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Abstract 

 Development of liquid biofuels has entered a new phase of large scale pilot 

demonstrations.  A number of plants in operation or under construction face the engineering 

challenges of creating a viable plant design, scaling up, and optimizing various unit operations.  

It is well-known that separation technologies account for 50-70% of both capital and operating 

costs.  Processes vary in terms of selection of unit operations; however, solid-liquid separations 

are likely to be a major contributor to the overall project costs.  A typical process for ethanol 

production from biomass includes several solid-liquid separation steps.  The nature of biomass 

derived materials makes it either difficult or uneconomical to accomplish complete separation in 

a single step.   

 Material balance models were developed for two bagasse-to-ethanol processes utilizing 

alkaline-pretreatment, and applied to evaluate the sensitivities of the process yields to separation 

performance.  This aided in setting realistic efficiency targets for solid-liquid separations.  

Results from material balance calculations revealed that 10% of solid feed material can be lost to 

liquid streams, with an equivalent process yield reduction.  Both filtration and sedimentation 

processes were found to have low separation efficiencies, due to small particle sizes, low density, 

and the fibrous nature of bagasse.   

 Because of low concentrations of suspended solids in the liquid stream (0.1-0.15%), 

recovery of solids by centrifugation may require high capital and operating costs.  The efficiency 

of a dissolved air flotation process (DAF) for recovery of suspended solids from liquid stream 

derived from dilute-ammonia pretreatment process was investigated.  DAF was evaluated for 

suspended solids recovery from the liquid stream obtained from alkaline pretreated cane bagasse.  

A continuous bench scale DAF clarifier was constructed and tested.  The effect of additives at 

various chemical addition rates, air-to-solids ratios and hydraulic loadings on the DAF process 
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was determined.  Small quantities of lime were found to enhance flotation of particles and 

minimize the use of flocculants.  Recoveries of suspended solids were in the range of 50-57% 

and were accompanied by a greater volume reduction than could be achieved by conventional 

sedimentation.  The DAF process effectively concentrated solids from 0.1% in the feed material 

to 8-9% in the floated fraction.   
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Chapter 1 Introduction 

1.1 Fuels from Renewable Resources 

 As global population grows, the demand for petroleum for power, industrial, and 

residential utilization will only increase, putting a greater strain on supply.  This spike alone will 

cause more rapid petroleum depletion as a result of power production.  However, transportation 

will also require more fuel.  Population growth results in more commercial and personal 

transportation.  Based on a 1996 review, 97% of transportation fuels were petroleum based 

(Mielenz, 2001).  Additionally, 68% of petroleum utilized in the U.S. is for transportation 

purposes (Davis, Diegel and Boundy, 2008).  The need for alternative fuels is becoming even 

more apparent since countries with unstable governments control a large percentage of petroleum 

supply. 

 To reduce the dependence on petroleum, research has been focused on the development 

of biofuels from renewable resources.  Due to abundance to corn in the U.S., ethanol has been 

considered as a viable alternative to gasoline as a transportation fuel or as an additive.  Based on 

a U.S. Department of Energy report (2007), gasoline consumption was estimated at 390 million 

gallons per day.  Assuming the blending of ethanol at 10% (E10), 39 million gallons of ethanol 

should be produced daily.  As of 2005, the total annual ethanol production in the U.S. was 3.9 

billion gallons, or 10.7 million gallons per day—with most produced from corn.  This production 

capacity could satisfy only ~2.5% of total gasoline utilization.  U.S. Department of Energy has 

projected that ethanol production in 2030 will be sufficient to account for only 7.6% of all the 

gasoline (in 2007 the ethanol production was 4.3%).  The recent introduction of automobile 

engines which can efficiently burn fuels with 85% ethanol concentration (E85) furthers the need 

increased ethanol production. 
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1.2 Feedstocks Used for Ethanol Production 

Currently, most ethanol produced in the U.S. for transportation purposes is derived from 

corn (Lin and Tanaka, 2006).  Increased ethanol demand for fuels has resulted in a rise in corn 

prices.  In fact, from January 2006 to January 2007, the price of corn has almost doubled, raising 

concerns over the use of food crops for fuel (Nash, 2007). This increase in the price of corn has 

had ramifications on global food supply.  These considerations have created additional pressure 

on production of biofuels from alternative sources.  Thus, emphasis has switched to finding more 

sustainable feedstocks for ethanol production.   

 To avoid the use of food sources for fuel, research has been focused on developing new 

technology for conversion of agricultural byproducts, municipal wastes, and other non-food 

biomass into ethanol.  These materials contain cellulose and hemicelluloses, which can be 

hydrolyzed to monomeric sugars and fermented to ethanol.  Herein, the term „cellulosic ethanol‟ 

will refer to ethanol produced from this type of biomass.  Cellulose is a long chain of glucose 

molecules while hemicellulose is composed of various 5-carbon sugars—mainly xylose, but also 

mannose, arabinose, galactose, and rhamnose.  The presence of lignin in cellulosic biomass 

makes the conversion to ethanol difficult.  Lignin binds the cellulose and hemicellulose together, 

making it difficult to hydrolyze the sugars efficiently.  Figure 1 illustrates the composition of 

cellulosic biomass and the effect that lignin has. 

 
Figure 1  Structure of cellulosic biomass. 
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 Research in the cellulosic ethanol process has shown promise for technical feasibility.  

However, the technology had several process-limitations slowing the expansion to large-scale 

production.  Some of these factors include feedstock harvesting and shipment costs, pretreatment 

and bioconversion difficulties, processing costs, and high capital investment requirements.  

Researchers are currently developing solutions, which help advance processes to pilot-scale.  For 

example, microorganisms are being genetically altered to convert multiple sugars into ethanol.  

Researchers at the University of Florida have altered a species to efficiently convert both 

hemicellulose and cellulose sugars into ethanol, where as generally these must be fermented 

separately (Ingram, Aldrich, Borges, Causey, Martinez, Morales, Saleh, Underwood, Yomano, 

York, Zaldivar and Zhou, 1999).  Such advances in technology will help lower costs of 

producing ethanol, making it a more viable option. 

 Sugarcane bagasse is one example of an agricultural by-product which can be converted 

to ethanol.  Bagasse is the residue after sugar is extracted from sugarcane (Figure 2). 

 
Figure 2  Sugarcane bagasse. 
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 At present, bagasse is burned to provide steam and power the sugar factories (Rein, 

2007).  Because of its high cellulose content, it is a viable source of cellulosic biomass for 

ethanol production.  Even with low-efficiency boilers in raw sugar factories, all bagasse from a 

given sugar mill is not burned, leading to a surplus at the end of the season.  Factories could 

increase boiler efficiencies, resulting in more excess bagasse.  With changes, a typical raw sugar 

factory could potentially save up to 40% of bagasse. 

 In Louisiana, cellulosic ethanol may be a viable option, where the grinding season for 

raw sugar factories is generally around three months, from October to December.  Due to the 

short milling season, factories could potentially produce ethanol from bagasse during the off-

season.   

1.3 General Process for Cellulosic Ethanol Production 

 A general flow diagram of the unit operations for cellulosic ethanol production is shown 

in Figure 3.  Because lignin molecules bind the sugar polymers (cellulose and hemicellulose) in 

cellulosic biomass together, the first step in the process is to make these sugar molecules 

available for hydrolysis.  This is accomplished using a pretreatment process. 

 
Figure 3  Block diagram of cellulosic ethanol production process. 

 After pretreatment the sugar polymers are more accessible for enzymatic hydrolysis, 

which fractures the biomass into sugars.  Fermentation then produces a slurry containing ethanol 

mixed with the remaining liquor and residual solids.  A distillation step separates the ethanol 

from the remaining residue. 
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1.4 Pretreatment Processes 

Pretreatment processes disrupt the bonds between lignin, cellulose, and hemicellulose 

molecules.  Figure 4 is an illustration of the effect of pretreatment on cellulosic biomass. 

 
Figure 4  Effect of pretreatment processes on the structure of cellulosic biomass (Hector, Hughes 

and Liang-Li, 2008). 

Several pretreatment methods have been developed that efficiently deconvolute cellulosic 

biomass.  Steam explosion (Schultz, Blermann and McGinnis, 1983; Playne, 1984; Laser, 

Schulman, Allen, Lichwa, Antal and Lynd, 2002), Ammonia Fiber Explosion (AFEX) 

(Holtzapple, Lundeen, Sturgis, Lewis and Dale, 1992), lime (Chang, Burr and Holtzapple, 1997), 

dilute acid (Torget, Himmel, Wright and Grohmann, 1988; Aden, Ruth, Ibsen, Jechura, Neeves, 

Sheehan, Wallace, Montague, Slayton and Lukas, 2002) and concentrated acid (Cuzens and 

Miller, 1997) technologies  have been tested on a pilot scale for cellulosic feedstocks.  

Pretreatment operations target specific components of the biomass for downstream processing.  

Dilute acid pretreatment solubilize lignin and hemicellulose.  Concentrated acid solubilizes most 

of the components of the biomass.  Alkaline pretreatment processes solubilize lignin, leaving 

cellulose and hemicellulose mostly intact.   
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At the Louisiana State University AgCenter‟s Audubon Sugar Institute (ASI), research 

has been focused on alkaline-based methods for pretreatment of sugarcane bagasse—using 

ammonium hydroxide and calcium hydroxide respectively.  These processes have been proven to 

effectively pretreat other grassy feedstocks, such as energy cane and sweet sorghum, as well 

(Salvi, Aita, Robert and Bazan, 2010). 

1.4.1 Dilute-Ammonia Pretreatment 

ASI dilute-ammonia pretreatment involves treating biomass with heat and dilute 

ammonia in the pressurized reactor shown in Figure 5.  This pretreatment process has proven to 

efficiently remove lignin and improve hydrolysis and fermentation yields.  Composition of 

untreated bagasse is 37% glucans with approximately 21% xylans.  The remaining 42% of 

bagasse consist of ash, lignin, and other extractives.  The pretreated biomass composed of 54% 

glucans, 31% xylan, and 15% lignin and other non-sugars.   

In the ammonia based pretreatment, cellulose is the target for conversion to ethanol.  

After pretreatment, the process incorporates a simultaneous saccharification and fermentation 

(SSF) process which combines hydrolysis and fermentation, performing both in one unit.  

(Ooshima, Ishitani and Harano, 1985; Szczodrak and Targonski, 1989; Philippidis, Smith and 

Wyman, 1993).  Enzymes hydrolyze the cellulose and anaerobic microorganisms (e.g. S. 

cerevisiae) simultaneously ferment glucose to ethanol.  By employing SSF in place of separate 

hydrolysis and fermentation steps, the amount of end-product inhibition of enzymatic hydrolysis 

is reduced, better yield of ethanol is obtained, enzyme requirements are decreased, and 

processing time is shortened (Sun and Cheng, 2002).  After fermentation is complete, liquid and 

the remaining solids (mainly xylans and a minimal amount of unconverted cellulose) are 

separated.  A simplified block diagram illustrating the main steps of the ASI dilute-ammonia 
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pretreatment process is presented in Figure 6.  In addition to the pretreatment, SSF, and 

distillation steps, several solid-liquid separations are required.   

 
Figure 5  Dilute-ammonia pretreatment reactor. 

All pretreatment processes produce fermentation-inhibiting compounds.  

