
Louisiana State University Louisiana State University 

LSU Scholarly Repository LSU Scholarly Repository 

LSU Doctoral Dissertations Graduate School 

1-11-2018 

The Graphs and Matroids Whose Only Odd Circuits Are Small The Graphs and Matroids Whose Only Odd Circuits Are Small 

Kristen Nicole Wetzler 
Louisiana State University and Agricultural and Mechanical College 

Follow this and additional works at: https://repository.lsu.edu/gradschool_dissertations 

 Part of the Discrete Mathematics and Combinatorics Commons 

Recommended Citation Recommended Citation 
Wetzler, Kristen Nicole, "The Graphs and Matroids Whose Only Odd Circuits Are Small" (2018). LSU 
Doctoral Dissertations. 4185. 
https://repository.lsu.edu/gradschool_dissertations/4185 

This Dissertation is brought to you for free and open access by the Graduate School at LSU Scholarly Repository. It 
has been accepted for inclusion in LSU Doctoral Dissertations by an authorized graduate school editor of LSU 
Scholarly Repository. For more information, please contactgradetd@lsu.edu. 

https://repository.lsu.edu/
https://repository.lsu.edu/gradschool_dissertations
https://repository.lsu.edu/gradschool
https://repository.lsu.edu/gradschool_dissertations?utm_source=repository.lsu.edu%2Fgradschool_dissertations%2F4185&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/178?utm_source=repository.lsu.edu%2Fgradschool_dissertations%2F4185&utm_medium=PDF&utm_campaign=PDFCoverPages
https://repository.lsu.edu/gradschool_dissertations/4185?utm_source=repository.lsu.edu%2Fgradschool_dissertations%2F4185&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:gradetd@lsu.edu


THE GRAPHS AND MATROIDS WHOSE ONLY ODD CIRCUITS ARE SMALL

A Dissertation

Submitted to the Graduate Faculty of the
Louisiana State University and

Agricultural and Mechanical College
in partial fulfillment of the

requirements for the degree of
Doctor of Philosophy

in

The Department of Mathematics

by
Kristen Wetzler

B.S. in Mathematics and German, University of Arkansas, 2009
M.S. in Mathematics, Louisiana State University, 2013

May 2018



Acknowledgments

Firstly, I would like to thank my advisor James Oxley, without whose patience and perse-

verance this dissertation would not have been completed. I would like to thank my family:

my mother for her unending encouragement, my father for his steadfast belief in me, and

my brother for his unquestionable support. I would like to thank my friends for being a

sounding-board and a source of comfort. I would like to thank the mathematics department

at LSU for their investment in my education. Thank you for the knowledge and wisdom

over the years. Thank you also to the Student Health Center and Small Animal Hospital

at LSU.

ii



Table of Contents

Acknowledgments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ii

List of Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iv

Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vi

Chapter 1 Binary Matroids with No Odd Circuits Exceeding Size Three . . . . . . 1

Chapter 2 Graphs with No Odd Cycles Exceeding Size Five . . . . . . . . . . . . 6

Chapter 3 4-connected Graphs with No Odd Cycles Exceeding Size Seven . . . . . 16

Chapter 4 n-connected Graphs with No Odd Cycles Exceeding Size 2n− 1 . . . . 33

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

Vita . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

iii



List of Figures

1.1 K ′2,n . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

2.1 K ′3,n, K ′′3,n, and K ′′′3,n . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.2 5-cycle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.3 5-cycle path configurations . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.4 Path length possibilities for G . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.5 One of the dashed paths must exist . . . . . . . . . . . . . . . . . . . . . . 10

2.6 Paths p and p′ do not intersect . . . . . . . . . . . . . . . . . . . . . . . . 10

2.7 Paths p and p′ intersect . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.8 G4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.9 One of the dashed lines must exist . . . . . . . . . . . . . . . . . . . . . . . 12

2.10 Forced 7-cycle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.11 Forced configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.12 Forced 7-cycle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.13 K ′3,n . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

3.1 K ′4,n . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

3.2 7-cycle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

3.3 Possible path configurations . . . . . . . . . . . . . . . . . . . . . . . . . . 18

3.4 Path lengths of G2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

3.5 Path lengths of G3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

3.6 Path lengths of G4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

3.7 Possible paths from x in G2,2 . . . . . . . . . . . . . . . . . . . . . . . . . . 23

3.8 Possible paths from x in G2,3 . . . . . . . . . . . . . . . . . . . . . . . . . . 24

iv



3.9 Possible paths from x in G3,1 . . . . . . . . . . . . . . . . . . . . . . . . . . 25

3.10 Possible paths from x in G3,3 . . . . . . . . . . . . . . . . . . . . . . . . . . 26

3.11 Possible paths from x in G4,2 . . . . . . . . . . . . . . . . . . . . . . . . . . 27

3.12 Possible paths from x in G4,3 . . . . . . . . . . . . . . . . . . . . . . . . . . 28

3.13 Possible paths from x in G4,4 . . . . . . . . . . . . . . . . . . . . . . . . . . 29

3.14 Only single-edge paths . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

3.15 A subgraph of G . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

3.16 K ′4,n . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

4.1 Graph with large fan-like subgraph . . . . . . . . . . . . . . . . . . . . . . 36

4.2 Subgraph of G . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

4.3 Subgraph of G . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

4.4 Subgraph of G . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

4.5 Subgraph of G when n = 5 . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

4.6 Subgraph of G when n = 5 . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

4.7 Configuration when the pairs of distinguished vertices are distance two on C 47

4.8 Subgraph when distinguished consecutive pair have distance two on C . . . 48

4.9 Subgraph when the sets of paths are distance two . . . . . . . . . . . . . . 50

4.10 Subgraph when the distinguished consecutive pairs are distance two on C . 51

4.11 Subgraph when the sets of paths are distance two . . . . . . . . . . . . . . 52

4.12 Subgraph configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

4.13 Subgraph configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

4.14 Subgraph configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

4.15 Subgraph configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

v



Abstract

This thesis is motivated by a graph-theoretical result of Maffray, which states that a 2-

connected graph with no odd cycles exceeding length 3 is bipartite, is isomorphic to K4,

or is a collection of triangles glued together along a common edge. We first prove that a

connected simple binary matroid M has no odd circuits other than triangles if and only

if M is affine, M is M(K4) or F7, or M is the cycle matroid of a graph consisting of a

collection of triangles glued together along a common edge. This result implies that a 2-

connected loopless graph G has no odd bonds of size at least five if and only if G is Eulerian

or G is a subdivision of either K4 or the graph that is obtained from a cycle of parallel

pairs by deleting a single edge. The main theorem of the dissertation extends Maffray’s

theorem to n-connected graphs with no odd cycles exceeding size 2n−1. To prove this, we

first prove the special cases when n = 3 and n = 4. The proof of the theorem is competed

with an argument that treats all n ≥ 5.
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Chapter 1 Binary Matroids with No Odd Circuits Exceeding
Size Three

It is a well known result from graph theory that a graph is bipartite if and only if it has

no odd cycles. For each n ≥ 1, let K ′2,n be the graph that is obtained from K2,n by adding

an edge joining the vertices in the two-vertex class (see Figure 1.1). In 1992, Maffray [7,

Theorem 2] proved the following result.

Figure 1.1: K ′2,n

Theorem 1.0.1. A 2-connected simple graph G has no odd cycles of length exceeding three

if and only if

(i) G is bipartite;

(ii) G ∼= K4; or

(iii) G ∼= K ′2,n for some n ≥ 1.

There is a long history of generalizing results for graphs to binary matroids (see, for

example, [4, 12] or, more recently, [9, Section 15.4]). We shall continue this tradition by

proving a generalization of Maffray’s result. A circuit in a matroid is even if it has even

cardinality; otherwise, it is odd. A triangle is a 3-element circuit. A binary matroid is affine

if all of its circuits are even. Hence the cycle matroid, M(G), of a graph G is affine if and

only if G is bipartite. The following is the main theorem of this chapter [10].

Theorem 1.0.2. A connected simple binary matroid M has no odd circuits other than

triangles if and only if
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(i) M is affine;

(ii) M ∼= M(K4) or F7; or

(iii) M ∼= M(K ′2,n) for some n ≥ 1.

The terminology used here will follow Oxley [9]. Binary affine matroids have several

attractive characterizations. Indeed, Welsh [13] proved that the link between bipartite and

Eulerian graphs via duality extends to binary matroids. His result is the equivalence of the

first two parts of the next theorem (see, for example, [9, Theorem 9.4.1]). The equivalence

of the first and third parts was proved independently by Brylawski [2] and Heron [5].

Theorem 1.0.3. The following are equivalent for a binary matroid M .

(i) M is affine;

(ii) M is loopless and its simplification is isomorphic to a restriction of AG(r− 1, 2) for

some r ≥ 1;

(iii) E(M) can be partitioned into cocircuits.

Recall that a bond of a graph is a minimal edge cut. The next result follows immediately

by applying our Theorem 1.0.2 to the bond matroid of a graph, that is, to the dual of its

cycle matroid.

Corollary 1.0.4. A 2-connected loopless graph G has no odd bonds of size exceeding three

if and only if

(i) G is Eulerian; or

(ii) G is a subdivision of either K4 or the graph that is obtained from an n-edge cycle for

some n ≥ 2 by adding an edge in parallel to all but one of the edges.

Another straightforward consequence of Theorems 1.0.2 and 1.0.3 is the following.
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Corollary 1.0.5. Let M be a connected cosimple binary matroid of rank at least four.

Then M has no odd circuits of size exceeding three if and only if M is affine.

We shall implement the use of the following two lemmas in the proof of Theorem 1.0.2.

Lemma 1.0.6. A simple binary matroid having an even circuit meeting a triangle T in a

single element has an odd circuit of size exceeding three.

Proof. From among even circuits that meet T in a single element, choose C to have mini-

mum cardinality. As M is binary, C∆T is the disjoint union of k circuits for some k ≥ 1.

As |C∆T | = |C| + 1, if k = 1, then the lemma holds. Thus we may assume that k ≥ 2.

Since each circuit contained in C∆T must contain an element of T − C, we deduce that

k ≤ 2, so k = 2. Thus, as C∆T has odd cardinality, it is the disjoint union of an odd

circuit and an even circuit, C0, each of which meets T in a single element. As |C0| < |C|,

the choice of C is contradicted.

Our second lemma is more general than we need to prove the theorem. For an integer

n exceeding one, let M1,M2, . . . ,Mn be matroids such that E(Mi) ∩ E(Mj) = {p} for

all distinct i and j in {1, 2, . . . , n}, and {p} is not a component of any Mk. The parallel

connection P (M1,M2, . . . ,Mn) is the matroid with ground set E(M1)∪E(M2)∪· · ·∪E(Mn)

whose set of circuits consists of the union of the sets of circuits of M1,M2, . . . ,Mn along

with, for all distinct elements i and j of {1, 2, . . . , n}, all sets of the form (Ci−p)∪ (Cj−p)

where Ci is a circuit of Mi containing p, and Cj is a circuit of Mj containing p (see, for

example, [9, Proposition 7.1.18]). Thus if Mk
∼= U2,3 for all k, then P (M1,M2, . . . ,Mn) ∼=

M(K ′2,n). The element p is called the basepoint of the parallel connection.

Lemma 1.0.7. Let M be a simple connected matroid. Then M has an element p such

that the only circuits of M that contain p are triangles if and only if M is isomorphic to

U1,1 or to U2,k for some k ≥ 3, or M is the parallel connection with basepoint p of some

collection of simple rank-2 matroids each of which contains at least three points.

3



Proof. It is straightforward to check that, for each of the matroids listed, the only cir-

cuits containing p are triangles. Now assume that the only circuits of M containing p

are triangles. We may assume that r(M) ≥ 3 otherwise the result certainly holds. As M

is connected, each of its elements is in some circuit with p. By hypothesis, this circuit

must be a triangle. Thus, in M/p, every element is in a non-trivial parallel class. If every

component of M/p has rank one, then it follows by a result of Brylawski [1] (see also [9,

Theorem 7.1.16]) that M is a parallel connection as asserted. Therefore we may assume

that M/p has a component of rank exceeding one. Thus M/p has a circuit D of size ex-

ceeding two and, as D ∪ p is not a circuit of M , we deduce that D is a circuit of M .

Similarly, (D−d)∪d′ is a circuit of M where d is some element of D, and d′ is parallel to d

in M/p. Thus clM(D− d) contains {d, d′} and so contains p. Then rM/p(D− d) < |D− d|;

a contradiction.

We are now ready to prove Theorem 1.0.2.

Proof of Theorem 1.0.2. It is easily checked that M(K4), F7, and each M(K ′2,n) are binary

having no odd circuits of size greater than three. For the converse, assume that M has no

odd circuits of size greater than three. Suppose M is not affine. If r(M) = 3, then clearly

M is isomorphic to M(K ′2,2), M(K4), or F7. Thus we may assume that r(M) ≥ 4. First

we show the following.

1.0.3.1. If T0 is a triangle of M and C is a circuit that meets but is not equal to T0, then

|C| ≤ 4 and M |(T0 ∪ C) ∼= M(K ′2,2).

This is certainly true if C is a triangle, so we assume that |C| ≥ 4. By Lemma 1.0.6,

|C∩T0| = 2. Then C∆T0 is a circuit of M of cardinality |C|−1. Thus |C| = 4 and C∆T0 is

a triangle T1 meeting T0 in a single element. Hence M |(T0 ∪C) = M |(T0 ∪T1) ∼= M(K ′2,2),

and (1.0.3.1) holds.

As M is not affine, it contains a triangle T . As M is connected, it follows by (1.0.3.1)

that M has a triangle T ′ that meets T in a single element, say f .

4



1.0.3.2. For each g not in cl(T ∪ T ′), there is a triangle that contains {g, f}.

As M is connected, it has a circuit D that contains g and meets T ∪ T ′. Without loss

of generality, we may assume that D meets T . By (1.0.3.1), M |(D ∪ T ) ∼= M(K ′2,2). Thus

M has a triangle T ′′ that contains g and meets T in a single element, h. We may assume

that h 6= f otherwise (1.0.3.2) holds. Then T ′′ meets the 4-element circuit (T ∪ T ′)− f in

a single element; a contradiction to Lemma 1.0.6. We deduce that (1.0.3.2) holds.

