
Louisiana State University Louisiana State University 

LSU Scholarly Repository LSU Scholarly Repository 

LSU Doctoral Dissertations Graduate School 

2010 

A kernel weighted smoothed maximum score estimator for the A kernel weighted smoothed maximum score estimator for the 

endogenous binary choice model endogenous binary choice model 

Jerome Krief 
Louisiana State University and Agricultural and Mechanical College 

Follow this and additional works at: https://repository.lsu.edu/gradschool_dissertations 

 Part of the Economics Commons 

Recommended Citation Recommended Citation 
Krief, Jerome, "A kernel weighted smoothed maximum score estimator for the endogenous binary choice 
model" (2010). LSU Doctoral Dissertations. 3978. 
https://repository.lsu.edu/gradschool_dissertations/3978 

This Dissertation is brought to you for free and open access by the Graduate School at LSU Scholarly Repository. It 
has been accepted for inclusion in LSU Doctoral Dissertations by an authorized graduate school editor of LSU 
Scholarly Repository. For more information, please contactgradetd@lsu.edu. 

https://repository.lsu.edu/
https://repository.lsu.edu/gradschool_dissertations
https://repository.lsu.edu/gradschool
https://repository.lsu.edu/gradschool_dissertations?utm_source=repository.lsu.edu%2Fgradschool_dissertations%2F3978&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/340?utm_source=repository.lsu.edu%2Fgradschool_dissertations%2F3978&utm_medium=PDF&utm_campaign=PDFCoverPages
https://repository.lsu.edu/gradschool_dissertations/3978?utm_source=repository.lsu.edu%2Fgradschool_dissertations%2F3978&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:gradetd@lsu.edu


A KERNEL WEIGHTED SMOOTHED MAXIMUM SCORE ESTIMATOR FOR THE ENDOGENOUS
BINARY CHOICE MODEL

A Dissertation

Submitted to the Graduate Faculty of the

Louisiana State University and

Agricultural and Mechanical College

in partial fulfillment of the

requirements for the degree of

Doctor of Philosophy

in

The Department of Economics

by

Jerome Krief

Mairise, Paris IX Dauphine, 2000

M.S., Louisiana State University, 2007

December 2010



Acknowledgements

I am indebted to three professors who have influenced me as a researcher. First, I would like to thank Dr.

R.Carter Hill for having taught me the art of econometrics. Also, I would like to thank Dr. Joel Horowitz

for having encouraged me to pursue this dissertation topic. Finally, I would like to thank Dr. Leonard

Richardson for having provided me with solid foundations in Real Analysis.

Also, I thank the participants of the 2010 Netherlands Econometric Study Group for their comments.

Moreover, I thank Dr. R. Kaj Gittings and Dr. Bulent Unel for suggestions. Lastly, I am grateful to Chris

Raschke and Paul Darby for their aid in handling the dataset.

ii



Table of contents

Acknowledgements.......................................................................................................................................ii

Abstract.......................................................................................................................................................iv

1. Introduction.............................................................................................................................................1

2. Literature, Motivation and Summary of Contribution...............................................................................3

3. Estimation Strategy..................................................................................................................................5

4. Description of the KWSMS Estimator.......................................................................................................6

5. Accelerating Convergence: A Score Approximation Smoothed Maximum Score Estimator......................10

6. Monte Carlo Simulations..........................................................................................................................13

7. Application: An Effect of Education on Maternal Pregnancy Cigarettes Smoking?...................................17

8. Conclusion................................................................................................................................................20

References.....................................................................................................................................................21

Vita...............................................................................................................................................................23

iii



Abstract

This paper considers a local control function approach for the binary response model under endogeneity.
The objective function of the Smoothed Maximum Score estimator (SMSE)(Horowitz 1992) is modified by
weighting the observations with a kernel. Under some mild regularity conditions similar in nature to those
of the SMSE, the consistency of this Kernel Weighted Smoothed Maximum Score estimator is established.
Under some reasonable smoothness conditions the estimator’s asymptotic normality is derived with a conver-
gence rate in probability of at least n−3/8 which can be rendered arbitrarily close to n−1/2 as the regularity
conditions improve. Additionally, the covariance matrix of the limiting distribution can be estimated con-
sistently from data, permitting convenient inferences. Under stronger regularity conditions, an alternative
C.A.N. estimator using a two stage procedure via sieves is shown to achieve a faster rate of convergence
in probability. Some Monte Carlo experiments are conducted highlighting the robust advantage of these
estimators. Finally, these estimation techniques are used to assess the determinants of maternal pregnancy
smoking using the 1988 National Health Interview Survey.
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1. Introduction

This paper considers the endogenous binary choice model of the form:

(i) U = Ẋ ′β + ε,

(ii) A = Π′W + V ,

(iii) Y = d(U) with d(.) ≡ 1[. ≥ 0],

where Y is the observable response variable, Ẋ ′ ≡ (Z ′, A) is a 1×K observable vector, W a q×1 observable
vector, (ε, V ) are unobservable errors, Π is a q× 1 unknown parameter and β a K × 1 parameter of interest.
Write W̃ as the components of W which are excluded from Ẋ. Here the vector S ≡ (Z ′, W̃ ′) contains
exogenous instruments while A is the endogenous variable due to the correlation between ε and V . For
simplicity assume that Ẋ contains no intercept since it is not identifiable under the estimation technique
which is to be discussed soon. Under appropriate identification restrictions the results put forth in this
dissertation are easily generalizable when A is a vector and Π′ a matrix. Importantly, the proposed estimator
allows for powers of the endogenous variable.

In the economics literature the latent variable U usually represents the agent’s willingness to pay, or the
difference in utility between two mutually exclusive alternatives. This model may have an omitted variable
interpretation when A is correlated with ε through some unobservable factors. The model also has an errors
in the variables interpretation when A represents a misreported variable. Here are some (simplified) examples
taken from the economics literature where the above endogenous binary model applies:

Example 1: Labor force participation of men without college education, Powell and Blundell
(2004).

Let Y = 1 if a man without a college education works. Equation (i) applies, with Z containing the years
of education of the men and A = log(spouseinc) where spouseinc is the income of his spouse. According
to economic theory the spouse’s income is endogenously given by a Mincer’s equation. The authors use
(ii) with W ′ = (spouseduc, log(benef)) where spouseduc is the years of education of the spouse and benef
is the monetary amount of welfare entitlement combining child benefit, unemployment benefit and other
allowances. Here ε contains unobservable factors which drive the man’s labor force decision such as his
family background, while V includes unobservable variables driving the spouse’s income such as her family
background. It is expected that the slope coefficient of log(spouseinc) is negative since a higher extra source
of income gives less incentive to search for a job. However, given that married individuals tend to share
some common attributes ε and V are positively correlated. Using a probit (or logit) regression of Y on Z,A
will yield misleading estimate, in effect underestimating the importance of the spouse’s income as a work
disincentive.

Example 2: Stock option and earnings manipulation, Burns and Kedia (2004).

Let Y = 1 if a firm restates its earnings. Equation (i) applies with Z containing a firm’s financial
characteristics such as its debt, liquidity and spending on research and development while A = log(delta ∗
shares) where delta is the delta of the option on the firms’ stock (i.e. the derivative of the option value with
respect to its stock price in the Black and Scholes Option Pricing Model) and shares indicate the number
of shares granted to the managers. Thus delta ∗ shares measures the potential gain in stock option value
for a small increase in stock price. The number of shares granted is partly determined by the labor market
characteristics for the industry in which the firm operates. Hence, the authors use (ii) with W ′ = (Labor′, Z ′)
where Labor′ is a vector of labor market characteristics. Here ε contains unobservable factors which promote
earning restatements while V include unobservable variables driving the stock option value. It is expected
that the slope coefficient of log(delta ∗ shares) is positive. However, there are unobservable attributes for
a firm such that the CEO’s risk aversion, growth potential which affect both restatement and the stock
value, therefore inducing a correlation between ε and V . Using a probit (or logit) regression of Y on
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Z,A will yield misleading estimates, in effect overestimating the effect of stock option as an incentive for
earnings’manipulation.

Example 3: Foreign direct investment and spill-over on exports, Aitken et al, (1997).

