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ABSTRACT 

       

         Chronic inflammation is involved in the adipose tissue dysfunction through regulation of 

endocrine and storage function of adipocytes. As a representative proinflammatory cytokine, 

TNF-α was reported to inhibit expression of adiponectin. However, the mechanism of inhibition 

remains to be identified. Here, we provide experimental evidence that TNF-α inhibits 

adiponectin at both transcriptional and posttranscriptional levels. In three animal models (aP2-

P65, ob/ob and high fat diets-fed mice), an increase in TNF-α expression was associated with a 

decrease in adiponectin expression. In 3T3-L1 adipocytes, TNF-α inhibition of adiponectin was 

observed at mRNA and protein levels. Luciferase reporter assay and mRNA stability tests 

suggest that the mRNA reduction is a consequence of inhibition of gene transcription and mRNA 

stability. TNF-α inhibited expression and function of PPAR-γ, an activator of adiponectin gene 

promoter. The inhibitory activity of TNF-α was blocked by chemical inhibitors of NF-κB or 

recombinant IκBα (ssIκBα), suggesting that the IκBα/NF-κB pathway mediates the TNF-α signal. 

The inhibition was attenuated by troglitazone, C/EBPs were required for PPAR-γ expression and 

their activities were reduced by HDAC3, a nuclear receptor corepressor. The study suggests a 

signaling pathway of TNF/NF-κB/HDAC3/CEBPs/PPAR-γ/-Adiponectin for inhibition of 

adiponectin transcription by TNF-α.
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CHAPTER 1 

INTRODUCTION 

        In the last decade, adipose tissue has been identified as an important endocrine organ for its 

production of multiple adipokines, such as adiponectin, leptin, interleukin-6 (IL-6), and tumor 

necrosis factor-α (TNF-α) (Costa et al., 2006). Adipocytes control metabolism in the whole body 

through endocrine function (Kershaw et al.,2004). Adipokines play a vital role in maintaining 

homeostasis of glucose and lipid metabolism (Iwaki et al., 2003).  

      Adiponectin, a 30-kDa adipokine that is exclusively produced by adipocytes,  presents in the 

circulation of healthy humans and mice at high concentrations (Whitehead et al., 2006). 

Adiponectin has been recognized as a key regulator of insulin sensitivity and energy homeostasis. 

It promotes glucose uptake and fuel oxidation in skeletal muscle, enhances hepatic insulin action 

and decreases vascular inflammation (Berg et al., 2001; Hu et al., 1996).  In  human and animals, 

adiponectin is shown to increase insulin sensitivity (Nawrocki et al., 2006) and protect against 

cardiovascular diseases (CVD) (Ouchi et al., 2006; Yamauchi et al., 2001);. 

Hypoadiponectinemia is observed in obese individuals with insulin resistance, type 2 diabetes 

(Hotta et al., 2000), and CVD (Ouchi et al., 1999). The mechanism for hypoadiponectinemia 

remains to be investigated.  

TNF-α is one of the candidate molecules for the pathogenesis of insulin resistance and 

type 2 diabetes. TNF-α was initially discovered as an antitumor factor, however it is now known 

as a proinflammatory cytokine involved in pathogenesis of a wide variety of metabolic diseases 

such as insulin resistance, diabetes and atherosclerosis (Aggarwal et al., 2006; Saghizadeh et al., 

1996; Uysal et al., 1997). In animal models of type 2 diabetes and humans with type 2 diabetes, 

TNF-α mRNA and protein levels are elevated in the adipose tissue (Mishima et al., 2001; 
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Saghizadeh et al., 1996; Uysal et al., 1997). In vitro, TNF-α treatment reduced the expression 

and secretion of adiponectin in 3T3-L1 adipocytes (Fasshauer et al., 2002; Maeda et al., 2001). 

There is a significant inverse relationship between adiponectin and TNF-α expression in human 

adipose tissue (Aggarwal et al., 2006; Uysal et al., 1997), indicating that TNF-α may contribute 

to the decreased adiponectin in obesity (Fasshauer et al., 2002). However, the mechanisms by 

which TNF-α inhibits adiponectin expression are poorly understood. Our data suggest that TNF-

a may inhibit adiponectin expression at two levels: transcription and posttranscription.  
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CHAPTER 2 

 

REVIEW OF LITERATURE 

 

Biological and Physiological Effects of Adiponectin 

        Adiponectin, a product of the apM1 gene, is the most abundant adipokine produced by 

adipose cells and serves as a key regulator of insulin sensitivity and tissue inflammation 

(Whitehead et al., 2006). Human adiponectin is a 244 amino acid protein of approximately 30-

kDa, which consists of an N-terminal collagenous domain and a C-terminal globular domain. 