Hydroxycarboxylic acids (e.g. glycolic acid and lactic acid) are common carbohydrate 

degradation products from alkaline-pretreatment processes (Klinke, Thomsen and Ahring, 2004).  

Depending on concentration and type of inhibitors present, fermentation of glucose by S. 

cerevisiae at common process conditions can be inhibited as much as 60% (Larsson, Palmqvist, 

Hahn-Hagerdal, Tengborg, Stenberg, Zacchi and Nilvebrant, 1999; Panagiotou and Olsson, 

2007).  To remove inhibitory components from the biomass prior to SSF, solids are washed in 

the same screening device (Figure 7).  
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Figure 6  Block diagram of ethanol production process using ASI dilute-ammonia pretreatment. 

 
Figure 7  Screening device used for Separation 1 and Washing. 
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To decrease solids moisture content for following saccharification and fermentation 

(SSF) step, washed solids are milled in the three-roller sample mill in Figure 8.  After SSF, the 

residual solids, mainly xylans, are separated from the reaction mixture.  Finally, ethanol is 

distilled from the liquid phase, and the solid phase is used for further processing.  

 
Figure 8  Three roll sample mill used for Separation 3. 

1.4.2 Calcium Hydroxide Pretreatment 

Another alkaline-based pretreatment at ASI utilizes calcium hydroxide (lime) to treat 

sugar yields prior to enzymatic hydrolysis.  This process requires 0.2g Ca(OH)2 mixed with 8g 

distilled water per 1g biomass (dry basis).  The bagasse is then autoclaved for 1 hour at 121
o
C.   

Lime pretreated bagasse is composed of approximately 50% glucans, 29% xylans, and 

21% lignin, ash, and extractives.  Hydrolysis of lime-treated bagasse resulted in digestion of up 

to 90% of available glucans.  Fermentation converts 95% of available glucose into ethanol.   

The general process for conversion of the pretreated bagasse to ethanol is similar to that 

of the dilute-ammonium process.  However, instead of being subjected to an SSF step, pretreated 

bagasse is instead enzymatically hydrolyzed and then fermented in separate stages.  A 
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generalized flow sheet of this process is presented in Figure 9.  As with the dilute-ammonia 

pretreatment process, several solid-liquid separation steps are required.  A washing stage is 

implemented before hydrolysis to remove inhibitory components. 

 
Figure 9  Block diagram of ethanol production process using ASI calcium hydroxide 

pretreatment process. 

1.5 Process Yield 

 Ethanol yield from pretreated biomass is affected by the efficiency of hydrolysis and 

fermentation steps.  Commercial enzymes are available which can hydrolyze alkali-pretreated 

cellulose.  These cellulase enzymes have been employed in laboratory and pilot scale processes 

(Prior and Day, 2008).  Results indicate that hydrolysis of nearly 95% of cellulose is possible.   

Organisms that can ferment glucose effectively at conditions found in processing cellulosic 

ethanol has led to high-efficiency fermentation.  For example, Alterthum and Ingram report 95% 

efficiency in glucose fermentation by a strain of E. Coli  (1989).  Other researchers have 
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identified process conditions and organisms (e.g. S. cerevisiae, Z. mobilis) which can ferment 

biomass-derived glucose at high efficiency (>90%).  

 Theoretical ethanol yield is calculated based on the stoichiometric balance for 

fermentation of glucose shown in Equation 1 and   

Table 1. 

 
Equation 1  

Table 1  Stoichiometric balance for fermentation of glucose. 

 Glucose 

(C6H1206) 

Ethanol 

(CH3CH2OH) 

Carbon Dioxide 

(CO2) 

Molar Mass (g/mol) 180.16. 46.07 44.01 

Moles 1 2 2 

Mass (g) 180.16 92.14 88.02 

 Fermentation of one gram of glucose can potentially yield 0.51 g ethanol and 0.49 g 

carbon dioxide.  Density of ethanol is 0.79 g/ml.  Based on composition of sugarcane bagasse 

(approximately 37-45% glucans), theoretical yield per ton of sugar cane bagasse is 47.3-57.6 

gallons of ethanol. 

1.6 Process Scale-Up Limitations 

 A transition from laboratory experiments to pilot-scale and commercial demonstration 

phase processing is now in progress.  The core-technologies of pretreatment, hydrolysis, and 

fermentation have been studied, optimized, and are available for scale-up.  However, to realize a 

full-scale process, several separation steps are required.  This presents engineering challenges in 

process design, scale-up, and equipment selection.  Few systematic studies have been presented 

with respect to solid-liquid separations in cellulosic ethanol production (Kochergin, Kearney, 

Herbst, Mann, Garn and Hess, 2004; Burke, Andersen, Gilcrease and Menkhaus, 2009; 

Gertenbach and Cooper, 2009; Monavari, Galbe and Zacchi, 2009).  Following features of 
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agricultural biomass-derived feedstocks complicate the development of reliable and consistently 

operating solid-liquid separations.  

 Variability in biomass properties throughout the processing season. 

 Differences in growing areas and storage conditions drastically change filterability of 

pretreated biomass. 

 Presence of low density particles requires stronger driving forces for effective 

separation 

 Initial particle size reduction, which increases the available surface area and 

facilitates chemical reactions and mass transfer, makes the task of downstream 

separation of biomass components more difficult. 

 Separation technologies can account for 50-70% of both capital and operating costs of an 

industrial process(Humphrey and Keller, 1997).  Therefore, cost of solid-liquid separations is is 

expected to have significant influence overall process operation. 

 Solid-liquid separation are used to recover the solids for further processing and discard 

the liquid, recover the liquid fraction and discard the solids, recover both the solids and the 

liquid, or discard both the solids and the liquid (Svarovsky, 1977). Complete isolation of the two 

phases is virtually impossible.  A diagram is presented in Figure 10 showing the composition of 

two-phase systems that result from solid-liquid separations.   

 
Figure 10  Solid-liquid separations (a- liquid phase with entrained solids, b- solid phase with 

entrained liquid). 



13 

 Solid phase contains liquid, and some solid particles are entrained with the liquid 

fraction.  Due to this, realistic separation targets for each step in the process must be established.  

These separation targets should be determined experimentally, based on available technologies 

and scale-up considerations. 

1.7 Solid-Liquid Separation Efficiency Parameters 

 By convention, separation efficiency is expressed as the percentage of dry solids 

recovered during the separation.  The moisture content of the solid fraction (MCdb) is calculated 

as a percentage on a dry basis using Equation 2, where mH20 and mdm are the masses of water and 

dry matter respectively: 

 

Equation 2 

 It is important that separation efficiency targets are identified for each step of the process, 

and technologies are properly selected and designed to meet these goals.  An inefficient 

separation can negatively affect the economics and yield of the process.  For example, if solids 

are the targeted fraction for downstream processing, and the separation is inefficient, solids 

entrained in the liquid phase reduce the overall process yield.   

 The importance of separation processes for ASI sugarcane bagasse to ethanol process 

using dilute-ammonium pretreatment is illustrated in Figure 11. 

 Four solid-liquid separations are required in the process.  Efficiency parameters of each 

will influence the yield of ethanol.  In Figure 11, the targeted fraction for downstream processing 

is solids for Separations 1, 2, and 3.  However, the liquid phase is the desired product from 

Separation 4.  Due to differences in separation requirements, it is vital, prior to process scale-up, 

to identify the critical parameters for each step and evaluate their influence on overall process 
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yield.  This will allow for selection of target separation efficiencies to maximize process yield 

and minimize waste stream generation.   

 
Figure 11  Simplified process flow diagram of ASI dilute-ammonia bagasse-to-ethanol process 

including separation steps. 

1.8 Process Stream Characterization 

Characteristics of process streams—such as particle size, solids concentrations, and 

viscosities—have an effect on separation efficiencies.  To illustrate this point, the general 

equations governing common separations are presented in Table 2.  Filtration, sedimentation, 

and centrifugation are affected by the size of the particles.  For sedimentation, particle settling 
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velocity is proportional to the diameter.  During centrifugation, the velocity at which the liquid 

phase is spun off through the packed solids is proportional to the square of the particle size.  For 

filtration, particle size affects the cake resistance term (Rc).  In general, for a particular filter 

media at a given differential pressure and fluid viscosity, a decrease in particle size will reduce 

flow through the filter due to a higher cake resistance. 

Table 2  Design equations for common separation techniques. 

Separation Method General Equation 

Sedimentation 
18

)( plp

s

dg
V  

Filtration 
)(

1

cm RR

p

dt

dV

A
 

Centrifugation  

Reduction of biomass size provides more surface area to facilitate chemical reactions.  

Some alkaline pretreatment processes operate more efficiently with smaller particle sizes.  For 

instance,  the ammonia based AFEX process was found to be more effective when treating finely 

ground particles (<80 μm) than coarser particles (500-800 μm) (Chundawat, Venkatesh and 

Dale, 2007).   

To select suitable separation techniques, it is important to determine the particle sizes in 

the process streams.  An accurate characterization is obtained by measuring the particle size 

distribution (PSD).   

Suspended solids concentration and range of particle sizes in the feed material are known 

to influence settling processes.  Particles larger than 200-300 μm with specific gravities higher 

than water (1.0) can efficiently settle out of the slurry, while smaller, low-density particles are 

typically lost with the supernatant.  Filtration media selection is governed chiefly by the particle 

size; the separation efficiency attained is affected by the distribution of particle sizes.  The 
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particle retention rate—and the separation efficiency—are negatively influenced by a broad 

distribution of particle sizes (Kaminski, Vescan and Adin, 1997; Chang, Vigneswaran, 

Kandasamy and Tsai, 2008).   

The physical characteristics of sugarcane bagasse make separations in the ASI processes 

difficult.  The broad particle size distribution and low density (~120-180 kg/m
3
) render common 

separation techniques, such as settling and filtration, inefficient.  More efficient centrifugal 

separations  require significantly higher capital and operating investments (Møller, Lund and 

Sommer, 2000; Gertenbach and Cooper, 2009).  Thus, centrifugation should be avoided where 

possible, and other methods should be investigated. 

1.9 Objectives  

 It is known that process yield loss can occur due to solid-liquid separations.  However, 

there was no available data on the quantity of these losses for the ASI bagasse-to-ethanol 

processes.  Realistic separation efficiency targets must be established which minimize yield loss 

and waste generation.  Additionally, solid-liquid separation of slurries containing biomass-

derived solids can be difficult, requiring multiple steps to reach the target efficiencies.  Thus, 

three goals were identified for this project: 

 Identify process stream characteristics in the ASI sugarcane bagasse-to-ethanol processes 

which allow for development of full material balances.    

 Develop material balances, based on experimentally-determined input parameters and 

analyze the models to set realistic solid-liquid separation targets for the process.   

o Evaluate the sensitivities of the material balances to quantify the effects of solid-

liquid separation parameters on the overall process yields and waste generation.   

 Develop and test a dissolved air flotation (DAF) process for recovery of suspended 

solids in a dilute-ammonia pretreated bagasse process stream. 
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Chapter 2 Materials and Methods 

2.1 Preparation of Pretreated Biomass 

 The following procedures specify the conditions at which biomass is treated at ASI using 

each of the alkaline-based pretreatments.  Specific procedures for each are found in the 

Appendices. 