Let Y = 1 if a domestic firm exports goods. Equation (i) applies with Z containing the cost attributes of
the firm such as its labor cost, capital cost and transportation cost while A = log(FDI) where FDI is the
amount of foreign direct investment in the region where the firm operates. Since the level of FDI received
by a region is to a larger extent the product of a cost benefit analysis from foreign firms, the authors use
(ii) with W ′ = (foreignwage, foreignlaborV A, foreignlaboroutput, Z ′) where foreignwage indicates the
foreign real wage for the industry in which the firm operates, foreignlaborV A measures the foreign labor
share of value added and foreignlaboroutput the foreign labor share of output. Here ε contains unobservable
factors influencing the decision of whether to export while V includes unobservable characteristics of the
region which are relevant for foreign firms. It is expected that the slope coefficient of log(FDI) is positive
since a larger amount of FDI in a region may facilitate exports notably via better infrastructure. However,
ε and V share common variables rendering both exports and FDI more appealing such as the quality of the
regional labor force. Using a probit (or logit) regression of Y on Z,A will yield misleading estimates, in
effect overestimating the effect of FDI on exports.
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2. Literature, Motivation and Summary of Contribution

In principle when either (ε, V )|S or ε|S, V has a distribution function known up to some finite dimen-
sional parameter, one may estimate β consistently via maximum likelihood (ML). A vast literature assumes
this is the case with a normal homoscedastic distribution posited for (ε, V )|S such as in Heckman (1978),
Amemiya (1978), Lee (1981) and Newey (1987) or for ε|S, V as in Smith and Blundell (1986) and Rivers
and Vuong (1988). If the parametrization of the distribution in question is incorrect, those estimators will
be inconsistent. As a result, new semi-parametric estimators have been proposed, relaxing this parametric
requirement. For instance, the quasi-ML estimator developed in Rothe (2009) is consistent for β whenever
the distribution function of ε|Ẋ, V depends only on Ẋ ′β and V . Also, the two stage least square estima-
tor proposed in Lewbel (2000) is consistent for β provided there exists a special regressor in Ẋ meeting a
certain conditional independence restriction. Even though these semi-parametric estimators offer a robust
advantage, they present some limitations in terms of either the permitted form of heteroscedasticity (Rothe
2009) or which variables affect the conditional variance of both ε and V (Lewbel 2000). This is due to the
very nature of their distributional oriented assumptions.

Estimators that are robust to unknown heteroscedasticity are based instead on some conditional median
restrictions which loosely speaking only require the center of the distribution of ε to remain unaffected by the
covariates. For instance, Newey (1985) provided a consistent asymptotically normally distributed two stage
maximum score estimator for β under the requirement that (V, ε) be symmetrically distributed around the
origin, conditional on S. Also, Hong and Tamer (2003) proposed a consistent minimum distance estimator for
β under the less restrictive condition that Med(ε|S) = 0. However, in Newey (1985) a consistent estimator
for the asymptotic covariance is not provided (see Newey 1985, page 228) while Hong and Tamer’s estimator
has an unknown limiting distribution.

The main motivation behind this dissertation is to remedy this inferential problem, offering a consistent
estimator of β under a weak median restriction which also allows for testing. The main estimator presented
in this article, named the Kernel Weighted Smoothed Maximum Score (KWSMS) estimator, meets these
objectives. The KWSMS estimator is constructed by imposing a restriction on Med(ε|S, V ) which must
not vary with the instrument S. This ensures the existence of some random variable φ and unobservable
term e such that Y = d(Ẋ ′β + φ + e) where now e satisfies the classic median restriction introduced for
maximum score estimation (Manski 1985). Then, a smoothed maximum score estimation (Horowitz 1992) is
performed as if φ were a constant, correcting this approximation by means of a kernel. Doing so facilitates the
asymptotic analysis using the framework laid out in Horowitz (1992). An interesting additional contribution
of this article is in fact to offer a robust estimation procedure for a semi-linear random utility model.

Not surprisingly, this estimation approach imposes stronger assumptions than those required from the
SMSE albeit similar in essence. The KWSMS estimator’s consistency for β (up to a positive scale) requires
that one element of Ẋ be fully supported and that the endogenous variable be continuous. Additionally, if
certain cumulative distribution functions involving the random variables V and Ẋ ′β are sufficiently differ-
entiable then the KWSMS estimator is asymptotically normally distributed provided the fourth moments of
Ẋ exist. Finally, the KWSMS estimator say βn satisfies βn − β = Op(n

− 1
2 +κ) for some κ ∈ (0, 1/8) where

κ becomes arbitrarily small under adequate regularity conditions. Hence, the parametric rate is potentially
achievable.

This paper relates to the previous literature using the control function approach which has already
been employed to handle endogeneity in the context of binary choice models (Blundell and Powell 2004),
triangular equation models (Newey, Powell and Vella 1999) and quantile regression models (Lee 2007). Also,
the technique used to derive the asymptotic results is similar to that of the SMSE using nonparametric
convolution based arguments. Finally, its local nature can be thought as a smoothed version of the local
quantile regression estimator (Chaudhuri 1991, Lee 2003) in the context of the random utility model.

As explained in Section 4, a KWSMS estimator in effect uses only observations of V close to a given value.
This local nature suggests that the rate of convergence can be accelerated by using all the observations of
V instead. Thus, in this paper a second stage estimation is offered with a Score Approximation Smoothed
Maximum Score (SASMS) estimator which uses the information content from various KWSMS estimators
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retrieved in a first stage estimation. Under stronger regularity conditions the SASMS estimator is still
consistent and asymptotically normally distributed while achieving a faster rate of convergence in probability.

The rest of the paper is organized as follows. Section 3 provides a review of the control function approach
in the context of this binary choice model. Section 4 describes the KWSMS estimator and summarizes its
asymptotic properties. Section 5 describes the SASMS estimator and summarizes its asymptotic properties.
Section 6 contains some Monte Carlo simulations to illustrate the finite sample qualities of the suggested
estimators. Finally, Section 7 applies these estimation techniques using data from the 1988 National Health
Interview Survey to determine the factors influencing maternal pregnancy smoking.
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3. Estimation Strategy

The key condition introduced in this paper is that there exists some v in the support of V satisfying:

Med(ε|Z,W, V = v) = Med(ε|V = v) (1)

Loosely speaking, (1) imposes that once V has been fixed at v, the center of the distribution of ε does not
vary with the exogenous variables. The equality in (1) will be met for instance when (Z,W ) and (ε, V ) are
statistically independent or under a conditional independence restriction of the form ε|Z,W, V ∼ ε|V , but
those are not necessary. This key median assumption, which can be tested from data as explained in Section
4.3, is neither stronger nor weaker than that assumed in Hong and Tamer (2003) because each restriction
can imply the other under certain conditions. This median restriction can accommodate heteroscedasticity
in V of virtually any form in the error term.

Now suppose that (1) holds for an arbitrary v. As will be explained shortly, this is stronger than required
for the KWSMS estimator but is needed for the SASMS estimator (at least over a range of values for v).
Invoking this last condition and the fact (Ẋ, V ) is one to one with (Z,Π′W,V ) yields:

Med(ε|Ẋ, V ) = Med(ε|V ),

and noting φ(V ) = Med(ε|V ) thus provides:

Med(U |Ẋ, V ) = Ẋ ′β + φ(V ), (2)

showing that the restriction in (1) treats endogeneity as an omitted variable problem. The conditional
median in (2) becomes the starting point for consistent estimation since by the quantile invariance property
to monotonic transformations (Powell 1986) one derives :

Med(Y |Ẋ, V ) = d(Ẋ ′β + φ(V ))

This conditional median restriction on the response variable Y is, up to the nuisance parameter φ(.),
identical to the restriction for maximum score estimation proposed in Manski (1985). A priori, the control
function φ(.) has an unknown form. However, when V is fixed at some given v, the nuisance φ(.) becomes
a constant and the lack of knowledge on φ(.) is no longer a problem. This fixing is the foundation of the
estimation procedure elaborated in this article. This principle is analogous to that used in the literature for
unspecified quantile regression (Chaudhuri 1991) or semi-linear quantile regression (Lee 2003).
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4. Description of the KWSMS Estimator

4.1 Identification

Define Πw̃ and Πz from Π′W = Π′w̃W̃ + Π′zZ where W̃ contains exogenous variables excluded from Z.
The parameter of interest β is only identifiable up to a positive scale since d(ηU) = d(U) for any scalar
η > 0. The identification of β up to a positive scale requires three main conditions. The parameter Πw̃

must be non-null, that is, W contains some variable excluded from Z having an effect on the endogenous
variable. Also, one element of Ẋ conditional on its remaining elements needs to admit a distribution function
absolutely continuous with respect to Lebesgue measure. Let (C, X̃ ′) be a partition of Ẋ ′ such that the scalar
variable C satisfies this property, with an associated slope coefficient noted β1. Finally, identification up to
scale requires V |Ẋ to admit a Lebesgue density. These combined with [1] and some mild conditions suffice
for identification up to the scaling factor 1/|β1| whenever β1 6= 0. From now on assume without loss of
generality that β1 is known to be strictly positive.