Adiponectin exists in the circulation in multiple oligomeric forms in serum, of which the most 

abundant forms are trimers and hexamers.  The oligomers are generally divided into low-

molecular weight (LMW) oligomers and high-molecular weight (HMW) multimers. The LMW 

form is dominant in circulation, whereas the HMW form is dominant in the cells (Pajvani et al., 

2003). Recent data show that a reduction in circulating HMW, but not other isoforms, correlates 

to the onset and development of insulin resistance and type 2 diabetes, suggesting that the HMW 

isoform is the biologically active one (Pajvani et al., 2004). Adiponectin exists abundantly in 

human plasma at a concentration of 2 to 20 μg/ml. In women, circulating adiponectin is about 

40% higher than that in men (13 vs.7 μg/ml on average) (Arita et al., 1999). In Pima Indians, 

serum adiponectin is lower than that in Caucasians (median 3.3 vs. 4.9 μg/ml) (Valsamakis et al., 

2003). 

      Adiponectin exhibits anti-diabetic properties (Maeda et al., 2002; Yamauchi et al., 2002). 

The direct target tissues of adiponectin include skeletal muscle, liver, adipose tissue and the 

vasculature. In skeletal muscle cells, adiponectin stimulates insulin receptor substrate-1 (IRS-1)-

mediated phosphatidylinositol-3 kinase (PI-3K) function, increases glucose uptake (Maeda et al., 

2002; Yamauchi et al., 2001) and fuel oxidation via up-regulation of adenosine monophosphate-
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activated protein kinase (AMPK) activity (Yamauchi et al., 2002). In the liver, adiponectin 

suppresses hepatic glucose production and improves hepatic insulin sensitivity (Combs et al., 

2002). Adiponectin has anti-atherogenic effects in the vascular system, where it inhibits the 

nuclear factor-κB (NF-κB) signaling pathway and decreases mRNA expression of adhesion 

molecules in endothelial cells (Maeda et al., 2001). In vascular smooth muscle cells, adiponectin 

suppresses the proliferation and migration of smooth muscle cells induced by platelet-derived 

growth factors, including platelet-derived growth factor (PDGF)-AA, PDGF-BB, and heparin-

binding epidermal growth factor (HB-EGF) (Ouchi et al., 2001). Adiponectin suppresses 

macrophage transformation into foam cells by inducing anti-inflammatory mediators IL-10 and 

IL-1 receptor. It also reduces lipid accumulation and the expression of class A macrophage 

scavenger receptor (Wolf et al., 2004).   

        In contrast to other adipokines whose levels increase with fat mass, adiponectin secretion 

and plasma levels are inversely proportional to body fat content (Arita et al., 1999). In both 

animal models and humans, adiponectin levels are reduced in individuals with type 2 diabetes 

and coronary artery disease (Arita et al., 1999; Hotta et al., 2000; Weyer et al., 2001). Its levels 

are up-regulated when body weight is decreased. Studies suggest that adiponectin secretion is 

enhanced by insulin-sensitizing thiazolidinediones (TZDs), which serves as agonists for the 

peroxisome proliferator-activated receptor gamma (PPAR-γ) transcription factor (Maeda et al., 

2001; Yamauchi et al., 2001). Furthermore, adiponectin is able to antagonize many effects of 

TNF-α in 3T3-L1 adipocytes (Maeda et al., 2001). In human adipose tissue, a significant inverse 

relationship between adiponectin and TNF-α has been reported (Kern et al., 2003).  This 

relationship suggests that TNF-α may be responsible for the reduction of adiponectin in obesity.   
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Regulation of Adiponectin Gene Expression 

       Although the biological effects of adiponectin have been investigated intensively, the 

regulatory mechanisms of adiponectin gene expression are poorly understood. Transcriptional 

regulation of the adiponectin gene is controlled by several transcription factors such as PPAR-γ 

(Gustafson et al., 2003; Iwaki et al., 2003; Maeda et al., 2001), sterol regulatory element-binding 

protein-1c (SREBP1c) (Liu et al., 2005), CCAAT/enhancer-binding protein (C/EBP) (Park et al., 

2004; Qiao et al., 2005; Saito et al., 1999), and nuclear factor-kappa B (NF-κB) (Ruan et al., 

2002).  

