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Abstract
Fluid drag is a force that opposes relative motion between fluid layers or between solids

and surrounding fluids. For a stationary solid in a moving fluid, it is the amount of force

necessary to keep the object stationary in the moving fluid. In addition to fluid and flow

conditions, pressure drag on a solid object is dependent on the size and shape of the object.

The aim of this project is to compute the shape of a stationary 2D object of size 3.5 m2 that

minimizes drag for different Reynolds numbers. We solve the problem in the context of shape

optimization, making use of shape sensitivity analysis. The state variables are fluid pressure

and velocity (~u and p) modeled by the Navier-Stokes equation with cost function given by

the fluid drag which depends on the state variables. The geometric constraint is removed by

constructing a Lagrangian function. Subsequent application of shape sensitivity analysis on

the Lagrangian generates the shape derivative and gradient. Our optimization routine uses

a variational form of the sequential quadratic programming (SQP) method with the Hessian

replaced by a variational form for the shape gradient. The numerical implementation is

done in Python while the open source finite element package, FEniCS, is used to solve all

the partial differential equations. Remeshing of the computational domain to improve mesh

quality is carried out with the open source 2D mesh generator, Triangle. Final shapes for

low Reynolds numbers (Re ≤ 1.0) resemble an american football while shapes for moderate

to high Reynolds numbers are (Re ≤ 200) more streamlined in the tail end of the object

than at the front.

ix



Chapter 1
Introduction

Fluid mechanics is an important field of engineering that finds applications in various

industries including aeronautics, automotive, manufacturing and chemical. Analysis of fluid

flow facilitates engineering design and optimization for efficient utilization of energy and

resources. One such application is in shape optimization in which design involves finding the

optimal shape that minimizes fluid drag around a body. Knowledge from solution of this

problem has been used to design shapes of airfoils and cars. Fluid drag is a force experienced

by solids in contact with fluids. It resists relative motion between the solid and fluid and

acts in the direction opposite to motion. It depends on flow conditions, solid shape and size

and surface roughness. An inevitable consequence of drag is kinetic energy dissipation of

the moving fluid or solid, leading to inefficiency in the use of energy. By finding the shape

of airplanes and cars that minimizes drag, energy can be conserved and used to do other

things like moving at faster speeds.

Mathematically, shape optimization involves a cost functional to be minimized, expressed

in terms of state variables and defined over the physical domain of the problem or its bound-

aries. The state variables usually satisfy a set of equations, partial differential equations

(PDE) for example. Thus, shape optimization problems belong to the the general class of

PDE constrained optimization in which the control parameter is the object shape defined by

its boundaries. The object whose shape is to be changed can be represented either implicitly

or explicitly. Implicit representation identifies object boundaries as the level sets of some

predefined functions while explicit representation uses a parameterization of the boundaries.

In addition to equations that describe the state variables, the optimal shape sometimes

is required to satisfy some geometric constraints like volume or shape requirement. This

invariably introduces an extra level of complexity.

Mathematical analysis for the solution of shape optimization falls under shape differential

calculus (Hadamard 1908; Pironneau 2012; Pironneau 1973; Pironneau 1973; Delfour and
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Zolésio 2001; Delfour and Zolésio 2001; Zolésio 1992; Walker 2015). At the core of it is finding

the directions along which the shape boundaries are moved to deform it towards the optimal

profile. This direction is provided by the shape gradient which measures the sensitivity of

the cost function with respect to small perturbations in the obstacle’s shape. Thereafter, the

boundaries are moved either by manually moving the coordinates of the boundary nodes (i.e.

by updating the parameterization) or by advecting the phase field function representing the

shape. Shape derivatives can be effectively combined with finite element methods to yield a

method for computing optimal shapes. However, the corresponding strong form equations

derived from weak form analysis can be solved using other numerical methods.
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Chapter 2
Shape Sensitivity
2.1 Review of Basic Shape Calculus

We review the basic concepts and formulas in sensitivity analysis for shape optimization

problems. Detailed information can be found in Haslinger et al. (2003), Zolésio (1992),

Delfour and Zolésio (2001). Sensitivity analysis in shape optimization involves computations

of derivatives of state, adjoint variables and cost functionals with respect to changes in

object shape (Walker 2015). In this theory, the continuum mechanics approach is used and

the object is considered as a collection of material particles changing position with time t,

during deformation. Therefore, t is taken as the implicit control parameter. Accordingly,

shape sensitivity is based on the idea of material derivative in continuum mechanics and

proceeds as follows: If Ω ⊂ Rd is the domain with sufficient smooth boundaries Γ = ∂Ω,

then Ω is a collection of material particles whose positions (~x) change with time, t. A smooth

topological variation of Ω will lead to Ωt so that the configuration of Ωt is given by the new

coordinates of the material particles in Ωt. Ωt is constructed in the form of the flow of a

given velocity field, ~v (~x, t), where ~v (~x, t) is the material description of the velocity field

characterizing the change in shape of the object. ~v (~x, t) which is also the descent direction,

is the most important quantity of interest in shape optimization as it provides the direction

of flow of the boundaries as the object deforms towards the optimum shape. The descent

direction is computed from the shape derivative of the cost functional.

2.1.1 Shape and Material Derivative of State Variables

For an arbitrary scalar variable, u, defined over Ω, the relationship between its material

and shape derivatives along the direction, ~v, is given as follows

u̇ =
du

dt
=
∂u

∂t
+∇u · ~v

= u′ +∇u · ~v
(2.1)

3



If ~u is a vector, the relationship is

~̇u =
∂~u

∂t
+∇~u~v (2.2)

u̇: total derivative also known as material derivative of u. u′: shape derivative of u

2.1.2 Shape Derivative of Cost Functional and Hadamard Formula

Perturbation of shape functional with respect to changes in object shape along ~v is called

the shape derivative and is defined as

J̇ :=
d

d t
J |t=0+ = lim

t→0+

J(Ωt)− J(Ω)

t
= δJ(Ω;~v) (2.3)

Computation of shape derivative of the cost functional using Eqn. 2.3 can be very difficult.

However, from Reynold’s transport theorem, the equations described below can be used to

compute the material derivative of functionals defined by integrals, in which the integrands

and domains of integration depend on t.

For a cost functional, J , given as

J =

∫
Ω

f(xt) dΩ (2.4)

the shape derivative characterizing the deformation of the object as it moves from Ω to Ωt

in the direction ~v can be computed as follows, using the Reynold’s transport equations

δJ(Ω;~v) =

∫
Ω

f ′dΩ +

∫
∂Ω

f~v · ~n dΓ

δJ(Ω;~v) =

∫
Ω

ḟdΩ +

∫
Ω

f ∇ · ~v dΩ

(2.5)

ḟ and f ′ are the material and shape derivatives of f respectively. For example, if f is

independent of Ωt, then

4



δJ(Ω;~v) =

∫
∂Ω

f ~v · ~n dΓ (2.6)

Eqn. 2.5 is also used in computing the material derivatives of the weak forms of the

partial differential equations satisfied by the state and adjoint equations as will be seen in

Chapter 3.

2.1.3 Hadamard Formula and Descent Direction

The Hadamard-Zolésio theorem (Zolésio 1992; Delfour and Zolésio 2001) states that

under some regularity assumptions, the shape derivative equations of Eqn. 2.5, can be

expressed as the scalar product of the normal component of the velocity field, ~v, with some

scalar shape gradient defined on the surface of the object to be optimized. The formula is

given by

δJ(Ω;~v) =

∫
∂Ω

∇J v dΓ = 〈∇J, v〉∂Ω (2.7)

∇J is the shape gradient of the cost functional, v = ~v · ~n, where ~n is the normal to the

object boundaries. ∇J in general depends on the state and associated adjoint state variables.

Considering that δJ(Ω;~v) is the variation of the cost functional with respect to shape changes,

the updated cost functional on the updated object shape, Ωt, can be written as

J(Ωt) = J(Ω) + δJ(Ω;~v) + error (2.8)

Cost functional is minimized by ensuring the J(Ωt) is reduced during the optimization pro-

cess. From Eqn. 2.8, this is achievable if δJ(Ω;~v) < 0. One way to achieve this is using

a gradient based iterative algorithm which will require finding a descent direction, ~v, to

guarantee a reduction in the cost function. Similar to the procedure in classical optimiza-

tion problems, the simplest choice of ~v to guarantee steepest descent of the cost function is

~v = −∇J ~n, since δJ(Ω; ~V ) = −
∫
∂Ω
|∇J |2 dΓ < 0. As a result, J(Ωt) < J(Ω). Thereafter, a

new object domain is computed as

5



Ωt = Ω + α~v (2.9)

Where α is a step size along the descent direction.

From the foregoing analyses, it is obvious that the primary task in shape optimization

is deriving the scalar shape gradient for use in computing the descent direction along which

the object is deformed to optimize its shape. In the next chapter, we apply these concepts

to find the optimum shape for drag minimization problem.
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Chapter 3
Application To Drag Minimization
3.1 Introduction

This project involves shape sensitivity analysis for flow around an arbitrarily shaped 2D

object placed in the path of a viscous, incompressible fluid modeled by steady state Navier-

Stokes equation. The objective is to determine the shape of the object that minimizes a

cost functional, subject to fixed geometric constraint, the shape area. Control variable is

the object shape while the cost functional is the fluid drag around the object. Since the

fluid flow must satisfy Navier-Stokes equation, the state variables are fluid velocity, ~u and

pressure, p. Fluid dynamic viscosity is µ. The 2D version of the problem is solved in this

project and a hypothetical problem domain is sketched in Fig. 3.1. It consists of a bounded

flow region, Ω ⊂ R2, with lengths lx and ly. The boundaries of the flow region are defined

by ∂Ω = Γin ∪Γout ∪Γ+ ∪Γ−. We consider the case of fluid flowing from left to right so that

Γin and Γout are inlet and outlet boundaries respectively. Γ+ and Γ− are top and bottom

boundaries of the domain with no-slip boundary condition. Inside Ω, an object (Ωb) with

boundaries Γs is placed. It is the optimum shape of Ωb which minimizes fluid drag that we

seek to find. Ωb must have an area of Ao. The admissible shapes of Ωb must be continuous,

bounded with lipschitz and non-self-intersecting boundaries.

3.1.1 Drag Functional

The project objective is: for all admissible shapes with area Ao, find the shape of Ωb

that minimizes the fluid drag . Fluid drag is the force exerted in flow direction, by a moving

fluid on an obstacle placed along it’s path. Mathematically, it is defined as

J(Ω, ~u, p) = −~n∞
∫

Γs

σ · ~n (3.1)

~n∞, ~n are the unit vector in the flow direction and normal vector to obstacle boundary while

σ is fluid stress. Since we consider flow in the x-direction, ~n∞ = ~ex

7



Figure 3.1: Conceptual domain for drag minimization problem

3.1.2 Constraints: Navier-Stokes Equation and Geometric Constraint

Two constraints are required to be satisfied by the fluid and the admissible shapes: a

partial differential equation to model the state variables, velocity (~u) and pressure (p) and

a specified area requirement for the admissible object.

Navier-Stokes and continuity equation is used to model fluid flow in the channel and

around the obstacle. Both equations with applied boundary conditions are given as

−∇ · σ + (~u · ∇) ~u = 0 in Ω (3.2)

∇ · ~u = 0 in Ω (3.3)

~u = uo~ex on Γin (3.4)

~u = 0 on Γ+ ∪ Γ− ∪ Γs (3.5)

σ · ~n = 0 in Γout (3.6)

8



Where

σ = −pI + 2µ ε(~u) (3.7)

ε(~u) =
∇~u+∇~uT

2
(3.8)

(3.9)

ε(~u) is the fluid strain rate tensor.