It is useful to illustrate the relevance of those conditions using a simple example of the form U =
Zλ + δA + ε with A = πW + V where (Z,W, V ) are three scalar variables and (λ, δ, π) real parameters.
For simplicity further assume that Z is independent with (V,W ). Since here Ẋ ′ = (Z,A) one condition
for identification as explained above is that the variable V |Z,A is continuous. Suppose first that W is
some function of Z. Then V becomes a deterministic function (A,Z) and V |Z,A is a single atom thus not
continuously distributed. Evidently, even if W is not a function of Z the same problem arises if π = 0. More
generally, this illustrates the importance of having one component in W which is not only excluded from Z
but also not a function of Z and which has an impact on the endogenous variable. Suppose now that this
the case. Since V |Z,A ≡ V |Z, πW +V and Z is independent with (V,W ) the required continuity thus deals
here with the distribution of V |πW + V = a which admits a Lebesgue density as soon as V |W does1. Thus,
by construction the variable A must be continuous for being able to identify β up to scale. Clearly, this
estimation technique excludes binary choice models where the endogenous variable is discrete .

4.2 Estimation Procedure and Asymptotic Properties

Let {Yi, Ẋi}ni=1 be a random sample from (Y, Ẋ). Also, let {V̂i}ni=1 be residuals with V̂i ≡ Ai − Π̂′Wi

where Π̂ is a given root n consistent estimator of Π. Under the mild assumptions for M-estimators root n
consistency will be attained. The simplest estimator for Π when W is exogenous is probably the OLS if V
and W are uncorrelated. There are two cases worth mentioning which do not a priori meet the model for
equation (ii) but which allow the results to be still valid. The first case is when A = Π(W, δ) + V where
Π(., δ) is a parametric function for some unknown δ. Then If (V,W ) are uncorrelated, one can derive via

non-linear least squares the estimator δ̂ (Amemiya 1985) and residuals V̂i = Ai − Π(Wi, δ̂) which conserves
our results. The second case is when A = Π(W ) + V where Π(.) is some unknown function and W contains
only discrete variables whose support is bounded. Then if E[V |W ] = 0, one can estimate non parametrically
Π(.) point wise at the parametric rate (Bierens 1987) and the residuals V̂i ≡ Ai − Π̂(Wi) still satisfy the
assumptions needed for the KWSMS estimator.

It is convenient at this stage to introduce some notations. For f:R −→ R define f (j)(t) as its jth derivative
at t whenever this latter exists. Also, write L2[0, 1] the space of Lebesgue measurable real-valued functions
from [0, 1] to the real line which are square integrable with respect to Lebesgue measure.

Let αi ≡ 2Yi − 1 and X ′ ≡ (1, X̃ ′). The KWSMS estimator, noted θ̃n, is defined as the maximizer in θ
of the following objective:

S̃n(θ) ≡ 1

nhq

n∑
i=1

αiD(
Ci +X ′iθ

h
)k(

V̂i − v
hq

),

where ({hq}n,{h}n) is a given pair of strictly positive bandwidth sequences vanishing to 0 as n approaches
infinity and D(.) is some chosen bounded function from the real line into itself meeting:

1In that case the density is given by f(v|a) = pVW (v, a−v
π

)/
∫
pVW (v, a−v

π
)dv where pVW indicates the probability density

function of (V,W ).
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limt→−∞D(t) = 0, limt→∞D(t) = 1,

and

D′ = K everywhere with |K(t)| < M1 for some finite real number M1.

This function D(.), whose tail behavior mimics that of a cumulative distribution function, introduces the
building block for deriving an asymptotic theory. This permits us to approximate, after tuning with the
bandwidth h, the indicator variable. Simultaneously this allows us to easily derive a limiting distribution
for the estimator because the score of the objective will have a Taylor’s expansion as soon as K is itself
differentiable. For instance, the cumulative distribution function of the standard normal distribution meets
these conditions. Because of the subsequent asymptotic conditions, a natural choice for D(.) is to use the
antiderivative of a kernel that is compactly supported (see Müller 1984). A good example for such function
(apart from the lack of differentiability for |t| = 1) is given by:

D(t) = [0.5 + 105
64 (t− 5

3 t
3 + 7

5 t
5 − 3

7 t
7)]1[|t| ≤ 1] + 1[t > 1].

The function k(.) is a given kernel satisfying notably,∫
k(t)dt = 1,

∫
tuk(t)dt = 0 for u = 1, ...,m− 1,

∫
|tuk(t)|dt <∞ for u = 0,m for some m ≥ 2,

∫
|k(t)|2dt <∞,

and

k is differentiable everywhere with |k(1)(t)| < M2 for some finite real number M2.

That is, S̃n is similar to the objective of the SMSE (had V been fixed at v) apart from our weighting the

ith observation with 1
hq
k( V̂i−vhq

). The above integrability conditions for k(.) are met using a kernel of order

m. For consistency purposes m = 2 suffices. However, obtaining asymptotic normality for the KWSMS
estimator requires m ≥ 7.

4.2.1 Consistency

Suppose that φ(v) ≡ Med(ε|V = v) exists. Define β̃ the slope coefficient associated to X̃ and write
` ≡ C +X ′θ0 where θ′0 ≡ 1

β1
(φ(v), β̃′). Introduce FX,`,V [.] the cumulative distribution function of ε|X, `, V

and fX,`(.) the Lebesgue density of V |X, `. This last density exists by the identification conditions because Ẋ
is one to one with (X, `). Suppose that on some open neighborhood of v̄ the functions v 7→ FX,`,v[−β1`+φ(v)]
and v 7→ fX,`(v) are continuous. Also, assume that the bandwidth sequences are chosen to satisfy lim

nh4
q = ∞ and lim

nh2h2
q

log(n) = ∞ as n → ∞. Under these and some mild regularity conditions the KWSMS

estimator will be consistent for θ0.

4.2.2 Asymptotic Normality

Define FX,`,v[.] the distribution function of ε|X, `, V = v and fX(`) the Lebesgue density of `|X. This

last density is well defined under the identification requirement that the distribution of C|X̃ be absolutely
continuous with respect to Lebesgue measure because of the one to one relationship between (X, `) and

Ẋ. Also, write µX(`) ≡ fX,`(v)fX(`) and F
(1)
X,`,v[−β1` + φ(v)] ≡ ∂FX,`,v[−β1` + φ(v)]/∂` whenever the

derivatives exist. Suppose that both Σ0 ≡
∫
|k|2

∫
|K|2E[XX ′µX(0)] and H0 ≡ 2E[XX ′F

(1)
X,0,v̄[φ(v)]µX(0)]

exist with the latter matrix negative-definite.

Now assume that as functions of v, FX,`,v[−β1` + φ(v)] and fX,`(v) are m times differentiable on some
open neighborhood of v for some m ≥ 7. Also, assume that as functions of `, FX,`,v[−β1` + φ(v)] , fX,`(v)
and fX(`) are r times differentiable everywhere for some r ≥ 2. Furthermore, choose K to satisfy notably,

7



∫
K(t)dt = 1,

∫
tuK(t)dt = 0 for u = 1, ..., r − 1 and

∫
|tuK(t)|dt <∞ for u = 0, r

K is symmetrical, twice differentiable everywhere, |K(j)(t)| < B for j = 1, 2 where B is some finite real
number and

∫
|K(1)(t)|2dt <∞.

Finally, select the bandwidths h ∝ n−a and hq ∝ n−aq where a and aq are chosen according to the
following:

a ∈ (sup{ 1
1+η+2ηm ; 1

1+η+2r},
1

4+4η ) and aq = ηa for some η ∈ ( 3
2m−3 ,

1
3 ).

These combined with some mild technical conditions permit to establish:

√
nhhq(θ̃n − θ0) →d N (0,Ω),

where Ω ≡ H−1
0 Σ0H

−1
0 can be estimated consistently from data according to the following:

Let H̃n ≡ 1
nh2hq

∑n
i=1 αiXiX

′
iK

(1)(
Ci+X

′
i θ̃n

h )k( V̂i−vhq
),

and

Σ̃n ≡ 1
nhγ1h

γ2
q

∑n
i=1XiX

′
i|K(

Ci+X
′
i θ̃n

hγ1 )|2|k( V̂i−v
h
γ2
q

)|2,

for some constant γ1 ∈ (0, 3/4] and γ2 ∈ (0, 1]. Then under the previous assumptions:

H̃n −→p H0,

and

Σ̃n −→p Σ0.

