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ABSTRACT 

Antioxidants have attracted great interests from food industries and scientists in recent 

years, because they have the capacity to reduce the harmful oxidation reaction in human 

body. Phenolic compounds are the common antioxidants that are widely found in fruits 

and vegetables.  In this study, three varieties of potatoes and four varieties of sweet 

potatoes were used to examine the profiles and contents of phenolics in the raw and 

boiled potatoes and sweet potatoes.  The Red Garnet Sweet Potato (RGSP) was the 

richest in phenolic content and selected to study the changes of free phenolics, total 

phenolic content, and antioxidant activity at different boiling times.  In general, gallic 

acid and six different chlorogenic acid derivatives were found in the potatoes and sweet 

potatoes.  The varieties of phenolic acids in the sweet potatoes were much more than the 

potatoes. The content of each phenolic acid varied in different raw potatoes and sweet 

potatoes.  The total phenolics content of raw RGSP was the highest among these samples.  

A short time of boiling processing for potatoes and sweet potatoes could cause a 

significant increase in free phenolic acids, except 3-O-caffeoylquinic acid and 3,4-O-

dicaffeoylquinic acid which were found to decrease during the processing.  After boiled 

for 10 min, RGSP had higher level of phenolics and antioxidant activity than its raw or 

the one boiled for longer time.  Therefore, the level of free phenolics and antioxidant 

activity in potatoes and sweet potatoes changed during boiling.  They generally reached 

the peak level in a short boiling time (10 min) and then decreased with extended boiling 

time. 
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CHAPTER 1. LITERATURE REVIEW 

 

1.1 Lipid Oxidation 

Lipid oxidation is a molecular-based reaction which could damage cell structure and 

result in cell inflammatory in either plants or animals (Repetto et al., 2012). Generally, 

lipid oxidation could be initiated via all kinds of oxidant pathways and affected by 

different internal or external factors.  For example, the oxidants include various enzymes, 

light, a wide range of reactive oxygen species and free radicals or the combination of 

transition metal ions and peroxides (Pan et al., 2013). The most commonly occurred lipid 

oxidation is autoxidation that involves in three phases: (1) initiation, the formation of free 

radicals; (2) propagation, the free radical chain reactions; (3) termination, the formation 

of non-radical products (Figure 1.1).  As a result, a variety of non-radical products are 

produced in these reactions, such as alcohols, ketone, alkanes, aldehydes and ethers 

(Dianzani et al., 2008).  

 
Figure 1.1 Mechanism for lipid autoxidation in different phases. Free radical (R ∙ ), 

hydroperoxide (ROOH), hydroperoxyl radical (ROO∙)(Repetto et al., 2012).  

 

Enzymatic oxidation and photosensitized oxidation are another two types of lipid 

oxidation. In the enzymatic oxidation, lipoxygenases could catalyze free and esterified 
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fatty acids oxidation and lipoprotein oxidation (Pan et al., 2000). Photosensitized 

oxidation is initiated by certain radiations or photosensitizers to yield more cyclic 

products than autoxidation (Neff, 1980).  

      Lipid oxidation could not only affect the nutritional and flavor quality of foods, but 

also produce free radicals which are responsible for health problems and accelerated 

aging (Park et al., 2014; Finley et al., 1993; Aruoma, 1998).  In biological systems, the 

oxidation and reduction reactions represent the basic metabolic changes of biochemical 

mechanism. However, excessive free radicals would break or disturb the normal 

metabolism (Pan et al., 2013). Therefore, it is necessary to inhibit lipid oxidation and 

maintain the quality of food as well as reduce the risks of developing human chronic 

diseases.   

 

1.2 Antioxidant 

In order to maintain food quality and reduce harmful lipid oxidation involved in chronic 

diseases, antioxidants are used in both food industry and medical supplements. Generally, 

antioxidant is defined as an exogenous (natural or synthetic) or endogenous compound 

which can act in many ways, like removing oxygen, scavenging reactive oxygen species 

or their precursor, inhibiting the reactive oxygen species (ROS) formation and binding 

desired metal ion to the catalysis of ROS generation (Gilgun-Sherki et al., 2002). 

Recently, antioxidants have widely been used as the dietary supplements to prevent 

chronic diseases for human beings. In industrial uses, they can prolong shelf life of the 

food and cosmetics and prevent degradation of the rubber and gasoline.   
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1.2.1 Synthetic Antioxidants 

Synthetic antioxidants include butylated hydroxyanisole (BHA), butylated 

hydroxytoluene (BHT), tert-butylhydroquinone (TBHQ), and propyl gallate (PG). 

However, synthetic antioxidants have carcinogenicity, teratogenicity and acute toxicity. 

The use of synthetic antioxidant is restricted by legislation (Lingk, 1991; Unnikrishnan et 

al., 2002). The chemical structures of synthetic antioxidants are showed in Figure 1.2. 

Their limits of using in food products are showed in Table 1.1 

 
Figure 1.2 Chemical structures of BHT, TBHQ and PG 

Table 1.1 FDA limits and tolerances for synthetic antioxidants in select food products*  

Reference 
Application Antioxidant 

Limit 

(percent weight of food 

unless noted) 

21 CFR 182.3169 

 
general 

BHA 0.02% singly or in 

combination of fat or oil 

portion of food including 

the essential oil, except 

where prohibited by 

Standard of Identity 

21 CFR 182.3173 

 

BHT 

21 CFR 172.185 

 

TBHQ 

21 CFR 184.1660 

 

PG 

Specific Foods 

21 CFR 172.615 

 

chewing gum base BHA, BHT, 

PG 

 

0.1% singly or in 

combination 

 
21 CFR 172.515 

 

synthetic flavorings 

 

BHA 

 

0.5% of essential (volatile) 

oil 

 

21 CFR 172.110 

active dry yeast 

 

BHA 

 

0.1% 

beverages and 

desserts prepared 

from dry mixes 

 

0.0002% 

dry mixes for 

beverages and 

desserts 

 

0.009% 

dry diced glazed 

fruit 

 

0.0032% 
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Table 1.1 continued 

21 CFR 172.110 

and/or   

21 CFR 172.115 

dry breakfast 

cereals 

 BHA and/or 

BHT 

 

0.005% 

 
emulsion stabilizers 

for shortening 

 

0.02% 

 potato granules 0.001% 

 potato flakes, sweet 

potato flakes, and 

dehydrated potato 

shreds 

 

0.005% 

Standardized Foods 

 21 CFR 

137.350 

 

enriched parboiled rice 

 

BHT 

 

0.0033%   

 
21 CFR 

161.175 

 

frozen raw breaded shrimp 

 

BHA, BHT 

 

0.02% of fat or oil content 

 21 CFR 

166.110 
margarine 

BHA, BHT, 

PG 

0.02% singly or in 

combination based on 

finished product 

 
Meat and Poultry Products 

 

9 CFR 424.21 

dry sausage 

BHA,BHT, 

TBHQ, PG† 

0.003% singly, 0.006% in 

combination, with no 

antioxidant exceeding 

0.003% 

 
fresh pork and/or  beef 

sausage, brown- and-serve 

sausage, pre-grilled beef 

patties, pizza toppings, 

and meatballs 

 

0.01% singly, 0.02% in 

combination, with no 

antioxidant exceeding 

0.01%, based on fat content 

dried meats 0.01% singly, or in 

combination 

 
rendered animal fat or a 

combination of such fat 

and vegetable fat 

 

0.01% singly, 0.02% in 

combination, with no 

antioxidant exceeding 

0.01% 

 
various poultry products 

0.01% singly, 0.02% in 

combination, with no 

antioxidant exceeding 

0.01% based on fat content 

 
*Regulations subject to change 

†TBHQ and PC cannot be used in combination (Source: FDA, 2012) 
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1.2.2 Natural Antioxidants 

Free radicals are well known for the high capacity to attack cell molecules in the body 

and further interfere with the cell structure and affect their functions (Lobo, 2010). 

However, natural antioxidants are the compounds that could reduce the oxidative attack 

to the body by scavenging free radicals (Shah et al., 2014).  Fruits and vegetables are the 

good sources of natural antioxidants. A number of studies have reported that antioxidants 

are found in vegetables (broccoli, potato, sweet potato, drumstick, pumpkin, curry and 

nettle), fruits (grapes, pomegranate, date and kinnow), grain cereals, eggs, meat, legumes, 

nuts, herbs and spices (tea, rosemary, oregano, cinnamon, sage, thyme, mint, ginger and 

clove) (Shah et al., 2014).  Some selected antioxidants compounds and their major dietary 

sources are demonstrated Table 1.2. 

