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ABSTRACT

Seven experiments were performed to assess the use of glucose responses to insulin

injections as a means of estimating insulin sensitivity in horses; to compare the insulin

sensitivities of normal horses vs. those displaying hyperleptinemia; and to put this method into

practical application.  Experiment 3.1 examined dose-responses in mares of potentially different

insulin sensitivities.  Recombinant human insulin was injected at doses of 8, 20, 50, and 125

mU/kg BW, as needed, to estimate the dose of insulin causing a 50% decrease in glucose

concentrations (ED50). Five mares each of low leptin concentrations (LL) and low BCS, LL and

high BCS, and high leptin concentrations and high BCS, were studied. The ED50 was similar for

LL mares, regardless of BCS, and was lower (P < 0.01) than for mares with high leptin

concentrations.  It was concluded that a dose of 50 mU/kg BW of recombinant human insulin

could be used safely to start the dose-response curve; lower or higher doses could then be used to

estimate ED50.  Experiment 3.2 assessed the repeatability of the estimates for ED50 obtained in

Exp. 3.1.  Estimates obtained were highly correlated (R2 = 0.822) with those obtained in Exp.

3.1, with an average within-mare CV of 8.9%. The next five experiments studied the effects of 1)

prior administration of epinephrine, 2) overnight feed deprivation versus hay or pasture

consumption, 3) 10-d acclimatization to hay in a dry lot versus pasture grazing, 4) cinnamon

extract supplementation, and 5) fish oil supplementation on insulin sensitivity. Epinephrine

stimulated blood glucose (P < 0.05) and prevented the insulin-induced decrease in blood glucose

in both sensitive and insensitive mares.  Overnight feed deprivation decreased (P < 0.06) insulin

sensitivity relative to overnight ad libitum access to hay, and both regimens resulted in reduced

insulin sensitivity relative to overnight pasture availability. Ten days of hay consumption in a

dry lot reduced (P < 0.05) insulin sensitivity in insensitive mares relative to pasture grazing.
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Supplementation with cinnamon extract or fish oil had no effect on insulin sensitivity of mares

with known low insulin sensitivity under the conditions of these experiments.
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CHAPTER 1 

INTRODUCTION 

Horses rarely have a total loss of insulin production, as seen in humans with type 1 

(juvenile onset) diabetes, but obese horses commonly exhibit insulin resistance, which can 

contribute to other health risks, such as laminitis, pituitary adenoma, hyperlipidemia, 

osteochondritis dissecans, reproductive inefficiency, and a diminished ability to properly 

exercise (Kronfeld et al., 2005; Frank et al., 2006).  Identification of horses with insulin 

resistance is important due to its link with these problems (Treiber et al., 2006).  Identification 

can help producers identify which horses to monitor more closely for signs of laminitis as well as 

make changes in management practices for insulin resistant horses that may be predisposed to 

other conditions. Identification can also be beneficial to researchers, as these horses may skew 

data in some experiments involving insulin, leptin, or thyroid hormones (Gentry et al., 2002; 

Cartmill et al., 2003).      

Insulin resistance is often aggravated in the horse, as many horses are increasingly being 

viewed as companion animals or pets.  Due to this, they are often pampered and live a lifestyle 

with little exercise and diets high in carbohydrates, leading to increased insulin resistance (Frank 

et al., 2010).  Thus, there is an increased need for horse producers and veterinarians to have an 

easy, reliable method of measuring insulin resistance.  Current methods of measuring insulin 

resistance have been adapted from human medicine, and are complicated and often unreliable 

when used to measure insulin sensitivity in horses. 

The research described herein was designed to develop a more simplistic and effective 

means of measuring insulin sensitivity in horses through the intravenous administration of 

insulin, and to put this method into practical application to determine its suitability for farm use 
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by veterinarians and producers.  The first objective was to assess the insulin sensitivities of 

horses with high and low plasma leptin concentrations by evaluating glucose response curves to 

the intravenous administration of insulin to animals across a wide range of sensitivities and to 

refine this method.  The second objective was to compare the insulin sensitivities of normal 

horses vs. those displaying hyperleptinemia.  Finally, the third objective was to put this method 

into practical application by determining whether various factors would affect insulin sensitivity, 

such as 1) epinephrine administration (mimicking stress), 2) prior feeding regimen (feed 

deprivation, hay, and pasture), and 3) two common feed supplements (cinnamon extract and fish 

oil) reported to affect insulin sensitivity in other species. 
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CHAPTER 2 

REVIEW OF LITERATURE 

Normal Insulin Action 

 Insulin is a protein hormone synthesized by cell clusters in the pancreas, referred to as the  

islets of Langerhans, in response to elevations in blood glucose and/or amino acid concentrations 

(Hadley and Levine, 2007).  Insulin is needed by almost all cells (except the brain, retina, and 

testes) to transport glucose across cellular membranes, and its action is directed towards the 

metabolism of carbohydrates, fats, and proteins (Hadley and Levine, 2007).  In this mechanism, 

glucose and insulin are directly proportional; as blood glucose levels increase, an increase in 

insulin is prompted.  When glucose levels decrease, less insulin is released (Hadley and Levine, 

2007).    

In healthy fasted humans, blood glucose concentrations typically range between 80 to 90 

mg/dL (Guyton and Hall, 2006).  These limits are closely upheld in the fasted state.  After 

consumption of a meal (in the first half hour), these levels rise to 120 to 140 mg/dL, but normally 

return to fasted values within 2 h after a meal.  Horses maintain comparable blood glucose levels, 

with between-meal concentrations typically ranging from 60 to 90 mg/dL (Ralston, 2002). 

Horses absorb glucose differently depending on several factors, including diet, daily routine, 

exercise level (metabolic demands), and genetics.  After a meal high in carbohydrates, 

disaccharides are hydrolyzed into monosaccharides in the duodenum by intestinal microvilli 

brush border enzymes (Guyton and Hall, 2006).  Glucose is the main end result.  After 

production, it moves into portal blood and is transported to vital tissues.  When stimulated by 

glucose, the pancreas produces insulin.  This impedes gluconeogenesis by the liver.  The half-life 
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of insulin in humans is about 6 min and it circulates mostly unbound to serum proteins (Guyton 

and Hall, 2006). 

Eighty percent of the body requires insulin as a moderator for glucose entry into the cell.  

The insulin receptor is composed of alpha and beta subunits, connected by disulfide bonds 

(Tritos and Mantzoros, 1998).  Tyrosine kinase, the enzyme linked to the insulin receptor, is 

promptly autophosphorylated when insulin binds to the receptor’s alpha subunit.  This activates 

the tyrosine kinase, which in turn phosphorylates numerous enzymes within the cell as well as 

the insulin receptor substrate (IRS).  These products drive the incorporation of glucose transport 

(GLUT) proteins to the cell membrane for glucose absorption from interstitial fluid.  Any 

glucose that remains unused for energy is transformed to glycogen and warehoused in the liver 

and muscle cells until necessary.  Any additional surplus carbohydrates are used to produce fats, 

which are stored in adipose tissue (Guyton and Hall, 2006).  In a discussion by Storer et al. 

(2007), it was postulated that in wild horses, insulin production is relatively steady, as they graze 

for most of the day.  In contrast, humans and meal-fed horses rely on free fatty acids (FFA) and 

volatile fatty acids (VFA) for energy between meals, as most tissues (excepting nervous tissue) 

are only somewhat porous to glucose (Guyton and Hall, 2006).   

Insulin Resistance 

Insulin resistance occurs when some aspect(s) of the insulin receptor-intracellular cascade 

stop responding normally to insulin and the body as a whole becomes less sensitive to insulin 

(Treiber et al., 2006).  It is most likely the outcome of both polygenic flaws and environmental 

influences (Qin et al., 2003).  This resistance to normal amounts of insulin causes the pancreas to 

produce increasing amounts of insulin in order to keep blood glucose at a normal level, meaning 
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higher concentrations of insulin are required to keep glucose at the same level (Treiber et al., 

2006).  

Many bodily factors can compromise the standard physiologic reaction to glucose (Qin et 

al., 2003).   In humans, over 50 mutations of the insulin receptor gene have been characterized 

(Tritos and Mantzoros, 1998).  Mechanisms of these mutations can be grouped into three 

divisions involving receptors: receptor, pre-receptor, and post-receptor insulin resistance (Chang 

et al., 2004).  When the number or avidity of insulin receptors declines, receptor type insulin 

resistance occurs.  Pre-receptor insulin resistance, on the other hand, occurs when circulating 

antibodies are developed against insulin receptors, causing insulin to not bind to the target cells 

well (Chang et al., 2004).  The third group, post-receptor type insulin resistance, is the most 

common type of insulin resistance.  This type is caused by a signaling failure by intracellular 

effectors of insulin’s actions (Chang et al., 2004).  These receptor failures can cause serious 

problems in both humans and horses.   

With insulin resistance, the body is forced to produce greater amounts of insulin to signal 

the target tissues to incorporate GLUT proteins in the face of hyperglycemia (Frank et al., 2006).  

Sustained hyperglycemia from insulin resistance may ultimately overpower the pancreas' ability 

to produce insulin (Chang et al., 2004).  In humans, this can eventually lead to frank diabetes (a 

state where no insulin is produced at all), a condition called type I diabetes.  Total insulin 

production loss is rarely seen in horses, but insulin resistance can still cause major problems for 

equines, such as laminitis, pituitary adenoma (Frank et al., 2006), hyperlipidemia, 

osteochondritis dissecans, reproductive inefficiency, and the ability to exercise properly 

(Kronfeld et al., 2005).    
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Contributing Factors to Insulin Resistance 

Breed and lifestyle.  Many factors can cause a predisposition to insulin resistance.  There 

is often a genetic component to insulin resistance; certain breeds of horses (Morgans, Spanish 

Mustangs, European warmbloods, American Saddlebreds, Arabians, and ponies) often have an 

increased incidence of insulin resistance, most likely as a genetic adaptation to sparse vegetation 

(Johnson, 2002; Harris et al., 2006).  Within an individual breed, some lines may be more 

predisposed than others, as insulin resistance is rarely a factor taken in account when choosing a 

sire for breeding. 

Insulin resistance can also be aggravated by the increasing perception of horses as 

companion animals or pets, rather than work animals.  Due to this, many horses receive little 

exercise and have improper nutrition, as well as often consuming diets too high in carbohydrates 

(Buff et al., 2005).  Such a diet and lifestyle is commonly hard for even a healthy horse to 

overcome, as diet has been shown to affect insulin sensitivity.  An insulin resistant horse is 

frequently unable to override the glycemic response of a diet high in sugars and starches because 

great vacillations in glucose and insulin after these meals give incorrect energy signaling (Harris 

et al., 2006).  In Throughbred weanlings, insulin sensitivity was lower in those fed sugar and 

starches as opposed to those fed fats and fiber (Treiber et al., 2005).  Similar results were seen in 

Throughbred geldings (Hoffman et al., 2003).     

According to a discussion by Storer et al. (2007), wild horses adapted to an active 

lifestyle, evolving without any sources of concentrated carbohydrates in their diet and requiring 

movement throughout most of the day.  In wild horses, insulin production is relatively steady, as 

they graze for most of the day.  This roaming lifestyle directly contrasts to the lifestyle of most 

horses today, where the majority of their time is spent in a barn or small pasture consuming rich 
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grass or grain, which often leads to inadequate exercise and obesity (Buff et al., 2005).  Even 

active horses may have a lifestyle predisposed to insulin resistance, as equine athletes are often 

fed sweet feed in order to improve performance (Kronfeld et al., 2005).  Horses that may be 

susceptible to insulin resistance can often be distinguished from healthy horses by excessive 

weight gain or loss, muscle loss, lack of stamina, cresty necks, and abnormal fat pockets across 

the body (Johnson, 2002).      

Fat intake and obesity. Obesity occurs when there is a disparity between energy intake 

and expenditure (Geor and Harris, 2009).  Obese horses are horses with a body condition score 

(BCS) of 7 or more (Henneke et al., 1983).  These are the horses most at risk for developing 

metabolic problems.  The National Animal Heath Monitoring System of the Department of 

Agriculture reported (through owner surveys) that 5.5% of the horse population was obese in 

1995.  Of horses not reported as obese, many were probably still heavier than ideal.  This value 

is most likely much lower than actuality due to errors in owner measuring (Geor, 2008).  While 

not all insulin resistant horses are overweight and not all overweight horses are insulin resistant, 

there is a general correlation between obesity and insulin resistance.  In one experiment, 35% of 

the high BCS mares were found to be hyperleptinemic (Waller et al., 2006), which is a trait 

associated with insulin resistance.   

Harry Himsworth (1935) was the first to test the effects of dietary fat on insulin action.  

Subjects on a liquid diet were fed 13 to 80% fat. Himsworth found that administration of insulin 

depressed the oral glucose tolerance curve in some diabetic patients (insulin sensitive), but not 

others (insulin insensitive).  He found a reduced depression of blood glucose in the higher fat 

content diets (Himsworth and McNair-Scott, 1935).  
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There are two primary theories linking obesity to insulin resistance.  The first involves 

the buildup of lipids in cells in tissues that are sensitive to insulin (particularly skeletal muscles).  

