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NOMENCLATURE

a Semi major axis of ellipse

Atupes Surface area of condenser tubes

Acond. Condenser area

b Semi minor axis of ellipse

c Distance between producer and injector
CPpuik. Bulk specific heat

Cowr Working fluid specific heat

cc Capital cost

Cogam Operation and maintenance cost

Ceor. Total cost

CCcona. Condenser cost

Dproa Depth of production side of the well
Dip; Depth of injection side of the well
Dinner Inner diameter

Douter Outer diameter

Dproa Depth of production side of the well
Danz.i DHE annulus 2 inner diameter

Din; Depth of injection side of the well

Dgo Annulus 2 diameter

Dyenr Well outer diameter

Dpug DHE diameter

Dy Hydraulic diameter of working fluid stream
Diubes Condenser tubes diameter

fi Installation expenses correction factor
fu. Material correction factor for cost determination
foerf Friction coefficient at the perforated wall
fp. Pressure correction factor for PC cost determination
frot Total friction coefficient

fwail Friction coefficient at the circular wall

g Gravitational acceleration
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ABSTRACT

This project is sponsored by the Department of Energy of the United States and dedicated
to development of electricity production from the low-enthalpy geothermal reservoirs. The prime
interest are reservoirs that are characterized by low temperature of heat source located in deep
saline aquifers with high permeable rock. Usually energy production from these resources are not
economical by using a conventional binary power plant approach. The presented PhD work is a
study of a new system that utilizes a single-well technology and working on supercritical power
cycle (PC). The wellbore energy conversion system is operating with Zero Mass Withdrawal

(ZMW) principle, which implies no geo-fluid pumping to the surface facility.

This study introduces analyses of three main subsystems of the power unit. The heat
extraction subsystem (HES) is located at the reservoir depth. The power generation subsystem
(PGS) is represented by power cycle, and the heat rejection subsystem (HRS) contains an air driven
condenser as the only part located on the surface. Several working fluids were examined. Based on

the thermodynamic study the best working fluid choice is carbon dioxide.

The project includes a simplified mathematical model derived from energy balance
equations for each subsystem. Dimensionless analysis is performed in order to connect subsystems

of different scales and show energy flow from the reservoir to the surface environment.

The reservoir prototype is a hot saline aquifer located in Vermilion Parish, LA. The
numerical model illustrates application of the ZMW method to the energy production from this
reservoir. The maximum net power production is constrained by the power spent on a brine pump,
which is a function of frictional losses in the downhole heat exchanger (DHE). The numerical
investigation defines the optimal operating brine flow regime for the maximum net power

production.

One of the qualitative parameters of this design scheme is a thermal breakthrough time of
injected cooled brine flowing toward the production side. This parameter is derived using potential

flow theory application for several cases of flowing reservoirs, and various brine flow rates.

The project contains an economic analysis based on determination of Levelized Cost of
Electricity (LCOE). The results are in a good agreement with references and show competitive

results for low-enthalpy reservoir exploration in terms of electric power production.
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CHAPTER 1: INTRODUCTION

“Modern technology owes ecology an apology”
Alan M. Edison

1.1 What is Geothermal Energy?

The economic development over the last century has involved an important growth in energy
consumption. The energy production from coal and natural gas together constitutes up to 66% of
the overall energy production according to US information administration report (2015) (Figure
1.1). This sector has a long history and well-developed technology starting from mining of natural
resources up to the building energy production plants oriented on a simple burning process. As a
result, there are several side effects we face nowadays, which include a greenhouse consequence,
atmospheric pollution, and national energy dependence.

One of the promising substitutes for the fossil fuel power plants are renewable energy sources,
which does not require fuel supply. The energy production comes from solar, wind, or geothermal
resources. While the first two have some application limits, the geothermal energy is always

available 365 days a year, green, safe, sustainable, and long term oriented (DiPippo, 2004).

Sources of U.S. electricity generation, 2015

LE e renewable 13%

biomsss wood 8% & petroleum 1%
solar 5%

biomass waste 3% nuclear 20%

geothermal 3%

natural gas 33%

coal 33%

Source: U.S. Energy Infarmation Administration, Electric Power Monthiy (February 2016). Preliminary data for 2015

2
MNote: Sum of companents may not equal 100% due to independent rounding cla

Figure 1.1: The US electric power generation by energy source
(US Energy Information Administration, 2015).



The geothermal reservoirs are located at the Earth’s depth and include three main features:
geo-fluid, heat, and permeability created by sedimentation process. The fluid is mostly a water
brine containing dissolved salts and gases. The heat source comes from the constant decay of
radioactive isotopes, mainly “°K, **Th, 2**U and 2**U, stored in the crust and mantle of the Earth.
The energy is distributed between the constituent host rock and a geo-fluid and quantitatively can
reach up to 56,000 EJ (10'®) (Papadopolus et al., 1975). Theoretically, this heat amount can supply
all of mankind’s energy needs for six million years (Lund, 2007).

The geothermal resources diverse by the range of temperatures and depths which vary by
place. According to the Figure 1.2 (left) the temperature distribution of the US map area ranges
with depth. The sediment thickness diverges from location to location (Figure 1.2 on the right).
Comparing these data one can conclude that geothermal aquifers are mostly located at the depths
deeper than 4 km and have a temperature range of 100-200°C only, which classifies them as low

enthalpy reservoirs.

10 km

Temperatures at a depth of 10km, [N |

]
S ES S

Figure 1.2: Temperature and sediment thickness map of the US area (EERE 2011).

The geothermal energy extraction process is associated by the number of problems. Firstly,
the portion of the geothermal heat that can be transformed to electric power is restricted by the
thermo-mechanical conversion processes. Due to inability of receiving steam at the surface a binary
power cycle is included into the design. In this case a working fluid (w.f)) is a refrigerant having
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low boiling point. The steam production takes place at the surface facility utilizing heat from the
extracted brine. The cycle efficiency of such power plants varies from 8 to 17% (DiPippo, 2004)
and depends on hot and cold sides of the system.

Power is a function of brine and w.f.’s flow rates, as well as ambient and produced brine
temperatures. Therefore, in order to maintain the same amount of power, the temperature reduction
of the heat source leads to increasing brine flow rate (EERE, 2011). Table 1.1 presents some
successful examples of small binary power plants. As it is seen from the Table 1.1 the efficiency
does not go over 8.5% regardless of flow rates and produced power. The hydrocarbons produce
higher net power than conventional refrigerants, however, require higher input temperature

(DiPippo, 2008).

Table 1.1: Main characteristics of small size binary power plants.

Power Power LCOE Cycle Brine Well Brine Binary fluid
plant efficiency flowrate depth temperature and flow rate
MW  $/kWh % kg/sec ft °C/F kg/s
Wabuska, Iso-Pentane
Nevada' 1.2 0.06 8 60 350 103/218 N/A
Amedee, R-114
California' 1.5 0.045 5.8 205 850 104/219 N/A
Mixture of
Heber, 33.5 0.05 8.5 360 1,300 182/360 iso-butane and
California® iso-pentane
97.00
Chena, 0.4 0.05 8.2 33 713 76/169 Rl_;3146a,
Alaska’ )
1 EERE, 2011

2 DiPippo, 2012
3 Erkan et al., 2008

There are other obstacles that make energy production from low-enthalpy reservoirs
unattractive. Expensive deep drilling operation consumes a huge portion of the plant’s installation
cost (Lukawski, 2009). High operation and maintenance (O&M) costs are associated with
geothermal well clogging problems. Also, it is obligatory by the US law to have a geo-fluid

purification station before the injection, where hydrocarbons and other dissolved minerals are



extracted from the brine for utilization. Additionally, long plant build up period leads to high cost
of produced electric power. Therefore, there is a strong demand in a new design or technology that

can makes low-enthalpy geothermal resources economically viable.

1.2 Zero Mass Withdrawal Method
A new approach of heat extraction from low-enthalpy aquifers seems possible by utilizing
a down-hole heat exchanger. This method is called Zero Mass Withdrawal method. The system
does not require geo-fluid extraction to the surface. One of the big advantages is a compact design
that utilizes only a single well. (Feng et al., 2015). Figure 1.3 illustrates the comparison of both

design schemes: traditional and ZMW cases.

Traditional binary power plant Zero mass extraction project
Tower fan From turbine
High pressure _— Low pressure \ L__:ﬂl-rl‘:::J ."‘.
vapor — vapor \ i /
- [ Cooling I"I
s ) T Y \ tower | Air cooled
\___ Bailer ; Turbine \ / condenser
:/] ¥ _—*| alternative
i Preheater ) )
— —
. Cooling
{ Water cooled
Froduction Low temperature _condenser J o Wererpume
well quid 4“—‘*\
S ~ — | I— Feed o
\Z pump
Wwell Working fluid
Injection pump feed pump

Geofluid flow

| @ Geofluid flow i
L- y

\ Bailer .

Figure 1.3: Traditional and proposed design schemes.

The traditional way requires a minimum of two wells: production and injection. The binary
cycle including cooling tower and additional facilities consumes large surface area. To cover all
installation expenses and get low LCOE the plant is required to produce high amount of electric

power. The ZMW design employs reservoir brine circulation through the DHE located at the



reservoir depth. The compact size of the turbine-generator assembly allows installation inside of
the well. Only a condenser and electric power control unit are located on the surface. Therefore,
this design significantly reduces the size of the surface facility and installation cost of the project
(Kaiser, 2016). The system may produce smaller amount of electric power, however, the ratio of
cost to net power production is expected to be higher than in the traditional case. The application
of this system may be energy production for local usage: industrial manufacturing plant, living

community, or petroleum industry production facilities.

1.3 Reservoir Prototype
The geo-pressured hot aquifer located near the Gueydan salt dome in Louisiana, Vermillion
Parish was chosen as a reservoir prototype (Figure 1.4). The reservoir has a true vertical depth
between 4253 and 4479 meters and varying dipping angles from 1.2 to 28 degrees. The 100m
thickness A-sand stratum is characterized by average 12 mD permeability and 9 to 31 percent
porosity. The temperature gradient consists of two parts: 23.04°C/1km from the surface to the top

of the geo-pressured zone (3827 m); and 28.9°C/1km in the pressured zone (Gray, 2010).

True Vertical Depth, 4,300/14,107.6
m/feet
Gross thickness
(14566-14,774 ft.) m/feet 100/328
Dip angle, degree 1.2-28
Reservoir Rock Unconsolidated
sandstone
Temperature, C/F 126/258
Pressure, MPa/psi 80/11,603
Porosity, % 9-31
Formation Fluid ‘Water brine
Hydrocarbons content 2% methane
Permeability, mD 200

Figure 1.4: Reservoir prototype (modified from Gray, 2010).
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The top of pressured zone creates higher geothermal gradients which results in slightly
higher temperatures for the formation than if it were hydrostatically pressured. Also, the Gueydan
salt dome works as a heat carrier, which transfers thermal energy from the deeper layers to the
reservoir (Gray, 2010).

Several exploration wells were drilled previously. The tests showed no sand content in the
extracted brine, and high permeability and porosity of the reservoir rock (Durham, 1978). For these
reasons, Camerina A sand can be one of the most geologically feasible sedimentary sand deposition

reservoir in case of energy production (MIT report, 2010).

1.4 Research Aim and Scope

The motivation of this project is to design and analyze a system that is able to compete
with traditional fossil fuel power plants in energy production rate for a long operation time. This
study is expected to make positive impact on the development of low-enthalpy energy sources in
the future.

There are several objectives to this dissertation. The first objective is to construct the design
of a single wellbore energy conversion system. The second aim is to choose an optimal working
fluid, and power cycle components. Based on these designs perform parametric study and define
the most influencing features affecting the net power production for thirty years of operational life.
Then, analyze the system for applicability to the range of low-enthalpy geothermal aquifers with
different temperatures and permeabilities in order to gain the maximum possible net power
production with respect to the cost of produced electric power.

Chapter 2 summarizes the state of the art of the binary Organic Rankin Cycle (ORC)
technology used in geothermal energy production and introduces the new design scheme and the
main parts of the system.

Chapter 3 derives a simplified analytical model and presents dimensionless analysis in

order to connect subsystems of different scales: reservoir, well, and surface condenser into one
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equation. The examination of this equation illustrates the main factors affecting the net power
production.

Chapter 4 make a comparison of potential working fluid (w.f.) candidates, examines the
net power production of the cycle through the thermodynamic analysis.

Chapter 5 defines the main constraints of the system and presents numerical analysis based
on reservoir prototype data. This chapter also includes the parametric study of the coaxial DHE and
the system itself.

Chapter 6 contains breakthrough time analysis based on potential flow theory.

Chapter 7 discusses the thermo-economic evaluation of the project based on Levelized Cost
of Electricity determination for thirty years of operational life.

Chapter 8 concludes the results and discussions and gives some ideas for future research

development.



CHAPTER 2: ZMW DESIGN SCHEME. INTRODUCTION

“If you cannot measure it, you cannot improve it”
Lord Kelvin

2.1 Proposed Design

The well has a vertical and horizontal sections. The heat exchanger is installed into the
cased horizontal portion of the well at the reservoir depth. The coaxial DHE scheme simplifies the
installation process and allows using industry available parts. Horizontal orientation gives a
maximum heat transfer area exposed directly at the heat source (Figure 2.1). The w.f. and geo-fluid

loops do not mix with each other and have a thermal interaction through the DHE (Feng, 2015).

Design with turbine inside the well Well head design with turbine on top

v T Wt
Ground level

—TT
]
Surface
Casing
35100 20"
bottom 20" _|
Intermediate . .
Casing Completion fluid
13 5/8"
(13.625" OD R Turbine-generator
12.415" ID)  assembly
"top 9 5/8"
Hho0oor ] M Packer
12,090 | b Pamp
bottom 13 5/8" il

Tubing pipe 4.5"0D (3.958" ID)

Casing (9.625" OD

8.535 ID) Casing pipe 6.625" OD (5.921" ID)

13,736"
Bending

Reservoir

brine outlet

Reservoir
brine inlet
14,720"

Geofluid pump

L

¥

Figure 2.1: Zero mass extraction power unit schematic (not to scale).
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As it is shown in the Figure 2.2 the horizontal section has production and injection sides.
An electric submersible pump (ESP) drives brine from the DHE installed in the producer, circular
portion of the well (insulator) and discharges back to the reservoir through the injection side. There
is a risk of sand production if the reservoir rock is unconsolidated. To avoid DHE fouling and
horizontal well clogging a gravel packed design is considered as a protection method at the

production side. The well may have some inclination according to the reservoir dipping direction.

Cold stream from the condenser
G Hot stream to the turbine

Working fluid pump

< - ==

Tubing DHE Gravel pack Brine pump Extension pipe
_/}/l/i//lﬂ/,lgﬂ/l//‘r _‘/I/I/W/lﬂ{élz?/lﬂ%

pilly;
T s
- = <L <
R RRREREE FREEREERRRE
PRODUCTION CIRCULAR INJECTION
PIPE
Perforations @

Figure 2.2: Completlon design scheme for horizontal well with downhole heat exchanger.

A power cycle utilizes hot w.f. and produces electric power in the generator, which is
connected to the turbine’s shaft through a reduction gearbox. The compact expander is installed on
the top of the retrievable packer inside of the vertical well or on top of the christmas tree as shown
in the Figure 2.1. The first case has more compact design but requires workover operation to
dismantle the turbine for maintenance. The second case is much simpler in terms of installation and
maintenance work, however, may require some development of the christmas tree. In this way the
casing design might be simplified avoiding installation of tubing with changing cross sectional
area.

After the expansion the discharged w.f. enters the condenser. An air driven condenser is

used to convert vapor to liquid form. Later, the condensed w.f. is pumped down to the reservoir



depth through the vertical insulated tubing. The fluid’s density is increased under the influence of
high hydrostatic pressure proportional to the reservoir depth. Therefore, a working fluid pump is
installed at the deepest possible vertical location of the tubing to reduce the pump work. After
increasing temperature in the DHE the w.f. leaves the horizontal offset and travels vertically up

toward the turbine through the annulus of variable cross sectional area.

2.2 Design of the Main Parts of the System
2.2.1 Expander

A turbine is a heat engine which is used to extract energy from the hot steam and turn it to
kinetic energy of a shaft rotation. Then, kinetic energy is converted to electric power in the
generator. The turbine design is not a primary interest of this project, however, the efficiency of
the expander is needed for numerical for calculations. Therefore, the following chapter contains a
brief literature overview of a turbine selection criteria and efficiency analysis.

A number of selection methodologies have been suggested for the different types of
expanders (Balje, 1981; Dixon & Hall, 2010; Japikse & Baines, 1995; and Quoilin et al., 2013).
Quoilin et al. (2013) proposed a selection method for scroll expanders, screw expanders and radial
turbines based on nominal power. However, the most convenient classification is based on the
turbine specific speed and diameter as is illustrated in Figure 2.3 (Balje, 1981; Dixon & Hall, 2010;
Japikse & Baines, 1995).

The proposed design deals with high flow rates and high pressure ratios. A compact size
expander is operating with single phase w.f., therefore, the choice of a turbine falls in the region of
radial and axial types in Figure 2.3, highlighted by the orange color box. The main difference
between both types is flow organization. The inflow path in the radial turbines is perpendicular to
the shaft axis. A single stage rotor orientates the flow at 90 degrees, which makes them highly
efficient, up to 90%, at very low power output. The bearing load is much better distributed and the
design provides long term operation. Additionally, the work per stage value is much higher, than

10



in axial turbines (Japikse & Baines, 1995). However, the axial turbines can deal with higher
pressure ratios and have more convenient flow path design. The flow direction coincides with the
turbine axis and is more convenient in installation inside the well. Therefore, the choice is given to
a multistage axial turbine.
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Figure 2.3: Turbine selection chart after Balie (1981).

The expander efficiency determination is based on the choice of the expander, w.f.
properties, mass flow rate, and geometry of the blades. The design procedure starts from defining
the inflow and outflow velocity triangle on the blade and finishing with produced work calculation
(Church, 1959). The procedure is shown in the Appendix A, and results are summarized in Table
2.1. The expander is able to utilize 10 kg/sec w.f. mass flow rate with efficiency of 0.814. A single
stage turbine has small diameter blades of 2.5 inch. The shaft has high revolutions of 19,018

rev/min, and, therefore, requires reduction box installation to connect with generator unit.

Table 2.1: Results of a single stage turbine calculations

Turbine Turbine Shaft ~ Number Pressure Pressure = Mass flow
Fluid  blade radius, efficiency of inlet outlet rate
inch Rev/min  stages MPa MPa kg/sec
CO» 2.5 0.814 19,018 1 21.27 8 10

The electric power produced by the turbine (W)electr is calculated by equation 2.1:
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(W)electr. = iy (Rin = hout)vert Neurb.Ngen.Mmech. (2.1)
Where N¢yrp Ngen Mmech. are turbine, generator and mechanical efficiencies.

Figure 2.4 illustrates the single stage turbine expansion process. Carbon dioxide was
utilized as a working fluid operating at temperature range from 120°C to 30°C, and pressure range
of 22MPa to 8MPa. The red line represents the two-phase boundary region. The dashed line is a
constant entropy expansion (ideal case with 100% efficiency), and arrow shows the real turbine
expansion with 0.81 efficiency. With 10 kg/s flow rate the calculated turbine work is 319.4 kW. To
convert this work into electric power the generator efficiency of 0.96 and gearbox efficiency of
0.97 were assumed (Quoilin et al., 2013). The resulting electric power is 297.4 kW for a single

turbine.

I5MPs

430 —
20MPa B} 1
470 o 150Pa
160 -
10MPs
450 '
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_—Supercritical gas
737 MPa T

~ 10s

Two phase region
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Figure 2.4: Turbine expansion Enthalpy-Entropy chart.

2.2.2 Condenser
Cooling of w.f. after the turbine stage is an important design aspect. The temperature drop
in the condenser represents the bottom line of the T-S diagram and influences the overall power
produced by thermodynamic cycle (Moran and Shapiro, 2006). An implementation of a traditional

cooling tower or cooling pond is not always possible because water source may not be available at
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the well location (Varney et al., 2012). An air cooling condenser is comparatively cheap and easy
to install (Wendt et al., 2011). There are many commercially available coolers ready to implement
in this project, however, they are designed for a particular working fluid (R-22 or R134a) and
cannot be simply applied to this project.

A condenser design was performed in order to define the necessary heat rejection area
required to cool the power cycle. This area is a constant parameter and stands as constraint for the

power unit design. It cannot be changed during operating life and may restrict the amount of heat

rejected by the condenser. Rejected heat from the system (Q Re j.) is found from equation 2.2:

QRej. = Ucona AtubesATim.cona (2.2)

where U4 is overall heat transfer coefficient; AT}, cona 1S log-mean temperature; Ay pes 1S heat
transfer area of the condenser tubes, which can be simplified by the number of tubes (14pe5) used
in the design.

Atubes = NtubesTDeubesLtubes (2.3)
where Dy pes and Ly, pes are outer diameter and length of the condenser tubes.

There are several arrangements of placing tubings in the condenser (Incopera, 1990).
Additionally, to reduce the heat transport area and make a condenser compact the designer may use
finned tubings. This project is not interested in finding the optimal condenser design for the power
unit, so a single row arrangement is implemented to track the condenser surface area.

The overall heat transfer coefficient (U,,,q) is a function of convective heat transport
from the w.f. to the ambient air with assumption of negligible conduction resistance through the

tubing wall (Incopera, 1990).