PPAR-γ  

      PPAR-γ is a member of the peroxisome proliferator-activated receptor (PPAR) family of 

nuclear receptors. Three subtypes of PPARs have been identified: PPAR-α, PPAR-β/δ and 

PPAR-γ. PPAR-α, which regulates uptake and β oxidation of fatty acids, is mainly found in the 

liver, muscle, kidney and heart (Haluzik and Haluzik, 2006; Tsuchida et al., 2005). PPAR-β/δ is 

expressed ubiquitously, with the highest levels found in brain, adipose tissue, skin and skeletal 

muscle. PPAR-β/δ has been reported to be involved in embryo implantation (Xie et al., 2008), 

skin proliferation and differentiation (Schmuth et al., 2004), preadipocyte proliferation, and the 

up-regulation of lipid metabolism in the muscle (Rodriguez-Calvo et al., 2008). PPAR-γ gene 

produces two protein isoforms: PPAR-γ1 and PPAR-γ2. PPAR- γ1 is expressed at low levels in 

many tissues including adipose tissue and muscle, whereas PPAR-γ2 is most abundantly 

expressed in the adipose tissue. As a transcription factor, PPAR-γ binds to specific DNA 

response elements after forming heterodimers with retinoid X receptors (RXRs) to regulate 

transcription of target genes (Savage, 2005). In addition, PPAR-γ may affect gene expression 

through indirect interaction with other transcription factors (Cunard et al., 2004). Growing 
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evidence suggests that PPAR-γ is the master transcriptional regulator involved in adipogenesis, 

energy storage and lipid redistribution (Semple et al., 2006). The natural ligands for PPAR-γ 

include fatty acids and fatty acid derivatives, such as 15-deoxy-delta12, 14-prostaglandin J2, 

eicosapentaenoic acid, 9- and 13-hydroxyoctadecadienoic acids. Meanwhile, several classes of 

synthetic PPAR-γ ligands have been widely used in research and clinical practice. TZDs 

represent the best characterized synthetic PPAR-γ ligands with wide application in the clinical 

management of type 2 diabetes. Activation of PPAR-γ by TZDs improves glycemic control and 

insulin sensitivity. Hyperinsulinemic clamp studies reported that TZDs can improve whole-body 

insulin sensitivity by increasing glucose and lipid uptake, and glucose oxidation in the target 

tissues (Maeda et al., 2001).  

           Adiponectin expression is related to PPAR-γ activity since administration of TZDs 

increases both mRNA and protein expression of adiponectin by adipose tissue (Combs et al., 

2002; Iwaki et al., 2003). Several papers have reported that negative regulation of PPAR-γ 

mRNA contributes to the inhibition of adiponectin expression by TNF-α (Iwaki et al., 2003; 

Maeda et al., 2001; Zhang et al., 1996). Treatment of 3T3-L1 adipocytes with TNF-α resulted in 

a time- and concentration-dependent reduction in adiponectin mRNA and protein (Zhang et al., 

1996). The expression inhibitionn was a consequence of gene promoter suppression (Maeda et 

al., 2001). In vitro, the promoter activity of adiponectin was markedly enhanced by the TZDs, 

suggesting that the adiponectin promoter may have a functional PPAR-γ response element 

(PPRE). TNF-α activity was antagonized by TZDs in the adipose tissue, suggesting involvement 

of PPAR-γ in prevention of TNF-inhibition of adiponectin (Maeda et al., 2001). Two papers 

have reported a functional PPRE (-273/-285) in both human and mouse adiponectin promoter 

(Iwaki et al., 2003; Seo et al., 2004). Their results indicated that a PPAR-γ/retinoid X receptor 
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(RXR) heterodimer was directly bound to PPRE in the adiponectin gene promoter (Iwaki et al., 

2003). However, it remains to be investigated how PPAR-γ is involved in prevention of TNF-α 

inhibition of adiponectin expression.  