This is called lipotoxicity, and involves fat cells producing toxins that interfere with insulin 

action at the target cell.  A horse’s natural diet is low in fat, but extra glucose is often converted 

into fat by de novo lipogenesis.  These fats are then either used for metabolic demands or stored 

within cells as triglycerides.  When adipose tissues no longer have storage area, the fats are 

repartitioned to nonadipose tissues, such as skeletal muscle, liver, and pancreatic tissues.  These 

tissues increase β-oxidation in an effort to utilize fats, but in this process, as the lipids amass, 

normal cell functions can be altered, including insulin signaling (Frank et al., 2010). 

The second theory involves insulin signaling pathways that are down-regulated by 

adipokines and cytokines manufactured in fat tissue (Frank et al., 2010).  As fat cells enlarge, the 

concentration of insulin receptors on their exterior diminishes (O’Dea, 1992).  To compensate 

for the decreased receptor number, the body increases its insulin production.  As a result, 

hyperinsulinemia may cause insulin receptors in other tissues to be down-regulated (O’Dea, 

1992).   Thus, high insulin levels lead to fat, and fat leads to improper insulin action, leading to 

more insulin, creating a malicious progression of disease.   

Insulin resistance can cause compensated hyperinsulinemia, a syndrome of severe insulin 

resistance, which occurs from an augmented insulin production in order to compensate for the 

ongoing insulin resistance and decreased insulin clearance (Tritos and Mantzoros, 1998).  This 

may upset the “switching” apparatus of lipid breakdown in humans and in horses and produce 

dyslipidemia.  Dyslipidemia is characterized by augmented circulating very low density 

lipoproteins (VLDL), elevated triglyceride concentrations, and low concentrations of high 

density lipoprotein (HDL) cholesterol (Carr and Brunzell, 2004; Alberti et al., 2006).   
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An exact mechanism for this process is unknown, but obesity is thought to have an 

impact on insulin resistance and dyslipidemia.  Insulin sensitivity has been reported to be less in 

obese geldings compared to non-obese geldings (Hoffman et al., 2003).  One cytokine produced 

by adipose tissue is tumor necrosis factor-alpha (TNF-alpha).  It stimulates the release of 

nonesterified fatty acids (NEFA) and may facilitate the gene repression for assembly of glucose 

and NEFA (Vick et al., 2008).  Large amounts of TNF-alpha and NEFA may impair insulin 

signaling, particularly in muscle tissue, because as NEFA oxidation is fulfilling energy 

requirements, less glucose uptake is needed (Randle et al., 1963).  Extreme NEFA contact may 

directly impact the islets of Langerhans.  In an experiment by Boden and Laakso (2004), 

elevation of NEFA for 2 to 4 d (experimentally-induced) triggered increased insulin secretion in 

humans (Boden and Laakso, 2004).  Adipose tissue products may also be harmful to the liver, as 

the products are secreted straight into portal blood.  (Mlinar et al., 2007).   

Clinically, insulin resistant horses as compared to healthy horses have 86% higher NEFA, 

104% higher VLDL, and 29% higher HDL-cholesterol concentrations in blood. The NEFA 

concentrations in blood are considered fat metabolism and mobilization markers (Frank et al., 

2006).  In healthy obese humans with normal β cells, FFA stimulate insulin secretion and induce 

insulin resistance.  This process is thought to have developed as a beneficial adaptation to 

situations like pregnancy or starvation (Boden and Laakso, 2004).  An adaptation for survival in 

conditions of unreliable food supply could explain why some breeds have a higher incidence of 

insulin resistance, as these breeds lived in harsher environments (Treiber et al., 2006).  During 

pregnancy, mares have higher insulin levels after an increase in glucose due to an enhanced β 

cell response to glucose, because glucose is redirected to nourish the fetus, not taken up by 
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maternal tissues.  Around the time of parturition, insulin concentrations fall (Fowdean et al., 

1984).     

Because insulin resistance was originally an adaptation, in many active people, the body 

is able to compensate for the insulin resistance created by FFA (Boden and Laakso, 2004).  So 

not all obese insulin-resistant humans develop disease, but in many sedentary people and those 

genetically predisposed to disease, FFA are unable to compensate for the insulin resistance they 

create.  Concentrations of NEFA rise as result of fat tissues satisfying their total storage ability 

for fat, which lessens the inhibitory properties of insulin on lipase (Frank et al., 2006).  Due to 

this, fat must be stored in other tissues (like liver and muscle cells), which can cause tissue 

insulin resistance from yields of fat use, upsetting insulin signaling conduits (Boden and Laakso, 

2004).  Additional indicators of NEFA uptake in the human liver are rises in VLDL and 

triglycerides (Carr and Brunzell, 2004; Frank et al., 2006). 

In humans, hypertriglyceridemia often leads to high blood pressure, and as such, is 

commonly linked with metabolic syndrome, obesity, and insulin resistance. Although seldom 

measured in equines, pony breeds considered insulin resistant with a prior history of laminitis 

showed raised insulin, blood pressure, VLDL, and triglyceride concentrations during times when 

high-fructans (high-glycemic, non-structural carbohydrates linked to insulin resistance in the 

horse) were available for grazing (Bailey et al., 2008).  Forhead (1994) reported comparable 

findings in hypertriglyceridemic donkeys.      

Equine Metabolic Syndrome 

The previously described risk factors for insulin resistance have been clustered into one 

disorder, equine metabolic syndrome (EMS).  Metabolic syndrome in humans is a disorder 

comprising a string of medical abnormalities judged as threats for type II diabetes and coronary 
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artery disease (Alberti et al., 2006).  In 1988, Gerald Reaven described a compilation of 

abnormalities thought to cause the progress of cardiovascular disease, kidney disease, and 

diabetes mellitus.  He called this collection of disorders “syndrome X”, a disorder consisting of: 

decreased HDL cholesterol, elevated VLDL triglyceride, hyperglycemia, hypertension, and 

insulin resistance (Reisin and Alpert, 2005).  Presently, in human medicine, this condition is 

more commonly referred to as the metabolic syndrome, with added constituents: dyslipidemia 

and obesity.  By 2020, this syndrome is expected to impact 40% of the world's population 

(Alberti et al., 2006). 

  In 2002, it was suggested that some of the same disorders, obesity, insulin resistance, and 

laminitis, were also constituents of a syndrome in equines (Johnson, 2002).  Thus, the term EMS 

was accepted to describe this condition due to its resemblance to the human disorder. Established 

components of EMS include obesity, insulin resistance, regional fat deposits, and laminitis 

unconnected to other causes like grain overload or colic.  Other related perturbations may 

include hypertriglyceridemia or dyslipidemia, hyperleptinemia, arterial hypertension, and altered 

reproductive cycling (Frank et al., 2010).   

As opposed to the human syndrome, horses are not typically diagnosed with diabetes 

mellitus. They are instead diagnosed with insulin resistance and hyperinsulinemia (Geor and 

Frank, 2009), as the horse is able to produce sufficient amounts of insulin and does not have 

beta-cell failure as occurs in humans (Johnson, 2002).  The horse also often presents with 

laminitis rather than cardiovascular disease (Johnson et al., 2004).  In an experiment by Asplin et 

al. (2007), horses infused with insulin to produce prolonged hyperinsulinemia were found to 

have signs of Obel grade 2 laminits (Obel, 1948) in all feet within 72 h.     
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Hyperleptinemic-Hyperinsulinic Syndrome in Horses 

Adipose cells (including adipocytes, preadipocytes, and macrophages) secrete various 

biologically active molecules.  Jointly, these are called adipokines (Hutley and Prins, 2005).  

Adipokines have a variety of functions, such as regulating energy metabolism, reproductive 

status, and immune function, as well as regulating cardiovascular functions.  Obese individuals 

often have abnormal adipokine production.  White adipose tissue helps with insulation of the 

body and provides mechanical support and storage areas for extra energy (Radin et al., 2009).   

One peptide hormone secreted by adipocytes, leptin, has been studied extensively in 

horses due to its link to insulin and insulin sensitivity.  Leptin’s purpose, as defined mainly from 

rodent and human research, is to constrain food intake at the central nervous system, one of its 

main target tissues (Hadley and Levine, 2007).  When low doses of leptin are infused into the 

ventricles of the brain, food intake and body weight are reduced in sheep (Morrison et al., 2001) 

as well as pigs (Barb et al., 1998).  Conversely, failure to produce leptin or any leptin receptor 

defect results in massive obesity (Radin et al., 2009).  In addition to controlling feed 

consumption, leptin is thought to supply the brain with a hormonal signal of the body’s 

nutritional and energy state (Houseknecht et al., 1998).  In contrast to these known effects of 

leptin, most overweight human subjects have normal or high serum leptin levels, and thus the 

obese state in humans is most likely not a leptin deficiency, but a consequence of resistance to 

leptin’s actions (Hadley and Levine, 2007).    

Leptin receptors can be found in peripheral tissues as well as the central nervous system.  

Receptors are particularly prevalent in the hypothalamus and brainstem.  These receptors control 

satiety, energy expenditure, and neuroendocrine function (Buff et al., 2002, 2005).  Produced by 

the adipocytes, leptin is secreted in proportion to body mass index or BCS in many animals, 
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including the horse (Prolo et al., 1998; Buff et al., 2002; Wild and Byrne, 2006), humans (Prolo 

et al., 1998), and ruminants (Chilliard et al., 2000).   Conversely, the lack of leptin or leptin 

receptors (as seen in mice, rats, and humans) causes obesity (Hadley and Levine, 2007).    In 

mares, a 24-h period of feed deprivation resulted in reduced leptin concentrations (Fitzgerald and 

McManus, 2000).  In a longer term feed restriction, after inducing a low BCS through a heavily 

restricted diet, Gentry et al. (2002) found mares had lowered circulating leptin concentrations 

and a longer seasonal anovulatory period.  Although low BCS mares had lowest leptin 

concentrations, well-fed mares showed a wide variation in leptin concentrations, with some 

exhibiting excessively high concentrations relative to other obese mares.  This could mean that in 

mares of high BCS, factors other than BCS may influence leptin secretion (Gentry et al., 2002).   

  Leptin has been shown to play a role in fatty acid metabolism in both humans and rats.  

In humans, leptin encourages fatty acid oxidation within muscle and impedes hepatic triglyceride 

buildup by triggering phosphoinositol-3-kinase activity.  In rats, leptin diverts lipids from non-

adipose tissue (Hutley and Prins, 2005).  This prevents lipotoxicity, a condition that occurs when 

lipids are deposited into nonadipocytes, such as the liver, muscle, pancreas and kidneys.  It is 

essential to prevent this condition (lipotoxicity), as it results in altered glucose metabolism, fat 

metabolism, and impaired organ function (Radin et al., 2009).  

A consistent low leptin (<5 ng/mL) or high leptin (7 to 20 ng/mL) separation of horses 

was described over a 2-yr period by Gentry et al. (2002) and Cartmill et al. (2003). In these 

experiments, leptin and insulin concentrations were highly correlated, similar to results 

previously reported for rats (Sivitz et al., 1998) and pigs (Ramsay and White, 2002).  In one 

experiment, 35%  of the high BCS mares were found to be both hyperleptinemic and 

hyperinsulinemic (Waller et al., 2006).  Hyperinsulinemia, a syndrome associated with 
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compensated insulin resistance, occurs from an augmented insulin production in order to 

compensate for the outlying insulin resistance and decreased insulin clearance (Tritos and 

Mantzoros, 1998).  In rats, hyperinsulinemia increases leptin concentrations within 3 to 5 h 

(Cusin et al., 1995); in contrast, leptin secretion is decreased when insulin concentrations are low 

(Sivitz et al., 1998).  In horses, it has been reported that that hyperinsulinemic-hyperleptinemic 

horses have an increased and extended insulin response to glucose infusion (Cartmill et al., 

2003).   

In an experiment by Huff et al. (2008), the hyperleptinemic state was further evaluated in 

post-foaling broodmares by measuring resting leptin concentrations in blood samples taken 2 wk 

apart.  Results were compared in a frequency diagram, which showed a normal distribution of 

mares across leptin concentrations varying from 0 to 6 ng/mL; hyperleptinemic mares were 

defined as those with mean leptin concentrations in excess of 10 ng/mL.  Given that leptin is 

believed to have a role in insulin signaling/sensitivity in the horse, and hyperleptiniemia-

hyperinsulinemia has been reported clinically in insulin resistance horses of high BCS (Frank et 

al., 2006), it is possible that links between high-leptin, high-insulin horses can be evaluated.  

Still, further research is needed to reveal relationships between the hyperinsulinemic-

hyperleptinemic condition and insulin resistance in the horse. 

Current Methods of Measuring Insulin Resistance 

Oral glucose tolerance test.  An oral glucose challenge in horses consists of 

administering glucose (usually as 1g/kg BW as a 20% dextrose solution) through intubation of 

the nasogastric cavity (Firshman et al., 2007).  This typically follows a 12- to 16-h period of food 

deprivation, and blood samples are taken every half hour to hour following infusion.  



15 

 

Concentrations of glucose are expected to return to the original baseline by 4 to 5 h post-

administration of dextrose (Ralston, 2002; Hoffman et al., 2003). 

This method is done infrequently in an equine clinical setting, as it cannot substitute for 

evaluation of glucose tolerance by measuring blood glucose levels.  Despite this, oral challenges 

can give important data, as they allow a researcher to measure how well an animal may absorb 

glucose through the intestine and the impact of this intestinal absorption on insulin sensitivity, 

measurements not typically taken into account in intravenous glucose tolerance tests.  In this test, 

the response curves for both insulin and glucose are typically elongated as compared to 

intravenous methods, and often have a lengthened crest as well (Ralston, 2002).  