1

Ucona = 1 1 (24)
—_—

hwf hair

where hy, ¢ and h,;;, are heat transfer coefficients of w.f. and air.
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The log mean temperature (ATy, cong) ©Of the condenser is a function of cold and hot sides

of the air and w.f. streams:

ATlm_cond _ (Tw.f.hot - Tair.hot) - (Tw.f.cold - Tair.cold) (2.5)

In (Tw.f.hot - Tair.hot)
(Tw.f.cold - Tair.cold)

In the equation 2.4 the overall heat transfer coefficient should be found from the numerical
modelling. The simulator is mimicking a commercial cooler with parallel horizontal tubes and

vertical air flow created by electric fan (Figure 2.5). The analysis is shown in the Appendix B.
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Figure 2.5: The condenser simulation results.

Here let us show some results and make some conclusions. Six meter length condenser
with 20 pipes in total is enough to cool the unit with CO, as a working fluid. Total condenser area
is 25 m?. The cold side temperature was chosen as 15°C. Increasing the cooling temperature
increase the condenser area.

Fan work is defined by the following expression:

Wfan — VairAc;);d.APcond. (2.6)
an

Combining Eqn. (2.2), (2.3), (2.4), (2.5), and (2.6) one can derive the relationship between

the rejected heat rate and fan power requirement.
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LtubesT[Dtubesncond.
mairAP cond.

. 1 .
QRej. = 1 1 ( )ATlm.condean (2.7)

I~

wf hair

The first term in brackets of the equation 2.7 is responsible for heat transfer between w.f.
and air. It is a function of air and w.f. flow rate and fluids properties and cannot be found directly.
The second term defines the size of the condenser and kinematic values of air flow. The third term
defines the temperature factor of hot and cold sides of the condenser. As soon as the condenser’s

geometric parameters are defined as well as operating conditions, all three terms would be a

constant values, and with changing (QRe j.) one can calculate (Wfan).

2.2.3 Brine Pump

A brine pump assembly includes an electric motor, a multistage pump, safety valves, and
tubing. Coordinated operation of all parts in the pump system is the main key of efficient and
longtime duty. Thus, there are some of requirements for choosing correct parts. For example, a
pump flow rate fluctuations should be less than 10%. Instability greater than 40 % in revolution per
minutes for some may cause cavitational, harmonical or vibrational problems. Pump assembly can
reach up to 72 ft (Coltharp, 1984) and can be damaged during installation into the horizontal pipe
from vertical well. Build up radius cannot exceed 20 degrees per 1001t for the 9 5/8 inch diameter
casing string and pumping set is not going to be installed into the bending radius (Bassett L., 2010).

Figure 2.6 shows the general pressure distribution scheme. Here the brine pump creates
suction pressure below the reservoir pressure in the production side (drain pressure), and higher
than reservoir pressure in the injection side. For this analysis it is assumed that the drawdown is
equal to the excessive pressure rise and the brine pump head is the sum of the drain and injection
pressures. The choice of pump selection is strongly tied with the hydraulic head required to drive

brine from the production to the injection sides, and overcome all pressure losses in the brine loop.
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Additionally to that the circular pipe between producer and injector is working as an insulator. So,

frictional pressure drop (AP;,s ) should be added to the pump head pressure.

Pbr.pump = APres.prod. + AP prod. + APyns + AP inj. + APres.inj (2-8)
compl. compl.
. .
\'ﬂPprOd
Reservoir pressure
e RS
Production side Injection side

Casing ‘ Packer

Cement Brine pump

i

‘ Gravel Pack
|

Py

Packer|| Working fluid Inner tube

Figure 2.6: Pump placement in the horizontal offset.

2.2.4 Downhole Heat Exchanger

Various design ideas for the DHEs were proposed recently. In general, they can be divided
into three main groups by interaction with reservoir rock/fluid: conduction, natural convection, and
forced convection types. The first type is utilized in the condenser cooling schemes with shallow
wells. The conductive heat transfer occurs from the vertical well to the reservoir (Figure 2.7 right).
Electric power production for a long-term operation is commercially not feasible due to slow heat
exchange process (Nalla et al., 2004).

Wang et al. (2009) considered natural convection type for a thermosiphon scheme (Figure.

2.7 left). The design consists of a vertical coaxial heat exchanger with working fluid moving
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through the inner tubing. At the same time, hot brine flows through the perforations into the outer

annulus and discharges back to the reservoir driving by the density difference due to cooling.

Qanerator(

1 condenser r‘-[/\'
lul‘bing_.

Cement Annulus Tubing Insulation Casing Formation

Figure 2.7: Reservoir and heat exchanger interaction schemes
(after Nalla 2004 and Wang et al. 2009).

The temperature distribution along the well is governed by geothermal gradient. The heat
transfer occurs along the well, however, the hottest place is located on the bottom. To increase the
efficiency the horizontal orientation of the DHE is more preferable. It enhances the contact area
with a hot formation and therefore, the net power of the cycle (Feng, et al., 2015). Plaksina et al.
(2011) proposed mono-bore scheme for geothermal heat recovery. Instead of using traditional
scheme of separate injection and production wells, she combined both into one coaxial pipe. The
design encloses the DHE that pumps geo-fluid through itself. Brine enters the DHE heats the
working fluid and leaves back into the reservoir at the other end of the pipe.

The third type implies forced convection between DHE and a formation fluid. The DHE
was assumed to be installed at the horizontal well drilled in geo-pressured reservoir. The pumping
equipment controls brine circulation at the optimal rate. This allows managing the heat exchange
process and significantly increasing the amount of energy extracted from the reservoir. Feng (2012)
proposed a scheme that allows producing 225 kW of energy using binary Organic Rankine cycle

(ORC) with n-Butane as a working fluid. The flow direction of w.f. and brine was chosen in counter
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flow direction due receiving higher temperature at the outlet (Incopera, 2006). The rest of the ORC

sections were expected to run at the surface facility.

2.3 System Constraints

In geothermal projects the net power produced from the reservoir is defined by the
temperatures of the Aot thermal source and cold sink. Then the PC choice is based on hot and cold
side temperature boundaries, pressures, and working fluid selection. Mostly, the ORC type with
industry available refrigerants or hydrocarbons is taken into account. In our case the working fluid
undergoes hydrostatically pressurizing to values higher than critical pressure. This condition adds
some restrictions to the w.f. choice. Not every fluid may turn to the vapor form while travelling
upward from the DHE depth. Additionally, the binary fluid should satisfy calculated operating
parameters and criteria of toxicity and environmental safety.

Another parameter is reservoir depth. The traditional power plant analysis does not include
hydrostatic and frictional pressure losses because the facility is placed at the surface and its parts
are located close to each other. Here the w.f. is pumped into the reservoir depth, where the
refrigerant becomes highly pressured. Thus, the stability of the working fluid becomes another
constraint. The working fluid should be chosen from the single component type candidates.

The deep well application would require high amount of the refrigerant needed for the
system. This would increase the installation costs unless cheap working fluid is used. Carbon
dioxide is abundant and cheap. Several ongoing projects are dedicated to solve the problem of CO;
sequestration. Using CO in this project would have some positive impact on storing carbon dioxide
in the well.

The reservoir pressure at the target depth tends to collapse the well. Pressure inside the
DHE is serving against the reservoir to protect the heat exchanger from destruction. Hence, the w.f.

should provide high pressure at the bottom of the well.
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While it is difficult to maintain a supercritical stage at the surface facility, due to high
pressure and temperature conditions, in this project pumping the w.f. to the target depth makes it
reasonable. Supercritical stages are preferable to work with due to ability of receiving higher power
production and efficiency. Additionally, the fluid properties (thermal conductivity, specific heat)
increases with pressure as was mentioned before.

The heat transfer area of DHE is an important parameter. It is constrained by horizontal
offset’s casing diameter from the one side, and length of exchanger from the other. The casing
diameter defines the DHE diameter size. The drill bit diameter is reduced gradually with depth
while drilling a well. So, the DHE location will have small diameter in advance. In this project the
9 5/8 inch well is proposed. Further reduction of the diameter will increase the frictional losses and
higher diameter size is impractical from a drilling operation standpoint. The length of the horizontal
offset is defined by the heat exchange process, working fluid and brine flow rates, and frictional
losses.

The working fluid pump defines the flow rate in the working fluid loop. A higher flow rate
value is better for maximizing power production, however, this parameter is closely connected with
brine flow rate. So, the brine and w.f. flow rates as well as DHE geometry are optimized in order
to obtain both: hot working fluid entering the turbine stage and a maximum possible flow rate.

The geo-fluid pump assembly is responsible for the brine circulation and bounded by
keeping necessary brine flow rate for the heat exchange process. Power requirement is to overcome
all pressure losses in the injection, production sides, and reservoir itself. At the same time, pump
work should not take a significant portion of the produced electric energy.

The turbine location is better to place close to the wellhead. If it is between the turbine exit
and the condenser there is a long vertical flow distance of w.f. and an extra pressure drop is created,
and an additional compressor would be needed to operate the system.

The working fluid circulation loop may have phase change from liquid to vapor and the
prime interest is to have this process only at the condenser stage. From the other side, it is better to
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have w.f. circulation without any phase change in the condenser, or having operating conditions
above the critical point. In this case no additional compressor is needed to operate the cycle.

The condenser has a constant surface area, but the amount of heat to be rejected varies
with ambient air temperature fluctuations. It is necessary to have enough surface area and pinch
point temperature difference to reject heat at the surface facility.

An air cooled condenser is proposed to cool the working fluid and complete the phase
change back to the liquid stage. The seasonal variations of ambient air temperature have some

impact on power production. For numerical analysis a yearly averaged value is assumed.

20



CHAPTER 3: SIMPLIFIED MATHEMATICAL MODEL

"Once we accept our limits, we go beyond them."

Albert Einstein

The purpose of this chapter is to introduce subsystems of the power unit, and derive an
equation explaining the energy flow from the reservoir to the ambient air. Dimensionless analysis
helps reduce the number of variables and connect subsystems with different scales. The chapter

suggests several conclusions about the system application.

3.1 System Modelling
To simplify the design analysis the unit is divided into three subsystems: Heat Extraction
Subsystem, which includes a reservoir, a brine ESP and a horizontal well; Power Generation
Subsystem with Power Cycle (PC) and DHE; and Heat Rejection Subsystem that includes a

condenser part on the surface (Figure 3.1).

Extraction Loop

Figure 3.1: Subsystems of the power unit.
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Let us discuss the energy flow in the system starting from the reservoir as a heat source
and finishing by ambient environment as a cold sink. Figure 3.2 illustrates energy flow in the
system. The red and grey arrows represent the energy flow from the reservoir to the ambient and
energy losses respectively. The reservoir plays a role of a virtual battery, whose energy is extracted
by the DHE. The reservoir recharge is coming from the hot surroundings and the brine pump work
is needed to create a circulation of a geo-fluid inside the reservoir.

The extracted energy is transferred to the PC where some portion is discharged to the
ambient air through the condenser, and some is turned to mechanical rotation work in the turbine
stage and later to the electric power in the generator. This gross power is distributed among the w.f.
and brine pumps, and a condenser fan. The rest is net power, which one would like to have as much
as possible. At each energy transfer stage there are energy losses from the system due to entropy

generation (Moran and Shapiro, 2010).

Heat Rejection T
I Ambient air I Loop / \
=+ b
Condenser f 1 '
fan A '

Energy
work lost | Condenser | Energy

lost

Loop

G G Working a}:rn—n—r—\—

NET Electric Turbine Power Cycle fuid fﬂl .. \

power power work pump ‘I : Concraton ll
|

work o1 [
I|I I_._
| DHE | Energy \ ol
lost
Brine

Reservoir Energy Reservoir S a1 )
um g o
Do recharge Heat > % gf

I‘.xnu:linn'Lpr-

work

Figure 3.2: Energy flow chart.

To better understand system behavior let us introduce a mathematical formulation of the

system as a combination of equations based on energy balance. According to the energy
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conservation law the control volume energy change is equal to the energy flow in and out and some
stored energy inside:
Change in Energy
( cv ) = (Energy ) — (Energy ) + ( rate ) 3.1
rate in rate out
energy stored

This principle is used at any subsystem’s equation derivation that is introduced below.

3.1.1 Heat Extraction Subsystem (HES)

Let us assume no stored and generated energy is in the HES. Then, the rate of reservoir
energy change per unit volume of the whole reservoir is triggered by the heat extraction rate in the
DHE, and reservoir recharge mechanism associated by heat flow from the hot surroundings:

Change in Energy Energy
(Reservoir) = ( rate ) - (r_ate out) (3.2)
energy recharge in DHE
Assumptions:
e Radiative effects, viscous dissipation and work done by pressure changes are negligible;
e [sotropic medium in the reservoir;
e Steady-state energy extraction in the DHE, and PC.
Then for solid (rock) and fluid (brine) phases presented in the elementary volume of the reservoir

medium one can write an energy balance equation as shown in the Eqn. (3.3) and (3.4) respectively:

aT, k 111
(1 - ¢)prock CProck 5:c = (1 - ¢)V : (krockVTrock) + h(Tbr. - Trock) - (1 - ¢)Q rock
(3.3)
(?Tbr. s Y244
b0br.CPpr. T + Por CoOpr U - VT = @V« (kpyr VT ) + h(Tyr. — Trock) — $Q br. (34)

where ¢ is reservoir porosity, Cp is specific heat, k is thermal conductivity, Q""’ heat extracted per

unit volume, and h is heat transfer coefficient.
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Additional assumption of local thermal equilibrium between rock and reservoir brine gives
us equal temperatures: Ty, = Tyocr. Here we accept that heat conduction in the solid and fluid
phases takes place in parallel so that no net heat transfer occurs from one phase to the other (Nield

and Bejan, 1998). Combining both equations into one will have:

d0Tg .
Pouik CPpuik. o —Pbr Copru - VT + AV2Tg — Q bk (3.5)

where A is overall thermal conductivity:

A=01- ¢)V : (krock) + pkpy. (3-6)

and Pboulk Cpbulk. is found from:

Pouik COpuik. = (1 - ¢)(prock Cprock) + ¢ pur.Copr. 3.7)

Heat extracted from the reservoir per unit volume:

. Q . .
pHE = (I),% =1 -d)Q" o) + 90", (3.8)

Heat extracted by the heat exchanger (Q)DHE is assumed with no fouling take place in the DHE

and constant pump work at steady state conditions:

(Q)DHE = Myy. (hin — hout) pue = Mpr.CObr (TR — Thr.cota) pHE (3.9)

Brine flow in the reservoir is initiated by pressure difference between the production and

injection regions and can be approximated with Darcy flow equation:

K
u= —;(VP = Pvr.9) (3.10)

Let us rearrange the Eqn. (3.2) as:

aTR Pbr Cpbr < K A
—Ro Pt (2 (VP —pyg) | VTR + ——— V2T,
ot Pouik COpuik. \ M br R ppuik Cobuik. R

_ pbr.Cpbr.CIbr. (TR - Tbr.cold)DHE

3.11)
Poutk Copuik.Vr

where Ty is a reservoir temperature.
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Introducing kj, as a thermal diffusivity, and M as a dimensionless constant:

A
ky=—6/"— (3.12)
M Poutk Cobulk.
C
M = _Pputk “pbulk. (3.13)
pbr.Cpbr.
The final equation is:
0Tg 1 /K Abr (TR — Tpr cold)DHE
—E=_(=wP- )-VT + kp VAT — — ' 3.14
5t = 77 (o (VP = o)) - VT + ke i (3.14)

3.1.2 Power Generation Subsystem
Heat absorbed by the DHE is utilized by the Power Cycle and spent on turbine work, heat

rejection, pumps feed power, and losses. The balance energy equation is:

dE : . . dE , '
(@), = @ons = i = O =), = Dy, =)y, =0 619

The rate of change in PC energy is equal to zero, so one can assume a steady state regime.

. . . . . dE
@D = Vi * O+ Oy + D+ (), 010

To define the net power some corrections are used including turbine, generator and mechanical

gearbox efficiencies:

(W)NET. — (W)NET.
nturb.ngen.nmech. Netectr.

(W)Turb. =

(3.17)

The energy lost from the PC dE is thermal energy that is absorbed by the subsurface
&y dt/josses &y Y

formation from the hot working fluid. The entire tubing, where the hot fluid is flowing from the
DHE to the turbine inlet, is assumed insulated in this project, thus, the heat losses are presumed
negligible. However, the hot w.f. pumped toward the surface is expanding at constant temperature.
This causes w.f. enthalpy growth (more detailed explanation is in Chapter 4) and, therefore, should

be included into the equation:

25



_ (W)NET.

(Q)DHE - + (Q)HR + (W)w.f.pump. + (W)br.pump. + mwf.(hin - hout)vert. (3-18)

Nelectr.

e Brine pump work

Brine pump power requirement should be subtracted from the PC energy rate.

. Pyy. My
Wpump(br). = LR T (3.19)
Ppr
where Py pymp Was defined previously as:
Pyrpump = DPres. + AP proa. + APipg + AP inj. (2.8)
compl. compl.

The frictional pressure losses inside the well have two terms: flow in the circular section
and flow through the DHE. The friction coefficient is not the same for flow through the circular
pipe with outflow through the perforations and classical pipe flow. However, for simplicity

purposes let us assume no difference. Then:

_ fmbrz(Lins. + Linj.) fDHE.merLDHE.
APins. -

. . (3.20)
2Dhoriz.pbrAc(w) 2DDHE..DbrAc(DHE)

where L;, is a separation length between injection and production sides; Dp,,.i,. 1S @ horizontal
well diameter without DHE inside; Dy is the heat exchanger’s hydraulic diameter.

The AP, term is defined by Darcy law for simplicity purposes (More detailed discussion about
the flow inside the reservoir is continues in the Chapter 6).

Eventually, the Equation. (3.19) includes well inclination term as well:

. .2 . 2
. m m Lins + Lini My~ L
Wpump(br). — br <Apres. + AP prod. + AP inj. + f br ( ins. m]z.) f br “DHE. .
Por compl. compl. 2Dhoriz.pbrAc(w) 2DDHE..ObrAc(DHE)

- pbr.g( Lins. + Linj. + Lprod.) Cos 9) (3-21)

o The working fluid pump work
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Pump work for working fluid is obtained from the analogous formulation to (3.19):

. APy, s my, ¢

Wpump(wf). = (3.22)
pwf.cold

The density pyr.co1q in the equation. 3.22 is marked as cold because the w.f. pump is installed at
the cold stream. Neglecting pressure drop in the condenser and inside the DHE due to their short
length compared to the vertical well the AP, ¢ term has two components:

APys. = BPgravity + APrrice. (3.23)
The working fluid is travelling up and down through the tubing and the annulus of the vertical well,
which length is Z measured from the surface to the DHE. The pressure difference in the hydrostatic
column is defined by thermosiphon driving force of density difference Ap,, s between cold and hot

streams.

APyravity = (pwf.cold - pwf.hot)gZ = ApwrgZ (3.24)

The frictional pressure drop APryic. is a sum of frictional losses in the cold and hot sides of the
subsystem. Approximating diameter as an average hydraulic diameter D, ,which is constant for

both sides one can write the expression for APr,.;.; as shown in the Eqn. (3.25):

V2.01aZ VZhotZ

APfrict. — (fpwf.cozlzi) cold ) + (fpwf.hzog hot ) (3.25)

h down h up

Then the w.f. pump work is:

. 3 .

. m Z + A Zm
Wpump(wf). — v;f f <pwf.cold pwf.hot) _ pwfg wf (3.26)

2DhA pwf.cold pwf.coldpwf.hot pwf.cold

The second term in equation. 3.26 reduces pump load due to thermosiphon effect, when the colder
fluid displaces hot fluid and create circulation helping to the w.f. pump. Finally, heat rate gained

by the DHE is expressed by the following equation:
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(Q) ( )NET + (Q) mwf3fz (pwf.cold + pwf.hot) _ prfgzmwf
DHE "~ Netectr. HR 2DhAz,Dwf.cold pwf.coldpwf.hot pwf.cold
mbr fmbrz(Lins. + Linj.) fmbrzLDHE.
+ APres. + APprod. + APinj. + 2 2
Por 2Dhoris.pbrAc(w) 2DDHE.pbrAc(DHE)

- pbr.g( Lins. + Linj. + Lprod.) cos O(> + mwf (hDHE out — hturb.in) (3-27)

3.1.3 Heat Rejection Subsystem

Let us assume negligible heat losses from the condenser to the ambient air. This is true
with assumption of predominant convective type of heat exchanger powered by fan. Because the
condenser may have two-phase condensation region it is more convenient to formulate energy

equation in terms of flow rate and temperature of ambient air:
(Q)cond. = Mair CPair Tair.in = Tair.out) (3.28)
The ambient air usually is assumed as a constant term and equal to the yearly averaged
temperature. However, the net power production depends on cold sink temperature variations

during day/night periods and seasonal changes. In general, the following idealized expression is

mimicking the process:

Taay — Thi T, —T,:
Toirin = T‘;lvrz]nual + wsin(wlt) n summer2 winter sin(w,t) (3.29)

where w; and w, are daily and seasonal periods [1/sec].

