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ABSTRACT 

Three studies were performed to determine the effects of RS on body weight and 

adiposity in HF DIO, diabetic C57BL/6J and GLP-1 receptor KO mice as well as genetically 

obese ZDF rats.  

The first study was a dose-response experiment for HM260 (0, 15, or 28 g/100 g diet) 

against the anti-diabetes drug SG (Januvia®) (0 or 0.4 g/100 g diet) in HF DIO C57BL/6J (n=55) 

mice injected with STZ in order to assess synergy. The most effective combination was used in 

the second study, the purpose of which was to determine the mechanistic importance of GLP-1 in 

GLP-1R KO (n=25) in aforementioned synergy. HM260 and SG interact synergistically in HF 

diet to reduce adiposity at the 28% HM260 level, and SG appears to promote increased active 

GLP-1 when combined with 28% HM260. Combination treatment resulted in increased energy 

expenditure and attenuated weight gain in mice, and these activities are dependent on a 

functioning GLP-1 receptor. GLP-1 receptor may help regulate serum GLP-1 concentration by 

facilitating clearance.   

For the third study, the fermentation response of ZDF rats was characterized using four 

diets differing in starch source/type: AC, HM260, DWGC, a novel HMWG, which contained 0, 

25, 6.9, and 25% RS by weight, respectively. Empty cecum weight and short chain fatty acid 

concentrations were significantly increased for all fiber-containing groups compared to the non-

fiber control. Animals fed the whole-grain RS had a 30% greater effect than non-whole-grain 

RS. However, no significant differences in body weight or percent body fat were found for any 

diet group. These results demonstrate a synergistic effect between whole-grain and RS, and 

provide evidence for greater potential health benefits with whole-grain varieties of RS. ZDF rats 

have a defective leptin receptor, and, thus, beneficial phenotypic changes observed in previous 

studies in rodents fed RS appear to require leptin signaling.
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CHAPTER 1 

INTRODUCTION 

 

Significance of Research 

Over the past several decades, Americans have become an exceedingly overweight and 

obese population. According to the CDC, approximately 35% of adults and close to 17% of 

children and adolescents (aged 2-19 years) in the US were obese between 2009 and 2010. This is 

a dramatic increase in prevalence from the 1980s and 1990s when only 15% of adults and 5% of 

children fit into the obese category. The problem of overweight and obesity – defined as having a 

BMI of 25-29.9 or ≥30, respectively – is not isolated to the US. According to the WHO, the 

worldwide obesity rate has nearly doubled since 1980 with 1 out of every 10 adults around the 

world considered obese in 2008. In 2010, 43 million preschool children were overweight or 

obese, a 60% increase since 1990 (de Onis et al. 2010). The prevalence of obesity-related 

diseases and conditions such as DM has also increased.  

Type 2 DM is a chronic metabolic disorder characterized by altered glucose homeostasis. 

It is distinguished from other types of DM, such as type 1, gestational and maturity onset 

diabetes of the young, by hyperglycemia coupled with hyperinsulinemia: the body’s tissues 

become less responsive to insulin over time, so greater concentrations of insulin are required to 

regulate BG. Eventually, the beta cells responsible for producing insulin fail and full-blown type 

2 DM develops. From 1980-2010, the crude prevalence of diagnosed diabetes increased by 

176%; that is, from 2.5% to 6.9% nationwide (CDC, 2014). Almost two million American adults 

were diagnosed with diabetes in 2010 alone (CDC, 2014). Moreover, statistics show that 60-90% 

of patients with type 2 DM are or were obese at some point in their lives (Stumyoll et al. 2005). 

Finding an effective means of preventing and/or treating obesity and diabetes is of great 

importance to public health. The burden on national healthcare systems and personal finances is 
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enormous! In 2008, the annual medical burden of obesity was estimated at $147 billion with 

medical costs for obese individuals approximately $1,400 higher than those for their normal 

weight counterparts (Finkelstein et al. 2006). The direct medical costs associated with diabetes in 

2007 were $116 billion; medical costs for diabetics were, on average, 2.3 times higher than for 

non-diabetics (CDC, 2014). 

While there is no single, overriding cause of obesity, much of the blame has been placed 

on the elevated fat content of modern “Westernized” diets. Dietary fat contributes to weight gain 

by increasing the energy density of the diet while also encouraging overconsumption (Rolls & 

Bell 1999; Rolls, 2000; Kim & Popkin 2006). However, any energy-yielding macronutrient, if 

consumed in excess of the body’s needs, can result in weight gain. Carbohydrates are not 

blameless in the battle against the bulge; since the 1970s, the average total daily kcal intake has 

increased (by approximately 500 kcal per day), as has average total dietary fat intake, but 

percentage of kcals from dietary fat has not (Gross et al. 2004). In fact, according to Chanmugam 

et al. (2003) it has decreased! Nearly 80% of these excess kcals are derived from carbohydrates, 

especially refined and processed grain products such as corn syrups. 

According to Gross et al. (2004), dietary carbohydrate consumption steadily decreased 

from 500 grams per day in 1909 to 374 grams per day in 1963, thanks mostly to reduced whole 

grain consumption. As a result, Americans experienced a 40% drop in the amount of DF 

consumed. Since 1963, dietary carbohydrate levels have rebounded to the original 500 grams per 

day level; however, DF consumption has not increased proportionately. Consumption of high-

carb, low-fiber foodstuffs results in an intense, rapid rises in BG.  This is believed to contribute 

to the diabetes epidemic by promoting weight gain and insulin resistance and then overtaxing the 

pancreas.  The result is a vicious cycle of inflammation that exacerbates and confounds the 
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body’s ability to regulate BG. These findings indicate an increase in refined grain consumption 

over time, and denote a substantial positive correlation between refined carbohydrate 

consumption and disease (Venn & Mann 2004; Aune et al. 2013). 

Lack of DF also denies human commensal bacteria important substrates for metabolism 

and growth. The human body, especially the lower GI tract, is teeming with microorganisms. In 

fact, bacterial cells are believed to outnumber human somatic and germ cells by at least one 

order of magnitude (Pietzak, 2004). The greatest concentration of these microbes – 

approximately 10
11 

per gram of contents – resides in the colon and is believed to participate in 

the maintenance and proper functioning of several human metabolic processes (Savage, 1977). 

Among these occupations is the breakdown of indigestible plant fibers, also known as microbial 

fermentation (Hill & Peters 1998).  

The major metabolic products of these fermentation reactions are SCFAs – mainly C2, 

C3, and C4 – as well as carbon dioxide and hydrogen gases (Topping & Clifton 2001). SCFAs, 

of which butyrate is the most well-studied (Schwiertz et al. 2002), reduce the pH levels in the 

intestine, and are readily absorbed and used as energy by colonocytes, which preferentially 

utilize C4, and other tissues such as the liver and muscle, which metabolize C2 and C3, 

respectively. It is estimated that up to 10% of human basal energy needs are provided by SCFAs 

(Hooper et al. 2002). SCFAs also play a role in many of their host’s biological processes, 

including cell proliferation and differentiation, regulation of inflammatory response, gut 

hormone secretion, and regulation of AT stores (Mentschel & Claur 2003; Toden et al. 2007).  

GLP-1, a hormone produced by the L endocrine cells of the terminal ileum and colon, in 

response to nutrient intake, is capable of crossing the blood brain barrier and affecting neuronal 

signaling in the brain. It has garnered a significant amount of scientific and clinical interest due 
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to its effect on satiety and FI as well as insulin sensitivity and BG in individuals with insulin 

resistance and/or full-blown DM (Neary et al. 2005; Drucker 2006; Janssen et al. 2012). In fact, 

it is so effective at improving glucose homeostasis that it precipitated the invention of several 

anti-diabetes medications. SG, a DPP-4 inhibitor, is one such drug. Manufactured by Merck & 

Co. under the brand name Januvia®, SG extends the half-life of circulating GLP-1 by reducing 

its rate of enzymatic degradation and extending the duration of its effects.  

Treatment for both conditions, i.e. obesity and diabetes, includes a combination of diet 

and exercise. However, the effectiveness of such interventions has been questioned, not because 

they do not work, per se, but because people dislike both the effort and discomfort involved in 

dietary restriction and exercise. Most individuals appear incapable of making the deliberate, 

long-term lifestyle changes necessary for sustained weight loss and improved insulin sensitivity, 

as evidenced by consistent failure to lose sufficient weight and/or regaining much of the weight 

lost five years post-adherence to a structured weight loss program (Friedman, 2004). This is why 

heightened attention is being paid to new food additives and/or products that improve consumer 

health without significant, conscious mental effort or radical changes to one’s diet and lifestyle. 

DF is a very popular choice among food scientists and nutritionists alike, since increased 

consumption is correlated with reduced FI (by promoting satiety through mechanistic and 

hormonal pathways) (Heaton, 1973; Slavin, 2005) as well as improved weight status (by diluting 

the energy density of the diet in which it is found. After water, which increases food volume 

without adding any energy [i.e. 0 kcal per gram], fiber contributes the most food volume for the 

fewest kcal per unit volume [1.5-2.5 kcal per gram]) (Rolls & Bell 1999; Rolls 2000; Kim and 

Popkin 2006).  This also affects fiber’s role in BG metabolism (by virtue of its indigestibility and 

interference with the absorption of other dietary components within the small intestine) as well 



5 

 

as its prebiotic capacity (by acting as a substrate for the metabolism of several different species 

of commensal bacteria.) (Marlett et al. 2002; Anderson et al. 2009).  

RS is a relatively new addition to the category of DF, but it has a great deal of clinical 

and industrial potential. It has reduced caloric value and glycemic index compared to most 

starches. It is also readily fermented, producing very high concentrations of SCFAs, especially 

C4, (Cummings et al. 2001) and increased bacterial biomass. Several animal models, e.g. rats 

(Keenan et al. 2006; Zhou et al. 2006; Zhou et al. 2008; Shen et al. 2009), mice (Zhou et al. 

2009; Zhou et al. 2012), dogs (Massimino et al. 1998), and pigs (Regmi et al. 2011), respond to 

RS supplementation with increased circulating levels of GLP-1, which is correlated with 

decreased FI, body weight, and adiposity as well as improved glucose homeostasis.  These 

changes have not appeared to be  readily achievable in humans (Robertson et al. 2005; Johnston 

et al. 2010). However, a recent study by the Robertson lab found increased GLP-1 in human 

subjects fed RS (Bodinham et al. 2014). 

Certain environmental factors may be interacting to blunt the effects of RS and other 

fermentable fibers in the diet. First and foremost, we no longer consume sufficient amounts of all 

types of DF, including RS. The US Department of Agriculture suggests that, regardless of age, 

the adequate intake for DF is 14 grams per 1000 kcal consumed. According to King et al.. 

(2012), average total DF intakes for Americans have hovered around 15 grams per day for the 

past 25 years.  Since Americans do not consume sufficient amounts of DF overall they are not 

likely to meet the recommended intake values of RS either. US citizens consume an estimated 

range of 3-8 grams of RS per day (Murphy et al. 2008). Warshaw (2007) suggests consuming at 

least double that, i.e. 15-20 grams of RS per day, which is equivalent to the amount of RS in the 
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diets of people living in less developed countries.  Their diets are stereotypically richer in whole-

grain cereals, fruits, and vegetables.  

Secondarily, macronutrient content of the diet can have a profound effect on colonic 

fermentation, although the exact mechanisms through which this occurs are not fully known at 

this time. Several studies conducted by and in conjunction with Dr. Michael Keenan’s laboratory 

at Louisiana State University have reported difficulty preserving fermentation of HM260, a type 

of high-amylose corn starch, and its effects in conjunction with HF diets (Zhou et al. 2009; 

Senevirathne et al. 2009; Goldsmith et al. 2010; Charrier et al. 2013). That is, the stereotypical 

outcomes associated with fermentation – i.e. increased empty cecal weight, reduced cecal pH, 

and reduced body weight and adiposity – were not as robust as previously documented studies 

using low- or moderate-fat diets. This led us to hypothesize that the high dietary fat content 

altered the intestinal microbiota and/or gut hormone – namely, GLP-1 – production in such a 

way as to diminish fermentation of RS and prevent or reduce the intensity of commonly 

associated physiological outcomes of RS consumption. 

The aforementioned potential of RS as a tool for controlling the obesity and diabetes 

epidemics warrants investigations into the mechanisms behind and means of overcoming subpar 

levels of fermentation. This dissertation is devoted to the scientific and clinical advancement of 

that goal.  

Objectives 

1. Determine if the full effect(s) of HM260 supplementation can be rescued on a HF diet 

through combinatory treatment with the anti-diabetes drug SG.  

2. Determine the minimum effective dose of HM260 necessary to achieve synergy with SG. 
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3. Determine if the biological effects associated with the combination treatment are 

dependent on GLP-1 receptor signaling.  

4. Determine the efficacy of HM260 versus its whole grain variety of RS in an insulin 

resistant rodent model of obesity.  

5. Determine if leptin signaling is required for production of beneficial phenotypic effects 

associated with fermentation of RS. 