In an experiment by Hoffman et al. (2003), an oral glucose tolerance test was used to 

show how reproductive status and nutritional status impacted glucose metabolism.  They 

determined horses in late gestation had highest insulin concentrations, and that horses in early 

lactation have the lowest insulin concentrations.  They also found that the response to glucose via 

the nasogastric tube was more sluggish in those fed fats and fiber than those fed starches and 

sugars (Hoffman et al., 2003). 

Intravenous glucose tolerance test.   Most commonly known as a glucose tolerance test, 

first described by Mehring and Tyznik (1970), the intravenous glucose tolerance test is 

performed after an overnight (10 to 12 h) of food deprivation.  A baseline blood sample is taken 

and followed with a large bolus dose of dextrose (Ralston, 2002).  Blood samples are also taken 

at 0, 5, 15, 30, 60, and 90 min post injection, and then hourly for 5 to 6 h after the injection 

(Firshman et al., 2007).  Following the dose of dextrose, glucose values normally peak within 15 

min of the injection.  Insulin levels also peak around 30 min post-dextrose injection.  Within 1 h 

of treatment, both insulin and glucose levels return to normal in a typical non-resistant horse 
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(Ralston, 2002).  Glucose intolerance occurs when there is a prolonged, or excessively high, 

response to the injection; this would mean a delay in the return to baseline of greater than 2 h 

(Firshman et al., 2007).  As this method was adapted to horses from a human model, despite 

being considered as the “gold standard” for many years, it is also often considered unpredictable 

and not well defined in horses.  Thus, other methods are more commonly used in horses today. 

The intravenous glucose tolerance test was first conducted in horses by Mehring and 

Tyznik (1970) to study the rate of glucose utilization.  They found the horse to be intermediate in 

glucose utilization when compared to previously studied species (humans, monkeys, rabbits, 

lambs, calves, and sheep) and found ruminants to be less sensitive than non-ruminants.      

Frequently sampled intravenous glucose tolerance test and minimal model 

assessment.   The frequently sampled intravenous glucose tolerance test (FSIGT) followed by  

minimal model analysis (Bergman et al., 1987) has been used extensively in human medicine 

and has been applied to cattle, (Stanley et al., 2002), sheep (Williams et al., 2002), pigs (Behme, 

1996), and horses (Hoffman et al., 2003).  This assessment uses computer software and 

mathematical equations to extrapolate the changes in glucose and insulin over time after an 

intravenous load of glucose (Hoffman et al., 2003).  

There are two main advantages to this test.  It can evaluate the sensitivity of pancreatic 

beta cells to glucose, as well as calculate both insulin-dependent and insulin-independent glucose 

utilization (Treiber et al., 2005).  Despite these advantages and its contemporary well-known use, 

there are limits to this test.  First, the test is complex and necessitates costly software, which is a 

restrictive factor to clinicians, who may use the test only infrequently.  Second, both glucose and 

insulin data are required.  Although glucose concentrations can be easily determined with hand-

held glucometers, insulin measurement requires more complicated laboratory analysis. Many 
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insulin resistant horses do not have a large insulin response, even with very high doses of insulin 

(Treiber et al., 2005).  During the initial 20 min of this test, glucose concentrations may 

sometimes be greater than 2.0 g/L, exceeding a horse’s renal threshold, which can cause urinary 

glucose spilling.  This is not accounted for in the minimal model method, so would be a 

confounding factor (Menzies-Gow et al., 2009).  Despite these disadvantages, the FSIGT and 

minimal modeling is commonly used by some equine researchers.   

Protocol for this test requires horses to be restricted to stalls the night before the test.  

Reference point samples are attained to find fixed insulin and glucose values.  After this, a bolus 

of dextrose is infused intravenously. For the following 180 min, numerous blood samples are 

drawn.  In a modified version of the test, a single dose of insulin is given 20 min after the 

glucose infusion in order to create a distinct second-phase insulin response.  This modification 

supposedly increases accuracy (Hoffman et al., 2003).   

After the test, samples are evaluated by computerized algorithms to provide three main 

variables: the insulin sensitivity index (Si), glucose effectiveness (Sg), and the acute insulin 

response to glucose (AIRg).  The Si is an approximation of net fractional glucose clearance rate 

per unit change of insulin, or more commonly, insulin sensitivity.  The Sg indicates net fractional 

glucose clearance rate in the absence of insulin (i.e., non-insulin dependent glucose clearance).  

And thirdly, AIRg is the incremental area under the insulin curve (this calculation is found in the 

first 20 min of sampling post-admin) and provides an index of beta cell response to the infused 

glucose.  Once calculations are obtained, they are evaluated together (Treiber et al., 2005).  In 

addition, the incremental areas under the concentration versus time curves (AUC) for glucose 

(AUCg) and insulin (AUCi) are calculated.  Plasma half-life time for glucose clearance (T1/2g) 

is also found through non-linear regression analysis (Hoffman et al., 2003). 
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Hyperinsulinemic-euglycemic clamp method.   Long considered the gold standard for 

assessing insulin sensitivity, the hyperinsulinemic-euglycemic clamp method was first developed 

for use in human medicine. This method measures insulin sensitivity by measuring the amount 

(infusion rate) of glucose that is required to counteract the glucose-lowering effects of a constant, 

simultaneous infusion of insulin. Despite being the most accepted methods of measuring insulin 

sensitivity, the clamp technique and the FSIGT test are the most impractical, expensive, and 

time-consuming tests. 

 This procedure, described by Pratt et al (2005), calls for a period of overnight feed 

deprivation with only water available.  For the test, baseline samples are collected, and then 2 

mL of the horse’s serum is combined with 5 mL recombinant insulin (100 U/mL) and 493 mL of 

0.9% NaCl.  The insulin solution is infused via one jugular vein to maintain a steady rate of 

prolonged hyperinsulinemia.  This state must be maintained for the entire 180 min of the test.  

During this time, blood samples are drawn and tested with a glucometer every 5 min, and the 

amount of glucose infused, via the contralateral jugular vein, is adjusted until a constant 

euglycemia is achieved for at least 60 min.   Blood samples are drawn every 15 min for insulin 

measurement as well (Pratt et al., 2005).    

Based on the data from the last 60 min of the test, whole body glucose uptake (M) and 

insulin sensitivity index are calculated.   Since glucose cannot be measured perfectly constantly 

during the clamp, no matter how careful or skilled the technician, an intricate correction factor 

must account for any margin of error (Pratt et al., 2005).      

The clamp technique has been criticized for its nonphysiological nature, given that the 

glucose disposal rate relates to an unnaturally high plasma insulin concentration.  The test is also 

very complicated and requires a highly trained person and great attention to detail.   Session et al. 
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(2004) used this test to develop a method of inducing insulin resistance and to determine the 

effect of insulin resistance on the estrous cycle.  They found that insulin resistant mares had a 

diminished ability of insulin to encourage the uptake of FFA. 

Combined glucose and insulin tolerance tests.  Many of the disadvantages described in 

the previous tests are limiting to clinicians and researchers seeking to measure insulin sensitivity.  

Thus, a more practical horse-specific model for measuring insulin sensitivity is needed.  The 

combined glucose insulin tolerance test (CGIT) was developed in an attempt to meet this need.  

First described by Eiler et al. (2005), this procedure entails an overnight period of hay, trace 

minerals, and water only.  The next morning, the subject horse is stalled and allowed free access 

to hay and water.  An intravenous catheter is inserted, and a baseline blood sample is obtained.  

Dextrose is then infused intravenously (150 mg/kg BW), followed by a bolus injection of insulin.  

Blood samples are collected at 1, 5, 15, 25, 35, 45, 60, 75, 90, 105, 120, 135, and 150 min after 

infusion.  In normal horses, glucose concentrations, elevated by the initial infusion, return to 

baseline levels by 45 min (Eiler et al., 2005; Frank et al., 2010); in insensitive horses, glucose 

concentrations are well above baseline at 45 min. Serum insulin can also be measured at time 0 

and 45 min.  If the 45-min measurement is greater than 100 mU/L, the horse is secreting more 

insulin than normal and/or clearing insulin at a slower than normal rate.  Iatrogenic 

hypoglycemia may be seen (blood glucose levels <40 mg/dL), with sweating, muscle 

fasciculation, and weakness are often observed as symptoms (Frank et al., 2010).  

Intravenous insulin injection.   Intravenous injection of insulin has been studied in 

horses as well as mules (Silver et al., 1987; Alexander et al., 1997; Forhead and Dobson, 1997).  

Despite this, it has not often been used due to safety concerns, such as hypoglycemic shock, 

which can lead to death (Given et al., 1988).  There is also the possibility of inducing laminitis 
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through prolonged insulin exposure (Asplin et al., 2007).  Yet, experiments in donkeys have 

shown doses of insulin up to 0.4 U/kg BW have no serious side-effects (Forhead and Dobson, 

1997). Likewise, in previous research conducted by Gentry et al. (1999), no significant side 

effects were noted in horses after a single intravenous dose of insulin of 0.1 U/kg BW. 

  Epinephrine, Glucocorticoids, and Insulin Resistance 

In reaction to hypoglycemia, there is often a prompt secretion of epinephrine, 

norepinephrine, adrenocorticotropin (ACTH), glucagon, and growth hormone (GH; Morita et 

al., 2007).  Under stressful states, epinephrine depresses insulin secretion (Deibert and Defronzo, 

1980; Hadley and Levine, 2007) so that glucose is available to essential tissues in an emergency, 

rather than being converted and stored as glycogen or fat for use later.  In addition, epinephrine 

and norepinephrine activate beta receptors of pancreatic alpha cells, and stimulate glucagon 

production. (Hadley and Levine, 2007). 

Glucocorticoids are needed for survival and maintenance of adrenomedullary chromaffin 

cells, which produce epinephrine (Morita et al., 2007).  Glucocorticoids have an action on insulin 

similar to that of epinephrine.  In response to stressful situations, like injury, infections, extreme 

temperature, or disease, cortisol is secreted to encourage survival (Sapolsky et al., 2000).   

Glucocorticoids inhibit insulin action (Westerbacka et al., 2003) and boost gluconeogenesis, 

which encourages glucose disposal to cells in the central nervous system and cells that are not 

dependent on insulin for glucose uptake (Jazet et al., 2003).  Hyperglycemia may be induced, 

which can cause the mobilization of fats and amino acids for high energy demands (Johnson et 

al., 2004).  This hyperglycemia also guarantees that the brain and other important tissues are 

supplied with sufficient nutrients in the time of a stressful situation (Johnson et al., 2004). Thus, 

high amounts of epinephrine cause decreased insulin secretion, which causes an increase in 
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ACTH, leading to increased cortisol, which can cause insulin resistance as more and more 

insulin must be produced for the same effect (Morita et al., 2007).  Insulin resistance from 

glucocorticoids may be aggravated by a diminished number of insulin receptors, decreased 

receptor affinity for insulin, or faulty signaling between cells (Jazet et al., 2003). This can cause 

a vicious cycle, because high cortisol levels can interfere with sleep patterns, leading to more 

stress.  The high stress levels lead to a suppressed immune system, causing infections, causing 

higher levels of insulin and more stress (Sapolsky et al., 2000).  Furthermore, even with 

persistent hyperinsulinemia, epinephrine produced from stress can amplify glucose production 

from the liver (Deibert and Defronzo, 1980). Moreover, in hypoglycemic patients deficient in 

ACTH, there may be a failure to properly recover from the hypoglycemic effects (Morita et al., 

2007).   

Confirming these processes, studies have shown that infusion of epinephrine into men 

induces hyperglycemia (Deibert and Defronzo, 1980).  In a study of 23 patients, an insulin-

induced hypoglycemic state resulted in decreased epinephrine in all patients (Morita et al., 2007).  

Studies have also been conducted in the dog (Sherwin et al., 1978; 1979) with similar findings.  

Exercise studies have been conducted on the horse to evaluate the effect of epinephrine on 

glucose.  In one study, exercising horses were given an oral dose of glucose at 2 g/kg, followed 1 

h later by an infusion of epinephrine.  Results showed an increase in glycerol and NEFA (Geor et 

al., 2000).   As a result of this process, both endogenous release of epinephrine after stress and 

exogenous epinephrine infusion can cause diminished glucose tolerance.     

Insulin resistance is linked to Cushing’s disease, a disease in which high levels of ACTH 

cause muscle problems.  Cortisol is thought to impact insulin resistance by increasing blood 

glucose through the conversion of protein to glucose via the breakdown of muscle proteins to 
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amino acids, transporting those amino acids through the blood to the liver, converting these 

amino acids into glucose, and releasing the glucose into the bloodstream (Schott, 2002).   Also, 

as previously described, high levels of ACTH interfere with insulin action and lead to abnormal 

cortisol level.  This causes higher blood glucose levels, prompting increased insulin production 

in order to decrease the glucose to normal levels (Hadley and Levine, 2007).  This can also be 

responsible for a decrease in muscle tissue, as cortisol breaks down muscle and decreases muscle 

synthesis (Schott, 2002). Horses with Cushing’s disease typically present with hindered 

shedding, hirsitism, polyuria and polydipsia, and muscle atropy.  Equine metabolic syndrome 

typically occurs at less than 15 yr of age, while pituitary pars intermedia dysfunction (PPID, or 

equine Cushing’s syndrome) occurs in old horses (Frank et al., 2010).  Further research needs to 

be done to determine if there is a correlation between the two diseases (Frank et al., 2010).    