. Ty Ty T, — Ty,
(0) g = air Chaiy (TG + =22 sin(wy ) + =720 sin(w, )

- Tair.out) + (W) (3.30)

fan
Finally, the system of equations describing the system is shown by the following three expressions:

(@) e

VePbuik Cobulk.

aTR—l(Kv ) T+kV2T
o~ m\g VP~ Pord) M
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(Q) _ (W)NET. mwf3fz (pwf.cold + pwf.hot) _ prfgzmwf

DHE "~ Netectr. 2DhAz,Dwf.cold pwf.coldpwf.hot pwf.cold

fmbrz(Lins. + Linj.) fmbrzLDHE.
2Dhoris.pbrAc(w)2 2DDHE.pbrAc(DHE)2

Mpy

+ <Apres. + APprod. + APinj. +

Ppr

- pbr.g( Lins. + Linj. + Lprod.) Cos O(> + mwf(hDHE out — hturb.in) + (Q)HR

7daV 7'”.lgh.t 7 mer 1W nter
. summe inte

(Q)HR = maircpair( avg. 2 2 Sin(wzt)

— Tairout) + (W) (3.31)

fan

3.2 Dimensionless form
The equation 3.31 has forty five variables. To reduce the number of variables and simplify
the equation let us present the dimensionless form formulation. First, let us introduce a

dimensionless time as was discussed by Ansari (2016):

pbr.Cpbr. dpr.t _ dpr.t

tp = = (3.32)
2 Py Copuik HWL — VpM
where q;,- is a volumetric brine flow rate.
The relation between time and dimensionless time is:
MVy
dt = dtp (3.33)
dpr.
Dimensionless temperature is expressed in the following equation:
TR
R
where T " is initial reservoir temperature before cooling process.
dTR = TR*dTR(D) (335)

Then:
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0Tp Qor.Tr dTr()

—_—= 3.36
at MVydtp ( )
The dimensionless distance (dxp) from the injector to the producer:
x
dxp = (3.37)
Lins.

where L, is a distance between injection and production sides of the well.
Combining all equations of the system (3.31) in into one and converting to the dimensionless form
will have the expression for the reservoir temperature change with time.

K .
0Tawy  PorVe (P = P0r9)0Tn) e MVikiy 0Tepy  PerM(W),

dtD mbr.( Lins.) de mbr.( Lins.)2 deZ Pbulk.mbr.Cpbulk.TR*nelect.

_ Por MairCp airM [Tannual + Msin(wlt)
N * avg.
Poutk.Mpr.Copuik. Tr ! 2

Do M(W)

. *
Poutk. Mpr. Cppuik. Tr

Tsummer *+ Twinter .
4+ > wi sm(a)zt) - Tair.out] -

fan

_ pbr.mef wasz (pwf.cold + pwf.hot>

My Poutk.Copute. TR©  Dn 2Pwf hot

pbr.mengprf
My Poutk.Coputke. TR Pwf cold

i M. (DPegs. + APyroq + APy
- : . d. inj.
Copute TR PorPoute © pro mj

_ Mpberhoriz.z(Lins. + Linj.) _ fVDHEzLDHE.pbr.M
2Dnoriz Poutk Copuk TR Poutk. Copuik. T 2DpuE.

_ pbr.Mg( Lins. + Linj. + Lprod.) cosa _ pbr.mef(hDHE out — hturb.in)
Poutk.Copuk. TR Poutk.Copuik. TR Mpr.

(3.38)

In the dimensionless form the equation 3.38 has only twenty two variables.
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dT oT, 92T
RD) _ 1 RO®) _ T3 —R(f) + MMy + MMMy + My MsTTg + M MsTgM1gTT11
dtp dxp dxp

— MM5M19T12M13 + MaM14 + MpM5M15T 16 + M M5T17T1g + MR M5T1g

+ Tyl = 0
(3.39)
The equation 3.39 cannot be solved analytically due to having highly nonlinear terms and

dependent variables. The dimensionless numbers are presented in the Table 3.1.

Table 3.1: Dimensionless numbers derived from equation (3.39)

Dimensionless Formula Interpretation
number

4 v, K VP — Ratio of brine velocity flow inside the

R (# ( pbr'g)) reservoir volume to the flow inside the

qpr.( Lins) horizontal well
T, M= Pouik Cobulk. Ratio of reservoir bulk to brine thermal
T ppC capacities. The same dimensionless
r.“pbr.

number was used by (Ansari, 2016)

T3 Por Veku Ratio of volumetric thermal diffusivity
Mpy (Lins)? to the volumetric flow rate
Ty (W)NET' Dimensionless net power

. *
Mpy, Cpbr.TR Nelect.

T Pbr. Dimensionless density
Ppulk.
g MairCp air Heat capacity ratio (air to geo- fluid)
My Cppulk.
5 annual . lday T Tnignt Dimensionless ambient
1 [ Tavg:" "+ 2 sin(w; ) + temperature

*
TR Tsummer + Twinter

sin(wzt) — Tairout

2
g (W) Ratio of fan consumed energy
#ﬂanT* requirement to the thermal energy of
Mpr. Upbulk. 1R the reservoir
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Table 3.1 (continued)
Dimensionless Formula Interpretation
number
Ty Vo flz Z Ratio of friction energy in the vertical
m well to the thermal energy
10 My g Ratio of w.f. and brine flow rates
7hbr
T Pwf.cold + Pwf.hot Ratio of average w.f. density of the
2Pw f ot system to the hot stream density
T2 Apyr Ratio of density change to cold stream
Pwrcold density
T3 gz Ratio of gravity to thermal energy
Cbbn7h*
T4 My, (APres. + APproq. + APy j.) Ratio of circulation work to the heat
* transf
Cpbutk.Ppr.Poutk. Tr ransier enctey
s Lins. + Lin;. Ratio of horizontal circular section
2Dpor. length to its diameter
16 Vhoriz” Ratio of frictional energy in the
- T hori 1
Coor-Tr orizontal well to the thermal energy
Ty Lpug Ratio of DHE length to its diameter
Dpug
g Vour? Ratio of frictional energy in the DHE to
T he th
Coor-Tr the thermal energy
19 g( Lins. + Linj. + med.) cos o Ratio of gravitational energy in the
T horizontal well to the heat transfer
pbr.' R
Ty (hpHE out — Rturb.in) Entropy change in the vertical hot

CbbKYh*

stream to the reservoir thermal
energy
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The first dimensionless number 7; can be simplified to the ratio of total reservoir volume to the

volume of reservoir fluid flow from the injection to the production sides:

K
Ve(; OP=por9))
Ty =—F =R (3.40)
! CIbr.( Lins.) Acr.Lins. .

The volume of the reservoir (Vz) compared to the flowing volume (4. Lins.), should be high
enough to provide the reservoir recharge against the cooling process.

The third dimensionless group 3 in the Table 3.1 again has the reservoir volume.

Vi

Bl mbr.( Lins.)ZCpbr.

3 (3.41)

Figure (3.3) illustrates the point. The producer is separated from the injector by the distance (Liys).
The flow can be approximated as a Darcy flow through the cylindrical portion of the reservoir with
the volume of (A, Lins). If the reservoir volume (V/y) is big enough then the cooling process will

take a longer time.

Temprature conduction [C]

1120

Figure 3.3: Reservoir fluid flow schematic from the injector to the producer.

. .. . aT
If one would like to have steady state conditions for the reservoir temperature: d%(m =0,

D

the dimensionless groups in the equation. 3.40 and 3.41 should have the maximum values.
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3.3 Net Power Change with Dimensionless Time
Ansari (2016) solved for an equation for the reservoir temperature change with respect to
time and presented the results as a set of linear functions with respect to the dimensionless time

intervals. More information is in the Figure 3.4.

For 0= tp <05, we have:

To—1 (6.3)

For 0.5< ip <2.5, we have:

Tp =09782 — 0.1051t o + 0.00017y4 + 0.005697¢ + 0.0963¢ pmyg + 0.0018¢ pmyg
(6.4)

+ 0.0001mgymyp — 0.0001 Ty 4mg — 0.0002mgmyg
For 2.5< tp <5, we have:

Tp =0.7284 + 0.20241m15 — 0.02348 p + 0.0050710 + 0.01017

+ 0.0001mygmyg + 0.0001m4m31 — 0.00027gmy4 — 0001 w114 (6.3)
For 5< tp <10, we have:

Tp =0.6057 — 0.0106ip + 0.3952mz + 0.01127¢ + 0.0073myp

+ 0.000 mygmyg + 0.0002my4m1 — 0.00027gmy4 — 0.001 15014 (6.6)
and for 10< tp <20, we hawve:

Ty —0.5004 — 0.0047¢tp + 0.0081m1g + 0.4878ms + 0.0113m

+ 0.0001 mygmyq + 0.0002m gmy1 — 0.00027gmy4 — 0.001 173410 (6.7)

Figure 3.4: Reservoir temperature change in dimensionless form (after Ansari, E., 2016).

In this project the main interest is tracking the net power change. Let us take the derivative

of equation 3.39 with respect to time.
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dZTR(D) _ OZTR(D) 63TR(D) dT[4

Ty
T — T, oMM ) + —— (Mot T7) + —— (T, T
dtDz 1dedtD 2 3d DzdtD dtD( 21t4 5) dtD( 2/t51t6 7) dt ( 21t5 8)
dmy dmy Ty
+—-— dt, (7T27T57T97T107T11) - E(”Z”S”m”n”m) +—— at, (”2”14)
dm,
+ = dt (7T27T57T157T16) + = dt, (7T27T57T177T18) + = at (7T27T57T19)
tp tp
dm,
+?(7T27T57T107T20) =0 (3.42)
D

The only terms of equation 3.42 that have dependence on dimensionless time are listed in the
formula below:

d7T4 _ Tq aZTR(D) N E a3TR(D) dT[7

= -7 3.43
dtp mpmsdtpdxp s dtydxp® ®dtp (343)

Note, this is true with the assumptions of no fouling or sand production happening inside
the well, and no leakage of w.f. from the system. Both pumps are working at steady-state conditions
with constant flow rates.

The equation 3.43 has an essential meaning. The change in net power produced by the
geothermal unit is a function of reservoir energy recharge drop due to reservoir cooling process
(first two terms in the right hand side) and seasonal ambient air fluctuations with respect to time
(the last term in the RHS). Our objective is to have maximum power extracted from the reservoir

dTR(D)

for the operational life, thus, the primary interest of the project is to stay at = 0 interval.

According to Ansari (2016) the change in reservoir temperature is a first derivative from data in

the Figure 3.4 (see Table 3.2). The first time interval (0 < t;, < 0.5 ) shows no temperature change

in produced reservoir brine, meaning that the cold fluid front did not reach the production side.
Analyzing the equation 3.43 one can say that the dimensionless coefficients are the

functions of the horizontal well length:

T _ Cpbulk.VR (3.44)
M5 Cpbr.Acr.( Lins.)
T _ Vel (3.45)

g mbr.cpbulk.( Lins.)2
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Thus, increasing the length would help on avoiding the cooled brine entering the production side.

Table 3.2. Time derivatives for dimensionless reservoir temperature

Time interval Expression
0<t,<0.5 dTR(D)_O
dtp
0.5<t dT,
=tp #(D) = —0.1051 + 0.09637,5 + 0.00187;,
D
<25
Tinj. Lprod.
Mg = Tvg.'”w T TH
(these dimensionless numbers are borrowed from (Ansari, 2016)
2.5<ty < dT,
>Stp=5 —R® _ _0.0234
dtp
5<tp <10 dT,
=t = —R®) — _0.0106
dtp
10<tp, <20 dT
== —HD) — _0.0047
dtp

Understanding that reservoir cooling mechanism is semi-steady state let us take first derivative of
reservoir temperature with respect to time. Then one can ignore the reservoir cooling and only the

surface temperature fluctuations would affect the net power production.

Ty — T T —T .
dr, d, 0 ([ Tomuet 4~ gin (g, £) + mSmmer e sin(w,1) — T gy
dtp

dt,  at, Ty

(3.46)

dmy MV Taay — Trigne ( MVy
cos | w;

MVR Tsummer - Twinter ( MVR )
" cos | w, tp
dtp dpr. 2Tp

pr. 2TR* pr.

(3.47)
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3.4 Efficiency of the Cycle
Let us introduce the efficiency of the cycle as a ratio of total work done by the cycle to the

heat added through the DHE:

chcle Wout - Win Wturb. - Wwf.pump
TIPC = — = - = v (3.4’8)
QDHE QDHE QDHE

Wturb. = mwf (hin.turb - hout.turb.) (3.49)

The pump work was defined previously in the equation 3.22:

. mwf3fZ (pwf.cold + pwf.h0t> _ prfgzmwf (3.22)

Ww. =
pump(wf). 2DhA2pwf.COld

pwf.coldpwf.hot pwf.cold

QDHE = mwfcpwf(wa.hot - wf.cold.) = mwfcpwaR M) — mwfcpwf(ATDHE + AT¢ona.)

(3.50)

TthZfZ (pwf.cold + pwf.hot) + prng
ZDhAZpr_Cold Pwf.coldPwf.hot Pwf .cold

prfTR (nc) - prf (ATDHE + ATcond.) + mwf (hturb.in - hDHE.out.)

(hin.turb - hout.turb.) -

Npc = (3.51)

Now, instead of T, one can put reservoir temperature reduction to track the PC efficiency

drop with operational time.

3.5 Conclusions
Choosing the reservoir for ZMW applications it is recommended picking a heat source with
high initial reservoir temperature Ty ", large reservoir volume Vg, high thermal conductivity of the
rock A with high porosity ¢, to design a system with high geo-fluid flow rate m,, with sufficient
distance between producer and injector, L;,s. At the same time, the other terms of the equation
(3.39) have to be small in order to get maximum net power production: small fan power
consumption (W) ,,,, negligible pressure drop at the completions (AP,oq. + AP;y;) and frictional

losses inside the well.
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CHAPTER 4: THERMODYNAMICS AND WORKING FLUID SELECTION

“I just invent, then wait until man comes around to needing what I've invented.”
R. Buckminster Fuller

The purpose of this chapter is to define the power cycle type suitable for the well energy
conversion unit design and make a choice of the working fluid. This chapter presents
thermodynamic analysis of the cycle for the chosen fluid, and DHE geometry optimization using
enthalpy minimization approach. The example of thermodynamic analysis is performed for the

reference reservoir data.

4.1 Introduction to Power Cycle
Regardless of the operating PC type, the energy extraction system works between cold and
hot sides defined by ambient air and brine surface temperatures as indicated in the Figure 4.1. If
the produced geo-fluid is hot water, not steam, the PC modification is needed. If the cycle utilizes
organic fluids instead of water, the thermodynamic process is called Organic Rankine Cycle (ORC)
(Schuster, 2009). This fluid is typically a refrigerant, which has boiling point lower than that of

water.

RESERVOIR WORK SURFACE CONDITIONS
CO
HEAT IN HEAT OUT LD
SYSTEM
BODY

Figure 4.1: Work extraction scheme

Traditionally, the power plant is located at the surface, and the main components are:
boiler, turbine, condenser, and a pump. Heat is transferred from the geo-fluid at the boiler stage to
the working fluid, which undergoes a phase change. Working fluid vapor enters the turbine at the

node 1 and produces work Wy,,,,. (Figure 4.2). Exhaust vapor then transfers to saturated liquid at
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the condenser stage. The excessive heat from the working fluid is rejected to the ambient air.

Condensed fluid is delivered to the boiler to accomplish the cycle (Moran and Shapiro 2008).

Turbine . Weabine

Boiler —> +
Hot Qi ® Generator
Body’
Qow 614
gL e
. Condenser
mep‘r Pump

Figure 4.2: Simple Rankine cycle schematic

Literature distinguishes several types of ORCs. If only a portion of the working fluid is
converted to vapor at the boiler stage the cycle is recognized as a trilateral flash cycle. It has the
lowest efficiency and requires two-phase type expander. Subcritical cycle is one of the widely
applied in industrial devices. The two phase region of the working fluid’s phase envelope is crossed
twice while heating at the boiler and cooling at the condenser (Figure 4.3). However, to get the
maximum efficiency of the cycle a secondary working fluid should be compressed and heated to a

temperature higher than critical point (Karla et al. 2012). Then the cycle is named as supercritical.

Thermodynamic cycle

Trilateral flash Subecritical Supercritical

Production temperature
Production temperature -

Two phase expanders Axial and radial turbines

Figure 4.3: Thermodynamic cycle schemes (modified from Karla et al. 2012).
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4.2 Working Fluid Selection

4.2.1 Overview of Potential Refrigerants

Despite the fact that water is a natural refrigerant widely used in geothermal applications,
the utilization of organic fluids has several advantages: small size turbines with fewer stages are
possible, a compact and, hence, less expensive air-cooling system, a possibility to run a cycle at
temperatures below the water freezing point, etc. Therefore, commercially available refrigerants
applied in the heat and air conditioning industry become more and more popular for small heat
harvesting applications (Nalla et. al., 2004; DiPippo, 2004).

The ideal refrigerant characteristics are widely discussed in the literature. In general
researchers mentioned an environmental safety, small toxicity, low boiling point with high thermal
conductivity, high critical point, low melting point, and no corrosiveness (Karla et al., 2012; Saleh
et al. 2007). No real fluid can meet all these requirements. The number of potential candidates
diminishes to a short list considering the Kyoto and Montreal protocols prescribing to phase out
the production of numerous substances that are responsible for ozone depletion.

All refrigerants are divided into several categories of flammability and toxicity according
to the American Society of Heating, Refrigerating, and Air-Conditioning Engineers (ASHRAE)
standard 34 (Stand, A., 2010). Fluids with high molecular weight, high thermal conductivity, and
high heat transfer coefficients and low critical temperatures are more preferable. According to
Karla et al. (2012), Saleh et al. (2007), Schuster et al. (2009), and Hettiarachchi et al., (2007) Iso-
Pentane, R123, and n-Butane are the primary fluids for the low enthalpy applications. It is
noteworthy to say that the most suitable for this project candidates belong to high flammable and
high toxic categories. Unfortunately, there is no a clear-cut winner in the refrigerant selection;
hence, only a thermodynamic analysis can clarify the right choice. The optimal energy conversion
performance of thermodynamic cycle depends on the type of organic fluid used in the system

(Ismail, 2011).
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To ease the process of selection, all typical organic fluids are divided into several subgroups as
indicated in the Figure 4.4.

e Pure hydrocarbons (e.g. pentane, butane, propane, etc.) (Song, J., 2015),

e Industrial refrigerants (e.g. R134a, R218, R123, R113, R125, etc.),

e Organic mixtures (Panea et al., 2010; Saleh et al., 2007; Hung, 2001; Wei et al., 2007).

[REFRIGERANT|
|

1
ISINGLE COMPONENT|

NATURAL
(WATER, AMMONLY)
(ISO-BUTANE)

(R12; R113)
] @300
icrc | QLIS

1
MIXTURE]
ZEOTROPIC

AZEOTROPIC

woms Gaohe  Ausho

(R13a)

Figure 4.4: Classification of refrigerants according to ASHRAE standards

Hydrocarbons group is characterized with carbon content. Increase in the molecular weight
raises the critical pressure and temperature values and, therefore, the two-phase area on the T-S
diagram representing useful work of the cycle. These features are highly attractive for this project.

The second group of fluids belongs to commercially available refrigerants widely
applicable in air-conditioning and heat pump applications. Mostly they have a positive slope of the
vapor line in T-s diagram (R134a) and some of them an infinite slope (R245fa). This may be a
turbine safety issue. Additionally, these refrigerants are flammable and toxic.

The last group is organic fluid mixtures that contain the second group’s fluids with
experimentally defined proportions. Several researchers illustrated superiority of the mixture
features compared to single fluid refrigerants (Song, J., 2015; Hung, 2001; Wei et al., 2007),
however, it is unclear how stable they are under high pressure and temperature conditions.

Therefore, this group is out of consideration.

41



The selection criteria of organic fluid are listed below (Hettiarachchi et al., 2007; Saleh et
al., 2007; Chandrasekharam&Bundschuh, 2008; Ismail, 2011):

Critical pressure and temperature designates the type of thermodynamic process of the
system (trilateral, subcritical, or supercritical).

Slope of T-S diagram after the turbine expansion process depends on fluid choice. The dry
type fluids (hydrocarbons) have negative vapor line slope on the T-S diagram. This gives some
advantages to have superheated gas after the turbine stage. No liquid content ease the vapor
transportation into the condenser, and safe turbine blades from destruction.

Specific volume of the fluid defines pump work required to force fluid at a certain rate. The
specific volume by definition is inversely proportional to the density, thus, higher the density then
less pump work requirement and smaller the expander size.

Safety. The ASHRAE classification describes fluids according to the flammability and
toxicity. Flammability is defined according to Lower Flammability Limit (LFL), and toxicity
identifies by Threshold Limit Value (TLV). Water and CO> belongs to A1/B1 desired class. The
hydrocarbons, as well as commercial refrigerants, are mostly highly flammable and toxic, therefore,

placed in the A3/B3 group (Figure 4.5).

No toxicity | 1hereis
ASHRAE standard 34 identified at | toxicity at
400 ppm less than
Refrigerants safety classification | by volume | 400 ppm by
volume
Lower Higher
Toxicity Toxicity
LFL<0.00625 lo/fr3 | Migher A3 B3

HOC>8174 Btullb Flammability

LFL>0.00626 Ib/fra | Lower A2 B2

HOC<8174 Btu/it'3 Flammability

No Flame
Propagation A1 B 1

Figure 4.5: ASHRAE standard 34 refrigerants safety classification (Stand, A., 2010).

An environmental criterion is evaluated by both ozone depletion potential (ODP) and
global warming potential (GWP). ODP is a measure of substances to react with ozone molecules

and destroy the stratospheric ozone layer. R11 refrigerant is taken as a reference with ODP = 1.
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GWP is a measure of ability of the fluids to act as a greenhouse gas. The reference is CO, with
GWP = 1 to evaluate atmospheric lifetime until the gas would decompose or react with other
substances. Figure 4.6 illustrates the point. The hydrocarbons have smaller GWP comparing with

other popular refrigerant solutions, but the absolute minimum belongs to carbon dioxide.

