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ABSTRACT 

Adult adipose derived mesenchymal stromal cells (ASCs) have been characterized in various 

species.  Many factors may affect ASC fate and ASCs from different species may have different 

response to these factors.  The first study was to identify the differences of the canine ASCs 

isolated from subcutaneous and infrapatellar adipose tissues, and evaluate the impact of 

cryopreservation on the cells.  Based on paired comparisons of fresh and cryopreserved ASCs, 

cryopreserved ASCs had lower CD29 and CD44 protein expression and lower proliferation rates.  

The cryopreserved ASCs had relative lower mitochondria in the cytoplasm compared to the fresh 

ASCs regardless of tissue sources. The second study was to apply human ASCs for bone 

regeneration.  The spinner flask bioreactor system was employed to load human ASCs onto three 

commercial scaffolds and the cell-scaffold constructs were cultured in stromal, osteogenic, or 

osteogenic for 48 hours followed by stromal medium for up to 28 days.  The distinct scaffold up-

regulated different osteogenic signaling pathways, suggesting distinct osteogenic cell signaling 

pathways were selectively upregulated by scaffold composition.  The third study was designed to 

quantify in vivo equine multipotent stromal cell (MSC) osteogenesis on synthetic polymer 

scaffolds with distinct mineral combinations 9 weeks after implantation in a murine model.  

Addition of mineral to polymer scaffolds enhanced equine MSC osteogenesis over polymer alone, 

and contributions by both exo- and endogenous MSCs were confirmed.  The fourth study was 

designed to evaluate the effects of collagenase digestion and cryopreservation on equine ASCs.  

Higher collagenase concentration yielded more nucleated cells, and the percentages of MHCII-, 

CD44+, CD105+ cells in freshly isolated and cryopreserved cells were similar.  The embryonic 

gene expression was enhanced and the essential gene expression decreased after cryopreservation.  

The fifth study was to demonstrate the endodermal transdifferentiation capability in feline ASCs.  
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Feline-specific pancreatic β cell induction medium was developed in the study, and islet-like cell 

clusters that secrete insulin in response to glucose stimulation were created.  Overall, the 

investigations in this dissertation provide critical information for canine, feline, equine and human 

MSC based tissue engineering therapies and may contribute to better efficiency and efficacy of 

cell preservation techniques. 
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CHAPTER 1. THE EFFECTS OF CRYOPRESERVATION, CHEMICAL REAGENTS, 
AND PHYSICAL ENVIRONMENT ON ADULT MULTIPOTENT STROMAL CELLS 

 
1.1. Adult Multipotent Stromal Cell Cryopreservation: Pluses and Pitfalls 

1.1.1. Introduction  

Adult multipotent stromal cells (MSCs) are increasing as standard therapy for a multitude of 

pathologic conditions as diverse as cancer, renal disease and musculoskeletal and cardiac tissue 

injury [1-5]. Isolation of adequate cell numbers for several therapeutic doses with minimally 

invasive tissue harvest is a perpetual struggle [6]. Based on current knowledge, distinct MSC 

immunophenotype subpopulations are most effective for specific clinical applications [7]. 

Extensive in vitro culture expansion of low frequency MSC immunophenotypes is necessary to 

achieve sufficient cell numbers, and potential for genetic alterations and contamination increases 

with culture time [8-11].  In addition to immunogenicity concerns of allogeneic donors,[12] MSC 

quality varies with age and health status [13]. Thermally dependent metabolic processes do not 

occur below -120oC, so MSCs are in metabolic stasis at liquid nitrogen temperature, around -196oC 

[14]. Multiple cell aliquots collected over time from an individual or set of donors can be 

maintained for later administration immediately upon revitalization or after short-term expansion 

of pooled or individual isolates [15, 16].  Cryopreservation also increases MSC availability since 

frozen cells can be delivered to patients over long distances using standard transportation [17]. 

Despite prevalent MSC cryopreservation, relatively little focus has been directed toward the effects 

cryopreservation on cell morphology and behavior. 