We may assume that M has a circuit C ′ that contains f and is not a triangle otherwise

the result follows by Lemma 1.0.7. By Lemma 1.0.6, C ′ meets each triangle containing f

in two elements. Moreover, by (1.0.3.1), |C ′| = 4. Hence M has at most three triangles

containing f . But, as r(M) ≥ 4, it follows that r(M) = 4, and M has exactly two elements

not in cl(T ∪ T ′), these elements being contained in a common triangle with f .

If T∪T ′ is a flat of M , then M ∼= M(K ′2,3). Thus we may assume that cl(T∪T ′)−(T∪T ′)

contains an element h. Then M |(T ∪T ′∪h) ∼= M(K4), so T ∪T ′∪h contains a 4-circuit D′

containing {f, h}. By (1.0.3.2), M has a triangle that meets D′ in {f}. This contradiction

to Lemma 1.0.6 completes the proof of the theorem.
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Chapter 2 Graphs with No Odd Cycles Exceeding Size Five

From here, we explored possible extensions of Theorem 1.0.1 and Theorem 1.0.2. Initially

we proved a purely graph-theoretical extension of Theorem 1.0.1. Subsequently, we ex-

tended this proof to binary matroids. This extension does not appear in this dissertation.

Theorem 2.0.1. A 3-connected simple graph G has no odd cycles of length exceeding five

if and only if

(i) G is bipartite;

(ii) G is a graph on six or fewer vertices; or

(iii) G ∼= K ′3,n, K ′′3,n, or K ′′′3,n for some n ≥ 4 where K ′3,n, K ′′3,n, and K ′′′3,n are shown below

in Figure 2.1.

Note that K ′3,n, K ′′3,n, or K ′′′3,n can be viewed as n copies of K4 identified at a common

triangle with 1, 2 or 3 edges left in respectively.

For the proof of Theorem 2.0.1, we will need the following theorem of Menger [6].

Theorem 2.0.2. Let G = (V,E) be a graph and A,B ⊆ V . Then the minimum number

of vertices separating A from B in G is equal to the maximum of disjoint A− B paths in

G.

Proof of Theorem 2.0.1. It is easily checked that the graphs mentioned in (i), (ii), and (iii)

have no odd cycles of length exceeding five. Now assume G is a 3-connected graph with a

5-cycle and |V (G)| > 6. Select a 5-cycle, C, with vertex set V (C) = {v1, v2, v3, v4, v5}. For

all i in 1, 2, 3, 4, 5, let ei be the edge {vi, vi+1} where v6 = v1 as in Figure 2.2

Since |V (G)| > 6, there is a vertex in V (G) − V (C); call it v0. Since G is 3-connected,

by Theorem 2.0.2, there are three paths from v0 to V (C) where v0 is the only common

6



(a) K ′3,n (b) K ′′3,n

(c) K ′′′3,n

Figure 2.1: K ′3,n, K ′′3,n, and K ′′′3,n

Figure 2.2: 5-cycle

vertex of any two of the three paths. Call the paths p1, p2 and p3. By symmetry, we have

one of the configurations shown in Figure 2.3.

Let us first consider the case shown in Figure 2.3a. We will use G1 to denote such

a graph. All cycles in G1 must have even length or length 3 or 5, since G1 is a sub-

graph of G. Consider the cycles A = {p1, p2, e2, e3, e4, e5}, B = {p1, p3, e3, e4, e5} and

C = {p2, p3, e3, e4, e5, e1} where, for example, A consists of all of the edges of each of p1

and p2 along with the edges e2, e3, e4, and e5. Let |pi| denote the number of edges in the

path pi and let |A| be the number of edges in cycle A. If we sum the lengths of theses three

cycles, we get 2|p1| + 2|p2| + 2|p3| + 11. Thus at least one of these cycles has odd length.

Thus we have a cycle of length five as each |pi| is positive. Since |A| ≥ 6 and |C| ≥ 6,

7



(a) G1 (b) G2

Figure 2.3: 5-cycle path configurations

we see that the |B| = 5 and so |p1| = 1 = |p3|. As |A| > 5, it is even. Thus the cycle

{p1, p2, e1} must be odd of length equal to 3 or 5. Thus |p2| ∈ {1, 3}.

We conclude that if we have a graph of the form G1, we are guaranteed one of the

substructures in Figure 2.4a or Figure 2.4c in the graph G.

Let us consider now the case pictured in Figure 2.3b. Again, p1, p2 and p3 are paths

that share v0, but are otherwise disjoint. We will call this G2. Consider the cycles A =

{p1, p2, e2, e3, e4, e5}, B = {p1, p3, e3, e2, e1}, and C = {p2, p3, e3, e2}. The sum of their

lengths is 2|p1|+ 2|p2|+ 2|p3|+ 9. By a similar argument as before, exactly one of |B| and

|C| has length 5, so either |p1| and |p3| have the same cardinality, or |p2| and |p3| have the

same cardinality.

If |p1| and |p3| have the same cardinality, then by the cycles {p1, p3, e4, e5} and {p1, p3, e3, e2, e1},

we deduce that |p1| = |p3| = 1. Similarly, by considering {p2, p3, e4, e5, e1} and {p1, p2, e2, e3, e4, e5},

we see that |p2| = 1.

Now, if |p2| and |p3| have different cardinalities, by {p2, p3, e3, e2} and {p2, p3, e4, e5, e1}

one of p2 or p3 has length 1 and the other has length 2. If |p2| = 2, then, by cycles {p1, p2, e1}

and {p1, p2, e3, e2, e1}, we deduce that |p1| = 2. If |p3| = 2, then by cycles {p1, p3, e3, e2, e1}

and {p1, p3, e4, e5}, it follows that |p1| = 1.

We conclude that G2 must be one of the graphs among Figure 2.4b, Figure 2.4d and

Figure 2.4e below.

8



(a) G1,1 (b) G2,1 (c) G1,2

(d) G2,2 (e) G2,3

Figure 2.4: Path length possibilities for G

Next we note the following fact.

2.0.2.1. Let u and v be vertices of G such that G contains an even-lengthed path pe and

an odd-lengthed path po joining u and v. If |pe| ≥ 6 and |po| ≥ 5, then G has no path p

that joins u and v and is internally disjoint from both pe and po.

If such a p existed, we could examine the cycles {pe, p} and {po, p} These paths have

opposite parity and have length greater than five, contradicting our choice of G.

Relabel the graph in Figure 2.4c as G3.

2.0.2.2. G does not have G3 as a subgraph.

Assume the contrary. As G is 3-connected, by Theorem 2.0.2, there is at least one path

of G between w and V (C) = V (G3) \ N(w) = (v3, v4, v5, v1, v2), where N(v) is the set of

vertices adjacent to v in G3, as shown below in Figure 2.5.

By (2.0.2.1), since (w, x, v2, v1, v5, v4, v3) is a path of length 6 and (w, v0, v1, v5, v4, v3) is

a path of length 5, there is no w− v3 path that is internally disjoint from these two paths.

By symmetry, there is no w − v1 path that is internally disjoint from V (C) ∪ {w, x, v0}.

9



Figure 2.5: One of the dashed paths must exist

Similarly, using the paths (w, v0, v3, v2, v1, v5, v4) of length 6, and (w,w, x, v2, v1, v5, v4) of

length 5 and (2.0.2.1), there is no w − v4 path that is internally disjoint from V (C) ∪

{w, x, v0}. Again by symmetry, no w − v5 path that is internally disjoint from V (C) ∪

{w, x, v0} can exist. By the 6-path (w, v0, v1, v5, v4, v3, v2), we see that |p| must be even.

By the 3-path (w, v0, v1, v2), we see that p must be of length two. By symmetry between

the cycle C and the cycle with the vertex set {v0, v1, v5, v4, v3}, we deduce that G must

have a x− v0 path p′ of length two that is internally disjoint from V (C) ∪ {x,w, v0}

We now know that G has a w−v2 path p that is internally disjoint from V (C)∪{w, x, v0}.

If the x − v0 path p′ and the w − v2 path p do not intersect, we create a 7-cycle with

vertex set {v1, v2, y, w, x, z, v0} where y is the internal vertex on p and z is the internal

vertex on p′ as shown below in Figure 2.6. If the p and the p′ path intersect, we create

Figure 2.6: Paths p and p′ do not intersect

a 7-cycle with vertex set {v2, y, v0, v3, v4, v5, v1} where y is the common vertex on p and
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P ′ as shown in Figure 2.7. We conclude that G cannot have G3 as a subgraph, that is,

(2.0.2.2) holds.

Figure 2.7: Paths p and p′ intersect

Relabel the graph shown in Figure 2.4d as G4. By Theorem 2.0.2, G must have a path

from x to to V (G4) \ N(x) = {v3, v4, v5, w, v1} that is internally disjoint from V (C) ∪

{v0, x, w} as shown in Figure 2.8.

Figure 2.8: G4

2.0.2.3. G does not have G4 as a subgraph.

Assume the contrary. By (2.0.2.1), using the paths (x, v0, w, v1, v2, v3) of length 5 and

(x, v0, w, v1, v5, v4, v3) of length 6, there is no x − v3 path that is internally disjoint from

V (C)∪{x,w, v0}. By (2.0.2.1), using the paths (x, v0, w, v1, v5, v4) and (x, v0, w, v1, v2, v3, v4)

of length 5 and 6 respectively, there is no x−v4 path that is internally disjoint from V (C)∪

{x,w, v0}. Similarly, using the paths (x, v0, w, v1, v2, v3,

v4, v5) of length 7 and (x, v0, v4, v3, v2, v1, v5) of length 6 and (2.0.2.1), there is no x − v5
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path that is internally disjoint from V (C) ∪ {x,w, v0}. Likewise, by (2.0.2.1), using the

paths (x, v0, v4, v5, v1, w) and (x, v2, v1, v5, v4, v0, w), there is no x − w path that is in-

ternally disjoint from V (C) ∪ {x,w, v0}. Finally, using the paths (x, v0, v4, v3, v2, v1) and

(x, v2, v3, v4, v0, w, v1), there is no x − v1 path that is internally disjoint from V (C) ∪

{x,w, v0}. We conclude that G4 cannot be a subgraph of G, that is, (2.0.2.3) holds.

Relabel the graph in Figure 2.4e as G5.

2.0.2.4. G does not have G5 as a subgraph.

Assume the contrary. By Theorem 2.0.2, there must be a path from x to V (G5)\N(x) =

(v1, v2, v3, v5) that is internally disjoint from V (C) ∪ {x, v0} as shown in Figure 2.9.

Figure 2.9: One of the dashed lines must exist

By (2.0.2.1), the paths (x, v4, v3, v2, v0, v1) and (x, v0, v2, v3, v4, v5, v1) imply there is no

x−v1 path that is internally disjoint from V (C)∪{x, v0}. By symmetry, there is no x−v2

path that is internally disjoint from V (C)∪{x, v0}. Similarly, the paths (x, v0, v1, v5, v4, v3)

and (x, v4, v5, v1, v0, v2, v3) imply there is no x − v3 path that is internally disjoint from

V (C) ∪ {x, v0}. By symmetry, there is no x − v5 path that is internally disjoint from

V (C) ∪ {x, v0}. We conclude that (2.0.2.4) holds.

This eliminates the cases in Figure 2.4 where p1, p2, or p3 has more than one edge. So

vertices in G not on the 5-cycle C are of the types 2.4a and 2.4b.

We start with the following observation.
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Figure 2.10: Forced 7-cycle

2.0.2.5. If a 5-cycle in G has two or more distinct edges that belong to triangles whose

third vertices avoid V (C) and are distinct, then G has a 7-cycle

If we follow the 5-cycle along replacing the edges that are common to the triangles with

the other edges of those triangles, we get a cycle of length 5− 1 + 2− 1 + 2 = 7 as shown

in Figure 2.10.

Since |V (G)| > 6, we have more than one vertex not in V (C). Suppose we have at least

one vertex of type 2.4a not on C. Since each such vertex creates two triangles off of cycle C

and the vertices are distinct, we will always have two edge-disjoint triangles each sharing

a single edge with C. So by 2.0.2.5, we may not have graphs of type 2.4a as a subgraph.

We now know that all vertices not in V (C) are of type 2.4b. Furthermore, the trian-

gles that meet the 5-cycle must share the same edge; otherwise, we would create disjoint

triangles, and thereby a contradiction of 2.0.2.5.

We are left with subgraphs that look like the following (see Figure 2.11).

Figure 2.11: Forced configuration
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All extra vertices added not on the 5-cycle meet at the same three points. We may add

as many as we like.

Now we must check for possible additional edges within this graph without adding a

larger odd cycle. In order to be 3-connected, v3 and v5 in our construction must have

additional edges. By our previous argument, none of these edges can be to any of the

vertices outside of the 5-cycle. This leaves v2 and v3 as possible neighbors for v5 and v1

and v5 as possible neighbors for v3.

If there is an edge {v3, v5}, we get the 7-cycle (v3, v5, v1, v0, v4, v0, v2). The edges {v3, v1}

and {v2, v5} create no 7-cycles, so these are the desired necessary edges to complete 3-

connectivity.

We look at the remaining possible edges. From our previous argument concerning v0, we

know all unknown edges meeting a vertex not in V (C) must join to another vertex not in

V (C). Assume G has such an edge {v0, v′0}. This creates a 7-cycle (v1, v0, v
′
0, v2, v3, v4, v5)

as shown in Figure 2.12.

Figure 2.12: Forced 7-cycle

Now we need only look at possible edges from the vertices on the 5-cycle to other vertices

on the 5-cycle. Remaining edges not in the graph are {v1, v4}, {v2, v4}, and {v3, v5}. We

have already eliminated {v3, v5}. As {v1, v4} and {v2, v4} are symmetric, we only need

check the cases where one or both are present. Neither causes a larger odd cycle.

This completes the construction of G. All vertices meet a 5-cycle at the same three

vertices. This creates one side of our partition. The other two vertices of the 5-cycle

14



connect to the three vertices. The three-vertex side of the bipartition may have one, two,

or three edges between them.

Figure 2.13: K ′3,n
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Chapter 3 4-connected Graphs with No Odd Cycles Exceeding
Size Seven

Here we extend the size of the possible odd cycles. The proof of the result is strikingly

similar to the previous result in Section 1.2. The infinite class of graphs are built from a

bipartite graph with the side of the bipartition that has four vertices having at least one

edge.