Feeding Regimens and Insulin Sensitivity 

The effect of nutritional treatments on insulin sensitivity has been studied in many 

species, typically comparing fed with unfed animals having decreased glucose transport 

capabilities.  In horses, feed deprivation lessens the pool of GLUT4 protein, reduces GLUT4 

found in the plasma membrane after insulin stimulation, and causes insulin resistance relatively 

quickly (Kahn et al., 1988).  After feed deprivation for 24 h, ponies showed a delayed peak 

response to an oral glucose load and delayed return to baseline; after 72 h, there was a delayed 

return to baseline (Breukink, 1974).  Three days of feed deprivation induced insulin resistance to 

exogenous insulin in donkeys, and was also stressful enough to raise cortisol levels (Forhead and 

Dobson, 1997). 

During feed deprivation, blood glucose concentrations are reduced, and there is a smaller 

amount of glucose available.  Other energy sources must be used instead (such as stored fat).  
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Otherwise, insulin resistance occurs, as a “thrifty” adaptation to starvation (Forhead and Dobson, 

1997).  Leptin levels also decrease with feed deprivation (Radin et al., 2009). 

Human athletes are commonly put on high carbohydrate diets, because of the high energy 

content, which may be used to build muscle glycogen and increase endurance (Bosch et al., 

1996).  High-concentrate diets (typically containing large amounts of corn) also have a huge 

impact on equine athletes and other animals (Ortigues-Marty et al., 2003).  Studies have shown 

that diets high in nonstructural carbohydrates may decrease insulin sensitivity (Hoffman et al., 

2003; Treiber et al., 2005; Pratt et al., 2006).  Yet, this seems to only be true in non-exercising 

horses, as this difference was not seen in horses undergoing training.  Thus, physical 

conditioning alters the effect of diet on insulin sensitivity in horses, most likely due to the 

changes occurring in muscle in conditioned horses (Geor, 2010).      

High fat content diets cause insulin resistance in humans (Reaven, 1988); however, in 

humans, high fat diets may contain up to 65% fat (Ribero et al., 2004), while high fat diets fed to 

horses contain only 10 to 15% fat.  Adding fats to equine diets has recently become a trend, and 

fat-supplemented diets may increase fat oxidation during exercise and spare carbohydrates.  Fat 

supplemented horses have shown greater exercise abilities, such as extended run times during 

incremental speed tests compared to controls (Eaton et al., 1995), lower heart rates and less 

acidosis during repetitive sprints (Duren et al., 1999), and quicker gallop times over 600 and 

1600 m (Harkins et al., 1992).  Fat-adapted horses may also have more metabolic flexibility in 

expending dietary fuels during high and low intensity exercise (Kelley and Mandarino, 2000), 

which may be due to diminished circulating insulin (Duren et al., 1999) and enhanced insulin 

sensitivity. 
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Diets high in fat and fiber fed to horses have been found to result in increased insulin 

sensitivity when compared to diets rich in sugar and starch, but do not differ from those on a diet 

of pasture and hay only (Hoffman et al., 2003).  This is likely due to the fact that a diet high in 

fat and fiber more closely mimics the natural state of horses grazing on pasture (Williams et al., 

2001).  Continued consumption of grain and molasses reduces insulin sensitivity relative to 

consumption of diets high in fat and fiber (Hoffman et al., 2003).     

In a study in which ponies were fed either hay or grain, blood glucose concentrations 

after feeding were lower on the grain diet as compared to the hay diet (Argenzio and Hintz, 

1972).  In another study of horses fed grain and hay compared to horses fed hay only, those fed 

the hay and grain diet had lower blood glucose concentrations (Garcia and Beech, 1986). It is 

assumed that the lower blood glucose concentrations resulted from enhanced insulin secretion 

induced by elevated glucose concentrations after the grain consumption. 

Cinnamon and Cinnamon Extracts 

 For centuries, cultures throughout the world have valued certain spices for their 

medicinal properties (Khan et al., 2003).  In humans, some of these spices have ameliorative 

effects on disease (Khan et al., 2003), with researchers expecting them to have similar 

effectiveness with a decrease in the side effects commonly caused by orthodox drug management 

(Kim et al., 2006).  Products made from plants, often with antioxidant properties, have been 

suggested to increase the metabolism of lipids and improve capillary action (Khan et al., 2003).   

In a typical animal production system, the secondary metabolites of plants are largely an 

untapped resource (Greathead, 2003).  With animal feed additive legislations constantly 

changing to prevent microbial resistance to antibiotic drugs, there has been an increased 

awareness of these plant metabolites as substitute performance enhancers (Greathead, 2003).  
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Many spices, such as bay leaves, cinnamon, and cloves, promote insulin action in vitro (Khan et 

al., 2003). 

Since 1990, in vitro studies have shown that cinnamon extracts mimic insulin action, 

potentiating insulin action in isolated adipocytes (Qin et al., 2003).  An extract of cinnamon, 

methylhydroxychalcone polymer (MHCP), is thought to be responsible for this insulin mimicry, 

and thus may be potentially useful in treating insulin resistance through increased glucose 

utilization (Qin et al., 2003) and through improving the function of insulin receptors (Imparl-

Radosevich et al., 1998; Jarvill-Taylor et al., 2001).   

In vivo studies of cinnamon extracts have been conducted in humans and rats.  Qin et al. 

(2003) found improvement of in vivo insulin-regulated whole-body glucose utilization in rats 

treated with cinnamon in a dose dependent manner.  These results were further validated through 

a study by Kim et al. (2006) using a type II diabetic animal model (db/db rats), and indicated that 

cinnamon extract might suppress blood glucose through improving insulin sensitivity or by 

reducing the rate of carbohydrate metabolism. The results of Kim et al. (2006) showed that 

MHCP did not affect body weight or food intake, but greatly decreased blood glucose levels, 

showing increased glucose disposal.  Treated rats also showed a dramatic rise in serum insulin 

and a decline in triglyceride and total cholesterol levels (Kim et al., 2006).  In humans, similar 

effects have been seen, with cinnamon improving fasting glucose and lipid concentrations and 

reducing cholesterol and triglyceride concentrations (Khan et al., 2003; Mang et al., 2006). 

No refereed journal articles exist at this time on the effect of cinnamon added to the diet 

of horses, although some popular press articles discuss the possibility that there may be a 

possible unstudied beneficial effect (Frank et al., 2010).  Whether documented by research or 

not, many horse producers and owners are increasingly relying on herbal remedies and 
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supplements.  This has been noted by many online website and magazines, like wholehorse.com, 

which suggests the use of supplements like chromium, magnesium, and cinnamon for treatment 

for equine metabolic syndrome and insulin resistance (Frank et al., 2010).   

Omega-3 Fatty Acids and Fish Oil 

Since the 1970’s, fish oils have been identified as valuable in alleviating cardiovascular 

and metabolic diseases as well as some mental illnesses in humans (Horrocks and Yeo, 1999; 

Kabir et al., 2007).  After observing a reduced risk of coronary artery disease in Eskimos, Bang 

(1973) and Dyerberg (1979) conducted studies on Eskimos living in Greenland with the 

hypothesis that anti-atherogenic properties might be found in marine oils commonly found in the 

Eskimo diet.  In addition to finding reduced risk of coronary artery disease, researchers found 

Eskimos to have lower plasma lipid levels despite a high intake of animal fats.  In a more recent 

study, using Alaskan natives consuming seal oil or salmon daily, oil intake was linked with a 

decreased prevalence of compromised glucose tolerance and diabetes (Adler et al., 1994).   Due 

to studies of this nature, including fish oil in the diet of humans, especially pooled with a low 

cholesterol, low saturated fat diet (Nordoy et al., 1993), has become of special interest because of 

the potential benefits in glucose homeostasis and insulin sensitivity (Vessby, 2000; Riserus et al., 

2008).   

Formerly, the hypolipidemic action of fish oils and the plasma lipid-lowering effect 

occurring from vegetable oils (containing linoleic acid, omega 6) were considered to have similar 

properties (Conner et al., 1982). Since then, it has been established that fish oil has low amounts 

of linoleic acid (found in vegetable oil), and instead contains large amounts of omega 3 fatty 

acids, predominantly eicosapentanoic acid (EPA) and docasahexaenoic acid (DHA; Hall et al., 

2004; Lombardo et al., 2007).  As DHA and EPA increase in serum concentrations 
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proportionally to the amount of fish oil fed (Ashes et al., 1992), their biological effects can be 

seen, especially for DHA, which is suspected to be important in setting the pace of animal 

metabolism.  In the nervous system, DHA is highly concentrated in cellular membranes (Turner 

et al., 2003).   

Common effects of fish oil supplementation include a decrease in the manifestation of 

coronary artery disease and lipid disorders, increased insulin sensitivity, and increased vascular 

compliance (Mueller and Talbert, 1988).  Fish oil supplementation has also been shown to down-

regulate enzymes associated with triacylglyceride synthesis (Marsh et al., 1987; Surette et al., 

1992), causing a lowering of plasma triacylglycerol (Baltzell et al., 1991; Saynor and Gillot, 

1992; Suzukawa et al. 1995) and often a lowering of plasma cholesterol (Singer et al. 1985; 

Baltzell et al., 1991).  Some of these effects generated by fish oil supplementation may improve 

symptoms of metabolic syndrome and insulin resistance, given that insulin resistance (the link 

between many symptoms of metabolic syndrome) has been associated with a reduction in the 

amount of DHA found in the diet of both rats and humans (Turner et al., 2003).  Baltzell et al. 

(1991) suggested that the ingestion of fish oil may alter how insulin is metabolized.      

With increasing consumption of soft drinks, there has been a dramatic increase in high 

fructose corn syrup in the diet (Faeh et al., 2005) that causes a huge carbohydrate load, assuredly 

a factor in the current prevalence of obesity, metabolic syndrome, and diabetes (Faeh et al., 

2005).  Fructose is transformed into glucose and then to glycogen, thus leading to a great amount 

of glycogen stores (Mayes, 1993).  This causes hyperglycemia, which leads to a compensatory 

secretion of insulin, and a down regulating of the insulin receptor (Huang et al., 1997).  A certain 

ratio of fatty acids in cellular membranes could impact insulin action (Lardinois et al., 1987; 

Lombardo et al., 1996; Riccardi et al., 2004), encouraging triglyceride metabolism, which 
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improves glucose use and insulin sensitivity and secretion (Huang et al., 1997) at the molecular 

level.  This is accomplished by changing the amounts of fatty acids in the membrane 

phospholipids of insulin target tissues, which alters biological steps enabled by membranes such 

as insulin transduction signals (Vessby, 2000). This effect of fatty acids accelerates ideal 

exchanges between the lipids and proteins within membranes, preserving regular processes of the 

insulin receptor bound to the membrane (Turner et al., 2003).  

In addition to omega-3 fish oils being suggested as long-term additions to the diet of 

humans to improve glucose metabolism, they have also been shown to have effects in other 

species.  Fish oils have been documented as impeding progress of insulin resistance in rats with 

dietary-induced insulin resistance (Delarue et al., 2006; Riserus et al., 2008), enhancing insulin 

sensitivity in pigs (Behme, 1996), reducing plasma triglycerides in pigs (Huff and Telford, 

1989), reducing cholesterol levels in hypercholesterolemic animals (Warner et al., 1989), and 

tending to slow rate of weight gain in animals (Rizkalla et al. 1993; Huang et al., 1997). 

Congruent with human studies, in rodents, a decrease in serum triacylglycerides is the 

most commonly described outcome of fish oil treatment (Baltzell et al., 1991; Fickova et al., 

1998).  Additional effects have been noted as well though.  Addition of omega 3 polyunsaturated 

fatty acids has been shown to lessen fat matter in both rats and mice (Kabir et al., 2007) and may 

aim at adipose tissue secretion factors, due to the variation of circulating concentrations of leptin, 

adiponectin, and adipose tissue gene expression in rodents fed omega 3 (Lombardo et al., 2007).  

Another effect of fish oil seen in rodents is a decrease in TNF-alpha (a factor expressed in white 

adipose tissue and associated with insulin sensitivity), protecting against the development of 

diet-induced insulin resistance.  Despite being preventative against developing insulin resistance, 

fish oil did not improve prior diet-induced insulin resistance in mice fed a high fat diet over 20 
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wk (Muurling et al., 2003).  Podolin et al. (1998) confirmed the preventative effect of fish oil on 

insulin resistance and also that the supplement would not alter a pre-existing condition, 

concluding that the prior ailment prevents proper action of fish oil as a supplement.  