Thus, if the data set is large, the testing of hypothesis can be based upon the asymptotic approximation:√
nhhq(θ̃n − θ0) ∼ N (0, H̃n

−1
Σ̃nH̃n

−1
)

Remarks:

(a) From the asymptotic result one concludes that
√
nhhq(θ̃n − θ0) is bounded in probability. It follows

by the bandwidths conditions previously enumerated in Section 4.2.2 that the KWSMS estimator satisfies at

least θ̃n − θ0 = Op(n
−3/8). However, this rate accelerates when λ ≡Min{m, r} augments and the KWSMS

estimator eventually reaches the parametric rate, i.e. Op(n
−1/2) as λ approaches infinity.

(b) The KWSMS estimator has an asymptotically centered normal distribution because the bandwidths
pair has been selected purposefully such that the asymptotic bias vanishes. As established in Horowitz
(1992) this is not optimal from an asymptotic mean squared error perspective which requires some strictly
positive finite bias. This choice is driven by two considerations. First, the construction of an asymptotically
biased KWSMS estimator would impose additional regularity conditions. Secondly, the unbiased SMSE has
superior bootstrapping properties than the biased SMSE (see Horowitz 2002) in terms of the accuracy of its
bootstrapped critical values which suggests the analogue for the KWSMS estimator since the objective of
the KWSMS estimator is just a weighted version of SMSE’s objective.

(c) The maximization of the objective function will be carried out by an iterative procedure such as
the quadratic hill climbing (Goldfeld, Quandt and Trotter 1966). Additionally, the starting value for the
iterative search may be better chosen as a result of some annealing procedure (Szu and Hartley 1987).
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4.3 Testing the Key Median Restriction

If assumption (1) is violated then the KWSMSE is inconsistent. Thus, it is important to have a testing
procedure which can reveal from data the plausibility of this assumption. To sketch how to perform the
testing of (1) suppose that the assumptions of Section 4.2.2 hold. Let α(Yi) ≡ 2Yi − 1 and write `i ≡
Ci + X

′

iθ0(v̄) where θ0(v)′ ≡ 1
β1

(φ(v), β̃
′
) and ˆ̀

i ≡ Ci + X
′

i θ̃n. Here v̄ is the value chosen to compute the
KWSMS estimator. Define the following statistic:

Tn ≡
(nξ2)−1

∑n
i=1 ϕ(

ˆ̀
i

ξ )ϕ( V̂i−v̄ξ )α(Yi)

(nξ2)−1
∑n
i=1 ϕ(

ˆ̀
i

ξ )ϕ( V̂i−v̄ξ )
,

where ϕ is a kernel and ξ a deterministic sequence. Introduce f(.,.) the joint density of (`, V ) and
M(l, v) ≡ E[α(Y )|` = l, V = v]. The idea behind the test is analogous to that provided in Horowitz (1993),
Proposition 2. The test is based upon the fact that under Ho: Med(ε|Ẋ, v̄) = Med(ε|v̄) one must have
M(0, v̄) = 0. But under certain mild conditions Tn is consistent for M(0, v̄). Thus, the test consists of
measuring |Tn| with large values undermining the validity of our median restriction.

More formally, suppose that M(l, v) and the density of (`, V ) are twice differentiable on some open
neighborhood of (0, v̄), ϕ is a strictly positive kernel of order 2, ξn is a strictly positive sequence of real
numbers satisfying ξ ∝ n−ω for some ω ∈ (sup{1/10; a(1 + η)}, 1/5) where a and η are the bandwidth pa-
rameters selected to compute the KWSMS estimator as defined in Section 4.2.2. These regularity conditions
combined with some further smoothness conditions suffice to establish that under the null hypothesis Ho:
Med(ε|Ẋ, v̄) = Med(ε|v̄), √

nξ2Tn →d N (0, f(0, v̄)−1||ϕ||4L2),

where ||ϕ||L2 ≡
∫

(|ϕ(t)|2dt)1/2. Furthermore,

(nξ2)−1
n∑
i=1

ϕ(
ˆ̀
i

ξ
)ϕ(

V̂i − v̄
ξ

)→p f(0, v̄)

Consequently, testing can be performed in practice from data using the asymptotic approximation:√
nξ2Tn ∼ N (0, f̂(0, v̄)−1||ϕ||4L2),

where,

f̂(0, v̄) ≡ (nξ2)−1
n∑
i=1

ϕ(
ˆ̀
i

ξ
)ϕ(

V̂i − v̄
ξ

).
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5. Accelerating Convergence: A Score Approximation Smoothed Maximum Score Estimator

As explained in the previous section, a KWSMS estimator in effect uses only observations of V close to
a given v. One may seek to construct an alternative estimator with a faster rate of convergence by using
more observations of V . The SASMS estimator described next can attain that target provided some stronger
conditions hold, notably if Med(ε|V = v) has enough derivatives. The basic intuition is that the control
function smoothness compensates for the low degree of differentiability of the functions of v and ` introduced
in Section 4.2.2.

5.1. Description of the SASMS Estimator

Suppose now that [1] holds for an arbitrary v̄ ∈ [0, 1], which will be simply noted henceforth as v. The
choice of [0, 1] is chosen here for the sake of simplicity but can be replaced by any compact set of the real line
which is contained in the support of V by means of an appropriate normalization. Define e′K = [O, IK−1]
the K − 1 ×K matrix where the first column is the zero vector, while IK−1 represents the K − 1 ×K − 1
identity matrix and e′1 the 1×K vector whose first entry is 1 and zero elsewhere. Let Θ be some compact
set and for a given v introduce the following:

θ̃(v) ≡ ArgmaxΘ
1

nhq

n∑
i=1

αiD(
Ci +X ′iθ

h
)k(

V̂i − v
hq

),

and

β̃(v) ≡ e′K θ̃(v) while φ̃(v) ≡ e′1θ̃(v),

where D(.), k(.) and the bandwidth pair (h, hq) are as described in Section 4. Let {fj}j≥1 be a known
basis of functions such that

∑ρ
j=1 bjfj can approximate a smooth function of [0, 1] arbitrary well using some

real sequence {bj}j≥1 and natural number ρ large enough. Here are some easy examples taken from Chen
(2007):

• Power series:

Let Pol(ρ) = {f : [0, 1] → R, f(v) =
∑ρ
j=0 bjv

j , bj ∈ R} the space of polynomials on [0, 1] of degree less
or equal to ρ. A differentiable function on [0, 1] can be approximated arbitrarily well by some element of
Pol(ρ) with ρ large enough. Thus, here fj(v) = vj−1 for j ≥ 1.

• Trigonometric cosine:

Let cosPol(ρ) = {f : [0, 1] → R, f(v) = b1 +
∑ρ
j=2 bj

√
2cos(2π(j − 1)v), b1, bj ∈ R} the space of cosinus

polynomials on [0, 1] of degree less or equal to ρ. A differentiable function on [0, 1] (or merely a square
integrable function on [0, 1]) can be approximated arbitrarily well by some element of cosPol(ρ) with ρ large
enough. Thus, here fj(v) =

√
2cos(2π(j − 1)v) for j ≥ 2 and f1(v) = 1. This choice is particularly suited

for the SASMS estimator because {fj}j≥1 forms an orthonormal basis of L2[0, 1].