Theorem 3.0.1. A 4-connected simple graph G has no odd cycles of length exceeding seven

if and only if

(i) G is bipartite;

(ii) G is a graph on eight or fewer vertices; or

(iii) for some n ≥ 5, the graph G is isomorphic to a graph that is obtained from K4,n by

adding 1, 2, 3, 4, 5, or 6 edges each having both ends in the 4-vertex side of the vertex

bipartition as in Figure ??.

Figure 3.1: K ′4,n

Proof. We start with the following observation.

3.0.1.1. If a 7-cycle in G has two or more distinct edges that belong to triangles whose

third vertices avoid V (C) and are distinct, then G has a 9-cycle.
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Follow the 7-cycle along replacing the edges that are common to the triangles with the

other edges of those triangles to get a cycle of length 7− 1 + 2− 1 + 2 = 9.

It is easily checked that the graphs mentioned in (i), (ii), and (iii) have no odd cycles

of length exceeding exceeding seven. Now assume G is a 4-connected graph with a 7-cycle

and |V (G)| > 8. Select a 7-cycle, C, with vertex set V (C) = {v1, v2, v3, v4, v5, v6, v7}. For

all i in {1, 2, . . . , 5}, let ei be the edge {vi, vi+1} where v8 = v1 (see Figure 3.2).

Figure 3.2: 7-cycle

Since |V (G)| > 8, there is a vertex in V (G) − V (C); call it v0. Since G is 4-connected,

by Theorem 2.0.2, there are four paths from v0 to V (C) whose only common vertex is

v0. By symmetry, we have one of the configurations shown in Figure 3.3 where the wavy

lines meeting v0 correspond to paths. These paths are labeled p1, p2, p3, and p4 reading

clockwise from the path p1 that joins v0 and v1.

Consider the case shown in Figure 3.3a. We will use G1 to denote such a graph. All

cycles in G1 must have even length, or length 3, 5, or 7, as G1 is a subgraph of G. Consider

the cycle D1,2 using p1 and p2 through (v1, v0, v2, v3, v4, v5, v6, v7), that is, D1,2 uses the

path p1 from v1 to v0, the path p2 from v0 to v2, and then the edges {vi, vi+1} for all i

in {2, 3, . . . , 7} where v8 = v1. Similarly, consider the cycles D1,3 using p1 and p3 through

(v1, v0, v3, v4, v5, v6, v7), and D2,3 using p2 and p3 through (v2, v0, v3, v4, v5, v6, v7, v1). Then

D1,2, D1,3, and D2,3 have lengths |p1|+ |p2|+6, |p1|+ |p3|+5, and |p2|+ |p3|+6 respectively.

If we sum the lengths of these cycles, we get 2|p1|+ 2|p2|+ 2|p3|+ 17. Hence at least one

of the cycles is odd. Thus we have a cycle of length seven as each |pi| is positive. Since
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(a) (b) (c)

(d)

Figure 3.3: Possible path configurations

D1,2 and D2,3 have lengths exceeding seven, D1,3 must have length seven. So |p1| = 1 and

|p3| = 1. By symmetry, we see that |p2| = 1 and |p4| = 1. Thus we have the following.

3.0.1.2. In G1, each pi has length 1.

Now we consider the configuration shown in Figure 3.3b, which we will call G2. Then

G2 has the same cycles D1,2, D1,3, and D2,3 that were considered in G1. Hence |p1| = 1 and

|p3| = 1. Now we look at the cycle F2,3 using p2 and p3 through (v2, v0, v3, v4, v5, v6, v7, v1)

of length |p2|+ |p3|+6 = |p2|+7, the cycle F2,4 using p2 and p4 through (v2, v0, v5, v6, v7, v1)

of length |p2|+ |p4|+4, and the cycle F3,4 using p3 and p4 through (v3, v0, v5, v6, v7, v1, v2) of

length |p3|+|p4|+5 = |p4|+6. If we sum the lengths of these cycles, we get 2|p2|+2|p4|+17.

Thus at least one of the cycles is odd. Since F2,3 has length |p2|+ 7, we see that this cycle

is even, so |p2| is odd. If F3,4 is odd, then |p4| = 1. Since the cycle using p2 and p4 through

(v2, v0, v5, v6, v7, v1) is even, the cycle using p2 and p4 through (v2, v0, v5, v4, v3) is odd of

length |p2|+ |p4|+ 3 = |p2|+ 4. So |p2| ∈ {1, 3}. If F2,4 is odd, then |p2|+ |p4|+ 4 = 7, so

|p2|+ |p4| = 3. Since |p2| is odd, |p2| = 1 and |p4| = 2. We deduce the following.
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3.0.1.3. G2 is one of the graphs in Figure 3.4.

(a) G2,1 (b) G2,2

(c) G2,3

Figure 3.4: Path lengths of G2

In the configuration in Figure 3.3c, which we will call G3, we will use the same approach.

Consider the cycle H1,2 using p1 and p2 through (v1, v0, v2, v3, v4, v5, v6, v7), the cycle H1,3

using p1 and p3 through {v1, v0, v4, v5, v6, v7}, and the cycle H2,3 using p2 and p3 through

(v2, v0, v4, v5, v6, v7, v1) of lengths |p1|+ |p2|+6, |p1|+ |p3|+4, and |p2|+ |p3|+5 respectively.

If we sum the lengths of these cycles, we get 2|p1| + 2|p2| + 2|p3| + 15. Thus at least one

cycle is odd; however, not all cycles are odd, since the first cycle has size larger than 7.

Thus, either the second or the third cycle has odd length.

If H1,3 is odd, then |p1|+ |p3|+ 4 = 7. Thus one of p1 and p3 has length 2 and one has

length 1. Suppose |p1| = 1 and |p3| = 2. As H1,2 has length |p2| + 7, the path p2 has odd

length. As the cycle using p3 and p4 through (v4, v0, v5, v6, v7, v1, v2, v3) has length |p4|+ 8,

the path p4 has even length. The cycle using p2 and p4 through {v2, v0, v5, v6, v7, v1} has
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the length |p2|+ |p4|+ 4, which is odd. Thus |p2| = 1 and |p4| = 2. We deduce that when

|p1| = 1 and |p3| = 2, we get |p2| = 1 and |p4| = 2.

Now suppose |p1| = 2 and |p3| = 1. The cycle H1,2 has length |p2|+ 8. Thus p2 has even

length. As the cycle using p3 and p4 through (v4, v0, v5, v6, v7, v1, v2, v3) has length |p4|+ 7,

the path p4 has odd length. Again the cycle using p2 and p4 through (v2, v0, v5, v6, v7, v1)

has length |p2|+ |p4|+ 4, which is odd. Thus |p2| = 2 and |p4| = 1; that is, when |p1| = 2

and |p1| = 1, we get |p2| = 2 and |p4| = 1. This case is symmetric to the one noted earlier

with |p1| = 1 = |p2| and |p3| = 2 = |p4|.

Next suppose H1,3 is even. Then H2,3 is odd. Thus |p2| + |p3| + 5 = 7 so |p2| = 1 and

|p3| = 1. The even cycle H1,3 has length |p1| + 5, so |p1| is odd. By the cycle using p3

and p4 through (v4, v0, v5, v6, v7, v1, v2, v3), which has length |p4| + 7, the path p4 has odd

length. The cycle using p1 and p4 through (v1, v0, v5, v6, v7) has length |p1|+ |p4|+ 3 ≤ 7.

So, we can have both p1 and p4 of length 1, or one of p1 and p4 is length 3 and the other

is length 1. By the symmetry in G3 between p1 and p4, this yields two additional cases.

Summarizing the possibilities for G3, we have the following.

3.0.1.4. G3 is one of the three graphs shown in Figure 3.5.

Next we consider the configuration in Figure 3.3d, which we shall call G4. Consider the

cycle J1,2 using p1 and p2 through (v1, v0, v2, v3, v4, v5, v6, v7) of length |p1| + |p2| + 6, the

cycle J1,3 using p1 and p3 through (v1, v0, v4, v5, v6, v7) of length |p1| + |p3| + 4, and the

cycle J2,3 using p2 and p3 through (v2, v0, v4, v5, v6, v7, v1) of length |p2|+ |p3|+ 5. The sum

of the lengths of the cycles is 2|p1|+ 2|p2|+ 2|p3|+ 15. The length of J1,2 and the fact that

each path is non-empty imply that J1,2 has even length and exactly one of the other two

cycles is odd.

Suppose the length |p2|+ |p3|+5 of J2,3 is odd. Then |p2| = 1 and |p3| = 1. The cycle J1,3

of length |p1|+|p3|+4 is even by assumption, so |p1| is odd. Hence the cycle using p1 and p3

through (v1, v0, v4, v3, v2) of length |p1|+ |p3|+3 = |p1|+4 is odd. Thus |p1| is 1 or 3. From
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(a) G3,1 (b) G3,2

(c) G3,3

Figure 3.5: Path lengths of G3

the cycle using p2 and p4 through (v2, v0, v6, v5, v4, v3) of length |p2|+ |p4|+4 = |p4|+5, we

deduce that |p4| ∈ {1, 2}. The two cycles using p1 and p4 and the rim of the outer 7-cycle

of lengths |p1| + |p4| + 2 and |p1| + |p4| + 5 give us cases with |p1| = 1 and |p4| = 1, with

|p1| = 1 and |p4| = 2, and with |p1| = 3 and |p4| = 2.

Suppose J1,3 is odd. Then |p1| + |p3| + 4 = 7, so one of p1 and p3 has length 1 and one

has length 2. If p1 has length 2 and p3 has length 1, then the size of the cycle using p1

and p4 through (v1, v0, v6, v5, v4, v3, v2) is |p1|+ |p4|+ 5 = |p4|+ 7. Thus |p4| is odd. From

the cycle J1,2 of length |p1| + |p2| + 6 = |p2| + 8, we deduce that |p2| is even. Since |p2| is

even and |p4| is odd, the cycle using p2 and p4 through (v2, v0, v6, v5, v4, v3) has odd length

|p2|+ |p4|+ 4 = 7. So we get |p2| = 2 and |p4| = 1.

If p1 has length 1 and p3 has length 2, then the size of the cycle using p3 and p4 through

(v4, v0, v6, v7, v1, v2, v3) is |p3|+ |p4|+ 5 = |p4|+ 7. Thus the path p4 has odd length. From

the cycle using p1 and p4 through (v1, v0, v6, v5, v4, v3, v2) of length |p1|+ |p4|+ 5 = |p4|+ 6,
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we deduce that |p4| = 1. The cycle J1,2 has length |p1| + |p2| + 6 = |p2| + 7. Thus the

path p2 has odd length. From the cycle using p2 and p3 through (v2, v0, v4, v3) of length

|p2|+|p3|+2 = |p2|+4 ≤ 7, we see that p2 ∈ {1, 3}. Thus (|p1|, |p2|, |p3|, |p4|) is (1, 1, 2, 1) or

(1, 3, 2, 1). These cases are symmetric to those with (|p1|, |p2|, |p3|, |p4|) equal to (1, 1, 1, 2) or

(3, 1, 1, 2), which were identified earlier. We conclude this case by noting that the following

holds.

3.0.1.5. G4 is one of the four graphs shown in Figure 3.6.

(a) (b)

(c) (d)

Figure 3.6: Path lengths of G4

Summarizing our analysis above, we see that we showed that there is a single possibility

for G1, the one in which all of p1, p2, p3, and p4 have length one. There are three possibilities

for each of G2 and G3, these being shown in Figures 3.4 and 3.5. Finally, there are four

possibilities for G4, these being shown in Figure 3.6. We will continue our argument by
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looking first at the graphs above in which some pi has more than one edge. The following

observation plays a key role for much of the rest of the argument.

3.0.1.6. Let u and v be vertices of G such that G contains an even-length path pe and an

odd-length path po joining u and v. If |pe| ≥ 8 and |po| ≥ 7, then G has no path p that

joins u and v and is internally disjoint from both pe and po.

If such a p existed, we could examine the cycles {pe, p} and {po, p}, which have opposite

parity and have size greater than seven. This contradicts our choice of G.

Recall the graph in Figure 3.4b is G2,2.

3.0.1.7. G does not have G2,2 as a subgraph.

Assume the contrary. By Theorem 2.0.2, there must be two paths from x to V (G2,2) \

N(x) = {v0, v1, v3, v4, v5, v6, v7} that have only x in common and that are internally disjoint

from V (C) ∪ {v2, x, w} (see Figure 3.7).

Figure 3.7: Possible paths from x in G2,2

By (3.0.1.6), using the paths (x, v2, v1, v7, v6, v5, v4, v3) of length 7 and (x,w, v0,

v1, v7, v6, v5, v4, v3) of length 8, there is no x−v3 path that is internally disjoint from V (C)∪

{v0, x, w}. By (3.0.1.6), using the paths (x,w, v0, v1, v7, v6, v5, v4) and (x, v2, v1, v7, v6, v5, v0, v3, v4)

of lengths 7 and 8 respectively, there is no x − v4 path that is internally disjoint V (C) ∪

{v0, x, w}. Again, by (3.0.1.6), using the paths (x,w, v0, v3, v2, v1, v7, v6, v5) and (x, v2, v3, v0, v1, v7, v6, v5)

of lengths 8 and 7 respectively, there are no x − v5 paths that are internally disjoint

from V (C) ∪ {v0, x, w}. Similarly, we will find no x − v6 paths that are internally dis-

joint from V (C)∪ {v0, x, w}, by (3.0.1.6) using the paths (x, v2, v3, v4, v5, v0, v1, v7, v6) and
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(x,w, v0, v3, v2, v1, v7, v6). By the paths (x, v2, v3, v4, v5, v0, v1, v7) and (x,w, v0, v5, v4, v3, v2,

v1, v7), there are no x−v7 paths that are internally disjoint from V (C)∪{v0, x, w}. By the

paths (x, v2, v3, v4, v5, v6, v7, v1) and (x,w, v0, v3, v4, v5, v6, v7, v1), there are no x− v1 paths

that are internally disjoint from V (C) ∪ {v0, x, w}.

We now know that a path from x to {v0, v1, v3, v4, v5, v6, v7} that is internally disjoint

from V (C)∪{v2, x, w} must end in v0. As there are at least two such paths that meet only

in x, we conclude that G cannot have G2,2 as a subgraph, that is, (3.0.1.7) holds.

Recall that the graph in Figure 3.4c is G2,3.

3.0.1.8. G does not have G2,3 as a subgraph.

Assume the contrary. By Theorem 2.0.2, G has a path from x to V (G2,3) \ N(x) =

{v1, v2, v3, v4, v6, v7} that is internally disjoint from V (C)∪{v0, x} as shown in Figure 3.8.