Research with horses indicates similar responses to fish oil treatment as in other species: 

an increase in the concentration of EPA and DHA and an altered fatty acid profile (O’Conner et 

al., 2007; Vervuert et al., 2010), decreased triacylglyceride concentrations (Orme et al., 1997; 

Geelan et al., 1999), reduced serum cholesterol levels (only as compared to levels with the 

addition of vegetable oil; Siciliano and Wood, 1993; Orme et al., 1997), and changes in 

membrane composition (Portier et al., 2006).  In addition, O’Conner (2007) found that horses fed 

an omega 3 supplement tended to have lower heart rates, lower hematocrits, and lower serum 

insulin concentrations.  Fish oil fed to horses may also be beneficial to a syndrome that plagues 

horses- laminitis.  Neelley and Herthel (1997) found that horses given an omega 3 supplement 

over a month did not develop laminitis even after being fed a high carbohydrate diet.  O’Neill 

(2002) proposed omega 3 fatty acids as an inflammation reducer in horses, followed by the 

proposal by Vick et al. (2007) that omega 3 fatty acids may lessen laminitis symptoms by 

impeding inflammatory intermediaries.  

Fatty acids may also be beneficial in the diet of horses in other ways, as fats can provide 

dense energy (Meyer et al., 2002), improve utilization of energy causing a reduction in heat 

production during exercise (Kronfeld et al., 1994), cause a reduction in carbon dioxide 

production in turn causing less effort to breathe (Ferrante et al., 1993), maintain greater stores of 

glycogen in the muscle (Hamilton et al., 1980), and allow less glucose to be used during exercise 

(Treiber et al., 2006).  An issue to deliberate when considering adding fat or oil to the diet of 

horses is that weight gain may ensue, a predisposing factor to insulin resistance (Tinworth et al., 
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2009), but Schmidt et al. (2001) found fish oil may improve how enzyme systems dispose of 

lipids in horses, and within a certain range, the composition of the fat matters more than the 

actual amount (Riccardi et al., 2004).  Changes within a practical deviation of overall fat 

ingestion are not likely to have a dramatic influence on insulin resistance (Riccardi et al., 2004). 

Rationale for Present Experiments 

Caltabilota (2009) used intravenous injection of bovine insulin at two doses (20 and 100 

mU/kg BW) to study the possible dose-response relationship of glucose to insulin injection in 

horses.  Although not commonly used as a means of assessing insulin sensitivity in horses for 

reasons listed in previous sections, the approach of Caltabilota (2009) did in fact detect 

differences between hyperleptinemic horses (thought to be insulin insensitive but not proven to 

be) and horses with normal leptin concentrations.  Those changes were consistent with the 

hypothesis that the hyperleptinemic horses were insulin insensitive; i.e., they had a reduced 

glucose response to a fixed dose of insulin administered intravenously relative to normal horses.  

An important factor revealed by the research of Caltabilota (2009) was that insulin dose 

is a critical factor in the usefulness of the data. The high dose of insulin administered in the 

winter was too high, and blurred the information that was available from the lower dose. Later in 

the year, when the horses were apparently less sensitive as a group, the low dose of insulin was 

less useful in differentiating between hyperleptinemic and normal horses.  Thus, the first phase 

of the research described herein was designed to further study the use of intravenous insulin 

injection as a means of measuring insulin sensitivity in horses. The goal was to develop a simple, 

on-farm technique that could be used by clinicians and researchers without complicated 

equipment, laboratory procedures, or expensive software. The second phase of the research 

described herein studied factors that might affect insulin sensitivity, or the estimates of 
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sensitivity, so that standard application protocols could be developed. Lastly, the resulting 

technique was applied to hyperleptinemic and normal horses to confirm the preliminary results 

of Caltabilota (2009), and then in the study of two potential treatments for the alleviation of 

insulin insensitivity in horses, supplementation with cinnamon extract and omega 3-rich fish oil. 
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CHAPTER 3 

DEVELOPMENT OF A METHOD FOR ASSESSMENT OF INSULIN SENSITIVITY 
FROM GLUCOSE RESPONSES TO INSULIN INJECTION: EFFECT OF 

HYPERLEPTINEMIA IN MARES AND GELDINGS 
 
Introduction 

Total insulin production loss (type 1 diabetes) is rarely seen in horses, but insulin 

resistance can still cause major problems for horses, such as laminitis, pituitary adenoma, 

hyperlipidemia, osteochondritis dissecans, reproductive inefficiency, and an impaired ability to 

exercise properly (Kronfeld et al., 2005; Frank et al., 2006).  Due to these problems in the horse, 

there is a need for practical methods of measuring insulin sensitivity.    

Insulin sensitivity in horses is typically measured via one of 2 standard methods: 1) 

hyperinsulinemic-euglycemic clamp, in which insulin is infused at one or more fixed doses and 

sufficient glucose is infused to maintain euglycemia (the clamp; Kaske et al., 2001; Powell et al., 

2002; Rijnen and van der Kolk, 2003), or 2) minimal modeling of the insulin-modified, 

frequently sampled intravenous glucose tolerance test (FSIGT; Bergman et al., 1987), in which a 

bolus of glucose is administered at time 0, and then a bolus of insulin is administered 20 min 

later (Hoffman et al., 2003; Treiber et al., 2005).  Although intravenous insulin injection has 

been used in various experimental settings with horses and mules (Silver et al., 1987; Alexander 

et al., 1997; Forhead and Dobson, 1997), it has not been routinely used as a method of estimating 

insulin sensitivity, either clinically or experimentally.  Concerns include: insulin overdose, which 

might lead to hypoglycemic shock (Given et al., 1988); and there is also a chance of inducing 

laminitis with repeated injections (Asplin et al., 2007).  However, doses of insulin up to 0.4 USP 

units (U) per kg BW were administered to feed-deprived donkeys without any reported serious 

side-effects (Forhead and Dobson, 1997).  Similarly, no detrimental effects in horses 
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administered a single intravenous dose of insulin of 0.1 U/kg BW were noted (Gentry et al., 

1999).   

The purpose of the present series of experiments was to develop a safe, direct assessment 

of insulin sensitivity that could be applied experimentally, and perhaps clinically, to horses.  We 

hypothesized that hyperleptinemic horses would have a reduced insulin sensitivity relative to 

normal horses, because they display elevated insulin concentrations and exaggerated insulin 

responses to glucose infusion (Cartmill et al., 2003), which are indicative of insulin insensitivity. 

To date, there is no report indicating that these horses have a reduced insulin sensitivity.         

Materials and Methods 

Experiment 3.1.  Experiment 3.1 was designed with the goal of developing a repeatable 

protocol of insulin injections for assessing insulin sensitivity across a wide range of sensitivities. 

Starting in June of 2008, 15 mares from the resident herd at the Louisiana Agricultural 

Experiment Station Horse Unit were selected with the following characteristics: low leptin 

concentrations and low BCS (LL/LBCS; n = 5), low leptin concentrations and high BCS 

(LL/HBCS; n = 5), and high leptin concentration and high BCS (HL/HBCS; n = 5).  The mares 

were maintained on native grass pastures, which were predominantly Bermuda grass, bahiagrass, 

and dallis grass. 

Originally, the experiment was designed as a replicated Latin square with 3 doses of 

human recombinant insulin (20, 50, and 125 mU/kg BW; Sigma, cat#I2643, 27.5 U/mg).  Human 

recombinant insulin, rather than pancreatic bovine insulin used by Caltabilota (2009), was 

chosen for two reasons: 1) potentially greater long-term availability, and 2) potentially greater 

consistency of the product over time.  After treating one replicate of mares, in which a LL/HBCS 

mare was treated with the 125 mU/kg BW dose and displayed signs of lethargy, it was decided 
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that a gradual ramping up from the lowest dose (20 mU/kg BW) would be necessary from a 

safety standpoint. Over the next several weeks, mares were injected in small groups with doses 

of insulin of 8, 20, 50, or 125 mU/kg BW, depending on upon their responses.  That is, all mares 

received the 20 and 50 mU/kg BW dose, and the percent decreases were calculated.  Percent 

decreases were calculated in two steps.  First, by taking the two negative samples and averaging 

the two values to determine a baseline mean.  Then, the 40 and 60 min times were subtracted 

from this baseline.  The time (40 or 60 min) causing the greatest drop in glucose was considered 

the percent decrease in response to insulin injection. The 125 mU/kg BW dose was administered 

only to mares not experiencing at least a 50% decrease in glucose to the lower doses. The 8 

mU/kg BW dose was added primarily for mares experiencing a 50% decrease or greater to the 20 

and 50 mU/kg BW doses, but was subsequently administered to all mares.  

Blood sampling was via jugular venipuncture through 20-gauge needles; approximately 3 

mL of blood was drawn into 5-mL syringes at -10, 0, 40, 60, 90, 120, 180, and 240 min relative 

to insulin injection.  After approximately 1 mL of blood was expressed from the syringe, a drop 

of whole blood was used to estimate plasma glucose concentration with a Precision Xtra 

glucometer.  Estimates were generally based on 1 glucometer strip reading; replicate readings 

were conducted whenever a value seemed unreasonable (about 5% of readings).  An earlier 

assessment (Caltabilota, 2009) of the glucometer (Precision Xtra, Abbott Laboratories) for 

duplicate readings of 15 blood samples between 77 and 335 mg/dL resulted in a regression 

equation of:  second estimate = 1.03 x (first estimate) + 3.4 mg/dL (r = 0.98).   

The percent decrease in glucose concentrations was calculated for all injections and 

plotted against the natural log (ln) of the insulin dose for each mare.  In general, these plots 

resembled a typical dose-response curve, with a linear portion between 20 and 60%.  Linear 
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regression analysis was used to calculate the regression equation for each mare [x = ln(dose) and 

y = % decrease], and the ln of the dose of insulin resulting in a 50% decrease in glucose 

concentration [ln(ED50)] was estimated from that equation; ED50 was calculated by taking the 

antilog of ln(ED50).  Estimates of ln(ED50) and ED50 were based on at least 3 doses of insulin.  

In 4 of the 5 HL/HBCS mares, all % decreases were less than 50%, thus the estimate of ln(ED50) 

was an extrapolation to 50%. 

Glucose concentrations were analyzed separately for each leptin status-BCS group by 

one-way ANOVA with repeated sampling, with dose as the main effect and blood sampling 

times as the repeated effect. From that analysis, comparisons of post-injection glucose 

concentrations were compared (LSD-test) to the mean at time 0 to determine when they were no 

longer different; this was considered to be the time of recovery for the sake of discussion. Body 

condition scores and the ln(ED50) and ED50 estimates were analyzed by one-way ANOVA, and 

differences among groups assessed with the LSD-test (Steel et al., 1997).       

Experiment 3.2.  Experiment 3.2 was performed with two main objectives: 1) to 

determine if the insulin injection scheme could be streamlined and standardized, and 2) to 

determine the repeatability of the ln(ED50) estimates obtained in Experiment 3.1.  Twelve mares 

previously tested (6 LL/HBCS and 6 HL/HBCS) were retested during October of 2009, with 1 d 

of no treatment between each day of insulin injection.  Although the quality and quantity of 

pasture grasses in October would not be expected to be identical to those in the summer, it was 

assumed that the relative insulin insensitivity displayed by hyperleptinemic mares in Experiment 

3.1 would persist, because we have observed that the hyperleptinemic condition itself persists 

over years.   
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The standard approach was to treat each mare with the 50 mU/kg BW dose of 

recombinant human insulin on the first day.  The mares were deprived of feed overnight (with ad 

libitum access to water) and treated the following morning between 0700 and 0900 h.  Blood 

samples were collected via jugular venipuncture (as described for Experiment 3.1) at -10, 0, 40, 

and 60 min relative to intravenous injection of human recombinant insulin.  Plasma glucose 

concentrations were estimated with the glucometer as described in Experiment 3.1. 

Depending upon the % decrease in glucose concentration for a given mare, the second 

injection 2 d later was either 32 mU/kg BW for those mares exhibiting a 50% decrease or greater 

to the 50 mU/kg BW or 79 mU/kg BW for those exhibiting less than 50% decrease.  The dose on 

the third day was either 20 or 125 mU/kg BW.  The goal was to bracket the approximate 50% 

point; if the first two injections were on each side of 50%, the selected third dose chosen was on 

the lower, rather than higher, end of the dose-response curve.  The third dose was administered 2 

d after the second, so that the entire 3-injection protocol was completed in 5 d. 

The ln(ED50) and ED50 values were calculated for each mare as described in 

Experiment 3.1.  These data were analyzed by one-way ANOVA to test the effect of leptin 

status.  In addition, the % decrease in glucose values in response to the 50 mU/kg BW dose of 

insulin and the calculated ln(ED50) values from Experiment 3.1 were compared to those 

obtained in this experiment by linear regression analysis as an assessment of the repeatability of 

the estimates. 

Results 

Experiment 3.1. Glucose concentrations in response to various doses of recombinant 

human insulin in mares with LL/LBCS, LL/HBCS, and HL/HBCS are presented in Figure 3.1.  

In LL/LBCS mares (Figure 3.1A), given 8, 20, and 50 mU/kg BW, mean dose-dependent  
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Figure 3.1.  Mean glucose concentrations in mares with low leptin concentrations (LL) and low 
BCS (LBCS; Panel A), LL and high BCS (HBCS; Panel B), and high leptin concentrations (HL) 
and HBCS (Panel C) administered recombinant human insulin at 8, 20, 50, or 125 mU/kg BW 
during June and July in Experiment 3.1.  The doses administered were based on an individual’s 
response to the 20 mU/kg BW dose; HL/HBCS mares received the 125 mU/kg BW dose because 
none of them had a decrease in glucose concentrations of 50% or greater after the 50 mU/kg BW 
dose.  Pooled SEM were 7.9, 7.1, and 8.4 mg/dL for glucose concentrations in LL/LBCS, 
LL/HBCS, and HL/HBCS mares, respectively. 