Table 1.2 Common antioxidant compounds and their major dietary sources 

Group Name Major Existing Foods 

Vitamin A Retinoids 
Green and yellow vegetables, liver, 

oily fishes, margarine 

Vitamin C Ascorbic acid Fresh fruits and vegetables 

Vitamin E 

Tocopherols  
Vegetable oils, almond, maize, 

asparagus, tomatoes, peanuts 

Tocotrienols 
Vegetable oils, wheat germ, barley, 

annatto, saw palmetto, nnuts 

Carotenoids 

Lycopene 
Autumn olive, tomatoes, 

watermelon, papaya  

Carotenes 

Sweet potatoes, mustard greens, 

carrots, mangoes, broccoli, romaine 

lettuce, pumpkins 

Lutein Spinach, kale, yellow carrots 

Flavonoids 

Quercetin (falavonols) Citrus fruits and apples 

Genistein (isoflavones) Soy bean, lupin, coffee 

Epigallocatechin-3-gallate 

(flavanols) 
Tea 

Anthocyanin 

Vaccinium species (blueberry), 

rubus berries (black berry), grape, 

black soybean 
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Table 1.2 continued  

 Tannis 
Tree bark, wood fruit, fruitpod, 

leaves and root 

Phenolic acids 

Caffeic acid Coffee, tea 

Gallic acid 
Land plants and aquatic plant 

(myriophyllum spicatum) 

Chlorogenic acid Potato, bamboo, peach, prunes 

Stillbenes Resveratrol Grape seeds and peel 

Others Curcumin Turmeric 

 (Source: Combs, 2012; Pan et al., 2013; Horvath et al., 2006; Kim, 2014; Lemmens et al., 

2014) 

 

Numerous studies indicated that people with low intakes of antioxidant-rich fruits and 

vegetables were at greater risk for developing artery-clogging atherosclerosis, cancer or 

vision loss than the people who had large consumption of the fruits and vegetables. 

Clinical experiments have confirmed that these substances play important roles against 

heart disease, cancer, and other chronic diseases.  The function and health benefit of some 

selected antioxidants are listed in Table 1.3 (Milbury et al., 2008). 

 

Table 1.3 Function and health benefit of common antioxidants 

Name Function Health Benefit 

Vitamin A 
Combing with protein 

opsin to form rhodopsin. 

Inhibition of cancer, HIV, and 

dermatological disease. 

Vitamin C 
Rendering harmful free 

radical reactions harmless 
Preventing or delaying food spoilage 

(enzymatic browning reaction) 

Vitamin E 
Breaking chains by 

preventing lipid oxidation 

Selenium Defensing enzyme Reducing the odds of prostate cancer 

Carotenoids Converting to vitamin A 
Decreasing the risk of cancers and 

eye disease 

Phytochemicals 

Modulating cell 

metabolism and direct 

quenching of radicals 

Increasing capillary strength and 

decreasing the risk of diseases 

 

(Source: Milbury et al., 2008) 
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1.2.3 Antioxidant Activity  

The antioxidant activity reflects the activity of antioxidants against the prooxidants or 

radicals (Apak et al., 2013). As the primary phytochemicals, phenolics have high 

antioxidant activity due to its phenoxyl radical could stabilize the whole structure by 

resonance after reacting with oxidants.  It has been reported that the electronegative 

carboxyl or hydroxyl groups can increase the radical stability for the polyphenols. Also, 

carboxyl group could increase the antioxidant activity of the 𝛽-substituted monohydroxy 

acid (Rice-Evans et al., 1996).  A typical proposed prooxidant reaction mechanism in 

lipid dispersions depicted with a galloyl group is demonstrated in Figure 1.3. 

 
Figure 1.3 Mechanism in lipid dispersions. Abbreviations are as follows: hydroperoxyl 

radical (HOO∙), hydroxyl radical (∙OH), reduced lipid (LH), lipid alkyl radical (L∙), lipid 

hydroperoxyl radical (LOO∙), lipid hydroperoxide (LOOH), lipid alkoxyl radical (LO∙) 
(Zhou et al., 2012).  

 

The methods to evaluate the antioxidant activity can be classified into two basic groups: 

electron transfer (ET) reaction – based redox titration and hydrogen atom transfer (HAT) 

reaction (Huang et al., 2005).  The most popular ET-based assays are total phenolic assay, 

2,2-diphenyl-1-picrylhydrazyl (DPPH) assay, cupric-reducing antioxidant capacity 

(CUPRAC), 2,2’-azino-bis (3-ethylbenzothiazoling-6-sulphonic acid) (ABTS) assay, 

ferric ion-reducing antioxidant power (FRAP) assay, and cerium(IV)-based reducing 

antioxidant capacity (CERAC) assay (Subramanian et al., 1965; Boguth et al., 1969; 

Apak et al., 2004; Miller et al., 1996; Benzie et al., 1996; Ozyurt et al., 2010). The 
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reaction of these assays is based on the mechanism that single electron oxidants react 

with reductant in samples to cause the color changes. These assays are very simple and 

commonly applied for screening the antioxidant activity of food and biological samples. 

On the other hand, oxygen radical absorbance capacity (ORAC) assay is a typical HAT-

based assay (Cao et al., 1993).  

 

For example, DPPH assay is developed by Brand Williams et al.(1995) as one of the 

oldest, simplest and most frequently used method to determine the antioxidant activity. 

When DPPH∙ reacts with an antioxidant, the color of DPPH∙ changes from purple to 

yellow (Figure 1.4) (Dorota Martysiak-Żurowska, 2012). Then, the change of the 

absorbance is measured by a spectrophotometer to calculate the antioxidant activity 

(Fadda et al., 2014).  

 

CUPRAC assay is the result of antioxidants redox reaction with CUPRAC reagent and 

Cu(II)-neocuproine (Nc). The advantage of CUPRAC method is that it can be used for 

both lipophilic and hydrophilic antioxidants.  Also, the pH of the assay is close to the 

physiological pH (Çelik, 2012; Çekic et al., 2012).  

 
Figure 1.4 Absorbance wavelength of DPPH (Abuin et al., 2002) 
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ABTS assay is based on the oxidation of ABTS to generate colored radical cation - 

ABTS∙+ (blue/green color). The ABTS∙+ can be reduced by antioxidant in a wide pH 

range and applied for both lipophilic and hydrophilic antioxidants (Jia et al., 2012; 

Dawidowicz et al., 2013).  

 

1.3 Potato and Sweet Potato 

Potato (Solanum tuberosum L.) is the third largest production of food crop following rice 

and wheat in the world (Wang et al., 2015).  Generally, potato is a tuber crop and began 

to be cultivated around 8000 years ago in the Central Andes region near Lake Titicaca 

(Peru-Bolivia), while, it started to be cultivated in 1719 in the United States.  Belongs to 

the Solanaceae family, potato contains a large amount of carbohydrates and important 

protein, vitamins and minerals (Chung et al., 2014; Kunstelj et al., 2014). Sweet Potato 

(Ipomoea batatas L.) is another important crop widely cultivated in many Asian and 

African countries (Li, 2012).  It is a stable perennial tuber crop and could be harvested 

after 90-120 days of cultivating (Kunstelj et al., 2014).  There are a number of edible 

varieties of potatoes. The Andes of South America has the most diversity of potatoes in 

the world (Alyokhin et al., 2012). These potatoes can generally be divided into seven type 

categories: russet, red, white, yellow, blue/purple, fingerling and petite. Normally, the 

cooking method for potatoes is based on their texture. For example, russet potato contains 

low moisture and high starch content and is better for baking, mashing and frying (Zaidul 

et al., 2007).  For sweet potatoes, their colors range from white to mild deep red.  There 

are mainly eight varieties of sweet potatoes in America: Beauregard sweet potato (LA, 

1987), Hernandez sweet potato (LA, 1992), Jewel sweet potato (NC, 1988), Carolina ruby 

sweet potato (NC, 1988), Porto Rico 198 sweet potato (NC, 1966), Cordner sweet potato 
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(TX, 1983), and White Delight sweet potato (GA). Jewel sweet potato, also called “the 

current Queen of sweet potatoes”, is the most common one in the markets. 

 

1.3.1 Yields and Production for Potato and Sweet Potato 

Potato is the third crop in the world because it is easy to be cultivated in the cool climate 

area. Developed countries produced more potatoes than developing countries from the 

year of 1950 to 2000 (Figure 1.5). Europe is used to be the biggest area to produce 

potatoes; however, Asia has expanded the areas to produce potato these years. Nowadays, 

China has the highest production of potato in the world and produces almost one third of 

potatoes together with Indian (Hijmans, 2001). According to a report from the Food and 

Agriculture Organization of the United Nations (FAO), over 365 million tons of potatoes 

were harvested in the world in 2012. For the US, the production of potato in 2013 was 

about 466 thousand tons. Base on the survey from United States Department of 

Agriculture (USDA), the US is the fourth potato production country in the world now. 

Most potatoes in the US are cultivated in the western states, mainly in Idaho and 

Washington State.  

 
Figure 1.5 Global potato area over time: total and for developed and developing countries 

(Robert J. Hijmans, 2001) 
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Although sweet potato is adaptable to a wide difference of growing conditions, the best 

growing area is tropical, subtropical, and temperate areas (Hussein et al., 2014). Sweet 

potato is the top ten most consumed food staples in the world. According to the report 

from the United Nations FAO, over 106 million tons of sweet potatoes were harvested in 

the world in 2011. There are about nine million hectares for producing sweet potato in the 

world. Over 97% of sweet potatoes are produced from developing countries. China has 

6.6 million hectares to grow sweet potato (Yan, 2014). China and Sub-Saharan Africa 

harvest almost 87% production of potatoes in the world (Raymundo et al., 2014). In the 

US, it is mainly produced in the southern states, especially Louisiana and North Carolina. 