Proposal 

Study 1 - Investigating synergistic effects between RS and the drug SG 

SG has been approved by the FDA for the treatment of type 2 diabetes in the US since 

2006. As previously described, it works by inhibiting the actions of an enzyme called DPP-4, 

which degrades active GLP-1 in the circulation. GLP-1 functions as a satiety signal and 

increased secretion is generally associated with reduced FI and body weight in both animals and 

humans. GLP-1 is also an incretin hormone, meaning that it increases insulin secretion from beta 

cells and improves insulin response. While use of SG results in improved glucose control, it does 

not result in improvements in weight status and adiposity. This is in contrast to GLP-1 agonists 

such as extenatide, which do result in improved adiposity.  

Our lab surmised that reduced degradation does not sufficiently stimulate the GLP-1 

receptor system to cause weight loss. SG administration coupled with HM260 supplementation, 

which stimulates endogenous GLP-1 secretion, may succeed where both compounds failed: 

acting synergistically to augment GLP-1 production, resulting in weight loss in addition to 

improved insulin sensitivity on a HF diet. That is, SG may rescue the effect of HM260 that is 

attenuated with feeding of a HF diet, and HM260 may amplify the SG effects by increasing the 

endogenous synthesis of active GLP-1. 
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The first step in this investigation was a 2x3 factorial study in order to determine the 

optimal combination of SG and HM260 in the diet. “Optimal” is defined as that which results in 

the greatest increase in serum concentrations of GLP-1 active, greater insulin sensitivity, and 

greater reductions in body weight and/or body fat. The most effective combination was used in 

the next study, which investigated the importance of GLP-1 receptor signaling in the synergistic 

interactions between the two substances.  

Animals were made obese through administration of a HF, high-energy diet then injected 

with a low dose of STZ in order to induce diabetes. Next, the animals were placed in one of six 

groups and placed on HF diets combined with one of two levels of SG (0 or 0.4% by weight) and 

one of three levels of HM260 (0, 15, and 28% by weight) for 10 weeks. After the appropriate 

amount of time had elapsed, animals were euthanized and blood, cecal contents, and abdominal 

fat pads were collected in order to determine the following endpoints: the concentration of 

insulin and GLP-1 in the plasma, the pH and concentration of SCFAs in the cecal contents, 

empty cecum weights, cecal content weight, and visceral fat mass.  

Study 2 – Investigating importance of GLP-1 receptor system in RS and SG responses 

From the previous study, we determined that the most effective drug and functional food 

combination was 28% HM260 coupled with 0.4% SG. The next step in our research was to 

investigate how this combination influences weight loss and STZ-induced diabetes in WT 

C57BL6 and age-matched GLP-1 receptor KO mice. The same timeline and endpoints of interest 

that were used in the previous study were also used here. Deviations from the previously 

described protocol include the type and number of levels of independent variables used for the 

study – study one utilized the presence or absence of SG and one of three levels of HM260 

supplementation, while the second study utilized two animal strains and presence or absence of 
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the SG+RS combination – and the use of metabolism cages for indirect calorimetry 

measurements during the eighth week of treatment.  

Study 3 – Comparing fermentation profiles of two different types of RS 

The ZDF rat possesses a mutation in the leptin receptor that causes it to spontaneously 

develop obesity and insulin resistance between 7-10 weeks of age (Srinivasan & Ramarao 2007). 

Scientific literature characterizing the fermentation response of the animal model is sparse, 

almost nonexistent. Whether or not this animal model’s genotype has altered the microbiota to 

make it unresponsive to treatment with RS is unknown, as well as if RS supplementation is 

sufficient to alter their gut microbial composition and induce weight loss. However, there could 

be fermentation of RS, but no phenotypic changes if leptin signaling is required. 

In order to fill in this gap in the literature, and in order to test the efficacy of a new RS 

product on fermentation and phenotypic changes, we proposed the following study: A one-way 

ANOVA featuring pre-diabetic ZDF rats fed one of four diets varying in presence and type of RS 

for 12 weeks. These diets were named according to their identifying starch component: a control 

diet made with waxy corn starch; an RS-containing diet made with high-amylose maize starch; a 

whole-grain control diet containing dent corn flour; and a whole-grain RS diet made with a novel 

functional food product, whole-grain high-amylose flour. These diets were labeled AC, HM260, 

DWGC, and HMWG, respectively.   

Upon euthanasia we collected blood, cecal contents, and abdominal fat pads to determine 

the following endpoints: serum concentrations of insulin and GLP-1, the pH and concentration of 

SCFAs in the cecal contents, empty cecum weights, weight of cecal contents, and visceral fat 

mass. We intended to characterize the ZDF gut microbiota down to the phyla and genus levels 

using NGS techniques in addition to targeted qRT-PCR to quantify the amount of butyrate-
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producing bacteria (i.e. Lactobacillus, Bifidobacteria, and Clostridial clusters IV and XIV a & 

b). However, we decided against the former after no phenotypic changes were documented in the 

ZDF rats. The latter has been delayed until culturing of representative bacterial species and 

extraction of DNA for improved standard curves is completed. Standard curves made from 

arbitrary DNA (pooled samples) were not optimal. 

Typically, the standard curve is generated from a dilution series constructed from a 

“reference” sample. qRT-PCR is performed on both the experimental samples and reference 

standards. Relative values for target abundance in each experimental sample are extrapolated 

from the standard curve generated from the reference standard. While the absolute values 

calculated from the experimental samples are meaningless, the relative differences in nucleic 

acid abundance between the samples are accurate. The reliability of any relative qRT-PCR can 

be improved by (1) including an invariant endogenous control in the assay to correct for sample 

to sample variations in RT-PCT efficiency and errors in sample quantitation, and (2) developing 

the dilution series from known template concentrations, which is what our lab is currently doing.  

Hypotheses 

Study 1  

1. A combination of RS, which increases endogenous GLP-1 production, and SG, which 

slows the rate of GLP-1 degradation in the bloodstream, will cause a significantly greater 

increase in circulating GLP-1 concentrations than either treatment alone under HF diet 

and type 2 DM conditions. This also will foster better glycemic control and lead to 

greater weight loss than either treatment alone. 

2. The combination of 15% and 0.4% (by weight) for RS and SG, respectively, should be 

sufficient to induce biologically effective increases in circulating GLP-1 concentrations. 
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Study 2  

3. If improvements in glucose homeostasis and adiposity levels are dependent upon GLP-1 

activity, then the combination of RS+SG will fail to produce fat loss and/or improved 

insulin sensitivity in GLP-1 receptor KO mice.  

Study 3 

4. ZDF rats will respond to RS supplementation with adequate cecal fermentation as defined 

by reduced pH and increased SCFA concentrations within cecal contents, and greater 

empty cecum size. Groups supplemented with RS will exhibit reduced body weight 

and/or body fat and better BG control compared to non-supplemented groups. Animals 

fed HMWG will produce a more robust fermentation response and, thus, exhibit greater 

improvements in weight status and insulin sensitivity compared to those fed HM260, 

because the former is a source of two types of RS, while the latter contains one.   

6. If leptin signaling is required for observed fermentation to be associated with beneficial 

phenotypic effects, then ZDF with a defective leptin receptor, will not show phenotypic 

changes even if they robustly ferment RS. 

Assumptions and Limitations 

Although mice and rats possess similar digestive physiology to that of humans and are a 

commonly used animal model for humans, the results from this study do not apply directly to 

humans. Researchers who work with rodent models function under the assumption that the blood 

and tissue samples collected from animal models are representative of human subjects. 

Morphological and behavioral differences between rodents and humans include, but are not 

limited to: Coprophagy, i.e. the consumption of feces, which could influence the composition of 
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gut bacteria through consistent re-inoculation; possessing a much larger, more well-defined 

cecum; having a greater metabolic body size than humans, which necessitates higher doses of 

prebiotics than would be easily tolerated by humans; and, in the case of rodents, possessing a 

diffuse, glandular pancreas that consists of many white nodules embedded within the mesentery 

(Olds & Olds, 1979). Nevertheless, mice and rats display similar phenotypic responses to 

bioactive dietary compounds such as fermentable fibers as humans. Also, they enable us to take 

samples and measurements that would be unethical and too difficult in humans. Ergo, after pigs, 

rodents are considered the best corollary of human digestive processes.  

It is impossible to balance energy and total (fermentable and non-fermentable) fiber 

between diets simultaneously, since non-fermentable fiber is used to dilute the energy of the 

control diet to the same level as the prebiotic diets. The addition of high-amylose starch adds 

energy to the diet at 2.8 kcal/g as well as total fiber, including both fermentable and non-

fermentable (Tulley et al. 2009). The latter occurs at the levels of RS added to the rodent diets 

with using proof-of-concept dietary levels of greater than 25% of the weight of the diet. On the 

other hand, the purified cellulose used as the source of non-fermentable fiber in the control diet 

does not provide any energy to the diet. Therefore, the RS diet has greater total fiber than the 

control diet. This difference in total fiber content could be considered a confounding factor in 

this study. However, by balancing for non-fermentable fiber, instead of total fiber, we are able to 

discern which effects are occurring due to fermentation and independent of energy dilution.  

Similarly, feeding studies make it impossible to provide experimental diets that meet the 

exact macronutrient specifications of the provider. ZDF rats were developed in the mid-1970s 

when a mutation occurred in a colony of outbred Zucker rats in the laboratory of Dr. Walter 

Shaw at Eli Lilly Research Laboratories in Indianapolis, IN. Over the next few years, several 
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groups of diabetic animals were identified and re-derived, and subsequent inbreeding of selected 

pairs led to the establishment of the ZDF line. According to Charles River Laboratories 

International Inc., which maintains the line, these rats are ideal candidates for research involving 

obesity, altered glucose homeostasis, including type 2 DM, and hyperlipidemia. However, the 

company recommends that in order to effectively induce the diabetic phenotype, animals should 

be maintained on Purina #5008 and D12468 from Research Diets, Inc, for obese male and female 

rats, respectively. It is possible that, by (a) not using the exact diets specified by the 

manufacturers and (b) by replacing digestible starch with RS (regardless of type) alters the diet 

too much, making the manifestation of DM unreliable and, thereby, confounding our results 

relating to insulin sensitivity. However, by stratifying by HOMA-IR in addition to body weight, 

we compensate for any potential variation in response to non-standard diet.  

Using STZ in order to induce hyperglycemia in our mouse model is closer in etiology to 

type 1, not type 2, DM. In spite of this, the extremely small doses used should have resulted in 

partial not total beta-cell knock out, which does fit the pathophysiology of type 2 DM. Also, STZ 

produces a one-time knock down of insulin production, and research shows that beta cells can be 

regenerated. Al-Hasani et al. (2013) conducted studies in transgenic mice that show how ductal 

cells in the pancreas can be mobilized and transformed into insulin-producing beta cells, and that 

this process can occur at any age. This means that the hyperglycemic effects of this treatment 

may not be permanent, that the mice in our control groups may have experienced improvements 

in glucose homeostasis even without RS treatment.  
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CHAPTER 2 

LITERATURE REVIEW 

 

Overweight and Obesity  

The terms “overweight” and “obesity” refer to body weights that are greater than what is 

considered healthy for a given height. The most expedient method of determining healthy or 

unhealthy weight status is BMI. The BMI is calculated by dividing an individual’s weight in 

kilograms by his or her height in meters squared (kg/m
2
). A BMI between 25.0 and 29.9 is 

considered overweight, while a BMI greater than or equal to 30 qualifies as obese. There are 

different classes of obesity: 30.0-34.9, 35.0-39.9, and >40 being levels one, two, and three, 

respectively. Falling within the third class is also known as being “morbidly obese.” 

BMI is a convenient, albeit imperfect means of determining adiposity (Frankenfield et al. 

2002; Romero-Corral et al. 2008). BMI does not differentiate between fat mass and lean mass, 

and because muscle has a greater density than AT, BMI may overestimate adiposity in 

individuals that are extremely muscular, such as professional athletes, and underestimate it in the 

sick and elderly. BMI does not take into account where the body stores fat either: Abdominal or 

visceral fat, which is located around the midsection (contributing to the so-called ‘apple-shape’), 

confers a greater risk of morbidity and early mortality than peripheral fat, which is stored in the 

buttocks and thighs (also known as being pear-shaped) (Figure 1). Therefore, measuring waist 

circumference along with BMI is considered a better estimate of overweight- and obesity-related 

health risks than BMI alone (Han, 2006). A high-risk waist circumference is greater than 35 

inches for women and greater than 40 inches for men. Waist-to-hip and waist-to-height ratios are 

also simple, popular alternatives for BMI. It is important to note, however, that at a BMI >35, 

abdominal adiposity is assumed.  
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Fig. 1 – Apple- versus pear-shaped body types. 

Notwithstanding its limitations, BMI is a useful mathematical corollary for “fatness,” 

especially at the population level, because it utilizes noninvasive, easily acquired demographics. 

Elevated BMI is a major risk factor for several non-communicable diseases such as hypertension 

(Montani et al. 2002), dyslipidemia (Datillo & Kris-Etherton 1992), cardiovascular disease (i.e. 

coronary artery disease and stroke) (Kenchaiah 2002), sleep disorders such as sleep apnea 

(Crummy et al. 2008), musculoskeletal disorders like osteoarthritis (Vincent et al. 2012), insulin 

resistance and diabetes (Chan et al. 1994; Colditz et al. 1995), as well as several types of cancer 

(Calle 2004). Childhood obesity contributes to respiratory distress and an increased risk of bone 

fracture due to increased stress placed on muscles and joints and, potentially, altered leptin 

signaling (Wang et al. 2012). It is also associated with greater chances of obesity, disability, and 

premature death in adulthood, often as a result of complications due to the aforementioned 

obesity-associated diseases and conditions (Hardy et al. 2004; Biro & Wien 2010).  