• Splines:

For a given a natural number d define, Spl(d+ 1, ρ) = {f : [0, 1]→ R, f(v) =
∑d
j=0 ajv

j +
∑ρ
j=1 bj [(v −

tj)+]d, aj , bj ∈ R}, the space of splines on [0, 1] of order d + 1 where (.)+ = Max(., 0) and (t1, t2, ...tρ) is a

given increasing sequence of knots partitioning [0, 1] such that t1 = 0 and tρ = 1. Here
∑ρ
j=1 bj [(v − tj)+]d

is a piecewise polynomial shifter which permits the adjustment of a baseline polynomial on each interval
Ij = [tj , tj+1]. Define |Ij | = tj+1 − tj for j = 1, ..., ρ − 1. A differentiable function on [0, 1] can be
approximated arbitrarily well by some element of Spl(d+ 1, ρ) with ρ large enough provided the mesh ratio
Max|Ij |/Min|Ij | stays bounded. Thus, here fj(v) = vj−1 if 1 ≤ j ≤ d + 1 and fj(v) = [(v − tj−d−1)+]d if
d+ 2 ≤ j ≤ d+ 1 + ρ.
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Now define pn(.)′ ≡ (f1(.), ..., fρ(n)(.)) where ρ(n) is some chosen deterministic sequence of natural

numbers satisfying ρ(n) → ∞ as n → ∞ but ρ(n) < n. Write Λn the n × ρ(n) matrix whose ith row
is pn(i/n)′ and φ̃n the n × 1 vector whose ith entry is φ̃(i/n). That is, running a first stage estimation
with n locals KWSMS estimators at v = 1/n, 2/n, ..., 1 (where n still indicates the sample size) permits the
collection of φ̃n and to retrieve the following:

bn ≡ Argminb∈Rρ(n) ||φ̃n − Λnb|| ≡ (Λ′nΛn)−1Λ′nφ̃n. (3)

This estimator bn is nothing but the OLS estimator of b in the artificial regression model:

φ̃(v) = b′pn(v) + error using the fixed design v = 1/n, 2/n, ..., 1.

To get some sense about the motivation behind (3) consider the case where the trigonometric cosine basis
is chosen. Use the notation < g1, g2 >=

∫
[0,1]

g1(v)g2(v)dv whenever g1 and g2 belong to L2[0, 1]. Recall

that each local KWSMS estimators φ̃(v) ≡ e′1θ̃(v) for v = 1/n, ..., 1 estimates the (scaled) control function
say φ(v) for v = 1/n, ..., 1. The trigonometric cosine sequence {fj}j≥1 constitutes an orthonormal basis of
L2[0, 1] which implies < fi, fj >= 1 if i = j and < fi, fj >= 0 otherwise. Also, this implies that φ(.) (if
square integrable on [0, 1]) has the representation2 φ =

∑
j µjfj where {µj}j≥1 are the Fourier coefficients

meeting µj =< φ, fj >. Thus, if the sample size is large enough, φ̃(v) ≈ φ(v) for v = 1/n, ..., 1. Also,
because of our fixed design with v = 1/n, ..., 1 the matrix Λ′nΛn for n large will be approximately equal to
the ρ(n) by ρ(n) identity matrix since its jth diagonal element approximates < fj , fj >= 1 and its cross
diagonal elements say (i, j) approximates < fi, fj >= 0. Thus, what bn estimates in that case are the
Fourier coefficients µj for j = 1, 2, ..., ρ(n). As the sample size n increases, ρ(n) also increases allowing
for the recovery of more and more Fourier coefficients and consequently a more accurate estimator for the
control function.

This first stage estimation yielding (3) constitutes the essence of the SASMS estimator since for ρ(n)
well-chosen and under some regularity conditions, the function b′npn(.) is consistent for φ̃0(.) = 1

β1
φ(.) in the

sense that plim supv∈[0,1]|b′npn(v)− φ̃0(v)| = 0. However, {Vi}ni=1 is not observed but only {V̂i}i=1..n. Hence,

a natural way to proceed is to estimate φ̃0(Vi) with b′npn(V̂i) for i = 1...n. Let Ψ(.) be some kernel (possibly
different from the function D′(.) used in the first stage) from the real line into itself whose derivative exists
everywhere. Now define for an arbitrary β the following:

Gn[β] ≡ 1

nh∗

n∑
i=1

τ(V̂i)αiX̃iΨ(
Ci + X̃i

′
β + b′npn(V̂i)

h∗
),

and

Hn[β] ≡ 1

nh2
∗

n∑
i=1

τ(V̂i)αiX̃iX̃i
′
Ψ(1)(

Ci + X̃i
′
β + b′npn(V̂i)

h∗
),

where τ(.) ≡ 1[0 ≤ . ≤ 1] and h∗ is a deterministic strictly positive sequence of real numbers meeting lim
h∗ = 0 as n→∞. The SASMS estimator, noted β̄, is given by:

β̄ ≡ β̃(v)−Hn[β̃(v)]−1Gn[β̃(v)],

where β̃(v) is the slope coefficient estimator of a KWSMS estimator using some fixed v ∈ [0, 1]. The
reader familiar with Horowitz (1992) would have noticed that β̄ is an approximation for a feasible SMSE
based upon [2] which would use b′npn(V̂ ) in lieu of φ(V ) (up to a scale). This estimator belongs to the class
of score approximation estimators (Stone 1975, Bickel 1982, Lee 2003).

2Strictly speaking this representation is to be understood in the sense that limN→∞||
∑N
j=1 µjfj − φ||[0,1] = 0 where

||g||[0,1] ≡
√∫

[0,1] |g(t)|2dt.
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5.2 Asymptotic Properties

Assume that the conditions of section 4.2.2. hold for any v̄ ∈ [0, 1]. Introduce Li ≡ 1
β1
Med(U |Ẋi, Vi).

Define Fx̃,l,v[.] as the cumulative distribution function of ε|X = x̃, L = l, V = v and fx̃,v(.) the Lebesgue

density of L|X = x̃, V = v. This last density exists as long as that of C|X̃ = x̃, V = v exists because (L,X, V )

is one to one with (C,X, V ). Also, adopt the convention F
(1)
x̃,l,v[−β1l+φ(v)] ≡ ∂Fx̃,l,v[−β1l+φ(v)]/∂l whenever

this derivative exists. Suppose that Q ≡ 2E[τ(V )X̃X̃ ′F
(1)

X̃,0,V
[φ(V )]fX̃,V (0)] exists and is negative-definite.

The subsequent sections treat the case where the researcher selects either the power series or trigonometric
cosine basis.

5.2.1 Consistency

Suppose that φ(.) is p times continuously differentiable on [0, 1] for some p ≥ 5 and that (3) is computed
with the series length ρ(n) such that ρ(n)p−1h3

∗ →∞ as n→∞. Also, suppose that Fx̃,l,v[−β1l+ φ(v)] and
fx̃,v(l), as functions of l, are s times differentiable on some open neighborhood of the origin for some s ≥ 4.
Let Ψ be a kernel of order s and h∗ a deterministic sequence of real numbers satisfying nh8

∗/log(n)→∞ as

n→∞. Under these the estimator β̄ will be consistent for β̃0 ≡ β̃
β1

provided some mild technical conditions
hold.

5.2.2 Asymptotic Normality

Suppose that Ξ ≡
∫
|Ψ|2E[τ(V )X̃X̃ ′fX̃,V (0)] exists. Also, assume that the researcher selects h∗ to meet

h∗/hhq →∞ as n→∞ and nh2s+1
∗ → 0 as n→∞. Some further mild conditions and a certain stochastic

equicontinuity condition suffice then to establish:
√
nh∗(β̄ − β̃0) →d N (0, Q−1ΞQ−1).

Define the following matrix:

Ξ̂ ≡ 1

nh∗

n∑
i=1

τ(V̂i)X̃iX̃i
′|Ψ(

Ci + X̃i
′
β̃(v) + b′npn(V̂i)

h∗
)|2.

Under the assumptions yielding asymptotic normality,

Hn[β̃(v)] −→p Q and Ξ̂ −→p Ξ.

Thus inferences can be carried out in practice from data using the asymptotic approximation:

√
nh∗(β̄ − β̃0) ∼ N (0, Hn[β̃(v)]−1Ξ̂Hn[β̃(v)]−1).

Remarks

(e) The SASMS estimator achieves a faster rate of convergence than the KWSMS estimator. To be

more specific, the SASMS estimator’s rate of convergence is (
hhq
h∗

)1/2 times that achieved on the KWSMS

estimator which is faster since the bandwidths are selected to meet lim
hhq
h∗

= 0 as n→∞.