2.1.1 Dilute-Ammonia Pretreated Bagasse 

Ammonia pretreatment is carried out in a steam-jacketed reactor fitted to a chain-driven 

tumbling mechanism.  Prior to pretreatment, moisture content of the bagasse is measured.  In the 

ASI dilute-ammonia pretreatment process, dry bagasse, ammonium hydroxide, and water are 

required in the ratio of 1.0:0.5:8.0.  Bagasse and water are initially loaded into the reactor and the 

reactor is sealed.  One liter of water is excluded from the reactor at this point, and is loaded into a 

pressure vessel with the required amount of ammonium hydroxide.  The pressure vessel is 

pressurized to 30-40 psi, then connected and discharged into to the reactor.   

 The biomass is then treated at 140-160 psi at approximately 320
o
F for one hour.  After 

the reactor has cooled, and pressure is approximately 80 psi, pretreated biomass from the 

tumbling reactor is discharged into a stainless steel cylindrical screen with opening size of 0.5 

mm.  The screen retains the pretreated bagasse while the liquid fraction drains by gravity for 10 

minutes.  This allows for reduction of moisture content to approximately 80%.  The liquid and 

solid fractions are collected.  A set of detailed procedures for operating the dilute-ammonia 

pretreatment reactor is presented in Appendix A.  

2.1.2 Calcium Hydroxide Pretreated Bagasse 

Calcium hydroxide pretreatment is carried out in 500 ml Erlenmeyer flasks.  Calcium-

hydroxide pretreatment requires dry bagasse, calcium hydroxide, and water in the ratio of 

1.0:0.2:8.0.  Moisture content of the bagasse is measured prior to pretreatment.  Calcium 
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hydroxide is mixed in the water, and the suspension is then mixed with the bagasse.  The flask is 

then placed in an autoclave at 121
o
C for one hour.   

After one hour, the bagasse is separated from liquid under vacuum through a commercial 

screen with 0.44 mm x 5 mm slots.  Filtrate from this separation was collected for further 

analysis.  Specific procedures for calcium hydroxide pretreatment are found in Appendix B. 

2.2 Experimental Procedures 

 Samples of process streams were taken from various stages of conversion of sugarcane 

bagasse into ethanol.  Performance of various separation techniques were evaluated to provide 

information for generating a complete process material balance. 

2.2.1 Settling 

Settling tests were performed in a 100-ml clear graduated cylinder.  Samples were heated 

to a temperature of 95°C, stirred well, poured into the cylinder, and allowed to settle for 10 

minutes.  Settling time was selected based on empirical scale-up factors for commercial clarifiers 

used in the sugar industry.  Formation of a solid-liquid interface was observed, and the interface 

level was recorded every 30 seconds.  The process temperature was monitored.  After 10 minutes 

of settling, the supernatant was carefully decanted and analyzed for suspended and dissolved 

solids.  Solids concentration and moisture content of the settled mud (underflow) were also 

measured. 

2.2.2 Centrifugation 

A Hermle Z320 centrifuge fitted with a swinging bucket rotor was used for centrifugation 

experiments.  Samples were preheated to 95°C, placed into 50-ml Corning centrifuge tubes, and 

spun at 3200 rpm for four minutes.  The overflow was then carefully decanted.  Solid phase 

moisture content was measured.  Concentrations of dissolved and suspended solids in the liquid 

phase were analyzed.  The centrifugal force was selected at about 1000 G which is typical of 
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commercially available decanter centrifuges.  It is understood that the laboratory results would 

not directly match the separation efficiencies of commercial centrifuges, mainly due to the 

difference in residence time.  Scale-up of centrifugation was not possible with the available 

quantities of feed material. 

2.3 Analytical Procedures 

 Presented in the following sections are the procedures utilized for process stream 

characterization.  The characteristics were selected to develop material balances for ASI dilute-

ammonia and calcium hydroxide processes. 

2.3.1 Suspended Solids 

 Suspended solids concentration was measured using a Sartorius Mark 3 moisture 

analyzer.  A Whatman No. 4 filter paper (with a nominal particle retention size of 20-25μm) was 

dried and weighed on the analyzer‟s scale.  Five milliliter samples of slurries were carefully 

measured then filtered.  The filters were placed in the moisture analyzer for drying at 110°C until 

constant weight was reached (see procedure in the following chapter).  The total weight of the 

filter, suspended solids, and water are thus calculated.  The moisture analyzer is programmed to 

report the concentration of the total solids in mg/l.  Dissolved solids concentration must be 

determined and subtracted from total solids to obtain the suspended solids concentration as 

shown in Equation 3.   

 
Equation 3 

 It is understood that a certain amount of fine particles may be carried through the filter 

paper during the initial phase of filtration.  However, the volume of “breakthrough” particles is 

negligible compared to the total volume retained on the filter paper.  Using paper with smaller 
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pore size is possible but the total volume of filtered sample is reduced due to fouling.  This in 

turn reduces the accuracy of measurement.   

2.3.2 Moisture Content 

 Moisture contents of solid phases were determined using a Sartorius Mark 3 moisture 

analyzer.  Samples weighing approximately 2 grams were homogenized and placed on the 

moisture analyzer‟s balance and dried at 100°C until a constant weight was obtained.  The 

analyzer was programmed to report the moisture content as a percent dry basis.   

2.3.3 Dissolved Solids Retained in Solid Phase 

 Refractometric dry solids were measured using a Reichert AR200 digital refractometer 

for streams with relatively low concentrations of suspended solids.  The instrument reports the 

dry substance as a percentage and the concentration of dissolved solids is then calculated using  

Equation 4 

 

Equation 4 

where WH2O is the mass of evaporated water from the filter in grams, RDS is the refractometric 

dry solids (in percent) measured by the instrument, and V is the sample volume in ml.  The factor 

of 1000 converts the concentration into mg/l.  by measuring moisture content of solid phase and 

dissolved solids content in the liquor, it is possible to estimate the amount of dissolved solids 

retained by the solid phase.  

 The refractometer wave length is 589 nm and it was calibrated for sugar solutions.  The 

instrument reading may not be exact due to the presence of soluble lignins that have refractive 

indices different than that of solubilized sugars.  The effect of lignin measurement error on 

overall concentration was estimated by adding lignin solution to the prepared sugar solution.  

Because of poor lignin solubility, at 3-4% DS, the effect of lignin was negligible (within 5%).  
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Solubility of 20,000MW lignin at room temperature was measured at 1.4 g/l.  When suspended 

solids concentrations exceed 2-5 % (depending on the type of suspensions) the accuracy of 

dissolved solids measurements tends to decrease.  For thicker suspensions, the samples should be 

filtered.  Corrections should be made for the weight of removed suspended solids.  If this is 

neglected, analytical errors can lead to significant discrepancies in material balance calculations 

(Kochergin, Olmstead and Jacob, 2001). 

2.3.4 Particle Size Analysis 

 Particle size distribution of the streams was characterized using CILAS 1180L laser 

diffraction analyzer.  The samples were initially prescreened through an 18 mesh (1 mm) sieve to 

avoid plugging of the analyzer cell.  The analyzer reports the median particle size, the mean 

particle size, and the coefficient of variation.  Three diameters were recorded—d10, d50 and 

d90—where 10%, 50%, and 90%, respectively, of the volume distribution falls below the 

measured value.  A graphical distribution of the particle sizes in the slurries was also obtained.   

2.3.5 pH Measurement 

 The pH of samples was measured using a Thermo Scientific Orion 2 Star bench-top pH 

meter with refillable Ag/AgCl electrodes.  Because pH is temperature dependent, measurements 

were taken at operating conditions.  A temperature increase can lead to a dissociation of 

molecules, especially in weak bases, such as ammonium hydroxide (Barron, Ashton and Geary, 

2005).  Thus, an increase in temperature may result in a decrease in pH by as much as one pH 

unit. 
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Chapter 3 Evaluation of Target Efficiencies for Solid-Liquid Separation Steps in 

Biofuels Production 

3.1 Methodology for Selecting Target Separation Efficiency for Process Design 

Material balances were developed for dilute-ammonium and calcium hydroxide 

pretreatment processes.  Process yields were then calculated with various separation efficiencies.  

Reliable process scale-up requires that efficiency targets be defined for each solid-liquid 

separation.  For example, the goal of pretreatment in the ASI processes is to partially solubilize 

lignin and facilitate enzymatic hydrolysis and saccharification of the cellulose fraction at high 

solids loading.  Therefore, removal of inhibitors and subsequent cake moisture reduction must be 

achieved through solid-liquid separations.  By utilizing the developed material balance, it was 

possible to evaluate the sensitivity of the process yields to separation efficiencies for each step in 

both processes.  This allowed for the selection of realistic separation efficiencies to optimize 

process yields. 

3.2 Material Balance Constraints and Development 

 The methodology applied in the present work required input parameters to be measured 

directly from process streams derived from pilot installations.  Table 3 contains input data 

needed to calculate solid and liquid balances in each step of the ASI dilute-ammonia process.   

 Separation efficiency was defined as the fraction of suspended solids recovered from the 

liquid phase.  Washing efficiency was calculated as the percentage of dissolved solids removed 

from the solid phase.   

3.2.1 Effect of Separation Efficiencies on Process Yield 

 Results of mass balance calculations were used to model the influence of separation 

parameters throughout the process on ethanol yield and the volume of effluent streams.  The 
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results from these calculations for each separation are presented individually in the following 

sections. 

Table 3  Input parameters for material balance. 

Unit 

Operation 

Measured Parameters 

Dissolved 

Solids, % 

Moisture 

Content, 

% 

Suspended 

Solids, % 

Separation 

Efficiency, 

% 

Pretreatment 

Solid Biomass  x   

Pretreated 

Slurry 

x  x  

                           Separation 1-Screening X 

Liquid Phase x  x  

Solid Phase  x   

Separation 2-Washing 

Liquid Phase x    

Solid Phase  x   

Separation 3-Milling 

Liquid Phase x    

Solid Phase  x   

Enzymatic Hydrolysis and Fermentation 

Fermentation 

Slurry 

x  x  

                                Separation 4-Centrifugation X 

Liquid Phase x  x  

Solid Phase  x   

3.2.1.1 Separation 1—Screening 

Pretreated biomass from the pretreatment reactor was discharged into a stainless steel 

cylindrical screen with opening size about 0.5 mm.  The screen surface area was oversized to 

avoid pressure buildup during reactor discharge.  The 80 psi discharge pressure was released 

instantaneously.  The screen held the pretreated bagasse while the liquid fraction drained by 

gravity for 10 minutes.  This allowed for reduction of moisture content to approximately 80%.  A 

portion of fine suspended solids was lost in the liquid phase flowing through the screen during 

pressure release.   
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A portion of fine solid particles was carried with the liquid stream during pressure 

release.  Measurements of volume and suspended solids concentration of collected liquid fraction 

showed that the loss of biomass at this step may reach as high as 3-4% of the total feed load.  

The screening process step described above is designated as Separation 1 in Figure 6. 

A variety of separation methods may be considered for suspended solids recovery from 

the liquid fraction from Separation 1 and reduction of BOD and COD of the waste stream.  

Results of settling and centrifugal separation tests are discussed below. 

Based on particle size analysis data, settling without the addition of flocculants was not 

expected to perform at high efficiency due to the presence of very fine particles (about 35% of 

particles were smaller than 100 microns).  Settling tests were carried out according to the 

description in the Experimental Procedures section above.  Due to the high turbidity of the 

solution, no noticeable interface was detected for the first few minutes of settling.  Temperature 

drop was observed during the settling period, which would not be typical for operation of 

commercial clarifiers.  Maintaining constant temperature is expected to improve settling 

characteristics.  The average separation efficiency of the settling process was calculated at 43%.  