Gas Lifetime | 20 year 100 year (500 year
(years)
coo 1 1 1
CFC-11 45 6730 4750 1620
CFC-12 100 11,000 10,900 5,200
HCFC-141b 9.3 2250 725 220
HFC-134a 14 3830 1430 435
Cyclopentane weeks <3* =37 <3"
|sobutane weeks <3* =3" =3*
Propane months <3* =3* <3*

Figure 4.6: Global Warming Potential comparison of popular refrigerants
(Larkin, A., & Davies, K., 2009).
4.2.2 Carbon Dioxide as a Working Fluid

Several researchers experimentally tested carbon dioxide as a working fluid in the PC.
Chen et al. (2006) compared CO, with R123 in a supercritical power cycle and found that carbon
dioxide has higher system efficiency when accounting for heat transfer ability. Additionally, there
is no pinch point limit in the heat exchanger. Zhang et al. (2002) suggested using CO; as a working
fluid for supercritical cycle due to higher cycle efficiency and coefficient of performance (COP).
The other researchers (Sarkar, 2015) mentioned satisfying features such as moderate critical point,
stability at high pressure/temperature conditions, safety, and low cost. The only problem might be
low critical point of 31.1°C while using it in hot climate regions. Note, carbon dioxide has to be
cooled below this critical temperature to be able to condense.

From the other side, operating conditions of 6-16 MPa have safety issues in traditional
power plants. In this project, though, it is a suitable advantage for implementation in the deep wells

where high hydrostatic pressure will keep CO, in supercritical condition at the reservoir depth.

43



4.2.3 Working Fluid Candidates

All of the mentioned criteria are important but this project have some additional
requirements for the fluid selection. First is thermodynamic properties change at high pressure and
high temperature. Let us compare the working fluid candidates by their properties change with
pressure at assumed constant reservoir temperature of 126°C. Three groups of working fluid
candidates were compared: natural refrigerants (CO>), pure hydrocarbons (n-pentane, butane, etc.),
and industrial refrigerants (R245ca, R134a). Water was used for illustration purposes in the plots.

Three parameters were chosen:
e Density, to track the backup pressure at the DHE (Figure 4.7),
e Specific heat, to predict heat extraction at the DHE (Figure 4.8), and
e Thermal conductivity, to predict DHE length (Figure 4.9).

The density change with pressure is tracked in the Figure 4.7. The industrial refrigerants
showed the best performance in creating high hydrostatic pressure according to their density change
with pressure. Though, this group has the lowest energetic parameters, which would lead to

increased DHE length and bigger condensation area. Additionally, they are toxic and moderately

flammable.
1400
—— Butane
1200 - Isobutane
Cg 1000 _— ——n-Pentane
Eo 800 ——R134a
=
g - __—
A 400 = Water
200 CcO2
0 T T 1
20 30 40

Pressure, Mpa
Figure 4.7: Density change with pressure for working fluid candidates.
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The hydrocarbons group showed the best performance for energy parameters as was
predicted by the literature review. Using them as a working fluids would pay back with a maximum
efficiency and power production due to high values of specific heat and thermal conductivity

(Figures 4.8 and 4.9).

79 —— Butane
M 6 -
& ——n-Pentane
SRl —R134a
s 4 —— Water
<= 3 -
S \x_( CcO2
=2 -
- Rtz
a1 -
v 0 ——TIsobutan

0 10 20 30 40
Pressure, Mpa

Figure 4.8: Specific heat change with pressure for working fluid candidates.

The greater the molecular weight, the better the power production. However, the increase
in molecular weight leads to reduction of condensing temperature, which has a negative effect on
the condenser performance. Therefore, N-pentane is the heaviest fluid one can allow to use in this
project. The industrial refrigerants showed the worst performance mainly because they are not

designed for use in high pressure applications.

0.12 -

= 01 - — Butane
:E ’ Isobutane
_é 0.08 —n-Pentane
=
S= 0.06 - —R134a
g 0.04 1 ——R245ca
S
(]
= 0.02 —CO2

0 T T T 1

0 10 20 30 40

Pressure, Mpa
Figure 4.9: Thermal conductivity change with pressure for working fluid candidates.
Water thermal conductivity is mainly constant for all range of pressures and equal to 0.7 W/m K.
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The next step is to check whether the candidates would stay in one phase at the turbine
stage or transform to a two-phase fluid at the vertical hot stream movement. This predetermines the
turbine design. Two-phase flow calculations in the vertical section of the well were done using
Beggs and Brill method (Brill and Beggs, 1986). The working fluid temperature was kept constant
at 126°C while assuming perfectly insulated vertical pipe with maximum length of 3,048m. Pentane
was used as a working fluid. The pipe diameter is 3 inches.

Flow rate was 0.00184m>/sec. As a result, the flow pattern changed from liquid stage to
distributed and then to intermittent regimes between 1905m and 1829m. From 381m up to the top
of the well the flow regime changes back to distributed. The fluid does not appear as a pure vapor
at the inlet of the turbine, thus, a two phase expander will be required. This phenomenon happens
due to no heat flux coming from the walls of the well and phase change occurs only due to pressure

drop below saturation pressure. The two phase expanders are not suitable for this project.

Table 4.1: Two-phase flow calculation results using Beggs and Brill method.

Depth, m 3.048 — 1,905 1,905 - 1,829 1,829 —381 381-0

Fluid pattern 100% liquid Distributed Intermittent Distributed

Additionally, hydrocarbons are the lightest candidates and would not be able to create high
pressure at the bottom of the well to overcome reservoir pressure. The last comment is that
hydrocarbons are very flammable.

Let us construct T-S diagrams for w.f. candidates at different reservoir temperatures as
shown in the Figures 4.10 and 4.11. As can be seen from the plots the hydrocarbons and popular
refrigerant (R22) unavoidably have a two-phase region after the turbine expansion when the
reservoir temperature is less than 200°C. To avoid this, the cycle is required to run at high reservoir
temperatures. The supercritical stage is possible for n-Pentane at 260C, for R245 ca at 240°C, and

for R22 at 220°C. Conversely, carbon dioxide works fine at any reservoir temperature range. As a
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result this project left with the only choice of natural refrigerant CO», which is ecologically clean,
non-flammable and has moderate properties. Additionally, there are no state or governmental

restrictions or additional requirements for pumping carbon dioxide into a well.

n-Pentane

25 MPa

Temperature, K

Entropy

Figure 4.10:
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Working fluid candidates’ T-S diagrams.
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Figure 4.11: CO, supercritical cycle.

4.3 Entropy Generation Minimization Analysis
As was said previously, the outer diameter of the horizontal well is predetermined by casing
design, which was assumed as 9 5/8 inch. The rest of the DHE diameters installed inside of the
gravel pack screen pipe are unknown for now. One may assign randomly the DHE diameters from
the available petroleum casings data tables, but the best way is to make the choice based on analysis.
To define the flow rate and DHE geometric properties the Entropy Generation Minimization
analysis was involved. Note, that the entropy is a measure of imperfection of the system and is

defined as (Bejan, 1996):

47



: . Q
Sgen = TAS — (4.1)

From the general combination of the following thermodynamic relations:

dh = C,dT (4.2)
dp

TdS = dh — — (4.3)
p

dQ = mdh (4.4)

One can derive for entropy change per DHE unit length:

Sgen A AT  dT mbr,( dP)
br

=S =my..Cpppp —————— — - 4.5
dx  gen = Mo, PETT2(1 4 T)dx ' pprTm \ dx (45)

where AT = Ty, — Tpygwau) 18 the temperature difference between mean brine stream temperature

Ty, and the DHE heat transfer wall temperature Tp g wairy; and 7 is a temperature ratio:

AT 46
T_Tm (')

The first and second terms represent entropy generation rate per unit length of heat exchanger due

to heat transfer to the working fluid and brine pressure drop due to frictional losses respectively.

o First term development of the equation 4.5
Under steady state assumptions the heat transfer rate through the heat exchanger is:
dQ = Mpy Cppr.dT = hgymDpypdxATpy, (4.7)
Assuming linear change of the temperature difference between the inner wall and mean
temperature for the distance dx of the heat exchanger one can approximate:

mbr.Cpbr. dr
AT = ATy = ———F— 4.8
m haamDpyE dx (48)

Substituting equation (4.8) to equation (4.7) with assumption of T «< 1:

AT dT (1 Copr)” (dT)Z

ny, C
Mor. dx

— 4.9
PPTT2(1 4 1) dx  hgomDpusT2 (49)
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The heat transfer process takes place across the DHE wall. Then the heat transfer coefficient is:

haz = St ppr. Cpbr. Ug2 (4.10)
where
4my,
Ugpp =—————— (4.11)
¢ npbr.DaZZ

Hydraulic diameter of brine flow annulus (see Figure 4.12):

Dgz = Dyen — Dpyg = Dppe(r — 1) (4.12)
where
Dwell
= (4.13)
Dpug

Casing

‘Working fluid

Figure 4.12: DHE schematic

Introducing Nusselt number (Incopera, 1990):

Nubr_ =St Rebr.PTbr. (414)

Eventually the first term of equation 4.5 becomes:

. 2 .
(mbr.Cpbr.) (dT>2 _ T[mbr.Cpbr.pbr.DDHERebr.Prbr.(r - 1)2 (dT)Z

— — 4.15
hgomDpypT2 \dx 4Nuy, T2 dx (4.15)

The flow in the production side has a complicated pattern. The DHE is a circular pipe, but
the outer wall is a design of porous gravel pack and screen pipe from which the influx occur. Let
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us assume that the flow is fully developed. To simplify the problem let us take Petukhov and Roizen

correlation for Nu in turbulent flow:

Nuy, = 0.023Re,, °*8Pr,, %3 (4.16)

Then, eventually the first term of equation (4.5) becomes:

. 2 .
("r Conr) (d_T)z ~ 10 87”mbr.Cpbr.Pbr.DDHERebr.O'zPTbr.M(7” —1)? (d_T)Z 417)
haZTL-DDHETrgl dx ) Tr?l dx .

o Second term development of the equation 4.5

The pressure drop per unit length is defined as follows and expanding Reynolds number as:

R 4mbr. 4mbr. (4 18)

ey, = = .

" Ty (Dwen — Dpug)  Thpr Dpup(r — 1)

(d_P) — 8mbr.2 — f Rebr.zl"br.2 (4 19)
dx/puE m2pyr Dppe” (r — 1)3 2ppr Dppg>(r — 1)3

Using Blasius approximation for frictional pressure drop with assumption of equal friction at the
outer and inner pipes:
f = 0.316Re,. ~*2° (4.20)

Expanding Reynolds number and substituting into the second term will receive:

: 2 1.75
Mpy Upr. Rebr.

pbr.szDDHEg(r -1)3

Mor._ (— ap (4.21)

—_ = —0.158
pbr.Tm dx)br.

Finally:

Sgen _ 108701y Cpbr Por DpueRepr.”* Pryy. " (r — 1) (d_T)z _ 0.1581r for.*Repy "’
dx pbr.ZTmDDHEg(r -1)3

5

dx T2
(4.22)

At any system design the entropy generation rate should be close to zero to maintain high

efficiency. So, equating Sgen' = 0 and finding the expression for Rey,, :
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ity Cobr.Por.DoneRepr. 2 P17 (r — 1) ppy 2Ty Dppe® (r — 1)3 (dT)z

Re,. 1>° = 68.79 —
br mbr..ubr.ZTrgl dx

(4.23)
or simplifying will have:
C 3pr,,. 07 dr\? 1 )%
Rep,, = {68-79< pbribbr' 2 = ) [Dpue*(r — 1] [(E) T_]} (4.24)
T. m
In terms of brine mass flow rate:
1.29
pr. — ®UpHE r ) dx (4.25)
where
C 3py, 07
N = pbr.pbr. br. (4.26)

.ubr.sz

Integrating the equation 4.25 one can predict the flow rate change depending on DHE
diameter variation and reservoir temperature drop in the heat extraction system. Note: in this
derivation the pressure drop in the completion was ignored. Figures 4.13, 4.14, and 4.15 show brine
mass flow rate development with respect to the chosen Annulus 2 diameter for different
temperature drops at the DHE. Unrealistic flow rates were received with simulations of 20°C
temperature drop at the heat exchanger (Figure 4.13). Increasing temperature up to 50°C gives the

desired flow rate range.
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Figure 4.13: Brine mass flow rate change with DHE diameter variation.
20°C temperature drop at the heat exchanger.
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The Figure 4.16 shows data in dimensionless form. With increasing the 1/r value (or
reducing the annular space D, ) the Rey, reduces, due to frictional pressure losses. Besides,

shorter the DHE length gives higher Reynolds number as expected.
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Figure 4.14: Brine mass flow rate change with DHE diameter variation.
10°C temperature drop at the heat exchanger.

The outer diameter (screen pipe) is constant. The flow rate drops with decreasing the

annulus hydraulic diameter.
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Figure 4.15: Brine mass flow rate change with DHE diameter variation.
50°C temperature drop at the heat exchanger.
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Figure 4.16: Reynolds number change with reducing annular space of the DHE.

The same derivation process was done for the working fluid. The only difference is in determining
the Nusselt number. Here the heat transfer occur at the outer diameter, so Petukhov and Roizen

correlation was used for circular pipe annulus and insulated tubing.

Nitwr. _ 1 _ 014508 (4.27)
Nugyp,
where
Nugy, = 0.023Rep, *8Pr, O+ (4.28)
and
S = Dpue(in) — Dtun. (4.29)

The obtained solution for the Reynolds number is:

TCPwr PwrPriwe. " \ [Dpue* (1 — )51 [/dT\* 1 oot
Re,,; = 168.79  —2L2wl- _ W}, DHE —) — (4.30)
! 2 dx/) Tp wf

s, 1—0.14s%6

Figure 4.17 shows the mass flow rate growth with DHE diameter reduction for 200m DHE length

case. Increase in temperature leads to increasing the flow rate.
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Figure 4.17: 200m DHE length performance.

Interesting relation can be obtained if one takes the ratio of the Reynolds numbers in both

annuluses:

\0.645

- 3 06 4 5 > Lr' (4.31)
Reyy. 68.79 TCPwr.Pws.> Pruy. Dpueiny (1 —q) (d_T) 1
' Pwr.2 1—0.14¢0° dx) T, wr

C 3py, 07 dT\? 1
/ 68.79( p”“’l’f’-z br. )[DDHE(out.)4(T—1)5] [(ﬁ) T

Rep,. br.

3

3

or simplifying:
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/ 3 4
Rey,. _ | (Cpbr.> (pbr.> (DDHE(out.)> (7’ - 1)5 a
Rewf. \ prf. Pwr. DDHE(in.) 1- q
0.645
Pryy. > (Z_Z;) 2Tf Pwr )\
. r. br. mwf. wf.
—0.144%%) (prwf °-6> (@) ] (Tmbr,> (;m.) (4.32)
. dx wf.
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Figure 4.18: 200m DHE length performance. Closer look at 0.18-0.23 m interval.

From equation 4.32 it is easy to see the dimensionless parameters. From observation, one would
desire the brine flow rate to be small to reduce brine pump load. High w.f. flow rate means more

net power production. Table 4.2 illustrates the DHE design data based on previous analysis.
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Table 4.2: Chosen completion geometry of production and injection sides

Cement sheath

OD 12.527 inch (0.318 m)
Casing 2

OD 9.625 inch (0.244m)

ID 8.031 inch (0.204 m)

Screen pipe (gravel pack, ICD)

oD 6.190 inch (0.157 m)

ID 4.890 inch (0.124 m)

Casing 1 (only production)

OD 3.5 inch (0.089 m)

ID 2.992 inch (0.076m)

Coiled tubing (only production)

OD 1.990 inch (0.051 m)

ID 1.650 inch (0.042 m)

4.4 Nodal Analysis.

A reservoir prototype data was used for the numerical analysis. The thermodynamic
analysis was performed by dividing the w.f. flow path into several intervals by the nodes as shown
in the Figure 4.19, where fluid properties are defined using NIST Chemistry Web book fluid
properties solver. The red and blue colors represent hot and cold streams respectively. The pressure
drop is negligible between turbine exit and condenser inlet (node 10) as well as condenser outlet
and well inlet (node 1). Therefore, the condenser is omitted in the scheme. Table 4.3 gives a

location description of each node on the scheme.
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Frictional pressure drop AP gicion 1S obtained from integration of frictional pressure

gradient:

d_P _ _fpw.f. vw.f.z

where z is the well depth; vy, ¢ is fluid velocity; Dy, ¢ is pipe diameter.

Friction factor f was obtained from the Chen’s relationship:

_[21 (E/d 5.04521 A>]2
~1°'%8\37065  ~Re °°

1
f

€/d11098 /714908981
A=
2.8257 ( Re )

g
;{%\
E

ol
"

—

Figure 4.19: Location of the nodes on the w.f. flow path.

Reynolds number for annulus is calculated from:

_ pVDy
U

Re
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Pipe diameter (Dy,) can be assumed as a hydraulic diameter for the annulus flow:

Douter - Dinner

Dy = (4.37)
2
Turbine efficiency:
he — h1g
Ny = (4.38)
© 7 hg — hygg
W.f. pump efficiency:
h; — h3 Py —P3
n = = (4.39)
PUTP " hy —hgs  p(hy — h3)
Table 4.3: Nodal analysis description
Node intervals Description
1-2 Flow downward vertically inside the 5” casing to the DHE
2-3 Pump work
34 Flow downward through the curvature radius and inside the insulated 2

production tubing toward the end of DHE

4-5 Enthalpy increase in the DHE.

5-6; 6-7; 7-8; 8-9 Flow vertically upward inside the radius, and (6.625-5)”, (8.825-57);

(15-5”") annuluses respectively

9-10 Turbine pressure expansion line

10-1 Cooling process in the condenser

The T-S diagram is illustrated in the Figure 4.19. Intervals 5-9, 1-2, and 3-4 are insulated,

therefore, illustrated as a straight lines of constant temperature. Node 1 represents the liquid CO;

stage entering the well. Fluid is directed into the vertical well and travels downward inside the 5

inch OD insulated tubing. Pressure increases gradually from 7.5 to 48.87 MPa with constant

temperature 30°C (Figure 4.20). Fluid density grows from 661 to 1012 kg/m?*. Entropy and enthalpy

are reduced, except the interval 2-3 (Figure 4.21). This jump in pressure and temperature represents

w.f. pump work. The location of the pump is 4770 m right before the radius. This position was
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chosen with pump safety concerns and minimum power requirement. Additionally, the highest

density location is preferable to reduce pump energy consumption.

Table 4.4: Thermodynamic properties of working fluid.

Node P p T h S Cp k p*107(-5)
MPa  kg/m’ °C kl/kg  klkgK kl/kgK w/K Pa*s
1 750  661.10  30.0  291.7 1.30 8.13  0.078 5.6
1454 840.00 300  260.5 1.17 245 0.094 7.8
2236 907.05 300 2535 1.11 2.07  0.108 9.4
30.81  952.02 300 2506 1.07 191  0.110 10.5
39.60 98811  30.0 2499 1.04 1.81  0.120 11.7
2 4887 10162  30.0  250.7 1.02 1.76  0.134 12.7
53.87  1017.0 350  260.2 1.04 173 0.135 12.7
5501  1020.1 350  260.3 1.03 172 0.135 12.8
5500  1019.9 350  260.3 1.03 172 0.135 12.6
4 5499 89539  80.3 338.7 1.27 1.72  0.109 9.08
5499  840.46 101.0  373.8 1.36 1.70  0.099 8.01
5498  813.06 1112 3916 1.41 1.69  0.097 7.55
5498  800.08 116.5  400.0 1.43 1.69  0.094 7.34
5496 79248 1203  405.1 1.44 1.68  0.093 7.24
53.34  783.04 1203  405.1 1.44 1.70  0.092 7.09
51.12  782.00 1203  407.8 1.45 172 0.087 7.08
4925 76020 1203  409.6 1.46 172 0.087 7.01
4722 74715 1203 411.0 1.49 1.75  0.085 6.51
4521 73409 1203  415.0 1.53 1.75  0.083 6.30
43.18  719.83 1203  420.1 1.55 1.78  0.081 6.185
8 3922 68723 1203  427.0 1.59 1.82  0.083 7.71
3559 653.51 1203 4383 1.62 191  0.073 6.39
32.06 61330 1203 4448 1.65 1.94  0.069 4.90
28.74 56826 1203 4493 1.67 1.98  0.063 4.54
25.67  519.12 1203 4539 1.69 2.03  0.056 3.97
2455 49876 1203 4586 1.71 2.04  0.055 3.71
2234 45403 1203 4618 1.72 2.03  0.051 3.50
9 2127 43210 1203 4676 1.74 2.03  0.051 3.46
10 8.00  301.69 4951 4357 1.76 433 0.043 2.38
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The 3-4 interval is again insulated pipe flow through the well curvature inside of the
horizontal well. Node 4 is the end of the heat exchanger. After this the flow is reversed and returns

toward the surface.
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Figure 4.20: T-S diagram.

The line 4-5 represents the temperature rise inside of the DHE. Pressure is slowly reduced
by friction, and temperature is increased to 120.3°C. Temperature rise affects density drop by

100kg/m?, and entropy, enthalpy growth.
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Figure 4.21: Pressure-density diagram.

60



The following nodes 5,6,7,8,9 represent flow inside of the vertical insulated annuluses
according to the casing design right up to the turbine. Pressure is reduced to 21.2MPa, but
temperature is assumed constant 120.3C. The enthalpy in this stage is the maximum of the cycle
and equal to 467 klJ/kg. The turbine expansion reduces pressure to 8§ MPa. Graphically the
thermodynamic properties change is illustrated in the figures below. The red and blue lines

represent liquid and vapor sides of saturation curve.
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Figure 4.22: Enthalpy-entropy diagram. The well locations are shown by the numbers.

4.5 Ambient and reservoir Temperature Change

With changing the hot and cold sides of the system the T-S diagram is reflects the cycle
properties alteration. The Figure 4.23 shows four cases of study.