The incidence of worldwide obesity has nearly doubled since 1980, which is why 

clinicians and scientists often refer to it as an obesity ‘epidemic’ (WHO, 2012). Although there 
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are many potential causes of overweight and obesity, the majority of cases are the result of 

energy imbalance. When an individual is in positive energy balance, i.e. obtains more energy 

from food than he or she expends through basal metabolism and PA, the excess energy is stored 

as AT. Modern humans living in developed countries engage in very little PA compared to those 

living in underdeveloped countries (Popkin, 1999; Giraldo et al. 2012), and especially compared 

to those of our hunter-gatherer ancestors (Leonard, 2010). Also, thanks to the invention of 

agriculture and subsequent improvements made during the Industrial Era, we no longer live 

through alternating periods of feast and famine. We live in a state of perpetual feasting on energy 

dense foodstuffs, made that way through the addition of dietary fat and/or highly refined 

carbohydrates. Over the last several decades, a significant increase in portion size as well as the 

caloric content of food products has been observed, augmenting consumption and contributing to 

obesity and its related conditions (Nielsen & Popkin 2003).  

Additional environmental factors can further complicate energy balance and promote 

even greater weight gain. Since the 1960s, people have lost about 2 hours of sleep per night 

(Knutson et al. 2010). That is, from 8.5 hours to <7 hours. Several studies have shown that, as 

you sleep less, BMI goes up (Spiegel et al. 2009). Because obesity can lead to difficulties 

maintaining proper sleeping patterns (often due to difficulty breathing) this leads to the birth of a 

vicious cycle of positive reinforcement: the less sleep a person gets, the more likely he or she 

will put on weight, which leads to greater difficulty achieving rapid eye movement sleep, and so 

on and so forth. Also, humans are warm-blooded creatures and, as such, we expend a great deal 

of energy in order to keep our bodies at the optimum temperature. Advanced climate control 

technology, i.e. heaters and air conditioners, eliminates the need of modern individuals to burn so 

many calories. According to an observational study conducted by Bo et al. (2011) it was 
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discovered that individuals who preferred warmer indoor temperatures during the fall and winter 

months were twice as likely to become obese compared to people who kept their homes under 70 

degrees Fahrenheit.  

Increased exposure to industrial chemicals such as dyes, solvents, pesticides, perfumes, 

etc. is another potential culprit. Several studies have demonstrated a link between increased 

exposure to industrial chemicals (e.g. organochlorides) and excessive weight gain and/or 

abnormal fat metabolism. Rubin et al. (2001) found that perinatal exposure to BPA, a chemical 

compound found in canned food and plastic bottles, in Sprague-Dawley rats resulted in greater 

body weights at birth and into adulthood. High urinary BPA concentrations were significantly 

associated with obesity in a cross-sectional study of children and adolescents (Trasande et al. 

2012). High urinary levels of BPA are also associated with an increased risk of obesity, diabetes, 

cardiovascular disease, and fertility issues in adults as well (Fenichel, 2013). 

Typically, health professionals recommend a combination of diet and exercise to balance 

caloric intake with expenditure for the purpose of preventing or treating obesity and its 

comorbidities. However, the effectiveness of such interventions has been brought into question. 

Improved knowledge does not automatically equate to improved attitudes and behaviors: despite 

awareness of the problem – being overweight or obese – and understanding the steps that need to 

be taken in order to treat the problem – reduced calorie intake and increased energy expenditure 

through diet and exercise – the vast majority of people seem incapable of making the deliberate, 

long-term lifestyle changes necessary for sustained weight loss. Even when weight loss is 

achieved, the results are often difficult to sustain. Friedman et al. (2004) used National Health 

and Nutrition Examination Survey data to identify over 1300 Americans aged 20 to 84 who 

were, at their heaviest, classified as overweight or obese. They had since lost a substantial 
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amount of weight, defined as at least 10% of their maximum weight one year before they were 

surveyed. The researchers discovered that 30% to 35% of lost weight is regained in the first year, 

and most, if not all, of lost weight is regained by the fifth year. Understanding the barriers to 

achieving and maintaining weight loss is crucial for preventing relapse and for reducing 

morbidity and mortality rates associated with it. Developing means to overcome such barriers 

that do not involve (a) conscious effort and/or (b) significant investments of time or money to 

increase compliance and, thus, effectiveness are needed.  

Diabetes Mellitus 

DM describes a collection of diseases that affect how the body metabolizes BG, 

commonly referred to as blood sugar. Having diabetes, no matter what type, means that an 

individual possesses too much glucose in their blood. Some of the common signs are increased 

thirst, frequent urination, extreme hunger and fatigue, unexplained weight loss, blurred vision, 

frequent infections and slow-healing sores, as well as the presence of ketone bodies in the urine. 

These symptoms and their severity vary depending on how high one’s BG level is and for how 

long. The longer an individual has diabetes – and the less controlled their BG is – the higher the 

risk of developing more debilitating and even life-threatening complications such as neuropathy 

(nerve damage), nephropathy (kidney damage), retinopathy (blindness), etc..   

Potentially reversible diabetic conditions include pre-diabetes – when BG levels are 

higher than normal but not so high as to be classified as full-blown diabetes (i.e. fasted plasma 

BG 100-125 mg/dL on two separate occasions or <140 mg/dL after taking an oral glucose 

tolerance test) – and gestational diabetes, which occurs during pregnancy but usually resolves 

postpartum. However, the mother is at an increased risk of developing diabetes, mostly type 2, 

over the subsequent 5 to 20 years (Kim et al. 2002). Chronic forms of diabetes include type 1 and 
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type 2 DM. Type 1 DM is usually diagnosed in children and adolescents, and was previously 

known as juvenile diabetes, but has since been rechristened as insulin-dependent diabetes. 

According to the ADA, only about 5% of people with diabetes have this form of the disease. 

With type 1, the body does not produce insulin, the hormone needed to transport glucose into 

muscle and adipose cells so it can be broken down and used to produce energy, because the 

specialized cells that produce it have been destroyed by the immune system. Type 2 DM is the 

most common form of the disease – affecting over 90% of all diabetics worldwide – and is 

characterized by the improper utilization of insulin, also known as insulin resistance. At first, the 

pancreas makes extra insulin to make up for the defect but, over time, the organ isn’t able to keep 

up and BG rises to diabetic levels (i.e. fasted plasma BG ≥126 mg/dL on two separate 

occasions).
1
  

Of all the diseases and conditions that make up the metabolic syndrome, the link between 

obesity and diabetes is particularly strong. The incidence of DM, especially of type 2, is on the 

rise, correlating with the increased prevalence of obesity. According to the CDC, from 1980-

2010, the crude prevalence of diagnosed diabetes increased by 176%. That is, from 2.5% to 6.9% 

nationwide (Tirosh et al. 2005). Almost two million adults were diagnosed with diabetes in 2010 

alone. Significantly, between 80 and 90% of individuals diagnosed with type 2 DM are obese as 

well. While the exact mechanism linking obesity to diabetes is unknown, insulin resistance in 

both human and rodent models of obesity is closely related to the presence of inflammation in 

                                                           
1 There is another type of diabetes known as diabetes insipidus, but this rare disease has 

nothing to do with abnormal functioning or circulating levels of insulin. Instead, it is the result of 

the kidneys’ inability to conserve water while filtering the blood. Diabetes insipidus can be 

caused by either a lack of antidiuretic hormone or inability of the kidneys to respond to this 

hormone, also called vasopressin, which regulates water conservation by said organ. It is not a 

component of metabolic syndrome.   
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AT (Wentworth et al. 2010; DeFuria 2013). Macrophages are white blood cells that respond to 

infection; made in bone marrow, and are secreted into the blood stream and then infiltrate tissues 

in order to seek out and destroy foreign particles. In obese animals, macrophages preferentially 

invade fat tissue, resulting in inflammation and the release of inflammatory cytokines (Kershaw 

& Flier 2004). Certain cytokines cause cells to become resistant to insulin, e.g. TNF-α, leading to 

diabetes and other hallmarks of metabolic syndrome. Potential instigators of this cascade include 

free fatty acids and their derivatives, oxidative stress, tissue hypoxia leading to adipocyte death, 

and endoplasmic reticulum stress, to name a few (Ye, 2011). 

It is true that AT inflammation is pronounced among obese people, and that it contributes 

to the pathophysiology of type 2 DM through inhibition of the insulin signaling molecules like 

IRS-1 and PPARγ. More specifically, during the obese state, rapidly expanding AT causes 

elevated levels of free fatty acids in the bloodstream. The body responds by producing the pro-

inflammatory cytokine TLR-4, which reduces the functionality of the aforementioned 

compounds and, eventually, leads to insulin resistance (Shi et al. 2006; Kim & Sears 2010).  

However, this does not mean that all inflammation is bad: the inflammatory response is a natural 

bodily process that, when properly applied, ensures the continued health and survival of the 

organism (Gao & Ye 2012). Ye and McGuinness (2013) suggest that chronic, runaway 

inflammation that occurs in the absence of increased energy metabolism and/or storage is the 

insidious variety that leads to insulin resistance and DM. That is, inflammation is a symptom of 

the problem, not the problem itself. This conclusion is supported by data from (a) Tang et al. 

(2010) who showed that mice that overexpressed NF-κB, a signaling molecule downstream of 

TNF-α, were resistant to diet-induced obesity despite no reductions in food intake; and (b) the 
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fact that anti-inflammatory, insulin-sensitizing drugs such as rosiglitazone and pioglitazone do 

not improve insulin sensitivity in animal models. 

Like overweight and obesity, treatment for diabetes includes a combination of diet and 

exercise as well as regular BG monitoring and, depending upon the type and severity of the 

disease, insulin and/or other medications. Testing BG multiple times per day using a glucometer 

– ideally, before and after meals as well as before sleep and PA – in addition to measuring 

hemoglobin A1C every 3-4 months is considered standard. A1C is a better overall indicator of 

how well a diabetes treatment plan is working; it provides an “average” BG measurement as 

opposed to “snapshot” values obtained from a glucometer. An A1C level greater than or equal to 

6.5% on two separate occasions indicates that a patient has DM, and the ADA recommends 

keeping A1C levels below 7%. While there is no such thing as a diabetes diet per se, it is a good 

idea to center on fruits, vegetables, and whole grains, i.e. foods that are high in nutrients and 

fiber and relatively low in fat and calories. Limiting consumption of animal products, which are 

high in saturated fat, as well as limiting consumption of refined carbohydrates, is also highly 

recommended.  

Relatively few type 2 diabetics require insulin as a part of their treatment regimen; 

several other injectable and oral medications exist. Some stimulate the pancreas to produce and 

release more insulin (sulfonylureas and meglitinides), while others inhibit the production and 

release of glucagon from the liver (biguanides and thiazolidinediones), reducing insulin 

requirement. Alpha-glucosidase inhibitors block the action of enzymes that digest carbohydrate, 

impeding glucose uptake into the blood stream. Sodium-glucose linked transporter 2 (SGLT2) 

inhibitors prevent glucose reabsorption by the kidneys, causing excess glucose to be excreted in 

the urine. Thiazolidinediones sensitize various tissues to the actions of insulin (Table 1). 
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Table 1. Diabetes Drugs and Their Mode of Action. Generic Name (Brand Name). 

  

Drug Class Prescriptions Mode of Action 

Alpha-glucosidase inhibitors Acarbose (Precose), Meglitol 

(Glyset), Voglibose (Voglib) 

Limits carbohydrate digestion 

and subsequent absorption 

into the bloodstream 

Biguanides Metformin (Glucophage, 

Fortamet, Riomet),  

Decreases amount of glucose 

released from the liver 

Bile acid sequestrants Colesevelam (Welchol) Binds bile acids; unknown 

mechanism for improving BG 

levels 

DPP-4 inhibitors Sitagliptin (Januvia), 

Saxagliptin (Onglyza), 

Linagliptin (Tradjenta), 

Alogliptin (Nesina) 

Inhibit enzyme responsible for 

breaking down the hormone 

GLP-1, which helps lower BG  

Meglitinides Regaplinide (Prandin), 

Nateglinide (Starlix) 

Stimulates the pancreas to 

release more insulin 

SGLT2 inhibitors Canagliflozin (Invokana), 

Dapagliflozin (Farxiga) 

Blocks reabsorption of 

glucose by kidneys, causing 

excess to be eliminated in the 

urine. 