Figure 3.8: Possible paths from x in G2,3

By (3.0.1.6), the paths (x, v0, v3, v4, v5, v6, v7, v1) and (x, v0, v2, v3, v4, v5, v6, v7, v1) of lengths

7 and 8 imply there is no x− v1 path internally disjoint from V (C) ∪ {v0, x}. Again, the

paths (x, v5, v6, v7, v1, v0, v3, v2) and (x, v0, v3, v4, v5, v6, v7, v1, v2) of lengths 7 and 8 imply

there is no x− v2 path that is internally disjoint from V (C) ∪ {v0, x}. By paths (x, v0, v2,

v1, v7, v6, v5, v4, v3) and (x, v0, v1, v7, v6, v5, v4, v3), there is no x− v3 path that is internally

disjoint from V (C)∪ {v0, x}. If we consider the paths (x, v5, v6, v7, v1, v0, v3, v4) and (x, v5,

v6, v7, v1, v0, v2, v3, v4), then we find that there is no x− v4 path that is internally disjoint

from V (C) ∪ {v0, x}. Again, the paths (x, v5, v4, v3, v2, v1, v7, v6) and (x, v5, v4, v3, v0, v2,

v1, v7, v6) imply that there is no x− v6 path that is internally disjoint from V (C)∪{v0, x}.
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Similarly, by the paths (x, v5, v4, v3, v0, v2, v1, v7) and (x, v0, v1, v2, v3, v4, v5, v6, v7), there is

no x − v7 path that is internally disjoint from V (C) ∪ {v0, x}. Thus x has no paths to

{v1, v2, v3, v4, v6, v7} internally disjoint from V (C) ∪ {v0, x}. Thus (3.0.1.8) holds.

Recall the graph in Figure 3.5a is G3,1.

3.0.1.9. G does not have G3,1 as a subgraph.

Assume the contrary. By Theorem 2.0.2, there must be some path from x to V (G2,3) \

N(x) = {v1, v3, v4, v5, v6, v7, w} that is internally disjoint from V (C) ∪ {v0, x, w} as shown

in Figure 3.9.

Figure 3.9: Possible paths from x in G3,1

By (3.0.1.6), the paths (x, v2, v3, v4, v5, v6, v7, v1) and (x, v2, v3, v4, v0, v5, v6, v7, v1) imply

that there is no x−v1 path that is internally disjoint from V (C)∪{v0, x, w}. From the paths

(x, v2, v1, v7, v6, v5, v4, v3) and (x, v2, v1, v7, v6, v5, v0v4, v3), we see that there is no x−v3 path

that is internally disjoint from V (C)∪{v0, x, w}. Again, the paths (x, v0, w, v1, v7, v6, v5, v4)

and (x, v0, v5, v6, v7, v1, v2, v3, v4) of lengths 7 and 8 respectively imply there is no x−v4 path

that is internally disjoint from V (C)∪{v0, x, w}. Similarly, the paths (x, v0, w, v1, v2, v3, v4, v5)

and (x, v0, v4,

v3, v2, v1, v7, v6, v5) imply that there is no x−v5 path that is internally disjoint from V (C)∪

{v0, x, w}. By the paths (x, v0, v4, v3, v2v1, v7, v6) and (x, v0, v5, v4, v3, v2, v1,

v7, v6), there is no x − v6 path that is internally disjoint from V (C) ∪ {v0, x, w}. Simi-

larly, the paths (x, v2, v1, w, v0, v5, v6, v7) and (x, v2, v1, w, v0, v4, v5, v6, v7) imply that there

is no x−v7 path that is internally disjoint from V (C)∪{v0, x, w}. Finally, the paths (x, v0,
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v4, v5, v6, v7, v1, w) and (x, v2, v3, v4, v5, v6, v7, v1, w) imply there is no x − w path that is

internally disjoint from V (C) ∪ {v0, x, w}. Thus x has no paths to {v1, v3, v4, v5, v6, v7, w}

internally disjoint from V (C) ∪ {v0, x, w}. Thus (3.0.1.9) holds.

Recall the graph in Figure 3.5c is G3,3.

3.0.1.10. G does not have G3,3 as a subgraph.

Assume the contrary. By Theorem 2.0.2, there must be two paths from x to V (G3,3) \

N(x) = {v1, v2, v3, v4, v5, v6, v7} that have only the vertex x in common and that are

internally disjoint from V (C) ∪ {v0, x, w} (see Figure 3.10).

Figure 3.10: Possible paths from x in G3,3

By (3.0.1.6), the paths (x, v0, v4, v5, v6, v7, v1, v2) and (x,w, v1, v7, v6, v5, v4, v3, v2) of lengths

7 and 8 imply there is no x− v2 path internally disjoint from V (C)∪ {v0, x, w}. Similarly,

by the paths (x,w, v1, v7, v6, v5, v4, v3) and (x, v0, v4, v5, v6, v7, v1, v2, v3) of lengths 7 and

8 respectively, there is no x − v3 path that is internally disjoint from V (C) ∪ {v0, x, w}.

By paths (x, v0, v2, v1, v7, v6, v5, v4) and (x, v0, v5, v6, v7, v1, v2, v3, v4), there is no x − v4

path that is internally disjoint from V (C) ∪ {v0, x, w}. If we consider the paths (x,w, v1,

v2, v3, v4, v0, v5) and (x, v0, v4, v3, v2, v1, v7, v6, v5), then we find that there is no x− v5 path

that is internally disjoint from V (C)∪{v0, x, w}. Again, the paths (x, v0, v4, v3, v2, v1, v7, v6)

and (x, v0, v5, v4, v3, v2, v1, v7, v6) imply that there is no x− v6 path that is internally dis-

joint from V (C)∪{v0, x, w}. Similarly, by the paths (x, v0, v2, v3, v4, v5, v6, v7) and (x,w, v1,

v2, v3, v4, v5, v6, v7), there is no x−v7 path that is internally disjoint from V (C)∪{v0, x, w}.
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This leaves only v1 in {v1, v2, v3, v4, v5, v6, v7} that can be the end of a path from x that

is internally disjoint from V (C)∪{v0, x, w}. Since there are two such paths that have only

the vertex x in common, we conclude that G cannot have G3,3 as a subgraph, that is,

(3.0.1.10) holds.

Recall the graph in Figure 3.6b is G4,2.

3.0.1.11. G does not have G4,2 as a subgraph.

Assume the contrary. By Theorem 2.0.2, there must be two paths from x to V (G4,2) \

N(x) = {v1, v2, v3, v4, v5, v7} that have only the vertex x in common and that are internally

disjoint from V (C) ∪ {v0, x} (see Figure 3.11).

Figure 3.11: Possible paths from x in G4,2

By (3.0.1.6), the paths (x, v6, v5, v4, v3, v2, v0, v1) and (x, v0, v2, v3, v4, v5, v6, v7, v1) of lengths

7 and 8 imply there is no x−v1 path internally disjoint from V (C)∪{v0, x}. Similarly, by the

paths (x, v0, v4, v5, v6, v7, v1, v2) and (x, v0, v1, v7, v6, v5, v4, v3, v2), there is no x−v2 path that

is internally disjoint from V (C)∪{v0, x}. By paths (x, v0, v1, v7, v6, v5, v4, v3) and (x, v0, v2,

v1, v7, v6, v5, v4, v3), there is no x− v3 path that is internally disjoint from V (C) ∪ {v0, x}.

If we consider the paths (x, v6, v7, v1, v2, v3, v4, v5) and (x, v0, v4, v3, v2, v1, v7, v6, v5), then

we find that there is no x− v5 path that is internally disjoint from V (C)∪ {v0, x}. Again,

the paths (x, v6, v5, v4, v3, v2, v1, v7) and (x, v0, v1, v2, v3, v4, v5, v6, v7) imply that there is no

x − v7 path that is internally disjoint from V (C) ∪ {v0, x}. The paths (x, v0, v2, v1, v7, v6,

v5, v4) of length 7 and (x, v6, v7, v1, v2, v3, v4) of length 6 imply that any x− v4 path that is

internally disjoint from V (C)∪{v0, x} must have length 1. As the graph G is 4-connected,
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if G4,2 is a subgraph, there can only be one such path from x to v4. Therefore we do not

have the required two paths from x to V (G4,2) \N(x). Thus (3.0.1.11) holds.

Recall the graph in Figure 3.6c is G4,3.

3.0.1.12. G does not have G4,3 as a subgraph.

Assume the contrary. By Theorem 2.0.2, there must be two paths from x to V (G4,3) \

N(x) = {v1, v2, v3, v4, v5, v7, u, w} that have only the vertex x in common and that are

internally disjoint from V (C) ∪ {v0, x, u, w} (see Figure 3.12).

Figure 3.12: Possible paths from x in G4,3

By (3.0.1.6), the paths (x, v6, v5, v4, v0, w, u, v1) and (x, v0, v2, v3, v4, v5, v6, v7, v1) of lengths

7 and 8 imply that there is no x−v1 path that is internally disjoint from V (C)∪{v0, x, u, w}.

The paths (x, v0, v4, v5, v6, v7, v1, v2) and (x, v6, v5, v4, v0, w, u, v1, v2) imply there is no x−v2

path that is internally disjoint from V (C)∪{v0, x, u, w}; the paths (x, v6, v7, v1, v2, v0, v4, v3)

and (x, v0, v2, v1, v7, v6, v5, v4, v3) imply there is no x−v3 path that is internally disjoint from

V (C) ∪ {v0, x, u, w}. Similarly, by the paths (x, v0, w, u, v1, v2, v3, v4) and (x, v0, w, u, v1,

v7, v6, v5, v4), there is no x − v4 path that is internally disjoint from V (C) ∪ {v0, x, u, w}.

By the paths (x, v6, v7, v1, v2, v3, v4, v5) and (x, v6, v7, v1, u, w, v0, v4, v5), there is no x − v5

path that is internally disjoint from V (C) ∪ {v0, x, u, w}. Similarly, the paths (x, v6, v5,

v4, v3, v2, v1, v7) and (x, v6, v5, v4, v0, w, u, v1, v7) imply that there is no x − v7 path that

is internally disjoint from V (C) ∪ {v0, x, u, w}. The paths (x, v6, v5, v4, v3, v2, v1, u) and

(x, v6, v5, v4, v3, v2, v0, w, u) imply there is no x − u path that is internally disjoint from

V (C)∪{v0, x, u, w}. Finally, by the paths (x, v6, v5, v4, v3, v2, v0, w) and (x, v6, v5, v4, v3, v2,
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v1, u, w), there is no x−w path that is internally disjoint from V (C)∪ {v0, x, u, w}. Thus

x has no paths to {v1, v2, v3, v4, v5, v7, u, w} internally disjoint from V (C) ∪ {v0, x, u, w}.

Therefore (3.0.1.12) holds.

Recall the graph in Figure 3.6d is G4,4.

3.0.1.13. G does not have G4,4 as a subgraph.

Assume the contrary. By Theorem 2.0.2, there must be two paths from x to V (G4,4) \

N(x) = {v2, v3, v4, v5, v6, v7, w} that have only the vertex x in common and that are inter-

nally disjoint from V (C) ∪ {v0, x, w} (see Figure 3.13).

Figure 3.13: Possible paths from x in G4,4

By (3.0.1.6), the paths (x, v1, v7, v6, v5, v4, v3, v2) and (x, v1, v7, v6, v5, v4, v0, w, v2) of lengths

7 and 8 imply there is no x − v2 path internally disjoint from V (C) ∪ {v0, x, w}; the

paths (x, v1, v7, v6, v0, w, v2, v3) and (x, v1, v2, w, v0, v6, v5, v4, v3) imply there is no x − v3

path that is internally disjoint from V (C) ∪ {v0, x, w}. By paths (x, v1, v2, w, v0, v6, v5,

v4) and (x, v1, v7, v6, v0, w, v2, v3, v4), there is no x − v4 path that is internally disjoint

from V (C) ∪ {v0, x, w}. If we consider the paths (x, v1, v2, v3, v4, v0, v6, v5) and (x, v0, v4,

v3, v2, v1, v7, v6, v5), then we find that there is no x − v5 path that is internally disjoint

from V (C) ∪ {v0, x, w}. Again, the paths (x, v1, v2, v3, v4, v5, v6, v7) and (x, v0, w, v2, v3, v4,

v5, v6, v7) imply that there is no x−v7 path that is internally disjoint from V (C)∪{v0, x, w}.

Similarly, by the paths (x, v0, v6, v5, v4, v3, v2, w) and (x, v1, v7, v6, v5, v4, v3, v2, w), there is

no x − w path that is internally disjoint from V (C) ∪ {v0, x, w}. Finally, by the paths

(x, v0, w, v2, v3, v4, v5, v6) of length 7 and (x, v1, v2, v3, v4, v5, v6) of length 6, any x−v6 path
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that is internally disjoint from V (C)∪{v0, x, w} has length 1. Thus there is only one such

x− v6 path; a contradiction. Therefore (3.0.1.13) holds.

This eliminates all cases where p1, p2, p3, or p4 has more than one edge. Thus each vertex

in G that is not in the selected 7-cycle is of a type shown in Figure 3.14.

(a) G1,1 (b) G2,1

(c) G3,2 (d) G4,1

Figure 3.14: Only single-edge paths

Since |V (C)| > 8, we have more than one vertex not in V (C). Suppose we have at

least one vertex of type 3.14a, 3.14b, or 3.14c not on C. Since each such vertex creates

two triangles sharing a single edge with C, we will always have two edge-disjoint triangles

sharing a single edge with C, as every vertex not on C is in at least one triangle with

an edge of C. So, by (3.0.1.1), G has no vertices of type 3.14a, 3.14b, or 3.14c. Thus all

vertices not on C are of type 3.14d. Furthermore, if we have two such vertices, they must

be adjacent to the same four vertices of C by (3.0.1.1) again. We deduce that G has the

graph in Figure 3.15 as a subgraph.
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Figure 3.15: A subgraph of G

Now we must check for additional possible edges within G that do not create a larger odd

cycle. In order for G to be 4-connected, v3, v5, and v7 in our subgraph must be connected to

two additional vertices to have degree four. As |V (C)| > 8, v1, v2, v4, and v6 already have

degree at least four. By our previous argument, each of v3, v5, and v7 can only be adjacent

to other vertices of C. This leaves v1, v5, v6 and v7 as possible additional neighbors for v3,

while v1, v2, v3, and v7 are possible additional neighbors for v5. Finally, v2, v3, v4, and v5

are possible additional neighbors for v7.