In addition to PDE constraint for the fluid flow, an area constraint on the object is im-

posed so that area of the admissible shapes is fixed. Mathematical, the geometric constraint

is given by

C := |Ωb| − Ao = 0 (3.10)

3.2 Mathematical Analysis of Model Equations

3.2.1 Weak Formulation of Navier-Stokes Equation

Let ~q ∈ H1
0 (Ω) and w be test functions for Navier-Stokes and continuity equations, the

weak forms of Eqns. 3.2 and 3.3 are obtained as follows. Multiplying Eqns. 3.2 and 3.3 by

~q and w respectively, and integrating over Ω, we

∫
Ω

(
−∇ · σ + (~u · ∇) ~u

)
· ~q = 0 (3.11)

From divergence theorem, we can write

∫
Ω

∇ · (σ · ~q) =

∫
∂Ω

(σ · ~q) · ~n =

∫
Ω

(∇ · σ) · ~q +

∫
Ω

σ : ∇~q (3.12)

9



Therefore Eqn. 3.11 becomes

−
∫
∂Ω

(σ · ~q) · ~n+

∫
Ω

σ : ∇~q +

∫
Ω

(~u · ∇) ~u · ~q = 0∫
Ω

σ : ∇~q +

∫
Ω

(~u · ∇) ~u · ~q = 0 (σ · ~n = 0 from Eqn. 3.6)∫
Ω

σ : ∇~q +

∫
Ω

(~u · ∇) ~u · ~q = 0

(3.13)

If σ from Eqn. 3.89 is substituted into Eqn. 3.13, we have

−
∫

Ω

p∇ · ~q +

∫
Ω

2µ ε(~u) : ε(~q) +

∫
Ω

(~u · ∇) ~u · ~q = 0 (3.14)

The weak form of the continuity equation is simply

∫
Ω

w∇ · ~u = 0 (3.15)

Adding Eqn. 3.14 and 3.15, the weak form of the Navier-Stokes equation becomes

−
∫

Ω

p∇ · ~q +

∫
Ω

2µ ε(~u) : ε(~q) +

∫
Ω

(~u · ∇) ~u · ~q +

∫
Ω

w∇ · ~u = 0 (3.16)

If we consider the following bilinear and trilinear forms,

a(~u, ~q) =

∫
Ω

2µ ε(~u) : ε(~q)

c(p, ~q) =

∫
Ω

p∇ · ~q

c(w, ~u) =

∫
Ω

w∇ · ~u

b(~u, ~u, ~q) =

∫
Ω

(~u · ∇) ~u · ~q =

∫
Ω

(∇~u · ~u) · ~q

(3.17)

then an alternate form for the flow model is: find ~u and p such that

a(~u, ~q) + b(~u, ~u, ~q)− c(p, ~q)− c(w, ~u) = 0 ∀ ~q and w (3.18)
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3.2.2 Shape Derivative of State Variables, ~u and p

According to Reynold’s transport equation of Eqn. 2.5, the material derivative of the

integral of a function F (t, x), is given by

d

dt

∫
Ω

F (t, x) dx =

∫
Ω

∂F (t, x)

∂t
dx+

∫
∂Ωt

F (t, x)~v · ~n dΓ

=

∫
Ω

F ′(t, x)dx+

∫
∂Ωt

F (t, x)~v · ~n dΓ

(3.19)

Applying Eqn. 3.19 to the weak form of the Navier-Stokes equations as written in Eqn.

3.18, we have

a(~u′, ~q) + b(~u′, ~u, ~q) + b(~u, ~u′, ~q)− c(p′, ~q)− c(w, ~u′)

+ a(~u, ~q′) + b(~u, ~u, ~q′)− c(p, ~q′)− c(w′, ~u)

+

∫
Γs

(
− p∇ · ~q + 2µ ε(~u) : ε(~q) + (~u · ∇) ~u · ~q + w∇ · ~u

)
~v · ~n = 0 (3.20)

Since ∇ · ~u = 0 in Ω and ~u = 0 on Γs, Eqn. 3.20 becomes

a(~u′, ~q) + b(~u′, ~u, ~q) + b(~u, ~u′, ~q)− c(p′, ~q)− c(w, ~u′)

+ a(~u, ~q′) + b(~u, ~u, ~q′)− c(p, ~q′)− c(w′, ~u) +

∫
Γs

(σ : ∇~q) (~v · ~n) = 0 (3.21)

The last row of the equation above is analyzed as follows: If we multiply Eqns. 3.2 and 3.3

by ~q′ and w′ and integrate over Ω, we obtain

a(~u, ~q′) + b(~u, ~u, ~q′)− c(p, ~q′)− c(w′, ~u)−
∫
∂Ω

σ · ~n · ~q′ = 0 (3.22)

The boundary term in Eqn. 3.22 is expanded as

∫
∂Ω

σ · ~n · ~q′ =
∫

Γin

σ · ~n · ~q′ +
∫

Γ+,Γ−

σ · ~n · ~q′ +
∫

Γout

σ · ~n · ~q′ +
∫

Γs

σ · ~n · ~q′ (3.23)
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Remember ~̇q = ~q′+∇~q ·~v. Since ~q = 0 on Γin∪Γ+∪Γ−, then ~̇q = 0 on those boundaries and

~q′ = −∇~q · ~v. However, Γin ∪ Γ+ ∪ Γ− do not deform. Therefore, ~v = 0 on Γin ∪ Γ+ ∪ Γ−. In

addition, σ · ~n = 0 on Γout. As a result, the only non-zero term of Eqn. 3.23 is on Γs. Eqn.

3.23 becomes ∫
∂Ω

σ · ~n · ~q′ = −
∫

Γs

σ · ~n · (∇~q · ~v) (3.24)

Applying the same analysis as in Eqn. A.10, A.11, A.12, A.13 and considering that ∇Γ~q = 0

since ~q = 0 on Γs, we have

∫
∂Ω

σ · ~n · ~q′ = −
∫

Γs

(σ : ∇~q) (~v · ~n) (3.25)

Substituting Eqn. 3.25 in Eqn. 3.22, we obtain

a(~u, ~q′) + b(~u, ~u, ~q′)− c(p, ~q′)− c(w′, ~u) +

∫
Γs

(σ : ∇~q) (~v · ~n) = 0 (3.26)

Upon substituting Eqn. 3.26 back into Eqn. 3.21, the weak form equation for shape deriva-

tive of the state variables is

a(~u′, ~q) + b(~u′, ~u, ~q) + b(~u, ~u′, ~q)− c(p′, ~q)− c(w, ~u′) = 0 (3.27)

The boundary conditions are analyzed as follows.

~̇u = ~u′ +∇~u · ~v (3.28)

On all Dirichlet boundaries (Γin ∪ Γs ∪ Γ+ ∪ Γ−), ~u is fixed. Therefore, ~̇u = 0 and

~u′ = −∇~u · ~v (3.29)
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Since the coordinates of Γin ∪ Γ+ ∪ Γ− do not change, ~v = 0 on those boundaries and

~u′ = 0 on Γin ∪ Γ+ ∪ Γ− (3.30)

~u′ = −∇~u · ~v on Γs (3.31)

Therefore, the strong form of the equations satisfied by the shape derivatives of pressure and

velocity, ~u′ and p′ are

−∇ · σ′ + ~u′ · ∇~u+ (~u · ∇) ~u′ = 0 in Ω (3.32)

∇ · ~u′ = 0 in Ω (3.33)

~u′ = 0 on Γin ∪ Γ+ ∪ Γ− (3.34)

~u′ = −∇~u · ~v on Γs (3.35)

σ′ · ~n = 0 on Γout (3.36)

Where

σ = −p′I + 2µ ε(~u′) (3.37)

3.2.3 Cost Functional

Following the approach by Morin et al. (2011), Dede (2007) and Brandenburg et al.

(2009), an equivalent volume integral of the cost function, Eqn. (3.1), is formulated as

follows. Let φ be a function defined over the domain as below.

~φ =

 −~n∞ on Γs

0 a.e
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Also, let

I(Ω, ~u, p) =

∫
∂Ω

~φ σ · ~n =

∫
Γs

~φ σ · ~n+

∫
Γin

~φ σ · ~n+

∫
Γout

~φ σ · ~n+

∫
Γ+

~φ σ · ~n+

∫
Γ−

~φ σ · ~n

(3.38)

However, since σ · ~n = 0 on Γout and ~φ = 0 on Γin, Γ+ and Γ−, Eqn. 3.38 becomes

J(Ω, ~u, p) =

∫
Γs

~φ σ · ~n = J(Ω, ~u, p) (3.39)

Therefore we can write that

J(Ω, ~u, p) =

∫
∂Ω

~φ σ · ~n (3.40)

Applying Green’s theorem to Eqn. 3.40

J(Ω, ~u, p) =

∫
∂Ω

~φ σ · ~n =

∫
Ω

∇ · (σ · ~φ)

=

∫
Ω

~φ · ∇ · σ +

∫
Ω

∇~φ : σ

=

∫
Ω

(~u · ∇) ~u · ~φ+

∫
Ω

∇~φ : σ (since ∇ · σ = ~u · ∇ · ~u)

=

∫
Ω

(~u · ∇) ~u · ~φ−
∫

Ω

p∇ · ~φ+

∫
Ω

2µ ε(~φ) : ε(~u)

= a(~u, ~φ) + b(~u, ~u, ~φ)− c(p, ~φ)

(3.41)

3.3 Unconstrained Optimization: Lagrangian Method

The optimization problem involves finding Ωb among all admissible configurations with

fixed area, that minimizes Eqn. 3.41 subject to ~u and p satisfying Navier-Stokes equations.

The problem is formally converted to an unconstrained optimization problem by constructing

a Lagrangian functional to remove the state and geometric constraints as shown below. For

all ~q and w and for λ as Lagrange multiplier, the Lagrangian is
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L
(

Ω, (~u, p), (~q, w), λ
)

= J(Ω, ~u, p)− a(~u, ~q)− b(~u, ~u, ~q) + c(p, ~q) + c(w, ~u) + λC

= a(~u, ~φ) + b(~u, ~u, ~φ)− c(p, ~φ)− a(~u, ~q)− b(~u, ~u, ~q) + c(p, ~q) + c(w, ~u) + λC

= a(~u, ~φ− ~q) + b(~u, ~u, ~φ− ~q)− c(p, ~φ− ~q) + c(w, ~u) + λC

(3.42)

If ~z = ~φ− ~q and r = −w, Eqn. 3.42 becomes

L
(

Ω, (~u, p), (~z, r), λ
)

= a(~u, ~z) + b(~u, ~u, ~z)− c(p, ~z)− c(r, ~u) + λC (3.43)

where ~z and r are the adjoint variables. Applying the KKT conditions, the derivative of

L
(

Ω, (~u, p), (~z, r), λ
)

with respect to Ω, (~u, p), (~z, r) and λ have to be zero at the optimum

solution. That is

δL
(

Ω, (~u, p), (~z, r), λ;~v
)

= 0 (3.44)

δ~u,pL
(

Ω, (~u, p), (~z, r), λ; (~vo, ho)
)

= 0 (3.45)

δ~z,rL
(

Ω, (~u, p), (~z, r), λ; (~v1, h1)
)

= 0 (3.46)

∇λL
(

Ω, (~u, p), (~z, r), λ
)

= 0 (3.47)

Eqn. 3.46 is the derivative along the arbitrary (~vo, ho) direction, of the Lagrangian function

with respect to the adjoint variables. It simply leads to the Navier-Stokes equation which will

be solved as part of the solution of the optimization process. Eqn. 3.45 is derivative of the

Lagrangian function with respect to the state variables, along an arbitrary (~vo, ho) direction.

It generates the partial differential equations that the adjoint variables must satisfy. Eqn.