The overflow was not clear and contained a significant amount of suspended solids 

(concentration of 22,600 mg/l).  Despite the low separation efficiency, a settling process may 

still be applied in combination with another more efficient method to recover suspended solids 

lost during Separation 1. 

The experimental results of settling and centrifugation are presented in Table 4.  Values 

of ethanol yield were calculated using the developed material balance program.  Maximum 

theoretical yield was calculated based on the measured value of 37% glucans in raw bagasse 

prior to pretreatment.  These data were corroborated by various researchers (Saska and Gray, 

2006; Prior and Day, 2008). 
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Under the assumptions that 5% solids are carried with the liquid phase after Separation 1 

and solids in the liquid phase are of similar composition to pretreated biomass, recovery at 

43.4% efficiency could increase the ethanol recovery from 94.6% to 96.7% of theoretical yield. 

At 72.6% recovery measured in centrifugation tests, the yield increases from 94.6% to 98.2%.  

Table 4  Effect of separation efficiencies on ethanol yield loss. 

 Feed 

suspended 

solids, 

 (mg/l) 

Overflow 

suspended 

solids, 

 (mg/l) 

Underflow 

suspended 

solids, 

(mg/l) 

Separation 

Efficiency, 

% 

Increase in 

ethanol yield, 

points 

Settling 35,826 22,643 57,081 43.4% 2.1 

Centrifugation 25,397 8,105 97,075 72.6% 3.6 

Recovery of suspended solids from the liquid fraction of Separation 1, even at relatively 

low efficiencies, results in a reduction of overall ethanol loss.  Thus it is critical to maximize the 

recovery of solids entrained with the liquid phase after Separation 1 to increase overall process 

yield.   

3.2.1.2 Separation 2—Washing 

Pilot experiments at ASI showed that fermentation of pretreated bagasse in the presence 

of inhibiting components, such as lignin, furfurals and organic acids, without washing, can 

reduce the ethanol yield to 0.36 g ethanol/g glucose (De Queiroz and Stradi, 2007).  As wash 

water usage increased, ethanol yield improved in a linear fashion.  Calculated ethanol yield as a 

function of inhibitor removal is presented in Figure 12.  Theoretical yields were calculated 

assuming 5.0, 7.5, and 10.0% solids loss to the liquid streams (separation efficiencies of 90, 92.5 

and 95%, respectively). 

Significant ethanol losses can be incurred if washing stage is not efficient.  Decrease of 

both cake moisture content and dissolved solids content should lead to improved yields.  

Consequently, a combination of washing and milling may be required to achieve removal of 

inhibitors as well as reduce moisture contents of cakes to acceptable levels for an SSF step.   
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Figure 12  Effect of inhibitors on ethanol yield. 

The volume of wash water is an important parameter that affects process economics.  

High wash water use can improve process yield by reducing concentration of inhibitors, but this 

will increase the volume of effluent with its concomitant cost of disposal.  Single stage washing 

experiments were performed to obtain additional information on dissolved solids concentration 

of wash effluent and determine the relationship between wash water use and inhibitor removal.  

A 200 g sample of ammonia pretreated bagasse was collected and filtered under vacuum using a 

commercial screen with 0.44 mm x 5 mm slots.  Cake moisture content and the concentration of 

dissolved solids in the filtrate were analyzed before washing.  Wash water was then added within 

the range of 0.5-6.0 g water per g of pretreated bagasse in 0.5 g increments.  Effluent from each 

incremental washing step was analyzed for dissolved solids.  Composite effluent samples were 

also collected and analyzed.  Washing efficiencies were calculated for each washing ratio, and 

results from these experiments are presented in Figure 13. 

Results illustrate that complete washing in a single stage required a large volume of water 

(6.2:1 ratio).  A multistage washing procedure will be required in a commercial process to 

minimize effluent volume and cost of waste handling.  
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Figure 13  Evaluation of efficiency of a single stage washing step. 

The ratio of wash water required to remove inhibitors is a function of both moisture 

content of solids from Separation 1 and washing efficiency.  Cake properties also affect the 

washing efficiency.  For illustration purposes, cake characteristics were considered to be 

constant.  Data obtained in single stage washing experiments were used to calculate water 

requirements as a function of cake moisture content.  Results plotted in Figure 14 are calculated 

values of wash water requirements at various degrees of inhibitor removal (washing 

efficiencies).  

As a general trend, wash water volumes are reduced at lower moisture content of solid 

phase.  For example, at 100% washing efficiency, reduction of cake moisture content from 80 to 

50% results in about 65% water savings.  This is especially important considering that the wash 

water stream must be treated as an effluent.  The cost of an additional milling stage to reduce the 

solid phase moisture content before washing should be considered. 
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Figure 14  Effect of moisture content of Separation 1 solid phase on wash water requirements. 

3.2.1.3 Separation 3—Milling 

A milling stage (Separation 3) was introduced to increase solids loading for 

saccharification and fermentation experiments.  A three-roll sample mill was used to reduce 

moisture content of pretreated bagasse.  The major goal of milling equipment, e.g., in sugar 

production, is to remove liquid from the solid phase in a multistage process.  It is usually 

accompanied by washing.  Milling results in certain particle size reduction when fibers go 

through the mill rollers.  

Because the mill does not have a means to capture fine particles and prevent them from 

being lost with the liquid stream, a portion of solids is always entrained in the liquid phase.  Our 

earlier studies indicate that this loss can be as high as 3-4% of feed solids, which results in a 

corresponding reduction in ethanol yield.  Results from the model material balance are presented 

in Figure 15 showing the effect of moisture content of milled cake on calculated yield.  The 

washing efficiency at the preceding stage (Separation 2) varied in the calculations between 50 

and 100%.  
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Results demonstrate that reduction of cake moisture is beneficial for waste reduction and 

improved solids content for the saccharification step.  Monavari et al. came to similar 

conclusions while investigating the effects of washing, pressing, and filtering on the inhibitor 

content of pretreated biomass (2009).  They found unwashed biomass produced higher sugar 

yields if pressing was incorporated before enzymatic hydrolysis rather than filtration.  This is due 

pressing effectively lowering the solid phase moisture content.  Thus, the amount of inhibiting 

components in the filtered solids was found to be higher than in pressed biomass (Monavari et 

al., 2009). 

 
Figure 15  Effect of moisture content of milled solids on ethanol yield at various washing 

efficiencies at the preceding stage. 

3.2.1.4 Separation 4—Centrifugation 

Fermentation broth was found to contain suspended solids at a level unacceptable to 

directly feed a distillation column.  Additionally, solid phase containing xylans can be recovered 

for further processing.  A slurry sample after fermentation was subjected to settling and 

centrifugation using methods described in the Experimental Procedures section.  

Virtually no separation of suspended solids was observed during settling of the fermented 

slurry.  An interface was formed within two minutes, but the overflow level was measured at 



30 

only 9% of the total cylinder height.  The suspended solids concentration of the underflow was 

35,200 mg/l, which was only slightly higher than the initial concentration of 32,800 mg/l.  

Centrifugation tests demonstrated relatively high separation efficiency (95.6%).  Results 

representing mean values of four parallel tests are shown in Table 5.  The underflow was well 

packed and represented 27.5% of the total original volume at moisture content of 80%.  

Table 5  Separation of suspended solids from fermentation slurry. 

 Feed Overflow Underflow Separation 4 

Efficiency, % 

Volume, ml 40 29 11  

SS Concentration, mg/l 32,854 1,995 139,146  

Mass of Solids, mg 1,314 58 1,256 95.6 

The final concentration of ethanol in the solution and the moisture content of the cake 

define ethanol loss with the solids fraction.  Yield was calculated assuming 2.75% ethanol 

concentration in the liquid phase.  The graph in Figure 16 illustrates that ethanol yield is more 

sensitive to changes in cake moisture than to separation efficiency (within the separation range 

expected of centrifugal operation). 

The separation targets for step 4 will depend on the limitations of suspended solids 

content in the feed to distillation columns.  An additional washing step may be considered to 

recover ethanol from solid precipitate.   

To illustrate the sensitivity of overall process efficiencies on the parameters of solid-

liquid separations, two processing scenarios were compared (Table 6). 

Process parameters used in Scenario 2 are more typical for larger scale biomass 

separations (Glasser and Wright, 1998).   A 9.7% increase in ethanol yield can be achieved by 

utilizing more efficient separation techniques leading to lower moisture reduction of solid cake.  

An additional 40% reduction in wash water requirements is expected. 
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Figure 16  Effect of moisture content of Separation 4 solid phase on yield. 

Table 6  Comparison of two separation scenarios. 

 Scenario 1 Scenario 2 

Separation 1 

Separation Efficiency (%) 90 95 

Moisture Content (%) 80 65 

Separation 2 (Washing) 

Washing Efficiency (%) 75 75 

Separation 3 (Milling) 

Moisture Content (%) 70 50 

Separation 4 (Centrifugation) 

Separation Efficiency (%) 90 95 

Moisture Content (%) 80 65 

Yield (% Theoretical) 83.7 92.7 

Wash water use (kg water/kg dry 

bagasse) 

13.15 7.89 

3.3 Calcium Hydroxide Pretreatment Process 

The methodology developed and applied to the dilute-ammonia pretreatment process has 

been applied to the calcium hydroxide pretreatment process to identify target separation 

efficiencies.  As in the case presented previously with dilute-ammonia pretreatment, the goal of 

the study was to evaluate the influence of solid-liquid separations on overall process yield.  A 

simplified block diagram outlining the major unit operations of the process is presented in Figure 
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17.  To develop the material balance, process stream characteristics were identified and 

measured which allowed for full convergence of relevant constituents in the process.  Using the 

results from these measurements, it was possible to analyze the separation performances and to 

quantify losses associated with separation processes.   

Ten grams of dry bagasse were weighed.  Moisture content was measured at 57.4% (total 

mass of 23.5 g).  Bagasse was mixed with 80 g additional water and 2 g calcium hydroxide.  

These were then treated according to the methods in the Experimental Procedures.   

Compositional analysis of samples was performed using standard procedures 

recommended by NREL (Sluiter, Hames, Ruiz, Scarlata, Sluiter and Templeton, 2006).  Based 

on material balance calculations (before and after pretreatment), 3.14 g of dry bagasse is 

solubilized.  Analysis of the solubilized fraction indicated that 1.2 g were glucans, 0.6 g xylans, 

and 1.3 g were non-fermentable solids.  The pretreated bagasse is thus composed of the 

following:  3.4 g glucans, 1.7 g xylans, and 1.7 g non-fermentable material.  Bagasse 

composition is summarized in Table 7. 

 

 

Table 7  Mass balance of bagasse components during calcium hydroxide pretreatment. 

 Bagasse 

Component Raw (g) Pretreated (g) Solubilized (g) 

Glucans 4.59 3.41 1.18 

Xylans 2.39 1.75 0.64 

Non-Fermentable 3.02 1.71 1.31 

 



33 

 
Figure 17  Simplified flow diagram of ASI calcium hydroxide bagasse-to-ethanol process. 

3.3.1 Separation 1—Filtration 

The effects of separation efficiency and the presence of hydrolysis-inhibiting components 

were evaluated using complete process material balance.  Results are presented in Figure 18.  In 

the model, it was assumed that hydrolysis of all available glucans required complete removal of 

inhibiting components.  Theoretical yield was defined as the maximum amount of ethanol 

potentially produced from the glucans present in the raw biomass based on stoichiometric ratios.  