 

 

decreases (P < 0.001) in glucose concentrations of 23.4, 43.1, and 64.3% respectively, were 

produced  (SEM = 6.2%).  Likewise, injection of the same doses in mares with LL/HBCS 

(Figure 3.1B) produced mean dose-dependent decreases (P < 0.001) in glucose concentrations of 

26.8, 41.2, and 54.8%, respectively (SEM = 7.3%).  Injection of doses of 8, 20, 50, and 125 

mU/kg BW to mares with HL/HBCS (Figure 3.1C) produced mean dose-dependent decreases (P 

< 0.01) in glucose concentrations of 9.0, 16.6, 32.6, and 47.5%, respectively (SEM = 5.4%). 
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 In addition to the initial percent decrease in glucose concentrations (40 or 60 min after 

injection), there were differences among groups in the recovery of glucose concentrations back 

to pre-injection concentrations.  Mares with LL/LBCS displayed delayed recovery (P < 0.05) at 

the 50 mU/kg BW dose; in general, the recoveries were similar for all other doses in all three 

groups.  

Mean BCS (Figure 3.2A) of mares with LL/HBCS and HL/HBCS were similar, but were 

both greater (P < 0.05) than mean BCS of mares with LL/LBCS.  Mean ln(ED50) and ED50 

were similar for mares with LL/LBCS and LL/HBCS (Figures 3.2B and 3.2C); both were less (P 

< 0.01) than the respective means for mares with HL/HBCS. 

  

 
 

Figure 3.2. Mean BCS (Panel A), natural log (ln) of the dose of insulin that caused a 50% 
decrease in glucose concentrations (ED50; Panel B), and ED50 (Panel C) for mares with low 
leptin concentrations (LL) and low BCS (LBCS), LL and high BCS (HBCS), and high leptin 
concentrations (HL) and HBCS in Experiment 3.1.  Means with no like superscript differ (P < 
0.05). Pooled SEM were 0.42 for BCS, 0.51 for the ln(ED50), and 96 mU/kg BW for ED50.    
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Experiment 3.2.  Estimates of ln(ED50) and ED50 based on the standardized approach 

in October in the 12 mares that had been assessed during the previous summer are presented in 

Figure 3.3A and 3.3B.  As in the summer, LL/HBCS mares had lesser (P < 0.001) values in both 

cases relative to HL/HBCS mares.  All mares were first administered the 50 mU/kg BW dose of 

recombinant human insulin.  The decrease in glucose concentrations for those injections were 

highly correlated (P < 0.01; R2 = 0.847; % decrease in October = 0.72 x % decrease in summer + 

6.98%) to the responses obtained earlier (Figure 3.4A).  Estimate of the ln(ED50), calculated 

after the subsequent injection of higher (79 and 125 mU/kg BW) or lower (20 an 32 mU/kg BW) 

doses, as appropriate, were also highly correlated (P < 0.01; R2 = 0.822; ln(ED50) in October = 

0.77 x ln(E50) in summer + 1.4) with those obtained earlier (Figure 3.4B). 

 

 

  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 3.3.  Mean natural log (ln) of the dose of insulin that caused a 50% decrease in glucose 
concentrations (ED50; Panel A) and ED50 (Panel B) for 6 mares with low leptin concentrations 
(LL) and high BCS (HBCS) vs. 6 mares with high leptin concentrations (HL) and high BCS 
(HBCS) originally assessed for insulin sensitivity in Experiment 3.1 and re-assessed in October 
in Experiment 3.2.  Means with no like superscript differ (P < 0.05).  Pooled SEM were 0.22 for 
the ln(ED50) and 74 mU/kg BW for ED50. 
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Figure  3.4.  Regression analysis for the % decrease in glucose concentrations (Panel A) and the 
natural log (ln) of  the dose of insulin that caused a 50% decrease in glucose concentrations 
(ED50) for data collected in Experiment 3.1 vs. 3.2 from 6 mares with low leptin concentrations 
and high BCS and 6 mares with high leptin concentrations and high BCS.  In each case, the data 
were highly correlated (R2 > 0.8; P < 0.001). 
 
  
Discussion 

 Caltabilota (2009) reported that intravenous insulin injection might be useful for 

estimating insulin sensitivity in horses. In that report, he also showed that hyperleptinemic 

mares, as described by Cartmill et al. (2003) and Huff et al. (2008), had a reduced glucose 

response to insulin injection compared to mares with normal leptin concentrations. Because 

hyperleptinemic mares make up approximately 20% of foaling broodmares (Huff et al., 2008) 

and 30% of non-foaling mares with high BCS (Henneke, 1983) their identification is important 

for several reasons. First, they are likely more predisposed to problems such as laminitis (Bailey, 

2008; Treiber et al., 2006), due to their constant hyperinsulinemia (Cartmill et al., 2003). Second, 

their presence, if unknown, can skew data in experiments involving insulin, leptin, or thyroid 
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hormone measurements (Gentry et al., 2002; Cartmill et al., 2003).  Third, their identification is 

necessary for the development of potential ameliorating therapies or management changes. 

 In the course of these experiments, many insulin injections were given to mares.  The 

only indication of any side effects to treatment was that described for the LL/HBCS mare that 

was treated with the 125 mU/kg BW dose of human insulin early in Experiment 3.1.  Based on 

that experience, it was decided to modify the originally planned procedure such that all horses 

first received a moderate dose of insulin, and subsequent injections were based on an 

individual’s response to that dose.  Again, as a safety factor, no horse was administered a dose 

above 125 mU/kg BW, even when that dose did not reduce glucose concentrations at least 50%.  

This forced us to extrapolate beyond the actual data to calculate ln(ED50) for the least sensitive 

mares.  Because of this extrapolation, the estimate of an actual ED50 above 125 mU/kg BW 

could be expected to be less precise than for those estimates below 125 mU/kg BW; however, a 

horse with an ED50 above 125 mU/kg BW would be considered insensitive regardless.  

Moreover, the repeatability of the ln(ED50) estimates in Experiment 3.1and 3.2 would indicate 

that this is likely not a serious limitation to the estimation procedure. 

 The glucose response to insulin injection seems to be comprised of two phases, the 

second of which is only noticeable at higher insulin doses relative to the sensitivity of the horse.  

The first and immediate component is the decrease from time of injection to the occurrence of 

the nadir in glucose concentrations, usually within the first 60 min.  This is assumed to be 

primarily due to the uptake of glucose by peripheral tissues, mostly skeletal muscle, but also 

liver and adipose tissue.  After small doses of insulin, glucose concentrations rapidly recover and 

return to pre-injection concentrations by approximately 90 to 120 min postinjection.  The second 

phase, observed after the highest doses of insulin, is a slow recovery, such that glucose 
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concentrations stay depressed longer and return to baseline 60 to 90 min later than after the lower 

insulin doses.  This latter effect likely reflects continued suppression of liver output of glucose 

from glycogenolysis, gluconeogenesis, or both.  Because the two standard methods of assessing 

insulin sensitivity (the clamp and FSIGT) supposedly measure primarily or solely the first 

component (muscle, liver, and adipose tissue uptake), it was finally decided that the response in 

the first 40 to 60 min after injection was the best indicator of that event.  The occurrence of the 

glucose nadir at 40 min was about equal to that at 60 min (48 vs 52% of all responses, 

respectively). 

 The proper dose of insulin is important for gaining meaningful information about 

apparent insulin sensitivity.  That is, insulin doses too low or too high on the dose-response 

curve, if administered as a single dose, are less able to differentiate between horses of low and 

high insulin sensitivities (Caltabilota, 2009).  Points between the 20 and 60% decrease in glucose 

concentrations provided the most reliable regression lines.  Because of this, smaller increments 

in the insulin doses (the 32 and 79 mU/g BW doses) were added for assessments in Experiment 

3.2.  These doses allowed for closer bracketing of the 50% decrease point for horses exhibiting 

% decreases in glucose concentrations close to 50% after administration of the 50 mU/kg BW 

dose (starting dose). 

 In addition to these two experiments, another 9 mares and geldings were tested as part of 

a comprehensive assessment of the LSU herd.  Throughout all the tests, the greatest % decrease 

in glucose concentrations observed was 78% in a gelding administered insulin at 125 mU/kg 

BW.  Percent decreases >70% were obtained on a few other occasions, and it is possible that the 

upper limit, without noticeable side effects, may be around 80%.  It was decided to use ED50 as 

the standard due to its common use in classical dose-response (sigmoidal curve) analyses.  
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However, it is based on the assumption that % decreases in glucose concentrations can range 

from 0 to 100%, which is unlikely from a physiological standpoint.  A truer ED50 point might be 

based on a decrease in 40% of pre-injection values (i.e., 50% of 80%); however, a retrospective 

recalculation of the data from these two experiments based on a 40% decrease as a reference 

point did not alter the results (differences among groups or correlations). 

 The calculation of ln(ED50) and ED50 is these experiments was based on regression 

analysis of the ln of the insulin dose and the % decrease in glucose concentrations, and in 

general, three doses of insulin provided linear regression equations with high correlation 

coefficients.  In the process of developing a standardized procedure for estimating ED50, the 

results from the first two doses of insulin were compared to see if they would be predictive of the 

final estimates based on 3 doses; the conclusion was that 2 doses provided good estimates in 

most cases in which the ED50 was low, but were less adequate for horses of low insulin 

sensitivity.  Data from a single dose of insulin (50 mU/kg BW) does seem to provide a close 

approximation of an animal’s sensitivity to insulin; however, to be applicable across a wide 

range of sensitivities, it was felt that the procedure with three insulin doses provided the most 

reliable and repeatable information. 

 Pratt et al. (2005) assessed the repeatability of the clamp technique and FSIGT methods 

of estimating insulin sensitivity in horses by administering each test twice to 6 horses in a 4-wk 

period.  The inter-day of CV insulin sensitivity estimates averaged 14.1% (range, 7 to 20%) and 

23.7%  (range, 9 to 35%) for the clamp and FSIGT tests, respectively.  For comparison, a similar 

calculation for the data in Experiment 3.1 and 3.2 (actually a month or more apart) resulted in an 

average within-horse CV of 8.9% (range, 2.3 to 18.8%).  Pratt et al. (2005) concluded that the 

inter-day CV for the clamp technique was lower than for the FSIGT; thus, the repeatability of the 
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intravenous insulin injection method is at least equivalent, if not better, than that of the clamp 

technique. 

 One limitation of the present approach to estimating ED50 is the time involved.  The final 

3-injection regimen established in these experiments takes 5 d to complete, given the 1 d  rest 

(nontreatment) period between injections.  Whether the injections could be done in 3 successive 

days, or even closer together, needs to be determined.  The potential carry-over from one 

injection to the next also needs to be studied.  Also, horses used in the current experiments had 

pre-injection glucose concentrations within the normal range for feed-deprived horses; it is not 

known whether this approach would be applicable to horses with severe hyperglycemia (e.g., 

glucose concentrations of 200 mg/dL and greater).  Thirdly, the assessments of possible 

detrimental effect were limited to external signs, and would not detect microscopic changes in 

hoof lamellar tisues, such as those reported by Asplin et al. (2007).  For comparison, the ponies 

treated by Asplin et al. (2007) had mean insulin concentrations of 1036 mU/L over a 72-h 

infusion period; peak concentrations expected in the horses in this experiment at the 125 mU/kg 

BW dose would be approximately 1900 to 2500 mU/L in the first 10 min after injection 

(assuming a 5 to 7% of BW plasma volume), which would decay back to normal within a few 

hours (Gentry et al., 1999; Cartmill, 2004).  Using area under the curve (concentration x hours) 

as an index of exposure to insulin, the highest dose used herein produces less than 7500 area 

units, whereas the ponies in Asplin et al. (2007) experienced an average of 74,592 area units, or 

10 times more than the highest dose used herein. 

 Although much of the data reported herein concerns the development of the approach of 

direct assessment of insulin sensitivity by intravenous administration of insulin, the experiments 

agree with previous data showing hyperleptinemic horses have a reduced insulin sensitivity 



45 

 

(higher ED50) relative to horses with normal or low leptin concentrations (Caltabilota, 2009).  

Attempts to measure hyperleptinemic and normal horses via the clamp and FSIGT techniques 

had been variable and indicated no difference between horses in different leptin concentrations 

(Cartmill, 2004), sexes, or body weights, even though insulin concentrations in response to 

glucose infusion in the FSIGT were exaggerated, indicative of insulin resistance.  The reason for 

this lack of detection of difference is unclear, but may be in part due to technician experience, 

variation among horses used in those trials, or to relative sensitivities of the detection methods. 

 Cartmill et al. (2003, 2005) reported that hyperleptinemic horses had elevated insulin 

concentrations, and Storer et al. (2007) confirmed that this elevation in insulin concentrations 

persisted in hyperleptinemic horses even when they were maintained solely on grass hay.  Given 

that leptin can be stimulated directly by insulin infusion (while maintaining glucose 

concentrations within normal limits; Cartmill et al., 2005), it is likely that the hyperleptinemic 

condition is a result of reduced insulin sensitivity, which equates to long-term elevations of 

insulin concentrations and hence a long-term stimulation of adipose tissue by leptin.  Although 

most of the hyperleptinemic horses studied over the years have had high BCS, Huff et al. (2008) 

reported that 11 of 24 hyperleptinemic mares (post-foaling and lactating) had BCS between 4 

and 5.5.  Thus, the hyperleptinemic condition is not always associated with obesity (BCS of 7 

and above), and, as Huff et al. (2009) reported, is not associated with alteration of the base 

sequence of the exon 2 of the equine leptin gene.   