3.44 is the material derivative of the Lagrangian function and from it’s Hadamard form

(Eqn. 2.7), the shape gradient will be obtained and used to move the boundary nodes of

the obstacle. As observed in Eqn. 3.43, the Lagrangian function depends on the state and
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adjoint variables. Therefore, solutions of Eqn. 3.45 and 3.46 will be required to obtain

the correct value for the shape gradient. Derivative of the Lagrangian with respect to the

Lagrange multiplier is simply

∇λL
(

Ω, (~u, p), (~z, r), λ
)

= C (3.48)

It is important to note that Eqn. 3.48 is not the optimality condition. Rather, it is

the value of the derivative at any point during the optimization process. However, once the

geometric constraint is satisfied at the end of optimization (i.e. C = 0), then the optimality

condition ∇λL
(

Ω, (~u, p), (~z, r), λ
)

= 0 is also satisfied.

3.3.1 Derivation of Adjoint Equation

Derivative of Eqn. 3.42 with respect to the state (~u and p) along ~v and h direction

proceeds as follows:

δ~u,pL
(

Ω, (~u, p), (~z, r), λ; (~vo, ho)
)

= a(~vo, ~z) + b(~vo, ~u, ~z) + b(~u,~vo, ~z)− c(ho, ~z)− c(r,~v)

=

∫
Ω

2µ ε(~vo) : ε(~z) +

∫
Ω

(~vo · ∇) ~u · ~z +

∫
Ω

(~u · ∇)~vo · ~z

−
∫

Ω

ho∇ · ~z −
∫

Ω

r∇ · ~vo

=

∫
Ω

2µ ε(~vo) : ε(~z)−
∫

Ω

r∇ · ~vo +

∫
Ω

(~vo · ∇) ~u · ~z

+

∫
Ω

(~u · ∇)~vo · ~z −
∫

Ω

ho∇ · ~z

= 0

(3.49)

If we define T as

T = −rI + 2µ ε(~z) (3.50)
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then,

δ~u,pL
(

Ω, (~u, p), (~z, r), λ; (~vo, ho)
)

=

∫
Ω

T : ∇~vo +

∫
Ω

(~vo · ∇) ~u · ~z +

∫
Ω

(~u · ∇)~vo · ~z −
∫

Ω

ho∇ · ~z

= a(~z,~vo)− c(r, ~vo) + b(~u,~vo, ~z) + b(~vo, ~u, ~z)− c(ho, ~z)

= 0

(3.51)

Eqn. 3.51 above is the weak form equation satisfied by the adjoint variables. To derive the

strong form of Eqn. 3.51, we carry out integration by parts of the equation to return it to its

pristine form after it has just been multiplied by the test functions ~vo and ho. The trilinear

form are further analyzed as follows. (see Lemma 6.3 in Slawig (2003) and Slawig (2006) for

more information).

∫
Ω

∇ ·
(
(~vo · ~z) ~u

)
=

∫
∂Ω

(~vo · ~z) (~u · ~n) =

∫
Ω

(~vo · ~z)∇ · ~u+

∫
Ω

~u · ∇(~vo · ~z) (3.52)

=

∫
Ω

~u · ∇(~vo · ~z) ( since ∇ · ~u = 0) (3.53)

The right hand side is further analyzed using indicial notations

∫
Ω

~u · ∇(~vo · ~z) =

∫
Ω

uj
∂ (voi zi)

∂xj

=

∫
Ω

ujvoi
∂ zi
∂xj

+

∫
Ω

ujzi
∂ voi
∂xj

=

∫
Ω

uj
∂ zi
∂xj

voi +

∫
Ω

uj
∂ voi
∂xj

zi

=

∫
Ω

(~u · ∇) ~z · ~vo +

∫
Ω

(~u · ∇)~vo · ~z

(3.54)

Substituting Eqn. 3.54 into Eqn. 3.53, we have

∫
∂Ω

(~vo · ~z) (~u · ~n) =

∫
Ω

(~u · ∇) ~z · ~vo +

∫
Ω

(~u · ∇)~vo · ~z (3.55)
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Therefore,

∫
Ω

(~u · ∇)~vo · ~z =

∫
∂Ω

(~vo · ~z) (~u · ~n)−
∫

Ω

(~u · ∇) ~z · ~vo (3.56)

After considering divergence formula for the first term on the right hand side of Eqn. 3.51

and upon substituting Eqn. 3.56 into Eqn. 3.51, we have

δ~u,pL
(

Ω, (~u, p), (~z, r), λ; (~vo, ho)
)

=

∫
∂Ω

T · ~vo · ~n−
∫

Ω

∇ · T · ~vo +

∫
Ω

(∇~uT · ~z) · ~vo

−
∫

Ω

(~u · ∇) ~z · ~vo +

∫
∂Ω

(~u · ~n)(~z · ~vo)−
∫

Ω

ho∇ · ~z

= 0

(3.57)

Remember that from Eqn. 3.11, ~q is a test function so that it has a value of zero on the

Dirichlet boundaries of the Navier-Stokes problem i.e

~q = 0 on Γs ∪ Γin ∪ Γ+ ∪ Γ− (3.58)

Therefore,

~z = ~φ− ~q = ~φ on Γs ∪ Γin ∪ Γ+ ∪ Γ− (3.59)

Eqn. 3.59 means that Γs, Γin, Γ+ and Γ− are also Dirichlet boundaries for the adjoint problem

while Γout is a Neumann boundary. The strong form of Eqn. 3.49 therefore becomes

−∇ · T +∇~uT · ~z − (~u · ∇) ~z = 0 in Ω (3.60)

∇ · ~z = 0 in Ω (3.61)

~z = ~φ on Γin ∪ Γ+ ∪ Γ− ∪ Γs (3.62)

T · ~n+ (~u · ~n) ~z = 0 in Γout (3.63)
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where

T = −rI + 2µ ε(~z) (3.64)

3.3.2 Shape Derivative of Adjoint Variables, ~z and r

The weak form of the adjoint equation is simply Eqn. 3.51, shown below for convenience.

~vo and ho are test functions.

a(~z,~vo)− c(r, ~vo) + b(~u,~vo, ~z) + b(~vo, ~u, ~z)− c(ho, ~z) = 0 (3.65)

Upon applying Eqn. 2.5 to the equation above, we have

a(~z′, ~vo)− c(r′, ~vo) + b(~u′, ~vo, ~z) + b(~u,~vo, ~z
′) + b(~vo, ~u

′, ~z) + b(~vo, ~u, ~z
′)− c(ho, ~z′)

+ a(~z,~v′o)− c(r, ~v′o) + b(~u,~v′o, ~z) + b(~v′o, ~u, ~z)− c(h′o, ~z)

+

∫
Γs

(
T : ∇~vo + (∇~uT · ~z) · ~vo + (~u · ∇)~vo · ~z − ho∇ · ~z

)
~v · ~n = 0 (3.66)

Again, since ~u = 0 on Γs, ~vo = 0 on Γs and ∇ · ~z = 0 in Ω we can write the above equation

as

a(~z′, ~vo)− c(r′, ~vo) + b(~u′, ~vo, ~z) + b(~u,~vo, ~z
′) + b(~vo, ~u

′, ~z) + b(~vo, ~u, ~z
′)− c(ho, ~z′)

+ a(~z,~v′o)− c(r, ~v′o) + b(~u,~v′o, ~z) + b(~v′o, ~u, ~z)− c(h′o, ~z) +

∫
Γs

(T : ∇~vo)~v · ~n = 0 (3.67)

Insight into further analysis of the last line of equation Eqn. 3.67 is obtained by multiplying

Eqns. 3.60 and 3.61 by ~v′o and h′o and integrating over Ω.

−
∫

Ω

∇ · T · ~v′o +

∫
Ω

∇~uT · ~z · ~v′o −
∫

Ω

(~u · ∇) ~z · ~v′o −
∫

Ω

h′o∇ · ~z = 0∫
Ω

T : ∇~v′o −
∫
∂Ω

T · ~n · ~v′o +

∫
Ω

(~v′o · ∇) ~u · ~z −
∫

Ω

(~u · ∇) ~z · ~v′o −
∫

Ω

h′o∇ · ~z = 0

(3.68)
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If we make use of Eqn. 3.56, we have

∫
Ω

T : ∇~v′o +

∫
Ω

(~v′o · ∇) ~u · ~z +

∫
Ω

(~u · ∇)~vo · ~z′ −
∫

Ω

h′o∇ · ~z −
∫
∂Ω

(
T · ~n+ (~u · ~n) ~z

)
· ~v′o = 0

a(~z,~v′o)− c(r, ~v′o) + b(~u,~v′o, ~z) + b(~v′o, ~u, ~z)− c(h′o, ~z)−
∫
∂Ω

(
T · ~n+ (~u · ~n) ~z

)
· ~v′o = 0

(3.69)

But

∫
∂Ω

(
T ·~n+(~u·~n) ~z

)
·~v′o =

∫
Γin

(
T ·~n+(~u·~n) ~z

)
·~v′o+

∫
Γ+,Γ−

(
T ·~n+(~u·~n) ~z

)
·~v′o+

∫
Γs

(
T ·~n+(~u·~n) ~z

)
·~v′o

+

∫
Γout

(
T · ~n+ (~u · ~n) ~z

)
· ~v′o (3.70)

T · ~n+ (~u · ~n) ~z = 0 on Γout. In addition, total derivative (material derivative) for ~vo is

~̇vo = ~v′o +∇~vo · ~v (3.71)

Since ~vo is fixed on Γs ∪ Γin ∪ Γ+ ∪ Γ−, this means that ~̇vo = 0 and ~v′o = −∇~vo · ~v.

But on Γin ∪ Γ+ ∪ Γ−, ~v = ~0 since these boundaries do not move. Therefore, the boundary

conditions for ~v′o on Γs ∪ Γin ∪ Γ+ ∪ Γ− are

~v′o = 0 on Γin ∪ Γ+ ∪ Γ− (3.72)

~v′o = −∇~vo · ~v on Γs (3.73)

Therefore, Eqn. 3.74 is

∫
∂Ω

(
T · ~n+ (~u · ~n) ~z

)
· ~v′o =

∫
Γs

(
T · ~n+ (~u · ~n) ~z

)
· ~v′o = −

∫
Γs

(
T · ~n+ (~u · ~n) ~z

)
· (∇~vo · ~v)

= −
∫

Γs

T · ~n · (∇~vo · ~v) (~u = 0 on Γs)

(3.74)

20



Applying the same analysis as in Eqn. A.10, A.11, A.12, A.13 and considering that ∇Γ~vo = 0

since ~vo = 0 on Γs, we have

∫
∂Ω

(
T · ~n+ (~u · ~n) ~z

)
· ~v′o = −

∫
Γs

(T : ∇~vo) (~v · ~n) (3.75)

Substituting Eqn. 3.75 into Eqn. 3.69, we

a(~z,~v′o)− c(r, ~v′o) + b(~u,~v′o, ~z) + b(~v′o, ~u, ~z)− c(h′o, ~z) +

∫
Γs

(T : ∇~vo) (~v · ~n) = 0 (3.76)

Therefore, substituting Eqn. 3.76 into Eqn. 3.67, the weak form equation satisfied by ~z′ and

r′ is

a(~z′, ~vo)− c(r′, ~vo) + b(~u′, ~vo, ~z) + b(~u,~vo, ~z
′) + b(~vo, ~u

′, ~z) + b(~vo, ~u, ~z
′)− c(ho, ~z′) = 0 (3.77)

The expanded form of the above equation is

0 =

∫
Ω

T ′ : ∇~vo +

∫
Ω

(∇~u′T · ~z) · ~vo +

∫
Ω

(∇~uT · ~z′) · ~vo +

∫
Ω

(~u′ · ∇)~vo · ~z +

∫
Ω

(~u · ∇)~vo · ~z′

−
∫

Ω

ho∇ · ~z′

=

∫
∂Ω

T ′ · ~vo · ~n−
∫

Ω

∇ · T ′ · ~vo +

∫
Ω

(∇~u′T · ~z) · ~vo +

∫
Ω

(∇~uT · ~z′) · ~vo +

∫
Ω

(~u′ · ∇)~vo · ~z

+

∫
Ω

(~u · ∇)~vo · ~z′ −
∫

Ω

ho∇ · ~z′

(3.78)