Actual yield will be reduced due to the portion of cellulose which is solubilized during 

pretreatment.  This fraction is lost to the liquid stream after filtration.   

Presence of hydrolysis and fermentation inhibiting components can lead to a 6% 

reduction in process yield.  To evaluate the effect of hydrolysis and fermentation-inhibiting 

components at various washing efficiencies, a washing stage was investigated. 
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Figure 18  Effect of inhibitor removal on yield. 

3.3.2 Separation 2—Washing 

To complete the material balance for the calcium hydroxide pretreatment process, data 

was required for the washing step and its effect on downstream processing.  Washing efficiency 

is defined as the percentage of dissolved solids which are removed from the solid phase after 

filtration.   

To quantify the effects of washing, glucose yields from hydrolysis were evaluated after 

washing pretreated bagasse with increasing volumes of water.  The washed solids were then 

hydrolyzed and glucose yields were measured.  It was found that unwashed, pretreated bagasse 

yielded lower glucose concentrations, as expected.  As wash volume increased to thirteen times 

the dry mass of pretreated bagasse, glucose concentration approached theoretical yields.   

Reducing the moisture content of the solid phase from filtration can lower wash water 

requirements.  Dissolved solids are carried in the filtrate, thus if more liquid is removed from the 

solid phase during filtration, fewer dissolved solids are present for washing operation to remove.  

To illustrate this, Figure 19 is a graph of the wash water requirements for washing efficiencies 

from 25-100% at various moisture contents.   
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At 75% washing efficiency, producing a solid phase from separation 1 which has 

moisture content of 55% rather than 80% wash water requirements can be reduced by 45%.   

3.3.3 Separation 3—Filtration 

The final filtration step is required to remove residual solids which were not hydrolyzed.  

Separation 3 occurs after fermentation, thus any liquids retained in the cake will negatively affect 

the overall process yield.  Due to this, process yield is especially sensitive to moisture content in 

the solid phase, more so than to separation efficiency, as illustrated in Figure 20. 

Reducing cake moisture from 80% to 50% can improve process yield by 2.5% in the 

range of separation efficiencies modeled.  Thus, requirements of the distillation equipment with 

respect to solids content will be a major factor in selection of target separation efficiency for 

Separation 3. 

 
Figure 19  Wash water requirements at various washing efficiencies as a function of moisture 

content of solid phase from filtration. 
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Figure 20  Effect of moisture content of solid phase from Separation 3 on overall yield. 

3.4 Summary 

Mass balance for a dilute-ammonia pretreatment process for bagasse was established.  

Input parameters were measured at both bench and pilot scale.  The sensitivity of process 

parameters to reduction of moisture content of solid phase was determined.  Separation targets 

were established to maximize overall process efficiency.  

Reduction of both water and dissolved solids content in the solid phase affects the level 

of inhibitor removal and liquid effluent volume.  Up to 30% yield reduction may be expected if 

inhibitors are not removed completely.  Wash water requirements based on a single stage 

washing are quite high.  More efficient countercurrent washing procedures must be considered 

for process scale-up.  

 Results from material balance calculations for the calcium hydroxide process suggest 

inhibiting components from pretreatment had a less significant effect on process yields than 

those in the dilute-ammonia process.  A large volume of water (5-13 kg/kg dry bagasse) is 

required to completely remove inhibitors.  Hydrolysis yields were reduced by only 6% without 

the use of a washing stage.  Incorporating a separation after pretreatment which produces a drier 
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solid phase could reduce the inhibitor content.  The necessity of the washing stage could be 

reevaluated if this is accomplished. 

Based on our experimental data and calculations it was concluded that the losses due to 

solid-liquid separations can reach up to 10% of the total solid biomass, with equivalent ethanol 

yield reduction.  Additional separation steps may be required to recover the lost solids.  Though 

centrifugation can provide high-efficiency separation, the associated capital and operating costs 

are significantly higher than other technologies.  Thus, other methods of recovering biomass lost 

to the liquid phase during the initial screening process in the dilute-ammonia pretreatment 

process should be investigated.   
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Chapter 4 Dissolved Air Flotation (DAF) for Recovery of Suspended Solids from 

Pretreated Bagasse Streams 

4.1 Recovery of Solids by Flotation 

Results from previous studies demonstrate that efficient separation methods are critical 

for maximizing process yields.  The broad distribution of particle sizes in pretreated bagasse 

streams causes settling clarification and filtration to be inefficient methods for recovery of 

suspended solids.  Due to high capital and operational costs of processes like centrifugation, less 

expensive technologies to improve recoveries are required for economic feasibility of the 

process.  Bagasse particles in the slurry after screening ammonia pretreated bagasse have a 

propensity to float due to low density of the fibers, the relatively low concentration of suspended 

solids, and the small particle sizes.  Because of these characteristics, a flotation separation may 

be effective for recovery of suspended solids.  Dissolved air flotation (DAF) is a relatively 

simple process employed in various industries as a means of separating particles with sizes in the 

range of 10-200 μm.   

4.2 Flotation Separation 

Flotation has been employed successfully in the mineral industry since the early 1900‟s 

as a means of separating ores.  Since then, it has been introduced to industries such as 

wastewater treatment, dairy processing, raw sugar production, and sugar refining (Chuang, 

Huang and Liu, 2002; Couto, Melo and Massarani, 2004; Bento and Cuddihy, 2006; Briones, 

2007).  Depending on the influent characteristics and flotation process parameters, separation 

efficiencies range from 50-95% with floated solids concentrations reported from 0.5% up to 

4.5% (de Rijk, Vandergraaf and Denblanken, 1994; Viitasaari, Jokela and Heinanen, 1995).   

Flotation is categorized by the method which air is introduced to the slurry.  Three main 

types exist—dispersed air flotation, DAF, and electroflotation (Svarovsky, 1977).  In dispersed 
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air flotation systems, bubbles are introduced by mechanical means, typically by forcing air 

through a porous media.  DAF involves saturating liquid with air by initially subjecting the liquid 

to high pressure, typically in the range of 40-80 psi.  Saturated liquid is then released to 

atmospheric pressure in a flotation cell where micro-bubbles form.  Electroflotation consists of 

supplying current to liquid using electrodes.  Anodes provide oxygen while the cathode provides 

hydrogen to the slurry.   

Selection of a flotation method is guided in part by bubble size requirements.  Dispersed 

air flotation generates the largest bubbles of the three methods, depending on the characteristics 

of the porous media utilized.  Bubbles from DAF systems are typically in the range of 10-100 

μm, with a mean of 40 μm being common (Edzwald, 1995).  The bubbles generated in the 

electroflotation process are small in comparison to DAF and dispersed air systems, with 

researchers reporting ranges of 15-45 μm, with average bubble sizes of 30-40 μm (Burns, 

Yiacoumi and Tsouris, 1997; Chen, Chen and Yue, 2002).   

Smaller bubbles have more total surface area for attachment to particles, thus in flotation 

processes, the bubble size is a critical factor for design.  To properly select a flotation method 

bubble size and the size of the particles to be floated should be known.  Recovery by flotation is 

most efficient for particles in the range of 10-200 μm.  Low flotation efficiencies for particles 

outside of this range is mainly attributed to low probability of bubble-particle collision for small 

particles, and the high probability of detachment of particles from the bubble surface for larger 

particles (Tao, 2004).   

4.3 Saturation Schemes in DAF 

Three forms of DAF are employed industrially, based on the steam which is saturated—

full-stream pressurization, split stream pressurization, and recycle-stream pressurization.  Figure 

21 diagrams the three modes of DAF.   
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Figure 21  Pressurization schemes utilized for DAF processes.  A-Full-stream pressurization.  B-

Partial-stream pressurization.  C-Recycle-stream pressurization. 

The first method is full-stream pressurization (Figure 21A), where the entire feed 

material is pressurized in a tank.  The flow is then passed through a pressure reduction valve 

before entering the flotation cell.  One advantage of full-stream pressurization is that the size of 

the flotation cell is minimized, thus reducing the capital cost for installation.  However, it 

requires a higher head feed pump, larger pressure vessel, and results in more expensive operation 

compared to split-stream or recycle-stream pressurization (Wang, Shammas, Selke and 

Aulenbach, 2007).  Other disadvantages of full-stream pressurization are the possibility of floc 

breakage and clogging of the inlet when sludge is passed through the pressure reducing valve. 
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With partial-stream pressurization (Figure 21B), a part of the fed material is pumped 

through the pressure vessel while the rest bypasses directly to the flotation cell.  The two streams 

are combined before entering the flotation chamber.  Advantages of this system are reductions in 

size of the pressurizing pump and pressure vessel.  The flotation tank size would be the same as 

in the full-stream pressurization scheme. 

For recycle-pressurization (Figure 21C), a portion of the clarified underflow (subnatant) 

is returned to the pressurization tank.  Once saturated with air, it is introduced into the flotation 

chamber, where it mixes with the influent slurry.  Recycle-pressurization minimizes the shear 

which flocs are subjected to, thus resulting in less breakage.  Clogging problems, which can 

occur in pressurization pumps, pressure retention tanks, and pressure release valves, are also 

eliminated. 

4.4 Design Parameters for DAF Process 

Key design parameters for the DAF process include:  air-to-solids ratio, recycle ratio, and 

hydraulic loading.  These are described individually below.  

4.4.1 Air-to-Solids Ratio 

In DAF, the theoretical mass of air available for flotation at atmospheric pressure is 

dictated by Henry‟s Law, presented as Equation 5.   

 

 
Equation 5 

where Csat is the mass concentration of air in the pressurized recycle, P* is the saturator pressure, 

and KH is Henry‟s Law constant for air (24.3 mg l
-1

 atm
-1

).   

Typical range of air-to-solids ratio, abbreviated as, in DAF treatment processes is from 

0.007 to 0.7 mg/mg (Metcalf and Eddy 1991).  The broad range of air-to-solids ratios is due to: 
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 Saturator inefficiencies, where less air is dissolved than predicted by Henry‟s Law. 

 Broad distribution of bubble sizes where few large bubbles make up a significant fraction 

of mass of released air.  

 Bubble-particle collision probability is not 100%; therefore excess air will be required. 

 The characteristics of feed material as well as configuration of the DAF unit determine 

the air-to-solids ratio.  Thus, the most effective air-to-solids ratio for a particular feed stream 

must be determined experimentally.  Equation 6 is used to calculate air-to-solids ratio (as) where  

 

Equation 6 

R is the recycle flow rate (ml/min), P* is the saturator pressure (atm), KH is Henry‟s Law constant 

(24.3 mg l
-1

 atm
-1

), f is the fraction of air dissolved at pressure P*, ci is solids concentration of 

influent (mg/l), and Q is the influent flow rate (ml/min).  In industrial applications, f is generally 

in the range of 60-70% (Edzwald, 1995).  For this study, a conservative f value of 0.6 was 

selected. 

To maximize separation efficiency in a DAF process, uniformly sized bubbles must 

generated by raising saturator pressure and recycle ratio to increase the probability of bubble-

particle attachment.  However, a further increase in air-to-solids ratio will provide no 

improvement in separation and will be detrimental to process economics. 

4.4.2 Recycle Ratio 

 In batch testing, the recycle ratio is defined as the percentage of pressurized liquid within 

the total influent to the flotation cell.  For continuous flotation, the recycle ratio is defined as the 

percentage of effluent flow which is returned to the pressurization vessel to be saturated.  

