 

Mantel test 
r 0.26 0.23 

p 0.08 0.08 

 

BRS & LCD_BL Acetyl-CoA acyltransferase ADP ADPHMW 

Mantel test 
r 0.65 0.57 

p 0.05 0.05 

 

BRS & LCD_BL Propionate kinase PYY ADPHMW 

Mantel test 
r 0.1 0.1 

p 0.05 0.08 

 

BRS & LCD_BL Butyrate kinase PYY GHRA 

Mantel test 
r 0.25 0.2 

p 0.06 0.06 
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increased during baseline and week 52. This phenomenon was not observed in the LCD group. In 

addition, after BRS treatment, the relative abundance of butyrate-producing genera was 

significantly enhanced.  

Moreover, the gene communities involved in the metabolism of SCFAs were significantly 

correlated with obesity-related hormones, including ADP, ADPHMW, PYY and GHRA. 
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 CHAPTER EIGHT: DISCUSSIONS 
 

Microbial richness and diversity were significantly increased after both treatments. Like 

all healthy ecosystems, a higher diversity of gut microbiota structure characterizes the healthy 

status, and a loss of diversity is linked to disease status. The microbial increased richness and 

diversity may indicate that the microbial community structure and the host’s health status become 

healthier after the treatments. It was reported that fasting induces an increase of microbial diversity 

(Remely et al., 2015). It is likely that the reduction of calorie intake after both BRS and LCD 

treatments lowered the food sources of the originally dominating microbial groups, making the 

abundance of each microbial component became evener. Also, the significant improvement of 

obesity after these two weight-loss treatments might have improved the patients’ entire 

physiological conditions, especially the gastrointestinal physiological conditions, and the 

improved physiological variables may allow the growth of more different types of microbes. A 

healthy ecosystem usually has mild conditions that allow various types of organisms to live in the 

system, while the extreme environmental conditions (e.g. pH, temperature, etc.) usually only allow 

the growth of specific microbial groups. As we have observed, more types of genera were 

significantly increased, and only a few genera were significantly reduced. This indicates that the 

total richness of the genera was increased, which was in agreement with the statistical tests. In 

addition, the significantly improved physiological conditions after bariatric surgeries may support 

the growth of the beneficial microbes more than the growth of the harmful microbes. As we 

observed, most of the significantly increased genera were commensal microbes. The degree of the 

increase of the microbial richness and diversity was greater in the BRS group than in the LCD 

group, and this pattern was consistent with the greater obesity improvement occurred in the BRS 

group, further confirming that higher microbial richness and diversity was correlated with better 

health conditions. 

The distribution and composition of the microbial community at different taxonomic levels 

were switched toward a healthier profile with more beneficial microbes and less harmful microbes. 

For example, it has been reported that the phylum Actinobacteria was increased in the high-fat-fed 

mice and it was higher in the obese ones in the twins than the lean ones (Turnbaugh et al., 2009), 

and it was reduced after RYGB. The relative abundance of Actinobacteria was also significantly 

reduced after BRS in our research. Also, it has been reported that obese individuals had lower 

relative abundance of phylum Verrucomicrobia (Clarke et al., 2012) and it was increased after 

RYGB (Liou et al., 2013), and it was also more abundant in normal-weight and post-RYGB 

individuals than the obese individuals (Zhang et al., 2009). The phylum Verrucomicrobia was 

significantly increased at week 52 after BRS treatment in our study. We did not observe significant 

alterations of other phyla at week 52 after BRS, indicating that, when compared with the baseline 

level, the week 52 microbial community was switched to a healthier profile with significantly 

increased beneficial phylum Verrucomicrobia and significantly reduced harmful phylum 

Actinobacteria after BRS. Phylum Firmicutes dominates the gut microbiota in most human 

populations and has been found to associate with obesity. After each meal, its abundance increases 

more than the abundance of other phyla. The increased availability of incoming food may increase 

the abundance of this phylum and lead to more energy intake and adipose formation in the host. 

High-calorie food is also related to the increased Firmicutes abundance, and it was reported that 

Firmicutes was significantly reduced in individuals after RYGB (Zhang et al., 2009). The 

Firmicutes/Bacteroidetes ratio is greater in obese than normal people (Abdallah Ismail et al., 2011). 

In addition, the significantly reduced phylum Firmicutes and significantly increased Bacteroidetes 
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at week 52 post LCD treatment indicated that at the phylum level the microbial community became 

healthier after the LCD treatment. The gut microbiota structure became healthier after both 

treatments, but the pattern was not totally the same, indicating that the involved mechanism in the 

BRS and LCD groups might be different. Their changing pattern was not totally the same at other 

taxonomic levels, either. For example, at the genus level, the community structure at week 52 post 

both treatments became significantly different than the baseline level; however, the only a few 

genera were significantly altered in both treatments. Additionally, it seems that the degree of the 

change of the gut microbiota toward a healthier profile was higher in the BRS group than the LCD 

group. For example, nearly all the known butyrate-producing genera were significantly increased 

and showed significantly negative correlation with obesity, and the propionate-producing genus, 

Akkermansia, was also significantly increased. 