If we carrying out similar analysis as in Eqns. 3.53, 3.54, 3.55 and 3.56, we can express the

4th and 5th terms on the right hand side of Eqn. 3.78 as

∫
Ω

(~u′ · ∇)~vo · ~z = −
∫

Ω

(~u′ · ∇) ~z · ~vo +

∫
∂Ω

(~u′ · ~n)(~z · ~vo)∫
Ω

(~u · ∇)~vo · ~z′ = −
∫

Ω

(~u · ∇) ~z′ · ~vo +

∫
∂Ω

(~u · ~n)(~z′ · ~vo)
(3.79)
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Therefore, Eqn. 3.78 becomes

0 =

∫
∂Ω

T ′ · ~vo · ~n−
∫

Ω

∇ · T ′ · ~vo +

∫
Ω

(∇~u′T · ~z) · ~vo +

∫
Ω

(∇~uT · ~z′) · ~vo −
∫

Ω

(~u′ · ∇) ~z · ~vo

+

∫
∂Ω

(~u′ · ~n)(~z · ~vo)−
∫

Ω

(~u · ∇) ~z′ · ~vo +

∫
∂Ω

(~u · ~n)(~z′ · ~vo)−
∫

Ω

ho∇ · ~z′

(3.80)

The total derivative (material derivative) for ~z is

~̇z = ~z′ +∇~z · ~v (3.81)

since ~z is fixed on Γs ∪ Γin ∪ Γ+ ∪ Γ−, this means that ~̇z = 0 and ~z′ = −∇~z · ~v.

But on Γin ∪ Γ+ ∪ Γ−, ~v = ~0 since these boundaries do not move. Therefore, the boundary

conditions of ~z′ on Γs ∪ Γin ∪ Γ+ ∪ Γ− are

~z′ = 0 on Γin ∪ Γ+ ∪ Γ− (3.82)

~z′ = −∇~z · ~v on Γs (3.83)

Therefore, the strong form of the PDE satisfied by ~z′ and r′ are

−∇ · T ′ + (∇~u′T · ~z) + (∇~uT · ~z′)− (~u′ · ∇~z)− (~u · ∇~z′) = 0 in Ω (3.84)

∇ · ~z′ = 0 in Ω (3.85)

~z′ = 0 on Γin ∪ Γ+ ∪ Γ−

(3.86)

~z′ = −∇~u · ~v on Γs (3.87)

T ′ · ~n+ (~u′ · ~n) ~z + (~u · ~n) ~z′ = 0 on Γout (3.88)
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Where

T ′ = −r′I + 2µ ε(~z′) (3.89)

Note that Eqn. 3.88 is obtained as it is since ~v = 0 on Γout. This means that, ~u′ = 0 and

~z′ = 0 on Γout.

3.3.3 Shape Sensitivity

The Lagrangian function (Eqn. 3.43) for the unconstrained problem is written below for

convenience.

L
(

Ω, (~u, p), (~z, r), λ
)

= a(~u, ~z) + b(~u, ~u, ~z)− c(p, ~z)− c(r, ~u) + λC (3.90)

Using Eqn. 3.19, the material derivative of the Lagrangian is

δL
(

Ω, (~u, p), (~z, r), λ;~v
)

= a(~u′, ~z) + a(~u, ~z′) + b(~u′, ~u, ~z) + b(~u, ~u′, ~z) + b(~u, ~u, ~z′)

− c(p′, ~z)− c(r′, ~u)− c(p, ~z′)− c(r, ~u′)−
∫

Γs

p∇ · ~z ~v · ~n

−
∫

Γs

r∇ · ~u~v · ~n+ 2µ

∫
Γs

ε(~z) : ε(~u)~v · ~n+

∫
Γs

(~u · ∇~u) · ~z ~v · ~n+ λ

∫
Γs

~v · ~n

(3.91)

Remember that ∇ · ~u = 0 and ∇ · ~z = 0 from Navier-Stokes and adjoint equation. Similarly,

∇ · ~u′ = 0 and ∇ · ~z′ = 0 from material derivative of state and adjoint variables. Therefore,

δL
(

Ω, (~u, p), (~z, r), λ;~v
)

= a(~u′, ~z) + a(~u, ~z′) + b(~u′, ~u, ~z) + b(~u, ~u′, ~z) + b(~u, ~u, ~z′)

+ 2µ

∫
Γs

ε(~z) : ε(~u)~v · ~n+

∫
Γs

(~u · ∇~u) · ~z ~v · ~n+ λ

∫
Γs

~v · ~n

(3.92)
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Substituting Eqns. A.3 and A.6 into Eqn. 3.92 and considering that (~u′·∇) ~u·~z = (∇~uT ·~z)·~u′,

Eqn. 3.92 becomes

δL
(

Ω, (~u, p), (~z, r), λ;~v
)

=

∫
Γs

T · ~n · ~u′ −
∫

Ω

(~u′ · ∇) ~u · ~z +

∫
Ω

(~u · ∇~z) · ~u′ +
∫

Γs

σ · ~n · ~z′

−
∫

Ω

(~u · ∇) ~u · ~z′ +
∫

Ω

(~u′ · ∇) ~u · ~z +

∫
Ω

(~u · ∇) ~u′ · ~z +

∫
Ω

(~u · ∇) ~u · ~z′

+ 2µ

∫
Γs

ε(~z) : ε(~u)~v · ~n+

∫
Γs

(~u · ∇) ~u · ~z ~v · ~n+ λ

∫
Γs

~v · ~n

=

∫
Γs

T · ~n · ~u′ +
∫

Γs

σ · ~n · ~z′ +
∫

Ω

(~u · ∇) ~z · ~u′ +
∫

Ω

(~u · ∇) ~u′ · ~z

+ 2µ

∫
Γs

ε(~z) : ε(~u)~v · ~n+

∫
Γs

(~u · ∇) ~u · ~z ~v · ~n+ λ

∫
Γs

~v · ~n

(3.93)

Substituting Eqns. A.9, A.13 and A.14 into 3.93 considering that ~u = 0 on Γs, we have

δL
(

Ω, (~u, p), (~z, r), λ;~v
)

= −2µ

∫
Γs

ε(~z) : ε(~u) v + λ

∫
Γs

v

=

∫
Γs

(
− 2µ ε(~z) : ε(~u) + λ

)
~v · ~n

(3.94)

Comparing Eqn. 3.94 with Hadamard’s representation of shape derivative (Eqn. 2.7), the

shape gradient for this drag minimization problem is

∇L = −2µ ε(~z) : ε(~u) + λ (3.95)

Thus, in order to minimize the fluid drag, Γs is deformed along the descent direction defined

by ~v = −∇L~n.

3.4 Optimization Algorithm

The sequential quadratic programming method, SQP, is used to compute the descent

direction and Lagrange multipliers (~v, λ) using information from our shape calculus analysis.
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The Lagrangian function for the unconstrained problem is presented below.

L
(
Ω, λ

)
= J(Ω) + λC (3.96)

where C = |Ωb| − Ao =
∫

Ωb
dx− Ao.

From Eqns. 3.94 and 3.48, shape derivative of the Lagrangian and derivative of the La-

grangian with respect to Lagrange multiplier are

δL
(
Ω;~v) = δJ( ~Ω; v) + λ δC (3.97)

∇λL = C (3.98)

From Eqn. 2.7, the Hadamard form of Eqn. 3.97 is

〈∇L~n,~v〉Γs = 〈∇J ~n,~v〉Γs + λ 〈∇C ~n,~v〉Γs

=
〈
(∇J + λ∇C), v

〉
Γs

(v = ~v · ~n)

(3.99)

Therefore,

∇L(Ω) = ∇J(Ω) + λ∇C(Ω) (3.100)

where

∇J
(
Ω) = −2µ ε(~z) : ε(~u) (3.101)

∇C = 1 (3.102)

The first order optimality or KKT conditions for Eqn. 3.96 are therefore

F
(
Ω, λ

)
=

 ∇L(Ω)

∇λL

 = 0 (3.103)
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3.4.1 Newton’s Method and SQP

Newton’s method may be used to solve Eqn. 3.103. Starting from iterates vk and λk, the

converged solution for the descent direction and Lagrange multiplier are obtained by solving

the following Newton’s equation.

 ∇2L(Ωk) ∇Ck

∇Ck 0


 dk

skλ

 =

 −∇Jk − λ∇Ck

−Ck

 (3.104)

∇2L is the Hessian of L. Ωk+1 and λk+1 are updated accordingly as

Ωk+1 = Ωk + dk~n (3.105)

λk+1 = λk + skλ (3.106)

From the theory of SQP methods, if we construct the equivalent quadratic model, the KKT

condition for the quadratic model is analogous to solving the following set of equations

 ∇2L(Ωk) ∇Ck

∇Ck 0


 dk

λk+1

 =

 −∇Jk
−Ck

 (3.107)

Eqn. 3.107 above is obtained by substituting skλ using Eqn. 3.106

dk as obtained from Eqn. 3.107 is defined on Γs and depends on the state and adjoint

variables, ~u, p and ~z, r respectively. Even though both state and adjoint variables are defined

everywhere on Ω, dk may lack smoothness especially around Γs so that deforming the object

using ~vk = dk ~n computed directly from Eqn. 3.101 may introduce numerical instabilities.

To avoid numerical problems, we solve Eqn. 3.108 which is the variational form equivalent of

Eqn. 3.107. Eqn. 3.108 regularizes the decent direction by extending it over Ω and replacing

the Hessian by an inner form for the shape variation. Although this regularized descent

direction, ~vex, is defined everywhere on Ω, it’s numerical values are smoothened, especially

on Γs. Thus, allowing for smooth shape deformation as drag is minimized. In this project,
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we choose ~vex to be the unique solution to the following variational problem. For λ ∈ R and

~vex ∈ Rd and for test functions q ∈ R and ~w ∈ Rd

〈~w,~vex〉Ω + 〈~w, λ∇C ~n〉Γs = −〈∇J ~n, ~w〉Γs

〈q∇C ~n,~vex〉Γs = −〈C, q〉Γs

(3.108)

We have used the following expressing for 〈~w,~vex〉Ω.

〈~w,~vex〉Ω =

∫
Ω

(
∇~w : ∇~vex + ~w · ~vex

)
dΩ (3.109)

Finite element method will be used to solve the above equation to obtain ~vex. Indeed, Eqn.

3.108 guarantees that ~vex is a descent direction since the Lagrangian shape derivative and

derivative of the Lagrangian with respect to the multiplier are negative. Other variational

forms for the inner product for shape variation can be found in Burger (2003).

3.4.2 Algorithm for Numerical Optimization of Fluid Drag

Our Newton based numerical optimization algorithm proceeds as follows. For a given

initial shape Γs and mesh to explicitly discretize Ω, for k = 0

1. Compute state variables, ~u and p by solving Navier-Stokes equation, Eqn. 3.16.

2. Compute fluid drag, J , according to Eqn. 3.1.

3. Compute adjoint variables, ~z and r by solving adjoint Navier-Stokes equation, Eqn.

3.51.

4. Compute regularized descent direction, ~vex, by solving Eqn. 3.108.

5. Execute line search algorithm to find step length, αk+1, along descent direction

6. Update shape, Ωk+1, by moving coordinates of boundary nodes according to ~xk+1 =

~xk + αk+1 ~vex.

7. If |Jk+1 − Jk| ≤ ε, end optimization algorithm. Return Ωk.
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8. Otherwise k = k + 1 and return to step 1.