There is a growing awareness of differences between fresh and cryopreserved MSCs [6, 

18-22], though cryopreservation effects on retention of MSC characteristics vary widely [18-21, 

23, 24]. Most veterinary MSC cryopreservation techniques are derived from human and murine 
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protocols[18, 25] for cell aliquots of 1-4 × 106 cells in cryopreservation medium that contains 

cryoprotectants (CP) and exogenous serum (Fig. 1) [26]. A cooling process is used to reduce the 

temperature to about -80oC prior to transfer to liquid nitrogen [25-27].  For revitalization, cells are 

thawed and then washed with buffer or medium to remove cryopreservation medium ingredients 

[14]. Each step, as well as cryopreservation duration can impact MSC survival and attributes [14]. 

 

 
Figure 1. Schematic of domestic animals (cat, dog and horse) adult multipotent stromal cell (MSC) 
cryopreservation process 
 
1.1.2. Cooling Process 

Cryopreservation maintains unfrozen cells at a supercool temperature within frozen 

medium [28]. The freezing point of the medium surrounding the cells is reduced by CPs to around 

-5 to -15oC. During the cooling process, fluid moves from the lower solute concentrations in the 
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unfrozen cells into partially frozen medium while the plasma membrane prevents extracellular ice 

crystals from entering them. Slow cooling permits fluid loss from the cells at a rate that results in 

a balanced osmotic pressure between cells and medium by the time the medium freezes. If the 

cooling rate is too slow, cells are fatally dehydrated or the plasma membranes irreversibly damaged 

before solutes crystallize at the eutectic temperature [14].  Excessively rapid cooling results in 

insufficient extracellular fluid migration to maintain the high solute concentration to prevent fatal 

cell freezing [29].   

As described above, cell cooling rate is a delicate balance of fast enough to avoid solute 

and electrolyte imbalances that result in cell dehydration and uneven sample freezing and slow 

enough to prevent lethal extra- and intracellular ice crystal formation [14]. Unique membrane 

permeability among cell types influences fluid movement rate as well [14]. Conventional slow 

freezing at a rate of -1oC/min [30] with microprocessor-controlled freezers or freezing containers 

with a heat transfer interface (isopropyl alcohol or insulation) between the samples and an ultra-

low temperature environment [31, 32] reportedly has minimal effect on MSC immunophenotype, 

proliferation or lineage differentiation [31, 32]. Slow freezing of sterile specimens within sealed 

vials also minimizes contamination risk [33]. Limitations of this cooling mechanism include cell 

dehydration and membrane damage, intracellular ice formation (IIF) and exposure to CPs [14].  

Another form of cooling used for MSC cryopreservation, vitrification, involves extremely 

rapid cooling (>-1,000oC/s) of cells immersed in CPs within open storage vessels [34, 35]. While 

the process prevents fluid crystallization, potentially cytotoxic concentrations of CPs are necessary 

to facilitate the freezing process and protect the cells [34]. Additionally, samples must be 

maintained at cryogenic temperatures, and open containers are a potential source of contamination 
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[36, 37]. Largely due to technical challenges, vitrification is not used as frequently as slow freezing 

for veterinary MSC cryopreservation, so the focus of this review is on the latter. 

1.1.3. Thawing Process 

Cells pass through the critical temperature range for ice crystal formation, -15 to -60oC, 

during the freezing and thawing processes [14].  Rapid thawing, 90-100oC/min, is often employed 

to prevent fluid crystallization by immersing samples in a 37oC water bath until all ice melts [38].  

When murine hematopoietic progenitor cells are cooled at -1.5oC/min, survival is higher when 

they are thawed rapidly at 900oC/min versus slowly at 2oC/min [39]. Recovery rates of human 

erythroid progenitor cells are reported to be the same when they are thawed rapidly at 37oC versus 

more slowly at 20oC [40]. It is likely that the best thawing mechanism varies between both cells 

and CPs with the ideal rate a balance of preventing ice formation versus prolonged exposure to 

CPs at temperatures when cells are metabolically active. Both freezing and thawing processes 

should be customized and then consistently utilized for a given species and MSC harvest tissue. 

1.1.4. Cryoprotectants  

The primary function of CPs is to prevent cell damage during freezing and thawing [37, 

41-43]. Cryoprotectant formulation and concentration varies among species, MSC type, and 

cooling technique, among other considerations [30, 37, 43]. Even relatively low concentrations of 

CPs used for slow freezing, 1-2M, are associated with toxicity that differs among cell types and 

increases with time, temperature, concentration and metabolic activity [37, 43].  There are two 

major CP categories based cell membrane permeability, permeable and impermeable [37, 43].  