(f) It is important to bear in mind that the SASMS estimator exists only with probability approaching
one as n → ∞ since the matrix Hn[β̃(v)] has an inverse only with probability approaching one. In finite
sample, the SASMS estimator may exhibit a large variance because of the instability of the inverse in question
which may be singular with strictly positive probability. In practice, this poses the same problem as that
induced by collinearity where a small change in data produces a substantial variation in estimates. When the
kernel Ψ has the form Ψ(t) = P (t)1[|t| ≤ 1] for some finite degree polynomial P (see Müller 1984), one way to

mitigate this problem is to compute Hn[β̃(v)] by replacing Ψ(1)(t) with Ψ
(1)
c (t) = P (1)(t)1[|t| ≤ 1+cn], where

cn is a deterministic sequence of positive real numbers satisfying cn
h∗
→ 0 as n→∞. This regularized version

for the SASMS estimator has the same limiting distribution under the assumptions yielding asymptotic
normality.
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6. Monte Carlo Simulations

This section examines the finite sample properties of the estimators put forth in this paper using Monte
Carlo experiments. These estimators are used to estimate the parameter β = 1 when the data generating
process obeys:

Y = 1 if Z + βA+ ε ≥ 0 and Y = 0 otherwise,

A = ΠW + V ,

ε = φ(V ) + e,

where (Z,W ) is a standard bivariate Normal couple of correlation coefficient % , V ∼ N (0, 1), and Π is
set equal to 1. In this experiment three designs are considered satisfying the following:

Design ST: % = 0.5; φ(V ) = exp(−V 2); e = (1 + Z2 + Z4)T where T is Student with 3 degrees of
freedom.

Design PR: % = 0.5; φ(V ) = 0.5V ; e ∼ N (0, 1).

Design LG: % = 0; φ(V ) = cos(πV ); e ∼ Logistic.

In addition, two other estimators addressing endogeneity for the binary choice model are used. The
first one is the limited information ML estimator3 (LIML) proposed in Rivers and Vuong (1988) and the
second is the artificial two stage least square estimator4 (2SLS) suggested in Lewbel (2000). Design ST has
a non-linear control function with an heteroscedastic error term. Design PR has a linear control function
with a normally distributed (conditional on V ) error term, which satisfies the parametric theory laid out
in Rivers and Vuong (1988). Design LG has Z and W independent which makes Z a special regressor as
defined in Lewbel (2000).

In all designs the variable e is normalized to have a 0.5 standard deviation. A simulation for a sample
size n = 250, 500 and 1000 consists of 1000 replications for all estimators but the SASMS estimator. For
the latter, experiments with n = 1000 are not performed and 500 replications are completed due to the long
computational time required. The simulations are conducted in Gauss.

For the KWSMS estimator the smoothing of the indicator function is carried out using:

D(t) = [0.5 + 105
64 (t− 5

3 t
3 + 7

5 t
5 − 3

7 t
7)]1[|t| ≤ 1] + 1[t > 1].

The derivative of D(.) (almost everywhere) is a kernel of order r = 4 (Müller 1984). Also, the weighting
of the objective is performed using:

k(t) = 1
48 (105− 105t2 + 21t4 − t6) 1√

2π
exp(− 1

2 t
2),

providing a kernel of order m = 7 (Pagan and Ullah 1999). The first stage estimation of the nuisance
parameter Π is conducted via least squares. The local choice v̄ = 0 is selected. The bandwidths conditions
explained in (3) are only qualitative. Since the optimal bandwidths’ selection is not covered in this article,
a simple Silverman’s like rule of thumb (see Silverman 1986) is adopted. This consists of using h = σ̂ln

−3/16

and hq = σ̂vn
−3η/16 where η = 1/3, σ̂v is to the sample standard deviation of {V̂i}i=1..n and σ̂l is the

sample standard deviation of {Ci + X ′i θ̃}i=1..n with θ̃ a KWSMS estimator retrieved in a first stage using
(h, hq) = (n−3/16, n−3η/16). This plug-in method is of course arbitrary in that it depends on the bandwidths

3Under the assumptions of Rivers and Vuong (1988) the coefficients are identified up to a different scaling factor. In our
context, the LIML refers thus to the ratio between the LIML estimator of A’s slope coefficient and Z’s slope coefficient since
this is how a researcher would estimate our coefficient of interest.

4One choice left to the researcher for computing this estimator is the kernel which is needed for estimating the density of
Z given W , see Lewbel (2000). The Monte Carlo experiments are performed with a normal kernel along with the bandwidths
n−1/6.
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selected originally. Even though this choice for the bandwidths does not a priori satisfy any optimal criteria in
the context of our specific problem, it has the benefit of being easy to implement while performing reasonably
well compared to other choices used in preliminary experiments. The covariance matrix estimator described
in Section 4.2.2 relies on γ1 = 3/8 and γ2 = 1. Other choices for (γ1, γ2) meeting the restrictions of Section
4.2.2 were employed in a preliminary study but this did not materially alter the quality of the sizes.

Finally, the KWSMS estimator is computed by maximizing the objective with the quadratic hill climbing
procedure (Goldfeld, Quandt and Trotter 1966). A search for the global maximum consists of selecting out
of 10 iterative searches, the local maximum maximizing the objective5 as there is no guaranty in a finite
sample that the local maximum is unique.

For the SASMS estimator, the first stage uses n locals KWSMS estimators which are retried as above but
for the value v̄. The pseudo least squares bn is then computed as described in (3) using the trigonometric
cosine basis. The sieves’ dimensionality sequence ρ(n) ∝ n1/11 meets the assumptions for the SASMSE. The
optimal choice for ρ(n) is beyond the scope of this paper. Here we have the advantage of knowing that the
smoothness of the functions involved in all designs is very large so we simply use ρ(n) = 2[n1/11], which
amounts to using the first three elements of the trigonometric cosine basis for our displayed simulations.

The SASMS estimator is then computed in the second stage as described in Section 5.1 using a KWSMS
estimator with v = 1/n and the following:

Ψ(t) = 315
2048 (15− 140t2 + 378t4 − 396t6 + 143t8)1[|t| ≤ 1],

which is a kernel of order 6 (Müller 1984) meeting the conditions of Section 5.2. The kernel bandwidths

h∗ = σ̂Ln
−1/10 is chosen where σ̂L refers to the sample standard deviation of {Ci+X̃i

′
β̃(v)+b′npn(V̂i)}i=1...n.

Table 1 contains loss measures enabling to assess the quality of the estimators β̂ of β. The Bias refers to

absolute value of the bias, i.e.|E(β̂) − β|. The RM refers to the root mean squared error, i.e.

√
E|β̂ − β|2.

Table 2 provides the sizes of the t-test for β relying on the asymptotic covariance estimator given in
Section 4.2.2 using the asymptotic critical values for a 1 percent, 5 percent and 10 percent type I error level.
As displayed on Table 1, the qualitative behaviors of the proposed estimators agree with the asymptotic
theory developed in this paper. For all designs the bias and RM of the KWSMS estimator (hereafter noted
KWSMSE) consistently shrink as n increases. The same applies to the SASMS estimator (hereafter noted
SASMSE). For the KWSMSE, on average across designs, a doubling of the sample size from 500 observations
leads to a nearly 30 percent decrease in the loss measures (i.e. bias and RM) which is slightly faster than a 24
percent decrease hinted by asymptotic theory.6 The SASMSE performs poorly when n = 250 relative to the
KWSMSE expect for the PR design where a lower RM is achieved. As suggested by asymptotic theory the
performance gap between the SASMSE and KWSMSE narrows for all designs if n = 500 where the SASMSE
outperforms the KWSMSE (in terms of the RM) except for the LG design. That is, the SASMSE needs a
large enough sample to reach its asymptotic regime. As explained in section 5.1 the SASMSE may not even
exist in a finite sample. The regularization scheme employed for the SASMSE is one out of many possible
means to solve this existence problem at the origin of the larger RM experienced for n = 250. Motivated
by these simulations and those of Table 2 (discussed soon) there seems to be a need to develop in future
research optimal regularization criteria for the SASMSE.