3.4.3 Line Search with Merit Function

To balance reduction in fluid drag while maintaining area constraint of the obstacle,

we use a line search algorithm based on Armijo rule. The line search is equipped with

backtracking to determine a suitable step length along the descent direction that maximizes

reduction in cost function. To guarantee sufficient decrease in the fluid drag, our line search

is based on a merit function instead of the Lagrangian function of Eqn. 3.90. Our merit

function is the exact penalty function given below.

φ (Ω, ρ) = J(Ω) + ρ|C| (3.110)

ρ is the penalty parameter. For a step size αk to be accepted at the kth optimization step,

the Armijo criterion applied to Eqn. 3.110 requires that

φ (Ωk + αk ~vk, ρk) ≤ φ (Ωk, ρk) + ηαkδφ (Ωk, ρk;~vk), η ∈ (0, 1) (3.111)

The expression for δφ(Ωk, ρk;~vk) which is the shape derivative of φ along ~vk is

δφ (Ωk, ρk;~vk) = δJ(Ωk;~vk)− ρk|Ck|

= −〈~vk, ~vk〉Γs − ρk|Ck|
(3.112)

(See Nocedal and Wright (2006), Biegler (2010) for derivation of Eqn. 3.112)

Selection of ρk is guided by the fact that ~vk is guaranteed to be a descent direction for

φ provided that ρk ≥ λk (Nocedal and Wright (2006)). Putting all together, our line search

algorithm is summarized as follows:

Given Ωk, ~vk = ~vkex, λ
k,ρk−1 as inputs

1. Update penalty parameter ρk = max (ρk−1, λk)

2. Compute φ (Ωk, ρk) by Eqn. 3.110.
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3. Compute δφ (Ωk, ρk;~vk) by Eqn. 3.112.

4. Set αk to initial value i.e. αk = αo. Choose value for η. (η = 0.0001 for example).

5. Update domain by Ω∗ = Ωk + αk~vk.

6. Compute φ (Ω∗, ρk) by Eqn. 3.110.

7. If φ (Ω∗, ρk) ≤ φ (Ωk, ρk)+ηαkδφ (Ωk, ρk;~vk), end line search algorithm. Return αk and

ρk.

8. Otherwise, update step size by αk = αk/2 and return to step 5.

3.4.4 Numerical Implementation

All the partial differential equations (Navier-Stokes and adjoint Navier-Stokes) in this

project are solved using the finite element method. Numerical implementation of the finite

element method for solution of these equations is achieved using the python interface of the

open source finite element package, FEniCS (FEniCS 2003; Logg, Mardal, and Wells 2012).

Our optimization algorithm and other associated programs are also written in python.

The obstacle is deformed by moving its boundary nodes along the direction of ~vex. To

smoothen the overall mesh structure, all the other nodes of the computational mesh are

also moved. The new coordinates of all nodes are obtained by solving an elasticity equation

with boundaries given by coordinates of the new computational domain after deformation.

Mathematically, the elasticity equation is

−∇ · σ (~w) = 0 in Ω (3.113)

~w = Ωk + αk ~vkex on Γs (3.114)

~w = 0 on Γ+ ∪ Γ− ∪ Γin ∪ Γout (3.115)

Where

σ = 2µ ε(~w) + λ(∇ · ~w)1 (3.116)
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E and ν are Youngs modulus and Poissons ratio respectively. µ and λ are the Lamé coeffi-

cients given by

µ =
E

2(1 + ν)

λ =
νE

(1 + ν)(1− 2ν)

(3.117)

The boundary condition of Eqn. 3.115 is due to the fact that boundaries other than Γs do

not move during the optimization process. It is important to note that mesh smoothening

using the elasticity equation does not guarantee continuous maintenance of good quality

mesh during obstacle deformation. Mesh quality inevitably degenerates over time and we do

periodic remeshing using the Triangle mesh generator (Shewchuk 1996a; Shewchuk 1996b) to

improve mesh quality. In addition, FEniCS’ automated goal-oriented error control is used to

solve the Navier-Stokes equations to refine mesh around obstacle. However, a combination

of remeshing and goal-oriented error control are not enough to prevent the obstacle from

blowing out of the computational domain if the initial step size (αo) is too large. Thus, αo

is carefully chosen to avoid advecting the boundaries of Γs beyond the external boundaries

of the computational domain.
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Chapter 4
Computational Results
4.1 Verification of Navier-Stokes Flow Solver

Our Navier-Stokes solver developed using FEniCS is first verified to ensure that it prop-

erly solves the state equations. The verification case is the 2D stationary flow benchmark

computations in Schäfer et al. (1996). The problem geometry is shown in Fig. 4.1. It consists

of a cylinder of diameter, D = 0.1m, centered at x = 0.2 m and y = 0.2 m in a rectangular

domain of height, H = 0.41 m and length, L = 2.2 m.

Using our FEniCS code, fluid flow governed by the Navier-Stokes equation is simulated in

the computational domain. From the numerically obtained flow variables, fluid drag around

the obstacle, length of recirculation and pressure difference between the obstacle faces are

computed and compared with values provided in Schäfer et al. (1996).

Following the approach of Schäfer et al. (1996), the inflow condition is

~u(0, y) =
(
4Umy(H − y)/H2, 0

)
= (ux, uy) (4.1)

Reynold’s number is defined as

Re = ρŪD/µ (4.2)

Ū is mean velocity given by = 2ux(0, H/2)/3. The verification case uses Um = 0.3, ρ = 1

and µ = 0.001, yielding Re = 20.

cD =
2FD
ρŪ2D

(4.3)

Fluid drag, FD = J , is computed using Eqn. 3.1 while drag coefficient is calculated using

Eqn. 4.3. The length of recirculation is La = xr − xe, where xe = 0.25 is the x-coordinate of

the end of the cylinder and xr is the x-coordinate of the end of the recirculation area. The

pressure difference is defined as ∆p = p(xa, ya) − p(xe, ye), where (xa, ya) = (0.15, 0.2) and

(xe, ye) = (0.25, 0.2) are the front and end points of the cylinder respectively.

31



Figure 4.1: 2D geometry for Navier-Stokes solver verification case.

Fluid velocity and pressure from our FEniCS solver are compared with those from Marg-

onari (2013), obtained using Scilab which is an open source software package. The results

are shown in Figs. 4.3 and 4.4 respectively. Good comparison is obtained between both sets

of results. Schäfer et al. (1996) reports values for drag coefficient, pressure difference and re-

circulation lengths for this test case as 5.5567, 0.0845 and 0.1172 respectively. We obtained a

fluid drag of J = 0.011, yielding a drag coefficient of cD = 5.4922. Fig. 4.2 shows our plot of

fluid pressure and x-component of fluid velocity on a line through the cylinder to highlight

pressure difference between the front and back of the obstacle and the fluid recirculation

region respectively. From the left plot of Fig. 4.2, ∆p = 0.116361 − 0.0137084 = 0.1027

while the right plot shows the recirculation region extends from 0.25 to 0.3325, giving a

recirculation length of 0.0825. Our values are comparable to those in the Benchmark case

of Schäfer et al. (1996).

4.2 Numerical Examples for Drag Minimization

We carry out computations for drag minimization in this section. The computational

domain is shown in Fig. 4.5. It consists of a square obstacle placed in a rectangular flow

domain. The inlet flow velocity is given by Eqn. 4.1, where L = 21m and H = 7m.

Geometric constraint for the problem requires that the optimum shape has an area of 3.5m2

i.e Ao = 3.5m2. Clearly, the initial area of the square body is less than the area requirement
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Figure 4.2: Left figure is fluid pressure plot along line on y = 0.2 extending from domain
inlet to x = 2.5. It shows pressure difference between the front and back of obstacle in the
flow domain. Right figure is plot of x-component of velocity along line on y = 0.2 extending
from inlet to x = 0.35. The figure shows recirculation occurs between x ≈ 0.25-0.3325.

of the final shape. Input flow parameters are Um and µ. For Reynold’s number calculation,

we assume obstacle diameter is equal to the length of the initial square i.e. D = 1.2.

Therefore, by using different combinations of Um and µ, we are able to carry out computations

for different Reynold’s numbers. Computations for five different Reynold’s numbers were

carried out and the combinations of Um and µ are shown in Table 4.1. In addition, αo

is varied between computations to prevent Γs from advecting beyond the boundaries of

the rectangle through out the optimization steps. Our FeniCS-Python code developed to

implement the shape optimization algorithm discussed in Chapter 3 are shown in Appendix

B and C. Convergence in our numerical computations is achieved when numerical error given

by |Jk+1−Jk| is less than some pre-selected tolerance value. We carried out the optimization

step in two steps. In the first step, a coarse mesh is used and computation is carried out

until numerical convergence is achieved. Thereafter, the optimization step is repeated with

a refined mesh obtained from goal-oriented error control of the Navier-Stokes solver. Our
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Figure 4.3: Flow results from our FEniCS solver for verification case. From top to bottom
are x and y components of velocity, velocity magnitude and fluid pressure for the verification
case.

34



Figure 4.4: Flow results from Margonari (2013) for verification case. From top to bottom
are x and y components of velocity, velocity magnitude and fluid pressure for the verification
case.
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Um µ Re

0.125 1.0 0.1
0.5 0.4 1
2.5 0.05 40
5.0 0.04 100
5.0 0.02 200

Table 4.1: Input flow parameters for shape optimization problem.

numerical results for optimal shapes at different Re are shown in Figs. 4.7, 4.8 and 4.6.

Fig. 4.7 shows velocity magnitude in the computational domain containing the object at

final shape. It The final shapes for low Re’s (Re = 0.1 and 1.0) are basically the same,

symmetric in the x− and y−directions and resemble the shape of an american football. This

result has been obtained by several authors including Pironneau (1973), Morin et al. (2011),

Montenegro-Johnson and Lauga (2015), Lindemann et al. (2012). At higher Re’s however,

the final shape is only symmetric in the y−direction as it has a more streamlined structure

at the tail end than at the head section. In Fig. 4.8, we zoom into the computational

domain to provide clearer details about final shapes at different Re’s. Fig. 4.6 highlights

evolution of the object’s shape starting from initial to final, for Re = 200. It is obvious that

the final shape enhances flow as recirculation is eliminated due to the streamlined shape of

the object. Finally, Figs. 4.9 and 4.10 provide some information about the computations.

Clearly, the geometric constraint given by C := |Ωb| − 3.5 ≈ 0.0 is met for all computations,

where |Ωb| = L×H−
∫

Ω
dx. The small increments in values of J , L and φ in Fig. 4.9 during

the optimization steps are the result periodic remeshing to improve mesh quality.
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Figure 4.5: Initial domain for drag minimization computations.