If there is an edge {v3, v5}, we get a 9-cycle (v5, v6, v7, v1, v0, v2, v
′
0, v4, v3). By symmetry,

{v5, v7} is not an edge. If there is an edge {v3, v7}, we get a 9-cycle (v3, v4, v5, v6, v
′
0, v2,

v0, v1, v7). For v3, the edges {v1, v3} and {v6, v3} remain as possibilities. These edges create

no 9-cycles and therefore are the desired necessary edges to complete degree requirements.

For v5, the edges {v1, v5} and {v2, v5} remain as possibilities. These edges create no 9-

cycles and therefore are the desired necessary edges to complete degree requirements. For

v5, the edges {v2, v7} and {v4, v7} remain as possibilities. These edges create no 9-cycles and

therefore are the desired necessary edges to complete degree requirements. Our subgraph

is now 4-connected.

Now we examine remaining possible edges. From our previous argument, we know all

edges that meet vertices in V (C) and not in V (C). If any such vertex v0 meets an additional

edge, this edge must be {v0, v′0} for some v′0 not in V (C). Assume such an edge exists. This
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would create a 9-cycle (v0, v2, v3, v4, v5, v6, v7, v1, v
′
0). Thus there is no edge between any

vertices outside the 7-cycle C.

The remaining possible edges are {v1, v4}, {v1, v6}, {v2, v4}, {v2, v6} and {v4, v6}. If we

include all such edges, we do not create an odd cycle larger than a 7-cycle. Thus if we

include any subset of these edges, we will not create such an odd cycle.

This concludes our construction of G. All vertices not in the 7-cycle C are adjacent

to the same four vertices of C. In our construction, these vertices are v1, v2, v4, and v6.

These four vertices form one side of a bipartition. The other three vertices of the 7-cycle

are adjacent to all four of these vertices (see Figure 3.16). The subgraph induced by the

four-vertex side of the bipartition is any subgraph of K4 having at least one edge. We

conclude that Theorem 3.0.1 holds.

Figure 3.16: K ′4,n
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Chapter 4 n-connected Graphs with No Odd Cycles Exceeding
Size 2n− 1

In this chapter, we will generalize the graph results of the earlier chapters.

Theorem 4.0.1. Suppose n ≥ 2. Let G be an n-connected simple graph having a cycle of

length 2n− 1. Then G has no odd cycle of length exceeding 2n− 1 if and only if

(i) |V (G)| ≤ 2n; or

(ii) for some t ≥ n + 1, the graph G is isomorphic to a graph that is obtained from Kn,t

by adding at least one and at most n(n−1)
2

edges each having both ends in the n-vertex

side of the vertex bipartition.

Proof. By Theorem 2.2, Theorem 3.0.1, and Theorem 1.0.1, the theorem holds for graphs

with n < 5. Let n ≥ 5. If G satisfies (i) or (ii), it is straightforward to check that G has

no odd cycles of size exceeding 2n− 1.

Conversely, suppose G has no odd cycles of length exceeding 2n− 1. If |V (G)| < 2n+ 1,

there is no larger odd cycle. Assume |V (G)| ≥ 2n + 1. Select a (2n− 1)-cycle C of G and

label its vertices, in order, by v1, v2, . . . , v2n−1. Since |V (G)| > 2n−1, there is an additional

vertex outside of V (C).

We will now take note of the following observations.

4.0.1.1. Suppose va and va+1 are consecutive vertices on the cycle C and there are paths

pa and pa+1 from va and va+1 to some vertex u not on C such that these paths meet only

in u. Then |pa| and |pa+1| have the same parity.

Assume not. Then we have a cycle consisting of a path in C from va+1 to va having

length exceeding one along with the paths pa and pa+1. This cycle has length 2n− 2 plus

the sum of two numbers of opposite parities. So we have an odd cycle of length 2n + 1 or

greater. Thus |pa| and |pa+1| have the same parity.
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Next we show the following.

4.0.1.2. Suppose va and va+2 are two vertices on the cycle C that are distance two apart

on C, and assume there are paths pa and pa+2 from va and va+2 to some vertex u not on

C such that these two paths meet only in u. Then |pa| and |pa+2| are either both one or

they are have different parities.

In G, we have a cycle D consisting of a path in C from va+2 to va of length 2n− 1− 2

along with the paths pa and pa+2. This cycle has length 2n− 1− 2 + |pa|+ |pa+2|. If D has

odd length, then |pa| = 1 and |pa+2| = 1. If D has even length, then |pa| + |pa+2| is odd,

and the paths pa and pa+2 have opposite parities.

4.0.1.3. Suppose G has distinct vertices v0 and v′0 not on C. Assume C has distinct edges

{va, va+1} and {vb, vb+1} such that there are paths pa and pa+1 from va and va+1 to v0 that

meet only in v0, and there are paths pb and pb+1 from vb and vb+1 to v′0 that meet only in

v′0. Assume also that pa and pa+1 are vertex disjoint from pb and pb+1 except that va may

equal vb+1, or va+1 may equal vb but not both. Then G has an odd cycle of length exceeding

2n− 1.

By (4.0.1.1), |pa| and |pa+1| have the same parity, and |pb| and |pb+1| have the same

parity. Thus |pa|+ |pa+1| = 2j and |pb|+ |pb+1| = 2k for some natural numbers j, k. If we

follow the cycle C replacing the edges {va, va+1} and {vb, vb+1} with the paths pa and pa+1

and pb and pb+1, we get a cycle of length 2n− 1− 2 + 2j + 2k ≥ 2n + 1.

4.0.1.4. Let v0 be a vertex not on C. If va, va+1, and va+2 are three consecutive vertices

in order on C with paths pa, pa+1 and pa+2 to v0 that have no other common vertices, then

|pa| = 1, |pa+2| = 1 and |pa+1| is odd.

By (4.0.1.1) |pa| and |pa+1| have the same parity, and |pa+1| and |pa+2| have the same

parity. Thus all three paths have the same parity. Hence, by (4.0.1.2), |pa| = 1 = |pa+2|.

Since |pa+1| has the same parity as |pa|, we deduce that |pa+1| is odd.
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4.0.1.5. Suppose va, va+1, . . . , va+t are consecutive vertices of C with t ≥ 3 and these

vertices are joined to some vertex v0 not on C by paths pa, pa+1, . . . , pa+t that meet only in

v0. Then all these paths have length one.

By (4.0.1.1), all of |pa|, |pa+1|, . . . , |pa+t| have the same parity. By (4.0.1.2), it follows

that all of pa, pa+1, . . . , pa+t have length one.

Finally, we will need the following observation about path lengths within subgraphs of

G.

4.0.1.6. Suppose va and vb are vertices of a subgraph H of G and there are two paths in

H from va to vb each of length at least 2n − 1 and of different parities. Then G has no

va − vb path disjoint from H − {va, vb}.

Assume G has a va − vb path p′ disjoint from H − {va, vb}. Let po and pe be va − vb

paths in H of odd and even lengths, respectively, each of length at least 2n − 1. Then G

contains cycles of lengths |p′| + |po| ≥ 1 + 2n − 1 and |p′| + |pe| ≥ 1 + 2n − 1. Hence we

have two cycles whose lengths exceed 2n− 1 and have opposite parities. Thus there is an

odd cycle of size greater than 2n− 1. We deduce that no such p′ exists.

Choose a vertex v0 of G that is not in C. By Theorem 2.0.2, there are n paths from v0

to V (C) whose only common vertex is v0. Since we have 2n− 1 vertices on C and n paths

from v0 to distinct vertices of C, we will always have at least two consecutive vertices on

C that meet distinguished paths from v0.

Now we focus on showing the following.

4.0.1.7. None of the distinguished paths from v0 to C has length exceeding one.

By (4.0.1.5), if all paths from v0 to C meet at consecutive vertices, then all paths

have length one. Thus we may assume that the distinguished paths do not all meet C at

consecutive vertices.
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First, suppose G has a fan-like subgraph and at least one additional distinguished path

to C from v0 as shown in Figure 4.1 where f ≥ 4. The paths from v0 to the cycle that meet

in the string, v1, v2, . . . , vf , of consecutive vertices will all have length one by (4.0.1.5). We

assume that neither v2n−1 nor vf+1 is the end of one of the distinguished paths from v0.

Figure 4.1: Graph with large fan-like subgraph

Assume at least one distinguished path p from v0 to one of vf+2, vf+3, . . . , v2n−2 has

length greater than one. Label the vertex adjacent to v0 on p as vp. By Theorem 2.0.2,

there are n paths in G from vp to C having only the vertex vp in common. Consider the

paths (vp, v0, vi−1, vi−2, . . . , vi) and (vp, v0, vi−2, vi−3, . . . , vi) where i ∈ {3, 4, . . . , f + 1} and

i−i = 2n−1. These have lengths 1+1+((2n−1)−1) = 2n and 1+1+((2n−1)−2) = 2n−1.

By (4.0.1.6), there is no vp − vi path in G disjoint from V (C) ∪ {vp, v0}. It follows using

symmetry that vp does not have paths to any of the vertices v2n−1, v1, v2, . . . , vf+1 that

have no member of V (C) ∪ v0 as internal vertices. Since f ≥ 4, there must be n − 1

paths from vp to the remaining vertices of C of which there there are at most 2n− 1− 6.

Suppose two such paths meet at consecutive vertices on C. The triangle {v0, v2, v3} and

these two new paths satisfy the hypotheses of (4.0.1.3) as the paths are internally disjoint

from C and are disjoint from v0, v2, and v3. Thus G has an odd cycle of length exceeding

2n− 1; a contradiction. We deduce that the distinguished paths from vp to C do not end
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at consecutive vertices. This is a contradiction, since we have n− 1 paths but only 2n− 7

vertices that can be ends of these paths. We deduce that, in this case, (4.0.1.7) holds.

Continuing with the proof of (4.0.1.7), we may now assume the following.

4.0.1.8. If a distinguished path has length greater than one, then the longest sequence of

consecutive vertices of C that are ends of distinguished paths from v0 has length at most

three.

Now assume that C has three consecutive vertices v1, v2, and v3 that are ends of distin-

guished paths.

Next we show the following.

4.0.1.9. If the distinguished paths meet three consecutive vertices v1, v2, and v3 and each

of these paths to the consecutive vertices on C has length one, then all other distinguished

paths have length one.

By (4.0.1.4), we know the distinguished paths from v0 to v1 and v3 have length one while

the path from v0 to v2 has odd length. Suppose the v0− v2 path has length one. Then one

of the other distinguished paths from v0 to C has length greater than one. Let vp be the

vertex of this path adjacent to v0. Then we may use the paths from the previous argument

to see that G does not have a path from vp to v2n−1, v1, v2, v3, or v4 that is disjoint from

V (C)∪v0. Now, G contains n−1 paths from vp to V (C) avoiding v0 and having only vp in

common. Again by (4.0.1.3) and using {v0, v2, v3}, we get an odd cycle of length exceeding

2n − 1 if two of the paths from vp end in consecutive vertices of C. As there are at most

2n − 6 vertices that are ends of such paths and there are n − 1 such paths, we obtain a

contradiction. We deduce that the v0 − v2 path has odd length exceeding one or (4.0.1.9)

holds.
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4.0.1.10. If a distinguished path has length greater than one and we have three consecutive

vertices meeting distinguished paths at v1, v2, and v3, no two of the distinguished paths from

v0 can end in consecutive vertices of C other than those ending in v1, v2, v3.

Since G is at least 5-connected, there are at least two other distinguished paths from v0

apart from those that have v1, v2, and v3 as their ends. Suppose two of these additional

paths meet C at adjacent vertices, va and va+1, as shown in Figure 4.2.

Figure 4.2: Subgraph of G

Consider the vertex on the v2 − v0 path that is adjacent to v0. Label this vertex vp and

the distinguished v0 − v2 path p2. Label the distinguished paths from v0 to va and va+1

by pa and pa+1. Moreover, label the portion of p2 from vp to v2 by p′2. By (4.0.1.2), the

lengths of pa and pa+1 have the same parity. By Theorem 2.0.2, vp has n paths to C that

meet only in vp.

Consider the path consisting of the union of (vp, v0), pa+1, and (va+1, va+2, . . . , va).

Also consider the path consisting of the union of p′2, (v2, v1, v2n−1, . . . , va+1), pa+1, and

(v0, v3, v4, . . . , va). These paths have lengths 1 + |pa+1| + ((2n− 1)− 1) = 2n− 1 + |pa+1|

and (|p2| − 1) + ((2n − 1) − 1 − 1) + |pa+1| + 1 = 2n − 3 + |pa+1| + |p2|. By (4.0.1.4),

|p3| is odd. By (4.0.1.6), there is no vp − va path internally disjoint from C and v0. By

symmetry, there is no vp− va+1 path internally disjoint from C and v0. By using the paths

(vp, v0, va+1, va, va−1, . . . , va+2) and (vp, v0, va, va−1, . . . , va+2) of lengths 2+((2n−1)−1) =
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2n and 2 + ((2n− 1)− 2) = 2n− 1, we deduce that there is no vp − va+2 path internally

disjoint from C and v0. By symmetry, there is no vp − va−1 path internally disjoint from

C and v0.

Let vq be any internal vertex on pa, provided |pa| > 1. Label the portion of the path from

vq to pa as p′a. Consider the path consisting of the union of (vp, v0), pa+1, (va+1, va+2, . . . , va),

and p′a. Also consider the path consisting of the union of p′2, (v2, v1, v2n−1, . . . , va+1), pa+1,

(v0, v3, v4, . . . , va) and p′a. These paths have lengths 1 + |pa+1| + ((2n − 1) − 1) + |p′a| =

2n−1+|pa+1|+|p′a| and (|p2|−1)+((2n−1)−1−1)+|pa+1|+|p′a| = |p2|+2n−3+|pa+1|+|p′a|.

Since |p2| is odd, these lengths have different parities and have size greater than 2n − 1.