The US production of sweet potato in 2013 was about 245 thousand tons. 

 

1.3.2 Basic Nutrients and Toxics in Potato and Sweet Potato 

Potato is an economic and nutritive food source, providing a variety of health promoting 

ingredients (Alyokhin et al., 2012). These nutrients include vitamins, minerals, ascorbic 

acid, 𝛼-tocopherol, 𝛽-carotene, and phenolic acids.  It has been reported that potato is one 

of the most abundant sources of antioxidants in the human diet (Nems et al., 2015). The 

nutritional value for raw potato with skin is showed in Table 1.4.  Sweet potato is a rich 

source of starches, complex carbohydrates, 𝛽-carotene and dietary fibers. In the areas 

such as Africa and India, sweet potato has significant effect on raising the vitamin A 

levels in human blood. Other nutrients including minerals phosphorus and calcium can 

also be found at a high level in sweet potatoes (Oladejo, 2013). Compared with other 

crops, the fat level in sweet potato is relatively low, while, the content of vitamin B, 

manganese and potassium in sweet potato is moderate (Kunstelj et al., 2014). The Center 

for Science in the Public Interest of USDA made comparison of the nutritional value 

(fiber, complex carbohydrates, protein, vitamin A and Potassium) of sweet potatoes and 
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other nine kinds of foods in 2001.  The results revealed that the sweet potato is the 

healthiest food among them. The nutritional value for raw potato with or without skin is 

showed in Table 1.4.  

Table 1.4 Nutritional values for potato and sweet potato (USDA Nutrient Database) 

Nutritional value  

per 100g 

Raw potato with 

skin 

Raw sweet 

potato with skin 

Cooked sweet potato 

in skin without salt 

Energy 321 kJ (77 kcal) 359 kJ (90 kcal) 378 kJ (90 kcal) 

Carbohydrates 17.47 g 20.1 g 20.7 g 

Starch 15.44 g 12.7 g 7.05 g 

Dietary Fiber 2.2 g 4.2 g 3.3 g 

Sugar NA 3 g 6.5 g 

Fat 0.1 g 0.1 g 0.15 g 

Protein 2 g 1.6 g 2.0 g 

Vitamin A equiv. NA 709 𝜇g (89%) 961 𝜇g (120%) 

𝛽-catotene NA 8509 𝜇g (79%) NA 

Thiamin  

(Vitamin B1) 
0.08 mg (7%) 0.078 mg (7%) 0.11 mg (10%) 

Riboflavin  

(Vitamin B2) 
0.03 mg (3%) 0.061 mg (5%) 0.11 mg (9%) 

Niacin  

(Vitamin B3) 
1.05 mg (7%) 0.557 mg (4%) 1.5 mg (10%) 

Pantothenic acid (Vitamin 

B5) 
0.296 mg  (6%) 0.8 mg (16%) NA 

Vitamin B6 0.295 mg (23%) 0.209 mg (16%) 0.29 mg (22%) 

Folate  

(Vitamin B9) 
16 𝜇g (4%) 11 𝜇g (3%) 6 𝜇g (2%) 

Vitamin C 19.7 mg (24%) 2.4 mg (3%) 19.6 mg (24%) 

Vitamin E 0.01 mg (0%) 0.26 mg (2%) 0.71 mg (5%) 

Vitamin K 1.9 𝜇g (2%) NA NA 

Calcium 12 mg (1%) 30 mg (3%) 38 mg (4%) 

Iron 0.78 mg (6%) 0.61 mg (5%) 0.69 mg (5%) 

Magnesium 23 mg (6%) 25 mg (7%) 27 mg (8%) 

Manganese 0.153 mg (7%) 0.258 mg (12%) 0.5 mg (24%) 
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Table 1.4 continued 

Phosphorus 57 mg (8%) 47 mg (7%) 54 mg (8%) 

Potassium NA 337 mg (7%) 475 mg (10%) 

Sodium 6 mg (0%) 55 mg (4%) 36 mg (2%) 

Zinc 0.29 mg (3%) 0.3 mg (3%) 0.32 mg (3%) 

Water 75 g NA NA 

 (Source: Nutrient Data Laboratory, ARS, USDA, 2001) 

 

The storage condition is very important for potatoes because improperly handling would 

speed up physiological process and loss the quality. Generally, potatoes should be 

carefully stored to keep them alive and slow the natural process of decomposition. For 

fresh-use, 7 ℃ is the preferred temperature, while, for long-term storage, it is better to 

store them at 4 ℃. These two temperatures can minimize the production of glucose, an 

unwanted product reduced from sugar (Saour et al., 2012). If the storage temperature is 

not appropriate, starch in the potatoes could convert into sugars. This conversion will not 

only affect the taste of the potatoes, but also yield higher acrylamide levels in cooked 

potatoes. Besides acrylamide, glycoalkaloids such as solanine and chaconine are also 

potential toxic compound. The glycoalkaloids are synthesized in potatoes to protect them 

from predators. They are so stable in potatoes and can only be degraded over 170℃. 

When the potato’s peel color turns green, it represents the production of toxic compound 

of solanine. Excessive consumption of these compounds may cause headaches, diarrhea, 

cramps or even death to human beings.  

 

1.3.3 Food Application of Potato and Sweet Potato 

Both potato and sweet potato can be consumed as fresh, processed to snack food, such as 

chips and fries. In the US, the consumption of potato is the second food staple following 

wheat (Hussein et al., 2014). They could be cooked as mashed baked, boiled or steamed 
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potatoes, as well as potato dumpling, pancakes, soup and salad etc. The cooking methods 

for sweet potatoes are similar to potatoes. Another popular way for potato and sweet 

potato food application is to produce french-fried potato and chip.  French fries (“chips” 

in UK) are served world widely in restaurants for its fast reparation and special flavor 

(Tajner‑Czopek et al., 2014). Chips are the most popular snack food in many developed 

countries, especially in the US. For example, about 21.6% of the potato production of the 

US was made into chips in 2001.  In 1960, the consumption was 11.4 lbs. per person and 

increased to 19.3 lbs. in 2007. The consumption is increasing with years (Pedreschi et al., 

2009). Also, dehydrated potato or sweet potato can be made into flour because they are 

rich in starch. Before extracting starch, the potato/sweet potato should be crushed to 

release starch granules. After washing and drying, the dried starch powder is ready to be 

used as disintegrants, glidants, and lubricants as they can bind the mucilagous in pasta 

(Riley et al., 2010). Furthermore, they could be the important ingredients in making 

noodles, wine gums and cocktail nuts. In food industry, the starches are used as binder for 

meat mixtures and thicken gravy and soup (Zaidul et al., 2007).  

 

1.4 Phenolic Acids in Potato and Sweet Potato 

Phenolic compounds belong to the broader category of secondary metabolites in plants 

(Luthria et al., 2012). A variety of phenolic acids are found in different parts of plants 

such as the seeds, skins, leaves. If the stress condition of growing has changed, the role of 

phenolics in the metabolic system will change as well (William et al., 1979).  For instance, 

cinnamic acid and its derivatives are the major phenolic compounds in corn, cereal grains, 

red wine and citrus fruits. Caffeic, p-coumaric, ferulic, and sinapic acids are abundant in 

the mentioned foods (Devanand L. Luthria et al., 2012). Phenolic acids are also found in 

honey and can be used to determine the floral origin (Eliana Spilioti et al., 2014). Tea and 
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grape seeds are rich in gallic acid, while caffeic and chlorogenic acids are the main 

phenolics in coffee. Fruits such as kiwi, berries and apples contain high content of caffeic 

acid. Among the root plants, potato and sweet potato have relatively high varieties of 

phenolics, which are commonly recognized as antioxidants (Lemmens et al., 2014).  

 

In potato, over 50% of the total phenolic acids are caffeic acid, cinnamic acid, p-coumaric 

acid, ferulic acid, sinapic acid, and chlorogenic acid (Nems et al., 2015). As the major 

phytochemical in potatoes, chlorogenic acid has different isomeric forms, such as 3-O-

caffeoylquinic (n-chlorogenic acid), 4-caffeoylquinic (crypro-chlorogenic acid), and 5-O-

caffeoyquinic (neo-chlorogenic acid) (Lthria et al., 2012). Sweet potato is another 

chlorogenic acid rich source (Rudkin and Nelson, 1947). The phenolic acids in sweet 

potato mainly consist of chlorogenic acid and other similar compounds (Nandutu et al., 

2007). A previous study showed that six types of phenolic acids have been found in sweet 

potato: neochlorogenic acid (3-CQA), cryptochlorogenic acid (4-CQA), chlorogenic acid 

(5-CQA), and three isochlorogenic acid isomers–isochlorogenic acid A (3,5-diCQA), 

isochlorogenic acid B (3,4-diCQA) and isochlorogenic acid C (4,5-diCQA) (Finotti et al., 

2012).  These phenolics, related to color and flavor of the plant, can protect the damage 

caused by pests (Lin et al., 2007). Also, they are important factors to the texture and 

nutrition value of vegetable foods because they can be a part of lignin and dietary fiber. It 

was found that the total phenolic content or antioxidant capacity of colored sweet 

potatoes was correlated with the total anthocyanins content (Vreugdenhill et al., 2007). 
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1.4.1 Chemical Structures of Phenolic Acids 

Phenolic compounds in plant could generally be divided into three groups: phenolic acids, 

flavonoids, and tannins. Phenolic acid has one or more aromatic rings with multiple 

hydroxyl groups in either free or bound form in plants (Dai, 2010; Mattila et al, 2007). 