Figure 4.6: Fluid streamlines around the obstacle at different optimization steps for Re =
200. Top left figure shows streamlines at initial step. Top right, bottom left and bottom
right are streamlines around object after 10, 40 and final optimization steps respectively.
The final shape ensures that fluid vortices are eliminated around the object.
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Figure 4.7: Velocity magnitude around in initial domain and final computational domain
containing optimum shape that minimizes least drag for different Reynolds numbers. Left
figures show velocity magnitude in initial domains while figures on the right are velocity
magnitude in computational domain containing optimal profiles. From top to bottom, Re =
0.1, 1, 40, 100 and 200.
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Figure 4.8: Magnified image of final object shapes for different Reynolds numbers. Figures
from top to bottom are Re = 0.1, 1, 40, 100 and 200.
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Figure 4.9: Evolution of J , L, φ and δL for different Reynolds numbers. Plots from top to
bottom are for Re = 0.1, 1, 40, 100 and 200. The values of J , L and φ are different at early
optimization steps since geometric constraint is not satisfied. As optimization progresses,
drag is minimized and geometric constraint is satisfied. As a result, J ≈ L ≈ φ. δL has
negative values during optimization since L is reducing. |∂L| ≈ 0 at the end of optimization.
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Figure 4.10: Evolution of |Ωb|, λ and ρ during optimization steps for different Reynolds
numbers. Plots from top to bottom are for Re = 0.1, 1, 40, 100 and 200. It is clearly observed
that although initial obstacle area is less than the area requirement, geometric constraint is
met for all computations. We also observe that ρ ≥ λ.
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Chapter 5
Conclusion

We have solved the drag minimization problem involving a stationary object placed in

a flowing channel. Fluid flow was modeled by Navier-Stokes equation while geometric con-

straint involved a specified area for the stationary object. The geometric constraint was

removed using the Lagrangian method and shape sensitivity analysis applied to the La-

grangian generated the adjoint Navier-Stokes equation, shape derivative and corresponding

shape gradient. With the shape gradient as descent direction, the sequential quadratic pro-

gramming (SQP) technique was used as the optimization method. The variational equivalent

form of the SQP method was solved with the Hessian of the Lagrangian replaced by an inner

product for shape variation to guarantee smooth shape deformation. Mesh deformation was

carried out by moving the nodes of the object boundaries. The optimization algorithm was

implemented in Python. We carried out 2D numerical computations at different Reynold’s

numbers for the optimal shapes that minimize drag. Shapes at low Reynold’s number were

symmetric in both x and y directions while moderate to high Reynold’s numbers had shapes

that were more streamlined at the front of the object. Computation results also showed

gradual decrease in drag Lagrangian. In addition, the geometric constraints were met for all

computations. All numerical algorithm were coded in Python while PDE’s were solved using

the python interface of the open source software, FEniCS. Triangle mesh generator was used

for meshing the computational domain.
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Appendix A
Analysis of Terms in Material
Derivative of Drag Lagrangian
Analysis of a(~u′, ~z)

a(~u′, ~z) is obtained by deriving the weak formulation of the adjoint equation using ~u′ as
the test function. Multiplying Eqn. 3.60 with ~u′ and doing integration by parts, we have

−
∫

Ω

∇ · T · ~u′ +
∫

Ω

(∇~uT · ~z) ~u′ −
∫

Ω

(~u · ∇) ~z · ~u′ = 0∫
Ω

T : ∇~u′ −
∫
∂Ω

T · ~n · ~u′ +
∫

Ω

(∇~uT · ~z) ~u′ −
∫

Ω

(~u · ∇) ~z · ~u′ = 0

−
∫

Ω

~r∇ · ~u′ + 2µ

∫
Ω

ε(~z) : ε(~u′)−
∫
∂Ω

T · ~n · ~u′ +
∫

Ω

(∇~uT · ~z)~u′ −
∫

Ω

(~u · ∇~z) · ~u′ = 0

(A.1)

T ·~n ·~u′ = T ·~u′ ·~n due to symmetry of T and ∇·~u = 0 from continuity equation. Therefore,

2µ

∫
Ω

ε(~z) : ε(~u′) =

∫
∂Ω

T · ~n · ~u′ −
∫

Ω

(∇~uT · ~z) · ~u′ +
∫

Ω

(~u · ∇) ~z · ~u′

=

∫
Γin

T · ~n · ~u′ +
∫

Γ+

T · ~n · ~u′ +
∫

Γ−

T · ~n · ~u′ +
∫

Γs

T · ~n · ~u′ +
∫

Γout

T · ~n · ~u′

−
∫

Ω

(∇~uT · ~z) · ~u′ +
∫

Ω

(~u · ∇) ~z · ~u′

(A.2)

Boundary integrals over Γin, Γout, Γ+ and Γ− are equal to zero since ~u′ = 0 on those
boundaries. Thus,

a(~u′, ~z) = 2µ

∫
Ω

ε(~z) : ε(~u′) =

∫
Γs

T · ~n · ~u′ −
∫

Ω

(∇~uT · ~z) · ~u′ +
∫

Ω

(~u · ∇) ~z · ~u′ (A.3)

Analysis of a(~u, ~z′)

a(~u, ~z′) is also obtained by deriving the weak formulation of the state equation using ~z′

as the test function. Multiplying Eqn. 3.2 with ~z′ and doing integration by parts, we have

−
∫

Ω

∇ · σ · ~z′ +
∫

Ω

(~u · ∇) ~u · ~z′ = 0∫
Ω

σ : ∇~z′ −
∫
∂Ω

σ · ~n · ~z′ +
∫

Ω

(~u · ∇~u) · ~z′ = 0

−
∫

Ω

~p∇ · ~z′ + 2µ

∫
Ω

ε(~u) : ε(~z′)−
∫
∂Ω

σ · ~n · ~z′ +
∫

Ω

(~u · ∇) ~u · ~z′ = 0

(A.4)
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∇ · ~z′ = 0 from material derivative of adjoint equation. Therefore,

2µ

∫
Ω

ε(~u) : ε(~z′) =

∫
∂Ω

σ · ~n · ~z′ −
∫

Ω

(~u · ∇) ~u · ~z′

=

∫
Γin

σ · ~n · ~z′ +
∫

Γ+

σ · ~n · ~z′ +
∫

Γ−

σ · ~n · ~z′ +
∫

Γs

σ · ~n · ~z′ +
∫

Γout

σ · ~n · ~z′

−
∫

Ω

(~u · ∇) ~u · ~z′

(A.5)

In the equation above, the boundary integrals over Γin, Γ+, Γ− are zero because ~z′ = on
those boundaries. Integral over Γout is also zero because σ · ~n = 0. Thus,

a(~u, ~z′) = 2µ

∫
Ω

ε(~u) : ε(~z′) =

∫
Γs

σ · ~n · ~z′ −
∫

Ω

(~u · ∇) ~u · ~z′ (A.6)

Further Analysis I

Consider ∫
Ω

∇
(

(~z · ~u′)~u
)

=

∫
∂Ω

(~z · ~u′)(~u · ~n)

=

∫
Γin∪Γ+∪Γ−∪Γs

(~z · ~u′)(~u · ~n) +

∫
Γout

(~z · ~u′)(~u · ~n)
(A.7)

The first integral on the right hand side of the above equation is zero because ~u = 0 on
Γ+ ∪ Γ− ∪ Γs, ~z = 0 on Γin ∪ Γ+ ∪ Γ− and ~u′ = 0 on Γin ∪ Γ+ ∪ Γ− ∪ Γout. Applying all of
these,

0 =

∫
Ω

∇
(

(~z · ~u′)~u
)

=

∫
Ω

~u · ∇(~z · ~u′) +

∫
Ω

(~z · ~u′)∇ · ~u (but ∇ · ~u = 0)

=

∫
Ω

(~u · ∇~z) · ~u′ +
∫

Ω

(~u · ∇~u′) · ~z

(A.8)

Therefore ∫
Ω

(~u · ∇~z) · ~u′ +
∫

Ω

(~u · ∇~u′) · ~z = 0 (A.9)

Further Analysis II

Consider that ~z′ = −∇~z · ~V = −∇~z · ~n V , we have
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∫
Γs

σ · ~n · ~z′ = −
∫

Γs

(σ · ~n)(∇~z · ~n)V

= −
∫

Γs

σiknkzi,jnjV (zi,j =
∂zi
∂xj

)

= −
∫

Γs

σik(zi,jnjnk)V

= −
∫

Γs

σ :
(
∇~z (~n⊗ ~n)

)
V

(A.10)

∇~z can be decomposed into two components as shown below. ∇~zΓ and ∇~zn which are
projections of ∇~z on the tangent plane and in the normal directions respectively.

∇~z = ∇~zΓ +∇~zn (A.11)

where ∇~zn = ∇~z (~n⊗ ~n). ~a⊗~b is dyadic vector products given by ~a⊗~b = aibj
Since ~z = φ on Γs, it is a constant and ∇~zΓ is therefore a zero tensor. As a result,

∇~z = ∇~zn = ∇~z (~n⊗ ~n) (A.12)

Therefore, Eqn. A.10 becomes

∫
Γs

σ · ~n · ~z′ = −
∫

Γs

σ : ∇~z V

=

∫
Γs

p : ∇ · ~z V − 2µ

∫
Γs

ε(~u) : ε(~z)V (∇ · ~z = 0)

= −2µ

∫
Γs

ε(~u) : ε(~z)V

(A.13)

Similar analysis can be done to show that

∫
Γs

T · ~n · ~u′ = −2µ

∫
Γs

ε(~u) : ε(~z)V (A.14)
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Appendix B
Optimization Code in Python

1 from d o l f i n import ∗
2 import sys , math , numpy
3 import f u n c t i o n s f i l e as funcs
4 import os
5 import time
6
7 i f not ha s cga l ( ) :
8 print ”DOLFIN must be compiled with CGAL to run t h i s demo . ”
9 e x i t (0 )
10
11 lx = 21 .
12 ly = 7 .
13 cx = lx /4 .
14 cy = ly /2 .
15 c i r c r a d = 0 .6
16 Ao = 3 .5
17 t o l = 1e−5
18 k = 0
19 l = 0
20 alpha = 1 . 0 ;
21 U m = 0.125
22 rho = 1 .0
23 nu = 0 .1
24 mu = rho∗nu
25 pena l t y f unc t i on = 0
26 penal ty parameter = 0
27 lam = 0
28
29 domain r = Rectangle ( 0 . , 0 , lx , l y )−Rectangle ( cx−c i r c r ad , cy−c i r c r ad , cx+

c i r c r ad , cy+c i r c r a d )
30 mesh = Mesh( domain r , 100)
31 boundary parts = funcs . MarkBoundaries (mesh , lx , l y )
32
33 Drag o = 1e+3
34 NSBool = False
35 for i in range (2 ) :
36 a r e a e r r o r = [1 e+6]
37 d rag e r r o r = [ 1 e+6]
38 i f i == 0 :
39 t o l = 1e−6
40 e r r o r = a r e a e r r o r
41 else :
42 t o l = 1e−3
43 e r r o r = drag e r r o r
44 mesh , boundary parts = funcs . CreateNewMeshUsingTriangle (mesh , lx , ly ,

boundary parts )
45 p , u , mesh , boundary parts = funcs . NSSolver (mesh , boundary parts , lx , ly ,mu,U m,

True )
46 while ( e r r o r [ 0 ] > t o l and d rag e r r o r [ 0 ] > 1e−6) :
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47 p , u , mesh , boundary parts = funcs . NSSolver (mesh , boundary parts , lx , ly ,mu,U m,
NSBool )

48 r , z = funcs . Adjo intSo lver (mesh , boundary parts ,mu, u)
49 w, lam = funcs . SearchDi rec t i on (mesh , boundary parts ,mu, u , z , lx , ly , Ao)
50 Drag = funcs . ComputeDrag (mesh , boundary parts ,mu, p , u)
51 Der Drag = funcs . DragLagrangianDer ivat ive (mesh , boundary parts ,mu, u , z ,w, lx ,

ly , lam ,Ao)
52 Drag Lagrangian = funcs . ComputeDragLagrangian (mesh , boundary parts ,mu, p , u ,

lx , ly , lam ,Ao)
53 pena l ty func t i on , alpha , penalty parameter , mesh , boundary parts = funcs .