Sulfonylureas Glyburide (Micronase, 

Glynase, DiaBeta), 

Glimepiride (Amaryl), 

Glipizide (Glucotrol) 

Stimulates the pancreas to 

release more insulin 

Thiazolidinediones Rosiglitazone (Avandia), 

Pioglitazone (ACTOS) 

Makes the body more 

sensitive to the effects of 

insulin 

 

SG belongs to another class of diabetes medications called DPP-4 inhibitors. First 

marketed in the US by Merck & Co., LLC in 2006, it improves glucose metabolism in patients 

with type 2 DM by increasing the half-life of GLP-1. It does so by inhibiting the DPP-4 enzyme, 

which is responsible for the degradation of GLP-1 in the bloodstream. Augmenting GLP-1 

activity through SG significantly improves insulin sensitivity and BG in both human and animal 

models. Body weight reductions have not been documented as they have been with GLP-1 

agonists, which consistently reduce both BG and body weight. 
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High-Fat Diet 

Dietary fat contributes to weight gain through both passive and active mechanisms. To 

our native hominid senses, dietary fat is extremely palatable, with a smooth texture and creamy 

mouthfeel. It contributes desirable characteristics to foods, including the crispiness of fried 

foods, the tenderness of baked goods, and the juiciness of meat products. These qualities 

contribute to active overconsumption through appetite stimulation. Dietary fat is also the most 

energy-dense macronutrient, containing more than twice the amount of energy per unit weight 

than either proteins or carbohydrates (i.e. nine versus four kcal per gram). Therefore, HF foods 

have a greater energy density than LF ones. Since humans tend to consume a relatively constant 

weight or volume of food, regardless of the energy content and/or nutrient composition of the 

meal, diets containing more HF food items result in greater energy consumption because they 

possess a greater energy density than those that do not (Drenowski, 1998; Rolls, 2000; Rolls & 

Bell 1999; Warwick et al. 2000). This phenomenon is not under conscious control, and is 

referred to as passive overconsumption. 

HF diets do more than just provide excess energy: excessive consumption of dietary fat is 

linked to the increased production of pro-inflammatory molecules, which accelerates weight gain 

and contributes to the advancement of metabolic syndrome. HF diets accomplish this by 

increasing endotoxin levels in the intestinal lumen (Cani et al. 2007) as well as in the plasma by 

altering the gut microbiota composition and increasing its intestinal permeability through the 

induction of TLR-4 (Kim, Sears, et al. 2012; Kim, Gu, et al. 2012). Indeed, research has shown 

that commensal gut microbiota is highly susceptible to changes induced by HF dietary factors 

(Turnbaugh et al. 2009; Devkota et al. 2012) suggesting that diet-mediated changes in gut 

microbiota could be playing a role in inflammatory propagation (de La Serre et al. 2010) 
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The type of fat as well as the amount of fat consumed plays an important role in the 

pathophysiology of DM and metabolic syndrome. Studies have shown that rats given HF diets 

based on lard or soybean leads to obesity and inflamed AT (Wang et al. 2013). Furthermore, 

mice fed HF diets made with lard and olive oil – sources of saturated and omega-6 fatty acids, 

respectively – exhibit increased levels of plasma insulin, leptin, and resistin, which are 

characteristic of an inflammatory state (Catta-Preta et al. 2012). Also, animals fed the lard-based 

diet gained the most weight out of all HF-diet groups. Huang et al. (2013) observed mild 

inflammation in mice that consumed milk fat or lard based diets, whereas a diet rich in safflower 

oil, a concentrated source of omega-6 fatty acids, led to more powerful amounts of inflammation 

in mesenteric and gonadal fat pads, specifically. 

Our lab has been collecting a substantial amount of evidence that HF diet-induced 

changes in the gut microbiota may interfere with the process of RS fermentation. We have 

previously demonstrated that the addition of a specific type of RS from Hi-Maize® corn starch to 

a LF diet was associated with increased fermentation and reduced abdominal body fat (Keenan et 

al. 2006). The reduced body fat was associated with (a) increased gene expression of pro-

opiomelanocortinin, a complex polypeptide precursor critical for normal energy homeostasis, in 

the arcuate nucleus of the hypothalamus, the area of the brain known to regulate food intake and 

satiety (Shen et al. 2009); and (b) increased oxidation of fat as demonstrated by a decreased 

respiratory quotient, a ratio used in indirect calorimetry methods to determine whether 

carbohydrate or fat is the predominant type of fuel being used by the body (Zhou et al. 2009). 

Use of a LF diet on Goto-Kakizaki rats, a diabetic model (Shen et al. 2011) as well as a medium-

fat diet in C57BL6 mice (Zhou et al. 2009) and LF diet in ovariectomized rats, which constitute 

an endocrine model of obesity (Keenan et al. 2013) exhibited reduced body fat with Hi-Maize®. 
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However, this body fat effect was not seen in several preliminary studies utilizing rodents 

fed HF diets (Badkoobeh et al. 2010; Goldsmith et al. 2010). The strength of the fermentation 

response was diminished as indicated by significantly higher cecal pH levels than expected, 

reduced levels of RS-fermenting cecal bacteria (Senevirathne et al. 2009), and no significant loss 

of body fat. Most recently, Charrier et al. (2013) investigated the effects of Hi-Maize® in HF 

diet-induced obese rat model plus tuna oil, a potent source of omega-3 fatty acids. Since fish oils 

have been reported to have an effect on inflammation and body fat accumulation completely 

opposite to other types of fat (Buettner et al. 2007), inclusion of fish oil in a HF diet may exhibit 

a protective effect on the gut microbiota and, thereby, rescue the effects of RS fermentation that 

are usually diminished on a HF diet. In this study, animals fed a HF were still capable of 

responding to Hi-Maize® 260 with reduced cecal pH, increased SCFA concentrations, and 

increased GLP-1 production, but the positive health implications were partially attenuated when 

compared to the LF RS groups. That is, the animals did not lose substantial amounts of body fat 

when compared to a LF+RS diet. No discernible differences were seen in either LF or HF diets 

supplemented with the fish oil. It is possible that the minimum effective dose for fish oil was not 

reached in this study, because fish oil content was not determined on a percent fat basis. 

Dietary Fiber and Resistant Starch 

Starch is a glucose polymer that is synthesized and stored within granules inside the 

seeds, fruits, and tubers of various plants. These granules contain two basic forms of starch: a 

linear, chainlike molecule consisting of α(1-4) glycosidic linkages known as amylose, and a 

larger, branched polymer with both α(1-4) and α(1-6) bonds called amylopectin (Imberty et al. 

1991, Nugent, 2005). The ratio of amylose to amylopectin varies according to botanical origin, 

with so-called ‘waxy’ starch containing <15% amylose by weight while ‘normal’ and ‘high’ 
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amylose starches have 20-35% and >40% amylose, respectively (Tester et al. 2004). The 

botanical role of starch is to provide plants with a stable reserve of glucose for metabolism 

and/or germination. The digestibility of the starch is an important parameter in meeting this 

function. 

In humans, starch digestion begins in the mouth with salivary α-amylase, which 

hydrolyzes the aforementioned α(1-4) glycosidic linkages, resulting in partial breakdown of both 

amylose and amylopectin into dextrins. There is no starch digestion in the stomach because the 

low pH value of its contents deactivates salivary α-amylase. Therefore, dextrins remain 

unchanged and, thus, unabsorbed until they pass into the small intestine, where they are acted 

upon by enzymes, e.g. pancreatic α-amylase, maltase, isomaltase, etc. (Nugent 2005). The term 

“available carbohydrate” is used to describe the sum of all CHOs that are digested and absorbed 

and, thus, made available for metabolism by the body. Some starches manage to resist digestion 

by endogenous enzymes, and pass through to the colon where they are broken down or 

fermented by the bacteria residing there. This starch fraction is called RS, and was formally 

defined by EURESTA in 1992 as “the total amount of starch and the products of starch 

degradation that resist digestion in the small intestine of healthy people” (Asp, 1992).  

That RS is treated like a type of DF is a testament to the extremely complex nature of DF 

as a particular food fraction, which is fraught with analytical and taxonomical challenges. The 

original definition of DF was devised by Hipsley in 1953, and referred strictly to the indigestible 

components of plant cells walls, i.e. cellulose and hemicellulose along with the closely 

associated aromatic alcohol, lignin. Today, DF is now an umbrella term used to describe various 

types of starch and non-starch polysaccharides that are edible but resistant to enzymatic digestion 
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in the small intestine. These include those mentioned above, but are not limited to, naturally-

occurring gums, pectins, mucilages as well as a handful of synthetic compounds.  

Scientific and clinical interest in DF did not really take off until the 1970s: various papers 

examining the relationship between DF and human health were published (Cleave, 1973; Burkitt 

et al. 1974; Cleave, 1975). This culminated with the dissemination of Burkitt and Trowell’s “DF 

hypothesis,” which posited that the so-called “diseases of civilization,” i.e. obesity, 

cardiovascular disease, diverticulitis, and colon cancer, were caused by the overconsumption of 

refined carbohydrates and/or lack of fiber-rich foods in the diet (Burkitt & Trowell 1975; 

Trowell, 1976). Further investigations into the chemical nature of DF, and the physiological 

mechanisms that governed its relationship to human health were conducted (Champ et al. 2003a; 

Champ et al. 2003b; Eastwood & Kritchevsky 2005), and new and improved methods of 

extraction and analysis were soon developed. These novel techniques added even greater nuance 

to the definition of DF, including distinctions between soluble and insoluble fibers (Southgate, 

1969). As the names suggest, soluble fiber dissolves in water, but insoluble fiber does not. The 

former gelatinizes within the intestines, which contributes bulk to stool, and has a 

hypocholesterolemic effect (Lund 1984), while the latter helps ease constipation by encouraging 

laxation. At this time, novel substances that behaved similarly to fiber in the GI tract, but didn’t 

meet the standard chemical and/or botanical definition thereof were also discovered, e.g. inulin, 

fructans, and RS.  

Englyst et al. (1982) is credited with discovering and defining RS as the starch fraction 

that resisted enzymatic digestion in vitro. Rapidly digestible starch is completely converted into 

glucose within 20 minutes of exposure. Slowly digestible starch is also successfully hydrolyzed, 

but only after an additional 100 minutes of incubation. Starches that are not hydrolyzed by 120 



28 

 

minutes are considered RS. Depending on the reason(s) behind its characteristic resistance, RS 

can be further classified into five sub-groups (Topping et al. 2003) (Table 2).  

Starch granules are surrounded by protein matrix and thick cell wall material. Whole or 

partially milled grains, seeds, and legumes retain these compounds, which hinder starch 

digestibility by 1) providing a physical barrier, preventing enzymes from reaching and 

hydrolyzing starch, and 2) preventing water penetration into the granule. Without adequate 

moisture, the granule fails to swell and burst during cooking and the starch remains contained. 

This is referred to as RS1. RS2 is isolated from high-amylose starch granules which, due to their 

aforementioned linear shape, are capable of tighter packing and folding, reducing the surface 

area available for hydrolysis. RS2 is commonly found in foods that have higher 

amylose:amylopectin ratios such as raw potatoes, green bananas, and certain types of corn, e.g. 

Ingredion’s Hi-Maize® 260, Hi-Maize® whole grain corn flour, and Hylon VII® .  

RS3 describes starch that becomes resistant after it has been cooked (gelatinization) and 

then cooled (retrogradation). That is, the starch has been cooked in water, causing its granules to 

burst and form a thick paste. Then, during prolonged cooling and/or storage, the starch molecules 

reorganize into a more crystalline structure, causing the paste to thicken and become resistant to 

digestion. Food sources of RS3 include cooled potato salad and bread products. RS4 is resistant 

to digestion because novel chemical bonds and/or functional groups have been introduced. 

Examples include cross-linked starches (Al-Tamimi et al. 2010), starch esters (Clarke et al.. 

2007), starch ethers (Shimotoyodome et al. 2010), as well as pyrodextrins with glycosidic 

linkages other than the stereotypical α(1-4) and α(1-6) varieties (Ohkuma & Wakabayashi 2008; 

Haub et al. 2010). Hasjim et al. (2010) describe a novel type of RS made up of retrograded 
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debranched-starch and starch-lipid complexes dubbed RS5. Its resistance to enzymatic digestion 

is based on steric hindrance resulting from such complexes. 

Table 2. Types of RS and their Sources in the Diet. 

 

Type of RS Reason for Resistance Food Sources 

RS1 Physically inaccessible to digestive 

enzymes; protected by carbohydrate 

food matrix 

Whole or partially milled cereal grains, 

rice, seeds, legumes 

RS2 Raw granular starches; possess high 

amylose to amylopectin ratio 

Raw potatoes, green bananas, Hi-

Maize® 260 

RS3 Retrograded starches; starches that 

have been cooked (gelatinization), 

cooled, and granules allowed to 

reorganize  

Cooked and cooled potato salad, bread 

products  

RS4 Chemically modified starches Not naturally occurring; foods in which 

modified starches with novel chemical 

bonds or chemical groups attached have 

been used  

RS5 Chemically de-branched starch and 

amylose-lipid complexes 

Steric hindrance at enzyme-substrate 

complex 

 

Once again, it should be noted that the digestibility of a given starch sample is never due 

to a single factor as classification systems suggest; rather, the extrinsic factor with the greatest 

influence on digestibility is generally used to classify the starch. Starch digestibility can be 

influenced by non-starch components in the digest (e.g. lipid, protein, etc.), the structure of the 

starch itself, as well as the type and amount of processing prior to digestion (Annison & Topping 

1994; Sharma et al. 2008). The most influential structural feature is the degree and type of 

crystallinity within the granule. Starch with long, linear chains has a greater tendency to form 

crystalline structures than starch with short, highly branched chains. Because the amylose 

component of starch is less branched than amylopectin, high-amylose starch tends to be more 

resistant to digestion than low-amylose starch. 
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The National Academy of Sciences recommends that adult men and women consume 38 

and 25 grams of total fiber per day, respectively. According to the AHA, the average American 

consumes around 15 grams of DF per day. If we are not getting enough total fiber, then we likely 

are not getting enough RS, either. According to Kendall et al. (2004), RS doses of 20-30 g/day 

are needed to observe substantial physiological effects in humans. This level of consumption is 

3-4 times higher than actual levels of RS consumption in the US, which are estimated to be 

between 3 grams and 8 grams per day (Murphy et al. 2008). These levels of consumption stand 

in sharp contrast to most of human history, and many places around the world. Estimated levels 

of consumption of RS in medieval Europe – before modern processing methods were invented – 

indicate daily consumption was between 50 and 100 grams. In developing / third-world 

countries, which lack that same modern infrastructure, citizens regularly consume between 30 

and 40 grams RS per day (Birkett et al. 1997).  