Casel: Initial diagram (Tr=126°C; Tamp.=25°C)

The turbine drops pressure from 20 to 8 MPa as was described previously. Condenser
pressure is higher than CO; critical pressure, therefore, the process has only a single phase flow in

the condenser (Figure 4.23 a).

Case 2: Ambient temperature increase (Tr=126°C; Tamb=35°C);
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Increase in ambient temperature associated with increasing the condenser pressure up to

10 MPa. This process reduces turbine work and increases DHE pressure (Figure 4.23 b).

Case 3: Reservoir temperature drop (Tr=105°C; Tamp=25°C)
Here the reservoir temperature drops. The process is associated with turbine work

reduction, due to hot w.f. enthalpy drop (Figure 4.23 c).

Case 4: Ambient temperature drop (Tr=126°C; Tamb.=15°C)
The ambient temperature reduction leads to increasing the turbine work and rejected heat
from the condenser. The pressure after the turbine is reduced and the process undergoes through

the two-phase region (Figure 4.23 d).
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Figure 4.23: T-S diagram shift with ambient and reservoir temperature changes.
a) Initial diagram (Tr=126°C; Tamb=25°C);
b) Ambient temperature increase (Tr=126°C; Tamp.=35°C);
¢) Reservoir temperature drop (Tr=105°C; Tam»=25°C);
d) Ambient temperature drop (Tr=126°C; Tamb.=15°C).
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4.6 Conclusions

The choice of the working fluid fell on carbon dioxide due to safety and toxicity requirements;
satisfactory thermodynamic properties to produce work in the system, and ability to provide
high pressure at the DHE. Additionally, CO; is chemically stable, cheap and abundant.
Thermodynamic analysis proved sustainability of the supercritical CO; cycle.

The ambient temperature fluctuations make some impact on condenser pressure and
thermodynamic cycle. Increasing the ambient temperature leads to increasing the condenser
pressure. At the same time turbine work is reduced. Drop in ambient temperature reduces
condenser pressure and process undergoes two phase region in the T-S diagram.

The maximum condenser area is expected when the cycle works at low ambient temperatures.
Therefore, in condenser calculations the lowest ambient temperature should be taken as a

design parameter for the particular geographical location of the reservoir.
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CHAPTER 5: NUMERICAL MODELING

“Where we cannot invent, we may at least improve”
Charles Caleb Colton

The purpose of this chapter is to introduce the reader with numerical analysis of the system.
The input data is taken from the reference reservoir and in later discussion is expanded for any kind
(temperature, permeability, depth) of sediment aquifer. Another goal is to track the net power

production in order to choose the “right” reservoir for ZMW application.

5.1 Assumptions

e The geo-fluid is assumed as incompressible single phase Newtonian fluid. There is no fluid
accumulation in the pipe; flow regimes are fully developed. Brine’s chemical composition
change due to reservoir temperature change is negligible.

o The system operates at a steady state condition.

e The pressure drawdown area around the well is assumed to have an elliptical shape for both
production and injection sides.

o The well is performed as a cased cemented completion to avoid collapsing on the producer side
and burst on the injection side. The horizontal casing diameter for this project was chosen as 9
5/8 inch outside diameter (OD). For simplicity purposes it was assumed to run the same

diameter pipe for both: the production and injection sides of the well.

5.2 Completion Design Modeling
There are three main sections in the deviated portion of the well: production, injection, and
insulation section in between. To analyze the pressure development in the completion scheme, the
wellbore was divided by nodes as illustrated in the Figure 5.1. As soon as the brine pump starts
driving geo-fluid from the production to the injection side the pressure difference from the reservoir
pressure develops at each node. The maximum flow rate is expected in the closest node to the pump

due to the unequal well flowing pressure distribution (Anklam et al., 2005; Ouyang et al., 1997).
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Figure 5.1: Pressure distribution scheme along the horizontal well.
Only three nodes are illustrated for clarity.
5.2.1 Production-Injection Intervals

The mathematical problem describing fluid flow with influx through the horizontal porous
pipe wall was considered as unsolvable several of decades ago. The first attempts were to assume
a single phase isothermal fluid flowing with no energy losses along the pipe. This assumption leads
to the wrong conclusions such that constant influx rate along the pipe. In fact, the inflow rate is not
constant due to pressure losses in the pipe (Ouyang et. al., 1997).

Traditional methods of pressure drop analysis account for three main terms of energy losses
caused by friction, acceleration, and gravity. To obtain valuable results these parameters should be
carefully evaluated with great concern of the fluid flow regime. Anklam (2005) explored horizontal
perforated wells and derived a tubing performance relationship equation. She showed that pressure
in the well increases along the pipe length moving from the heel to the toe region, and flow rate
decreases from the reservoir into the well.

The method of mathematical modelling is straight forward. The arrangement is divided
into several intervals, containing influx and outflow segments and a circular horizontal pipe
between them. Assuming the reservoir pressure as known, one can specify the brine pump pressure.
According to the mass conservation law for incompressible fluids, the total flow into the horizontal

well is described by sum of the reservoir i-flows through the n-interval perforations:

n
Qtot = Z o) (5.1)
i=1
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The well flowing pressure of the each node is a conceptual pressure at which the influx for
the interval is calculated. The difference in reservoir P, and well flowing pressure at each i-t2 node
Py (i) 1s a sum of losses in the perforations, gravel pack and rock porous media.

APy = Pres. = Pwr( (5.2)
where the pressure AP ;) is a sum of pressure resistances in the reservoir AP, and a gravel

pack APyraper
APy = APres(iy + AP gravei(s) (5.3)

Combining equations (5.2) and (5.3) and explaining each pressure term as a multiplication
of flow resistance and flow rate will receive:

Pres = P (i) = DRres(nyqin(y +DF 1)@y + NDF (1 qin(s) (5.4)

where DF and NDF are flow resistances (non-Darcy and Darcy terms) of gravel pack

pressure drop. The gravel pack is assumed as 20/40 mesh sand with 135D permeability from the
Weatherford catalog.

From the other side, the pressure drop between the nodes is defined in terms of friction F,
acceleration Ac, direction Dr, and gravity Gr components of pressure losses in the circular pipe.
The friction factor for production/injection intervals is defined from (Ouyang et al., 1997). The
gravity term is positive with assumption of negative slope inclination from the horizontal axis.

Puti-1) ~ Pwry = Fyafor + Acyday + DT Qi) — G (5.5)

To eliminate the unknown well flowing pressure term let us add equations (5.4) and (5.5):

Pres - ow(i—l) =
Rperf(in) + DF (0 @incy + NDF (5 Qinciy + F %ot + Acydy + Droydiny — Gry (5-6)

For i=] the well flowing pressure is equal to the pump drawdown P pr. . The quadratic equation
pump.

5.6 contains only one unknown q(;), and solving for a positive root:

—B +VB?% — 4AC
aw = 24 (5.7)

where
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A= DFy + Dr (5.8)

B = APperfiy + NDF () + Acqyy (5.9)

C = Fyqtor = (Pres. = Pop) — Gr (5.10)

The solution algorithm based on equation 5.6, which gives the system of equations equal

to the number of nodes. The system components are shown in the Table 5.1. Three interval case is

shown for illustration purposes. At the last node the acceleration pressure drop is equal to zero.

Table 5.1: Coefficients of the Eqn. (5.6).

Node A B C

DF; Ryerf1 + NDF; Fi(@tor — 3 — 42)* + F2(Qror — 93)* +

1 + Dry F3(qot)? + Aczqy + Acsqs + D1yq3 + Dr3qs —

3Gr — (P, — Pprod.)

2 DF, Rperf2 + NDF, F3(Gtor — G3)* + F3(qeor)® + Ac3qs + Dr3q3
+ Dry + Ac, — 2Gr

3 DF; Rperf3 + NDF; F3(Qtot)2 - (Pe _PProd) —Gr
+ Dr3 + Acy

The obtained influxes then are converted to the mass flow rates using corresponding brine
densities at the each node:
My = 4P ) (5.10)
The first guess of total flow rate is assumed by the user. Then computer code calculates flow rate
distribution along the pipe and well flowing pressures at each node, according to the pressure drops
in the pipe and the reservoir.
Pressure development inside of the injection pipe is developed in opposite order than in
production side. There is no heat exchanger here, therefore, the friction pressure drop is lower
comparing with the production side, and the well flowing pressure values at each node are expected

to be very close to each other.
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5.2.2 Reservoir Side Pressure Distribution
The reservoir drainage area was assumed to have an elliptical shape (Joshi, 1998). This is
the first term in the bracket of the equation 5.11 and defines x-y plane flow into the well. According
to (Giger, 1985) the second term represents the z-x plane flow into the well with Muskat’s solution

for anisotropic porous medium (Cho H. et al., 2001).

~ UBp, [ln(X) + % In (% 27?7‘W) + S]

anchpbr.

Pres - ow = lereservoir - m'br. (5-11)

where L is production or injection interval length, and S is a perforations skin factor (Bellarby,
2009). Parameter X depends on shape of drainage area and with assumption of drainage ellipse

semi major axis is greater than producer length (a > L) can be found from:

X= L (5.12)
2

L 2r,\*

a=2 |05+ [0.25+ (—) (5.13)
2 L
Gravel pack model is described by the following expression (Brown, 1984):
B} By, L

APyrave = DFq? + NDFq = 1200 gg 2 4 Ebr2br26 ) (5.14)

%Pbr. Ackeppr.

where By, is formation volume factor, A, L; are gravel pack area and length, k is gravel pack

permeability.
1.47 = 107
G
Ag = Apery X (SPf) X Lpery (5.16)
Pressure change along the pipe for any section (producer, insulation, injector):
AP = Pfric + Poccer Pgrauity = szzaipe + Ac minﬂux * Gr (5.17)
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where

> 2
ftotalmbr.ALins

F = W (5.18)
Mpipe
Ac = W (5.19)
Gr = pprgALsin(a) (5.20)
where for flow in the annulus:
n(DZ 2)
Aann, = =7 (521)

An influx area in a case of perforated wall can be defined as:

nD2,.. spf Al
f
Apery = per4 (5.22)

Friction factor was calculated from Asheim (1992) as a sum of friction factors at the wall

(fwau) and perforated section of the pipe (fperr):

m f lux

ftot - fwall + fperf = 0. 16R6019 + 4‘D (5.23)

For the insulated section Dy, = D,; fior = fwair; Ac = 0.

5.3 Heat Transfer in the Downhole Heat Exchanger
The condensed secondary working fluid is pumped in the DHE and moves vertically
downward and reaching reservoir depth horizontally inside the insulated tubing. Afterwards, the
flow changes direction to the opposite entering the Annulusl (see Figure 5.2). The Annuluses 1
and 2 represent heat interaction boundaries of two independent loops: brine and working fluid. Heat
is transferred by conduction-convection mechanism to the cold secondary w.f. through the annulus

1 pipe thickness.
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Figure 5.2: Heat exchanger cross sectional view and thermal resistances chart.

Assumptions:

e Steady-state conditions with constant reservoir temperature

e  Perfectly insulated tubing

o Constant properties of the fluids within the intervals

e Fully developed flow conditions for brine and working liquid.

The horizontal offset was divided into several intervals and the thermodynamic and fluid

properties were calculated from NIST fluid properties solver as imbedded function REFPROP.

Heat transfer process was analyzed referring to (Feng, 2012).

Insulated tubing:
Ttubing. = lcond.out + ATw.f.pump. (5-24)
Annulus 1:
dTanl Tanz - Tanl
C V = 5.25
Pan1Man1 dx Raz/a1 ( )
Annulus 2:
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dTg _ Tres — Tanz . Tan2 = Tan1

dx B Rres/az Ral/az

Cpanzmaz (5-26)

where, Cpan1,Cpanz are specific heats of the liquid flowing through the annuluses 1 and 2
respectively; m,q , Mgy, , M, - are mass flow rates through annuluses 1, 2, and tubing respectively;
Tont»Tanz » Te — are fluid temperatures in the annuluses 1, 2, and tubing respectively; x — is the
present value of the heat exchanger length. Minimum x = 0, and maximum x = L; Rye5/a2 , Raz/a1
- are thermal resistances between reservoir and annulus 2, and annulus 2 and 1. Thermal resistances
are defined according to (Incopera, 1990).
Boundary conditions:

x=0; Tan1 =Te; Tanz = Tres (5.27)

The working fluid temperature flowing in the Annulus 1 is obtained from:

Uwy(Tejy + Toi)w.r.

T(-+1) f= T(-) f T AL — (5.28)
S ]W Mo .0y CPw.£.(7)
The brine temperature flowing in the Annulus 2:
U (Tay = Tow))
Tq = T(opr, — AL or 5.29
(i+1)br. (D)br. mbr.(i) Cpb(i) ( )
The brine temperature is updated at each node according to calculated influx:
M)
T(new)br. = T(old)br. + -—T(R)br. (5.30)
mb(sum)

The main interest of the work is designing a compact and efficient heat exchanger. The
diameters are already specified, so the length is the only value to play with:

(mcp)brine (Tin - Tout)brine
Ranz/alT[DanZ,i ATlm

(5.31)

Lpue =

The main thermal resistances used in the simulation are shown in the Table 5.2. Assigning
the DHE length, total brine mass flow rate, and input reservoir and w.f. temperatures the computer

code calculates the leaving temperatures of the w.f. and brine. The w.f. leaving DHE has the closest
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temperature to the reservoir brine and the difference is a pinch point (PP) temperature. For this

project a PP temperature was assumed 5°C.

Table 5.2: Thermal resistances description (Incopera, 1990)

Name and description Mathematical equation
Thermal resistances between Ryesjaz = Ranz,conv + Reascond T Reemcona + Rres
reservoir and Annulus 2
. . 1
Brine flow Annulus 2 convective Ranz cony = ———
resistance (outer pipe) TDanz,0Man2
ln(Dcem
Cement thickness conduction R _ Dcgs
cem,cond —
21tk com
ln (Dcas)
Metal casing conduction R _ Dgna
cas,cond — o _71.
2k s
1
Ryes = 1 N 1
Reservoir heat transfer occurs Rrescona  Rresconv
through the convective and
conduction components. As D,..g 18 I (Dres )
taken the thickness of the reservoir. R _ n Deem” R _ 1
res,cond — ’ res,conv — _n~ 1.
21k o Dy eshyes
Thermal resistance between Annulus Ranz/a1 = Ranz,conv + Rpipe,cona + Rant,conv
2 and Annulus 1
. . 1
Brine flow Annulus 2 convective Ronzcony = ————
resistance (inner pipe) TDan2,i hanz
Danz i
ln(D anl o)
i i i Rpipet,cond = -
Conduction resistance of the pipe 1 pipel, 21k pipe
. 1
W.f. flow Annulus 1 convective Ronicony = ——————
resistance TDan1,0han1
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5.4 Power Generation Subsystem

The turbine work was calculated from the computed temperature of the w.f. leaving the
DHE and corresponding mass flow rate for the particular DHE length. While the hot stream is
travelling back to the surface, the pressure is reduced under the influence of gravity and frictional
losses. The travel path was divided in to several intervals where the thermodynamic properties of
working fluid were evaluated. There is an enthalpy gain at this interval is due to pressure drop at
constant temperature.

Heat gained from the DHE is spent on energy production in the turbine stage, driving both

brine and w.f. pumps, and rejected to the ambient air including fan power:

(Q)DHE = (W)Turb. + (Q)HR + (W)W.f.pump, + (W)br.pump, (5'32)

The turbine work portion includes net power produced with account for the energy losses

in the turbine, generator and transport gear box.

(W)NET.
nturb.ngen.nmech.

(5.33)

W)y, =

From the equations 5.38 and 5.39:

(W)NET. = Nturb.NgenNImech. [(Q)DHE - (Q)HR - (W)W.f.pump.] — (W)br.pump. (5.34)

Pump work for working fluid is obtained from:

(W), oy, = L (535)
J-pump. Pwf.cold
The density pr.co1q in the equation 5.41 is marked as a cold stream because the w.f. pump

is installed in the cold stream of the power cycle. Neglecting pressure drop in the condenser and
the DHE due to their short length comparing with the vertical well the AP, term has two

components and calculated at each interval step:

prf. = APgravity + APfrict. (5.36)
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5.5 Heat Rejection Subsystem
Heat rejection subsystem is assumed to be in steady state condition and the ambient
temperature is constant and equal to 25°C.
(Q)Rej. = mwf (hin - hout)cond. + Wcondenser fan (5'37)
The two phase region occurs in the condenser stage, therefore, rejected amount of heat is

calculated with condenser analysis shown below and at constant averaged ambient temperature.

The rejected heat is changing with flow rates and weather conditions.

5.6 Analysis
5.6.1 Input Data, Solution Algorithm and Validation
Simulation was performed using the Matlab Simulink software. The calculation algorithm
is presented in the Figure 5.3. The geometric values of DHE design and horizontal well are
presented in the Table 5.3.

Table 5.3: Horizontal well data for 9 5/8 inch OD
Name Production side 100m (304.8 ft)

Perforations 1 inch perforations with 20 shots per foot.

Perforation length — 100m (304.8ft)

Gravel Pack 20/40 size sand with 135D permeability

Screen pipe 4.88 inch ID screen pipe

Circular pipe 8.031 inch ID with interval 100m (304.8ft)

Injection side 100m (304.8 ft)

1 inch perforations with 12 shots per foot

Firstly, the code reads input data and the user defines input total brine and w.f mass flow
rates. The code calculates pressure drops at the each node and corresponding influxes (outflows).
The check point is used to verify how well the assumed flow rates at the each node correspond to
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the assumed values. If necessary the algorithm starts again until the error would not reach less than
1%. The next step is to evaluate heat transfer problem. For the assumed DHE length and w.f. mass
flow rate the thermal resistances are computed and Pinch Point temperature difference (PP) is

defined. If necessary, a new iteration is performed until the PP temperature will not reach 5°C.

Input data
(reservoir properties,
DHE geometry, etc.)

G Heat Transfer
Assume/define :

brine influxes and - Assume
total flow rate Mwf

Iy e

Solve for
Calculate Rai

Ac.Dr. G.F &
3 b Tr—=
Solve Ty and Twf

system of equations,
define influxes G

e

Check point
Tr- wa{Tpp

Check point
Are the assumed values
equal to the
results?

NO

GY}:S

YES
Print results

Heat Transfer

Figure 5.3: Simulation algorithm.

The algorithm was tested with literature data. First, the horizontal well pressure
performance was verified with Ouyang et al. (1997), who experimentally defined pressure
distribution along a well. Figure 5.4 illustrates comparison of this project code simulation results

with Ouyang et al. (1997) in terms of pressure development inside of the horizontal well.

75



204 - X
g
£03 4 X
£02 - X
$0.1 X
X
0 T T T T 1
0 20 40 60 80 100
Pipe length, ft
Simulink X Ouyang et al.

Figure 5.4: Verification with (Ouyang et al. 1997).

Then, heat transfer algorithm was tested with n-Butane working fluid and verified with
(Feng, 2012). Figure 5.5 shows good match of this project code simulation with (Feng, 2012)

results.

160
140 o e ® "
= U120
= g ¢
= =100
=T i &
EE 80
2
£ = 60
= &
40 @ Feng A Simulink e
20
0 200 400 600 800 1000
Length, ft

Figure 5.5: Verification with (Feng, 2010).

5.6.2 Case 1: Unequal Influx along the Well
The Heel-Toe effect is a result of the friction pressure drop causing a variable drawdown
along the well (Ellis et al., 2009). The result of this effect is unequal influx into the horizontal well,
which is greater at the toe, or in our case, where the pump is located. The production side was
simulated in order to understand the influx distribution along the well. Figure 5.6 illustrates the
results for various well lengths with constant pump drawdown pressure. More uniform influx

distribution along the well has the shortest pipe of 150m (4571t).
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Figure 5.6: Influx chart for 615 psi drawdown.

As it is seen the closest influx to the pump experiences the maximum value. Moving to
the heel region the influx is reduced by the impact from the friction pressure drop in the well.
Decreasing the production length makes influxes more unevenly distributed. As was expected the
frictional and reservoir pressure drops are the most valuable losses in the system (Figure 5.7).

Corresponding flow rate is 4842 Bbl/day.
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E Darcy Enon-Darcy = Friction HReservoir

Figure 5.7: Perforated well pressure losses at 615 psi drawdown

5.6.3 Case 2: Equal Influx along the Well
The non-uniform influx in the production zone is caused by the high frictional pressure
drops from the DHE installed into the horizontal well section. The influx maximum then is located
at the end of the perforated zone, which may cause the gravel pack destruction, DHE erosion and
limit the useful length of the horizontal section and shorten productive well life (Ratterman, 2013).

Moreover, the non-uniform influx affects negatively the temperature profile of the DHE. The last
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but not the least reason to avoid the non-uniform influx is the increase in length between the
production and injection sections, which affects the drilling cost of the deviated section and
installation cost of power unit.

To avoid these complications in the oil industry the equalizer uniform inflow control
system is used with integrated velocity flow regulator, or inflow control device (ICD) (Baker
Hughes catalog, 2009). The ICD incorporates up to three helical flow channels that can be modified
for a variety of downhole flow conditions. The helical channels spin the flow before it enters the
wellbore, imposing pressure distribution along the entire lateral length and controlling production
rate as a function of both the average drawdown pressure and the average productivity of the well.
In reservoirs that require sand control at some point during their productive life, the ICD reduces
annular fluid flow velocity and optimizes the inflow velocity into each screen joint.

Figure 5.8 Shows, the brine and w.f. temperature distribution along the production side.
The node #1 is the closest to the pump location and represents brine temperature leaving the DHE

and cold w.f. starting point to flow in the Annulus 1.