ArmijoLineSearch (mesh , boundary parts ,w,mu,U m, lx , ly , lam ,
penalty parameter ,Ao)

54 d rag e r r o r [ 0 ] = abs (Drag−Drag o )
55 a r e a e r r o r [ 0 ] = abs ( assemble ( Constant ( 1 . 0 ) ∗ dx , mesh=mesh )−( l x ∗ ly−Ao) )
56 Area = lx ∗ ly−assemble ( Constant ( 1 . 0 ) ∗ dx , mesh=mesh )
57 Drag o = Drag
58 i f k % 5 == 0 and i == 0 :
59 mesh , boundary parts = funcs . CreateNewMeshUsingTriangle (mesh , lx , ly ,

boundary parts )
60 k = k+1
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Appendix C
FEniCS-Python Functions File

1 from d o l f i n import ∗
2 import sys , math , numpy
3 import os
4
5 E = 1
6 nu = 0 .3
7 mu = E/(2∗(1+nu) )
8 lamda = E∗nu/((1+nu) ∗(1−2.0∗nu) )
9
10 def ep s i l o n (u) :
11 return 0 . 5∗ ( grad (u) + grad (u) .T)
12
13 def sigma (u) :
14 return 2∗mu∗ ep s i l o n (u)+lamda∗ t r ( e p s i l o n (u) ) ∗ I d en t i t y ( l en (u) )
15
16
17 def ComputeDrag (mesh , boundary parts ,mu, p , u) :
18 n in fn ty = Constant ( ( 1 , 0) )
19 n = FacetNormal (mesh )
20 I = Iden t i t y (2 )
21 sigma = −p∗ I + 2∗mu∗ ep s i l o n (u)
22 M1 = −1.∗dot ( dot ( sigma , n) , n i n f n ty ) ∗ds (0 )
23 Drag = assemble (M1, e x t e r i o r f a c e t d oma i n s=boundary parts )
24 return Drag
25
26 def NSSolver (mesh , boundary parts , lx , ly ,mu, U o , ShouldRef ine ) :
27 parameters [ ’ a l l ow ex t r apo l a t i o n ’ ] = True
28 V = VectorFunctionSpace (mesh , ”Lagrange” , 2)
29 Q = FunctionSpace (mesh , ”CG” , 1)
30 W = V ∗ Q
31 no s l i p = Constant ( ( 0 , 0) )
32 bc0 = Dir ichletBC (W. sub (0) , nos l ip , boundary parts , 3)
33 bc1 = Dir ichletBC (W. sub (0) , nos l ip , boundary parts , 0)
34 in f l ow = Express ion ( ( ”4∗ u in ∗x [ 1 ] ∗ (H−x [ 1 ] ) /(H∗H)” , ” 0 .0 ” ) ,H=ly , u in=U o )
35 bc2 = Dir ichletBC (W. sub (0) , in f low , boundary parts , 2)
36 bcs = [ bc0 , bc1 , bc2 ]
37 (v , q ) = TestFunctions (W)
38 f = Constant ( ( 0 , 0) )
39 w = Function (W)
40 (u , p) = s p l i t (w)
41 F = (2∗mu∗( inne r ( e p s i l o n (u) , e p s i l o n (v ) ) ) − div (v ) ∗p − q∗div (u)+inner ( grad (u

) ∗u , v ) ) ∗dx−i nne r ( f , v ) ∗dx
42 ds = Measure ( ”ds” ) [ boundary parts ]
43 M = (2∗mu∗( inne r ( e p s i l o n (u) , e p s i l o n (u) ) )+p) ∗dx
44 t o l = 1e−4
45 PETScOptions . s e t ( ’ pc type ’ , ’ asm ’ )
46 PETScOptions . s e t ( ’ sub pc type ’ , ’ lu ’ )
47 PETScOptions . s e t ( ’ pc asm over lap ’ , ’ 10 ’ )
48 dw = Tria lFunct ion (W)
49 J = de r i v a t i v e (F , w, dw)
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50 problem = Nonl inearVar iat iona lProb lem (F, w, bcs , J )
51 so l v e r pa ramete r s = {” n on l i n e a r s o l v e r ” : ” snes ” ,
52 ” s n e s s o l v e r ” : { ” l i n e a r s o l v e r ” : ” lu ” ,
53 ” ab s o l u t e t o l e r a n c e ” : 1E−8,
54 ” r e l a t i v e t o l e r a n c e ” : 1E−7,
55 ”maximum iterations ” : 20 ,
56 ” repor t ” : True ,
57 ” er ro r on nonconvergence ” : Fa l se
58 }}
59 i f ( ShouldRef ine == True ) :
60 s o l v e r = Adapt iveNon l inea rVar ia t i ona lSo lve r ( problem , M)
61 s o l v e r . parameters [ ’ n o n l i n e a r v a r i a t i o n a l s o l v e r ’ ] . update ( s o l v e r pa ramete r s

)
62 s o l v e r . s o l v e ( t o l )
63 mesh = mesh . l e a f n od e ( )
64 (u , p) = w. l e a f n od e ( ) . s p l i t (True )
65 else :
66 s o l v e r = Non l i n ea rVar i a t i ona lSo l v e r ( problem )
67 prm = so l v e r . parameters
68 prm [ ’ newton so lver ’ ] [ ’ a b s o l u t e t o l e r a n c e ’ ] = 1E−8
69 prm [ ’ newton so lver ’ ] [ ’ r e l a t i v e t o l e r a n c e ’ ] = 1E−7
70 prm [ ’ newton so lver ’ ] [ ’ maximum iterations ’ ] = 25
71 prm [ ’ newton so lver ’ ] [ ’ r e l axa t i on paramete r ’ ] = 1 .0
72 s o l v e r . s o l v e ( )
73 (u , p) = w. s p l i t (True )
74 boundary parts = MarkBoundaries (mesh , lx , l y )
75 return p , u , mesh , boundary parts
76
77 def MarkBoundaries (mesh , lx , l y ) :
78 # Create mesh f unc t i on s over the c e l l f a c e t s
79 boundary parts = MeshFunction ( ” s i z e t ” , mesh , mesh . topo logy ( ) . dim ( )−1)
80 # Mark a l l f a c e t s as sub domain 4
81 boundary parts . s e t a l l ( 4 )
82
83 # Sub domain f o r no s l i p on o b s t a c l e
84 class Nosl ipOnObstacle (SubDomain ) :
85 def i n s i d e ( s e l f , x , on boundary ) :
86 return on boundary
87
88 # Mark o b s t a c l e no s l i p as sub domain 0
89 Gamma s = Nosl ipOnObstacle ( )
90 Gamma s . mark ( boundary parts , 0)
91
92 # Sub domain f o r Outf low ( l e f t )
93 class Outflow (SubDomain ) :
94 def i n s i d e ( s e l f , x , on boundary ) :
95 return abs (x [ 0 ] − l x ) < DOLFIN EPS and on boundary
96
97 # Mark ou t f l ow as sub domain 1
98 Gamma o = Outflow ( )
99 Gamma o . mark ( boundary parts , 1)

100
101 # Sub domain f o r In f l ow ( r i g h t )
102 class In f l ow (SubDomain ) :
103 def i n s i d e ( s e l f , x , on boundary ) :
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104 return abs (x [ 0 ] ) < DOLFIN EPS and on boundary
105
106 # Mark in f l ow as sub domain 2
107 Gamma in = Inf low ( )
108 Gamma in . mark ( boundary parts , 2)
109
110 # Sub domain f o r no s l i p on Top (Top)
111 class NoslipTop (SubDomain ) :
112 def i n s i d e ( s e l f , x , on boundary ) :
113 return abs (x [ 1 ] − l y ) < DOLFIN EPS and on boundary
114
115 # Mark top no s l i p as sub domain 3
116 Gamma pos = NoslipTop ( )
117 Gamma pos . mark ( boundary parts , 3)
118
119 # Sub domain f o r no s l i p on Bottom (Bottom)
120 class NoslipBottom (SubDomain ) :
121 def i n s i d e ( s e l f , x , on boundary ) :
122 return abs (x [ 1 ] ) < DOLFIN EPS and on boundary
123
124 # Mark bottom no s l i p as sub domain 3
125 Gamma neg = NoslipBottom ( )
126 Gamma neg . mark ( boundary parts , 3)
127 return boundary parts
128
129 def Adjo intSo lve r (mesh , boundary parts ,mu, u) :
130 parameters [ ’ a l l ow ex t r apo l a t i o n ’ ] = True
131 V = VectorFunctionSpace (mesh , ”Lagrange” , 2)
132 Q = FunctionSpace (mesh , ”CG” , 1)
133 W = V ∗ Q
134 phi = Constant ((−1 , 0) )
135 no s l i p = Constant ( ( 0 , 0) )
136 bc0 = Dir ichletBC (W. sub (0) , nos l ip , boundary parts , 3)
137 bc1 = Dir ichletBC (W. sub (0) , phi , boundary parts , 0)
138 bc2 = Dir ichletBC (W. sub (0) , nos l ip , boundary parts , 2)
139 bcs = [ bc0 , bc1 , bc2 ]
140 (v , q ) = TestFunct ions (W)
141 w = Function (W)
142 ( z , r ) = s p l i t (w)
143 f = Constant ( ( 0 , 0) )
144 F = (2∗mu∗( inne r ( e p s i l o n ( z ) , e p s i l o n (v ) ) ) − div (v ) ∗ r +inner ( dot ( grad (u) , v ) , z

)+inner ( dot ( grad (v ) ,u ) , z )− q∗div ( z )−i nne r ( f , v ) ) ∗dx
145 PETScOptions . s e t ( ’ pc type ’ , ’ asm ’ )
146 PETScOptions . s e t ( ’ sub pc type ’ , ’ lu ’ )
147 PETScOptions . s e t ( ’ pc asm over lap ’ , ’ 10 ’ )
148 dw = Tria lFunct ion (W)
149 J = de r i v a t i v e (F , w, dw)
150 problem = Nonl inearVar iat iona lProb lem (F, w, bcs , J )
151 s o l v e r = Non l i n ea rVar i a t i ona lSo l v e r ( problem )
152 prm = so l v e r . parameters
153 prm [ ’ newton so lver ’ ] [ ’ a b s o l u t e t o l e r a n c e ’ ] = 1E−8
154 prm [ ’ newton so lver ’ ] [ ’ r e l a t i v e t o l e r a n c e ’ ] = 1E−7
155 prm [ ’ newton so lver ’ ] [ ’ maximum iterations ’ ] = 25
156 prm [ ’ newton so lver ’ ] [ ’ r e l axa t i on paramete r ’ ] = 1 .0
157 s o l v e r . s o l v e ( )
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158 ( z , r ) = w. s p l i t (True )
159 return r , z
160
161 def DragLagrangianDer ivat ive (mesh , boundary parts ,mu, u , z ,w, lx , ly , lam , Ao) :
162 n = FacetNormal (mesh )
163 m1 = −2∗mu∗( inne r ( e p s i l o n (u) , e p s i l o n ( z ) ) ) ∗dot (w, n) ∗ds (0 )
164 m2 = lam∗dot (w, n) ∗ds (0 )
165 Drag de r i va t i v e = assemble (m1+m2, e x t e r i o r f a c e t d oma i n s=boundary parts )
166 return Drag de r i va t i v e
167
168 def ComputeDragLagrangian (mesh , boundary parts ,mu, p , u , lx , ly , lam ,Ao) :
169 n in fn ty = Constant ( ( 1 , 0) )
170 n = FacetNormal (mesh )
171 I = Id en t i t y (2 )
172 sigma = −p∗ I + 2∗mu∗ ep s i l o n (u)
173 M1 = −1.∗dot ( dot ( sigma , n) , n i n f n ty ) ∗ds (0 )
174 value1 = assemble (M1, e x t e r i o r f a c e t d oma i n s=boundary parts )
175 g = assemble ( Constant ( 1 . 0 ) ∗ dx , mesh=mesh )−( l x ∗ ly−Ao)
176 l a g r f u n c t = value1+lam∗g
177 return l a g r f u n c t
178
179 def ArmijoLineSearch (mesh , boundary parts ,w,mu, U o , lx , ly , lam , penal ty para ,Ao) :
180 oldmesh coords = GetOldMeshCoordinates (mesh )
181 mesh o = mesh
182 beta = 0.0001
183 alpha = 2 .
184 i f lam > pena l ty para :
185 pena l ty para = lam
186 p , u , mesh , boundary parts = NSSolver (mesh , boundary parts , lx , ly ,mu, U o , Fa l se )
187 r , z = Adjo intSo lver (mesh , boundary parts ,mu, u)
188 drag l ag ran o = PenaltyFunction (mesh , boundary parts ,mu, p , u , lx , ly ,

pena l ty para ,Ao)
189 de r d rag l ag ran = Pena l tyFunct ionDer ivat ive (mesh , boundary parts ,mu, u , z ,w, lx ,

ly , pena l ty para ,Ao)
190 mesh = UpdateMeshSo lv ingElast i c i tyequat ion (mesh , boundary parts ,w, alpha )
191 p , u , mesh , boundary parts = NSSolver (mesh , boundary parts , lx , ly ,mu, U o , Fa l se )
192 drag lag ran = PenaltyFunction (mesh , boundary parts ,mu, p , u , lx , ly , pena l ty para ,