ADD1/SREBP1c 

        The sterol regulatory element-binding protein (SREBP) is a transcription factor that 

regulates sterol and lipid metabolism. It plays an important role during adipocyte differentiation 

and insulin-dependent gene expression (Shimano, 2007). The SREBPs, which are inserted into 

the endoplasmic reticulum (ER) membrane, are synthesized as large precursor proteins through 

two membrane-spanning domains. The C terminus of the SREBP interacts with Scap (SREBP-

clevage-activating protein) in the ER, serving as a sterol sensor (Edwards et al., 2000). In sterol-

depleted cells, SREBPs undergo specific proteolytic events and become transcriptionally active 

after translocation into the nucleus, where they bind to the promoter of SREBP target genes 

(Espenshade, 2006). When cholesterol builds up in the ER membrane, the Scap/SREBPs 

complex is retained in the ER membrane and the proteolytic activation of SREBPs stops 

preventing SREBP activation. SREBPs belong to the basic-helix-loop-helix leucine-zipper class 

of transcription factors and their unique DNA binding domains allow them to recognize the 

distinct promoter motifs known as SREs and classic E-boxes (Osborne, 2000; Yokoyama et al., 

1993).  

         The family of SREBPs consists of three different SREBP proteins: SREBP1a, 

ADD1/SREBP1c and SREBP2. SREBP1a and SREBP1c originate from a single gene but have 

different N-terminal transaction domains (Bengoechea-Alonso and Ericsson, 2007). SREBP1a 

has a higher transcriptional potency than that of ADD/SREBP1c, but ADD/SREBP1c is the 

dominant isoform that is involved in insulin signaling and fatty acid and triglyceride metabolism 
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(Horton et al., 2002). ADD/SREBP1c is highly expressed in liver, adipose tissue and other 

tissues. In adipocytes, ADD/SREBP1c expression is activated at an early phase of adipocyte 

differentiation, suggesting a role in the induction of the adipogenic genes (Kim and Spiegelman, 

1996). It up-regulates the expression of many genes involved in lipogenesis and adipogenesis 

including fatty acid synthase (FAS), acetyl CoA carbocylase, PPAR-γ, lipopretein lipase, and 

resistin (Seo et al., 2004; Shimano, 2007).  

         It has been reported that ADD/SREBP1c mRNA expression and protein concentration are 

significantly lower in obese and diabetic animal models (Seo et al., 2004). Also in obese and 

diabetic humans, ADD/SREBP1c expression is correlated to the reduction in adiponectin levels 

in the adipose tissue, suggesting that there may be a common signaling pathway to regulate both 

adiponectin and ADD/SREBP1c gene expression in adipocytes (Kolehmainen et al., 2001; 

Mingrone et al., 2003). A recent clinical trial in a large middle-aged Austrian population 

indicated that the SREBP1c locus is associated with type 2 diabetes and plasma adiponectin 

levels. Sequence variations at the SREBP-1 gene locus might contribute to altered plamsa 

adiponectin levels and thus increase type 2 diabetes risk (Felder et al., 2007). Seo et al. have 

reported there were two putative SREs in the adiponectin gene promoters in both human and 

mouse. Their location is bp -398 to -389 (SRE1) and bp -343 to -334 (SRE2) (Seo et al., 2004). 

DNase I footprinting and chromatin immunoprecipitation (ChIP) analysis with recombinant 

ADD/SREBP1c indicated that ADD/SREBP1c binds to these two SREs motifs. Luciferase 

reporter assay showed that coexpression of ADD/SREBP1c led to activation of the adiponectin 

gene promoter, and SRE mutations abolished the transactivation from ADD/SREBP1c. 

Adenovirus overexpression of ADD/SREBP1c in differentiated 3T3-L1 adipocytes resulted in 
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high levels of adiponectin mRNA and protein, suggesting that ADD/SREBP1c controls 

adiponectin gene expression in differentiated adipocytes (Seo et al., 2004). 

C/EBP 

          The CCAAT-enhancer-binding proteins (C/EBP)
 
belong to the large family of basic 

leucine zipper (bZip) transcription
 
factors. All members of the C/EBP family have a C-terminal 

leucine
 
zipper domain for dimerization and a basic domain for DNA binding,

 
respectively 

(Johnson, 2005).  To date, six members in the C/EBP family have been cloned and characterized:
 

C/EBPα, C/EBPβ (also known as NF-IL6, LAP, AGP/EBP, IL-6DBP or
 
NF-M), C/EBPγ (also 

known as Ig/EBP or GPE1BP), C/EBPδ (also known as NF-IL6 ,
 
CRP3 or CELF), C/EBPε (also 

known as CRP1) and CHOP
 
(also known as gadd153) (Cao et al., 1991; Ron and Habener, 1992). 