150
Q
% 100 =
g = Brine
& >0 —C02
H

0

1 2 3 4 5

Nodes

Figure 5.8: CO» and brine temperature changes along the DHE length.
Brine temperature leaving the DHE is 110.6C; Length of DHE is 100m.

For different lengths of production side the plot in the Figure 5.9 illustrates relationship
between brine and working fluid flow rate changes. The brine temperature leaving the DHE was

kept constant and equal to 120.1°C, and reservoir permeability of 12 mD was assumed for reservoir
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pressure drop calculations (Reference reservoir data). As it is seen increase in the length gives more

linear relationship of two flow rates.
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Figure 5.9: Brine and w.f. flow rates change for different well lengths.

The net power production of the whole system is proportional to w.f. mass flow rate and
w.f. temperature leaving the DHE. Raising the w.f. flow rate while keeping maximum possible w.f.
temperature leaving the DHE requires expanding the heat transfer area. This can be reached only
by adjusting the DHE length in our case. However, brine flowing through long DHE length
experiences frictional losses, which affects the net power production. As is seen from the Figures
5.10, and 5.11 the maximum value of net power reaches 153 kW only at 10 kg/s brine flow rate

and 8.4 kg/s w.f. flow rate for the reference reservoir case.
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Figure 5.10: Net power development for various DHE lengths.
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As itis seen from the Figure 5.11 there is an optimal flow rate interval for each DHE length.
The shorter the well, then the maximum net power value is shifted to the right and has wider flow
rate interval with small power change. Figure 5.11 has the 200m producer as the minimum length.

Further reduction leads to drastic decrease in power due to smaller heat exchange area.
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Brine flow rate, kg/s
Figure 5.11: Net power development.

Figure 5.12 illustrates the optimization of the producer length. As it is seen, the 8 kg/s brine

flow rate is the most productive case at 200 m DHE length.
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Figure 5.12: Net power vs DHE length. Partially perforated case.

80



5.6.4 Case 3: Partially Perforated Well
The well length can be perforated fully or partially as shown in the Figure 5.13. In both

cases the 8 kg/s brine flow rate is the most power productive rate..
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Production side nodes
Figure 5.13: Equal influx temperature development.
In this case the well has only 4/5 length perforated.

The DHE is located along the production line and have a uniform brine influx. If no
perforation zone is at the beginning of the well, an additional turbulence zone is created, which
requires additional power to drive (Figure 5.14 a). To avoid this the perforated interval is better to

make at the beginning of the DHE length (Figure 5.14 b).

a)

Brine

7\ outlet
swirling % Brine ~
zone . %

w Perforated length

Brine

7\ outlet

Figure 5.14: Two cases of partially perforation of production side.
a) Perforations shifted to the end of DHE
b) Perforations shifted to the beginning of DHE

81



In the case of partially perforated producer (Figure 5.14 b) the brine temperature drops at the
outlet of the DHE more than in the case of a fully perforated production side with the same well
length (see Figure 5.15). The fully perforated well delivers maximum net power due to higher
volume of hot brine entering to the system. The simulated well length is 300m, brine/w.f. mass flow

rates are: 12kg/s and 11.3 kg/s respectively.
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Figure 5.15: Brine temperature leaving the DHE at 8 kg/s brine flow rate.

Net power drops due to lower temperature of the w.f. leaving the DHE in case of partially
perforated well (see Figure 5.16). The excessive brine temperature drop should be avoided because

it cools the reservoir faster than in the fully perforated case.
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Figure 5.16: Net power development vs DHE length with different perforated cases.
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5.6.5 Case 4: Permeability Change

Small values of permeability increase the pressure drop in the reservoir, while losses inside

the well remain unchanged. With the same simulation conditions the brine pump has lowest load

at the highest permeability, which affects the net power production as indicated in the Figure 5.17.
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Figure 5.17: Net power change with brine flow rate for changing reservoir permeability.

5.7 Injection Side Pressure distribution

The injection side does not have the DHE inside the well, therefore, the frictional pressure

drop is small, and injection length can be short. Figure 5.18 shows the pressure distribution in the

injector side at 10 kg/sec total brine flow rate.
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Figure 5.18: Injector side pressure distribution at 419 psi pump head.
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According to the pressure balance, 16 meters of injector is enough to run the brine
circulation. However, from the practical point of view, longer injection side will reduce the pump

head.

5.8 Brine Pump Placement in the Horizontal Well and Effect from Inclination Angle
To determine the brine pump placement let us analyze the pressure distribution in the

horizontal well. The production and injection sides mathematically are described by the equations

5.38 and 5.39.
APprod. = APres.prod. + AP proa. + APy + AP inj. (5.38)
compl. compl.
APinj. = APjps + AP inj. + APres.inj. (5.39)
compl.

where AP, is reservoir pressure drop, while brine is flowing from the injector to the producer;

AP proa.,AP inj. are pressure drops at both sides of completions (including perforations and
compl. compl.

gravel pack pressure losses); AP;,; frictional pressure losses at the insulation section of the well.
The order of magnitude of the pressure drops is clear from the Figure 5.19 for 615 psi
drawdown and head pressures. The injection side is mostly contain reservoir pressure drop. The
production side shares the drawdown between reservoir and friction losses. The circular section of
the well has the least significant value, which means the designer can install the brine pump closer

to producer or injector depending on easiest way of installation process.
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Figure 5.19: Order of magnitude of the main pressure resistances.
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The well inclination angle adds additional gravity term to the pressure distribution
equations. If the producer is on top and the injector is on the bottom, the gravity term is positive
and helps compensate friction inside the DHE. However, the discharge of the cooled brine happens
at a higher pressure than at the inlet, which is equal to the gravity. So, the brine pump would need
additional head to be able to push brine into the reservoir on the injector side. The other case is
when the producer is below the injector. In this case the brine flow inside the DHE would
experiencing additional negative gravity term, however, the discharge would happen at the lower
pressure than inlet. In both cases the brine pump would have the gravity terms cancelled when
calculating the total pressure head.

As soon as the net power development is the main concern of this project the producer is
better to install at the higher elevation than injector. The reason for doing that is higher reservoir
temperature at the bottom of the reservoir. Then the discharged cold brine would meet hotter
environment and the travel time to the producer against gravity would be longer. One more
comment is taken from Feng (2012). The cold brine plume, which would occur at the injector during
the operating period is heavier than the reservoir brine. Placing injector on top would provoke
sliding this plume toward the producer along the insulation length. For these reasons the negative

inclination angle was assumed from the producer to the injector.

5.9 Effect from the Ambient Temperature Fluctuations
The power generation subsystem is working at a steady state condition if there is no any
change in temperatures of cold and hot sides of the heat flow. Heat gained in heat extraction loop
depends on reservoir temperature. Constant reservoir temperature can be managed by increasing
the insulation length between producer and injector. The most severe consequences come from the
ambient temperature fluctuations that make PC more susceptible to the seasonal and daily changes

in weather conditions. The previous discussion assumed a reasonably stable, ambient temperature,
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which corresponds to the yearly averaged value at the particular geographic location. This
statement is not true.

As the ambient temperature increases, especially during summer time, the performance of
a power unit significantly reduces (Sohel et al., 2011). The condenser heat load is a function of
several factors: w.f. inlet condition (temperature and pressure), ambient heat sink temperature, w.f.
mass flow rate and geometric parameters of the condenser design (area of cooling, fins, etc.). The
power unit is usually built to run optimally for a given set of design conditions that takes into
account the reservoir and ambient temperature changes. When the ambient air temperature varies,
the plant runs under the off-design condition (Varney, J. et al., 2012). To model these off-design
condition the ambient air temperature is a variable but other unit’s parameters were kept with the
following assumptions:

e The working fluid pump and brine pump power consumption is independent of ambient
temperature fluctuations. Therefore, the mass flow rates stay constant.

e Condenser area is constant.

e Incase of ambient air temperature is greater than the design ambient air temperature (25C),
the turbine back-pressure is increased to ensure that the working fluid is in a liquid stage.
Node#1 is kept at constant entropy for all pressures above the design pressure (see Figure
4.19). This requirement is explained by the necessity to have liquid stage at the w.f. pump.

o If the actual ambient temperature is lower than the design ambient temperature, then the
turbine backpressure is dropped according to saturated line of the CO, fluid.

The air temperature change causes condenser w.f. temperature-pressure variations. As the
temperature drops, then pressure at the condenser drops, and therefore, the outlet of the turbine
stage changes as well. The bottom line of the T-S plot is dropped to the lower temperature design
temperature and therefore the liquid saturation pressure is dropped. The expander produces more

energy and, consequently, more energy is required for rejection through the condenser. At the same
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time the condenser area is constant as well as w.f. flow rate. So, the only choice to increase heat

rejection is increasing the fan speed, which requires some additional energy.

Q‘ L= 1 LtubesnDtubesncond.
el L + L MairBPcona.
hwf hair

(ATlm.cond)Wfan (2-7)

Increase in air temperature provoke some shift in T-S diagram that reduces the useful work area.
Figure 5.20 shows the condenser (blue line) and DHE (red line) pressures change with ambient
temperature growth. As it is seen the slope of both lines increases drastically at high ambient

temperature values.
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Figure 5.20: Condenser and DHE pressure variations caused by air temperature change.

The ambient temperature progress affects the w.f. temperature development in the DHE.
Hotter w.f. is entering the heat exchanger as well as leaving the DHE. Figure 5.21 illustrates the
point. Higher temperature of the w.f. has higher enthalpy, however, high ambient temperature

reduces the enthalpy difference in the turbine stage and the net power as well.
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Figure 5.21: W.f. temperature development at the exit of the DHE.

With increasing the ambient air temperature the gained heat from the reservoir is reduced,
so does the heat rejection. Efficiency drops drastically after ambient temperature reaches w.f.’s
critical point (Figure 5.22).
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Figure 5.22: Efficiency change with ambient temperature.

The net power increases with ambient temperature reduction. There is more heat gained

from the reservoir (Figure 5.23).
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Figure 5.23: Net power change with ambient temperature.

At the same time the cooled brine temperature drops with ambient temperature reduction

(Figure 5.24).
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Figure 5.24: Temperature change of the brine leaving the DHE.

Figure 5.25 shows simulation results of the system using different working fluids with
reference reservoir data. As it is seen the turbine power production increases with turbine inlet
temperature, or rising reservoir temperature. The maximum power value production belongs to

carbon dioxide w.f. for all temperature range.
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Figure 5.25: Different w.f. application to the reference reservoir data.

5.10 Conclusions
The design of DHE is affecting the power cycle performance. The maximum net power value
was obtained with well located in the reservoir with the highest permeability, reservoir
temperature, and lowest possible ambient temperature.
The friction losses in the DHE are affecting power spent on brine pump. Thus, there is an
optimal DHE length for the particular w.f. and brine mass flow rates and temperatures of the
reservoir. Using the DHE with higher length increases pressure losses in the horizontal well
and, therefore, increases brine pump power requirement and reduces net power production. The
DHE length reduction as well as perforated length leads to reduction of net power due to small
heat transfer area for the chosen mass flow rates.
The scheme using a tool such as the Baker-Hughes ICD in the completion is more preferable
due to equalizing the influx into the well. This rearranges the heat transfer in such way that it
is possible to increase the w.f. mass flow rate having the same total brine mass flow rate.
The reduction of the perforated length is reducing the brine temperature leaving the horizontal

well.
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CHAPTER 6: THERMAL BREAKTHROUGH TIME

“Essentially, all models are wrong, but some are useful”
George E. P. Box

The purpose of this chapter is to analyze fluid flow residence time from the injection to the
production sides. If cooled brine enters the production side during an operational lifetime it will
negatively affect the energy production. Thus, it is primary interest to make sure that the
breakthrough time of the system is less than the typically assumed thirty years of overall operational

period.

6.1 Literature Review

The vertical extraction—injection well pairs have been successfully studied in several
projects, such as: contaminated groundwater remediation, geothermal and heat pump applications,
and tracer tests (Grove and Beetem, 1971; Welty and Gelhar, 1994). In all these cases, the
recirculation zones are created in between the wells. Prediction of the fluid residence time (FRT),
which is the time to travel from the injection to the extraction well, have great influence in the well
placement location.

Generally, two methods are used to evaluate FRT in the recirculation zone (Luo et al.,
2004). The average FRT can be directly provided with the known zone volume and the recirculation
flow rate. However, the exact reservoir volume is hard to predict. The other commonly used method
is streamline tracing, when numerous particles are released at the injection-well boundary and move
with the local seepage velocity until they reach the extraction well. The ensemble of all particle
travel times yields the breakthrough curve at the extraction well (Zheng and Bennett, 2002). Muskat
(1936) determined the shape and position of a tracer front and the first breakthrough time for
injected water reaching an extraction well. The regional flow was ignored. All the approaches were

derived from potential flow theory.
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6.2 Potential Flow Theory
The potential flow model was applied to solve pressure distribution and determine velocity
streamlines between two horizontal wells placed in series in the aqueous reservoir. Assumptions
are: steady-state, continuous, incompressible, inviscid, irrotational, two-dimensional flow which
occurs within homogeneous, isotropic layers of a confined aquifer. Potential flow describes the

velocity field as the gradient of a scalar function VO:

V= —EVGD (6.1)
u
For the incompressible flow case:
VxV =0 (6.2)
then:
VxVd =V2D =0 (6.3)

which is a Laplace equation.

The solution of equation 6.3 was derived in several literature sources and for different
cases: source/sink, well doublet, etc. (Strack, 1989). First, let us solve the equation 6.3 for a single
sink and source pair in an infinite medium. From the continuity equation the same amount of flow

must pass through the sphere or a radius 7. Then, the first integral of equation 6.3 is equal to:

=2 i 6.4
q=2mr— (64)

And the second integration yields:
O=-tinit+o 6.5

where @ is a potential at the location R far from the source.
The obtained flow net for a source is illustrated in the Figure 6.1. The streamlines are radial
lines emanating from the origin. Each line represents constant value of the stream function. Here,

for example, 20 lines are chosen, so the amount of Ay; flows through each segment:

A =-6 = (6.6)



The concentric circles surrounding the origin are lines of constant potential. The streamlines cross

equipotential lines at right angles (Strack, 1988)
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Figure 6.1: Source potentials and streamlines. (After Houghton et al., 2013)

6.2.1 Horizontal Well Streamlines and Equipotential Surfaces
For horizontal well one can derive the similar relation as equation 6.6. The percolation
velocity (Vyerc.) through the spherical surface of area Ay, in 3-D space is:

¢ _ 4
Asph. 477,'7"2

Vperc. = (6.7)

Following Lu (2012) the total flow rate from the uniform line source is spread along the well with

length L:
dd = ——1_px (6.8)
4LR
where
R=(x—x)%+ (v — ¥)? (6.9)

for 2D scheme.
. L . L
Let us assume the origin location in the middle of the well ¢ = > then

q [(€dx
4nL ) . R

(6.10)

Then, taking integral receive:
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CD=—4qﬁln(Z;z) (6.11)

where 2a is the semi-major axis of pressure drainage elliptical shape.

= _{//// =

|

S

¢

Figure 6.2: Elliptical drainage area of horizontal well (after Lu, 2012).

The streamlines start from each point of the horizontal well and cross the equipotential
lines at the right angle. However, in this project one observes two horizontal wells, where the
streamlines and equipotentials are combination of both wells at fully developed drainage/discharge

arca.

=

Figure 6.3: Potential flow application. Streamlines for a single sink and a source.

In this section of dissertation the primary interest is to track the flow path from each node
of the horizontal well. Therefore, the sink/source equation for potential flow was used and the

method of images (Strack, 1988) was applied to reconstruct the horizontal well as a line of sinks
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(for production side) and a line of sources (for injection side). The outflow of the each sink or
source are equal and the total flow rate is equal to the sum of sinks or sources per unit length.

Potentials and streamlines were found from:

VO +c)? +y?
q ( i) Y o

D =—qox +—1In (6.12)
L Vi —c)? +y?
3
where @, is a distributed reservoir geofluid flow rate in case of flowing aquifer [S:; m].
q
=—(6,—-86 6.13
¥ =2-(6:—6) (6:13)

where 64, and 6, are position angles and determined from (Strack O., 1988).
In this case the flow rate from the node is a multiplication of flow per unit length of the section

(production or injection) to the well segment length Ax:

Ax
q = Qwel I (6.14)
well

If one extend the production and injection side by additional sinks and sources, the

horizontal well pair will looks like in the Figure 6.4.

Figure 6.4: Streamlines for several sinks and sources represented horizontal well.

Here no reservoir flow is assumed. Note, that the closest pair nodes production/injection
are connected by the streamlines, and so one by the distance from the center. The closest nodes

have the shortest interval of geo-fluid to flow. The endpoints have the longest trajectory.
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Assuming equal flow rates for both production and injection sides but different lengths the
streamlines distribution is shown in the Figure 6.5. Production side has lengthier interval (left),

than injection side (right) as shown in the figure below.

—

=—

Figure 6.5: Streamlines for horizontal well with production.
Producer in the left is longer than injection side (right).

Adding reservoir flow into the observation one will receive the figure similar to the Reynold’s oval

(Figure 6.6).

Figure 6.6: Horizontal well in the reservoir flow.
Reservoir streamlines have direction from the left to the right.
Knowing the streamline length, which is a half perimeter of flow path ellipse, starting from the

particular pair of nodes we can define the breakthrough time of the system.
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6.2.2 Thermal Retardation Factor
Heat is absorbed from the matrix into the geo-fluid when the cooled brine percolates
through a hot reservoir rock matrix. Therefore, the velocity front and thermal front have some
retardation, which is a function of reservoir properties (porosity), and rock-fluid properties (specific
heat, density). Let us derive this parameter starting with energy balance equation (Shook, 2001):

oT aT 0°T
[d)pbr.cp pr. (1 — d))pr.cp r.] E + pbr.Cp br.Vor. a - keff. ﬁ =0 (6.15)

Rearranging will receive:

a_T - _ pbr.Cp br.Vor. a_T + keff. 0T (6 16)
at ¢pbr.cp br. T (1 - (.b)pr.cp . ox ¢pbr.cp pr. T (1 - ¢)pr.cp . 0x? .
Then,
oT dx 0T 0x _ Pbr.CPbr Vir. oT Kefs. 9°T

———=——=- —+
dt o0x  Ox Ot (Ppbr.cp br. t (1 - ¢)pr.Cprock 0x $Ppr.Copr. + (1 - (p)pr.cprock 0x?

(6.17)
From here:
0x Pbr Cpbr Vpr
=y = : O (6.18)
at therm ¢pbr.Cpbr. + (1 - ¢)pr.Cprock.
Vir.
Vcomp. = _7T (6.19)
Rt — Vbr. — ¢pbr.Cpbr. + (1 - ¢)prock.cprock. =1+ (1 - ¢)prock.cprock. (6.20)
Vinerm. ¢pbr.cpbr. ¢pbr.cpbr.
Thus, the thermal breakthrough time is delayed by a retardation factor:
ten = tor Re (6.21)
The thermal front distance is left behind of fluid flow front at time t:
Xbr.
=— 22
Xth R (6.22)

t
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6.3 Thermal Breakthrough Time

The trajectory path of cold fluid flow Xy, is matching with the streamlines. If a; and b; are

ellipse semi major and semi minor axes at the i-t4 nodes of each well respectively (Figure 6.7).

Thus, the flow occurs from each corresponding node starting from the closest ones.

‘ Lprod. Lins. Linj.

Streamline

Producer Injector

Figure 6.7: Single streamline flow scheme from injector’s i-th node to the producer’s i-th node.

The cold stream is driven by elliptical path flow which is a half perimeter of ellipse with
a; and b; are ellipse semi major and semi minor axes, and equal to xp,-. The location of a; is defined
by the wells placement, but b; is unknown for now and depends on both: flow rate of the wells, as
well as the reservoir flow rate.

The maximum value of b; corresponds to the stagnation point. Choosing the origin of the
system coordinates at the half way between the i-nodes let us find the ys-coordinate of the

stagnation point. Let us take a derivative from equation 6.12:

0o q( Xs+ ¢ Xs — Cj ) 623
ox 00 2 \(xs + c)? + y52 (x5 — )% + ys2 (6:23)
From this Eqn. with x4= 0, or at the origin the y; is equal to:
qc;
— b =+ — 2 6.24
yS L - T[qxo Cl ( )

From the obtained formula one can see that the reservoir flow reduces the semi minor axis.

The simplified equation for ellipse perimeter is found from (Haynes, 2014):
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a? + b2
2

Pellipse ~ 21 = 2Xpy. (6.25)

Substituting the equation 6.25 into 6.26, and simplifying it with a = 2¢; will have:

Pellipse _ n qc;

= Xpy = — + 3¢ 6.27
2 Xbr. \/E TTqxo Ci ( )
Then,
T qc; 2
Xep = ——= + 3¢; 6.28
th Rt 2 |74y i ( )
Combining equations:
Xpr.
ttn =ty Ry =5—Ry (6.29a)
Vbr.
£y = 2N Tqxo0 (6.29b)
g 4 ( x+ ¢ B X — ¢ ) '
¢ 2mp\(x+c)*+y* (x—c)*+y?

The brine velocity as a constant parameter along the streamline by definition, so from each small
. .. A . . .
segment of the well Ax in the injector the g Tx portion of flow rate is pumped to the reservoir

through the mDAx surface area of the well. So:

q
=— 2
Vpr. =D (6.29¢)
T | q¢ 2
R, — + 3¢;
b o= ' V2~ Tqx0 g (6.29d)
th — q .
D

From the equation 6.29 is clear, that the thermal breakthrough time (TBT) for two
horizontal wells flow is a function of reservoir parameters: porosity, permeability; flow rates of the
reservoir and well discharge; and retardation factor, which is a function of geo-fluid and reservoir
rock thermal characteristics.

e Special case example
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Let us track the TBT for the shortest interval — straight line distance between the wells.