 In conclusion, dose-response analysis of glucose responses to intravenous insulin 

injections seems to be a useful approach for assessing insulin sensitivity in horses with relatively 

normal pre-injection glucose concentrations.  Based on this approach, it was concluded that 

hyperleptinemic horses, which are also hyperinsulinemic and have exaggerated insulin responses 
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to glucose injection, are indeed less sensitive to insulin than normal horses with low leptin 

concentrations of the same body condition. 
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CHAPTER 4 

FACTORS AFFECTING THE GLUCOSE RESPONSE TO INSULIN INJECTION IN 
MARES: EPINEPHRINE, SHORT AND LONG TERM PRIOR FEED INTAKE, AND 

SUPPLEMENTATION WITH CINNAMON EXTRACT OR OMEGA-3 FATTY ACID-
RICH FISH OIL 

 
Introduction 

Caltabilota (2009), using intravenous injection of insulin, reported that that mares with 

hyperleptinemia had a lesser glucose response to fixed insulin doses, as was predicted by the fact 

that hyperleptinemic horses also have elevated insulin concentrations (Storer et al., 2007) and an 

exaggerated insulin response to administered glucose (Cartmill et al., 2003). In the experiments 

described in the previous chapter (Experiments 3.1 and 3.2), it was confirmed that intravenous 

injection of appropriate insulin doses can be used to estimate insulin sensitivity in horses, and 

that hyperleptinemic horses have reduced insulin sensitivity relative to horses with normal leptin 

concentrations.     

Poor insulin sensitivity in horses has been associated with laminitis and the metabolic 

syndrome (Treiber et al., 2006; Bailey 2008).  Exercise has been reported to improve insulin 

sensitivity in horses (Powell, 2002; Stewart-Hunt, 2006), and both cinnamon extract (Anderson, 

2008) and omega-3 fatty acid (via fish oil) consumption (Popp-Snijders, 1987; Oh et al., 2010) 

improves insulin sensitivity in various species.   

The series of experiments reported herein were conducted with two objectives. The first 

was to determine the effects of elevated epinephrine (as would occur in stressed horses) and prior 

feed intake in the short (feed deprived, overnight hay, and pasture) and long term (10 d of 

pasture vs. hay in a dry lot) on the insulin-induced decrease in glucose concentrations in horses. 
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The second objective was to determine whether supplementation with cinnamon extract or fish 

oil would improve the insulin sensitivity of hyperleptinemic (insulin insensitive) mares. 

Materials and Methods 

The Animal Care and Use Committee of the LSU Agricultural Center approved all 

experimental procedures.  Mares chosen from the resident herd in Baton Rouge were light horse 

mares between 13 and 23 yr old, weighing between 463 and 648 kg with BCS (Henneke, 1983) 

between 5 and 8.  These mares were kept on native grass pastures throughout the year.  During 

the winter, they were also supplemented with native grass hay (round bales) as needed to 

maintain body condition.  All mares had been previously categorized with regard to mean leptin 

concentration (relative to other mares; i.e., either hyperleptinemic or normal) and insulin 

sensitivity (sensitive or insensitive as determined by their responses to insulin injection). 

Experiment 4.1. Effects of pretreatment with epinephrine.  Experiment 4.1 was 

designed to determine the effect of pre-injection with epinephrine on the glucose response to a 

single dose of recombinant human insulin in sensitive versus insensitive mares (determined in 

Experiments 3.1 and 3.2). Four insulin sensitive and 4 insensitive mares were used.  The 

experiment was performed as a single switch-back, with 2 mares within each sensitivity group 

exposed to epinephrine on the first day (December 5, 2009; the rest received saline), and the 

other mares receiving epinephrine on the second day (December 7, 2009).  Epinephrine was 

administered i.v. at a dose of 5 µg/kg body weight (Sticker et al., 1995) in saline at a volume of 

0.01 mL/kg; control injections were the same volume of saline only.  For each treatment day, 

mares were brought in from pasture and were deprived of feed overnight (approximately 13 h) in 

a dry lot paddock but had ad libitum access to water.  Injections started at approximately 0800 

the next morning.  Jugular blood samples were collected for glucose determination via a hand-
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held glucometer (Precision Xtra, Abbott Laboratories, Abbott Park, IL; Eiler et al. 2005; 

Caltabilota, 2009) at -10 and 0 min before epinephrine or saline injection. Subsequent samples 

were collected at 20 min (followed by the insulin injections) and 30, 40, 60, and 80 min. Insulin 

was administered intravenously after the 20-min sample at 50 mU/kg of body weight for 

sensitive mares and 125 mU/kg of body weight for insensitive mares.  These doses had been 

found previously (Chapter 3) to produce decreases in blood glucose of approximately 50% for 

the mares in the respective categories. Once sampling had been completed, mares were returned 

to pasture.  

Blood glucose concentrations were analyzed by ANOVA (SAS Instit., Inc, Cary NC) as a 

replicated 2 x 2 Latin square design with a 2 x 2 factorial arrangement of treatments (epinephrine 

treatment and insulin sensitivity category). 

Experiment 4.2. Effect of overnight feeding regimen.  Experiment 4.2 was designed to 

determine the effects of overnight feed intake on the glucose response after an injection of 

human recombinant insulin in sensitive versus insensitive mares.  The experiment was performed 

as a replicated 3 x 3 Latin square.  The three treatments groups were: feed deprived overnight, ad 

libitum access to grass hay overnight, and pastured overnight.  All groups of horses had access to 

water ad libitum. Twelve mares were used: 6 insulin insensitive mares and 6 insulin sensitive 

mares (determined in Experiments 3.1 and 3.2).  Within each phase, 2 mares of each category 

were managed overnight as described in the treatments, and then tested the following morning.  

The test days were July 16, 18, and 20, 2010. No later than noon on each test day, all mares were 

returned to pasture.  For overnight feed deprivation, mares were brought in from the pasture at 

approximately 1900 h the day before and kept in a dry lot with ad libitum access to water.  For 

the hay-fed treatment, mares were brought in from pasture the same way, but placed in a dry lot 
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with ad libitum access to grass hay and water overnight. For the pastured group, mares were left 

in the pasture until the morning of testing, and were brought up at approximately 0700 h.   

On each day of testing, mares were tethered loosely inside an open-sided barn at 0700 

and two blood samples were drawn by jugular venipuncture 10 min apart.  Insulin was 

administered intravenously at a dose of 50 mU/kg BW for sensitive mares and 125 mU/kg BW 

for insensitive mares. Subsequent blood samples were collected at 40 and 60 min after insulin 

injection.  Glucose concentration was determined in all blood samples with the glucometer 

described previously.  The maximum % decrease in blood glucose concentrations was calculated 

for each mare on each occasion by first averaging the two pre-insulin blood glucose 

concentrations.  The blood glucose values at 40 and 60 min were subtracted from this mean, and 

the net decrease was then expressed as a percentage of the pre-injection mean.  The largest % 

decrease of the two (at 40 and 60 min) was used as the data point for that mare on that occasion. 

 When all phases were complete, the % decreases were analyzed by ANOVA as a 

replicated (4 squares) Latin square design (SAS Instit., Inc., Cary, NC).  Treatment effects were 

arranged as a 2 x 3 factorial (2 sensitivity categories and 3 overnight feeding regimens). 

Differences between means were assessed by the least-significant difference (LSD) test (Steel et 

al., 1997). 

Experiment 4.3. Effect of 10-d acclimatization to pasture vs. hay.  Experiment 4.3 

was conducted in October and November, 2010, as a replicated 2 x 2 Latin square design to test 

the effect of long-term feeding regimen (10 d) on the % decrease in blood glucose concentrations 

after a standard dose of insulin in sensitive versus insensitive mares.  Procedures were similar to 

those in Experiment 4.2, except that mares were acclimated for 10 d to either native grass hay 

fed in a dry lot with ad libitum access to water, or maintenance on pasture with ad libitum access 
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to water. All mares were feed-deprived overnight (minimum of 12 h) before each insulin 

injection. Doses of insulin used at the end of each period were the same as in Experiments 4.1 

and 4.2.  Additionally, a second injection of insulin was used 2 d later so that ED50 values could 

be estimated. The ED50 value, as defined in Experiment 3.1, was the calculated dose of human 

recombinant insulin that causes a 50% decrease in blood glucose concentrations in 40 to 60 min 

after intravenous injection, and was estimated by linear regression of at least 2 different doses of 

insulin falling on the linear portion of the insulin-glucose dose response curve (natural log of 

insulin dose in mU/kg BW on the x-axis and % decrease in blood glucose concentrations on the 

y-axis). Data were analyzed by ANOVA as a replicated 2 x 2 Latin square design with a 2 x 2 

factorial arrangement of treatments (insulin sensitivity classifications and feeding regimens); 

differences between means were assessed by the LSD test. 

Experiment 4.4. Effect of cinnamon extract on insulin sensitivity.  Experiment 4.4 

was conducted in April and May, 2010.  Ten mares with reduced insulin sensitivity were used.  

Each mare was randomly allotted to one of two treatments: cinnamon extract (Cinnulin PF, 

Integrity, Spring Hill, TN) or vehicle (controls). The cinnamon extract was prepared as an 

aqueous solution.  Cinnulin (10 mL) was given orally via a 30-mL syringe twice daily (at 

approximately 0800 and 2000 h).  Control mares were given 10 mL water twice daily in the same 

manner as the treatment mares. 

  Mares were first assessed for insulin sensitivity by intravenous insulin injection; a total of 

3 doses of insulin (between 32 and 125 mU/kg BW) were injected on 3 consecutive days for 

assessment of ED50. Treatments were then administered for 10 d and the insulin injections for 

the sensitivity assessments were repeated on the 8th, 9th, and 10th day. The ED50 values pre- 

and post-treatment were compared by one-way ANOVA. In addition, blood samples were 
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collected by jugular venipuncture from all mares on d 5 through 10 of treatment for measurement 

of insulin and leptin concentrations. Insulin was measured with commercially available reagents 

(Diagnostic Systems Laboratory, Webster, TX) and leptin was measured with a previously 

validated radioimmunoassay (Cartmill et al., 2003). Hormonal data were analyzed with repeated 

measures ANOVA in SAS. 

Experiment 4.5.  Effect of omega-3 fatty acid-rich fish oil on insulin sensitivity.  

Experiment 4.5 (June, 2010) was conducted in a similar manner as Experiment 4.4 after re-

randomization of the mares (one mare was replaced). Treated mares (n = 5) received 10 mL of an 

omega-3 fatty acid-rich fish oil (Wellpride; http://www.wellpride.com) twice daily (morning and 

evening) top-dressed on 0.5 kg of sweet feed, and controls (n = 5) received the sweet feed only.  

Insulin sensitivity was assessed as described in Experiment 4.4, but on alternate days rather than 

successive days, and mares were then supplemented for 13 d.  Post-treatment assessments of 

insulin sensitivity were conducted in the last 5 d of supplementation. 

Results 

Experiment 4.1.  There was an effect (P = 0.002) of epinephrine pre-treatment on the 

blood glucose responses to insulin injection in Experiment 4.1, as well as a treatment x time 

interaction (P < 0.001; Figure 4.1). There was no effect of insulin sensitivity status (due to the 

different doses of insulin used) or any interaction with treatment or time. Blood glucose 

concentrations decreased by approximately 30% at 60 min after insulin injection relative to pre-

injection concentrations in mares of both sensitivity groups. Prior administration of epinephrine 

completely abolished the decrease in blood glucose concentrations, and concentrations were 

higher (P < 0.05) at 20, 30, 40, and 60 min after injection relative to pre-injection concentrations. 
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Figure 4.1. Blood glucose concentrations in insulin sensitive (S) and insensitive (I) mares before 
and after an injection of epinephrine (5 µg/kg BW) or saline, followed by an injection of 
recombinant human insulin 20 min later. Insulin doses were designed to decrease blood glucose 
concentrations equally in the two groups, thus sensitive mares were administered insulin at 50 
mU/kg BW and insensitive mares were administered insulin at 125 mU/kg BW. Insulin injection 
decreased (P < 0.001) blood glucose concentrations equally in all mares, and prior administration 
of epinephrine increased (P < 0.05) blood glucose concentrations in all mares.  Pooled SEM from 
the ANOVA was 4.4 mg/dL. 
 
 
 

Experiment 4.2.  Overnight feeding regimen affected (P = 0.0004) blood glucose 

concentrations in both sensitive and insensitive mares (Figure 4.2).  The mean percentage 

decreases in blood glucose concentrations differed (P < 0.06) among all treatments (49.8, 58.3, 

and 70.2% for fasted, hay, and pasture, respectively). The only difference (P = 0.0854) between 

the responses of sensitive and insensitive mares was in the pastured group, when insensitive 

mares had the greater response. 
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Figure 4.2.  Percentage decreases in glucose concentrations for mares predetermined to be 
insulin sensitive versus insensitive in Experiment 4.2.  Mares were housed in stalls and supplied 
with water but no feed or hay (Fasted) or just hay (Hay) overnight, or housed on pasture and 
brought in for testing that morning (Pasture).  Sensitive mares were administered insulin at 50 
mU/kg BW and insensitive mares were administered insulin at 125 mU/kg BW.  The mean 
percentage decreases in blood glucose concentrations differed among all treatments (49.8, 58.3, 
and 70.2% for fasted, hay, and pasture, P < 0.06).  The only difference between the sensitive and 
insensitive mares was for testing after being on pasture (asterisk; P = 0.0854). Pooled SEM from 
the ANOVA was 6.0%. 
 