The different members of the C/EBP family can form either homodimers or heterodimers. 

C/EBPs interact with the CCAAT (cytidine-cytidine-adenosine-adenosine-thymidine) DNA 

element in many gene promoters, such as adiponectin (Saito et al., 1999), PEPCK (Park et al., 

1990), aP2 (Hutton et al., 2004), and GLUT4 (Biswas et al., 2005).  

           Four members of the C/EBP family, C/EBPα, C/EBPβ, C/EBPδ and CHOP are
 
expressed 

in both white and brown adipose tissues and have been analyzed extensively
 
with regard to their 

roles in adipogenesis (Cao et al., 1991; Ron and Habener, 1992). The four
 
C/EBP isoforms are 

expressed sequentially at specific stages during adipogenesis. C/EBPβ and δ are induced at a 

very early time during the differentiation of preadipocytes, and have been reported to activate the 

expression of PPAR-γ (Tanaka et al., 1997). C/EBPα is induced relatively late during the 

adipogenesis, usually after the induction of PPAR-γ, but occurring before the synthesis of many 

enzymes (Wu et al., 1998). Ectopic
 
expression of C/EBPα in 3T3-L1 preadipocytes blocks 

mitosis
 
and induces adipocyte differentiation in the absence of hormonal

 
stimulants (Freytag et 
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al., 1994). Blocking of C/EBPα expression in 3T3-L1 preadipocytes by
 
antisense RNA prevents 

adipocyte differentiation and inhibits the expression of several adipocyte genes (Lin and Lane, 

1992). Although NIH-3T3 fibroblasts cannot differentiate into
 
adipocytes in the presence of 

hormonal stimulants, a high level of recombinant C/EBPα results in their conversion into 

adipocytes
 
in the absence of hormonal stimulants (Wu et al., 1998). Moreover, C/EBPα knockout 

mice display a severely
 
reduced mass of adipose tissue, demonstrating that C/EBPα is

 
an 

important regulator of adipogenesis (Wang et al., 1995). Similarly, ectopic expression of C/EBPβ 

also can convert fibroblasts into adipocytes
 
even in the absence of hormonal stimulants. Over 

expression of a dominant-negative form of C/EBPβ
 
inhibits adipocyte differentiation, suggesting 

that C/EBPβ is also involved
 
in adipocyte differentiation. C/EBPδ exhibits similar activities, but 

to a lesser extent. CHOP is C/EBP homologous protein that is known as the dominant-negative 

form of C/EBP family members. The CHOP protein heterodimerizes with other C/EBP family 

members (i.e., C/EBPβ) to block DNA-binding of the C/EBP proteins. Previous reports indicated 

that during adipogenesis, CHOP is down regulated, leading to C/EBPβ activation. Up-regulation 

of CHOP prevents adipogenesis by inhibition of C/EBPβ and inhibition of expression of C/EBPα 

(Tang and Lane, 2000).  

            It has been reported that three C/EBP sites were identified in the human adiponectin 

promoter (Park et al., 2004; Saito et al., 1999). Deletion or mutation of the C/EBP element in the 

adiponectin promoter results in a great loss of the gene transactivation in 3T3-L1 adipocytes. 

Chromatin immunoprecipitation analysis (ChIP) showed that both C/EBPα and β occupied 

adiponectin promoter sites in adipocytes, indicating C/EBP binds directly to the proximal 

adiponectin promoter in vivo (Park et al., 2004). The adiponectin promoter activity was 

markedly inhibited when co-transfected with the dominant negative form of C/EBP. On the 
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contrary, the promoter activity was increased around 3-fold in 3T3-L1 adipocytes when a 

constitutively active form of C/EBPβ was expressed. The increase was significantly suppressed 

by TNF-α in a treatment for 8 hr (Kita et al., 2005). Electrophoretic mobility shift assay 

demonstrated that the specific DNA-protein interaction was abolished by TNF-α treatment, 

suggesting that TNF-α may be involved in the suppression of C/EBP leading to inhibition of 

adiponectin expression (Kita et al., 2005).  