There are two forms of phenolic acids in potato - soluble and insoluble bound forms. The 

soluble form is the free and soluble esters or soluble glycosides. Most of phenolic acids 

are the derivatives from the hydroxycinnamic acid (free form) and hydroxybenzoic acid 

(bound form) (Shahidi et al., 1995). The main difference between the structures of these 

two categories is the patterns of the aromatic rings of their derivatives (Figure 1.6) (Lall 

et al., 2015). Chlorogenic acid, caffeic acid and ferulic acid are hydroxycinnamic acid in 

potato while gallic acid and protocatechuic acid as well as their derivatives are the 

common hydroxybenzoic acids in potato (Albishi, 2013).  The structures of the phenolic 

acids are showed in Figure 1.7. 

 
Figure 1.6 Structures of hydroxybenzoic acid and hydroxycinnamic acid. R1,2,3 can be OH, 

H, or CH3O (Lall et al., 2015). 

 

 

There are three main isomers for chlorogenic acids: 3-O-caffeoylquinic (n-chlorogenic 

acid), 4-O-caffeoylquinic (crypro-chlorogenic acid) and 5-O-caffeoylquinic (neo-

chlorogenic acid). 3,4-di-O-caffeoylquinic acid, 3,5-di-O- caffeoylquinic acid and 4,5-di-

O- caffeoylquinic acid were also common in potato and sweet potato (Table 1.5) (Jaiswal 

et al., 2010). 
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Figure 1.7 Structures of flavonoids, phenolic acids and tannins (Dai, 2010). 
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Table 1.5 Structures of Chlorogenic Acids 

Name Abbreviation Structure R 

3-O-caffeoylquinic 3-CQA 

 

R3=C 

R4=H 

R5=H 

4-O-caffeoylquinic 4-CQA 

 

R3=H 

R4=C 

R5= H 

 

5-O-caffeoylquinic 5-CQA 

 

R3=H 

R4=H 

R5=C 

3,4-di-O- caffeoylquinic 

acid 
3,4-diCQA 

 

R3=C 

R4=C 

R5=H 

3,5-di-O- caffeoylquinic 

acid 
3,5-diCQA 

 

R3=C 

R4=H 

R5=C 

4,5-di-O- caffeoylquinic 

acid 
4,5-diCQA 

 

R3=H 

R4=C 

R5=C 

 (Source: Jaiswal et al., 2010) 
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1.4.2 Health Benefits of Phenolic Acids for Human 

Since phenolic acids could exhibit antibacterial, antiviral, anticarcinogenic, anti-

inflammatory and vasodilatory performance, they have been used for protection of food 

and cells from oxidative degeneration (Mattila et al., 2007; Nandutu et al., 2007). Also, 

phenolic acids are reported to have the ability to inhibit the growth of human cancer cells 

and decrease the possibility of hepatoma and human immunodeficiency virus (HIV) 

replication (Zhu et al., 1999; Yagasaki et al., 2000; Finotti et al., 2012). Chlorogenic acid 

was reported to inhibit the growth of an angiogenic enzyme (matrix metalloproteinase-9), 

which is associated with tumor invasion and metastasis. Caffeoylquinic acids can work as 

antimutagen in the Ames Salmonella assay (Jung et al., 2011). In fact, phenolic 

compounds could affect many cellular processes and possess a variety of biochemical 

features and functions. The multiple cellular responses and processes of inhibiting the 

growth of cancer cells are shown in Figure 1.8.  

 
Figure 1.8 Dietary phenolic compounds as multitasking molecules (Li, 2011). 
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The objective for this research is to compare the concentration of phenolic acids in 

different raw and boiled potatoes and sweet potatoes, and determine the best potato/sweet 

potato that contains the highest concentration of phenolic acids. Secondly, the antioxidant 

activity and concentration of phenolic acids at different boiling times will be analyzed in 

the potato/sweet potato to show the highest concentration of phenolic acids. In addition, 

our goal was to provide the reference of the best time for potatoes/sweet potatoes that 

could yield the highest antioxidants content during boiling. 
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CHAPTER 2. PHENOLIC ACIDS IN RAW AND BOILED 

POTATOES AND SWEET POTATOES 

 

2.1 Introduction 

Polyphenols are a class of natural compounds that have numerous hydroxyl groups 

attached to aromatic rings (Lall et al., 2015). Among polyphenols, phenolic acids have a 

potent antioxidant activity by reacting active oxygen and nitrogen species (Plazas et al., 

2014). Generally, phenolic acids can be divided into two classes – hydroxybenzoic and 

hydroxycinnamic acids. Compared with phenylacetic, phenyl-lactic, phenylmandelic and 

phenyl-hydracrylic acids, other types such as phenylvaleric and phenylpropionic acids are 

more common in plants (Indu and Alan, 2010). The most well-known hydroxycinnamic 

acid is chlorogenic acid which could combine with another two common 

hydroxycinnamic acids – caffeic and quinic acids. On the other hand, the common form 

of hydroxybenzoic acids in food is p - hydroxybenzoic, vanillic and protocatechuic acids 

(Mattila et al., 2007).  

 

As the intake of phenolic antioxidants has been confirmed to have health benefit in 

preventing chronic disease, the Food and Drug Administration (FDA) estimates that there 

are over 29,000 dietary antioxidant supplements sold in market with about 1,000 new 

products developed annually (Milbury et al., 2008). Considered as the common, cheap, 

and healthy food source, potato and sweet potato contain high amount of antioxidants, 

especially phenolic acids. In potato, about 80% of phenolic acids are chlorogenic acid and 

its related derivatives. Chlorogenic acid is the esterification product of caffeic acid and 

quinic acid which has been associated with health promoting functions.  Some clinical 

studies have reported that chlorogenic acid could exhibit analgesic, anti-carsinogenic, 

anti-diabetic, anti-inflammatory, anti-microbial, anti-obesity, cardioprotective, 
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hypotensive and neuroprotecitve effects (Plazas et al., 2014). The content of phenolic 

compounds in potato and sweet potato is depended on the varieties (flesh color). Potato 

and sweet potato with red and blue flesh color contain more phenolic compounds than 

yellow and white flesh color potato (Rytel et al., 2014). The level of phenolic acids in 

sweet potato with red flesh was higher than in blueberry. Blueberry is a kind of fruit with 

high amount of antioxidants (Cevallos-Casals and Cisneros-Zevallos, 2003).   

 

The phenolic compounds were usually extracted with organic solvents from plant 

material, such as methanol, acetone, ethanol and ethyl acetate (Dai and Murpher, 2010; 

Svennsson et al., 2010). In plant extract, phenolics quantification is effected by the 

chemical structure of phenolics, extraction methods, and possible interfering substances 

(Naczk and Shahidi, 2006). The method to quantify classes of phenolics in plant was the 

traditional spectrophotometric assays. Gas chromatographic (GC) techniques were widely 

used in separating and quantifying phenolic acids. However, the volatility of phenolics 

was low and should be transferred into the derivatives with high volatility (Stalikas, 

2007). Compared with GC techniques, high performance liquid chromatographic (HPLC) 

techniques were more popular and reliable to analyze phenolics (Prior et al., 2001). They 

can analyze all the interests with their derivatives or degradation products simultaneously 

(Sakakibara et al., 2003; Downey and Rochfort, 2008). It was reported that reversed-

phase columns could enhance HPLC separation of phenolics and C18 were the best 

column (Oh et al., 2008). For the mobile phase, acetonitrile and methanol were the widely 

used organic modifiers; acetic, formic or phosphoric acid was the commonly used 

acidified modifier, because they can minimize the peak tailing (Stalikas, 2007; Naczk and 

Shahidi, 2004; Robbins, 2003; Merken and Beecher, 2000).   
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The objective of the research in this part were two folds: 1) to determine the 

concentration of phenolic acids in different raw and boiled potatoes and sweet potatoes, 2) 

to find the sample with highest total concentration of phenolic acids and most various 

varieties of phenolic acids. As antioxidant activity is related to the level of phenolic acids, 

the sample with higher content of phenolic acids may have higher antioxidant activity. 

 

2.2 Material and Methods 

2.2.1 Sample Collection 

Three types of potatoes – Loose Russet Potato (RP), Loose Gold Potato (GP), Loose Red 

Potato (ReP), and four types of sweet potatoes – Red Garnet Sweet Potato (RGSP), 

Hannah Sweet Potato (HSP), Jewel Sweet Potato (JeSP), Japanese Sweet Potato (JaSP) 

were bought from the “Whole Foods Market” at Baton Rouge, LA (Figure 2.1). These 

potatoes and sweet potatoes were harvested in the US. 