Ao)
193 j = 1
194 while ( d rag lag ran > ( d rag l ag ran o+alpha ∗beta ∗ de r d rag l ag ran ) and alpha >

1e−6) :
195 mesh = ReStartOldMesh (mesh , o ldmesh coords )
196 alpha = 0.5∗ alpha
197 mesh = UpdateMeshSo lv ingElast i c i tyequat ion (mesh , boundary parts ,w, alpha )
198 p , u , mesh , boundary parts = NSSolver (mesh , boundary parts , lx , ly ,mu, U o , Fa l se )
199 drag lag ran = PenaltyFunction (mesh , boundary parts ,mu, p , u , lx , ly ,

pena l ty para ,Ao)
200 j = j+1
201 return drag lagran , alpha , penal ty para , mesh , boundary parts
202
203 def CreateNewMeshUsingTriangle (mesh , lx , ly , boundary parts ) :
204 num ce l l s = mesh . num ce l l s ( )
205 maxArea = 0
206 minArea = 1000
207 for i in c e l l s (mesh ) :
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208 i f i . volume ( ) > maxArea :
209 maxArea = i . volume ( )
210 i f i . volume ( ) < minArea :
211 minArea = i . volume ( )
212 boundary = BoundaryMesh (mesh , ” e x t e r i o r ” )
213 mesh f i l e = open ( ” obstac lemesh . poly ” , ”w” )
214 #Writing node in format ion f o r the PSLG f i l e
215 mesh f i l e . wr i t e ( ’%d \ t 2 \ t 0 \ t 0 \n ’%boundary . num vert i ces ( ) )
216 coor = boundary . coo rd ina t e s ( )
217 mapping = boundary . entity map (0) . array ( )
218 for i in v e r t i c e s ( boundary ) :
219 mesh f i l e . wr i t e ( ’%d \ t %g \ t %g \n ’%( i . index ( ) , coor [ i . index ( ) ] [ 0 ] , coor [ i .

index ( ) ] [ 1 ] ) )
220
221 #Writing edge in format ion f o r the PSLG f i l e
222 mesh f i l e . wr i t e ( ’%d \ t 0 \n ’%boundary . num edges ( ) )
223 for i in edges ( boundary ) :
224 mesh f i l e . wr i t e ( ’%d \ t %d \ t %d \n ’%( i . index ( ) , i . e n t i t i e s (0 ) [ 0 ] , i . e n t i t i e s

(0 ) [ 1 ] ) )
225
226 # Since o b j e c t t r an s l a t e s , i t i s not cen tered at l x /2. and l y /2 a a l l the time

. Therefore , we f i nd the cen ter us ing average o f min/max o f boundary x and
y coord ina t e s .

227 cordx = [ ]
228 cordy = [ ]
229 countnumofvert i ces = 0
230 for i in v e r t i c e s ( boundary ) :
231 i f ( coor [ i . index ( ) ] [ 0 ] != 0 and coor [ i . index ( ) ] [ 0 ] != lx and coor [ i . index

( ) ] [ 1 ] != 0 and coor [ i . index ( ) ] [ 1 ] != ly ) :
232 countnumofvert i ces = countnumofvert i ces+1
233 cordx . append ( coor [ i . index ( ) ] [ 0 ] )
234 cordy . append ( coor [ i . index ( ) ] [ 1 ] )
235 cx = (numpy . amax( cordx )+numpy . amin ( cordx ) ) /2 .
236 cy = (numpy . amax( cordy )+numpy . amin ( cordy ) ) /2 .
237
238 #Writing ho l e in format ion f o r the PSLG f i l e
239 mesh f i l e . wr i t e ( ’ 1 \n ’ )
240 mesh f i l e . wr i t e ( ’ 1 \ t %g \ t %g ’%(cx , cy ) )
241 mesh f i l e . c l o s e ( )
242 t r i a n g l e s yn t a x = ’ . / t r i a n g l e ’
243 t r i a n g l e s yn t a x = t r i a n g l e s yn t a x + ’ −Qpqca ’+s t r (maxArea ) +’ obstac lemesh ’
244 os . system ( t r i a n g l e s yn t a x )
245
246 # Read mesh and conver t to d o l f i n format xml
247 os . system ( ” do l f i n−convert obstac lemesh . 1 . node shape . xml” )
248 mesh = Mesh( ” shape . xml” )
249
250 boundary parts = MarkBoundaries (mesh , lx , l y )
251 return mesh , boundary parts
252
253 def ReStartOldMesh (mesh , v ) :
254 V = VectorFunctionSpace (mesh , ”Lagrange” , 1)
255 u = Function (V)
256 coor = mesh . coo rd ina t e s ( )
257 for i in v e r t i c e s (mesh ) :
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258 coor [ i . index ( ) ] [ 0 ] = v [ i . index ( ) ] [ 0 ]
259 coor [ i . index ( ) ] [ 1 ] = v [ i . index ( ) ] [ 1 ]
260 mesh .move(u)
261 return mesh
262
263 def UpdateMeshSo lv ingElast i c i tyequat ion (mesh , boundary parts ,w, alpha ) :
264 V = VectorFunctionSpace (mesh , ”Lagrange” , 1)
265 u = Tria lFunct ion (V)
266 v = TestFunction (V)
267 no s l i p = Constant ( ( 0 , 0) )
268 ww = Function (V)
269 ww array = w. vec to r ( ) . array ( )
270 ww array ∗= alpha
271 ww. vec to r ( ) [ : ] = ww array
272 bc0 = Dir ichletBC (V, nos l ip , boundary parts , 3)
273 bc1 = Dir ichletBC (V, nos l ip , boundary parts , 1)
274 bc2 = Dir ichletBC (V, nos l ip , boundary parts , 2)
275 bc3 = Dir ichletBC (V, ww, boundary parts , 0)
276 bcs = [ bc0 , bc1 , bc2 , bc3 ]
277 f = Constant ( ( 0 , 0) )
278 a = ( inner ( sigma (u) , grad (v ) ) ) ∗dx
279 L = inner ( f , v ) ∗dx
280 u = Function (V)
281 so l v e ( a == L , u , bcs )
282 mesh .move(u)
283 return mesh
284
285 def GetOldMeshCoordinates (mesh ) :
286 coords = mesh . coo rd ina t e s ( )
287 n = mesh . num vert i ces ( )
288 v = numpy . z e r o s ( ( n , 2 ) )
289 for i in v e r t i c e s (mesh ) :
290 v [ i . index ( ) ] [ 0 ] = coords [ i . index ( ) ] [ 0 ]
291 v [ i . index ( ) ] [ 1 ] = coords [ i . index ( ) ] [ 1 ]
292 return v
293
294 def SearchDi rec t i on (mesh , boundary parts ,mu, u , z , lx , ly , Ao) :
295 parameters [ ’ a l l ow ex t r apo l a t i o n ’ ] = True
296 n = FacetNormal (mesh )
297 V = VectorFunctionSpace (mesh , ”Lagrange” , 1)
298 Q = FunctionSpace (mesh , ”R” , 0)
299 W = V ∗ Q
300 ds = Measure ( ”ds” ) [ boundary parts ]
301 no s l i p = Constant ( ( 0 , 0) )
302 bc0 = Dir ichletBC (W. sub (0) , nos l ip , boundary parts , 3)
303 bc1 = Dir ichletBC (W. sub (0) , nos l ip , boundary parts , 1)
304 bc2 = Dir ichletBC (W. sub (0) , nos l ip , boundary parts , 2)
305 bcs = [ bc0 , bc1 , bc2 ]
306 (w, p) = Tr ia lFunct ions (W)
307 (v , q ) = TestFunct ions (W)
308 g = assemble ( Constant ( 1 . 0 ) ∗ dx , mesh=mesh )−( l x ∗ ly−Ao)
309 a = ( inner ( grad (w) , grad (v ) )+inner (w, v ) ) ∗dx+p∗ i nne r (v , n) ∗ds (0 )+q∗ i nne r (w, n) ∗

ds (0 )
310 L = (2∗mu∗( inne r ( e p s i l o n (u) , e p s i l o n ( z ) ) ) ) ∗ i nne r (n , v ) ∗ds (0 )−g∗q∗ds (0 )
311 ww = Function (W)
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312 so l v e ( a == L , ww, bcs )
313 (w, p) = ww. s p l i t (True )
314 lam = p . vec to r ( ) . array ( ) .max( )
315 return w, lam
316
317 def PenaltyFunction (mesh , boundary parts ,mu, p , u , lx , ly , lam ,Ao) :
318 n in fn ty = Constant ( ( 1 , 0) )
319 n = FacetNormal (mesh )
320 I = Id en t i t y (2 )
321 sigma = −p∗ I + 2∗mu∗ ep s i l o n (u)
322 M1 = −1.∗dot ( dot ( sigma , n) , n i n f n ty ) ∗ds (0 )
323 value1 = assemble (M1, e x t e r i o r f a c e t d oma i n s=boundary parts )
324 g = assemble ( Constant ( 1 . 0 ) ∗ dx , mesh=mesh )−( l x ∗ ly−Ao)
325 l a g r f u n c t = value1+abs ( lam∗g )
326 return l a g r f u n c t
327
328 def Pena l tyFunct ionDer ivat ive (mesh , boundary parts ,mu, u , z ,w, lx , ly , lam , Ao) :
329 n = FacetNormal (mesh )
330 m1 = −2∗mu∗( inne r ( e p s i l o n (u) , e p s i l o n ( z ) ) ) ∗dot (w, n) ∗ds (0 )
331 g = assemble ( Constant ( 1 . 0 ) ∗ dx , mesh=mesh )−( l x ∗ ly−Ao)
332 Drag de r i va t i v e = assemble (m1, e x t e r i o r f a c e t d oma i n s=boundary parts )
333 Drag de r i va t i v e = Drag de r i va t i v e − abs ( lam∗g )
334 return Drag de r i va t i v e
335
336 def WriteOutputDataFiles (u , p , z , r ,w, k ) :
337 u f i l e = ’ v e l o c i t y . ’+s t r ( k )+’ . pvd ’
338 p f i l e = ’ p r e s su r e . ’+s t r ( k )+’ . pvd ’
339 d i r f i l e = ’ d i r e c t i o n . ’+s t r ( k )+’ . pvd ’
340 a d j z f i l e = ’ ad j o i n t z . ’+s t r ( k )+’ . pvd ’
341 a d j r f i l e = ’ ad j o i n t r . ’+s t r ( k )+’ . pvd ’
342 u f i l e p vd = F i l e ( u f i l e )
343 u f i l e p vd << u
344 p f i l e p vd = F i l e ( p f i l e )
345 p f i l e p vd << p
346 u f i l e p vd = F i l e ( a d j z f i l e )
347 u f i l e p vd << z
348 p f i l e p vd = F i l e ( a d j r f i l e )
349 p f i l e p vd << r
350 p f i l e p vd = F i l e ( d i r f i l e )
351 p f i l e p vd << w
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