           Several papers reported that CHOP protein is involved in down-regulation of adiponectin 

expression in obesity and type 2 diabetes (Hosogai et al., 2007; Kim et al., 2006). In obese mice, 

adiponectin mRNA expression was decreased and mRNA of CHOP was significantly increased 

in the adipose tissue. And RNA interference of CHOP partly reversed the suppression of 

adiponectin mRNA expression in adipose tissue of obese mice, suggesting the role of CHOP in 

insulin resistance and type 2 diabetes by down-regulation of adiponectin expression in 

adipocytes (Chevillotte et al., 2007; Hosogai et al., 2007; Kim et al., 2006). 

SP1/SP3 

          Specificity protein 1 (SP1) and other Sp proteins are members of a family of transcription 

factors which bind the GC/GT-rich DNA elements through three conserved Cys2/His2 zinc 

fingers that are present at their C-terminal domains (Li et al., 2004; Safe and Abdelrahim, 2005). 

SP1- SP4 proteins are involved in the expression of multiple genes in normal tissues and tumors 

(Safe and Abdelrahim, 2005) . 

          Among the Sp family of transcription factors, SP1 and SP3 are ubiquitously expressed in 

mammalian cells to regulate various genes. SP1 is a human transcription factor involved in gene 

regulation in the early development of an organism. SP3 belongs to a family of SP1 related genes, 

which is structurally similar to SP1 and with high homology in Sp1-binding domain (Li et al., 
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2004). SP1 and SP3 genes encode 105- and 115-kDa proteins respectively. SP1 and SP3 have 

been shown to activate or repress gene promoter activity (Barth et al., 2002; Li et al., 2004). 

        One paper reported that Sp1/Sp3 was involved in the TNF-α induced inhibitory effect on 

adiponectin promoter activity. SP1 has stimulatory effects; SP3 has inhibitory effects on 

adiponectin promoter activity, which is mediated by a proximal SP1 binding site. The 

mechanism of TNF-α -induced inhibition of adiponectin gene expression is, at least in part, due 

to a decrease of transcriptional SP1 binding activity caused by TNF-alpha. First an 

electrophoretic mobility shift assay was used to investigate the transcriptional binding activity of 

SP1 protein in the adipocyte. The result indicated that SP1 is expressed in adipocytes and its 

DNA-binding activity is induced during differentiation from preadipocytes to adipocytes. Next 

an electrophoretic mobility shift assay was used to indicate an added recombinant SP1 factor as 

well as the natural SP1 factor in nuclear extracts from adipocytes, bind specifically to the 

proximal SP1 binding site within the adiponectin promoter. Also, mutation of the SP1 binding 

site within the proximal promoter fragment abolishes the SP1 binding shift of preadipocytes and 

adipocytes in the eletrophoretic assay. The transient transfection of adipocytes with promoter 

constructs carrying the proximal SP1 binding site demonstrated that SP1 can induce the promoter 

activity. In the end, EMSA showed that treatment of preadipocytes and mature adipocytes with 

different doses of TNF-α (0.2nmol/l and 2nmol/l) leads to an inhibition of SP1 binding to the 

proximal promoter fragment (prom -28/-80). (Schaffler et al., 1999) 

NF-κB 

         Nuclear factor-kappa B is a ubiquitous transcription factor which is found in almost all 

animal cell types and involved in cellular responses to stimuli such as stress, cytokines, free 

radicals, and oxidized LDL (Gilmore, 2006). NF-κB belongs to the Rel protein family which 
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includes RelA (p65), NF-κB1 (p50), NF-κB2 (p52), RelB, and c-Rel that exist as homo- and 

heterodimers (Liu and Malik, 2006). The most common form of NF-κB is a heterodimer 

composed of p50/RelA (p50/p65). The p65, but not p50, subunit of NF-κB contains trans-

activating domain. All NF-κB proteins share a highly conserved 300 amino acid Rel homology 

domain (RHD), which is responsible for DNA binding, dimerization and nuclear localization 

(Karin and Ben-Neriah, 2000). NF-κB plays a vital role in the immune system (Baeuerle and 

Henkel, 1994) and its activities have been associated with many diseases including diabetes, 

atherosclerosis, cancer, and arthritis (Atreya et al., 2008; Sastre et al., 2008). Although activation 

of NF-κB is a multi-step sequential process, NF-κB activation is primarily controlled by inhibitor 

κB (IκB) that binds to NF-κB and causes it to be retained in the cytoplasm. Most agents activate 