Those with high permeability tend to be the most cytotoxic [14].  Combinations of permeable CPs 

like dimethyl sulfoxide (DMSO), ethylene glycol, methanol, propylene glycol, dimethylacetamide, 

and less permeable CPs like polyvinypyrrolidone, hydroxyethylstarch, polyethylene glycol and 
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dexamethasonetran, reduces permeable CP concentrations and associated problems [14, 37, 43]. 

Dimethyl sulfoxide and fetal bovine serum (FBS) are among the most common CPs used for 

companion animal MSC cryopreservation [1, 25]. The carcinogenic properties of DMSO [4] and 

xenogeneic proteins in FBS may alter the cells and impact post implantation behavior [18, 44].  

Some of the functions and limitations of these as well as alternative CPs follow.  

Dimethyl Sulfoxide  

One of the most popular CPs, DMSO, stabilizes cell proteins [45], and penetrates cells to 

displace fluid and equilibrate electrolyte concentrations between the intra- and extracellular fluid 

to maintain cell volume [46, 47]. Protein stabilization is mediated via hydrophobic interactions 

between DMSO and positively charged proteins, including those in the cell membrane 

phospholipid bilayer [45]. Additionally, DMSO forms high energy hydrogen bonds with water 

molecules, interfering with interactions among them to prevent ice formation [48, 49].  

Dimethyl sulfoxide can cause MSC chemical toxicity and osmotic shock [44, 46, 47].  The 

same hydrophobic interactions that protect vital proteins during cryopreservation can also denature 

and deactivate them [50].  Increasing DMSO concentrations (5 – 20%) in the freezing medium is 

associated with lower survival and increased apoptotic gene expression (Bak and Bcl2) in porcine 

bone marrow derived stromal cells (BMSCs) [19-21, 51-53].  In vivo, neurotoxicity can occur 

from 10% DMSO solutions, a typical concentration in cryopreservation medium [54]. Sedation, 

headache, nausea, vomiting, hypertension, bradycardia, hypotension, central nervous system 

depression, and anaphylactic shock have been attributed to DMSO in cell suspensions 

administered intravenously to humans [54]. Washing cells to reduce DMSO concentration after 

thawing results in cell loss and lower colony forming units [55], and complete DMSO removal can 
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be complex and time consuming [56, 57]. These points, among others, support continued efforts 

to identify replacements for DMSO in cryopreservation medium [37, 43]. 

Fetal Bovine Serum  

Fetal bovine serum collected at different gestational stages [58] is a common culture 

medium ingredient that provides growth factors, nutrients and hormones for cell proliferation and 

adhesion [46, 47]. It is also thought to act as a CP through protection of cell proteins and 

stabilization of osmotic pressure, though the mechanisms have not been completely defined [46, 

47, 59].  In addition to ethical, zoonosis, and xenogeneic protein concerns, compositional variation 

of FBS lots contributes to inconsistent cell culture performance [58]. A recent finding that 

cryopreserved canine ASCs have increased CD44 expression compared to fresh cells was 

attributed to FBS in the freezing medium [18].  The US Food and Drug Administration (FDA) 

does not permit use of FBS in products intended for humans or animals owing to potential 

immunogenicity [60]. Autologous and allogeneic serum in MSC freezing media reportedly 

compare favorably to FBS in terms of MSC viability, morphology, and plasticity [41, 42, 61].  A 

study to assess different media effects on equine BMSCs included two freezing media composed 

of 20% serum, 10% DMSO, 70% DMEM or 95% serum and 5% DMSO, both with autologous 

serum, commercial pooled equine serum or FBS added [61]. There was no difference in post-thaw 

cell viability, morphology or growth kinetics among different freezing media, and 95% autologous 

serum with 5% DMSO was recommended for short-term (2-3 days) cryopreservation [61].  Serum 

free MSC cryopreservation medium has been shown to have similar or superior post-

cryopreservation outcomes compared to FBS-containing media [59, 62].  Increasing availability 

of FBS-free freezing media may be important to improving consistency in MSC pre- and post-

cryopreservation characteristics. 
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Impermeable Cryoprotectants 