Microbial functional gene community was significantly altered at week 7 after both 

treatments, but not at week 52 post treatments, while the change of the host’s physiological 

conditions (especially the GI tract’s physiological condition) was more substantial at week 7 for 

both BRS and LCD groups and the obesity improvement was more significant at week 52 post 

both treatments. These observations suggest that the microbial functional gene community might 

be mostly correlated with the change of the GI tract’s physiological condition. The entire microbial 

functional gene community contains the gene categories (143 in total in this research) involved in 

all kinds of metabolic processes, and not all of the 143 gene categories are significantly involved 

in obesity condition. Thus, the significant alteration of the GI tract’s environmental conditions at 

week 7 and week 52 after BRS was associated with the significantly altered entire gene community. 

The relative abundance of some gene categories and gene communities under different gene 

categories were significantly altered at week 7 and week 52 post treatments and they may have 

correlated with the significant alteration of obesity conditions after the treatments. After week 52, 

the physiological condition was not as extreme as at week 7 and this may explain why the 

significant alteration of the entire gene community structure was observed. Having no significant 

alteration of the entire gene community might also display the resilience of human microbiota. 

Total SCFAs and acetate were significantly reduced after both treatments. It has been 

reported that total SCFAs were positively correlated with obesity possibly because they can 

provide more energy. The significantly reduced SCFAs after the two weight-loss treatments might 

have reduced the amount of the total energy that the host can obtain and thus help their weight loss. 

As mentioned previously, the acetate was the main component of the total SCFAs and it was 

harmful to obesity, so its significant reduction might have contributed to the significant reduction 

of total SCFAs and benefited the weight loss process, considering that no significant alteration of 

the concentrations of the propionate and butyrate was observed. 

The significantly reduced proportion of acetate and significantly increased proportion of 

propionate and butyrate after bariatric surgeries indicate that the SCFA profile after bariatric 

surgeries becomes healthier for obesity, considering that in general acetate is harmful to obesity, 

while propionate and butyrate are beneficial to health status. This shifted profile of the SCFAs was 

not observed in the LCD group, and it may have contributed to the more substantial obesity 

improvement after BRS treatment compared to the LCD group. 

That the relative abundance of most butyrate-producing genera was significantly increased 

after BRS may explain the source of the significantly increased proportion of the butyrate. 

Akkermansia is one of the propionate-producing genera and the significant increase of its relative 

abundance may explain the source of the significantly increased proportion of the propionate. Also, 

the significant reduction of the relative abundance of the genus Bifidobacteria, the main 
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fermentation products of which are acetate and lactate, may explain the significant reduction in the 

proportion of the acetate after the bariatric surgeries. 

The gene communities relevant to the metabolisms of short-chain fatty acids were 

significantly correlated with obesity-related hormones (ADP, ADPHW, PYY and GHRA), 

indicating the possible pathway that links SCFAs and obesity. That is, the SCFAs might induce 

the alteration of obesity-related hormones, which further exert their functions in regulating 

adiposity. For example, it has been reported that butyrate can stimulate the gene expression of 

adiponectin, which is associated with AMPK (Adiponectin-induced AMP-activated protein kinase 

or Adenosine monophosphate-activated protein) that monitors the energy status of the cell and 

stimulates fatty acid oxidation.   

The degree of the change in gut microbiota community was higher in the BRS group than 

in the LCD group, including the greater degree of the increase of microbial richness and diversity 

and beneficial microbes, such as genus Akkermansia and butyrate-producing genera, and the 

greater gene richness and diversity, and the healthier profile of their metabolites SCFAs that 

include greater degree of acetate reduction and better SCFA composition (significantly reduced 

proportion of acetate and increased proportions of propionate and butyrate). Considering that the 

degree of the obesity improvement effect of BRS was also greater than the LCD group, the 

difference in the degree of the change of the gut microbial community structure and the profile of 

their metabolites, SCFAs, may either be caused by the different mechanisms that drive the change 

of the gut microbial community, or by use of the same/similar mechanism with different degrees 

of change, or by a mix of the two.  