NF-κB through the classic pathway that is dependent on phosphorylation-induced and 

proteasome-mediated degradation of IκB, which results in the nuclear translocation of the 

transcription factor (Piotrowska et al., 2008). IκBα is phosphorated by the IKK (IκB kinase) 

complex at two conserved serines (ser32 and ser36) on the N-terminal regulatory domain.  The 

IKK complex contains three subunits: IKKα, IKKβ and the IKKγ of which IKKγ (NEMO. NF-

κB essential modulator) serves as a regulatory subunit. IKKα and IKKβ have kinase activities 

that are responsible for phosphorylation of IκB (Basak et al., 2007). Studies have found IKKβ, 

not IKKα, is essential for the degradation of IκBα, because disruption of IKKβ led to a complete 

loss of NF-κB activity in mice (Li et al., 1999).  

        TNF-α is a key inflammatory cytokine involved in insulin resistance and type 2 diabetes. 

One study suggests that NF-kB is an obligatory mediator responsible for inhibition of adipocyte-

specific genes by TNF-α (Ruan et al., 2002). Nuclear translocation of p65 increased substantially 

at 15 to 60 min after TNF-α addition. Gel mobility shift assay in 3T3-L1 adipocytes confirmed 
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that after TNF stimulation, p65 activation and nuclear translocation occurred within 15 min and 

lasted at least 60 min, suggesting that NF-κB is immediately involved in TNF-α action at the 

gene transcriptional level in 3T3-L1 adipocytes. A nondegradable NF-κB inhibitor was utilized 

to assess the kinetics of TNF-α –induced change in gene expression. In wild type 3T3-L1 

adipocytes, TNF-α, inhibited the mRNA levels of 61, 193, and 264 genes at 0.5 h, 1 h, and 2 h 

time points.   However, in IκBα-DN adipocytes, only 1.6%, 0.5%, and 1.9% of the number of 

genes were down regulated by TNF-α at the same time points.  This suggests the requirement of 

NF-κB activation in suppression of 98%-99% of the gene inactivated by TNF-α.   

mRNA Stability 

         The level of mRNA expression is regulated at the transcriptional and posttranscriptional 

levels. mRNA stability is important in the posttranscriptional pathway and varies from one gene 

to another. It is affected by many variables such as structure, intracellular location and 

extracellular stimuli (Shim and Karin, 2002). The 3’ poly (A) tail of eukaryotic mRNAs plays a 

key role in the nuclear processing of pre-mRNA, transport to the cytoplasm, translation and 

mRNA stability. Deadenylation is the first step in the degradation of mRNA. The presence of 

poly (A) tail can protect the mRNA from decaying by binding to poly (A) binding protein (PABP) 

at the mRNA 3’ terminus, protecting it from degradation by deadenylases and exonucleases 

(Bernstein and Ross, 1989). Meanwhile, several regions that include the 5’-cap structure, the 5’-

untranslated region (UTR), the protein coding region and the 3’-UTR have been identified as 

important structure elements which affect the half lives of mRNAs (Shim and Karin, 2002). In 

addition, c-Fos and c-Jun induced by extracellular stimuli have been reported to increase the 

half-life of mRNA (Chen and Shyu, 1995). Early studies of IL-2 have shown that activation of 

JNK is involved in extension of mRNA stability (Chen et al., 2000). Another MAPK p38 was 
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reported to participate in the mRNA stability of vascular endothelial growth factor (VEGF) 

(Levy et al., 1998) and cyclo-oxygenase 2 (Cox-2) (Lasa et al., 2000).  Posttranscriptional 

regulation of mRNA stability is another control of adiponectin gene expression. One study has 

examined the effect of hypoxia on the stability of adiponectin mRNA. The mRNA degradation 

of adiponectin was accelerated under hypoxia compared with nomoxia (Hosogai et al., 2007). 

Adiponectin mRNA does not contain a poly (A) tail and a classical AU rich motif, therefore, the 

mechanism for adiponectin mRNA-life is still unknown. 
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CHAPTER 3 

TNF-α INHIBITION OF ADIPONECTIN BY TARGEING PPAR-γ AND C/EBP 

Introduction 

         Modulation of adiponectin expression at the transcriptional level is an important step for 

understanding the hypoadiponectinemia in insulin resistance and type 2 diabetes. Regulatory 

elements and transcription factors involved in the regulation have been described in the 

proceeding chapter. For example, adiponectin transcription is regulated by PPAR-γ, C/EBPs, 

SREBP-1c (Seo et al., 2004), SP1, SP3 and NFATC4 (Barth et al., 2002; Kim et al., 2006). 