Methylcellulose (MC) is a high-molecular weight polymer in MSC freezing medium, 

including serum-free [30, 62].  Human ASC post-thaw cell viability with freezing medium 

containing MC in Dulbecco’s Modified Eagle’s medium (DMEM) is greater than DMEM alone, 

but lower than that containing 80% serum, 10% DMSO and 10% DMEM [41, 42].  Another 

nontoxic, impermeable, high molecular weight polymer, polyvinylpyrrolidone (PVP), is also a 

fairly popular MSC CP [56, 57, 63]. As extracellular fluid ice forms at -10 to -20oC, the 

concentration of dissolved PVP in the unfrozen fluid increases and creates an osmotic gradient that 

drives fluid out of cells to prevent IIF [64]. Despite lower intracellular fluid, IFF may occur at low 

PVP levels, and high concentrations of 20-40% can cause excessive cellular dehydration, cell 

necrosis and membrane damage [56, 57, 63]. Human ASC viability and plasticity appears to be 

maintained with 10% PVP as the CP [56, 57]. Carboxylated ε-poly-L-lysine polyampholytes are 

effective CPs in MSC freezing medium without exogenous protein, but it has had little use in 

companion animals [65]. Hydroxyethyl starch (HES) is a synthetic polymer CP that absorbs water 

molecules (0.5g water per 1g HES) and maintains them in a glassy state, solid without 

crystallization, during the cooling process [66, 67]. The polymer, widely used as a plasma volume 

substitute, is metabolized by glycolytic enzymes in vivo, so it does not have to be removed from 

thawed cells [66, 67]. A “6&5 solution” composed of physiologic saline, 6% HES, 5% DMSO and 

4% human serum albumin appears to maintain better cell viability, recovery rates and plasticity of 

human peripheral blood progenitors, cord blood stem cells, peripheral blood cells and BMSCs 

compared to 10% DMSO in Roswell Park Memorial Institute (RPMI) 1640 medium [66, 67]. 

Similar findings are reported for canine CD34+ BMSCs cryopreserved in the same “6&5” solution 

[68-72]. Novel cryopreservation solutions that support cell stasis without impacting inherent 
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characteristics will continue to promote availability and standardization of cell therapies across 

species. 

1.1.5. Cryopreservation of Mesenchymal Stem Cells from different species (Fig. 2, 3, & 4) 

 

Figure 2.  Schematic diagram of domestic animals (cat, dog and horse) adult multipotent stromal 
cell (MSC) processing for clinical applications. A. Photomicrographs of MSCs culture in stromal 
medium, 5×; B. Fluorescent photomicrographs of MSCs with cytoskeleton (actin, green) and 
nuclear (DNA, blue) staining. 
 

Some of the earliest descriptions of cryopreservation were for spermatozoa, ova, and 

embryos in the field of theriogenology [73, 74]. Cell cryopreservation has vastly expanded with 

the rapidly evolving field of cell-based regenerative medicine [75]. It is increasingly apparent that 

cryopreservation should be customized for species and cell type, especially with established 

differences among immunophenotypes in primary cell isolates [18-21, 26]. Despite numerous 

variables, conflicting outcomes and inconsistent cryopreservation effects across and within species, 

consistent findings have emerged and are summarized below. 

Comparisons among fresh and cryopreserved cells provide important information about 

storage and behavior to guide therapeutic and research applications and assessments, respectively. 
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Much of the existing literature documents similar, though not identical changes in cell plasticity 

and expansion potential across species. Canine ASCs from subcutaneous and intra-articular 

adipose tissues have lower sex determining region Y-box2 (SOX2) protein expression and distinct 

ultrastructure and immunophenotype compared to fresh ASCs following 30 days of 

cryopreservation in 80% FBS, 10% DMSO and 10% DMEM [18]. Two reports indicate that while 

canine ASCs and BMSCs maintain their fibroblast-like morphology, alkaline phosphatase (ALP) 

activity and plasticity following cryopreservation, there are significant differences from fresh cells 

[26, 82]. Specifically, after 12 months of cryopreservation in freezing medium composed of 90% 

FBS and 10% DMSO, canine MSCs have lower proliferation and telomerase activity than fresh 

cells [26], and, separately, canine BMSCS have lower viability and proliferative capacity 

following seven days of cryopreservation in freezing medium with 10% DMSO and 10% FBS [82]. 

In contrast to these studies, another found lower ALP activity and plastic adhesion in canine 

BSMCs cryopreserved for one month [68, 83].  Equine peripheral blood MSCs cryopreserved in 

90% FBS and 10% DMSO have faster proliferation but lower telomerase activity and myogenic 

plasticity compared to unfrozen cells [25]. The in vitro osteogenic differentiation of fresh and 

cryopreserved rat, lapin and porcine ASCs are reportedly similar on direct comparison [84].  