 
Figure 2.1 Potato and sweet potato categories 

 

 

2.2.2 Sample Preparation 

Raw potatoes and sweet potatoes were peeled, cut into pieces (2 × 2 × 2 cm) and blended 

by a kitchen blender. Then, the mash was collected and stored in a 4 ℃ refrigerator before 



 24 

use. The boiled samples were boiled in 100 ℃ water for 20 min before peeled. Their 

mashes were collected and stored in a 4 ℃ refrigerator before use.   

 
Figure 2.2 Pictures for the flesh of potato and sweet potato samples 

 

2.2.3 Moisture Analysis for Raw and Boiled Samples 

The method – loss on drying (LOD) – was used in this study to determine moisture 

content in the samples. Fourteen foil dishes were weighed and labeled. Five grams of the 

raw or boiled sample was placed on the labeled foil and recorded. After dried at 80oC in 

an oven for six hours, the samples were transferred to a desiccator to cool down before 

reweighed.  

 

2.2.4 Extraction of Phenolic Acids for Potato and Sweet Potato Samples 

The samples (1.0 g) were mixed with methanol (2 mL) in a 10 mL tube. The mixture was 

mixed thoroughly by vortex for 1 min and then incubated in a water bath at 60℃. After 

20 min, the mixture was centrifuged. The solvent layer was transferred to a clean test tube. 

The residue was extracted with another 2 mL of methanol.  The solvent layers were 

combined and concentrated for HPLC analysis. 
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2.2.5 Determination of Phenolic Acids by Using an HPLC Method 

High performance liquid chromatography (HPLC, Water 2690 Separation Module) was 

equipped with diode array detector (DAD) which was set to scan from 210 to 620 nm. 

The identification and quantification of phenolic acids were carried out by using a C18 

Column (250 × 4.6 mm). The wavelength for the identification was set at 280 nm for 

gallic acid and 326 nm for chlorogenic acids and its derivatives. The extract solution (20 

𝜇L) from each potato or sweet potato sample was injected into the HPLC system. The 

mobile phase consisted of 10% acetic acid (A) and acetonitrile (B). A gradient elution 

program was employed as 100% A, 0 min; 70% A, 50 min; 50% A, 70 min; 20% A, 80 

min; 0% A, 85 min; 100% A, 90min and hold 20 min. The flow rate set at 0.8 mL/min.  

 

The results were analyzed by ANOVA (SAS) to observe the difference between the data 

collected at different conditions. 

 

2.3 Results and Discussion 

2.3.1 Moisture Content 

In this study, the moisture of RGSP sample (81.9%) was the highest among the raw 

samples. The highest moisture content among the boiled samples was in ReP sample 

(81.5%). For both raw and boiled samples, the moisture content of JaSP was the lowest 

one (Table 2.1). The results were in agreement with the study of Chung (2014) which 

reported that the moisture content of potatoes was around 80%.  

Table 2.1 Moisture of raw and boiled potato and sweet potato samples 

                     Sample Type 

Moisture (%) 
RP GP ReP RGSP HSP JeSP JaSP 

Raw 79.9 78.4 81.2 81.9 74.8 79.7 67.8 

Boiled 81.5 75.0 83.0 80.1 77.6 77.2 73.0 

RP: loose russet potato; GP: loose gold potato; ReP: loose red potato; RGSP: red garnet 

sweet potato; HSP: hannah sweet potato; JeSP: jewel sweet potato; JaSP:  Japanese sweet 

potato.  
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2.3.2 Phenolic Acids in Potato Samples 

Seven types of phenolic acids gallic acid, 3-CQA (neochlorogenic acid), 5-CQA 

(chlorogenic acid), 4-CQA (cryptochlorogenic acid), 4,5-diCQA (isochlorogenic acid), 

3,5-diCQA (isochlorogenic acid), and 3,4-diCQA (isochlorogenic acid) were determined 

in this study (Figure 2.3-2.9). The diversities and initial concentration of phenolic acids in 

the fresh potato samples were relatively low, compared with the sweet potato samples. 

After boiled, the level of gallic acid in RP was not changed, while 3-CQA in GP, ReP, 

RGSP, HSP, JeSP, and JaSP as well as the 3,4-diCQA in RGSP decreased.  However, 

other phenolic acids increased in all the potato samples (Figure 2.3-2.9). In addition, after 

boiled, there were two new phenolic acids (N1 and N2) in potato samples and one new 

phenolic acid (N3) in sweet potato samples (Figure 2.10-2.12). Gallic acid was the most 

common phenolic acid in the potatoes, while 3,4-diCQA was only in sweet potatoes 

(Figure 2.3 and 2.9). 

 

There were five kinds of phenolic acids found in potato samples: gallic acid, 3-CQA, 5-

CQA, 4-CQA, and 4,5-diCQA (Figure 2.3-2.7). Also, two kinds of new phenolic acids 

N1 and N2 were detected in boiled potato samples (Figure 2.10 and 2.11). However, 3,5-

diCQA and 3,4-diCQA were not detected in both fresh and cooked potato samples 

(Figure 2.8 and 2.9).  
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Figure 2.3 Concentration of gallic acid in potato and sweet potato samples 

RP: loose russet potato; GP: loose gold potato; ReP: loose red potato; RGSP: red garnet 

sweet potato; HSP: hannah sweet potato; JeSP: jewel sweet potato; JaSP:  Japanese sweet 

potato. Means with different letters are significantly different at P< 0.05. 

 

 

 

 

 
Figure 2.4 Concentration of 3-CQA in potato and sweet potato samples 

RP: loose russet potato; GP: loose gold potato; ReP: loose red potato; RGSP: red garnet 

sweet potato; HSP: hannah sweet potato; JeSP: jewel sweet potato; JaSP:  Japanese sweet 

potato. Means with different letters are significantly different at P< 0.05 
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Figure 2.5 Concentration of 5-CQA in potato and sweet potato samples 

RP: loose russet potato; GP: loose gold potato; ReP: loose red potato; RGSP: red garnet 

sweet potato; HSP: hannah sweet potato; JeSP: jewel sweet potato; JaSP:  Japanese sweet 

potato. Means with different letters are significantly different at P< 0.05 

 

 

 
Figure 2.6 Concentration of 4-CQA in potato and sweet potato samples 

RP: loose russet potato; GP: loose gold potato; ReP: loose red potato; RGSP: red garnet 

sweet potato; HSP: hannah sweet potato; JeSP: jewel sweet potato; JaSP:  Japanese sweet 

potato. Means with different letters are significantly different at P< 0.05. 
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Figure 2.7 Concentration of 4,5-diCQA in potato and sweet potato samples 

RP: loose russet potato; GP: loose gold potato; ReP: loose red potato; RGSP: red garnet 

sweet potato; HSP: hannah sweet potato; JeSP: jewel sweet potato; JaSP:  Japanese sweet 

potato. Means with different letters are significantly different at P< 0.05. 

 

 

 

 

 
Figure 2.8 Concentration of 3,5-diCQA in potato and sweet potato samples 

RP: loose russet potato; GP: loose gold potato; ReP: loose red potato; RGSP: red garnet 

sweet potato; HSP: hannah sweet potato; JeSP: jewel sweet potato; JaSP:  Japanese sweet 

potato. Means with different letters are significantly different at P< 0.05. 
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Figure 2.9 Concentration of 3,4-diCQA in potato and sweet potato samples 

RP: loose russet potato; GP: loose gold potato; ReP: loose red potato; RGSP: red garnet 

sweet potato; HSP: hannah sweet potato; JeSP: jewel sweet potato; JaSP:  Japanese sweet 

potato. Means with different letters are significantly different at P< 0.05. 

 

 

 
Figure 2.10 Concentration of new phenolic acid (N1) in potato and sweet potato samples. 

RP: loose russet potato; GP: loose gold potato; ReP: loose red potato; RGSP: red garnet 

sweet potato; HSP: hannah sweet potato; JeSP: jewel sweet potato; JaSP:  Japanese sweet 

potato. Means with different letters are significantly different at P< 0.05. 
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Figure 2.11 Concentration of new phenolic acid (N2) in potato and sweet potato samples. 

RP: loose russet potato; GP: loose gold potato; ReP: loose red potato; RGSP: red garnet 

sweet potato; HSP: hannah sweet potato; JeSP: jewel sweet potato; JaSP:  Japanese sweet 

potato. Means with different letters are significantly different at P< 0.05. 

 

 

 

 

 
Figure 2.12 Concentration of new phenolic acid (N3) in potato and sweet potato samples. 

RP: loose russet potato; GP: loose gold potato; ReP: loose red potato; RGSP: red garnet 

sweet potato; HSP: hannah sweet potato; JeSP: jewel sweet potato; JaSP:  Japanese sweet 

potato. Means with different letters are significantly different at P< 0.05. 
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In raw RP sample, only two phenolic acids gallic acids and 5-CQA were detected, while 

gallic acid, 3-CQA, 5-CQA, 4-CQA, and 4,5-diCQA were found in raw GP and ReP 

samples.  The concentrations and profiles of phenolic acids in the potato samples were 

summarized in Table 2.2. Gallic acid was the highest concentration phenolic acid in all 

raw samples. Nevertheless, the concentration of 4-CQA was the lowest among the raw 

samples and approximately 60 times lower than that of gallic acid. The overall phenolics 

concentration of RP was the highest while it was the lowest in GP sample.  