With respect to the overall competitiveness of the proposed estimators, the ST design clearly favors
the KWSMSE (or SASMSE provided n is large enough) for every sample size. In that case, the LIML is
inconsistent with a RM twice larger when n = 1000. As expected the PR design unambiguously supports
the LIML, which shows all its efficiency power. In that instance, the KWSMSE (respectively SASMSE)
exhibits a RM approximately 3 times larger for n = 1000 (respectively for n = 500). Finally, the LG design
still favors the LIML (which in not too surprising owing to the fact that the logistic distribution and normal
distribution have relatively close shapes). In that logistic design, the second best performing estimator when
n = 250 is the 2SLS, which is eventually slightly outperformed by the KWSMS for n ≥ 500.
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Table 1: Losses

n=250 LIML 2SLS KWSMS SASMS
Bias—RM Bias—RM Bias—RM Bias—RM

ST 0.135—0.300 0.625—0.638 0.081—0.240 0.125—0.368
PR 0.005—0.178 0.666—0.676 0.256—0.939 0.296—0.786
LG 0.007—0.141 0.298—0.318 0.127—0.434 0.314—1.106
n=500
ST 0.132—0.236 0.588—0.596 0.044—0.146 0.040—0.135
PR 0.006—0.118 0.623—0.630 0.115—0.355 0.121—0.347
LG 0.000—0.104 0.256—0.270 0.040—0.244 0.119—0.380
n=1000
ST 0.133—0.184 0.554—0.560 0.034—0.098
PR 0.000—0.082 0.580—0.584 0.075—0.255
LG 0.001—0.070 0.227—0.236 0.028—0.168

Table 2: Sizes

n=250 KWSMS SASMS
Nominal level 0.01—0.05—0.10 0.01—0.05—0.10
ST 0.11—0.20—0.27 0.03—0.07—0.09
PR 0.23—0.34—0.42 0.10—0.16—0.21
LG 0.26—0.38—0.45 0.09—0.17—0.20
n=500
ST 0.07—0.12—0.19 0.01—0.02—0.06
PR 0.17—0.26—0.33 0.08—0.14—0.18
LG 0.24—0.36—0.42 0.06—0.10—0.13
n=1000
ST 0.04—0.10—0.16
PR 0.13—0.23—0.30
LG 0.19—0.29—0.35
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As exhibited in Table 2, the sizes of the test for the KWSMSE using the asymptotic critical values are
systematically above the asymptotic sizes even for a sample of 1000 observations. For instance, the size using
the 5 percent critical value ranges from 10 to 29 percent across designs. Hence, one requires a much larger
sample for the asymptotic critical values to provide an accurate probability coverage for the t-statistic. The
same inferential problem affects the smoothed maximum score estimator (see Horowitz 1992). Even though
one cannot yet affirm whether the theory of bootstrapping applies to the KWSMS, the result established
in Horowitz (2002) concerning the SMSE does suggest that the critical value of a bootstrapped t-statistics
will provide a more reliable coverage in finite sample for the KWSMSE. Alternatively, the SASMSE seems
to offer somewhat superior testing capability in terms of sizes, which for n = 500 are closer to the ones
promised by asymptotic theory. This is notably true for the ST design where the type I error of the null
hypothesis is more accurately provided by the asymptotic critical value.

5The different starting values are drawn from a uniform distribution of mean θ′0 = (1, 1) and variance 5.
6Proposition 3 suggests that the rate of convergence on the loss is 1/

√
n1−a−aη which here implies a 24 percent decrease in

losses for a doubling of the sample size. This discrepancy does not undermine our theory because the moments of
√
nhhq(θ̃−θ0)

need not to converge unless strong uniform integrability conditions hold, see Chung page 100-101.

16



7. Application: An Effect of Education on Maternal Pregnancy Cigarettes Smoking?

In this section the estimators described in this article are used to determine whether the mother’s ed-
ucation impacts the propensity of smoking while pregnant. According to the Centers for Disease Control
and Prevention (2004) ”infants born to mothers who smoke during pregnancy weigh less, have a lower birth
weight which is a key predictor to infant mortality”. Finding statistical evidence as to whether the mother’s
education affects the smoking decision of a pregnant woman is thus important for policy making purposes
notably for designing cost effective programs targeting U.S. women.

The source of the dataset is the 1988 National Health Interview Survey. This contains a cross section
of 1155 pregnant women in the United Sates. The variables are defined in Table 3. Define Y = 1 if the
pregnant woman smokes cigarettes and Y = 0 otherwise. The decision of whether to engage in smoking is
modeled according to the following:

Y = 1[β0 + β1linc+ β2mothereduc+ β3white+ β4cigtax+ ε ≥ 0],

where ε contains unobservable factors influencing the smoking decision process of a pregnant woman. In
this application the suspected endogenous variable is the income of the household with a reduced form given
by:

linc = w′π + v,

where w′ ≡ (1,mothereduc, white, fathereduc), π is an unknown parameter while v includes unob-
servable drivers of the family’s income. These unobservable attributes comprise the household’s age, the
household’s work experience and possibly other qualitative traits such as the household’s level of self re-
straint. Given that some of those unobservable factors are probably redundant in ε, estimating the parameter
β′ ≡ (β0, β1, β2, β3, β4) without taking into account this link using classic estimation techniques may lead
to misleading estimates and invalid testing. As exhibited in Table 4 the estimate π̂ of π via least squares
suggests that w is a strong instrument in that π̂ provides null p-values for the hypothesis (componentwise)
Ho : π = 0. This result is comforting since a prerequisite for the estimation techniques elaborated in this
article is the existence of a father’s educational effect on linc by the identification assumption (see Section
4.1).

The KWSMSE is computed using linc as the fully supported variable while the kernels, bandwidths and
tuning parameters are chosen as described in Section 6. As explained in Section 4.2.2, an appropriate value
for v̄ is such that the density of V |Ẋ is sufficiently differentiable on some neighborhood of v̄. Writing Ẋn as
the sample mean of Ẋ and σ̂v the empirical standard deviation of {v̂i}ni=1, a practical rule of thumb consists
of selecting some v̄ ∈ (−2σ̂v, 2σ̂v) where the density of V |Ẋn is smooth. Here, (−2σ̂v, 2σ̂v) = (−1.2, 1.2)
and nonparametric estimators for the density in question7 exhibit a few spikes in the range [−0.5, 1]. Thus,
the conservative choice v̄ = −0.8 is selected. The major computational difference compared to Section
6 pertains to the maximization of the objective for the KWSMSE which is here conducted employing a
simulated annealing (SAN) procedure similar to that used in Horowitz (1992). The SAN is performed with
a budget of 500 iterations, providing a starting value relatively close to the global maximizer. Having such
a direct optimization algorithm is important as one does not a priori know the region of the parameter
space which should be emphasized upon because of the unknown scaling coefficient (the slope coefficient
of linc here). Then, the Climbing Hill algorithm using this starting value converges in less than 30 steps
to the global maximum. The SASMSE is computed with kernels, bandwidths as described in Section 6
and the sieves basis truncated with ρ = 4, 8. Since the trigonometric cosine basis is chosen, the residuals
are normalized by using F (v̂i) in lieu of v̂i to compute the SASMSE where F (.) indicates the cumulative
distribution function of the standard normal random variable. Finally, the trimming term τ(.) ≡ 1[|.| ≤ 2σ̂v]
is used to avoid having the KWSMSE unduly influenced by boundary observations.

7Using either the Parzen kernel or the Epanechnikov kernel
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Table 3: Variables

obs=1153
Variable Meaning
linc log of family’s income in thousands of dollars
mothereduc mother’s years of education
white =1 if mother is white
cigtax cigarette tax in Home State in dollars per pack
fathereduc father’s years of education

Table 4: Reduced Form via OLS

obs=1153 coefficient t-stat
Variable
mothereduc 0.071 7.09
white 0.357 6.90
fathereduc 0.060 6.75

Tables 5 and 6 show the results using these estimation techniques, the probit and the LIML. Because
of the scaling chosen, β̃k for k = 2, 3, 4 in Table 5 refers to the estimate of βk

|β1| . This permits comparison

with the parametric estimators (probit and LIML) since those latter rely on a different scaling factor. The
statistic tk for k = 2, 3, 4 in Table 6 refers to the t-statistic for the null Ho : βk = 0. Under their assumptions,
each of the four estimation procedures conclude that tk is asymptotically distributed as a standard normal
variable under Ho.

The probit model provides a negative estimate for mothereduc which is significant at conventional con-
fidence levels. In sum, the probit model leads to the conclusion that, everything else held constant, an
increase in the mother’s education reduces the propensity of pregnancy smoking. The LIML yields also a
negative estimate for mothereduc albeit smaller in absolute value, suggesting that the benefit of education in
reducing pregnancy smoking is less pronounced. However, according to the LIML model, mothereduc is not
significant at conventional confidence levels. In sum, according to the LIML model the claim that, everything
else held constant, an increase in the mother’s education reduces her smoking propensity is more uncertain.
As shown in Rivers and Vuong (1988), a test of exogeneity for linc consists of testing the significance of
the reduced form residual v̂ in the probit regression of Y on the variables and v̂. Under the exogeneity
hypothesis Ho : E[εv] = 0 the t-statistic for v̂ is N (0, 1) asymptotically. The t-statistic in question is equal
to 1.82, which leads to the rejection of the exogeneity hypothesis at a 10 percent significance level. Provided
the parametric assumption of the Rivers and Vuong’s estimation method holds8, this last finding hints that
the endogeneity of income is to be taken seriously.