Human ASCs have lower proliferation and adipocytic and osteoblastic plasticity following 

cryopreservation in 90% FBS and 10% DMSO, and cryopreserved cells less effectively enhance 

calvarial healing in an athymic mouse model compared to fresh [23, 24]. These findings support 

the need to definitively characterize cell isolates before and after cryopreservation and to establish 

and maintain cryopreservation procedures for consistent cell characteristics.   

Another common finding among species is more rapid loss of progenitor cell expansion 

and multipotentiality with passage following cryopreservation. Canine BMSCs cryopreserved in 



 
 

10 
 

80% FBS, 10% DMSO and 10% DMEM for one month had lower fibroblastic and osteoblastic 

colony forming unit frequencies than fresh cells with increasing passage [77]. Feline ASCs 

cryopreserved in identical freezing medium for one month had lower CD9 and CD105 expression 

compared to fresh cells, and the proliferation rate and osteoblastic capability decreased to a greater 

extent with increasing passage in cryopreserved versus fresh cells [6, 22, 85]. The cell proliferation 

rate of equine ASCs frozen in 20% FBS, 70% DMEM-high glucose and 10% DMSO significantly 

declined at P12 while fresh cells did not show a similar decline until P15 [86]. The potential aging 

effects of cryopreservation on MSCs that contribute to more rapid waning of cell expansion and 

plasticity compared to fresh cells is an important area of continued discovery to anticipate both in 

vitro and in vivo cell potential. 

Harvest 
Tissue 

Pass
age 

Cell Aliquot 
(cells/ml) 

Freezing Medium 
Freezing 

Rate 
Cooling Process 

Thawing 
Process 

Effects Ref 

Adipose 

0 ~ 2 × 106 
DMEM, 10% FBS, 

10% DMSO 
-1oC/min 

Cryovials were in 
an insulated 

container for 24 
hours at -80oC and 

then moved to 
liquid nitrogen 

 

N/A N/A [76] 

0 1 × 106 
Serum-free 

medium, 80% FBS, 
10% DMSO 

-1oC/min 

Cryovials were in 
an insulated 

container at -80oC 
overnight and then 

moved to liquid 
nitrogen 

Cryovials 
removed 

from 
liquid 

nitrogen 
and 

immersed 
in a 37oC 
water bath 

for 2-3 
min 

None [77-79] 

0 N/A 
Low glucose 

DMEM, 30% FBS, 
5% DMSO 

N/A N/A N/A N/A 
[80, 
81] 

1 3 × 106      [26] 
        [82] 

 

 

 

 
Figure 3. Adult Canine MSC Freezing Medium Components, Cryopreservation Conditions and
Behaviors 
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1.1.6. Cell Passage Number and Cryopreservation Duration 

The amount of cell expansion prior to and duration of cryopreservation is an established factor in 

post-cryopreservation cell characteristics [30, 87, 88]. There is a direct relationship between equine 

umbilical cord blood MSC viability and pre-cryopreservation passage number following 

cryopreservation in 20% DMEM, 70% FBS and 10% DMSO for 8 weeks. Specifically, cell 

viability decreases from about 80.4% for P1 to 51.2% for P10 [87, 88]. Similarly, a comprehensive 

study of human ASCs to assess cooling rate, end temperature, hold time and thawing rate on cell 

membrane integrity showed that a significant effect of thawing rate was limited to P3 and P4 cells 

while the interaction between cooling rate and end temperature was significant for cell passages 

P0-P4 [30].  The impact of cryopreservation duration may be most detectable following short term 

storage. Human BMSCs reportedly maintain tri-lineage differentiation capacity after 7 years of 

cryopreservation [38]. However, total cell recovery is reportedly significantly lower after 5 (80%) 

versus 1 (90%) months of cryopreservation in 10% fetal calf serum, 10% DMSO and 30% bovine 

serum albumin [89].  These findings convey the importance of consistent cell expansion and 

consideration of the length of cryopreservation when preparing MSCs for potential clinical 

application. 