Thus, by (4.0.1.6), there is no vp−vq path disjoint from v0 and C for any vq in the interior

of pa. By symmetry, there is no vp − vq path disjoint from C and v0 for any vq in the

interior of pa+1. Thus vp does not have paths internally disjoint from V (C) ∪ v0 to any

of va−1, va, va+1, or va+2. By (4.0.1.3), if the paths from vp to C internally disjoint from

V (C) ∪ v0 meet C at two consecutive vertices, we find an odd cycle of length exceeding

2n− 1. Thus the n− 1 paths from vp to C that are internally disjoint from V (C)∪ v0 have

their ends in vertices of V (C) \ {va−1, va, va+1, va+2} that are not consecutive on C. Since

there are only 2n − 6 such vertices, this is a contradiction. We deduce that if there is a

distinguished path with path length greater than one, no two of the distinguished paths

can end in consecutive vertices of C other than those ending in v1, v2, v3, that is, (4.0.1.10)

holds.

4.0.1.11. If G has consecutive vertices of C meeting distinguished paths at v1, v2, and v3

and if p2 has length greater than one, then the distinguished paths that do not meetC at

v1, v2, and v3 may not have distance two on C, that is distinguished paths may not meet

at va and va+2.
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To this end suppose there is at least one pair of distinguished paths from v0 to C whose

ends are a distance two apart on C aside from those ending in v1, v2 and v3. Label these

paths by pa and pa+2, and let their ends on C be va and va+2, respectively.

Call a vertex of C that meets a distinguished path a distinguished vertex. Let P ′ be the

set of distinguished paths from v0 to C other than those to v1, v2, and v3.

4.0.1.12. If G has consecutive vertices of C meeting distinguished paths at v1, v2, and v3

and if p2 has length greater than one, then the distinguished paths in P ′ do not all have

length one.

First suppose all paths in P ′ have length one as if Figure 4.3. By (4.0.1.4), we know

the distinguished paths from v0 to v1 and v3 have length one while the path from v0 to v2

has odd length. By (4.0.1.10), there are no consecutive vertices in the 2n− 1− 5 vertices

of V (C) \ {v2n−1, v1, v2, v3, v4} that meet the distinguished paths from v0. Thus there are

n−3 paths meeting 2n−6 vertices no two of which are consecutive. Therefore in the path

(v4, v5, . . . , v2n−1), the vertices alternate between undistinguished and being distinguished

except in exactly one place where there are two consecutive undistinguished vertices.

Figure 4.3: Subgraph of G

Let us examine two arbitrary paths in P ′ whose endpoints are distance two on C. The

path (vp, v0, va+2, va+3, . . . , va) and the path that consists of the union of p′2 and (v2, v1,
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v2n−1, . . . , va+2, v0, v3, v4, . . . , va) have lengths 1 + 1 + (2n−1)−2 = 2n−1 and (|p2|−1) +

((2n−1)−1−2)+1+1 = 2n−3+ |p2|. Thus there are no vp−va paths that are internally

disjoint from V (C) ∪ v0. By symmetry, there are no vp − va+2 paths that are internally

disjoint from V (C) ∪ v0. Consider the path (vp, v0, va, va+1, . . . , va−1) and the path that

consists of the union of p′2 and (v2, v1, . . . , va, v0, v3, v4, . . . va−1). These paths have lengths

1+1+(2n−1)−1 = 2n and (|p2|−1)+((2n−1)−1−1)+1+1 = |p2|+2n−2. Thus there are

no vp− va−1 paths internally disjoint from V (C)∪ v0. By symmetry, there are no vp− va+3

paths internally disjoint from C and v0. By using the path (vp, v0, va, va−1, . . . , va+1) and

the path that is the union of p′2 and (v2, v1, . . . , va+2, v0, v3, v4, . . . va+1), whose lengths are

1+1+(2n−1)−1 = 2n and (|p2|−1)+((2n−1)−1−1)+1+1 = |p2|+2n−2, we deduce that

there are no vp−va+1 paths disjoint from C and v0. By the paths (vp, v0, v3, v4, . . . , v1) and

p′2 ∪ (v2, v3, . . . , v1), there are no vp− v1 paths disjoint from C and v0. By symmetry, there

are no vp − v3 paths internally disjoint from C and v0. By the path (vp, v0, v3, v2, . . . , v4)

and the path that consists of the union of p′2 and (v2, v1, . . . , v4), there are no vp−v4 paths

internally disjoint from C and v0. By symmetry, there are no vp − v2n−1 paths internally

disjoint from C and v0.

By Theorem 2.0.2, there are n − 1 paths from vp to C that avoid v0 and meet C at

distinct vertices. We showed above that none of these paths meets V (C) in any member

of {v1, v3, v4, v2n−1} ∪ {va−1, va, va+1, va+2, va+3}. The union of {v1, v3, v4, v2n−1} and the

collection of all sets {va−1, va, va+1, va+2, va+3} where each of va and va+2 meets paths in

P ′ includes all but at most three vertices of C including v2. This is a contradiction, since

it implies there are at most three distinguished vp paths, so (4.0.1.12) holds. Note that

the extreme case occurs when the consecutive non-distinguished vertices of C isolate a

distinguished v2n−2 or a v5, as otherwise all vertices on C meet paired distinguished paths

or the previous collection.
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4.0.1.13. If G has consecutive vertices of C meeting distinguished paths at v1, v2, and v3

and if p2 has length greater than one, then there are no pairs of distinguished paths in P ′

that meet at distance two on C where at least one path has length greater than one.

Suppose there is at least one pair of paths in P ′ from v0 to C that meet C at vertices

that are distance two apart and the one of the path lengths is not one as in Figure 4.4.

Figure 4.4: Subgraph of G

By (4.0.1.2) these paths have opposite parities, so one is even. Let vq be the vertex on that

path adjacent to v0. Relabel vp to be any vertex on the p2 path interior. Let the even path

be pa with endpoints v0 and va. By symmetry we may assume the distinguished path pa+2

from v0 to va+2 is odd. Let p′a be the path from vq to va contained in the larger path pa. Let

p′2 be the path from vp to v2 contained in the larger path p2, and let p2−p′2 be the subpath

of p2 from v0 to vp. Consider the paths that consist of the union of p′a , (va, va−1, . . . , va+2),

pa+2, and p2 − p′2 and the union of p′a, (va, va−1, . . . , v3, v0) , pa+2, (va+2, va+3, . . . , v2), and

p′2 of lengths (|pa|−1) + ((2n−1)−2) + |pa+2|+ |p2−p′2| = 2n−4 + |pa|+ |pa+2|+ |p2−p′2|

and (|pa|−1)+((2n−1)−2−1)+1+ |pa+2|+ |p′2| = 2n−4+ |pa|+ |pa+2|+ |p′2|. Since p2 has

odd length, |p′2| and |p2− p′2| have different parities. Thus, by (4.0.1.6), there is no vq − vp

path disjoint from C and v0 where vp is on the interior of p2. By the path consisting of the

union of (vq, v0), p2, and (v2, v3, . . . , v1) of length 1 + |p2|+ ((2n− 1)− 1) = 2n− 1 + |p2|

and the path (vq, v0, v3, v4, . . . , v1) of length 1 + 1 + ((2n − 1) − 2) = 2n − 1, there is no
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path from vq to v1 disjoint from v0 and C. By symmetry, there is no vq − v3 path disjoint

from v0 and C. The path (vq, v0, v3, v4, . . . , v2) and the path consisting of the union of p′a,

(va, va−1, . . . v3, v0), pa+2, and (va+2, va+3, . . . v2) have lengths 1 + 1 + (2n − 1) − 1 = 2n

and (|pa| − 1) + ((2n − 1) − 2 − 1) + 1 + |pa+2| = 2n − 4 + |pa| + |pa+2|. Since pa has

even length and pa+2 has odd length, the second path is odd and has size greater than

or equal to 2n − 1. Thus there are no vq − v2 paths disjoint from C and v0. By the path

(vq, v0, v3, v2, . . . , v4) and the path consisting of the union of (vq, v0), p2, and (v2, v1, . . . v4)

of lengths 1+1+((2n−1)−1) = 2n and 1+|p2|+((2n−1)−1) = 2n+|p2|, there is no vq−v4

path disjoint from v0 and C. By symmetry, there is no vq−v2n−1 path disjoint from v0 and

C. Thus, there is no path from vq to v2n−1, v1, v2, v3 or v4 not through v0. By Theorem 2.0.2,

there are n−1 internally disjoint paths to distinct vertices of V (C)\{v1, v2, v3, v4, v2n−1}..

However, by (4.0.1.3) and the paths p2 and (v0, v3), they may not meet C at consecutive

vertices. This requires 2n− 3 vertices. Thus we deduce that (4.0.1.13) holds.

Since we have that (4.0.1.10), (4.0.1.12) and (4.0.1.13), if there are still distinguished

paths that meet at distance two on C and p2 has length greater than one, then we are in

exactly the case where the only path in P ′ with length greater than one meets an unpaired

v2n−2 or v5. Without loss of generality, assume the distinguished path meets v5 and call it

p5. By (4.0.1.2), p5 and p3 have opposite parities, so p5 is even. By the path consisting of

the union of p2, p5, (v5, v6, . . . , v1, v2) of length (2n − 1) − 3 + |p2| + |p5|, there is an odd

cycle larger than 2n− 1 and hence we get the following result.

4.0.1.14. If G has consecutive vertices of C meeting distinguished paths at v1, v2, and v3

and if p2 has length greater than one, then there are no distinguished paths in P ′ that meet

at distance two or one on C.

By (4.0.1.14) and (4.0.1.10), we now know that every two of the n− 3 paths in P ′ meet

C at vertices that are at distance 3 or greater. Thus we need at least 3(n−3)−2 = 3n−11

vertices remaining in C. Since there is no larger string of consecutive vertices that meet
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distinguished paths, the paths in P ′ do not meet v4 or v2n−1. Thus we have 2n− 1− 5 =

2n − 6 vertices that can be endpoints of paths in C. So we get 2n − 6 ≥ 3n − 11. Hence

n ≤ 5. Since n ≥ 5, this may only occur if n = 5. If n 6= 5, then all distinguished paths

must have length one.

We now address the case where n = 5. From before, we do not have the case where

distinguished paths from v0 to C meet C in consecutive vertices other than v1, v2, and v3

and paths from v0 to C must meet C at vertices that are distance three or more. So we

get the following configuration in Figure 4.5.

Figure 4.5: Subgraph of G when n = 5

By (4.0.1.2), the paths p8 and p5 from v0 to v8 and from v0 to v5 are either even or length

one, since they are distance two from the edges from v0 to v1 and v0 to v3, respectively.

The length of p2 is odd and not one.

Suppose at least one of p8 and p5 has even length. Without loss of generality, we may

assume it is p8. Let vq be the vertex on p8 adjacent to v0. Label the path from vq to v8

contained in p8 as p′8. Let vp be any vertex on the interior of path p2. Label the path

from vp to v2 contained in p2 as p′2. Consider the path (vq, v0, v3, v4, . . . , v9, v1, v2) and

the path consisting of the union of p′2, p
′
8, (v8, v7, v6, . . . , v3, v0, v1, v2), and p′2 of lengths

1+1+8+ |p′2| = 10+ |p′2| and |p′8|+5+1+1+1+ |p′2| = 8+ |p′8|+ |p′2| = 8+ |p8|−1+ |p′2| =

7 + |p8| + |p′2|, which have opposite parities since p8 has even length. By (4.0.1.6), there
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are no vq − vp paths internally disjoint from C and v0 for any vp on the interior of p2.

By the path {vq, v0, v3, v4, . . . , v2} of length 10 and the path consisting of the union of

p8, and (v8, v7, . . . , v3, v0, v1, v2) of length |p′8| + 8 = |p8| − 1 + 8 = 7 + |p8|, there is no

vq − v2 path internally disjoint from C and v0. By the path (vq, v0, v3, v4, . . . v1) and the

path consisting of the union of (vq, v0), p2, and (v2, v3, v4, . . . v1) of lengths 1 + 1 + 7 = 9

and 1 + |p2| + 8 = 9 + |p2| , there is no vq − v1 path internally disjoint from C and v0.

By symmetry, there is no vq − v3 path internally disjoint from C and v0. By the path

(vq, v0, v3, v2, . . . , v4) of length 10 and the path consisting of the union of (vq, v0), p2, and

(v2, v1, . . . , v4) of length 1 + |p2|+ 7 = |p2|+ 8, there is no vq − v4 path internally disjoint

from C and v0. By symmetry, there is no vq−v9 path internally disjoint from C and v0. By

the paths consisting of the union of p′8 and (v8, v9, . . . v7) and the union of p′8, (v8, v9, v1, v0),

p2, and (v2, v3, . . . v7) of lengths (|p8| − 1) + 8 = |p8|+ 7 and 3 + |p2|+ 5 = 8 + |p2|, there

is no vq − v7 path internally disjoint from C and v0, since |p2| is even and positive. This

leaves us with v6, v8, and v5 as vertices where paths from vq meet C disjoint from v0. As

we need n− 1 = 4 such vertices, this contradicts 5-connectivity. Thus neither p8 nor p5 is

even.

Figure 4.6: Subgraph of G when n = 5

Suppose the paths p8 and p5 both have length one. Let vp be the vertex on p2 that

adjacent to v0. Label the path from vp to v2 contained in p2 as p′2. By the path consist-
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ing of the union of p′2 and (v2, v3, . . . , v1) and the path (vp, v0, v8, v7, . . . , v1), which have

lengths |p′2| + 1 + 7 = |p2| − 1 + 8 = |p2| + 7 and 9, there is no vp − v1 path internally

disjoint from C and v0. By symmetry, there is no vp − v3 path internally disjoint from C

and v0. By the path (vp, v0, v3, v2, . . . , v4) and the path consisting of the union of p′2 and

(v2, v1, . . . , v4), there is no vp − v4 path internally disjoint from C and v0. By symmetry,

there is no vp−v9 path internally disjoint from C and v0. By the paths (vp, v0, v8, v9, . . . v7)

and (vp, v0, v5, v4, . . . , v7), there is no vp − v7 path internally disjoint from C and v0. By

symmetry, there is no vp−v6 path internally disjoint from C and v0. Thus vp does not have

5 disjoint paths to C not through v0 as only v2, v8, and v5 remain as possible endpoints of

such paths. Thus all distinguished paths in this configuration must have length one. So by

(4.0.1.9), (4.0.1.14), and the previous case, this completes the proof of the following

4.0.1.15. No three or more of the distinguished paths from v0 meet C at consecutive vertices

unless all distinguished paths have length one

Call a vertex distinguished if it meets a distinguished path on C. Call a pair of distin-

guished vertices that are consecutive on C a consecutive distinguished pair. Next we prove

the following.