RS has been a part of the human diet for centuries as unrefined, unprocessed starch, even 

though we lacked the ability to identify and manipulate it until recently. Englyst et al. (1982) is 

credited with discovering and defining RS as the starch fraction that resisted enzymatic digestion 

in vitro.
2
 Berry et al. (1986) modified Englyst’s original procedure: most notably by eliminating 

the boiling step 100°C, which more closely mimics physiological conditions. Such harsh 

conditions destroyed RS1 and RS3, making complete and accurate quantification of RS 

impossible. As expected, Berry’s changes resulted in greater amounts of RS being isolated from 

samples. These totals were subsequently confirmed through studies in healthy ileostomy patients 

(Englyst & Cummings 1985; Macfarlane & Englyst 1986; Englyst et al. 1987).  

                                                           
2
 In vivo methods of measuring RS do exist, and include the breath hydrogen test and direct 

measurement of effluent from human ileostomy patients, but in vitro methods are generally 

preferred because they are less invasive and can be applied to a wider variety of creatures and 

substances. 
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In 1992, Englyst and his colleagues reported on their method for distinguishing starch 

fractions based on digestibility in vitro. Further modifications were also made to the Berry 

method at this time by Champ (1992), Faisant et al. (1995), and Åkerberg et al. (1998) in order 

to improve underestimation of RS. These changes included an increase in sample size from 10 

mg to 100 mg, the addition of sodium azide to prevent microbial contamination as well as de-

proteinization using pepsin (Champ 1992; Faisant et al. 1995). Muir and O’Dea (1992) even 

added a “chewing” step! These changes allowed all naturally-occurring forms of RS to be 

accounted for.  

While both the modified Barry method and Englyst’s technique are considered suitable 

methods for measuring RS in vitro, significant variations existed (e.g. in the types and 

concentrations of enzymes used, pH of the solution, temperature and length of incubation 

period(s), etc. and did not encourage inter-laboratory evaluation. McCleary et al. (2002) 

attempted to fix that creating a standardized analytical method with the help of the AOAC 

International, a non-profit organization that functions as an independent third party in the 

development and dissemination of reliable, standardized analytical methods for a variety of 

compounds. There are currently a number of Official Methods of Analysis ™ for measuring DF; 

some of which isolate RS and others which do not, but all of which attempt to remain abreast of 

major changes and trends in DF research.  

Since 1987, the US Food and Drug Administration only counts materials isolated by 

Official Method™ 985.29, which was developed for quantification of DF on nutrition facts 

labels (Prosky et al. 1985). Extensions 991.42, 993.19 and equivalent methods 991.43, 992.16, 

993.21, and 994.13 adequately quantify DF content as it was originally described by Burkitt and 

Trowell (McCleary et al. 2012), but do not distinguish RS and other NSPs within said contents. 
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AOAC 2002.2 is the basis for Megazyme International’s RS assay, and includes an enzymatic 

digestion using pancreatic α-amylase and amyloglucosidase at 37°C for 16 hours followed by 

isolation and dissolution of the undigested components, which are then quantified as glucose 

(McCleary & Monaghan 2002).
3
 AOAC 2009.01 quantitates the most complete range of DF 

elements by including fractionation and deionization procedures of other Official Methods™ (i.e. 

AOAC 991.42, 993.19, and 2001.3) along with the digestion conditions of AOAC 2002.02 

(McCleary et al. 2012) 

Gut Microbiota 

DFs are not chemically identical nor do they share all of the same physiological 

properties, e.g. viscosity, water-holding capacity, solubility, and fermentability (Burton-

Freeman, 2000; Howarth et al. 2001). The beneficial health effects of fermentable fibers have 

received a great deal of scientific and lay attention, especially in regard to weight management 

and diabetes. Augmenting the number of beneficial bacteria in the gut, known as the “prebiotic 

effect,” is another positive effect of DF and, especially, RS consumption. 

The body of an average healthy human adult is home to over 100 trillion bacteria 

(Turnbaugh et al. 2007), the majority of which reside in the large intestine (Savage, 1977). This 

community is dominated by anaerobic bacteria and includes up to 1000 different species whose 

collective genetic potential is around 100-times greater than the human host (Cani & Delzenne, 

2009; Xu & Gordon, 2003). The gut microbiota performs many important duties above and 

beyond the digestion of otherwise unusable foodstuffs. Gut microbes produce essential nutrients, 

                                                           
3
 Ingredion Inc. does not use this particular assay as they believe its enzymatic digestion step is 

too harsh, and leads to underestimation of RS content. They run a modified version of methods 

described by Englyst et al. (1996) instead.  
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e.g. the B-complex and K vitamins, educate the host’s immune system, and protect the host from 

infection by outcompeting or killing potential pathogens (Turnbaugh et al. 2007).  

The composition of the gut microbiota is not static: it is greatly affected by the 

composition of the host’s diet. Prebiotics, as defined by Gibson and Roberfoid, are a non-

digestible food ingredient that beneficially affects the host by selectively stimulating the growth 

and/or the activity of one or a limited number of bacteria in the colon (Gibson & Roberfoid, 

1995). Compared with a probiotic, which introduces non-native bacteria directly into the GI 

tract, a prebiotic adjusts the composition of the resident microflora indirectly by providing 

substrate for specific beneficial endogenous microorganisms.  

RS and NSPs such as inulin, fructo-, and galactooligosaccharides, are the most well-

known and thoroughly studied prebiotics to date. All have a strong bifidogenic effect and, thus, 

have a number of health benefits associated with them. This includes displacement of injurious 

microbes, such as certain Clostridia or Salmonella spp., by bifidobacteria; the stimulation of gut-

associated lymphoid tissue and subsequent strengthening of gut barrier function, which prevents 

colonization and infection by potential pathogens; and increased production of SCFAs, resulting 

in improved mineral absorption and, possibly, protection against colon cancer (Kolida & Gibson 

2007). RS may exert its cancer-protective effects by modifying important biological 

consequences related to cancer development such as apoptosis or cell proliferation (Dronamraju 

et al. 2009; Leu et al. 2003). The synbiotic combination of RS and a single probiotic 

bifidobacteria, B. lactis, significantly protected azoxymethane-treated Sprague Dawley rats from 

developing coloerectal cancer.  

Dysbiosis is the term used to describe an imbalance in the composition of an individual’s 

microbiota, and has been implicated in the pathophysiology of a number of diseases and 
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conditions such as obesity, diabetes, and various inflammatory bowel diseases, such as Crohn’s 

disease and ulcerative colitis (Elson et al. 2005; Lupp et al. 2007; Sartor, 2008). Adult germ-free 

mice inoculated with bacteria harvested from the guts of obese animals have significantly greater 

increases in body fat content than animals colonized with bacteria from lean animals (Turnbaugh 

et al. 2006). Interestingly, these differences in adiposity are associated with dissimilarity in the 

relative abundance of Bacteroidetes and Firmicutes, which are two of the predominant phyla 

present in both human and mouse GI tracts. The microbiota of obese subjects is dominated by 

Firmicutes and a reduced population of Bacteroidetes. Conversely, a decrease in the 

Firmicutes:Bacteroidetes ratio has been found in response to weight loss (Ley et al. 2006).  

As previously stated, the by-products of microbial fermentation of RS and other DFs are 

lactate, hydrogen gas, carbon dioxide, and methane in addition to SCFAs, the latter of which 

provide energy for both the microbiota and the human host (Topping & Clifton 2001). While the 

amount varies based on the amount and type of polysaccharide consumed as well as the exact 

composition of the microbiota, microbial fermentation is believed to account for around 10% of 

our daily caloric intake (Hooper et al. 2002). The main SCFAs produced are acetate, propionate, 

and butyrate.  

Acetate is the most abundant SCFA formed in both in vivo and in vitro samples (Topping 

& Clifton 2001), and it is widely used throughout the body during the formation of ATP (Kolida 

& Gibson 2007). It is synthesized by acetogenic and methanogenic bacteria using the Wood–

Ljungdahl pathway, also known as the reductive acetyl-CoA pathway, under the anaerobic 

conditions of the gut. This route requires two enzymes – carbon monoxide dehydrogenase and 

acetyl-CoA synthase – that produce acetyl CoA from CO2 and CO using hydrogen as the 

electron donor.  It can also be made from pyruvate using pyruvate dehydrogenase.  
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Propionate is primarily taken up by the liver via the portal vein and is involved in hepatic 

lipid metabolism. More specifically, it is converted to propionyl-CoA by propanoate-CoA ligase 

then into succinyl-CoA in three consecutive steps catalyzed by propionyl-CoA carboxylase, 

methylmalonyl-CoA epimerase, and methylmalonyl-CoA mutase. Succinyl-CoA enters the 

tricarboxylic acid cycle and is converted to oxaloacetate, the precursor of gluconeogenesis. 

Approximately 95% of the butyrate produced in the colon is absorbed by the colonic 

mucosa, for which it is the preferred energy source. Butyrate is believed to be particularly 

important for gut health, especially in regard to cancer prevention (Whitehead et al. 1986; 

McIntyre et al. 1993; McOrist et al. 2008). Butyrate is produced from two molecules of acetyl-

CoA, yielding acetoacetyl-CoA, which is further converted, finally, to butyryl CoA. This 

metabolite can be converted to butyrate via butyrate kinase or butyryl CoA:acetate CoA 

transferase. In general RS fermentation generates proportionally more butyrate and less acetate 

than other types of DF (Nugent 2005).  

Production of SCFAs is also associated with increased proglucagon – the precursor for 

GLP-1 – and PYY gene expression (Keenan et al. 2006; Zhou et al. 2006), especially in the 

cecum and proximal colon, where the bulk of saccharolytic fermentation occurs. Increases in 

plasma GLP-1 and PYY concentrations have also been documented in several studies (Keenan et 

al.. 2006; Zhou et al. 2008; Shen et al. 2008). Positive health outcomes associated with increased 

circulating GLP-1 concentrations could be beneficial in the control of diabetes and obesity. Most 

recently, research has demonstrated that butyrate and propionate stimulate intestinal 

gluconeogenesis (De Vadder et al. 2014).  Butyrate activates intestinal gluconeogenesis via 

signaling through a cAMP-based mechanism while propionate serves as both a substrate and an 

activator for intestinal gluconeogenesis through a gut-brain neural circuit controlled by binding 
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to the propionate receptor, i.e. fatty acid receptor-3. Glucose from the intestinal gluconeogenesis 

enters the portal blood and is detected by a sensor and this signals the brain via the peripheral 

nervous system.  Together, this promotes reduced on FI and improved glucose metabolism.   

The existence of intestinal gluconeogenesis is a relatively recent discovery (Rajas et al.. 

1999, Croset et al.. 2001, Mithieux et al.. 2004) and represents a mechanism by which the 

products of fermentation can produce beneficial health effects. Feeding of fructooligosaccharide, 

butyrate, or propionate improves insulin sensitivity and BG regulation in WT mice, but not in 

intestinal glucose 6-phosphatase KO mice.  The glucose 6-phosphatase enzyme is necessary for 

the production of free glucose, which enters into portal circulation, via intestinal 

gluconeogenesis.  Some humans fail to increase GLP-1 production after consumption of RS, but 

still exhibit improved insulin sensitivity and BG control (Robertson et al. 2005).  Our research 

group (Keenan et al. 2011) has demonstrated variability in GLP-1 production in humans fed RS, 

and recently Robertson’s group has observed increased GLP-1 production in her human subjects 

given RS (Bodinham et al. 2014).  There is possible mechanism for non-responders, e.g. 

different gene variants of transcription factor 7-like 2  (also called T-cell-specific factor 4), 

involved in activation of the proglucagon; some of the best known gene variants are associated 

with  type 2 DM (Jin et al. 2008).  Thus, beneficial health effects associated with RS 

consumption are not fully dependent on GLP-1, and are also possible through stimulation of 

intestinal gluconeogenesis. 
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CHAPTER 3 

NUTRIENT-DRUG INTERACTION STUDIES 

 

Introduction 

Obesity is a significant risk factor for many diseases and conditions, including type 2 

DM, and the number of individuals who meet the criteria for diagnosis has reached pandemic 

proportions (Flegal et al. 2012; Kim & Popkin et al. 2012). Weight loss and glycemic control are 

cornerstones in obesity and diabetes treatments. Several studies suggest that diet and lifestyle 

interventions induce weight loss (5-10% baseline weight) and improve glucose control (Hamman 

et al. 2006; Garber 2012). However, lifestyle changes are often difficult to maintain and, as such, 

are not the most reliable means of treating and preventing diabetes (Friedman 2004; Wilding 

2007). Clinicians prescribe various drugs, such as SG and metformin, in order to help control BG 

(Brown & Evans 2012).  