1.1.7. Cell Transportation 

Cell delivery from current Good Manufacturing Processes (cGMP) facilities to patient 

administration sites requires maintenance of frozen cells for variable time periods despite external 

temperature fluctuations [17, 35, 90].  Vitrified cells are transported at cryogenic temperatures in 

dry shippers with liquid nitrogen in absorbent materials to avoid sample contact with liquid [56, 

57].  Slow cooled samples can be shipped frozen in approved, polystyrene containers without the 

need for dry shippers [35, 90].  Cryovials are often wrapped with precooled, absorbent material 
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and placed in a leak-proof, biohazard grade container to prevent direct contact of samples with dry 

ice placed on top of the container within the polystyrene shipping box. Sample transportation 

responsibilities extend beyond sample preparation and packaging, however. A detailed inventory 

should be included with the shipment, all samples permanently labeled, signage applied to shipping 

containers and all necessary shipping manifests filed. Shipping should be tracked and clear 

guidelines provided to the recipient surrounding sample handling and administration [56, 57]. 

Contemporary travel mechanisms makes it possible to transport cryopreserved samples globally. 

It is imperative, however, that national and international laws and regulations are observed.  

Harvest 
Tissue 

Passage 
Cell 

Aliquot 
(cells/ml) 

Freezing Medium 
Freezing 

Rate 
  Effects Ref 

Adipose N/A ~ 5 × 105 
20% FBS, 10% 
DMSO, DMEM -1oC/min   

Decreased 
proliferati

on rate  
[86] 

Bone 
Marrow 

N/A 

~1 × 106 
10% FBS, 10% 
DMSO, DMEM 

-1oC/min   N/A [27] 

~ 10 × 106 

20% serum, 10% 
DMSO, α-MEM 

or 95% serum, 5% 
DMSO 

-1oC/min   
Lower 
MSC 

numbers 
[61] 

Peripheral 
Blood 

2-3 2 × 106 
90% FBS, 10% 

DMSO 
-1oC/min   

Lower 
proliferati

on rate   
[25] 

Umbilical 
cord 
blood 

N/A  1 × 106  
10% DMSO, 70% 

FBS, DMEM  
N/A    [87, 88] 

 

 

 

  

 

 

 

Figure 4. Adult Equine MSC Freezing Medium Components, Cryopreservation Conditions and 
Behaviors 
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1.1.8. Regulation of Cryopreserved Regenerative Cells for Veterinary Use 

Regulation of veterinary medicine in the United States has a complicated history with some 

products regulated by the United States Department of Agriculture (USDA) and others by the Food 

and Drug Administration Center for Veterinary Medicine (CVM). The Federal Food, Drug, and 

Cosmetic (FDC) Act of 1938 established federal government’s responsibility to regulate animal 

health products. Since then, a number of additional laws surrounding veterinary medicine product 

approval and use have gone into effect. In the mid-1990’s, Congress passed two major Animal 

Health Acts. The Animal Medicinal Drug Use Clarification Act of 1994 allowed veterinarians to 

prescribe human drugs and extra-label use of veterinary drugs for animals under specific 

circumstances. The Animal Drug Availability Act of 1996 added moderation to the animal drug 

approval process, including flexible labelling and more direct communication between drug 

sponsors and the FDA. During the infancy of adult stem cell therapy discovery and development 

in 2002, the FDA announced a current good manufacturing practice (cGMP) initiative to enhance 

and update regulation of manufacturing processes and end-product quality of animal and human 

drugs and biological medicines. The goals of the initiative were to drive focus on the greatest to 

public health risks of manufacturing procedures and ensure that process and product quality 

standards did not impede innovation. In 2004, passage of the Minor Use and Minor Species Animal 

Health Act encouraged development of treatments for species that may otherwise attract little 

interest. Collectively, these laws provided veterinarians reasonable discretion and freedom to use 

emergent drugs and medical devices within their practices. There was no specific guidance 

surrounding development and use of regenerative cell therapies for industry or practicing 

veterinarians prior to 2015. 
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The Guidance for Industry Publication #218 – Cell-Based Products for Animal Use was 

published by the CVM in June of 2015, to clarify Agency regulation of cell therapies. Non-primary 

cells that are culture expanded and intended to treat patients other than the donor are considered 

to be “drugs” and must go through FDA drug licensing and approval processes [91]. Autologous 

cryopreserved cells to treat injury or disease in the donor are classified as either type I or type II 

cell based products (Table 1). Both are regulated as drugs and must undergo all indicated safety 

and efficacy testing and receive CVM authorization for use similar to allogeneic cell therapies. For 

type II classification, autologous cells must be: 1) minimally manipulated, 2) for homologous use 

and 3) for non-food-producing animals. They cannot be combined with anything other than water, 

crystalloids or a sterilizing, preserving or storage agent that do not raise additional safety concerns. 