4.0.1.16. Suppose there is a distinguished path of length greater than one. If there are

two distinct consecutive distinguished pairs, then these pairs are disjoint. Moreover, each

path in C that contains exactly one vertex in each pair must contain two consecutive

undistinguished vertices.

Assume that (4.0.1.16) fails. It is immediate from (4.0.1.15) that the two consecutive

pairs are disjoint and that each path containing exactly one vertex from each pair has

length at least two. Let q be such a path. Then q contains a subpath q′ whose endpoints

are distinguished vertices, whose vertices are alternately distinguished and undistinguished,

and such that the neighbors in V (C)−V (q′) of the endpoints of q′ are distinguished vertices.

Suppose the sets are separated by a single vertex.
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Figure 4.7: Configuration when the pairs of distinguished vertices are distance two on C

Label one consecutive distinguished pair of vertices v1 and v2 with distinguished paths

p1 and p2 from v0, and the other consecutive distinguished pair of vertices v4 and v5 with

paths p4 and p5 from v0. Let v3 be the vertex on C between the pairs. By (4.0.1.1), |p1|

and |p2| have the same parity, and |p4| and |p5| have the same parity. By (4.0.1.2), |p2| and

|p4| have opposite parities or both have length one. Thus, |p1| and |p4| path lengths have

opposite parities or both are odd with the inner paths having length one.

4.0.1.17. The configuration in Figure 4.7 may not occur if distinguished paths have length

greater than one.

First we will show the following.

4.0.1.18. The configuration in Figure 4.7 may not occur if distinguished consecutive pairs

have even length.

Suppose |p2| and |p4| have opposite parities. Thus |p1| and |p4| have opposite parities

and |p2| and |p5| have opposite parities. By the cycle through p1, p4 and V (C) \ {v2, v3} of

length ((2n− 1)− 3) + |p1|+ |p4|, the sum of the lengths of the paths p1 and p4 is three.

We deduce that the even path has length two and the odd path has length one. Similarly,

by the cycle through p2, p5 and V (C) \ {v3, v4} of length ((2n − 1) − 3) + |p2| + |p5|, the

sum of lengths of the paths p2 and p5 is three. Again, we deduce that the even path has
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length two and the odd path has length one. Without loss of generality, let p1 and p2 be

the even paths as shown in Figure 4.8.

Figure 4.8: Subgraph when distinguished consecutive pair have distance two on C

Label the vertex on the interior of the p2 path as vp. Label the vertex on the interior of

the p1 path as vr. Let va be any distinguished vertex in V (C) \ {v1, v2, v4, v5} and pa be

distinguished path from v0 to va. By (2.0.2) vp has n− 2 distinct paths to C not through

v0 or v2. By (4.0.1.6), the paths (vp, v2, v3, v4, . . . , v2n−1, v1) and (vp, v2, v3, v4, v0, v5, v6, . . . ,

v2n−1, v1) of lengths ((2n−1)−1)+1 = 2n−1 and ((2n−1)−1−1)+1+2 = 2n imply that

no vp− v1 path exists that is internally disjoint from V (C)∪{v0}. Again, by (4.0.1.6), the

paths (vp, v2, v3, v4, . . . , v2n−1, v1, vr) and (vp, v2, v3, v4, v0, v5, v6, . . . , v2n−1, v1, vr) of lengths

((2n−1)−1)+1+1 = 2n and (2n−1)−1−1)+1+2+1 = 2n+1, no vp−vr path exists that

is internally disjoint from V (C)∪ {v0}. The paths (vp, v2, v1, v2n−1, . . . , v5, v4, v3) of length

1+((2n−1)−1) = 2n−1 and (vp, v0, v4, v5, . . . , v2n−1v1, v2, v3) of length 2+((2n−1)−1) =

2n imply that there is no vp − v3 path internally disjoint from V (C) ∪ {v0}. The paths

(vp, v0, v5, v6, . . . , v2n−1, v1, v2, v3, v4) and (vp, v0, vr, v1, v2n−1, . . . , v5, v4) of lengths 1 + 1 +

((2n−1)−1) = 2n and 1+2+((2n−1)−3) = 2n−1 imply that there is no vp−v4 path that

is internally disjoint from V (C)∪{v0}. By (4.0.1.6) and the paths (vp, v0, v4, v3, . . . , v6, v5)

and (vp, v2, v3, v4, v0, vr, v1, v2n−1, . . . , v6, v5) of lengths 1 + 1 + ((2n − 1) − 1) = 2n and

1 + ((2n − 1) − 1 − 1) + 1 + 2 = 2n + 1, no vp − v5 path exists that is internally disjoint

48



from V (C)∪{v0}. Assume there is a vertex vq on the interior of pa. Let p′a be the subpath

of pa from vq to va and let pa − p′a be the subpath of pa from v0 to vq. The paths that

consist of a union of (vp, v2, v1, . . . , v4, v0) and pa − p′a and a union of (vp, v2, v1, . . . , v5, v0)

and pa − p′a of lengths 1 + ((2n − 1) − 2) + 1 + |pa − p′a| = 2n − 1 + |pa − p′a| and

1 + ((2n− 1)− 3) + 1 + |pa − p′a| = 2n− 2 + |pa − p′a| imply that there is no vp − vq path

that is internally disjoint from V (C) ∪ {v0} for any vq on the interior of any pa.

By (4.0.1.3) and the vertices v0, v4 and v5, any path from vp to va implies that there is

no path from vp to va−1 or va+1 that is disjoint from V (C)∪ v0. Since we have n− 2 paths

from v0 to V (C) \ {v1, v2, v3, v4, v5}, a set of size 2n− 1− 5 = 2n− 6, without consecutive

vertices, this is a contradiction and we may not have the configuration in Figure (4.8),

that is (4.0.1.18) holds.

4.0.1.19. Suppose there is a distinguished path with length greater than one. The configu-

ration in Figure 4.7 may not occur if distinguished consecutive pairs have odd length.

Suppose |p2| and |p4| are both one, that is have the same parity from above. By (4.0.1.1),

|p1| and |p5| are both odd. The cycle that is a union of p1, p5 and V (C) \ {v2, v3, v4} of

length ((2n−1)−4)+|p1|+|p5| = 2n−5+|p1|+|p5| implies that one of p1 and p5 has length

one and the other has length one or three. Without loss of generality, let |p1| ∈ {1, 3}.

First, assume |p1| = 1. Then there is a distinguished path pa to vertex va on C with

length greater than one. Let vq be the any vertex on on the interior of the pa path. Let p′a

be the subpath of pa from vq to v0.

By (4.0.1.6) and the cycles consisting of the union of p′a and (v0, v4, v5, . . . , v2, v3) and the

union of p′a and (v0, v5, v6 . . . , v2, v3) of lengths |p′a|+ 1 + ((2n− 1)− 1) = 2n− 1 + |p′a| and

|p′a|+1+((2n−1)−2) = 2n−2+ |p′a|, no vq−v3 path internally disjoint from V (C)∪v0 can

exist. By (4.0.1.6) and the cycles consisting of the union of p′a and (v0, v4, v5, . . . , v1, v2) and

the union of p′a and (v0, v1, v2n−1 . . . , v3, v2) of lengths |p′a|+1+((2n−1)−2) = 2n−2+ |p′a|

and |p′a| + 1 + ((2n − 1) − 1) = 2n − 1 + |p′a|, no vq − v2 path disjoint from V (C) ∪ v0
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Figure 4.9: Subgraph when the sets of paths are distance two

can exist. By symmetry, no vq − v4 path internally disjoint from V (C) ∪ v0 can exist.

By (4.0.1.6) and the cycles consisting of the union of p′a and (v0, v4, v3, . . . , v6) and the

union of p′a and (v0, v5, v4 . . . , v6) of lengths |p′a| + 1 + ((2n − 1) − 2) = 2n − 2 + |p′a| and

|p′a|+ 1 + ((2n− 1)− 1) = 2n− 1 + |p′a|, no vq − v6 path internally disjoint from V (C)∪ v0

can exist. By symmetry, there is no vq − v2n−1 path internally disjoint from V (C) ∪ v0.

If we include two possible paths from vq to v1 and v5, there are n − 3 remaining paths

from vq to V (C) \ {v2n−1, v1, v2, v3, v4, v5, v6}. By the triangle {v0, v4, v5} and (4.0.1.3), vq

cannot have distinct paths disjoint from v0 meeting V (C) \ {v2n−1, v1, v2, v3, v4, v5, v6} at

consecutive vertices. Thus, we have n − 3 non-consecutive paths in 2n − 1 − 7 = 2n − 8

vertices, and vq is not n connected. We deduce that |p1| 6= 1.

Now assume that |p1| = 3 as in Figure 4.10. Let vp be the vertex on the interior of p1

adjacent to v0. Let p′2 be the subpath of p2 from vp to v1. Let va be any distinguished vertex

not in {v1, v2, v4, v5} and pa be the distinguished path from v0 to va. Let vq be any vertex

on the interior of pa. Let p′a be the subpath of pa from vq to va. Let vr be the additional

interior vertex on p1.

By Theorem 2.0.2, the graph G \ {v0, v1} has n− 2 internally disjoint paths from vp to

C. By (4.0.1.6) and the paths consisting of the union of p′1 and (v1, v2n−1, . . . , v3, v2) and

the union of p′1 and (v1, v2n−1, . . . , v5, v0, v4, v3, v2) of lengths |p′1| + 1 + ((2n − 1) − 1) =
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Figure 4.10: Subgraph when the distinguished consecutive pairs are distance two on C

2n−1+ |p′1| = 2n−2+2 = 2n and |p′1|+((2n−1)−1−1)+1+1 = 2n−1+ |p′1| = 2n+1,

no vq − v2 path internally disjoint from V (C) ∪ v0 can exist. By (4.0.1.6) and the path

consisting of the union of p′1 and (v1, v2n−1, . . . , v4, v3) and the path (vp, v0, v2, v1 . . . , v4, v3)

of lengths |p′1|+((2n−1)−2) = 2n−1+|p′1| = 2n−1 and 1+1+((2n−1)−1) = 2n, no vq−v3

path internally disjoint from V (C) ∪ v0 can exist. The paths (vp, v0, v2, v1 . . . , v5, v4) and

(vp, v5, v6, . . . , v3, v4) of lengths 1 + 1 + ((2n− 1)− 2) = 2n− 1 and 1 + 1 + ((2n− 1)− 1) =

2n imply that there is no vp − v4 path internally disjoint from V (C) ∪ v0. The paths

(vp, v0, v4, v3 . . . , v6) and (vp, v0, v5, v4, . . . , v6) of lengths 1 + 1 + ((2n − 1) − 2) = 2n − 1

and 1 + 1 + ((2n− 1)− 1) = 2n imply that there is no vp− v6 path internally disjoint from

V (C)∪v0. By the paths consisting of the union of p′1, (v1, v2n−1, . . . , v3, v2, v0) and p′a and the

union of p′1, (v1, v2n−1, . . . , v5, v0) and p′a, of lengths 2+((2n−1)−1)+1+|p′a| = 2n+1+|p′a|

and 2 + ((2n− 1)− 4) + 1 + |p′a| = 2n− 2 + |p′a|, no vp − vq path internally disjoint from

V (C) ∪ v0 can exist for any vq on the interior of some pa. The path consisting of the

union of p′1 and (v1, v2 . . . v2n−1) and the union p′1 and (v1, v2, v3, v4, v0, v5, v6 . . . v2n−1) of

lengths |p′1| + ((2n − 1) − 1) = 2 + 2n − 2 = 2n and |p′1| + ((2n − 1) − 1 − 1) + 1 + 1 =

2 + 2n − 1 = 2n + 1 imply that there is no vp − v2n−1 path internally disjoint from

V (C) ∪ v0. Allowing for a possible path to v5, there are n− 3 remaining paths from vp to

V (C)\{v2n−1, v1, v2, v3, v4, v5, v6}. By the triangle {v0, v4, v5} and (4.0.1.3), vp cannot have
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paths disjoint from v0 meeting V (C) \ {v2n−1, v1, v2, v3, v4, v5, v6} at consecutive vertices,

otherwise we have a larger odd cycle. Thus, we have n − 3 non-adjacent paths meeting

V (C) \ {v2n−1, v1, v2, v3, v4, v5, v6} in 2n − 1 − 7 = 2n − 8 vertices . We deduce vp is not

n connected, and (4.0.1.19) holds. . By (4.0.1.19) holds and (4.0.1.18), we deduce that if

we have longer path length of a distinguished path, then the two consecutive pairs are not

distance two on C, that is (4.0.1.17) holds.

Suppose the distance on C between two consecutive distinguished pairs is greater than

two. Label the first adjacent pair of vertices v1 and v2 with paths p1 and p2 from v0, and

the second adjacent pair of vertices va and va+1 with paths pa and pa+1. As noted before,

between v2 and va on C is an alternating sequence of distinguished and undistinguished

vertices as shown in Figure 4.11. Let pk be a distinguished path not in a distinguished

consecutive pair from v0 to vk between v2 and va.

First we show the following result.

4.0.1.20. The length of p2 is not greater than one.

Suppose p2 has length greater than one. Let vp be the vertex on p2 adjacent to v0. Let

p′2 as the subpath from v2 to vp.

Figure 4.11: Subgraph when the sets of paths are distance two

By (4.0.1.1), p1 and p2 have the same parity and pa and pa+1 have the same parity.