The KWSMSE offers estimates whose signs are the same as those furnished by the LIML. Yet, the
results are somewhat contrasting in that the estimates for mothereduc is 40 percent larger is magnitude, 50
percent larger for white and 50 percent smaller for cigtax. The main difference in terms of testing between
the KWSMSE and the LIML concerns the prime variable of interest mothereduc. Unlike the LIML, the
KWSMSE leads to the conclusion that mothereduc is significant at conventional levels of significance. The
testing of the key median restriction (1) needed for the KWSMSE was conducted9 as explained in Section 4.3
resulting in Tn = −0.694. Therefore, at conventional confidence levels the median restriction assumed in (1)
cannot be rejected. The SASMSE provides estimates relatively close to the ones furnished by the KWSMSE.
The choice of the sieves parameter ρ does not affect the testing conclusion. The estimate for mothereduc is

8This Hausman’s type of test of exogeneity proposed in Rivers and Vuong (1988) does not require the joint normality
assumption of ε, v (or merely ε|v) which is needed for the LIML. However, the validity of this test hinges on the classic probit
assumption that ε|X ∼ N (0, 1) where X denotes the explanatory variables.

9The test was performed using the density of the standard normal distribution for the kernel ϕ and ξ = σ̂lσ̂vn
−ω with ω

the midpoint of (sup{1/10; a(1 + η)}, 1/5) where a and η are the bandwidths parameters selected to compute the KWSMS.
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Table 5: Estimates

obs=1153 Probit LIML KWSMS SASMS SASMS
ρ = 4 ρ = 8

Variable
mothereduc -0.905 -0.091 -0.126 -0.121 -0.132
white 0.978 0.587 0.857 0.680 0.893
cigtax 0.065 0.103 0.053 0.057 0.052

Table 6: Statistics

obs=1153 Probit LIML KWSMS SASMS SASMS
ρ = 4 ρ = 8

Variable
mothereduc -7.06 -1.38 -8.07 -20.51 -13.77
white 1.43 2.67 9.65 4.47 5.50
cigtax 1.89 1.15 10.37 11.08 7.37

still negative and significant suggesting that, everything else constant, education reduces pregnancy smoking.

To conclude, data have revealed from testing that the household income is likely correlated with un-
observable characteristics of a pregnant woman. Both the LIML and the new proposed estimators suggest
that the benefit of education in reducing pregnancy smoking is less pronounced than hinted by a probit.
The LIML estimator also hints that the mother’s education is not relevant in affecting the smoking decision
during pregnancy. However, both the KWSMSE and the SASMSE suggest that the mother’s education does
reduce the smoking propensity of a pregnant woman. In sum, not addressing the endogeneity of income
leads to exaggerating the importance of education in reducing pregnancy smoking. This is probably due to
the fact that there are unobservable environmental characteristics for a pregnant woman which encourage
smoking and simultaneously depress income.
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8. Conclusion

This dissertation has presented a local version of the control function approach for the binary choice
model to reach consistency when one of the explanatory variables is endogenous. This dissertation has
explained how the objective function of the SMSE can be weighted by means of a kernel taking the control
variables’ estimates as arguments in order to derive an asymptotically centered normal estimator. Finally,
a consistent estimator for the asymptotic covariance matrix has been offered enabling expedient inferences
for applied work whenever a large data set is available. An alternative score approximation based smoothed
maximum score estimator has also been described combining many first stage estimators to obtain a faster
rate of convergence. The Monte Carlo simulations hint that both of these estimators can provide new tools
to estimate the coefficients of interest and conduct hypothesis testing in the binary choice model when
endogeneity is present without having to impose strong distributional assumptions.

20



References

Aitken. B., Hanson.G., Harrison.A., 1997. Spillovers, foreign investment, and export behavior. Journal of
international Economics, Vol 43, 103-132..

Amemiya.T., 1978. The estimation of a simultaneous equation generalized probit model. Econometrica,
Vol 46, 1193-1205 .

Amemiya.T., 1985. Advanced Econometrics. Cambridge, Harvard University Press.

Andrews.D., 1994. Asymptotic for semi parametric econometrics models via stochastic equicontinuity.
Econometrica, Vol 62, 1.

Bickel.P., 1982. On adaptive estimation. Annals of Statistics, Vol 10, 647.

Blundell.R. and Powell.J., 2004. Endogeneity in Semiparametric Binary Response Models. Review of
Economic Studies, Vol 71, 655-679..

Burns, N., and S. Kedia., 2004. The Impact of Performance-Based Compensation on Misreporting. Journal
of Financial Economics, Vol 3, 305-360..

CDC Centers for Disease Control and Prevention, 2004. Smoking During Pregnancy–United States, 1990–
2002. Weekly, Vol 53(39); 911-915..

Chaudhuri.P., 1991 Nonparametric estimates of regression quantiles and their local Bahadur representation.
Annals of Statistics, Vol 19, 2 .

Chen.X., 2007. Large sample sieve estimation of semi-nonparametric models. Handbook of Econometrics,Vol
6B..

Chung K., 2001 A course in probability theory. Academic press, third edition..

Goldfeld.S. Quandt.R. and Trotte.H., 1966. Maximization by quadratic hill-climbing. Econometrica,
Vol.34, No.3.

Heckman.J., 1978. Dummy endogenous variables in a Simultaneous equation system. Econometrica, Vol
46, 931-959.

Hong.H. and Tamer.E., 2003. Endogeneous binary choice model with median restriction. Economics
Letters, Vol 80, 219-225.

Horowitz.J., 1992. A smoothed maximum score estimator for the binary response model. Econometrica,
Vol 60, No.3.

Horowitz.J., 1993. Semiparametric estimation of a work trip mode choice model. Journal of Econometrics,
Vol 58, 49-70.

Horowitz.J., 2002. Bootstrap critical values for tests based on the smoothed maximum score estimator.
Journal of Econometrics, Vol 111, 141-167.

21



Lee.L., 1981. Simultaneous equation models with discrete and censored variables., in: C. Manski and D. Mc
Fadden, eds., Structural analysis of discrete data with economic applications, MIT press, Cambridge,
MA.

Lee.S., 2003. Efficient semi parametric estimation of a partially linear quantile regression model. Econo-
metric Theory, Vol 19, 1−31.

Lee.S., 2007. Endogeneity in quantile regression models: A control function approach. Journal of Econo-
metrics, Vol 141, No.2.

Lewbel.A., 2000. Semiparametric qualitative response model estimation with unknown heteroscedasticity
or instrument variables. Journal of Econometrics, Vol 97, 145-177.

Manski.C., 1985. Semi parametric analysis of discrete response, asymptotic properties of the maximum
score estimator. Journal of Econometrics, Vol 27, 313-334.

Müller.H., 1984. Smooth optimum kernel estimators of regression curves, densities and modes. Annals of
Statistics, Vol 12, 766-774.

Newey.W., 1985. Semiparametric estimation of limited dependent variables models with endogenous ex-
planatory variables. Annales de l’Insee, No 59/60, Econométrie non lineaire asymptotique.

Newey.W., 1987. Efficient estimation of limited dependant variable models with endogenous explanatory
variables. Journal of Econometrics, Vol 36, 230-251.

Newey.W, Powell.J. and Vella.F., 1999. Non parametric estimation of triangular simultaneous equations
models. Econometrica, Vol 67, 565-603.

Pagan.A. and Ullah.A., 1999. Non parametric econometrics. Cambridge University Press.

Pagan.A. and Vella.F., 1989. Diagnostic Tests for Models Based on Individual Data: A Survey. Journal of
Applied Econometrics, Vol 4(S), pages S29-59.

Powell.J., 1986. Censored regression quantiles. Journal of Econometrics, Vol 32, 143-155.

Rivers.D. and Vuong.Q., 1988. Limited information estimation and exogeneity tests for simultaneous probit
models. Journal of Econometrics, Vol 39, 347-366.

Rothe.C., 2009. Semiparametric estimation of binary response models with endogenous regressors. Journal
of Econometrics, Vol 153, 51-64.

Smith.R. and Blundell.R., 1986. An exogeneity test for a simultaneous equation tobit model with an
application to Labor supply. Econometrica, Vol 54, 679-685.

Stone.C., 1975. Adaptive maximum likelihood estimators of a location parameter. Annals of Statistics, Vol
3, 267-284.

Szu.H. and Hartley.R., 1987. Fast simulated annealing. Physics letters, Vol 122, 3-4.

22



Vita

Jerome Krief was born and raised in Paris, France. After getting his Baccalaureat degree majoring in science
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