 

For the potato with high phenolic acid concentration, it has high potential of browning 

because polyphenol oxidase in the plants would be released to catalyze the phenolics into 

brown colored quinones (Wang et al., 2015). By exposing to air for the same period of 

time, the flesh of RP was the easiest sample to taking place of browning. It was in 

agreement with the suggestion of that the high concentration of phenolic acids results in 

the fastest rate of browning reaction. 

 

Table 2.2 Concentration of new phenolic acids in potato samples 

Concentration (𝜇g/g) N1 N2 

 RP ND ND 

Raw GP ND ND 

 ReP ND ND 

 RP 445.8±20.9a 484.4±24.7a 

Boiled GP 41.5±0.6b 49.7±2.0b 

 ReP 146.3±22.2c 172.6±4.6c 

N1, N2: New compounds after boiling; ND: not detected. RP: loose russet potato;  

GP: loose gold potato; ReP: loose red potato; Means with different letters are 

significantly different at P< 0.05. 
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Table 2.3 Concentration of phenolic acids in potato samples 

Concentration 

(𝜇g/g) 
Gallic Acid P1 P2 P3 P4 

Raw 

RP 187.8±12.5a ND 32.6±14.6a ND ND 

GP 96.8±5.0b 22.3±1.1a 5.6±2.6b 4.9±0.5a 18.0±2.8a 

ReP 78.9±4.0c 15.4±1.6b 39.2±5.0a 3.2±0.9b 15.0±0.2b 

Cooked 

RP 145.4±8.2d ND 975.4±51.4c 47.8±1.2c ND 

GP 179.7±0.4a ND 128.0±5.4d 30.4±0.9d 39.1±0.3c 

ReP 170.0±5.2e ND 493.7±9.7e 94.8±1.6e 37.1±11.5c 

 
                                     P1: 3-CQA (neochlorogenic acid); P2:  5-CQA (chlorogenic acid); P3:  4-CQA (cryptochlorogenic acid); 

                                     P4:  4,5-diCQA (isochlorogenic acid); ND: not detected. RP: loose russet potato; GP: loose gold potato;  

                                     ReP: loose red potato; Means with different letters are significantly different at P< 0.05.  
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After boiling, 4-CQA was detected in cooked RP sample while 23% of gallic acid was 

degraded. However, 5-CQA increased by 28 times (Table 2.3). In GP and ReP samples, 

3-CQA was degraded after boiling, while gallic acid increased 85% and 115%, 

respectively.  Also, 5-CQA, 4-CQA and 4,5-diCQA in GP increased approximately 22, 5, 

and 117%, respectively.  The increase rates were 12, 29 times and 147% for 5-CQA, 4-

CQA and 4,5-diCQA in ReP sample, respectively (Table 2.3).  It was reported that 

concentration of gallic acid increased in red wine after aging due to the breaking down of 

galloylated procyanidins and hydrolysis of glycoside of gallic acid (Alcalde-Eon et al., 

2014). It may have similar reaction for the increasing of gallic acid in the potato samples 

after boiling. In addition, a previous study showed that chlorogenic acid was not stable 

under high temperature (range of 125 ℃ to 225℃) (Zanoelo et al., 2009). Also, the 

isomer of caffeoylquinic acids may transfer into 4-CQA and 5-CQA during boiling. 

 

Two new compounds N1 and N2 were detected in the boiled potatoes. They have the 

same maximum absorbance wavelength in their spectrums. The concentration of N1 or 

N2 in RP was the highest among the samples. However, GP had the lowest N1 and N2 

concentrations (Table 2.2). According to the study of Antolovich et al. in 2000, caffeic 

acid was produced in boiled potato. N1 and N2 had similar spectrum as caffeic acid and 

may be caffeic acid derivatives. The occurrence of caffeic acid was due to caffeoylquinic 

acid can be hydrolyzed to caffeic acid, and the most possible caffeoylquinic acid could be 

3-CQA (Figure 2.14) (Antolovich et al, 200). 

 
Figure 2.14 Products of alkaline hydrolysis of chlorogenic acid (Maldonado et al., 2014) 
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2.3.3 Phenolic Acids in Sweet Potato Samples 

Seven phenolic acids including gallic acid, 3-CQA, 5-CQA, 4-CQA, 4,5-diCQA, 3,5-

diCQA and 3,4-diCQA were detected in the sweet potato samples (Figure 2.3-2.9). Also, 

three types of new phenolic acids were found in the boiled sweet potato samples and 

expressed as N1, N2 and N3 (Figure 2.10-2.12). Among the raw sweet potato samples, 

RGSP sample was the only one that had all the seven phenolic acids with the highest 

concentration as well. For JeSP and JaSP samples, gallic acid, 3-CQA, 5-CQA, and 4-

CQA were determined while only gallic acid and 3-CQA were detected in HSP. Previous 

research showed that in most sweet potatoes, the predominant phenolic acids were 5-

CQA and 3,5-diCQA (Padda and Picha, 2008c). 

 

The total phenolic acid level is usually correlated with the color of the potato flesh. For 

example, the sweet potato with purple and red color flesh may have more diversities and 

higher level of phenolic acids than yellow and white flesh sweet potatoes (Ji et al., 2012). 

Moreover, the sweet potato with white flesh contains more chlorogenic acid, while the 

sweet potato with purple flesh contains more di-CQAs (Cevallos-Casals and Cisneros-

Zevallos, 2003). After boiling, 3-CQA was degraded to undetectable level in all sweet 

potato samples. Also, 3,4-diCQA was degraded only in RGSP sample. The increasing 

rate of gallic acid was 9 times, 32%, 196%, and 152% in boiled RGSP, HSP, JeSP and 

JaSP samples, respectively. The 5-CQA and 4-CQA increased 84% and 38 times in 

RGSP sample, 108% and 16 times in JeSP sample and 154% and 41 times in JaSP sample, 

respectively. In boiled RGSP sample, the levels of 4,5-diCQA and 3,5-diCQA increased 

51 and 9 times than its raw sample, respectively. In addition, 3,5-diCQA increased 13 

times in boiled JeSP sample. Compared with the raw sample, 5-CQA, 4-CQA, 4,5-diCQA, 

and 3,5-diCQA became to detectable level in HSP sample. Similarly, 4,5-diCQA and 3,5-
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diCQA could be identified in JaSP sample while 4,5-diCQA was detected in JeSP sample 

after boiling (Table 2.5). It was reported that after microwaving, boiling, and baking, the 

phenolics in sweet potato flesh would increase due to heat can induce CQAs isomerized 

(Padda and Picha, 2008b; Takenaka et al., 2006). According to the research by Joong-

Keun Jung et al. (2011), the concentration of phenolics in Borami sweet potato also 

degraded at temperature 80 ℃. The degradation of phenolic acids after boiling was due to 

a combination of leaching into water, degradation that is affected by heat, oxidation by 

polyphenol oxidase, and isomerization. Figure 2.15 is a typical chromatogram of phenolic 

acids in the raw sweet potato samples.  

 

Table 2.4 Concentration of new phenolic acids in sweet potato samples 

Concentration (𝜇g/g) N1 N2 N3 

Raw 

RGSP ND ND ND 

HSP ND ND ND 

JeSP ND ND ND 

JaSP ND ND ND 

Boiled 

RGSP ND ND 494.0±13.3a 

HSP 15.3±0.7a 13.4±1.3a 57.8±1.8b 

JeSP 34.8±0.5b 21.1±6.6ab 261.4±9.2c 

JaSP 52.0±6.6c 29.0±8.5b 255.2±9.3c 

N1, N2, N3: New compounds after boiling; ND: not detected. RGSP: red garnet sweet 

potato; HSP: hannah sweet potato; JeSP: jewel sweet potato; JaSP:  Japanese sweet potato. 