Then, the equation 6.29d reduces to:

ten = 6.30a
th M_ q ( 1 B 1 ) ( )
[0) 2np\x+c¢c; x—c;
R;2c;
ten = Al (6.30b)
q ( Ci >+m
2np\x? —c2) " ¢

which can be further simplified according to (Luo & Kitanidis, 2004)

AR, c;?
ten = —d;qt ‘ (6.31)

The equation 6.31 is the exact formulation of the residence time by (Shook, 2001). For the

input data shown in the Table 6.1 some results were obtained and illustrated in the Figures 6.8, 6.9,

and 6.10.

Table 6.1: Input data

Parameter Dimensions Value
q m3 0.009434
sec
qx0 m3 0.00001
sec
Ci m 900
Pr. kg 2300
m3
Cpr. J 920
kg K
Pbr. kg 988
m3
Cpbr ] 4080
kg K
D m 0.43
L m 250
¢ - 0.1
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Retardation factor is 5.72 and TBT for the first cold front arrival is 22.17 years for the input data

presented in the Table 6.1.

— NN
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®
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Figure 6.8: Breakthrough time with changing porosity.

The breakthrough time value is increasing with reduction of porosity. Smaller pore size

requires more time fluid to travel with the same flow rate. Porosity is affecting the retardation factor

as well.
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Figure 6.9: Retardation factor calculated by Eqn. (6.20).

Increasing the insulation length increases TBT, as shown in the Figure 6.10. For reference
reservoir data and 30 years of operation would require about 800 m of insulation length to avoid

cold brine production.
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Figure 6.10: Breakthrough time for different insulation length.

6.3.1 Influence of Cold Influx on the Net Power Production

The w.f. temperature will not drop dramatically when the cold front will invade the

production side. As was discussed before, the influx to the production side is spread along the well.

So, the following simulation was performed to see the net power drop relative to percent invasion

of cold front along the DHE According to Figure 6.11 the net power drop was simulated for 200m

DHE case with 98.67C cooled brine invasion, brine flow rate 10kg/s. The 55 kW maximum net

power drop occurs if the cold area occupies the whole DHE length, and only 6kW drop occurs at

10% invasion.

0 20 40 60 80 100

Cold front location along the DHE, %

Net power — ceoeeee Difference

Figure 6.11: Net power drop with respect to cold front movement along the DHE length.
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6.4 Conclusions

The retardation factor plays a major role in thermal breakthrough time determination.
Additional factors influencing the TBT are reservoir and well flow rates, and insulation
length separating producer and injector. Choosing the reservoir with high porosity would
reduce TBT, and thus, this case would require higher length of insulation comparing with
lower porous reservoir at the same flow rate.

When the cold front reaches the production side of the well, the net power will not drop

immediately, due to length of the production side and distributed influxes along the well.
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CHAPTER 7: THERMO-ECONOMIC ANALYSIS

“There ain't no such thing as a free lunch”
Robert A. Heinlein

7.1 Levelized Cost of Electricity

The Levelized Cost of Electricity (LCOE) is a figure of merit used for energy production
assessments. To compute the LCOE one needs to define the total capital cost of the project and net
power produced for the operation period. The total capital cost of a geothermal system is a function
of several terms: Leasing and Acquisition (L4); Royalty (R); Site Construction and Security (SCS);
Drilling and Completion (D&C); and Power Cycle (PC) installation cost (Barbier, 2000). This
project is based on the assumption of power production is for the local usage in an existing
manufacturing facility or local community. This fact excludes us from the royalty cost
determination and makes the project less expensive.

The D&C cost is the largest term of the project. It depends on a target depth, rate of
penetration, and mission of the well. The geothermal well’s D&C costs are higher than
conventional oil and gas wells due to the larger diameter of the wells, higher temperature of the
resource, and harsh environment of the geo-fluid causing corrosion and erosion of the well
completion parts (Lukawski et al., 2014). There are two main types of D&C cost determination:
detailed calculation including all aspects of drilling operation (Kaiser, 2016; Kipsang, 2014;
Randebergi et al., 2012) and generalized statistical approach based on regression analysis.
Lukawski et al. (2014) developed a graphical and mathematical relationship between the
geothermal well measured depth and D&C cost, which is simple and easy to implement. Also, the
LA and SCS are included into the statistical approach defining the averaged drilling costs.

DC =1.72x10"7 x MD? + 2.3 x 1073 x MD — 0.62 (7.1)

The power cycle equipment is separated into two groups: petroleum industry available

parts and unique parts including the turbine-generator assembly and a condenser. The first group
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includes DHE, packers, casings, and ESPs. The DHE is a coaxial pipe designed from the casings
and tubings available in the petroleum industry. Three retrievable packers are included into the
design scheme as well as two ESPs. The cost of these units are much smaller than D&C and
partially included into the Capital cost (CC) adding 15% of contingency (Randebergi, et al., 2012).

The condenser cost (CCcypnq.) in dollars is defined from (Smith, 2005) and (Walrawen et
al., 2015). The calculation includes a correction factor of 620 taken from Chemical Engineering

(CE)-index in July 2013 for air cooled condensers (http://www.che.com/pci/):

0.89 650.9
) (7.2)

5 AC
CCCond. =1.67 x10 (20()) 1.35 (W

where A, is area of the condenser.
The turbine cost (Cypp) depends on turbine power produced and is defined from
(Walrawen et al., 2015)
Ceurp. = —1.66 X 10* + 716 x W28 x 1.35 (7.3)
The sum of CCrypq and Ciypp. is @ PC cost. The obtained cost of power cycle parts is corrected for
non-standard material (f, = 1.7) for stainless steel; high working pressure conditions (fp = 1.5),
and installation expenses (f; = 0.6) (Smith, 2005):
PC = C(fufp. + /1) (7.4)
where
C = CCcona. + Crurp. (7.5)
The total cost of the power unit is a sum of D&C and PC:
Ctor. = D&C + PC (7.6)
The procedure of calculating taxes is complicated, especially if the well is going to be
drilled by another company. Assuming the fact that this type of power plant would be built for the
internal company needs, and no power would be sold to the consumer the LCOE can be simply
obtained from the known capital cost of the power unit divided by the total amount of electricity

produced during 30 years (Walrawen et al., 2015):
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Ceot. + XiZ3° Coam(1 + D) 7*
YEEQ@+DT

LCOE = (7.7)

where { — is a discount rate; t- is a year of operation (30 years total), Cpgp — 1S operation and
maintenance cost, which is 25% of the total cost (Smith, R., 2005):

Cogam = 0.025C,:. (7.8)

E = WptN (7.9

where N is a number of full load hours per year, assumed of 95% (Walrawen et al., 2015).

7.2 Reference Reservoir Analysis
The example of D&C cost calculation is shown in the Table 7.1. The 15% contingency was
assumed for any unexpected outgoings. The constant net power production of 156 kW was assumed
for a single lateral well. Total well cost is about $17.5 mln, which is higher than in Kaiser (2016).

The reason for this is a generalized trend of the curve in the equation 7.1.

Table 7.1: D&C cost calculation results for reference reservoir

s o .
Well measured Drllllr}g and 15% contingency, Total well cost,
depth, completion cost, min $
m min $ (DC), mIn $
5,000 15.18 2.277 17.457

Kaizer (2016) analyzed LCOE by computing all costs for the particular drilling operation
and assumed 200 kW net power, which is 25% higher than in the assumed system. The PC cost
calculation results are presented in the Table 7.2.

Table 7.2: PC cost calculation example

w.f. mass Heat Condenser Condenser Turbine cost, Power cycle
flow rate, rejection, area, cost, min $ cost
kg/s MW m? mnl $ corrected,
min $
10 1.85 21.51 0.032 0.081 0.356
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Three cases were simulated for LCOE. As it is seen from the Figure 7.1 the LCOE increases
with depth of the reservoir, and with discount rate reduction. The purple line represents a single

lateral well with 10% discount rate. The red and green lines are constructed for four lateral wells

(Figure 7.2).
1000.00
= 800.00
=
2 600.00 425.15
“ 27193 34552
& 400.00 204.37 /
O
0.00
0 1,000 2,000 3,000 4,000 5,000 6,000 7,000
Measured depth, m
=4 lateral well 0% no drilling cost =4 lateral well 4% =——single lateral well 10%

Figure 7.1: Levelized cost of electric power for the reservoir prototype case.

The discount rate for the red line is 4%. The green line assumes no drilling cost, but only
recompletion of an existing well for the power production case. If the D&C cost is ignored and
only recompletion cost is assumed as 20% of D&C cost, the $46.47/MWh can be reached for
4,000m target depth reservoir with temperature of 126°C. (Figure 7.3) Note the DOE proposed

LCOE for 2020 is $48/MWh (By an MIT-led, A. A., 2006).

Case 1 Case 2 Case 3

Figure 7.2: Possible lateral cases for power unit.
Case 1 is a single lateral well; case 2 is a dual lateral well; case 3 is four lateral well.
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Increasing the net power (applying the system to the reservoirs with higher temperatures)
plays crucial role in LCOE determination. For 220°C reservoir temperature case the red curve
dropped the LCOE to less than $100/MWh even for 7,000m depth (Figure 7.3). The green line,
representing recompletion case shows $21.84/MWh at 7,000 m TD, which is half than DOE
requirements (Figure 7.4). In case of drilling and completion costs included in to the account (red
line) the increase in reservoir temperature gave optimistic shift toward satisfactory LCOE values

($47.59/MWh at the 4 km TD). All simulations were done for carbon dioxide working fluid.

200.00
=
; 4759 6332 8046  99.00
% 100.00
S 33.27 =
3 10.82 14.19

0.00

0 1,000 2,000 3,000 4,000 5,000 6,000 7,000
Measured depth, m

=4 lateral well 0% no drilling cost =4 lateral well 4% ———single lateral well 10%

Figure 7.3: Levelized cost of electric power for the 220°C reservoir case.

It is worth to note that not every petroleum well can be converted to the energy production
unit for several reasons:
Technical challenges:

1. The well should have a horizontal section and a casing program should satisfy to the PC
installation requirements. This includes inclination angles, perforated intervals, and casing
diameters.

2. The horizontal section should have enough diameter to install DHE in it. Very often the oil
and gas wells have small diameters at the TD (less than 5 inches).

3. The residual oil and gas content in the produced brine can cause several complications in

reservoir circulation management. The temperature reduction in the DHE can provoke
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heavy fractions solidification and precipitation on the DHE part, which will eventually
cause clogging problems.
Risk assessment and cost:

1. Before the petroleum well is drilled the casing design and equipment should pass several
standards and be certified. Adding energy production case to the well will eventually
increase the cost of the well and add more standards, which will complicate the project.

2. The petroleum well served many years in production is not the same as new drilled well in
terms of reliability and safety. It may require even more financial investment to transfer to

the energy production unit. A detailed analysis may be a good topic for future exploration.

Power Plant Type | Cost ($/kWh)
Coal $0.12

Natural Gas $0.10
Nuclear $0.10

Wind $0.08 - $0.20
Solar PV $0.13

Solar Thermal $0.24
Geothermal $0.05
Biomass $0.10

Hydro $0.08

Figure 7.4: DOE LCOE requirements for different types of resources (MIT, 2006).

7.3 Conclusions
In general the economic assessment showed satisfactory results with DOE requirements
for several cases. It is possible to reach competitive LCOE values even with modest net power
production from a well working on ZMW method. A novel idea of the recompletion existing
petroleum wells to the power production unit is facing several challenges and makes questionable

this direction of development.
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CHAPTER 8: CONCLUSIONS AND SUGGESTIONS FOR FUTURE DEVELOPMENT

8.1 Main Achievements of the Project

o The ZMW method was presented and analyzed in this project. In general the analysis proved

sustainable and workable design in terms of economy and power production features. High

temperature of the reservoir and high permeability of the rock, and high reservoir volume are

the main factors to use while choosing the right reservoir.

e The best working fluid from the power production concern was determined. CO; is more

preferable for low reservoir temperatures for non-toxic and non-flammable characteristics, high

pressure, high temperature stability, low cost and availability. Carbon dioxide works well for

all range of the reservoir temperatures from 120 to 220°C. However, if the chosen reservoir

temperature is close to 220°C the preference would be given to the pure hydrocarbons. In this

case the N-pentane fluid is the best power productive fluid to apply for this design.

o The area of DHE is the main heat transfer parameter in the system that can be changed. While

the diameters are fixed by the casing design, the length is the only variable to adjust. Increasing

the DHE well increases pressure losses in the brine circulation loop and adds more power

requirements for the brine pump. Decreasing the DHE length reduces the net power production

due to lack of heat transfer area. The optimal length of 250 m was determined for reservoir

prototype case. Changing the w.f. candidate would affect the optimal DHE length.

e Net power production is defined by seasonal and daily ambient air temperature fluctuations, as

well as by the reservoir temperature drop. While the first variable is unstable, the reservoir

temperature drop can be fixed by defining an optimal insulation interval between the producer

and injector. The analysis is based on thermal breakthrough time determination, which is a

function of flow rates and reservoir properties.

110



The economic analysis shows a great potential for this system in case of high reservoir
temperature. The LCOE is a function of reservoir depth and net power production. The

maximum installation cost portion belongs to the well drilling costs.

8.2 Future Research Directions
For the future development the author would suggest reduction of the influence from the
ambient temperature fluctuations. This seems possible by using phase change materials (PCM),
which become popular in heat storage projects. In this way, heat rejected by the condenser is
absorbed by PCM, which changes phase from a solid to a liquid form. Installation of PCM bank
inside the well at the turbine location can eliminate the use of traditional condenser and reduce
to the minimum the surface footprint (Figure 8.1). From the other side, the system will gain

additional weight from the PCM.
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assembly
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Cast
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Surface
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g Turbine Completion fluid
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Figure 8.1: System with PCM cooling part instead of condenser.
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The U-tube design of the DHE is another possible improvement of the system. Figure 8.2 shows
the cross sectional view of the dual U-tube heat exchanger inside the casing. This may reduce
the frictional pressure drop in the horizontal well, thereby drop the brine pump requirements.
However, running this type of heat exchanger may be complicated by brine pump installation.
More detailed discussion about system installation procedure is presented in the Appendixes C

and D.

0.000 o 10.000 (erm)

2 1 7w

Figure 8.2: Dual U-tube DHE as an alternative design solution.

According to the system description the power cable is running from the surface to the brine
pumps along the entire well, which is expensive and time consuming operation. Additionally,
the electric cable materials does not work well in the CO, environment. To avoid this it is
possible to connect the positive power source directly to the central tubing (w.f. hot stream
path) and use the negative polarity connected the cemented casing. The packers can be used as
power distribution devices. Definitely this proposal requires complications in the packers
design. Nevertheless, if the goal is achieved, the system would be more compact, more safe,

and reliable.
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The system including the brine pumps, ICD and sand protection, DHE, cable, w.f. pump,
tubings and casings is expected to have sufficient weight. This may be an issue when running
the system into the well and require specially designed rig. To reduce the weight it is possible
to move the turbine assembly to the top of the christmas tree, and the w.f. pump on the surface
facility. Firstly, this scheme will ease the access to the mentioned devices and, thus, eliminate
costly workover operations in case of turbine failure. The design becomes cheaper due to
installation cost and elimination of supporting packers inside the well. Additionally, there is no
need to have a space for the w.f- pump and turbine assembly installation. So, it is possible to
run the production casing with a constant diameter along the well.

From the other side, removing the w.f. pump to the surface will loose net power production.
Carbon dioxide fluid has less density on the surface than on the bottom of the well, and, thus,
would require more pumping power. Turbine on top installation would require more security
issues to avoid vandalism accidents. Additionally, some improvement on the christmas tree
design should be done to sustain possible vibrational load coming from the turbine-generator
assembly.

e One more comment about the brine flow organization inside the horizontal offset of the
well. Much more simplified design seems possible if the producer and injector are switched
from the previously discussed scheme (Figure 8.3). Now the brine intake happens at the end of
the horizontal offset. It is possible to install traditional gravel packed completion at the inlet.
The system is simplified by having only brine pump assembly and a DHE inside the casing,
and, thus, can have larger diameter heat exchanger. This has more power extraction potential
from the reservoir. However, there is a dark side of this scheme, which lies in the flow
organization through the DHE. The brine stream exit is located at the DHE region. So, there is
no additional hot flux income to the heat exchanger as was discussed previously. This fact may
negatively impact the DHE performance and would require brine flow rate increase, which is

additional load on the brine pump.
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Figure 8.3: The alternative design scheme.
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APPENDIX A TURBINE DESIGN

A 1. Turbine Modelling
The usual axial turbine has four main parts. The rotor is the rotating part which carries the
blades. The stator consists of a cylinder and shell where the rotor turns. The turbine has a frame
and nozzles. The cylinder, shell, and frame are often combined. Other parts necessary for proper
operation would include a control system, piping, a lubrication system, and a separate condenser
which are not a part of this design.
Assumptions:
The blades of the turbine have frictionless surfaces, and energy conversion on the blade is
complete. The fluid flow path matches with blades or nozzle geometry. There is no flow separation
from the blades surface. The flow is uniform and steady; has the same properties at every blade of

the stage.

A 2. Conversion of Steam Kinetic Energy into Blade Work
This maximum possible conversion of kinetic energy of the entering jet into blade work
occur when a frictionless blade turns the steam through 180° and flow exits with zero absolute
velocity. The absolute velocity of the jet stream entering the blade, V; is not equal to the blade
speed, V5 though. Then one can design the nozzle in such way that velocity at the exit can provide
maximum energy conversion.
Vi=wW+V, (A.1)
V, =W, +V, (A4.2)

Where indexes 1, and 2 denote inlet and outlet velocities.
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Figure A.0.1: Simplified blade flow scheme

With the assumption of frictionless blade and complete energy conversion in the turbine
blade:

W,=-W;andV, =0 (A.3)

From that will have:
vV, =2V, (A.4)
The above derivation assumes zero angle between tangential flow direction V;. In
fact, due to geometry restrictions, this nozzle angle changes from 10 to 30 degrees. Small angle
cause an excessively long nozzle that would increase friction and decrease efficiency. High angle
cause flow direction change and again loss in efficiency. Therefore, an optimal value should be

obtained. Then equation (A.4) with nozzle angle « correction becomes:

Vicosa = 2V, (A.4)

Wy /Val \V2
Wa

‘ Wz ‘ Va2
v .
Wi Vb v,

Figure A.0.2: Entry and exit triangles scheme.

Another design parameter is angle y which is vary from 15 to 40 degrees depending on size
of the turbine. The designer is interested in reducing y to increase the blade efficiency. The Table

0.1 illustrates all formulas to find the velocity components.
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Shaft torque value is derived from the Reynolds transport theorem for angular momentum
applied to one entrance and one exit scheme. Assuming steady state flow and no contribution from
the radial component of the velocity the equation reduces to:

T =mr(Vez — Vo1) (A4.5)
where Vg, — Vy; is change in tangential velocity.

The shaft work then is:

Wshage = mrwVo, — Vo) = mV, (Voz — Vaq) (A.6)

Table 0.1: Entry and exit triangles velocity formulas

Entry triangle Exit triangle

Vg1 =V icosa W, = k,W;
Va1 =Wy =Vyisina Voo = Wysiny
Wo1 =Vo1—Vp Wy, = W,cosy

Voo =V, + W,
W, = ,/Wi1 +Wpy o2 %
W a1
B =tan! W:1 v, = /Vazz + W,

The velocity coefficient & is responsible for the total change of stream direction in the

blade [180° -t 7):' It is determined empirically from (Church, E. F., 1954):

k, = /0.892 — 0.00006W; (A.7)

The algorithm of calculating turbine efficiency is illustrated in the table below.
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Table A.0.2: Turbine calculation algorithm according to (Church, 1954)
9 degrees

Assume nozzle angle

Church suggests to increase }; by 10% to account for

Entry triangle
dick friction and fanning

See table 0.1

Exit triangle
Blade work per unit mass Wy, = =V, (Vgy — V1)
Actual energy per blade V2
Eqee = )
Blade efficiency Wy
My = E
act
Nozzle Velocity Coefficient k, = 1.021 — 0.164x + 0.165x% — 0.0671x3 + 0.0088x*
x = Vs /1000
Ideal (Isentropic) nozzle exit/blade entrance V. = V_1
velocity T kg
Nozzle efficiency Vi
"TVE
Combined efficiency Nnb = NpNn
frict.
Nst = Nap(1 = Fan. + leak)

Stage efficiency

Assuming an average loss from disk friction and fanning
of 4% and from leakage of 1.5 %.
V2

Ideal available energy per blade £
Ahb = 7

(Ahg)totar = Mintet — Pouttet

Total isentropic drop in enthalpy

Reheat R=1.0465
Trial number of stages (Ahg) ot R
n=-——
Ah,
1\ /1 —n
Rn = 1+(R+1)(1_E>< 0.2 )

Actual reheat

— (Ahs)total R

Enthalpy d stage
nthalpy drop per stag Ah, :

Heat leak. If the desired pressure after the turbine is not reached,
a new trial A4k, and corresponding ¢, are found and additional _
qr = Ahs — Ahgng,

iterations run as needed.
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Total internal work per /b steam w; = n(Ah; — q,)

Internal efficiency of turbine n; = Wi
' (Ahs)tatal

Engine efficiency, ne = 0.98n;

Assuming radiation loss of about 0.2 %, and the combined
mechanical and radiation losses of about 2 %.