Pressurization of the recycled liquid is the most common form of DAF, with recycle ratios 

ranging from 30-150% (Arora, Dewolfe, Lee and Grubb, 1995; Wang et al., 2007).   
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4.4.3 Hydraulic Loading Rate 

 Hydraulic loading is a measure of the flow rate through the flotation tank and, therefore, 

influences the liquid residence time.  It is calculated using Equation 7 where Q is the total 

influent flow rate (recycle and feed material) and A is the surface area of the flotation tank. 

 

Equation 7 

Hydraulic loading rate is measured in terms of m
3 

m
-2

 day
-1

.  Typical values found in 

industry range from 10-400 m
3 

m
-2 

day
-1

 corresponding to retention times from 15-30 minutes.  

Variation is due to differences in feed stream characteristics.  Dilute streams can be treated at 

higher hydraulic loading rates, where concentrated streams are limited by the solids loading 

rates.  

4.5 Experimental Procedures 

Biomass liquor from the screening separation of the dilute-ammonia pretreatment process 

was collected (Separation 1 in Figure 11).  The suspended solids concentration, dissolved solids 

concentration, particle size distribution, and pH of slurries were measured using the methods set 

forth in the Analytical Methods section.  The specific procedures required for the development of 

the DAF unit are presented below.   

4.5.1 Coagulation and Flocculation 

To improve flotation processes in sugar refineries, a coagulation and flocculation process 

is employed.  Calcium phosphate is precipitated by the addition of phosphoric acid(H3P04) then 

calcium hydroxide (Ca(OH)2) following the reaction in Equation 8. 

 
Equation 8 
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 In the sugar refining process, this procedure is termed phosphatation (Chen and Chou, 

1993; Briones, 2007).  When combined with flocculant addition and flotation, it is referred to as 

phosphoflotation (Briones, 2007).   

In the current study, a similar approach was utilized to treat the samples before flotation.  

The pH was adjusted from about 10 down to 6.5 using 85% phosphoric acid (H3PO4).  

Coagulation was initiated by the addition of calcium hydroxide (Ca(OH)2) and subsequent 

precipitation of calcium phosphate (Ca3(PO4)2).  Anionic polyacrylamide polymers, provided by 

Garratt-Callahan (Burlingame, CA, USA), were then added to agglomerate the slurry.  At the pH 

(6.5) resulting in efficient coagulation, anionic polymers were found to be most effective. 

Floc formation was evaluated using a jar testing procedure recommended by Garratt-

Callahan (2003).  After flocculation, the solids were re-suspended in the sample and then floated 

with a batch dispersed air apparatus to assess the flotation characteristics.  It was understood that 

a dispersed air process would have lower bubble-particle adhesion efficiency than a DAF, and 

thus lower separation efficiency, due to bubble size and turbulence created by the introduction of 

the air.  However, it allowed for a quick method of comparison of the floatability of the 

agglomerates.   

High shear forces due to recirculation pumping during particle size analysis reduce the 

accuracy of the measurement by breaking the floccules.  Thus, a qualitative approach was taken 

to evaluate the characteristics of the agglomerates.  After visual inspection, each polymer was 

assigned a rating based on two parameters:  size and shape of the formed floccules and their 

floatability.  These qualities were rated on a scale of 1-10.  Each polymer was evaluated against a 

standard sample.  The standard sample was treated with only phosphoric acid and lime and given 

the value 5 for each characteristic.  Values ranging from 6-10 indicated an improvement in the 
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observed characteristic.  If no change was observed, a value 5 was assigned.  If the desired 

characteristic was inferior to the standard, a value in the range of 1-5 was given.   

4.5.2 Bubble Size Analysis 

Bubble sizes were quantified using a CILAS 1180L laser diffraction analyzer following a 

procedure similar to Cuoto et al. (2009).  To measure bubble sizes produced by the dispersed air 

apparatus utilized in batch testing of polymers, the air stone was placed into sample cell of the 

analyzer and air was pumped through, generating bubbles continuously during measurement.   

Based on data available on the relationship between bubble size and saturation pressure 

in DAF applications, 60 psi was selected as the operating pressure for this study (Edzwald, 1995; 

Couto et al., 2009).  For analysis of bubbles generated by the DAF saturator, clear water was 

saturated under pressure, and released into the sample cell of the analyzer at atmospheric 

pressure, where bubble formation occurred.  Water was drawn from the analyzer‟s cell at the 

same rate, to avoid over-filling.  

During measurement of bubble sizes, some coalescence is likely.  Due to this, the 

distribution is skewed towards the large bubbles to an extent.  Therefore, an overestimation of 

the bubble sizes is possible. 

4.5.3 Selection of Recycle Ratio 

Recycle ratio was tested first using a batch DAF process.  Samples of 400 ml were 

coagulated and flocculated then poured into a 1000-ml graduated cylinder.  Clear water was 

saturated under 60 psi pressure for fifteen minutes.  Increasing volumes of saturated water were 

then released into the cylinder to test recycle ratios.  Solids were allowed to float for five minutes 

after saturated liquid was introduced.  Floated solids were then skimmed, weighed and analyzed 

for moisture content.  A range of recycle ratios were evaluated from 100-150%.  Each recycle 
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ratio was evaluated in duplicate with various polymers.  Based on these results, a recycle ratio 

(and thus air-to-solids ratio) was selected for continuous operation. 

4.6 Continuous Flotation Unit 

Based on parameters obtained from batch testing, a continuous bench-scale recycle-

pressurization DAF system was constructed and tested.  A picture of the continuous flotation unit 

is shown in Figure 22.  The main components of the system are labeled: 

A. 9-liter saturation pressure vessel 

B. 2.8 liter flotation tank (20 cm height, 140 cm
2
 surface area) 

C. Seepex
®
 Model MD 012-12 progressive cavity pump for recycle stream return to 

pressure vessel 

D. Air pressure regulator 

E. Cole-Parmer® Model 7520-30 peristaltic pump to recover underflow 

 
Figure 22  Continuous DAF unit. 
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This unit was tested for separation efficiency with various polymers which performed 

well in batch dispersed air flotation.  The effect of hydraulic loading rates was also evaluated.  

Four liter samples were used for continuous testing.  Each test was performed in duplicate to 

validate the results.   

4.7 Initial Flotation Testing 

A bench-top batch dispersed air flotation unit (Figure 23) was used to test floatability of 

the solids.  It was understood that dispersed air flotation would not achieve the level of 

separation of DAF due to differences in bubble sizes and turbulence.  However, the unit allowed 

for observation of bubble-particle interaction at various air-to-solids ratios.   

 
Figure 23  Batch dispersed air flotation.  A-Rotameter, B-Needle Valve, C-Air Pump. 
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4.7.1 Flotation without Chemical Addition 

Flotation experiments were first performed without addition of chemicals.  Two-hundred 

milliliter samples of biomass liquor (liquid phase from Separation 1 in dilute-ammonia 

pretreatment process) were used for testing.  Original solids concentration was measured at 10.13 

g/l.  Particle size analysis was performed prior to flotation.  Tests were performed at air flow 

rates of 220, 280 and 320 mg/min.  Air flow was converted to mass flow rates with air density of 

1.2 mg/ml to calculate of air-to-solids ratios.  Air was distributed through the air stone shown in 

Figure 24. 

 
Figure 24  A-Porous air stone used for dispersed air flotation B-microphotograph of air stone 

with pore measurements. 

Batch samples were subjected to the air flow for 2 minutes.  Flotation time was selected 

such that air-to-solids ratios were in the range utilized industrially—0.043, 0.055, and 0.063.  

The total floated „scum‟ was collected (scooped off manually), weighed, and analyzed for solids 

concentration.  The separation efficiency was calculated based on total solids removal.  Flotation 

tests were performed in duplicates for each air flow.  Mean values are reported in Table 8. 

Table 8  Separation efficiencies at various dispersed air flow rates. 

Air Flow (mg/min) Volume of Floated 

Scum (ml) 

Floated Solids 

Concentration (g/l) 

Separation 

Efficiency (%) 

220 4.1 2.17 4.4 

280 20.4 1.27 12.9 

320 30.2 1.25 18.7 

Little separation occurred with air flow of 220 mg/min.  Solids removal did occur, 

however, these were very fine particles which did not significantly affect the total mass of solids.  
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With low air flow, flotation did not continually remove solids as with the higher flow rates.  

Flotation ceased to remove solids after 1 minute during these tests.  With the 280 and 320 

mg/min air flow, flotation continued to recover solids until the end of 2 minutes.   

Low air flow did not provide enough small air bubbles (<200 μm) for efficient bubble-

particle adhesion.  The air stone which dispersed air into the sample provided non-uniformly 

sized bubbles.  Measurements of the pores in the air stone revealed a range of sizes from 150-600 

μm.  Bubble size distribution was measured according to the procedure described in the 

Experimental Procedures section, and is presented in Figure 25. 

 
Figure 25  Size distribution of bubbles produced by porous air stone. 

Based on the microphotograph of the air stone in Figure 24, it was expected that the 

bubbles would be non-uniform in size due to the varying pore sizes.  Analysis of bubble sizes 

produced by the air stone revealed a multi-modal distribution.  A significant fraction of bubbles 

were measured above 200 μm.  These bubbles do not contribute to efficient flotation, as they are 

too large for bubble-particle adhesion.  Furthermore, the rise velocity of the larger bubbles 
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causes turbulence in the collision zone, which is detrimental to the adhesion of other bubbles to 

particles.  For efficient flotation of slurries with 10-200 μm particle size range it is recommended 

to use bubbles from 10-200 μm.  Particle size distribution of the feed solids in the slurry was 

measured and is shown in Figure 26. 

 
Figure 26  Particle size distribution of biomass liquor. 

Results from particle size analysis of the slurry showed a median particle size of 87.0 μm, 

with a distribution of particles from sub-micron to approximately 650 μm.  It was anticipated that 

the fraction of particles which are smaller than 200 μm could be effectively separated by DAF if 

bubble-particle attachment is efficient.  Thus, a separation efficiency of over 50% should be 

attainable using a properly designed DAF process.  Larger particles may be removed by 

implementing a settling step before DAF. 

The fraction (approximately 12% of the volume) of solids which are smaller than 10 μm 

will negatively affect the efficiency of the DAF process.  Flotation is an ineffective method of 

separating particles less than 10 μm (Lee and Lee, 2002).  Smaller particles decrease the 

probability of bubble-particle collision and attachment.  Therefore it is important to reduce the 
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fraction of particles under 10 μm by agglomeration.  This should result in more efficient 

flotation.  Such agglomeration can be accomplished by addition of chemicals as described 

previously. 

4.7.2 Flotation with Coagulation and Flocculation 

 Coagulation and flocculation were used to adjust the distribution of particle sizes and 

reduce the portion of fine particles (< 10μm).  The pH of samples was adjusted from 10 to 

approximately 6.5 with phosphoric acid (H3PO4).  The addition of calcium hydroxide (Ca(OH)2) 

subsequently precipitated calcium phosphate (Ca3(PO4)2), initiating coagulation of the slurry.  

Calcium hydroxide was weighed and added to the slurry to a concentration of 0.1%.   

 To encourage flocculation of the particles into larger agglomerates, anionic 

polyacrylamide flocculants were added to the slurry.  Ten anionic polymers were evaluated for 

flocculation and floatability.  Results from the qualitative analysis of the polymers using the 

procedure described in the Experimental Procedures section are presented in Table 9.   