In addition, the microbial community structure at different taxonomic levels and the 

microbial connectivity showed significant correlations with obesity, and it seemed that ADPHMW 

was an important factor involved in their correlation. Moreover, over half of the gene communities 

under different types of gene categories showed significant correlations with obesity-related 

variables and the entire gene community was significantly correlated with obesity-related 

hormones (ADP, ADPHMW, and GHRA), with gene richness and diversity significantly 

negatively correlated with GHR and GHRA.  The gene communities relating to the metabolism of 

SCFAs also showed significant correlations with obesity-related hormones, including ADP, 

ADPHMW, PYY and GHRA). These findings together suggest that the obesity-related hormones 

may be the factors involved in the link between gut microbiota and obesity. Studies have reported 

the involvement of GLP-1, PYY, and GHR, but very few have evidenced the link between gut 

microbiota and obesity via ADP or ADPHMW. 
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CHAPTER NINE: CONCLUSIONS 
 

After bariatric surgeries and low-calorie diet treatment, the gut microbial community 

structure and function were significantly altered. The changes included significantly increased 

microbial diversity, altered microbial distribution and composition toward a healthier profile with 

significantly increased commensal microbes (for example, the genus Akkermansia and the 

butyrate-producing genera) and reduced harmful microbes, altered microbial functional gene 

community, and the altered amount and composition of the gut microbial metabolites SCFAs, with 

significantly reduced concentrations of total short-chain fatty acids and acetate. 

The degree of the change in the gut microbiota community after BRS was higher compared 

with the LCD group, including the greater degree of the increase of microbial richness and 

diversity, greater degree of the increase of the relative abundance of beneficial microbes, such as 

genus Akkermansia and butyrate-producing genera, greater gene richness and diversity, and 

healthier profiles of their metabolites SCFAs, including greater degree of acetate reduction, better 

SCFA composition (significantly reduced proportion of acetate and significantly increased 

proportions of propionate and butyrate). Also, the reduction of the acetate concentration after BRS 

was more efficient and persistent compared with the LCD treatment, and the significant reduction 

of the proportion of acetate was observed during baseline to week 7, week 7 to week 52 and 

baseline to week 52 after BRS treatment, but not in the LCD group. The significant increase of the 

proportion of propionate was only observed during week 7 to week 52 after BRS treatment, and 

not in the LCD group, and the significant increase of the proportion of butyrate was only observed 

at week 52 after BRS treatment, and not in the LCD group. These results indicated that the BRS 

treatment had better effects in improving the gut microbial community’s healthiness, including the 

microbial richness and diversity, microbial functional gene richness and diversity, and the amount 

and composition of the microbial metabolites than the LCD group. This corresponded to the more 

significant obesity and health improvement effects of the BRS treatment when compared to the 

LCD treatment. The difference in the degree of the change of the gut microbial community 

structure and the profile of their metabolites, SCFAs, may either be caused by the different 

mechanisms that drive the change of the gut microbial community, or by the same/similar 

mechanism with different degrees of change, or by a mix of the two.  

Our results supported that the increased microbial richness and diversity was linked to the 

improved obesity condition, and the greater increased microbial richness and diversity was linked 

to the greater improved obesity condition in the severely obese subjects. The distribution and 

composition of microbial community were switched toward a healthier profile with a significantly 

lower relative abundance of phylum Actinobacteria, and significantly higher relative abundance 

of phylum Verrucomicrobia at week 52 post-BRS treatment, and significantly lower relative 

abundance of the phylum Firmicutes, and a significant increase of phylum Bacteroidetes after low-

calorie diet treatment. Microbial functional gene community structure was significantly altered at 

week 7, accompanying with the more significant alteration of the GI tract’s physiological 

conditions.  

In addition, based on the baseline data combined from the both BRS and LCD groups, we 

found that the entire microbial communities at different taxonomical levels were significantly 

correlated with obesity-related physiological variables, and the hormone ADPHMW and might be 

an important factor that links the significant correlation between the entire microbial community 

and obesity, at OTU level. Also, the microbial connectivity also showed significant correlations 

with obesity, suggesting that microbes with higher connectivity were significantly correlated with 
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obesity, supporting the significant correlation between the topology of the microbial association 

network and obesity and further confirming the significant correlation between the microbial 

community structure and obesity. The relative abundance of many genera (or other taxonomic 

microbial groups) also showed significant correlations with obesity-related physiological variables, 

further supporting the involvement of gut microbes in the obesity condition. Moreover, over half 

of the gene communities under different gene categories showed significant correlations with 

obesity-related physiological variables, further confirming the significant correlation between 

microbial community and obesity, and supporting the involvement of microbial genes in the host’s 

obesity conditions. In addition, the entire gene community was significantly correlated with 

obesity-related hormones, ADP, ADPHMW, and GHRA, and the richness and diversity of the 

entire gene community were significantly negatively correlated with GHR and GHRA, suggesting 

these obesity-related hormones might be the factors that linked the significant correlation between 

gut microbiota and obesity.  

Additionally, this research discovered that the Akkermansia’s relative abundance was 

significantly increased after bariatric surgeries, and there was a significant reverse nexus between 

human gut Akkermansia’s relative abundance and obesity condition. It indicates that bariatric 

surgeries may directly or indirectly increase gut Akkermansia’s relative abundance, which may, in 

turn, further boost the obesity-alleviating effect of bariatric surgeries, forming a positive loop that 

contributes to their persistent effects in improving obesity conditions. Akkermansia may have the 

potential to serve as a physiological indicator of obesity status and be developed as a supplement 

for the prevention and/or treatment of obesity and obesity-related complexities. 
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