Ideal steam rate: mass of steam required to produce a ISR = = 3413( Btu/kWh)
single kilowatt of power. (AR orq (Btu/1bm)
ISR
Brake steam rate BSR = =28
Corrects the ideal steam rate for the inefficiencies of the turbine. ne
Turbine mass flow rate, . BSRW
3600

where W is desired power
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APPENDIX B CONDENSER DESIGN

B 1. Two Phase Pressure Drop Analysis
A total pressure drop consists of three components, namely frictional pressure drop
(dpfrict)» acceleration pressure drop (dpgecer):
dp = dpgrict + dPaccer (B.1)
The hydrostatic pressure drop is omitted due to condensation takes place in a horizontally
oriented device at the surface facility.
Acceleration pressure drop usually small comparing with other pressure drops and is

defined as:

p G2[<x2+(1—x)2> <x2+(1—x)2> ] (B.4)
p =- — t —-|\—t—— .
accet epg (L—8)p), . \epy, (A1—ep),
where G is mass flux per unit area; pg, p; are densities of gas and liquid stages of w.f;; € is void
fraction, x is vapor fraction.
Density of the gas-fluid mixture is defined by gas fraction density pg, liquid fraction
density p;, and void fraction &.
p=¢epg+(1—e)p (B.2)
Void fraction is determined from (Rouhani & Axelsson, 1970):
Ay 1
=7 1—x pg
1+ G

The fluid density changes with pressure, temperature, and phase, therefore, one should

(B.3)

refer to the working fluid thermodynamic properties to define (p) at each calculation step.
Friction pressure drop for two-phase flow is a function of geometry, surface roughness,

Reynolds number, friction factor and fluid properties. All mentioned values are functions of a void

fraction term. To solve this problem some methods use flow pattern recognition, based on void

fraction calculation. Numerous flow pattern maps have been proposed for predicting flow pattern
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in two-phase flow. For every fluid the mentioned map is unique. To simplify the solution let us
define the pressure drop as a function of void fraction.

There are many experimental correlations for friction pressure drop determination
(Lockhart and Martinelli, 1949), (Chrisholm, 1969), (Friedel, 1979), (Fuchs, 1975), (Beggs and
Brill, 1986) etc. The first mentioned correlation does not account for mass flux effects and over
predicts pressure drop comparing with others. (Friedel, 1979) correlation was developed from a
25,000 experimental data sets, but has huge uncertainty up to 50%. Chrisholm (1969) developed
correlation based on Lockhart-Martinelli’s work, adding parameters to account fluid properties and
mass flux. Fuchs correlation was proved by experiments with R12 refrigerant flow and has only
10% discrepancy from the experimental data. (Neeraas et al., 1993) conducted experiments with
hydrocarbons, and found a good agreement of Fuchs method with proposed corrected function.
Fuchs correlation is based on two-phase enhancement factor which is a function of vapor fraction

x, Froude number and density ratio:

%~ (@)

(@),- (@),

Additionally, Fuch presented an empirical correlation for £ as a function of liquid quality x:

&= (B.5a)

& = 6740.33172 * x'* — 36759.087741 » x'° + 85275.119778 * x° —
110168.145383 * x® + 87170.939162 = x” — 43797.819250 * x° +
+14021.596088 * x> — 2790.120307 * x* + 324.432076 * x> —
—18.611125 * x? + 2.414768 * x — 0.000141 (B.5b)

Correction has been made by Neeraas experimenting with propane, methane and ethane:

d
() - (enfore) s oo

where the g {%} term depends on flow pattern and defined according to the flow map for different
9
regimes:
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P 1 P
—t=— or —> 20 (B.7a
7 {Pg} 0.3 ! Pg )
p o\ p
g {—l} - <—l> for 6.5 <L <20 (B.7b)
Pg g Pg
g {ﬂ} = 6.504 for 2L <65 (B.7¢)
Pg Pg

Vapor fraction correction:

sin(mx) + sin(mx3)

b(x) = 169 , forx <0.725 (B.8a)
7
| — 0.725\%%
b(x) =1 —sin E(W) , forx>0.725 (B.8b)

To model the two phase pressure drop the vapor fraction was assigned. Then the densities
were calculated for condensation temperature values. With these known parameters the pressure
drops were computed by the help of formulas B.3, and B.4. The total pressure drop was defined

using formula B.1

B 2. Condensation Heat Transfer Coefficient
To develop a discussion about heat transfer in the condensation process let us introduce
first with assumptions. This discussion is related only to a single component fluids. The vapor phase
is assumed to be saturated and only liquid phase is responsible for the heat transfer. With high flow
rates inside of the tubing the liquid phase forms first at the inner walls of the tube. Interfacial shear
creates turbulent flow in the liquid film. Therefore, convective heat transfer process is dominated

over conduction.

Internal Condensation Heat Transfer
Different models exist for prediction of convective condensation for pure components. The

attention was paid to the researchers published their work in heat transfer correlations for
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condensation of organic fluids. Among all of them the main interest was rewarded to the modified
Boyko and Kruzhilin (1967) correlation (BKC) and Thome’s correlation (2003). The last one is
based on a database of results from experiments with hydrocarbons and pure refrigerants. Thome’s
formula has a minimum of empirically determined constants and dependents more on the liquid
thermal conductivity. The modified Boyko and Kruzhilin correlation is interesting because the
modification is made based on experiments with high-pressure hydrocarbons and more depended
in mass fraction and density ratio. Neeraas (2003) found that BKC with some correction gives a

good agreement to his experiments with propane. The modified heat transfer coefficient correlation

h@%:@moh+x{%_1] (B.9)
g

where k,, is a function of liquid fraction x;:

is in the following matter:

1

kK =—
% 1.15-0.275x;

(B.10)

h;, is the heat transfer coefficient if liquid would occupy all cross sectional area. This
parameter can be found from known Nusselt number (N,,), diameter of the tubing, and thermal

conductivity of the fluid at the given temperature.

External Forced Convection

External forced convection is developed from the model of a flow around cylindrical bodies
(Incopera, 1990). The condenser was assumed to have several cylindrical tubes and external forced
convection manages the heat transfer coefficient, which tends to increase with air velocity. With
further increase of air flow across the tubes the boundary layer does not manage to follow the single
tube’s curvature and forms a separation at the rear side of the tubes. (Cengel, 2010) suggests the

following correlation from Churchill and Bernstein for the fluids with RePr > 0.2:
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4/5

0.62 Rel/2prt/3 Re */®
NU forcea = 0.3 + L P”+(282000 ] (B.12)
[1 + Pr2/3]

The external heat transfer coefficient is determined from known outer diameter of the tubing

(Dtuping) and air thermal conductivity (A4):

Nu forced Dtubing
/lair

(B.14)

hair =

The air properties are evaluated at the film temperature defined as an arithmetic mean
between the wall and ambient air temperature:

Twair + Tai
Tfilm — % (B.15)
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APPENDIX C SYSTEM SPECIFICATION

C 1. The Overall Well Design Scheme

The design scheme is shown in the Figure C.1. The main parts are explained in the Table C.1.

@ || QP 132

\

Figure C.0.1: Overall specification scheme (not to scale).
Only one brine pump assembly is shown.

Table C.0.1 Overall Well specification

# Name Data

1 Surface casing 20” OD

2 Production casing 16” OD

3 Intermediate casing 95/8” OD

4  Intermediate casing 13 5/8” OD

5 Production tubing 570D

6 w.f ESP Schlumberger ESP D5S800N 67 stages
7  Production casing 770D
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8  Production tubing 2” 0D

9  Tubing 4” OD

10 Screen pipe 6.625” OD
11  Casing 95/8” OD
12 DHE Packer 95/8” OD
13 ESP Packer 6.0” OD

14 ESP REDA ESP SN8500
15 Casing 6 5/8” OD
16  Dual string packer 6 5/8” OD
17  Perforated tubing 6 5/8” OD

18  Turbine-generator

Single stage axial turbine

Blades radius 2.5 inch
Shaft revolutions 19,000 rpm
Electric power produced 297.4 kW

C 2. Casing Design

The casing design was done for the chosen casing scheme with setting depths borrowed
from the already drilled well Beulah Simon #2 (McCoy,1980). The following results contain
burst/collapse calculations of all segments of the casing program. The casings selection is done by

assuming the maximum allowable stresses and safety margins for the worst case scenarios

(Rahman, 1995).
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Casing pipe 6.625" OD (5.921" ID)
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Figure C.0.2: Casing program.
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Table C.0.2:

Input data for surface casing calculations

Pore pressure gradient, psi/ft 0.465
Mud weight, ppg 17.8
Collapse Safety Factor 1.1
Burst Safety Factor 1.2

Pore pressure below 12,555 ft

P = 583843+3.31%(D-12,555)

Surface casing pipe 20” OD, inch

20

Fracture pressure gradient on the interval 0-3500, ppg

18

Table C.0.3: Surface casing design calculation results

4 Grade Weight Collapse Burst Interval, ft Body yield ID # of
Ib/ft resistance  resistance str. 10001Ibs inch  stands
1 J-55 106.6 770 2410 0-990 1685 19 33
2 K-55 133 1500 3060 990-2910 2125 18.73 64
3 K-55 169 2500 3910 2910-3510 2692 18376 20
Pressure, psi
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0 , e« Burst Design line
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500 N .
K / \ / ————— PO
1000 N . .
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= 1500 A . / ’/ \ Pi
'f;: 2000 \‘\ - : /’ .. Rack rating Collapse J-55#94
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\\. \.' / . . \ , == == Rack rating Collapse k-55#169
3000 N —\ 4
/ \ \ / Rack Rating Burst J-55#94
3500 R S E— YN Rack Rating Burst K-55#133
4000

== == Rack Rating Burst K-55#169

Figure C.0.3: Surface casing burst collapse design diagram.
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Table C.0.4: Intermediate casing input data

Intermediate casing pipe, inch 13.375
Depth, ft 12100
Pore pressure gradient, psi/ft 0.465
Mud weight, ppg 17.8
Fracture pressure gradient at 12100, ppg 18.4
Collapse SF, ppg 1.1
Burst SF 1.2
BOP pressure, psi 5000

Table C.0.5: Intermediate casing design calculations result

#  Grade Weight Collapse  Burst Interval, ft Body yield ID # of stands
Lb/ft resistance  resistance str. 1000lbs  inch
1 HCP-110 68 2910 6910 0-2610 2139 12.415 87
2 V-150 72 2880 10090 2610-5610 3115 12.347 100
3 HCQ-125  80.7 4990 9490 5610-9750 2914 12.215 138
4 HCQ-125 86 6240 10220 9750-12090 3129 12.125 78

Pressure, psi
0 3000 6000 9000 12000 15000

1 102 ! / [ re
5200 \ \k l // \ " = « +Collapse Design
3300 \ \\\ // \l e« Burst Design
4400 i\ —h
“:, 5500 “‘:“ Mud depth
E- 6600 '\ // /I \\ e Burst Design Curve
7700 // /I/ \ Rack Rating Collapse
8800 \, \ Ea(ljci_%{la(gﬁ%SCollapse V-
9900 \ . — \ ﬁ%%lﬁ%ating Collapse
11000 N SR — - -Rack Raiing Burst HCP-
12100 110#68

Figure C.0.4: Intermediate casing burst collapse design
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Table C.0.6: Production casing design calculations result

Production Casing pipe, inch 9.625
Depth, ft 14720
Pore pressure gradient, psi/ft 0.465
Mud weight, ppg 17.8
Fracture pressure gradient, ppg 18.6
Collapse SF 1.1
Burst SF 1.2
Pore pressure below 12,1001t P=5838.43+3.31*(D-12,555)

Top of pressured zone is at 12,555.77ft with pressure of 5838.43 psi (from P=0.465*D)
Pressure at target depth is 13,015 psi (drilling data from Dobson, 1980)

Table C.0.7: Production casing calculation results (assuming vertical well)

# Grade Weight Collapse Burst Interval, ft Body yield ID # of
1b/ft resistance resistance str. 1000Ibf  inch stands
1 V-150 53.5 8960 14860 11,900-13,190 2332 8.535 43
2 T-95 75.6 14430 13770 13,190 - 14720 2100 8.031 51
Pressure,psi ~~  TTTTT Po
4000 8000 12000 16000
, = + «Casing Design
] — i
/ e« Burst Design Line
y
/ | = Rack Rating Burst
] V-150#53.5
i == == Rack Rating Burst
| T-95#75.6
A . | Rack Rating
N Collapse T-95#75.6
\\\ \ Rack Rating
R Collapse V-
150#53.5

Figure C.0.5: Production casing burst collapse design.
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C 3. Bending Force of the Last Casing String
The last casing is a subject to bend to maximum 90 degrees with horizontal well completion
design. Assuming uniform contact with the borehole the calculation results in the Table 0.6 were
performed according to Rahman’s book. The total length of the last segment casing T-95 consists

of 1225.2 ft of vertical section, 478.56 ft of bending section, and 914.4 ft of horizontal offset.

Table C.0.8: Bending stress calculation results

Cross sectional  Axial stress w/o Additional Total stress ~ Minimum acceptable
area, inch? bending, psi stress to in a pipe, psi yield stress, psi
bending, psi
22.0928 7,515.28 39,031.644 45,546.924 95,000

Table C.0.9: Hook Load calculations

Surface casing Intermediate casing Production casing

Hook Load, Ibs 338,450.9 422,108.1 149,873

C 4. System Design

The detailed scheme of the completion design is shown in the Figure C.7. Here, the DHE
is connected in series with two ESP assemblies with packers and extension tubings. Basically, the
outer DHE pipe is continues as extension pipe and connected to the ESP. This simplifies the
installation to one single down trip operation. Two ESP assemblies are necessary for emergency
case if one of the pumps would stop working. In this case the well intervention is not needed. The
second ESP will continue brine circulation. To rearrange the flow the bypass valve is actuated. The
OD of the ESPs assemblies was chosen in such manner that allows installation through the ICD
portion of the well. The cable cord is running from the surface and connected to the tubing, w.f.
pump, DHE, and extension pipe to the ESPs by clips. When the setting depths are reached for each

part, the electrically driven packers are actuated simultaneously.
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Table C.10: Horizontal well data

Production side 250m (820.21 fi)

Casing 9 5/8 inch OD
Perforations 1 inch perforations with 20 shots per foot.
Gravel Pack 20/40 size sand with 135D permeability
ICD Screen pipe  6.655 inch ID

Insulation interval 800m (2624.67 ft)
Casing 7.0 inch ID

Injection side 15m (52.5 ft)
Perforations 0.6 inch perforations with 10 shots per foot

Extension pipe

5 inch OD (see Figure 0.6) used for open hole completion

Packer Perforations Extension pipe
l={>\
=TT
@ Brine flow d@ﬁk Sand
Figure C.0.6: Injection side design scheme, when no casing is used.
Table C.11: Geometric data of chosen casings and tubing in DHE
DHE size, m

Casing 1 Diameter inner 0.1536
Diameter outer 0.1936

Casing 2 Diameter inner 0.2190
Diameter outer 0.2445

Cement sheath ~ Diameter outer 0.3105

Coiled tubing Diameter inner 0.1143
Diameter outer 0.1000
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Figure C.0.7: Completion design. Modified from (Centrilift, B. H., 2008).
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The w.f- pump assembly is illustrated in the Figure C.8. The assembly is installed inside
the 7” tubing, which is sealed on both sides. The shell design is demountable. The standard ESP is
located inside the shell. The w.f. enters from the top, cools the electric motor, captures by the pump
and leaves from the exit. The load tubing is holding the entire weight of the assembly. The w.f. ESP
assembly can be hanging on the load tubing inside the casing or additional dual string packer can

be involved into design scheme to support the pump and provide hot stream flow through the

packer.

Inlet

Quter shell of ESP assembly

Cable and bypass clamps

_Motor

Load tubing

Pump

Exit

Figure C.0.8: W.f. ESP assembly. Modified from (Centrilift, B. H., 2008).

One of the important aspects of the system is insulation. The cold and hot side tubings
should be insulated in order to achieve mentioned power production. Insulation should be compact

in size, very effective, and thermally and chemically resistant to reaction with carbon dioxide. One
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of the suggestions is Hyperlast Offshore Technology used by The Dow Chemical Company. The
insulation material has low thermal conductivity of 0.15 W/m*K and used in offshore petroleum
industry for over 30 years.

The most valuable device of the system is the brine ESP. There are several cases when ICD
completion was protected by the gravel pack. The procedure of gravel packing the outer space of
the ICD is well explained in (Augustin et al., 2006) as a real industry example. The gravel pack
sand is pumped between the ICD OD and casing ID through the industry available tools. However,
the classical gravel packing method is complicated, costly, and is not suitable in this project. If the
gravel packed system is implemented, the brine pump assembly is required to squeeze through the
screen pipe initial diameter. There is a great chance to ruin the completion in this case. Thus, the
ICD and the sand prepacked screened protection used by Baker Hughes is a better choice, which is
completed into one peace with the DHE installed inside. The brine pumps connected to the DHE
through the perforated tubing. In this way the power cable for the pumps is fastened by the clamps
along the entire system parts to the surface.

AIlICD completions have standalone-screen filtration technique to protect the device from
unwanted sand invasion (Henriksen et al. 2005). As an innovative proposal may be interesting the
idea of using the gravel pack sand of different mesh size as a pressure resistance in the ICD instead
of complicated multipath design. At this technique the prepacked screen pipe will work as a
pressure resistance and protect the equipment from the sand invasion. Then the prepacked screen
pipes with different size sand filling are separated by the packers to achieve desired brine inflow

control.

C 5. Surface Equipment
The switchboard is needed to manage the electric power distribution of the unit, as well as

make an electric arrangement of the electric system (Figure C.9).
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Figure C.0.9: Electrostart ESP switchboard.

The approximate electric scheme is shown in the Figure C.10.

Net power output

Condenser fan

Packer line

ESP line

QDO Y,

Figure C.0.10 Approximate electric scheme.

The- electric switchboard distributes electric power generated in the system to condenser

fan, ESP line, Packers line, and consumer. The ESP line consist of three pumps connected in
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parallel. In case of one brine ESP is off the second ESP with bypass valve (V) is actuated. The
packer line is used to actuate packers at the installation work.
The air driven condenser is used to cool the working fluid. Simple scheme is shown in the

figure C.11. The red and blue arrows show the w.f. hot inlet and cold outlet. The air is driven

vertically up.
"
|:> /E
Figure C.0.11: Condenser schematic.
Table C.12: Condenser parameters

Parameter Value
Outer diameter tubing, m 0.03
Wall thickness, m 0.001
Tubing Material Copper
Length, m 16
Tubing thermal conductivity, W/mK 385
Tubing wall roughness, m 2e-6
Number of tubings 250
Distance between tubings, m 0.02
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APPENDIX D SYSTEM INSTALLATION PROCEDURE

is described starting from the perforation operation after the casing design is already run and
cemented. After the perforation work, the system is run into the well as a whole assembly (starting
from brine pumps and finishing with tubing holder) at one trip. The main parts of the system such
as w.f. packer and pump, cold stream tubings, turbine assembly with the packer will be running
together inside the production casing. As soon as the brine pump assembly is reached the TD and
tubing is set in the wellhead, the electric signal initiates the packers latching mechanisms
simultaneously. The next step is electric wiring work according to the scheme; checking the
circulations of the brine and w.f. loops; connection the w.f. condenser with the wellhead through

the safety valves; substitution of the completion fluid by the liquid CO,, and running the system

The system installation procedure is introduced in the Table D 01. The installation process

with necessary adjustments to receive the maximum net power production.

Table D 0.1: System installation procedure

Step Operation Notes
1 Run perforation gun into the well to the 18,352.23 ft MD.
2 Perforate 16m (52.5ft) length injector side Injector
3 Remove perforation gun perforation
4 Run perforation gun into the well to the 14,907.35 ft MD.
5 Perforate 200m length producer interval Producer
6 Remove perforation gun perforation
7 Pumping test to ensure that both perforation intervals (producer and

injector) provide the required flow rate. If required, increase

perforation length
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Run two brine pump assemblies 5.5 OD with packers 7.0 OD at

15,000 ft MD

Running

the system into the

9 Run 100 ft 5.5 inch perforated pipe as a separation interval from the | well occur at one
DHE. The brine will enter the pipe through the perforated holes and | trip. The system
later the ESP. Clips the cable to the hanging tubing. run starts from two

10 Run ICD into the 14,907.35 ft MD with DHE inside of the | brine pump
prepacked sand screens 250m (820.21 ft) assemblies  with

11 | Run the DHE packer and the outer production tubing assembly. | packers, DHE with
Setting depth is 1409.35 ft MD right after the bending section. ICD and

12 Run 5inch OD 515.35 ft length insulated tubing, connected to the | prepacked screens,
DHE packer by additional packer 7 inch OD. tubings, and w.f.

13 Run w.f. pump assembly, connected to the insulated tubing. pump. The final

14 | Run 5 inch OD tubing above the w.f. ESP. equipment is

15 | Run Turbine dual string packer with turbine-generator assembly on | furbine assembly
top. Setting depth is 20 ft below the surface. with packer.

16 Run 5 inch cold stream tubing to the well head.

17 | Connect the cold stream tubing to the well head by tubing holder

18 Connect power cable to the electric switch board.

19 Latch all packers at ones using the power cable installed with the
system in previous steps.

20 Circulate the w.f. zone by the w.f. pump. Check for the integrity of
the system.

21 Drive the brine by brine pump and check the temperature change at | Starting the
the DHE and flow rate. system

22 Connect the condenser to the wellhead.
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23 Substitute completion fluid in the w.f. zone (vertical well and
horizontal DHE section) by carbon dioxide fluid.
24 Start the system. Maintain the brine and w.f. flow rates as prescribed

for this particular application, check the temperature of the w.f. at

the DHE and condenser.

Total measured depth is 18,404.73 ft (From the top to the end of injector perforations).
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