Additionally, cells may not be combined with or modified by adding them with a drug or a device. 

Prior to the advent of stem cell based products, the term “type II autologous cells” was generally 

understood to mean whole or fractionated peripheral[2, 92], umbilical cord [93-96] or marrow-

derived blood cells [97] intended for transplantation, cells within cryopreserved mesenchymal 

tissues like fat, bone, ligament and tendon, cartilage grafts [1, 3, 15, 16, 98], or β cell pancreatic 

islets for diabetes therapy [99].  

Improved methods of cell preservation with ingredients beyond serum and DMSO 

complicate cell classification since commercial cryopreservation solution components may be 

considered drugs in some circumstances. Use of cryopreserved cells in combination with popular 

blood derivatives like platelet rich plasma occupies a nebulous area in the classification scheme 

that requires further clarification. The speed of discovery in the stem cell arena exceeds 

development of regulations governing their use. Similarly, definitions of “homologous use” and 

“minimally manipulated” do not entirely capture current knowledge of stem cell functionality. 
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Academic and industrial scientists continue to work with the regulatory authorities to achieve and 

maintain contemporary language that is consistent with intended and practical use. 

In summary, CMV consultation should be sought prior to manufacture and use of 

cryopreserved cells as a commercial treatment, especially since cells transported across state lines 

are automatically within federal regulatory jurisdiction. Additionally, state requirements for 

reporting and licensing GTP Cell Bank facility must be abided by. Use of cell processing and 

banking services provided by veterinary regenerative medicine companies appears to be acceptable 

as the long the provider has implemented appropriate quality and safety standards.   

Table 1.  Autologous Cell-based Therapy Classification 
 

Autologous Type I Cell Therapy Criteria 

(One must be true) 

Autologous Type II Cell Therapy Criteria 

(All must be true) 

 
More than minimally manipulated  
(Example: Cells cultured in vitro for an 
extended period of time) 

Minimally manipulated 
 (Example: Cells are only centrifuged) 

 

For non-homologous use 

 

For homologous use 

For use in a food-producing animal For use in nonfood-producing animals 
 
Effects are dependent on metabolic activity of 
living cells 

No statement regarding metabolic activity 

Manufacture of the ASCP involves 
combination of the cells with another article  
(Except water, crystalloids, or a sterilizing, 
preserving, or storage agent that does not 
raise new product safety concerns) 

 

Manufacture does not involve combination of 
cells with another article 
(Except water, crystalloids, or a sterilizing, 
preserving, or storage agent, provided that the 
addition of water, crystalloids, or the 
sterilizing, preserving, or storage agent that 
does not raise new product safety concerns) 
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1.1.9. Conclusion 

Cryopreservation of adult MSCs is central to their development, availability and use. The practice 

is relatively new in veterinary medical disciplines compared to human counterparts, and its 

importance and use will only continue to grow in concert with regenerative medicine [41, 42, 63].  

It is readily clear that fresh and frozen MSCs are not identical. However, mechanisms, extent and 

full implication of distinctions between them is uncharted and complicated by numerous variables 

before, during and after cryopreservation. Efforts to discover and standardize cryopreservation 

protocols based on species, tissue and, potentially, cryostasis duration will continue to advance 

therapeutic efficacy and safety of cryopreserved cells. 

Table 2. Differentiation media components and β cell induction of MSCs from different tissue 
sources[123] 
 

Species Cell Type Differentiation Factors References

Mouse BMSC 

Activin-A, conophyline, nicotinamide, 

L-glutamine, betacellulin-delta4; 

fibronectin (FN), laminin (LAM), 

hepatocyte growth factor (HGF), 

extendin-4, 

[100] 

Human ASC 

Glucose, nicotinamide, activin-A, 

exendin-4, HGF, pentagastrin, 

betacellulin 

[103] 

Human 
Umbilical cord blood derived 

MSCs 

Glucose, retinoic acid, nicotinamide, 

exendin-4, epidermal growth factor, 

B27 

[102] 
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