The drug SG, made by Merck & Co., LLC, was first marketed in the US in 2006 (Kim et 

al. 2005). It improves glucose metabolism in type 2 DM patients by up-regulating the activity of 

an incretin hormone known as GLP-1, which is produced by L endocrine cells of both small and 

large intestines in response to nutrient intake (Brown & Evans 2012). SG increases GLP-1 half-

life by inhibiting the enzyme DPP-4, which degrades GLP-1 in the bloodstream (Brown & Evans 

2012). Augmenting GLP-1 activity through SG significantly improves insulin sensitivity and BG 

in both human and animal models, without reductions in body weight. In contrast, GLP-1 

agonists consistently reduce both BG and body weight (Madsbad 2009; Gerich 2010). 

 RS is a type of DF that stimulates endogenous GLP-1 secretion through its fermentation 

into SCFAs by the intestinal microbiota (Englyst et al. 1987; Cummings et al. 1996). 

Supplementation with HM260, a type of resistant starch, has been shown to reduce body fat by 

diluting the energy density of the diet and by increasing β-oxidation of fatty acids, resulting in 
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reduced body fat in various models (Higgins et al. 2004; Keenan et al. 2006). Our lab has had 

some difficulty maintaining robust levels of fermentation in rodents fed diets that are high in 

dietary fat, resulting in reduced gut hormone levels and body fat loss (Charrier et al. 2013).  

These observations led us to hypothesize that: (1) HM260 may enhance SG activity by 

stimulating endogenous GLP-1 production, augmenting serum GLP-1 concentrations and leading 

to reduced body weight and adiposity; and (2) SG may “rescue” the effects the HM260 

supplementation on BG and body fat control despite HF diet content. That is, a combination of 

HM260 and SG may foster better glycemic control and lead to greater weight loss than either 

treatment alone under HF diet and/or type 2 DM conditions.  

To test these possibilities, we conducted two cohort studies in a mouse model of type 2 

diabetes. In the first study, various combinations of HM260 were tested in wild-type mice in 

order to identify an effective HM260 concentration for synergy. In the second study, the role of 

GLP-1 in said synergy was tested in GLP-1 receptor KO mice. We did not observe significant 

effects of HM260 alone on body weight or adiposity. However, the combination of 28% HM260 

with 0.4% SG (28R/S) reduced body weight and fat gain, and lessened BG levels in the wild-

type model. Those effects were abolished in GLP-1R KO mice. Fermentation of HM260 was 

attenuated on the HF diet and, therefore, the 15% HM260 did not enhance SG activity.  

Research Design and Methods 

Animal models – All study procedures were approved by the IACUC committee at the 

Pennington Biomedical Research Center. In the first study, fifty five (N=55), 7-week-old male 

C57BL/6 WT mice were purchased from the JAX® Laboratories (Bar Harbor, Maine), and 

housed individually in shoebox cages in a climate-controlled environment (21-22°C, 55% 

humidity) with a 12:12 hour light-dark cycle illuminated at 7 AM.  The mice were fed a semi-
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purified HF diet (42% energy) in order to induce weight gain. This pre-study diet also contained 

a small amount of HM260 (3% weight) in order to maintain proper fermentative microbial 

communities despite dietary fat content. Mice were given one injection of a low dose of STZ 

(i.p. at 40 mg/kg) during the third week on the HF diet in order to induce hyperglycemia by 

partial β-cell loss to establish the type 2 DM model.  

Animals were stratified according to fasting BG (244 ± 4 mg/dL) and body composition 

(25-26% body fat) as determined by NMR spectroscopy, which was assessed at one and three 

weeks post-STZ injection, respectively. The mice were divided into six groups after a total of six 

weeks on pre-study HF diet (i.e. three weeks after STZ injection), and treated for ten weeks with 

isocaloric diets (4.16 ± 0.02 kcal/g) (n=9-10) containing HM260 and/or SG (0 or 0.4% WT of 

diet; 12.65 mg/kg/day). HM260 was tested at three dosages: 0, 15, and 28% weight of diet and 

labeled as C, 15R, and 28R, respectively. Prior to consumption, powdered diets were formed into 

bars by mixing with water followed by freeze drying overnight in the -20°C freezer.  Fasted BG 

and body composition were assessed at the end of week 10 of treatment, prior to euthanasia. 

In the second study, we repeated the experiment in male GLP-1 receptor KO mice with 

one combination of HM260 (28% weight of diet) and SG (0.4% weight of diet). The GLP-1 

receptor KO mice were previously obtained from the original breeder, Dr. Drucker of the 

University of Toronto, Ontario, Canada. Fifty male KO mice and fifty male WT mice were 

generated through in-house breeding and used at 7-8 weeks of age. Hyperglycemia was induced 

in mice using HF diet + STZ injection as was done in the previous study. Baseline body weight 

(25 and 28 g ± 1 for WT and KO mice, respectively) and composition (25 and 35% ± 1 for WT 

and KO mice, respectively) were assessed at week 5 on HF diet, and was followed by 

stratification along with glycemic status (220 mg/dL ± 3) into one of four groups (n=12; N=48). 
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The mice were then fed either a control diet (C) or diet supplemented with HM260 and SG (R/S) 

for 11 weeks. Additionally, metabolic rate and food intake were assessed by OxyMax®/CLAMS 

for three days following a three-day acclimation period during experimental weeks 7 and 8. The 

chamber was maintained at the same temperature range and light-dark cycle as for the shoebox 

cages. Body composition and fasted BG were assessed at the end of week 9 and at the beginning 

of week 10 of treatment, respectively. 

Blood glucose – Fasting BG was tested using AlphaTRAK glucometer with AlphaTRAK 

strips (Abbott Laboratories, Inc., Chicago, IL) for both studies. After overnight fasting, blood 

was drawn by either tail or submandibular bleeding using sterile 5 mm Goldenrod Animal 

Lancets (MEDIpoint Inc., Mineola, NY).  

GLP-1, insulin, and leptin test – In the 1st study, plasma was used to determine the 

concentration of active GLP-1 using  ALPCO Diagnostic’s GLP-1 ELISA (Active 7-36) kit (cat 

# 43-GP1HU-E01, Salem, NH). An EMD Millipore Multiplex® MAP kit (cat# MMHMAG-44K 

St. Louis, MO) was used to assess the concentrations of various hormones, including active 

GLP-1 active, leptin and insulin in the 2nd study. The GLP-1 assay used in the first study 

required plasma, which was collected in tubes containing another DPP-4 inhibitor (Millipore) 30 

minutes following re-feeding after an overnight fast. Fasting plasma was used for GLP-1 and 

other hormone tests in the second study.  

Tissue collection – Mice were sacrificed via decapitation and blood samples were 

collected in EDTA tubes and centrifuged at 4000g for 20 minutes in order to extract plasma. 

Epididymal, perirenal and retroperitoneal fat pads from the abdominal cavity were dissected, and 

their combined weight was counted as total abdominal fat. Full and empty cecal weights were 

recorded. Cecal contents were collected in microcentrifuge tubes and their pH was determined.  
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Statistical Analysis – Data from the first and second studies were analyzed as 2x3 and 

2x2  factorials, respectfully, using the MIXED procedure of SAS® Version 9.3 (SAS Institute, 

Inc., Car, N.C.).  Exceptions include end-of-study data from the first study used to plan the 

second study, which were evaluated using student t-tests in Excel. The UNIVARIATE procedure 

was used in the MIXED procedure to assure equal variance, normal distribution, and to identify 

outliers. Any observations that were more than three standard deviations away from the mean 

were considered outliers. Four total data points were removed: 28R1 and 28R5 were removed 

from active GLP-1 and fasting BG measurements from the first study; KO11 and WTC9 from 

the second study’s insulin and leptin measurements, respectively. WTR/S1 and WTR/S2 were 

removed from food intake data due to suspected equipment malfunction. Data were transformed 

by log if the normality assumption was not met. This was followed by F-protected least 

significant difference mean comparison tests in order to determine differences among dietary 

treatments. Results were considered significant at p<0.05 and expressed as means ± SE. 

Results  

An interaction effect (p=0.0198) was documented for empty cecum weight in the first 

study (Fig. 2). SG increased empty cecum weight, but only when consumed in conjunction with 

HM260, whereas HM260 was effective both alone and in combination with SG. No difference 

between 15 and 28% HM260 consumption was observed. Cecal content weights were similarly 

affected: HM260 (p<0.0001) and SG (p=0.0281) increased cecal content weight, albeit SG only 

worked at the 28% HM260 level (Fig. 3). Significant main effects for both RS (p=0.0001) and 

SG (p=0.0002) were documented for cecal pH, but numerical differences were not substantial i.e. 

less than half of a pH point (Fig. 4). This is considered a very modest reduction compared to 
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those documented in previous studies on low- and medium-fat diets, suggesting diminished rates 

of HM260 fermentation with the feeding of the HF diet. 

 

Fig 2. Empty cecum weights for 

study 1. 

 

 

Fig 3. Cecal content weights for 

study 1. 

 

Fig 4. Cecal pH for study 1. 

In the second study, KO animals had greater empty cecum (Fig. 5) and cecal content 

weights (Fig. 6) compared to WT (p<0.0001 and p=0.0014, respectively) – most likely as a result 

of their greater overall size – and both strains responded to 28R/S treatment (p=0.0004 and 

p<0.0001, respectively) with increased values compared to those fed control diets. As expected, 

combination treatment (p<0.0001), but not strain (p=0.1268), reduced cecal pH values by 

approximately half a pH point (Fig. 7).  
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Fig 5. Empty cecum weights for 

study 2. 

 

Fig 6. Cecal content weights for 

study 2. 

 

Fig 7. Cecal pH for study 2. 

Active GLP-1 concentrations and fasted BG are the primary factors for evaluating 

treatment efficacy. In the first study, HM260 did not significantly stimulate serum GLP-1 

production at either the 15 or 28% level (p=0.1772). An SG effect was documented (p=0.0010), 

with increased GLP-1 at the 0 (p=0.0227) and 28% (p=0.0256) HM260, but not 15% (p=0.1485) 

(Fig. 8).  However, 28% HM260 had the highest numerical amount of active GLP-1 and as stated 

above, had a higher amount of active GLP-1 than SG alone.  Since there was not a significant 

interaction (p=0.7747) between HM260 and SG, this difference appears to be isolated to the 28% 

HM260 and the HF diet may have impaired active GLP-1 production with 15% HM260.  The 

data do not support a dose-dependent response of SG with HM260 in regard to GLP-1. 

Something else could have interfered with the effectiveness of SG treatment at the 15% level. It 
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may be that the HF diet reduced fermentation and GLP-1 production, even though GLP-1 

production is usually stimulated by nutrient intake, especially dietary fat.  

 

Fig 8. Serum GLP-1 active for study 1. 

Despite SG-induced elevations in GLP-1 concentration, no significant changes in fasting 

BG were found in the first study (data not shown). These data are likely inaccurate due to human 

error: animals were not given new cages during the fasting period prior to testing; food was 

merely removed from the hoppers and cages per visual inspection. It is possible that small 

amounts of food at the bottom of the cage went undetected by researchers, allowing the mice to 

feed during the designated fasting period.  

Since elevation of active GLP-1 concentration was seen in SG-treated mice in study 1, 

and in order to determine the role of GLP-1 on treatment outcomes, we performed a second 

study with GLP-1 receptor KO and WT mice. The test was conducted after 10 weeks of 

combined treatment with SG (0.4%) and HM260 (28%). Treatment amplified serum GLP-1 

active concentration (strain*diet, p=0.0454) and reduced fasting BG (diet, p<0.001) in WT mice 

(Fig. 9). In KO mice, the GLP-1 elevation was almost double that of their WT counterparts 

(p=0.0013). However, the increased GLP-1 was not faithfully translated into a glucose reduction 
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doubled level of GLP-1. The data confirm that the GLP-1R is required for glucose control by 

SG-induced GLP-1. The data also suggest that a functioning GLP-1R is required for effective 

clearance of GLP-1.   

 

Fig 9. Serum GLP-1 active for study 2. 

Fasting BG obtained during the second study in response to 28R/S treatment likely 

confirms human error in study 1 (Fig. 10). Animals fed the treatment diet had reduced fasting 

BG levels compared to animals of the same strain fed a control diet (p<0.0001). Similar results 

were discovered for strain (p<0.0001): KO animals had greater fasting BG levels compared to 

WT controls regardless of diet. However, neither dietary treatment nor strain had any significant 

influence under ad-libitum feeding conditions. 

 

Fig 10. Fasted blood glucose for study 2. 
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(p<0.0001) – compared to control animals (Fig. 11, 12, and 13, respectively). SG appeared to 

rescue the impeded 28% HM260 effect on body fat loss by HFD in study 1. A combination of 

SG and 28% HM260 resulted in the most substantial reduction in fat mass (p=0.0048, NMR and 

p=0.0111, excised abdominal respectively).  

 

Fig 11. Body weight for study 1. 

 

Fig 12. Percent body fat for study 1. 

 

Fig 13. Total abdominal fat for study 1. 

Phenotypic differences in body weight and adiposity between KO and WT mice were 

observed both before and after treatment (data not shown). KO mice exhibited ~10% more body 

weight than WT mice before treatment (p=0.0003) (Fig. 14) due to ~50% more fat mass in the 

former (p<0.0001) (Fig. 15). Treatment attenuated weight gain in WT mice (p=0.0047), but 

failed in KO mice (p<0.0001). That is, KO mice gained more weight and had either diminished 

or no reductions in fat mass over the course of the study compared to controls according to NMR 

and total abdominal fat pad weights (Fig. 16), respectively.  
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Fig 14. Final body weight for 

 study 2. 