 Polyacrylamide flocculants generally perform well in a narrow range of dosing, with 

flocculation performance dramatically decreasing outside this range.  A parabolic relationship 

exists with flocculant dosing and effectiveness (Wong, Teng, Ahmad, Zuhairi and Najafpour, 

2006).  Based on recommendations from Garratt-Callahan personnel, polymer addition rates 

varied from 3 ppm to 10 ppm.  It was found that flocculation improved with increasing 

molecular weight ranges of the polymer.   

 Flotation performance was enhanced by more strongly charged polymers.  The goal was 

to achieve flocculation and improved flotation at low dosages.  Polymers are an additional 

expense for the process, thus low dosages help the financial viability.  Furthermore, 

polyacrylamide polymers in high concentrations have been shown to inhibit fermentation 
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downstream.  However, in the range of dosages applied in this study, fermentation inhibition has 

not been found (Burke et al., 2009).   

Table 9  Results of flocculation testing at various dosages. 

  Dosing (ppm) 

Polymer Molecular Weight 

Range  

(10
6
 Daltons) 

3 5 7 10 

7253 16-27 5,6 6,5 7,7 5,6 

7254 18-31 6,5 6,6 6,5 5,5 

7274 8-13 5,4 6,5 6,5 5,5 

7275 9-16 5,4 5,5 6,5 5,4 

7277 12-18 5,3 5,4 6,5 5,5 

7282 18-30 7,8 10,10 8,7 6,6 

7301 20-35 6,6 8,7 7,8 6,6 

7302 20-35 8,8 9,8 8,8 7,6 

7303 20-35 7,8 8,9 7,8 6,5 

7304 20-35 5,3 7,5 7,6 5,4 

 Flotation performance was evaluated on the basis of separation efficiency.  An increase in 

separation performance was found for five of the ten polymers at a dosing rate of 3, 5, and 7 

ppm.  Mean results from duplicate flotation analyses are presented in Table 10.  An optimal dose 

of 5 ppm was determined for five polymers (7282, 7301, 7302, 7303, and 7304).  With this 

dosage, the small, fibrous particles of bagasse readily attached to the phosphates, increasing the 

size of the agglomerate.  This application rate is reasonable compared to the usage of 

flocculating agents, e.g. in the sugar industry. 

 Dispersed air flotation of the flocculated samples resulted in separation efficiencies 

ranging from 11% to 44%.  The effect of polymer addition on separation efficiency is presented 

graphically in Figure 27.  For the five polymers presented in Table 10, separation efficiency 

increased for polymer dosing up to 5 ppm.  For 7282 and 7302, increasing polymer dose to 7 

ppm did not result in improved flotation.  The dispersed air flotation did not result in substantial 

volume reduction; floated solids concentrations were below 1%.  However, results indicated that 

flotation was a viable option for solids recovery.  It was expected that a DAF process would 
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result in higher float solids concentrations and separation efficiencies due to optimized bubble 

sizes, air-to-solids ratio, and retention time to allow for thickening to occur. 

Table 10  Results from flotation with polymer addition. 

Polymer 
Dosage 

(ppm) 

Volume of 

Floated Scum 

(ml) 

Floated Solids 

Concentration 

(g/l) 

Separation 

Efficiency 

(%) 

7282 

3 

25 25.9 43.6 

7303 26 21.6 33.8 

7302 18 21.1 22.8 

7301 19 17.8 20.3 

7304 17 19.2 19.6 

7282 

5 

14 52.8 44.4 

7303 18 35.8 38.7 

7302 19 19.7 22.4 

7301 20 17.9 21.3 

7304 16 21.8 20.9 

7282 

7 

19 36.9 42.1 

7303 22 24.0 31.7 

7302 24 15.7 22.6 

7301 16 22.4 21.5 

7304 20 18.7 22.4 

  

 
Figure 27  Effect of polymers at various doses on separation efficiency. 
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 Particle size analysis was performed to evaluate the influence of the polymers on the size 

distribution of particles in the slurry.  Three samples were analyzed, pretreatment slurry, a 

standard coagulated sample treated with phosphoric acid and calcium hydroxide only, and a 

coagulated flocculated sample dosed with 5ppm of polymer 7282.  Results from evaluation of 

particle size distribution of these samples are presented in Table 11.   

Table 11  Comparison of particle size characteristics of biomass liquor, standard sample, and 

slurry flocculated with polymer. 

Sample d10% d50% d90% 

Biomass Liquor 9.7 78.3 279.0 

Standard 12.1 81.5 300.8 

7282, 5ppm 12.7 86.6 294.9 

 It was understood that the results for flocculated slurry would be distorted to some extent 

by floc breakage during analysis due to circulation by the peristaltic pump.  However, an 

increase in particle size was measured from the original slurry, indicating flocculation was 

effective.  The d10 measure (particle size at which 10% of the particles are smaller) increased by 

31% from the pretreatment slurry to the flocculated sample.  Furthermore, a 30% reduction in the 

fraction of particles under 10 μm was observed.  This agglomeration of the biomass particles 

should lead to an increase in separation efficiency by DAF. 

4.8 DAF Testing 

 Scale-up to continuous DAF required verification that the saturator produced suitable 

bubble size distribution for DAF.  Batch DAF testing allowed for selection of process parameters 

relevant to scale up to continuous DAF (air-to-solids and recycle ratios). 

4.8.1 Bubble Size Distribution from DAF Saturator 

 In order to facilitate the removal of flocculated particles using DAF process optimal 

bubble sizes are in the range of 10-200 μm.  Bubbles larger than 200 μm rise too quickly for 

efficient flotation and cause turbulence detrimental to bubble-particle adhesion. 
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 Bubble sizes were characterized following the method set forth in the Experimental 

Procedures.  Clear water was saturated in the pressure vessel at 60 psi.  The saturated liquid was 

transferred into the particle size analyzer‟s sample cell to evaluate if bubble sizes corresponded 

to the values recommended for DAF.   

 
Figure 28  Bubble size distribution from DAF saturator at 60 psi. 

Median bubble size was 107 μm, substantially larger than the 40 μm value reported by 

Edzwald (1995).  The distribution of bubble sizes was also broader than the range of 10-100 μm 

commonly reported.  However, 75% of bubbles were in the range of 10-200 μm, which is a 

suitable size for flotation processes.  Due to the nature of analysis and mixing provided by the 

circulation pump of the analyzer, the bubble sizes would be overestimated due to bubble 

coalescence during the measurement.  The generation of these larger bubbles likely led to the 

double peak in the distribution in Figure 28. 
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4.8.2 Effect of Air-to-Solids and Recycle Ratios 

Batch DAF experiments were performed to select parameters (air-to-solids and recycle 

ratios) for scale-up to continuous flotation.  The recycle ratios and corresponding air-to-solids 

ratios tested are presented in Table 12. 

Table 12  Recycle ratios and corresponding air-to-solids ratios. 

Recycle Ratio (%) Air-to-Solids Ratio 

100.0 0.0090 

112.5 0.0100 

125.0 0.0110 

137.5 0.0125 

150.0 0.0140 

Typically DAF is applied for feed streams with solids concentrations up to 5,000 mg/l.  

Due to higher solids concentration in the feed material in this study (10,000-12,000 mg/l), 

recycle ratios were in the upper range and the air-to-solids ratios were on the lower side of values 

found in industrial applications.  The separation efficiencies (defined as percentage of solids 

recovered) of the batch flotation process at increasing recycle ratios are presented in Figure 29.  

Three polymers (7282, 7302, and 7303) at 5ppm were evaluated.  

Separation efficiencies improved as the recycle ratio was increased, due to more available 

air for flotation.  A sharp increase was measured for recycle ratios from 100-125% for each 

polymer.  From this point, additional air did not result in marked increase in flotation 

performance for polymer 7303.  A recycle ratio of 150% resulted in a separation efficiency of 

48% and 46% for polymers 7282 and 7303 respectively.   

DAF is most efficient for separating particles from 10-200 μm.  Particle size 

measurements of the flocculated slurry showed between 50% and 60% of solids were in this 

range.  With an efficient DAF process, separation efficiencies in the range of 50-60% could 

reasonably be expected.   



57 

 
Figure 29  Effect of recycle ratio and polymer addition on separation efficiency of batch DAF. 

4.9 Continuous Flotation 

 Experiments on continuous DAF were considered an important step in generating data for 

future scale-up.  The DAF process was evaluated for solids recovery and concentration of floated 

solids fraction.  Two polymers were selected from batch testing for comparison in the continuous 

unit.  The DAF process was evaluated at various hydraulic loadings. 

4.9.1 Polymer Evaluation with DAF 

Based on results from polymer screening in the preliminary batch tests, two flocculants 

were selected for use in continuous flotation process (7282 and 7302).  Recycle ratio of 150% 

was applied based on the previous tests.  With a conservative retention time of 30 minutes it was 

expected that flotation in the continuous DAF unit would result in higher separation efficiencies 

and float solids concentrations than batch testing.  Mean results from duplicate continuous 

flotation tests with polymers 7282 and 7303 are presented in Table 13. 
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Table 13  Separation efficiency of continuous DAF process. 

Polymer Influent SS (g/l) 
Floated Solids 

(g) 

Moisture 

Content of 

Floated Solids 

(%) 

Separation 

Efficiency (%) 

7282 10.6 260.2 91.02 55.6 

7303 10.6 275.5 92.13 51.2 

 Float solids concentrations were substantially higher in continuous flotation, ranging 

from 8-9% compared to less than 1% in the batch testing.  A photograph of the flotation tank 

showing the solid-liquid interface formed during continuous flotation is presented in Figure 30. 

 
Figure 30  Solid-liquid interface formed in flotation tank during continuous operation. 

 Continuous flotation with 150% recycle ratio resulted in improved separation efficiency 

for both polymers tested (15.8% and 10.8% increases for polymers 7282 and 7302 respectively).  

Flotation with both polymers successfully thickened solids from approximately 0.1% to 8-9% 

solids.  Float solids concentrations were equivalent to those found in efficient industrial 

thickening applications.  Figure 31 is a picture of the floated solids in the tank (A) and after 

being scooped off (B). 
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Figure 31  A-floated solids in flotation tank  B-Portion of skimmed solids. 

4.9.2 Hydraulic Loading 

 Hydraulic loading rates which correspond to retention times representative of full-scale 

flotation processes were tested (Table 14).  The following hydraulic loading rates were 

evaluated—10, 11.5, 14.5, and 19.3 m
3 

m
-2 

day
-1

.  All tests were performed at 150% recycle ratio.  

The flow rates of influent and recycle are presented in Table 14.   

Table 14  Flow rates for hydraulic loading rates tested in continuous flotation 

Hydraulic 

Loading Rate 

(m
3 

m
-2 

day
-1

) 

Influent Flow 

Rate (ml/min) 

Recycle Flow 

Rate 

(ml/min) 

Retention 

Time 

(minutes) 

10 38 57 30 

11.5 45 67 25 

14.5 56 84 20 

19.3 75 112 15 

 Continuous flotation tests were performed in duplicate at each hydraulic loading.  The 

results in Figure 32 represent averages of the duplicates.  Polymer 7282 was used for testing, as 

it was found to produce substantially higher separation efficiencies in the continuous flotation 

unit.   