 

Experiment 4.3.  There was an effect (P < 0.05) of 10 d of acclimatization of mares to 

either pasture or hay in a dry lot and insulin sensitivity groups (Figure 4.3).  The % decrease in 

blood glucose concentrations (Figure 3A) to the first insulin injection (50 and 125 mU/kg BW 

for the sensitive and insensitive mares, respectively) was similar for both groups when 

acclimated to pasture, but the decrease was much less (P = 0.021) for insensitive mares than 

sensitive mares when they were kept in a dry lot and fed hay. The ED50 values (Figure 4.3B),  
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Figure 4.3.  Percentage decreases in blood glucose concentrations to the first insulin injection 
(top panel) and associated ED50 values (bottom panel) for mares predetermined to be insulin 
sensitive versus insensitive in Experiment 4.3. Mares were kept for at 10 d in a dry lot with ab 
libitum access to native grass hay and water (dry lot - hay) or kept on pasture with ad libitum 
access to water (pasture). In each case, they were kept in a dry lot with no access to feed starting 
approximately 14 h before insulin injection.  Sensitive mares were administered human 
recombinant insulin intravenously at 50 mU/kg BW and insensitive mares were administered 
insulin at 125 mU/kg BW.  Two subsequent injections were used for the calculations of ED50.  
The asterisk indicates a difference (P = 0.021 for percentage decrease; P ≤ 0.073 for ED50) from 
all other means.  The SEM was 3.4% for percentage decrease and 106 mU/kg BW for ED50.
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which are inversely related to insulin sensitivity, indicated the same trend; mean ED50 of 

insensitive mares on dry lot was greater (P = 0.073) than when they were on pasture as well as 

from insensitive mares (P = 0.029) in either situation. 

Experiment 4.4.  Mean ED50 values before treatment was initiated for control mares and 

those to receive cinnamon extract were 103.4 and 104.6 mU/kg BW (SEM = 23 mU/kg BW). At 

the end of treatment, mean ED50 values were 98.1 and 75.8 mU/kg BW, respectively (P = 0.53). 

Cinnamon extract feeding did not affect plasma concentrations of leptin or insulin (data not 

shown). 

Experiment 4.5.  Mean ED50 values before treatment was initiated for control mares and 

those to receive fish oil were 192.3 and 128.0 mU/kg BW (SEM = 44 mU/kg BW). At the end of 

treatment, mean ED50 values were 128.0 and 83.5 mU/kg BW, respectively (P = 0.32).  From 

this, it was determined that there was no significant effect of fish oil treatment. 

Discussion 

  The experiments conducted herein were designed to better characterize any differential 

responses of insulin sensitive versus insensitive mares under various conditions that might be 

encountered when assessing insulin sensitivity in horses. Whatever the assessment method, 

factors such as stress before testing, or questions as to how best to prepare the mare before 

testing, need to be clarified so that assessments can be standardized across a spectrum of 

circumstances. Short term stress, and its associated increase in adrenal catecholamine output, is 

known to reduce insulin sensitivity in humans (Brandi, 1993; Sherwin, 1984).  In contrast, 

exercise, which also stimulates adrenal catecholamine output, has been shown to increase insulin 

sensitivity in humans in both the short (Borghouts, 2000) and long term (Soman, 1979; Nuutila, 
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1994). This contradiction is likely due to the direct effect of exercise on muscle, which increases 

GLUT-4 (Cortright and Dohm, 1997; Borghouts, 2000) protein in the absence of insulin, in spite 

of the increase in epinephrine occurring at the same time. Administration of epinephrine alone, 

without exercise, reduces both whole body insulin sensitivity in humans (Deibert and Defronzo, 

1980) and isolated muscle sensitivity in rats (Budohoski, 1987). The stimulation of blood 

glucose concentrations by epinephrine in Experiment 4.1 was similar in magnitude (about 25% 

above baseline) to that reported by Sticker et al. (1995) in mares not injected with insulin. Thus, 

the stimulatory effect of epinephrine at this dose on liver output of glucose was unaffected by 

insulin injection 20 min later. This is in agreement with reports in humans (Deibert and 

Defronzo, 1980; Vicini, 2002) and rodents (Budohoski, 1987) showing that epinephrine not only 

suppresses liver glycogenolysis and gluconeogenesis, but also acts directly on muscle to inhibit 

the normal response to insulin. The practical implication of these results is that any stimulus that 

might trigger adrenal output of epinephrine, such as excitement or stress, will alter the 

assessment of insulin sensitivity and must be avoided before testing.  

Traditionally, preparation of subjects for assessment of insulin sensitivity involved a 

period of feed deprivation before testing (Bergman, 1987; Powell, 2002; Vick et al., 2007).  This 

insured that any insulin response to prior meals would not affect the testing result. In contrast, 

Hoffman et al. (2003) provided horses hay ad libitum overnight prior to administering a modified 

FSIGT, because feed deprivation had been reported to reduce tissue sensitivity to insulin action 

in donkeys (Forhead and Dobson, 1997).  However, in that study, Forhead and Dobson (1997) 

compared only overnight versus 3 d of feed deprivation, which may not provide any insight into 

the effect of overnight versus no feed deprivation. That is, the elevation of plasma FFA during 

feed deprivation, which Sessions et al. (2004) reported to be a mediator in the decrease in insulin 
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sensitivity, are 200% higher after 3 d of feed deprivation but unaffected after approximately 22 h 

of feed deprivation (Sticker et al., 1995a,b). Thus, it was imperative to directly assess the effect 

of overnight feed deprivation versus those of ad libitum hay or continued pasture grazing. The 

results in Experiment 4.2 showed that an overnight period of feed deprivation resulted in a lesser 

response to injected insulin in both sensitive and insensitive mares. Moreover, overnight 

availability of hay resulted in a lesser insulin response compared to overnight grazing on pasture. 

Based on the results of Experiment 3.1 and 3.2, in which all insulin injections were given after an 

overnight period of feed deprivation, the doses of insulin were adjusted for sensitive (50 mU/kg 

BW) and insensitive mares (125 mu/kg BW) to provide decreases in blood glucose 

concentrations of about 50%, because that response best estimates actual ED50 value for a given 

horse.  Further adjustment of the doses downward for testing after pasture grazing may have 

indicated that the difference between sensitive and insensitive mares was even greater than 

observed, because responses to either very high or very low insulin doses tend to either diminish 

or obliterate the differences that are detectable with appropriate insulin doses.  

The lowered glucose response to overnight feed deprivation relative to ad libitum hay or 

pasture grazing is assumed to be due to several intertwined factors: 1) the extended time which 

endogenous insulin secretion would be minimal, 2) little or no absorption by the gut of digestion 

products of ingested nonstructural carbohydrates and greater absorption of VFA from the cecum, 

and 3) greater liver glycogenolysis and gluconeogenesis due to the first two factors. The 

possibility that a slight increase in FFA concentration, perhaps not detectable under the 

conditions of the study of Sticker et al. (1995a,b) or an increase in adrenal catecholamine output 

affecting insulin sensitivity directly at the muscle, deserves further study.  
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Again, these assessments were made after an overnight period of feed deprivation. It is 

assumed that consumption of the hay, relative to the pasture, resulted in a lower absorption and 

utilization of sugars from the digestible carbohydrates, due to losses normally incurred during 

drying of the grasses to hay (Pelletier et al., 2010). This assumption is supported by the fact that 

hay versus pasture grazing has been shown to reduce mean insulin and leptin concentrations in 

both normal and hyperleptinemic horses by 50% (Storer et al., 2007).  In addition, consumption 

of pasture includes simultaneous consumption of water (in the plants), which also tends to 

increase insulin secretion relative to consumption of dry feed alone (Nadal et al., 1997).  Again, 

greater dependency on VFA from the cecum for energy in horses acclimated to hay would result 

in a situation similar to that described for Experiment 4.2 for overnight feed deprivation (i.e., low 

insulin concentrations and greater liver glucogenic activity), and hence reduced insulin 

sensitivity. 

The fact that overnight pasture availability and pasture acclimatization for 10 d both 

increased insulin sensitivity in mares relative to feed deprivation or hay consumption seems in 

contradiction to the fact that longer-term acclimatization to carbohydrate-rich diets decreases 

insulin sensitivity relative to fat and fiber-rich diets (Hoffman et al., 2003; Treiber et al., 2005).  

Treiber et al. (2005) discussed this point in their report, indicating that insulin resistance is 

generally associated with decreased energy availability or increased energy demand. They 

suggested that rapid increases and decreases in blood glucose and insulin concentrations after a 

high-glycemic meal may in fact trigger similar energy-conserving regulation. An involvement of 

growth hormone secretion, which is suppressed in humans after a meal and then surges several 

hours later, may have been implied (but was not stated) by the reference to a report by Yalow et 
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al. (1969) in that discussion (Treiber et al., 2005).  Elevation of growth hormone levels does 

elicit a diabetic-like situation with insulin resistance in humans (Rosenfeld, 1982). 

  Neither cinnamon extract nor fish oil supplementation altered the insulin sensitivity of 

mares with known low sensitivity under the conditions of these experiments. Most of the positive 

effects of cinnamon ingestion on insulin sensitivity have been reported for humans (Solomon, 

2009; Qin, 2010) and rodents (Couturier et al., 2010). In contrast, several studies with horses 

have shown positive effects of omega-3 polyunsaturated fatty acids on the production of 

mediators of inflammation (McCann et al., 2000; Hall et al., 2004), immune function in yearlings 

(Vineyard et al., 2010), heart rate during exercise (O’Conner et al., 2004), serum triglycerides 

(O’Conner et al., 2007) and stride length (Woodward et al., 2005). Omega-3 fatty acid 

supplementation has been shown to improve insulin sensitivity in several species (Behme, 1996; 

Gingras et al., 2007; Anderson et al., 2008; Huang et al., 2010). 

In conclusion, insulin sensitivity, as assessed by intravenous insulin injection in mares, is 

acutely affected by prior epinephrine administration, thus measures need to be taken to avoid 

excitement or stress of animals before testing is begun.  Lastly, two potential supplements shown 

to improve insulin sensitivity in other species, cinnamon extract and omega-3 rich fish oil, had 

no effect on insulin sensitivity in mares of known low sensitivity. 
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SUMMARY AND CONCLUSIONS 

The goal of the research conducted herein was to develop a more practical method of 

measuring insulin sensitivity in horses.  Identification of insensitive horses can 1) help producers 

modify management practices for affected animals to reduce the detrimental impact on their 

future productivity and 2) aid researchers in developing experimental groups.  The method 

developed is based on the intravenous administration of recombinant human insulin at doses of 

8, 20, 50, and 125 mU/kg BW, starting with a dose of 50 mU/kg BW, with the subsequent doses 

being lower or higher as appropriate to get sufficient data for estimation of ED50.  This method 

was then further refined and validated through practical applications in experiments studying 1) 

the effect of the hormone epinephrine, 2) the effect of pre-trial feeding regimen, and 3) the 

possible benefit of two nutritional supplements (cinnamon extract and fish oil). 

In the first study, dose-responses in mares of potentially different insulin sensitivities 

were measured.  The ED50 was similar for all mares with normal plasma leptin concentrations, 

regardless of BCS, and was lower than for mares displaying hyperleptinemia.  The second study 

was conducted in order to determine the repeatability of the results obtained in the first study.  

Estimates obtained in both experiments were highly correlated, showing equal to or better 

repeatability as compared to other methods of assessing insulin sensitivity in horses.   

After the first two experiments, the practical application experiments helped to refine the 

procedure.  The administration of epinephrine before the injection of insulin elevated blood 

glucose concentrations and prevented the insulin induced drop in blood glucose concentrations in 

all mares (both normal and hyperleptinemic).  Depriving mares of feed overnight caused a 

decrease in insulin sensitivity relative to overnight ad libitum access to hay.  Both resulted in 

reduced insulin sensitivity relative to overnight pasture availability, and both sensitive and 
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insensitive mares responded similarly except when kept on pasture.  When confined to a dry lot 

for 10 d with only access to hay, relative to pasture grazing, insensitive mares demonstrated 

reduced insulin sensitivity, but sensitive mares did not. Neither supplementation with cinnamon 

extract nor omega-3 fatty acid-rich fish oil had an effect on insulin sensitivity of mares with 

known low insulin sensitivity under the conditions of these experiments. 

In conclusion, dose-response analysis of glucose responses to intravenous insulin 

injections seems to be a useful approach for assessing insulin sensitivity in horses with relatively 

normal pre-injection glucose concentrations.  This method also seems to be relatively safe, as no 

negative physical effects were noted once the procedure was standardized.  While it does take a 

few days to complete, it is relatively easy to perform, does not require skilled technical ability, 

and does not require expensive software or complex mathematical calculations.  This research 

should be beneficial to researchers and producers. 
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