This is shown in Figure 4.11 with varying path textures. By Theorem 2.0.2, the graph G
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has n − 1 distinct internally disjoint paths from vp to C not through v0 . Observe that

|pa|+ |pa+1| is even. Let vq be a vertex on the interior of p1, and p′1 be the subpath from vq

to v1 on p1. By (4.0.1.6), and the paths consisting of the union of p′2, (v2, v3, . . . , v2n−1, v1),

and p′1 and the union of p′2, (v2, v3, . . . , va−1, va), pa, pa+1, (va+1, va+2, . . . , v2n−1, v1) and

p′1 of lengths 2n − 2 + |p′1| + |p′2| and 2n − 3 + |p′1| + |p′2| + |pa| + |pa+1|, no vp − vq path

can exist that internally is disjoint from V (C)∪ v0. By (4.0.1.6), and the paths consisting

of the union of p′2, and (v2, v3, . . . , v2n−1, v1) and the union of p′2, (v2, v3, . . . , va−1, va), pa,

pa+1, and (va+1, va+2, . . . , v2n−1, v1) of lengths 2n− 2 + |p′2| and 2n− 3 + |p′2|+ |pa|+ |pa+1|,

no vp − v1 path can exist that is internally disjoint from V (C) ∪ v0. Since p2 has a length

greater than one, the length of p4 has the opposite parity by (4.0.1.2). The paths consisting

of the union of p′2 and (v2, v1, . . . , v4, v3) and the union of (vp, v0), p4, (v4, v5, . . . , v3) imply

there is no vp− v3 path that is internally disjoint from V (C)∪ v0. Label an interior vertex

of pk as vr, if it exists. Let p′k as the subpath from vr to vp and let pk − p′k be the subpath

of pk from vr to v0. When pk has length greater than one, |pk−2| has the opposite parity

by (4.0.1.2). Thus |p′k|+ |pk−2| and |pk| − |p′k| have opposite parities, since |p′k|+ |pk−2|+

|pk| − |p′k| = |pk−2|+ |pk|. By the paths consisting of the union of p′2, (v2, v3, . . . , v2n−1, v1),

p1, and pk − p′k and the union of p′2, (v2, v3, . . . , vk−2), pk−2, p1 (v1, v2n−1, . . . , vk) and p′k

of lengths |p′2| + ((2n − 1) − 1) + |p1| + |pk − p′k| = 2n − 2 + |p′2| + |p1| + |pk − p′k| and

|p′2|+ ((2n−1)−2−1) + |pk−2|+ |p1|+ |p′k| = 2n−4 + |p′2|+ +p1|+ |pk−2|+ |p′k|, no vp− vr

path can exist that is internally disjoint from V (C)∪ v0 for any interior vertex vr on some

pk with k 6= 4. If k = 4, the paths that consist of the union of p′2, (v2, v1, . . . , va+1), pa+1,

pa, (va, va−1, . . . , v4), and p′4 and the union of p′2, (v2, v1, . . . , v4), and p′4 suffice to show no

vp − vr path can exist that is internally disjoint from V (C) ∪ v0 for any interior vertex

vr on k = 4. Label an interior vertex of pa as vs, if it exists. Let the subpath of pa from

vs to va be p′a. Since pa has a length greater than one, pa−2 has the opposite parity by

(4.0.1.2). By (4.0.1.1), |pa+1| has the same parity as |pa|. Note that since |p1|+ |p2| is even,

|p1| + |p′2| is odd. By the paths consisting of the union of p′2, (v2, v3, . . . , va−2), pa−2, p1,
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and (v1, v2n−1, . . . , va) of length |p′2| + 2n − 4 + |pa−2| + |p1| + |p′a| and the union (vp, v0),

pa−2, (va−2, va−3, . . . va) and p′a of length 1 + 2n − 1 − 2 + |pa−2| + |p′a|, no vp − vs path

can exist that is internally disjoint from V (C)∪ v0, if and interior vs exists. Let pa+1 have

length greater than one. Label an interior vertex of pa+1 as vt. Let the subpath of pa+1

from vt to va be p′a+1. Note that since |pa| + |p′a+1| is even, |pa| + |p′a+1| and |pa+1 − p′a+1|

have the same parity. By the paths consisting of the union of p′2, (v2, v3, . . . , v1), p1, and

pa+1 − p′a+1 and the union of p′2, (v2, v1, . . . , va), pa, p1, (v1, v2n−1, . . . , va+1) and p′a+1 with

lengths |p′2|+((2n−1)−1)+|p1|+|pa+1−p′a+1| and |p′2|+((2n−1)−2)++|pa|+|p1|+|p′a+1|,

no vp− vt path can exist that is internally disjoint from V (C)∪ v0. Let pb be an additional

distinguished path to vb; that is, b > a+ 1 in our labeling. Label an interior vertex of pb as

vu. Let the subpath of pb from vu to vb be p′b and the subpath of pb from vu to v0 be pb−p′b

By the paths consisting of the union of p′2, (v2, v3, . . . , v1), p1 and pb−p′b and the union of p′2,

(v2, v3, . . . , va), pa, pa+1, (va+1, va+2, . . . , v1), p1, and pb−p′b, no vp−vu path can exist that is

internally disjoint from V (C)∪ v0 for any interior vertex vu of pb. By the paths consisting

of the union of (vp, v0), pa−2, and (va−2, va−3, . . . , va) and p′2, (v2, v3, . . . va+2), pa−2, p1,

and (v1, v2n−1, . . . va), no vp − va path can exist that is internally disjoint from V (C) ∪ v0.

By the paths (vp, v0), pa, and (va, va−1, . . . va+2) and (vp, v0), pa+1, and (va+1, va, . . . va+2),

no vp − va+2 path can exist that is internally disjoint from V (C) ∪ v0. By symmetry, no

vp− va−1 path can exist that is internally disjoint from V (C)∪ v0. By the paths consisting

of the union of p′2 and (v2, v3, . . . , v1) and the union of p′2, (v2, v3, . . . , va), pa, pa+1, and

(va+1, va+2, . . . , v1), no vp− v1 path can exist that is disjoint from V (C)∪ v0. By the paths

consisting of the union of p′2 and (v2, v1, . . . , v3) and p′2, (v2, v1, . . . , va+1), pa+1, pa, and

(va, va−1, . . . , v3), no vp − v3 path can exist that is internally disjoint from V (C) ∪ v0. By

the paths consisting of the union of p′2,(v2, v3, . . . , va), pa, pa+1, and (va+1, va+2, . . . , v2n−1

and the union of (vp, v0) p1, and (v1, v2, . . . , v2n−1), no vp − v2n−1 path can exist that is

internally disjoint from V (C) ∪ v0.
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Allowing for possible paths to va+1 and v2, there are n− 3 remaining paths from vp to

V (C) \ {va+2, va+1, va, va−1, v2n−1, v1, v2, v3}. By the triangle {v0, va, va+1} and (4.0.1.3), vp

cannot have paths meeting C at consecutive vertices in V (C)\{va+2, va+1, va, va−1, v2n−1, v1, v2, v3}.

Thus we have n− 3 paths meeting non-consecutive vertices in 2n− 1− 8 = 2n− 9 vertices

which is divided in two paths of C. Thus p2 does not have length greater than one and

(4.0.1.20) holds.

The cases where some pk path has length greater than one and only p1 has length greater

than one are included in the appendix, which completes the proof of (4.0.1.16).

Suppose there is only one consecutive distinguished pair of vertices. Let v1 and v2

be the adjacent pair meeting distinguished paths p1 and p2. Observe that the vertices

v3, v4, . . . v2n−1 alternate between undistinguished and distinguished vertices the the first

and last being undistinguished as in Figure 4.12.

Figure 4.12: Subgraph configuration

Suppose some distinguished path pa with a /∈ {1, 2} has length greater than one as in

Figure 4.13. Let va be the vertex on C meeting pa and let vp be the vertex adjacent to v0

on pa. Let p′a be the subpath from vp to va.

By Theorem 2.0.2, the graph G has n− 1 distinct internally disjoint paths from vp to C

not through v0 . By (4.0.1.1), |p1| and |p2| have the same parities, and by (4.0.1.2) pa and

pa±2 have opposite parities, since pa has length greater than one . Let p2 have length greater
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Figure 4.13: Subgraph configuration

than one. Let vt be a point on the interior of p2. Let p′2 be the subpath from vt to v2. By

(4.0.1.6) and the paths consisting of the union of (vp, v0), p1, v1, v2n−1, . . . , v2), and p′2 and

the union of p′a (va, va−1, . . . , va+2), pa+2 and (p2− p′2) of lengths 1 + |p1|+ 2n− 1− 1 + |p′2|

and |p′a| + 2n − 1 − 2 + |pa+2| + |p2 − p′2|, no vp − vt path disjoint from V (C) ∪ v0 can

exist. By symmetry, no path from vp to a vertex on the interior of p1 that is disjoint from

V (C) ∪ v0 can exist. Let the distinguished path with the smallest distance on C from

pa also has length greater than one. Let such a distinguished path be pa+2. Let vs be a

point on the interior of pa+2. Let p′a+2 be the subpath from vt to va+2. By (4.0.1.6) and

the paths consisting of the union of p′a, va, va−1, . . . , va−2), and p′a−2 and the union of p′a,

(va, va−1, . . . , v1), p1, p2, (v2, v3, . . . , va−2) and p′a−2 of lengths |p′a|+ 2n− 1− 2 + |p′a2| and

|p′a| + 2n − 1 − 2 − 1 + |p1| + |p2| + |pa−2|, no vp − vs path disjoint from V (C) ∪ v0 can

exist. By symmetry, no path from vp to a vertex on the interior of pa+2 that is disjoint

from V (C) ∪ v0 can exist. Let a distinguished path pb that does not meet C at a or a± 2

have length greater than one. Let vb be the vertex on C that meets the path. Let vq be

an internal point on pb. Let pb be the subpath from vq to vb. By (4.0.1.2) pb and pb±2 have

opposite parities, since pb has length greater than one . By the paths consisting of the

union of p′a, (va, va−1, . . . , va−2), pa−2, pb− p′b and the union of p′a, (va, va+1, . . . , vb−2), pb−2,

pa−2, (va−2, va−3, . . . , vb) and p′b, and p′b of lengths |p′a|+ 2n− 1− 2 + |pa−2|+ |pb− p′b| and
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|p′a| + 2n− 1− 2− 2 + |pb−2| + |pa−2| + |p′b| where |pb−2| + |p′b| has the opposite parity as

|pb− p′b|, no vp− vq path that is disjoint from V (C)∪ v0 can exist. The paths consisting of

the union of (vp, v0), p1, (v1, v2n−1, . . . , v2) and the union of p′a, (va, va+1, . . . v1), p1, pa−2,

(va−2, va−3 . . . v2 imply there is no vp−v2 path that is disjoint from V (C)∪v0 unless a = 4.

If a = 4, the paths consisting of the union of p′4, and (v4, v5, . . . v2) and the union of (vp, v0),

p1, and (v1, v2n−1, . . . , v2) suffice. By symmetry, there is no vp − v1 path that is disjoint

from V (C) ∪ v0. By the paths that consist of a union of (vp, v0), p1 and (v1, v2n−1, . . . v3)

and the union of (vp, v0), p2, and (v2, v1 . . . , v3), no vp − v3 path may exist that is disjoint

from V (C)∪v0. By symmetry, no vp−v2n−1 path may exist that is disjoint from V (C)∪v0.

Thus vp has n− 1 remaining paths to V (C) \ {v2n−1, v1, v2, v3}. By (4.0.1.3) and the paths

p1 and p2 with edge v1 − v2, vp paths may not meet adjacent vertices on the remainder of

C. Thus we have n− 1 non-adjacent vertices into 2n− 1− 4 = 2n− 5 remaining vertices

of C. Thus one of our single spoke paths cannot have length greater than one and we find

the following

4.0.1.21. All distinguished paths other than the paths that meet C at adjacent vertices

have length one.

Suppose one of the consecutive paths has length greater than one. Let p2 have length

greater than one as in Figure 4.14. Since p4 has length one, p2 has an even length by

(4.0.1.2).

Let vp be the point on p2 that is adjacent to v0. Let p′2 be the subpath of p2 from vp to

v2.

Since p2 is even, p1 is also even by (4.0.1.1). Let vq be a vertex on the interior of p1. Let p′1

be the subpath of p1 from vp to v1. The path consisting of the union of p′2, (v2, v3, . . . , v1),

and p′1 and the union of (vp, v0, v4, v5, . . . v1) and p′1 imply there is no vp − vq path that

is internally disjoint from V (C) ∪ v0. By the paths consisting of the union of p′2, and

(v2, v1, . . . , v3) and (vp, v0), p1, and (v1, v2n−1, . . . , v3), no vp− v3 path that is disjoint from
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Figure 4.14: Subgraph configuration

V (C) ∪ v0 can exist. By the paths (vp, v0, v2n−2, v2n−3 . . . v2n−1 and the union of (vp, v0),

p1, (v1, v2, . . . v2n−1), there is no vp− v2n−1 path that is internally disjoint from V (C)∪ v0.

Let a be an even number that is not four. By the paths (vp, v0, va−2, va−3, . . . , va) and

the union of p′2, (v2, v3, . . . , va−2, v0), p1, (v1, v2n−1, . . . , va), there is no vp− va path that is

internally disjoint from V (C)∪v0. Let a be an odd number that is not three. By the paths,

(vp, v0, va−1, va−2, . . . , va) and the union of p′2, (v2, v3, . . . , va−1, v0), p1, (v1, v2n−1, . . . , va),

there is no vp− va path that is internally disjoint from V (C)∪ v0. Thus there are only four

possible vertices for vp paths to meet, and vp contradicts n-connectivity. Thus p2 has path

length one and by symmetry p1 has path length one, and we find (4.0.1.7) holds.

Since |V (C)| > 2n, we have more than one vertex not in V (C). Label two of these vertices

v0 and v′0. Each meets C with n paths of length one. Examine all of the consecutive vertices

where v0 paths meet C and the consecutive vertices where v′0 meets C. Suppose there is

more than one adjacent pair of vertices where both v0 and v′0 meet C. There is at least

one pair for each v0 and v′0. Label the pair for v0 as v1 and v2 and label the pair for v′0

as va and va+1. By the cycle (v1, v0, v2, v3, . . . , va, v
′
0, va+1, va+2, . . . , v2n−1), there is a cycle

of odd length greater than 2n − 1. Thus there is only one consecutive distinguished pair.

This implies we must have configurations of the type if Figure 4.15 with all paths meeting

at the same vertices. We may add as many vertices as we like connecting to the same set.
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Figure 4.15: Subgraph configuration

Now we must check for additional possible edges within G that do not create a larger

odd cycle. Let va and vb be any two odd vertices other than one. From above we know

that va does not connect to any v0. Suppose we have an edge from va to vb. Suppose

a > b. By the 2n+1-cycle (va, va+1, . . . , v1, v0, v2, v3, . . . , vb−1, v
′
0, va−1, va−2 . . . , vb), the odd

vertices except v1 are not adjacent. Since they must have degree n this implies they are

connected to the even vertices and v1. These edges create no odd cycles. This fulfills the

degree requirement of each vertex. By arranging the graph in a bipartite fashion, with one

side of the partition {v1, v2, v4, . . . , v2n−2}, we see that any edge between the this side of

the partition will create no new additional odd cycles as we may only use the a vertex

of the other partition exactly once. Thus we may have as many edges as we like between

these vertices, and we reach our desired configuration.
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