Means with different letters are significantly different at P< 0.05. 
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Table 2.5 Concentration of phenolic acids in sweet potato samples 

Concentration 

(𝜇g/g) 
Gallic Acid P1 P2 P3 P4 P5 P6 

Raw 

RGSP 33.8±2.0a 45.3±1.9a 1141.7±19.5a 10.5±2.5a 7.8±0.2a 53.5±5.3a 7.2±1.7a 

HSP 54.6±7.5b 64.8±9.5b ND ND ND ND ND 

JeSP 66.5±4.7bd 134.6±9.5c 322.7±20.3b 10.9±0.6a ND 23.6±2.5b ND 

JaSP 34.1±8.1a 14.1±0.6d 30.0±13.9c 5.7±0.6b ND ND ND 

Boiled 

RGSP 336.0±25.5c ND 2107.4±74.0d 198.7±1.4c 410.3±11.3b 519.9±18.9c ND 

HSP 72.2±5.6d ND 148.0±5.5e 17.4±0.3d 53.9±1.5c 55.98±1.5a ND 

JeSP 196.8±23.1e ND 670.6±75.2f 201.2±22.2e 191.6±11.5d 339.4±3.9d ND 

JaSP 85.8±14.1d ND 493.0±75.0g 90.3±6.0f 243.8±17.4e 246.0±8.8e ND 
 

      P1: 3-CQA (neochlorogenic acid); P2:  5-CQA (chlorogenic acid); P3:  4-CQA (cryptochlorogenic acid); P4:  4,5-diCQA (isochlorogenic            

      acid); P5: 3,5-diCQA (isochlorogenic acid); P6: 3,4-diCQA (isochlorogenic acid); ND: not detected. RGSP: red garnet sweet potato; HSP:    

      hannah sweet potato; JeSP: jewel sweet potato; JaSP:  Japanese sweet potato. Means with different letters are significantly different at  

      P<  0.05.  
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Figure 2.15 Typical chromatogram of phenolic acids in raw sweet potato extracts 

Peak1:  3-CQA (neochlorogenic acid);  

Peak2:  5-CQA (chlorogenic acid); 

Peak3:  4-CQA (cryptochlorogenic acid);  

Peak4:  4,5-diCQA (isochlorogenic acid);       

Peak5:  3,5-diCQA (isochlorogenic acid);  

Peak6:  3,4-diCQA (isochlorogenic acid). 

 

A typical chromatogram of phenolic acids in the boiled sweet potato sample is showed in 

Figure 2.16. There were three types of new phenolic acids detected in the boiled sweet 

potatoes and expressed as N1, N2 and N3. The maximum absorbance wavelength of these 

new phenolic acids was at 328 nm. N1 and N2 could be found in the cooked potato 

samples and were caffeic acid derivatives. However, N3 was the unique phenolic acid 

which could only be detected in the boiled sweet potato sample. Boiled RGSP sample 

only had N3 while boiled HSP, JeSP and JaSP samples had all the three new compounds. 

Compared with N1 and N2, the concentration of N3 was the highest in boiled sample 
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among the sweet potato samples, especially in RGSP (Table 2.4). The reason for the 

differences of new produced compounds between the boiled potato and sweet potato 

samples may due to the varieties of phenolics and genotypes in their raw samples (Jung et 

al., 2011). Moreover, it is possible that some phenolic acids were changed into different 

isomers (Jung et al., 2011).   

 

 

 

Figure 2.16 Typical chromatography of phenolic acids in the boiled sweet potato sample 

Peak2:  5-CQA (chlorogenic acid);  

Peak3:  4-CQA (cryptochlorogenic acid);  

Peak4:  4,5-diCQA (isochlorogenic acid);  

Peak5:  3,5-diCQA (isochlorogenic acid);  

Peak6:  3,4-diCQA (isochlorogenic acid);  

N3: new phenolic acid. 
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2.3.4. Comparison of Raw and Boiled Samples 

The total concentration of phenolic acids increased significantly in each sample after 

boiling (Figure 2.17). Among these samples, the increasing rate of phenolic acids in 

RGSP sample was the highest. Phenolic acids are usually not stable after heat treatment. 

However, during heat treatment, bound phenolic acids could be released from the potato 

matrix more completely. Before heat treatment, only free phenolic acids were analyzed in 

samples. So the concentration of phenolic acids could increase after heating (Malmberg 

and Theander, 1984). Also, phenolic acids such as gallic acid and chlorogenic acids were 

not stable during thermal treatment (Friedman, 2000). Therefore, after boiling, gallic 

acids, 5-CQA, 4-CQA, 4,5-diCQA, and 3,5-diCQA increased while 3-CQA and 3,4-

diCQA might reduce in the potato and sweet potato sample. 

 
Figure 2.17 Total content of phenolic acids in the raw and boiled samples 

RP: loose russet potato; GP: loose gold potato; ReP: loose red potato; RGSP: red garnet 

sweet potato; HSP: hannah sweet potato; JeSP: jewel sweet potato; JaSP:  Japanese sweet 

potato. Means with different letters are significantly different at P< 0.05. 
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2.4 Conclusion 

In this study, seven individual phenolic acids, gallic acid, 3-CQA (neochlorogenic acid), 

5-CQA (chlorogenic acid), 4-CQA (cryptochlorogenic acid), 4,5-diCQA (isochlorogenic 

acid), 3,5-diCQA (isochlorogenic acid) and 3,4-diCQA (isochlorogenic acid) were 

identified and quantified in the potato and sweet potato samples. Among the phenolic 

acids, 3,4-diCQA was only found in the sweet potato sample. Boiling treatment had 

significant effect on the level of each phenolic acid. After boiling, except for 3-CQA and 

3,4-diCQA, the levels of all other phenolic acids increased. Moreover, the total 

concentration of phenolic acids in each sweet potato sample was much higher than that of 

each potato samples. Therefore, the sweet potatoes had higher level of antioxidants than 

the potatoes. The varieties of phenolic acids were wider in the sweet potatoes. Therefore, 

the sweet potatoes may have higher antioxidant activity than potatoes.  
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CHAPTER 3. ANTIOXIDANT ACTIVITIES AND PHENOLIC ACIDS IN RED 

GARNET SWEET POTATO (RGSP) AT DIFFERENT BOILING TIME 

 

3.1 Introduction 

Sweet potato is a high-nutritious food containing carotenoids, phenolics and vitamins. 

The antioxidant activity of sweet potato was affected by the composition and 

concentration of phenolic acids (Javanmardi J. et al., 2003). The phenolic compounds in 

sweet potato are chlorogenic acid and other similar compounds (Agnes et al., 2007; 

Rudkin and Nelson, 1947). In general, phenolic metabolites are commonly found in fruits 

and vegetables for the protection from insect and animal attack (Asami et al., 2003). 

About 30% of dietary polyphenols are phenolic acids (Lall et al., 2015). As the major 

antioxidants in the sweet potato, phenolics are mainly influenced by the polyphenol 

oxidase which may cause degradation of the phenolics (Ahmed et al., 2011). It was 

reported that chlorogenic acids, 3,5-dicaffeoylquinic acid (3,5-diCQA), 3,4-

dicaffeoylquinic acid (3,4-diCQA), and 4,5-dicaffeoylquinic acid (4,5-diCQA) extracted 

from steamed sweet potato can inhibit the production of melanogenesis in mice 

(Shimozono et al., 1996). Sweet potatoes have been reported to contain more 

isochlorogenic acid than other foods (Sondhermer, 1958).  

 

As the seventh most important food crop in the world, sweet potato was commonly 

consumed after cooking (Li et al., 2012). The most common cooking method for sweet 

potato is boiling, however, this process may cause physical or chemical characters change 

in the sweet potato.  Based on several previous studies, ascorbic acid and 𝛽-carotene 
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could be significantly reduced by different heat treatments, while the total phenolic 

contents increased (Dincer et al., 2011).  The hydroxyl groups in phenolic compounds can 

donate hydrogen to lipid radicals to prevent lipid oxidation. Therefore, the phenolic acids 

in sweet potato have good antioxidant activity (Chaiyasit et al., 2007). 

 

In this study, the changes of antioxidant activities and phenolics at different boiling times 

were measured. Since phenolic acids can affect not only the organoleptic properties 

(flavor, astringency, color), but also oxidative stability of the food, the results could be 

helpful in developing a cooking condition which can produce the cooked sweet potato 

with high antioxidant, flavor and color (Gruz et al., 2008). The objective of the research 

was to determine the antioxidant activity and concentration of phenolic acids in red garnet 

sweet potato at different boiling times and to obtain the best time for cooking sweet 

potatoes in order to yield the highest amounts of phenolic acids.  

 

3.2 Material and Methods 

3.2.1 Sample Preparation for RGSP  

RGSP was purchased from a local “Whole Foods Market”, Baton Rouge. After peeled, 

the sweet potato were cut into small pieces and grounded by a kitchen blender with 400 

ml distilled water until it became mash. It was poured into a beak and boiled.  The beak 

was covered to avoid moisture loss. The mixture was collected at boiling time  0, 10, 20, 

and 30 min.  
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3.2.2 Moisture Analysis for Raw and Boiled Samples 

The loss on drying (LOD) was used to determine the moisture content in each sample. 

Five gram of the sample was placed on a labeled foil dish. After dried at 80oC in an oven 

for six hours, the sample were reweighted and recorded to calculate the moisture content. 

 

3.2.3 Extraction of Phenolics in RGSP 

The collected samples were centrifuged to obtain the aqueous layer.  The layer was 

transferred to a clean test tube for the DPPH, total phenolic content, and phenolic profile 

analysis (Figure 3.1).  

 

Figure 3.1 Boiled RGSP samples 

 

3.2.4 DPPH Assay  

The color change in DPPH assay was determined by the UV spectrophotometer shown in 

Figure 3.2. Five different concentrations of Trolox (0, 5, 10, 15, and 20 𝜇g/mL) were used 

to prepare a standard curve. The test sample solution or Trolox (0.1 mL) was transferred 

into a cuvette and mixed with DPPH (0.1mM/L, 1.9 mL). The absorbance at wavelength 
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of 515 nm was recorded at 0 and 30 min, respectively. The free radical scavenging 

activity was expressed as 𝜇g Trolox equivalent /mL based on the standard curve.  