 Separation efficiencies were negatively affected by higher hydraulic loading rates.  With 

shorter retention times in the flotation tank, more dense solids, which have a slower rise rate, 

may not have adequate time to reach the solid-liquid interface above the subnatant draw-off 
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point.  These solids are thereby entrained in the subnatant and not recovered with the floated 

fraction.   

 
Figure 32  Separation efficiencies of continuous flotation at various hydraulic loading rates.  

 The concentrations of floated solids were measured for each test.  Solids concentration in 

the floated fraction was not found to be affected by the hydraulic loading rates.  The values are 

reported in Table 15.  

 Hydraulic loading is a measure of the flow rate per unit surface area of the flotation tank.  

Retention time, however, is a relation between the volume of the flotation tank and the flow rate.  

If flow rate to the flotation tank is increased, maintaining a constant hydraulic loading rate 

requires larger surface area.  On the other hand to keep retention time unchanged at higher flow 

rates, a larger tank height would be required.   
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Table 15  Solids concentrations in supernatant at various hydraulic loading rates. 

Hydraulic Loading Rate 

(m
3
 m

-2
 day

-1
) 

Float Solids Concentration 

(%) 

10 
8.98 

9.14 

11.5 
8.73 

9.21 

14.5 
9.31 

8.68 

19.3 
8.85 

9.01 

 Increasing height may not be beneficial for flotation tanks.  The tank should be of 

sufficient depth to allow bubble-particle complex to rise to the solid-liquid interface before 

traversing the length of the unit.  Beyond this point, a deeper tank increases the likelihood that 

solids will be entrained with the underflow.  Large tank height could also be detrimental to the 

efficiency of the process by creating potential areas for turbulence, leading to detachment of 

bubbles from particles.  As flow rate through the flotation tank increases, employing a tank with 

a higher length-to-height ratio, improves solids recovery in DAF processes (Ta, Beckley and 

Eades, 2001).   

4.10 Summary 

 Fine particles, smaller than 10μm, cannot be effectively separated using a flotation 

process.  Because of this, a treatment was established, following a method similar to 

phosphatation procedure common in sugar refining processes, to agglomerate the solids in a 

dilute-ammonia pretreated bagasse stream and reduce the fraction of particles smaller than 10μm.  

Addition of phosphoric acid and calcium hydroxide, followed by a small dose (5ppm) of anionic 

polyacrylamide flocculant were found to effectively agglomerate suspended solids.  To select the 

best performing polymers for use in DAF, floatability of flocculated solids in the feed material 

was initially evaluated using a batch dispersed air flotation process.   
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 Batch DAF tests were carried out to select air-to-solid and recycle ratios for scale-up to 

continuous operation.  Testing was limited to a range typically employed in industrial DAF 

applications.  In this range, air-to-solids and recycle ratios of 0.014 and 150% respectively were 

found to be most efficient.  These parameters were used in all continuous DAF tests. 

 Initial continuous DAF experiments were performed to compare two different polymers 

which performed well in batch testing.  Results indicated a dose of 5 ppm of polymer 7282 was 

the most effective.  The effect of hydraulic loading rates on the efficiency of the DAF was 

investigated.  Increasing hydraulic loading rates was found to be detrimental to separation 

efficiency of the DAF.  Of the hydraulic loading rates tested flotation at 10 m
3
 m

-2
 day

-1
resulted 

in the highest separation efficiency (55.6%).  Floated solids concentration was consistently 

measured at 8-9% for each hydraulic loading rate evaluated.  It was concluded that the geometry 

of the tank should be reevaluated if increased hydraulic loading rates are applied upon scale-up.  

Surface area of the flotation cell should be increased by lengthening the sides. 
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Chapter 5 Conclusions 

5.1 Project Summary 

 A methodology for material balance calculations specific to solid-liquid separation 

technologies was established and applied to two cellulosic ethanol processes which utilize 

alkaline-based pretreatments.  The input parameters were determined experimentally by 

analyzing process solutions obtained from pilot installations.  Analytical procedures and 

experimental techniques, which allowed for quick application in alternative process 

configurations, were evaluated and summarized.   

 Efficiency parameters of each separation were varied to evaluate the sensitivity of the 

overall process yields to solid-liquid separations.  This allowed for quantification of critical 

efficiency targets for solid-liquid separations and assisted in selection of suitable technologies to 

maximize ethanol yield in conversion of sugar cane bagasse.  Various solid-liquid separation 

methods were evaluated on the bench and pilot scales to meet the identified target efficiencies.  

Scale-up constraints of these technologies were identified.  It was found that losses of biomass 

due to inefficient separations can reduce ethanol yields by as much as 10%.  Traditional methods 

of separation, e.g. filtration and sedimentation, were found to be inefficient for recovering 

suspended solids from liquid streams.  Though centrifugation provided high-efficiency solid-

liquid separation in the bench tests, it is economically advantageous to avoid this technology 

where possible due to high capital and operating costs.  Thus, a new approach has been proposed 

to concentrate suspended solids from pretreated biomass streams.   

 Based on characteristics of the process stream, it was expected that flotation could be 

effective for thickening suspended solids in a dilute-ammonia pretreated bagasse stream.  A 

bench-scale continuous DAF was developed and the effects of process parameters on separation 

efficiency were identified experimentally.   
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. The DAF process improved recovery of suspended solids 27% over sedimentation.  This 

enhanced separation efficiency was also coupled with a substantial improvement in 

concentration of the solid phase.  With a retention time in the flotation tank of 30 minutes, the 

DAF process separated 57% of the solids and concentrated solids from 0.1% in the feed material 

to 8-9% in the floated fraction.   

5.2 Future Considerations 

 Several possibilities exist for future research to continue progress in development of the 

ASI cellulosic ethanol processes.  The present research identified target solid-liquid separation 

efficiencies and can aid in selection of appropriate techniques which can provide the efficiencies 

required.  Future studies could build on this information by developing economic models for the 

processes and comparing process configurations.  This would be beneficial for selection of the 

most appropriate solid-liquid separation technologies for economic feasibility. 

 Further research to refine the DAF process could also be explored.  It was understood that 

using DAF exclusively for separating solids and liquids in the feed material in this study would 

not be highly efficient (>90% separation) due to presence of particles larger than 200μm.  These 

solids will not be easily floated in a DAF process.  Most commercial DAF units employ a 

bottoms scraper which removes those particles which settle.  In the current study, only solids 

recovered in the floated fraction were included in the separation efficiency calculations.  

Therefore, improved efficiencies would be expected if a means of capturing the settled solids 

was devised.  A beneficial future study could investigate the efficiency of a process combining 

settling and DAF processes.  One alternative configuration could involve a DAF and with a 

sedimentation clarifier in series.  Recycle-stream pressurization effectively dilutes the subnatant 

from DAF; therefore a larger settling basin may be required.  However, it has been shown that 

settling of the feed material prior to DAF is inefficient due to the large fraction of small particles 
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(<100 μm).  It is recommended that the configuration be such that the smaller particles are 

removed using DAF first. 
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Appendix A:  Dilute-Ammonia Pretreatment Procedures 

General Information: 

 To operate reactor discharge valve using the provided fob, the air supply hose must be 

connected, air valve open, power cord connected, and power switch to the reactor must 

be in ON position.  If these conditions are met, pressing red button on fob will open/close 

the valve. 

 Power switch must be in ON position when steam supply hoses are connected to the 

reactor.  Toggle switches behind the reactor operate pneumatic control valves for the 

steam supply. 

Procedures: 

1. Sample bagasse for moisture content. 

2. Weight supplies listed below: 

a. Bagasse before pretreatment 

b. Buckets 

c. Screen (including retaining ring and connection for reactor) 

d. Rubber bin 

e. Pressure vessel 

3. Calculate the amount of dry bagasse. 

a. Based on moisture analysis, calculate the amount of water contained in the raw 

bagasse. 

4. Calculated amount of water to be added to reactor 

a. Subtract water contained in the bagasse from moisture. 

5. Calculate amount of ammonium hydroxide and water to be added. 
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a. Ratio (Dry Bagasse : Ammonia : Water)  

i. 1 : 0.5 : 8 

6. Add 1 kg water to pressure vessel 

7. Add remainder of water to bagasse in bucket. 

8. Ensure the valves on the reactor are all in the closed position. 

9. Place bagasse/water into the reactor. 

a. Close top of reactor and tighten all bolts. 

b. Rotate reactor to ensure there are no leaks. 

10. Add required mass of ammonium hydroxide into pressure vessel. 

a. Close top of pressure vessel securely. 

b. Ensure all valves on pressure vessel are closed. 

c. Connect air line. 

d. Supply air until pressure is approximately 30 psi. 

11. Connect line from pressure vessel to reactor. 

a. Slowly open valves to allow ammonia to enter the reactor. 

b. After pressure equalizes, shake to ensure all contents of pressure vessel have been 

transferred into reactor. 

i. If there are still contents in the pressure vessel, add more pressure, repeat 

steps 10b-11a. 

12. Close all valves and disconnect pressure vessel from reactor. 

13. Ensure steam valves on reactor are closed and attach steam lines (high and low pressure) 

to the reactor. 

14. Open steam supply valves. 

15. Connect air supply line to control panel on reactor frame. 
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a. Ensure both toggle switches (for pneumatic control valve) are in the ON position. 

16. Open steam valves on reactor. 

a. Place the back condensate hose in drain.  Be sure that the hose is anchored 

securely. 

17. Start rotating the reactor. 

18. Wait until Pressure reaches 160psi (temperature approximately 320
o
F) 

a. Start timer for 1 hour. 

19. After 1 hour, close steam supply valves, close steam valves on reactor, turn control valve 

switches off, and disconnect air hose. 

20. Once the reactor cools, stop reactor in upright position and connect screen (placed in 

rubber bin) to bottom of reactor. 

21. Reconnect air hoses to reactor and valve. 

22. Stand a distance from the reactor and with fob, open valve to discharge contents of 

reactor into the basket. 

After pressure is released from pretreatment reactor, the solids are retained in the basket and the 

liquid is collected in the rubber bin.  The weights of each fraction can then be determined, 

knowing the weights of the containers.   
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Appendix B:  Calcium Hydroxide Pretreatment Procedures 

General Information: 

 Equipment required:  500-ml Erlenmeyer flask, vacuum funnel apparatus, filter screen, 

aluminum foil, 250-ml vacuum flask.   

Procedures: 

1. Sample bagasse for moisture content. 

2. Weigh the following supplies: 

a. 500-ml Erlenmeyer flask 

b. Bagasse before pretreatment 

c. Filter screen 

3. Calculate the dry mass of bagasse. 

4. Weigh and place bagasse to be pretreated into 500-ml flask. 

5. Weigh the required amount of calcium hydroxide (Ca(OH)2).  (Ratio required is 0.2 g 

Ca(OH)2 per dry gram of bagasse.) 

6. Measure 8g distilled water per gram of dry bagasse. 

7. Mix the Ca(OH)2 with water. 

8. Pour lime and water mixture into flask with bagasse 

9. Stir to saturate the bagasse 

10. Cover flask tightly with aluminum foil. 

11. Place into autoclave at 121
o
C for 1 hour. 

12. Assemble vacuum filtration apparatus. 

13. After autoclave is complete, pour contents of Erlenmeyer flask onto the filter screen.   

a. Connect vacuum line and filter for 5 minutes. 

b. Collect filtrate for further analysis. 
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c. Collect sample of pretreated bagasse for moisture analysis. 
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