 

Fig 15. Percent total body fat for 

study 2. 

 

 

Fig 16. Total abdominal fat for study 2. 

Collectively, the data suggest that SG together with HM260 has a significant activity in the 

prevention of diet-induced weight and fat gain in a mouse model of type 2 DM, and the effect is 

dependent on a functioning GLP-1R.     

To understand GLP-1 activity in the regulation of energy metabolism, we monitored FI, 

PA, and EE via metabolism cages. Treatment significantly increased FI (p=0.0216) (Fig. 17) and 

EE in WT mice without altering PA (p=0.9065) (Fig. 19). Increased EE in response to treatment 

was indicated by increased oxygen consumption (O2) and carbon dioxide production (CO2) in 

WT mice, resulting in increased values for respiratory exchange ratio (RER) (p=0.0002) (Fig. 18, 

20, and 21, respectively) . KO animals had reduced overall O2 and CO2 levels compared to 

controls, and their response to treatment was either non-existent (CO2) or less pronounced (O2). 
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Increased RER despite minimal exchange of gases can be explained by the severely diminished 

PA and lack of increased FI accomplished by the KO strain (p<0.0001).  

 

Fig 17. Food intake for study 2. 

 

 

Fig 19. Physical activity for study 2. 

 

Fig 18. Oxygen consumption for 

study 2. 

 

 

 

Fig 20. Carbon dioxide production 

for study 2. 

 

 

Fig 21. Respiratory exchange ratio for study 2. 
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The effect of enhanced EE may exceed that of increased FI as the weight gain was 

reduced by the treatment.  That treatment failed to induce significant changes in FI and EE in KO 

mice suggests that the GLP-1R is required for the induction of EE in WT mice in response to the 

treatment. The extreme differences in PA in KO animals may undermine the beneficial effects of 

28R/S treatment in that strain. An alternative possibility is that WT animals supplemented with 

treatment diet, due to their increased FI, consumed significantly more SG than KO animals, 

which contributed to that group’s substantial weight loss. 

Insulin and leptin levels were measured in order to determine relative sensitivities in the 

DIO diabetic mice used in the second study. The test was conducted at 10 weeks of treatment 

using fasting plasma. Diet (p=0.0346) and strain (p=0.0113) independently affected insulin 

levels, and an interaction effect was discovered for leptin (p=0.0003). That is, WT animals fed 

the 28R/S combination had significantly reduced insulin levels compared to those fed the control 

diet (p=0.0303), but KO animals were not responsive (Fig. 22). Leptin was significantly reduced 

in response to treatment for both strains, but the reduction in KO was diminished compared to 

WT mice (Fig. 23). The hormone data are consistent with the lower body weight and lower 

adiposity of treated mice as well as the higher relative adiposity of KO animals.          

 

Fig 22. Plasma insulin levels. 

 

Fig 23. Plasma leptin levels. 
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Discussion 

In the first study, HM260 did not enhance SG-mediated induction of GLP-1, but it did 

result in greater reductions in total and abdominal body fat content. Partial synergy between 

HM260 and SG occurred at the 28% HM260 level only, causing our lab to choose 28R/S as the 

treatment diet for the second study using GLP-1R KO mice. The limited interaction between the 

two compounds is likely due to inhibition of HM260 fermentation by the HFD used in 

generation of the DIO model. HM260 was fermented, as indicated by increased empty cecum 

and cecal content weights, and by decreased cecal pH. However, changes in cecal pH were only 

about half a pH point. Moreover, measurements remained above 7.0, well within the normal pH 

range of the colonic lumen. Charrier et al. (2013) also documented diminished reductions in 

cecal pH, and partial attenuation of other stereotypical effects associated with HM260 

consumption when consumed in conjunction with a HFD. Superior synergy, leading to more 

pronounced physiological effects, is expected in animals fed low- and medium-fat diets.  

The SG effect on cecal pH was unexpected, and the mechanism(s) by which this reaction 

occurs is unknown. Poor gastrointestinal absorption and use by intestinal bacteria as a substrate 

for fermentation has never been reported, and is highly unlikely due to its documented 87% 

bioavailability (Herman et al. 2005). To our knowledge, no laboratory has specifically and 

intentionally investigated the effects of SG on colonic fermentation. We suspect this result is 

related to GLP-1’s inhibitory effect on gastric emptying: slowing down intestinal transit may 

give bacteria more time to ferment dietary fibers before excretion. Interestingly, SG-induced 

reductions in cecal pH are not diminished by a HFD, albeit its effects are not as strong as 

unimpeded HM260 fermentation. 
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A multitude of studies have shown that DPP-4 inhibitors such as SG are body weight-

neutral (Charbonnel et al. 2006; Raz et al. 2006; Rosenstock et al. 2006), so SG’s ability to 

attenuate body weight and fat gain in the first study was also surprising. In our study, the weight 

loss might be a result of dietary supplementation as opposed to injection, which likely keeps 

plasma GLP-1 active concentrations consistently elevated thanks to more frequent consumption 

by mice and the long half-life of SG, i.e. between 8-14 hours (Herman et al. 2005). Higher 

plasma GLP-1 concentrations are associated with higher rates of EE and fat oxidation 

independent of age, sex, and body composition (Pannacciulli et al. 2006). In rats, GLP-1 

injection (50 pmol-20 nmol, iv) elicited dose-dependent increases in the rate of EE as indicated 

by whole-body O2 consumption, heart rate of urethane-anesthetized rats, and core body 

temperature (Osaka et al. 2005). GLP-1R agonists, with or without concurrent administration of 

a DPP-4 inhibitor, consistently reduce body weight (Boschmann et al. 2009; Bradley et al. 2010; 

Garber 2011), and inactivation of the DPP-4 gene prevents DIO, insulin resistance, and type 2 

DM in mice (Marguet et al. 2000; Conarello et al. 2003). Our laboratory hypothesized that the 

majority of the body weight and fat losses seen in association with augmented GLP-1 

concentration occurred through activation of the GLP-1R. In support of this theory, anti-obesity 

effects of 28R/S treatment were lost in GLP-1R KO mice.  

We observed that 28R/S treatment reduced fasting BG, insulin, and leptin levels in WT 

mice, suggesting improved sensitivities to both hormones. As expected, these effects were 

associated with lower body weights and decreased adiposity. Once again, the anti-diabetes and 

anti-obesity effects of 28R/S were lost in GLP-1R KO mice, suggesting the role of GLP-1R in 

the therapeutic activities of the combination treatment.  
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Our data from KO mice also indicate that GLP-1R may regulate serum GLP-1. The 

circulating GLP-1 concentration reflects a balance of secretion and degradation. The secretion by 

L-cells is induced by food intake. SG was reported to stimulate total GLP-1 secretion by directly 

activating cAMP and ERK1/2 signaling pathways in L-cells (Sangle et al. 2012), which is 

independent of DPP-4 inhibition. This activity is likely unrelated to the elevated GLP-1 in KO 

mice. The GLP-1 protein is degraded by DPP-4 in the deactivation process. It is not known if the 

GLP-1 receptor is required in the control of GLP-1 degradation. In this study, GLP-1R KO mice 

exhibited a 100% greater serum GLP-1 in response to SG treatment. The elevation is induced by 

SG as serum GLP-1 levels were identical between WT and KO mice in the untreated control 

groups. The data suggest that in a physiological condition, GLP-1R may accelerate GLP-1 

degradation. The effect is impaired in the GLP-1R KO mice, which leads to the GLP-1 super 

reaction to SG. 

In summary, we used GLP-1R KO mice to study potentially synergistic therapeutic 

activities of SG and HM260. We observed that a combination of SG with 28% HM260 was able 

to attenuate weight gain in addition to reducing fasting BG in type 2 DM mice. This combination 

enhanced EE in the mice, which may represent a mechanism of the anti-obesity effect commonly 

associated with HM260 and inconsistently with SG. The therapeutic effects are dependent on 

GLP-1R, which may regulate plasma GLP-1 as well. The mechanisms of GLP-1R actions remain 

to be established for the induction of EE and regulation of circulating GLP-1.  
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CHAPTER 4 

WHOLE-GRAIN RESISTANT STARCH STUDY 

 

Introduction 

Dietary RS in the form of HM260, a type of high-amylose corn starch containing 

significant amounts of RS2, increases gut fermentation in several non-obese rodent models 

including C57BLK6 mice, Wistar rats, and Goto Kakazaki rats. Characteristic results of 

fermentation are increased empty cecum weight, increased cecal content weight, reduced cecal 

pH value (i.e. below 7.0), and increased concentrations of various SCFAs in the cecum. 

Reductions in body fat and body weight have also been documented. However, these results are 

inconsistent and/or not as robust in rodent models of obesity, including both genetic and diet-

induced obese varieties.  

Reid et al. (2010) makes several recommendations designed to minimize problems with 

experimental design that could obscure important biological differences between those that do 

(responders) and those that do not respond (non-responders) to probiotic treatment; these 

suggestions can also be applied to studies using prebiotics. Identifying which individuals or 

groups of individuals are likely to exhibit which physiological responses is important when 

attempting to prescribe the most effective treatment modality. In regard to RS, certain animal 

models appear to be non-responders to dietary RS. For example, Zhou et al. (2009) saw no 

reductions in abdominal fat for two different polygenic obese mouse models fed low-fat diets; 

these mice did not appear to ferment RS. Goldsmith et al. (2010) and Badkoobeh et al. (2010) 

failed to document abdominal fat reduction in mice made obese through HF-feeding prior to 

beginning RS supplementation.  

Our laboratory is curious about these irregularities: what is responsible for these 

variations in fermentation? Is it something to do with a particular animal model’s genetic make-
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up or a peculiarity of the particular type of resistant starch, e.g. RS1, RS2, RS3, etc. or a 

combination of the above? The ZDF rat possesses a mutation in the leptin receptor that causes it 

to develop obesity and insulin resistance between 7-10 weeks of age (Srinivasan & Ramarao 

2007). Scientific literature characterizing the fermentation response of the animal model is 

sparse, if not nonexistent. Whether or not these animals are capable of fermenting, i.e. whether or 

not this animal model’s genotype has altered the microbiota to make it unresponsive to treatment 

with RS is likewise unknown.  

We hypothesize that obese ZDF rats will be capable of robustly fermenting RS 

demonstrated by increased cecal weights and increased SCFA and reduced cecal contents pH. 

However, beneficial phenotypic changes such as lower abdominal fat and increased insulin 

sensitivity that we have previously observed in combination with RS fermentation, may not 

occur if leptin signaling is required for the effects.  ZDF rats have a defective leptin receptor and 

are used in this study as a knockout for leptin signaling.  That is, feeding of RS to ZDF rats for 

enhancing fermentation and improving the gut microbiota (Tachon et al. 2012) may not override 

the animals’ genetics.. We also hypothesize that more vigorous levels of fermentation will be 

seen in animals fed HMWG, which is a source of two types of RS, i.e. RS1 and RS2, compared 

to Hi-Maize RS, which only provides RS1. Additionally, the corn bran in the whole-grain corn 

flour has fructans, β-glucan, and arabinoxylans (Lu et al. 2000, Dodevska et al. 2013, Maki et al.. 

2012). 

Research Design and Methods 

Animal Models – All study protocols were approved by the IACUC committee at the 

Louisiana State University Agricultural and Mechanical College. ZDF rats (n=48) arrived from 

Charles River Laboratories International Inc. at 4 weeks of age, and 47 rats remained in 
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quarantine for 1 week, where they were maintained on a standard chow diet.
4
 Animals were 

housed in wire-mesh cages in a climate-controlled environment (21-22°C, 55% humidity) with a 

12:12 hour light-dark cycle illuminated at 7 AM.  Rats were given two weeks to acclimate to a 

powdered control diet before stratification and administration of experimental diets. Fasted blood 

glucose and insulin values were determined from blood collected through retro-orbital bleeding 

using a glucometer and Millipore’s insulin kit, respectively. Measurements were used to 

calculate HOMA-IR, which equals fasting plasma glucose multiplied (mmol/L) by fasting 

plasma insulin (mU/L) and then divided by 2430, in order to properly stratify animals into four 

groups (n=11-12) based on body weight and diabetic status.  

At 7 weeks of age, rats were stratified by HOMA-IR and body weight into one of four 

isocaloric (3.2 kcal/g) diets: AC (n=12), HM260 (n=12), DWGC (n=12), and HMWG (n=11). 

The signifying diet components, i.e. Amioca® starch, Hi-Maize® RS, dent corn flour, and WG 

RS flour, were analyzed by proximate analysis and modified Englyst assay (Englyst, 1996) for 

formulating diets for macronutrient content and RS amount of the carbohydrate fraction, 

respectively. The RS by weight of the final diets was: AC 0%, DWGC 6.9%, HM260 25%, and 

HMWG 25%. Body weight, food intake, and spillage measurements were taken twice per week 

for the 11-week study. Collections for HOMA-IR calculations were repeated at 8 weeks into the 

study.  