 

Figure 3.2 UV Spectrophotometer 

 

3.2.5 Analysis of Total Phenolics Content 

The test sample solution (0.1 mL) was mixed with ten times diluted Folin–Ciocalteu 

reagent (0.75 mL) and incubated in dark for 5 min. Then, 0.75 mL of sodium bicarbonate 

solution (60 g/L) was added to the mixture and incubated for another 90 min. The 

absorbance of the mixture was measured at wavelength of 750 nm.  A series 

concentration of catechin was used to set up a standard curve. The total phenolic content 

was expressed as 𝜇g catechin equivalent/mL based on the standard curve of catechin.  

 

3.2.6 Phenolic Profile Analysis 

An HPLC was equipped with a diode array detector (DAD) with wavelength scanning 

from 210 to 620 nm. The identification and quantification of phenolic acids was carried 

out by using a C18 Column (250 × 4.6 mm). The wavelength was set at 280 nm for 
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quantifying gallic acid and other phenolic acids and 326 nm for chlorogenic acids and its 

derivatives. The extract solution (20 𝜇L) from each sample was injected into the HPLC 

system. The mobile phase consisted of 10% acetic acid (A) and acetonitrile (B).  A 

gradient elution was employed with: 100% A, 0 min; 70% A, 50 min; 50% A, 70 min; 20% 

A, 80 min; 0% A, 85 min; 100% A, 90min and hold 20 min. The flow rate set at 0.8 

mL/min.  

 

3.3 Results and Discussion 

3.3.1 Phenolic Acids in RGSP at Different Boiling Time 

Since the raw samples were mixed with distilled water during blending, the moisture 

contents were only used for adjusting the results obtained from each assay to be on dry 

basis. Gallic acid, five chlorogenic acids (3-CQA, 5-CQA, 4-CQA, 4,5-CQA and 3,5—

CQA) and four new bioactive compounds (N1, N2, N3 and N4) were determined in the 

raw and cooked RGSP samples. The levels of all the original phenolics in the raw 

samples increased after boiling for 10 min and then decreased with the extended boiling 

time. The result is in accordance with antioxidant activity assays, in which, the highest 

antioxidant activity appeared at 10 min boiling time and then decreased. 

 

In the raw sample, gallic acid, 3-CQA, 5-CQA, 4-CQA and three unknown phenolic acids 

(N1, N2 and N4) were determined. Gallic acid was determined at the wavelength of 280 

nm and other phenolic acids were determined at 326 nm, except N4 which was at 360 nm. 

The primary phenolic was 5-CQA was in all the samples followed by gallic acid and N2. 
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For samples boiled for 10 min and 20 min, gallic acids, other five phenolic acids (3-CQA, 

5-CQA, 4-CQA, 4,5-CQA and 3,5-CQA) and four new phenolic acids (N1, N2, N3 and 

N4) were determined. However, 3-CQA decreased to not detectable level after boiled for 

30 min. The samples boiled for 10 min maintained the most diversity profile and highest 

levels of phenolic acids (Figure 3.3). Chlorogenic acid isomers can be hydrolyzed to 

quinic acid and caffeic acid at boiling condition (Maldonado et al., 2014). However, it 

was reported that phenolic compounds can react with some minerals (Cu2+ and Fe3+) in 

the sweet potato to induce the prooxidant activity of phenolics (Figure 3.4) (Dai et al., 

2010). The mechanism of the reactions between phenolic acids and minerals is 

demonstrated in Figure 3.4. 

 

Figure 3.3 Concentrations of phenolic acids in RGSP at different boiling time 

G: Gallic Acid; Peak1:  3-CQA (neochlorogenic acid); Peak2:  5-CQA (chlorogenic acid);  

Peak3:  4-CQA (cryptochlorogenic acid); Peak4:  4,5-diCQA (isochlorogenic acid);  

Peak5:  3,5-diCQA (isochlorogenic acid);  

N1, N2, N3 and N4: New compounds after boiling. 

Means with different letters are significantly different at P<0.05. 
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Figure 3.4 Reactions of phenolic acids with minerals (Jin Dai et al., 2010). 

(1) phenolic compounds acted with radicals;  

(2) free radicals forming;  

(3) metal ions interact with hydrogen peroxide to form hydroxyl radicals forming;  

(4) phenolic compounds with catecholate and gallate groups react with metal ions;  

(5) forming of quinones;  

(6) prooxidant activity of phenolic antioxidants was induced by transition metal ions.  

 

3.3.2 Antioxidant Activities in RGSP at Different Boiling Time 

The free radical scavenging activities of all the samples were determined by using DPPH 

(1,1-diphenyl-2-picrylhydrazyl) assay. After 10 min of boiling, DPPH free radical 

scavenging activities in the boiled RGSP sample increased twice compared with the raw 

sample. However, the DPPH free radical scavenging activity decreased to the similar 

level as the raw sample after 30 min of boiling (Figure 3.5). Similar to the level of 

individual phenolic acid, the highest antioxidant activity occurred after 10 min of boiling. 

Since boiling treatment can release bound phenolic acids from the potato matrix, there 

were more free phenolic acids in the sample (Sosulski et al., 1982). The concentration of 
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phenolic acids can affect the antioxidant activity in the sample. The sample with higher 

concentration of phenolic acids would have higher antioxidant activity. After boiling, the 

hydrocarbon chains may break, making the phenolics more effective in inhibiting lipid 

oxidation and higher antioxidant activity (Sasaki et al., 2011). Moreover, the structure of 

phenolic acids can affect the antioxidant activity. For example, the 4,5-diCQA in sweet 

potato showed higher antioxidant activity than caffeoylquinic acid did. Therefore, the 

higher contents of 4,5-diCQA, the higher antioxidant activity would exhibit (Dini et al., 

2006).  

 

 

Figure 3.5 DPPH free radical scavenging activities of RGSP at different boiling time  

Means with different letters are significantly different at P<0.05. 
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3.3.3 Total Phenolic Contents in RGSP at Different Boiling Time 

Compared with the raw sample, the total phenolic content in cooked RGSP sample 

increased 4 times after 10 min of boiling and decreased with the extended boiling time 

(Figure 3.6). The increasing of total phenolic content was mainly due to the fact that 

bound phenolics were released from the sample matrix (Jacob et al., 2010). Generally, the 

antioxidant activity of a phenolic is dependent upon the number and position of hydroxyl 

groups. Since gallic acid has an extra hydroxyphenol group, the sample with more 

abundant gallic acid would have higher antioxidant activity (Elhamirad et al., 2012). 

Similar to the level of individual phenolic acid and DPPH free radical scavenging 

activities, the total phenolic content reached to the highest level after 10 min of boiling.  

 

Figure 3.6 Phenolic contents of RGSP at different boiling time 

Means with different letters are significantly different at P<0.05. 
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3.4 Conclusion 

In this study, gallic acid and five varieties of chlorogenic acids: 3-CQA (neochlorogenic 

acid), 5-CQA (chlorogenic acid), 4-CQA (cryptochlorogenic acid), 4,5-diCQA 

(isochlorogenic acid) and 3,5-diCQA (isochlorogenic acid) were identified and quantified 

in cooked red garnet sweet potato. Each phenolic acid and antioxidant activity reached to 

the highest level in the cooked sweet sample after 10 min of boiling and decreased with 

continuous boiling. Furthermore, the DPPH free radical scavenging activities and total 

phenolic content of the cooked sweet potato were at the highest level after 10 min of 

boiling as well.  However, the antioxidant activity decreased to the level similar to the 

raw sample after further boiling. Therefore, boiling for 10 min is the best time for the 

boiled sweet potato to have the highest health promoting activity compared. 
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CHAPTER 4. SUMMARY 

Phenolic compounds are important antioxidants in potatoes and sweet potatoes. The 

objectives of this study were to determine the differences of phenolic acids profiles 

between raw and boiled potatoes and sweet potatoes, as well as the effect of boiling time 

on the individual phenolic acid of sweet potato. In addition, the changes of antioxidant 

activity in the sweet potato during boiling were evaluated by the DPPH method. It was 

found that the level and diversity of phenolic acids varied by the varieties of potato and 

sweet potato samples. Moreover, it was found that 10 min of boiling was the best time for 

boiling blended sweet potato since its phenolic acid, DPPH free radical scavenging 

activity and total phenolic content reached the highest level. However, those levels 

decreased after the sweet potato sample was boiled more than 10 min. In addition, the 

phenolic acid content was in a positive correlation with the DPPH free radical scavenging 

activity. In general, gallic acid and 3,5-O-dicaffeoylquinic acid were the predominant 

phenolic acid in the raw potatoes and sweet potatoes, while 5-O-caffeoylquinic acid was 

the main phenolic acid in the boiled potatoes and sweet potatoes. Several new products 

generated during cooking could be the isomers of chlorogenic acid such as 3,4,5-O-

tricaffeoylquinic acid which need to be further studied. The result of this research is 

useful for food industry in making sweet potato soup, sweet potato congee, mashed sweet 

potato, and sweet potato salad with high level of health promoting compounds. 
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