Tissue Collection – At the end of the study period, non-fasted rats were euthanized via 

isoflurane inhalation.  Blood was collected in 1.5 mL microcentrifuge tubes containing DPP-4 

inhibitor and used to measure GLP-1 active with ALPCO’s ELISA kit.  The GI tract was 

removed from the base of esophagus to anus and weighed.  Stomach, small intestine, and large 

                                                           
4
 One rat died soon after arrival due to kidney-related health problems. 
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intestine were weighed full, divested of their contents, and washed then reweighed. Peritoneal, 

retroperitoneal, and epididymal fat pads were collected and weighed, and the sum of which is 

referred to as total abdominal fat weight. EBW was calculated as disemboweled body weight 

(final body weight minus weight of full GI tract) plus the weight of the empty GI tract. Percent 

abdominal fat was calculated as total abdominal fat divided by EBW, multiplied by 100. Cecal 

contents were saved in microcentrifuge tubes and frozen in liquid nitrogen. Samples were thawed 

and subjected to pH and SCFA analysis. pH was assayed using a Mettler Toledo SevenEasy pH 

meter (Model: S20), and SCFA concentrations using gas-liquid chromatography.  

Statistical Analysis – Data were analyzed as a one-way ANOVA followed by LSD post-

hoc mean comparison tests using the MIXED procedure of SAS® Version 9.3 (SAS Institute, 

Inc., Car, N.C.). The UNIVARIATE procedure was used in the MIXED procedure to assure 

equal variance, normal distribution, and to identify outliers. Data were transformed by log if the 

normality assumption was not met. Any observations that were more than three standard 

deviations away from the mean were considered outliers. Three outliers were discovered and 

subsequently removed for HOMA-IR: two for HM260 (1.29 and 7.20) and for one for HMWG 

(5.12). Results were considered significant at p<0.05. Values are expressed as means ± SE. 

Results 

 

Fig 24. Empty cecum weights. 

 

Fig 25. Cecal content weights. 
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Empty cecum and cecal content weights (Fig. 24 and 25, respectively) were significantly 

different among all groups (p<0.0001), and increased with increased RS and whole-grain 

contents.  This demonstrated that ZDF rats are capable of RS fermentation and that the presence 

of whole-grain (HMWG vs. HM260 and AC vs. DWGC) resulted in a more robust fermentation 

response than for treatments with no whole-grain.  RS-containing groups (DWGC, HM260, and 

HMWG) had significantly reduced cecal pH values compared to the non-RS control (AC) (Fig 

26). HMWG was significantly greater than DWGC, but not HM260.  

 

Fig 26. Cecal pH values. 

 

Fig 27. SCFA in cecal contents. 

Differences in total SCFAs were documented for acetate and butyrate, but not propionate 

(Fig 27). For both acetate and butyrate, RS consumption resulted in significantly increased 

values compared to AC, with the HMWG group producing significantly more than DWGC or 

HM260. 

 

Fig 28. GLP-1 active concentrations. 

 

Fig 29. Total food intake values. 
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Fig 30. Percent abdominal fat. 

 

Fig 31. HOMA-IR values. 

GLP-1 active was significantly greater in groups supplemented with the higher amounts 

of RS only (p<0.01), but HM260 and HMWG were not significantly different from one another 

(p=0.2048) (Fig. 28). All three RS-containing groups consumed more food compared to the non-

RS control (p<0.03) (Fig 29). Animals supplemented with either HM260 or HMWG consumed 

significantly more than the WG-control group, DWGC (DWGC versus HM260 p=0.0138; 

DWGC versus HMWG p=0.0072), but not more than each other (p=0.7578). Despite differences 

in food intake and GLP-1 status, no differences in percent abdominal fat (p=0.4981) (Fig. 30) or 

HOMA-IR (p=0.08) were documented (Fig 31). 

Discussion 

 Fermentation was demonstrated in groups whose diets were supplemented with 

carbohydrate sources containing dietary RS, with significantly more being documented in groups 

with diets containing WG, specifically. Groups whose dietary carbohydrate contained RS, 

regardless of type, responded with increased cecal content weights (p<0.0001), decreased pH of 

cecal contents (p<0.0001), increased empty cecum weights, increased SCFA produced, and 

increased GLP-1 active secreted. These results indicated that ZDF rats possess microbiota 

capable of fermenting dietary RS and other possible fermentable fibers in WG flours.  

Animals exhibited a more consistent and, thus, more robust fermentation response to 

HMWG than the HM260 variety.  There was a great deal of variation in fermentation response 
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for HM260 compared to HMWG: 5 out of 12 HM260 rats appeared to not ferment the RS as 

indicated by cecal contents pH above 7 compared to 1 out of 11 rats for HMWG. This suggests 

that there are additional factors affecting fermentation capacity, which we are not controlling for 

in this study.  

Despite robust levels of fermentation, no metabolic effects, i.e. no reductions in percent 

body fat or HOMA-IR, were statistically evident. This suggests that ZDF genotype, with its 

strong propensity towards obesity, insulin resistance, and type 2 DM, is more powerful than the 

fermentative effects produced by either source of RS, whole–grain or no whole-grain. The ZDF 

rat is a type of knockout for leptin signaling because it has a defective leptin receptor.  The 

results from this study demonstrate that a functioning leptin receptor and leptin signaling is 

required to convert the robust fermentation effects into beneficial phenotypic changes.  These 

beneficial changes include a healthier large intestine (Keenan et al. 2012), a healthier microbiota 

(Shen et al. 2011, Tachon et al. 2012; Keenan et al. 2013), and improved insulin sensitivity and 

pancreatic mass in a lean model of type 2 DM (Shen et al. 2011).  Previous research results that 

indicated that a response to leptin was necessary for beneficial phenotypic changes to occur were 

the increased energy expenditure and increased fat burning (Zhou et al. 2009) and increased 

POMC gene expression in the arcuate nucleus of the hypothalamus (Shen et al. 2009). 

Dent corn is stereotypical of corn products found in today’s food supply, and possesses a 

high amylopectin:amylose ratio.  Therefore, dent WG corn flour likely has some RS1 in its WG 

component plus a small amount of RS2 with the amylose in its starch component. Amioca® 

starch is produced from the isolated starch fraction of waxy corn flour.  Recently, the Ingredion 

Company analyzed the RS content in the major dietary components in a later RS study that 

included the whole grain flour product from waxy corn,WG Amioca® flour, again using the 
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modified Englyst method (Englyst 1996). The percent of RS in the WG.Amioca® in the 

carbohydrate fraction (proximate analysis) was 13% compared to 14% for the whole-grain Dent 

corn. Since Amioca® starch is 100% amylopectin, the amount of RS in WGAmioca® is likely 

all RS1.  HM260 starch contains only RS1 as it is a high-amylose isolated starch.  The results, 

therefore, indicate that the presence of RS1 and other fermentable fibers in the WG flours (e.g. 

arabinoxylans) (Lu et al. 2000, Maki et al. 2012), in addition to RS2 in DWGC and HMWG, are 

responsible for the increased fermentation in the ZDF rats compared to non-WG counterparts, 

i.e. AC and HM260, respectively.   

These results are further evidence that inclusion of WG products are likely to have 

increased health benefits compared to diets with no or low amounts of WG products.  This would 

likely include improved gut health and health-positive phenotypic changes in individuals without 

strong genetic tendencies for chronic diseases.  The current study demonstrated that the strong 

genetics toward obesity, insulin resistance, and type 2 DM likely driven predominately by a 

defective leptin receptor, could not be overcome despite a very robust fermentation produced by 

the HMWG product. 
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CHAPTER 5 

CONCLUSION 

 

While obesity does not produce the swift and highly visible devastation that tuberculosis, 

polio, and other communicable diseases do, its increasing prevalence and associated co-

morbidities, i.e. metabolic syndrome, constitute a severe public health crisis. The defining 

characteristics of metabolic syndrome are obesity, dyslipidemia, hypertension, poor glycemic 

control, and several types of cancer (Galisteo, 2008). The pathophysiology of metabolic 

syndrome and the exact relationships between its components are obscured by its complex 

etiology, making effective, long-term treatment extraordinarily difficult.  Recently, DFs have 

garnered significant attention due to their beneficial effects on body weight, food intake, glucose 

homeostasis, and insulin sensitivity (Marlett, 2002; Delzenne & Cani 2005). In fact, populations 

that report higher fiber consumption also exhibit lower rates of obesity in both adults and 

children (Kimm, 1995; Galisteo, 2008). Epidemiological studies reveal inverse associations 

between fiber and body weight (Alfieri et al., 1995; Appleby et al., 1998) as well as body fat 

(Nelson and Tucker, 1996). Reduced risk for cardiovascular disease, diabetes, and colon cancer 

have also been documented (Galisteo, 2008).   

SCFAs, the end products of fermentation of DFs by the anaerobic intestinal microbiota, 

have been shown to exert multiple beneficial effects on mammalian energy metabolism and 

overall health. Colonic fermentation of the unique DF known as RS is associated with a number 

of positive health effects including: increased cecal SCFA concentrations leading to reduced 

cecal pH; increased circulating levels of GLP-1; reduced FI, body weight, and adiposity; and 

improved insulin sensitivity and glucose homeostasis. In addition, use of RS as a substrate for 

microbial metabolism alters the composition of the gut microbiota, supporting the growth of 
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beneficial bacteria, which may prevent colonization of the GI tract by potential pathogens and 

reduce the risk of inflammatory bowel diseases, among other things.  

Previous studies have showed that the macronutrient content of the diet affects the 

strength of colonic fermentation and/or effectiveness of RS supplementation as a treatment for 

obesity- and diabetes-related health outcomes: That is, high levels of dietary fat reduce the 

intensity of RS fermentation in the colon and subsequent benefits to overall health. Our lab and 

others have described the influence that the amount as well as type of fat in the diet has on 

colonic fermentation and its associated outcomes, too. In addition, we discovered that certain 

genetic models of obesity and diabetes successfully ferment RS, but fail to exhibit any 

discernible, beneficial physiological response. Whether or not this is true for all types of RS or 

just HM260 WG and non-WG is unknown. Knowing if an individual is capable of responding to 

and deriving benefit from a particular functional food product like RS is important and necessary 

information when attempting to prescribe the most efficient treatment.   

The studies included in this dissertation attempted to address these phenomena by 

determining: (a) whether or not RS fermentation effects could be rescued during concurrent 

administration of a HF diet; (b) the mechanistic importance of the GLP-1 hormone on RS 

fermentation effects; and (c) whether or not ZDF rats were capable of responding to RS 

supplementation, that also included utilization of a novel product consisting of whole-grain RS. 

Our hypotheses were that (1) RS plus the anti-diabetes drug SG on a HF diet would be sufficient 

to raise GLP-1 concentrations in the bloodstream to sufficiently induce body fat loss and 

improve insulin sensitivity; (2) intact GLP-1 receptor signaling was both necessary and sufficient 

to induce positive changes in percent body fat and insulin sensitivity; (3) the microbiota present 

within the ZDF rat would be capable of fermenting RS, but the lack of a functional leptin 
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receptor may prevent the production of a leaner, more insulin sensitive phenotype ; and (4) the 

whole-grain variety of RS would be more highly fermented than regular RS, because it is a 

source of both RS1 and RS2 and other fermentable fibers, while the latter is composed of RS2. 

Fermentation of HM260 occurred on the HF diet but was diminished compared to results 

from previous studies using LF and medium-fat diets. This likely explains why we failed to see 

an HM260 effect for circulating GLP-1 concentrations and, subsequently, insulin sensitivity in 

study one.  We were surprised by SG’s effect on body weight and adiposity: DPP-4 inhibitors 

have not previously been associated with weight loss. But in the studies described here we saw 

significant reductions in body weight and adiposity with SG administration; effects that were 

enhanced by concomitant administration of HM260 at 28% of the weight of the diet. It was these 

results that encouraged us to pursue the second mechanistic study with GLP-1 receptor KO mice.  

We observed that a combination of SG with 28% HM260 was able to raise GLP-1 

concentrations in the blood stream, attenuate weight gain, and reduce fasting BG in a mouse 

model of type 2 DM. This combination enhanced EE in the mice, which may represent a part of 

the mechanism of the anti-obesity and anti-diabetes effect commonly, but inconsistently, 

associated with both HM260 and SG. The therapeutic effects are dependent on GLP-1 receptor; 

as  GLP-1 receptor KO animals were capable of responding to the combinatory treatment with 

increased GLP-1 production, but they were incapable of manifesting the same beneficial health 

effects seen in the WT strain.  Our data shed some light on the potential role of the GLP-1 

receptor system in induction of EE and regulation of circulating GLP-1 levels. 

The exploratory experiment into the fermentative capacity of the ZDF rat provided two 

important insights. First, that the influence the microbiota has on host phenotype is limited; host 

genotype trumps its microbial fermentation, at least in this particular animal model and with this 
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particular prebiotic compound. In particular, this animal model’s genetic resistance to positive 

effects that are normally associated with fermentation of RS is likely dominated by it possession 

of a defective leptin receptor.  Secondly, that a combination of multiple types of RS and, 

ostensibly, multiple types of DF overall, is more effective than a single one. This realization may 

warrant revisiting our HF diet experiments – this time with HMWG instead of HM260 – to see if 

(a) the fermentation response is still reduced on a HF diet and/or (b) whether or not the amount 

of fermentation is enough to generate synergy with SG. Additionally, it may be warranted to 

repeat the investigation of the SG and HM260 with a low- or moderate-fat diet.  With a LF diet, 

lower dietary doses of HM260 may be effective in reducing body fat/weight and increasing GLP-

1 active and synergistic effects of HM260 with SG would be observed.  
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