However, their activities in adiponectin regulation by TNF-α have not been demonstrated. A 

thorough understanding of those mechanisms will assist the development of treatments for 

metabolic syndromes. Therefore, our present study was performed to investigate the molecular 

mechanisms of adiponectin expression in response to TNF-α. 

Materials and Methods 

        Animals 

              Male ob/ob mice (B6.V-Lepob/J, stock no. 000632), and male C57BL/6 mice were 

purchased from the Jackson Laboratory (Bar Harbor, ME). The aP2-P65 transgenic mice were 

generated by microinjecting transgene aP2-P65 into the pronuclei of fertilized mouse eggs taken 

from superovulated C57BL/6 F1 females. The injected embryos were implanted into the oviducts 

of surrogate females of the same genetic background. These procedures were conducted in the 

transgenic core facility at the Pennington Biomedical Research Center. The aP2-P65 and ob/ob 

mice were fed a normal chow diet (12.8% calories from fat). In the diet-induced obesity model, 

male C57BL/6 mice (4 wk of age) were fed a high-fat diet (HFD. No. D12331. 58% calories 

from fat. Research Diets, New Brunswick, NJ) beginning at 5 wk of age. All of the mice were 
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housed in the animal facility at the Pennington Biomedical Research Center with a 12:12-h light-

dark cycle and constant temperature (22–24°C). The mice were kept 4 per cage and had free 

access to water and diet. All procedures were performed in accordance with the National 

Institutes of Health guidelines for the care and use of animals and were approved by the 

Institutional Animal Care and Use Committee (IACUC) at the Pennington Biomedical Research 

Center. 

        Materials and Reagents 

              Adiponectin antibody (MAB3832) was obtained from Chemicon International and 

PPAR-γ (sc-7373x) antibody was purchased from Santa Cruz Biotechnology (Santa Cruz, CA). 

Antibodies to tubulin (ab7291) and β-Actin (ab6276) were obtained from Abcam 

(Cambridge,UK). For RNA isolation from cell culture: trizol (T9424), chloroform (C2432) and 

isoproponal (I9516) were from Sigma (St. Louis, MO). Of the chemical inhibitor SP600125 (EI-

305) was purchased from Biomol (Plymouth Meeting, PA).  Other chemical inhibitors, 

PD098059 (p-215) and SB203580 (s-8307) were from Sigma (St. Louis, MO), and 15d-PGJ2 

(538927) was acquired from Calbiochem (San Diego, CA). TNF-α (T-6674) and insulin (I-9278) 

were purchased from Sigma (St. Louis, MO). Troglitazone (GR-210) was acquired from Biomol 

(Plymouth Meeting, PA). Lipofectamine 2000 reagent for transient transfection was purchased 

from Invitrogen (Carlsbad, CA). Real time RT-PCR reagents including MuLV reverse 

transcriptase, RNAse inhibitor and PCR reagents were obtained from Applied Biosystems 

(Branchburg, NJ). The PPRE luciferase reporter was constructed utilizing the pGL3 basic 

luciferase vector. In this vector, the luciferase gene is driven by the thymidine kinase (TK) 

promoter (-105/-51) of herpes simplex virus. The PPAR-γ-specific reporter was generated by 

inserting three copies of the PPRE element of the rat acyl-CoA synthase gene 
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(
583

CCTTTCCCGAACGTGACCTTTGTCCTGGTCCCCTTTTGCT544) (Tugwood et al., 1992) 

upstream of the TK promoter. The supersuppressor IκBα expression vector was originally 

obtained from Dr. Inder M. Verma (Salk Institute).      

        Cell Culture 

              3T3 preadipocytes were purchased from the American Type Culture Collection (ATCC). 

The cells were maintained in Dulbecco’s modified Eagle’s medium (DMEM) containing high 

glucose and supplemented with 10% fetal bovine serum and 5% CO2 at 37°C. Differentiation of 

preadipocytes to adipocytes was achieved by allowing cells to reach confluence and adding 

DMEM supplemented with 10% fetal bovine serum, 5µg/ml insulin, 0.5 mM 3-isobutyl-1-

methylxanthine (IBMX) and 1 µM dexamethasone. After 48h, the medium was replaced with 

fresh DMEM plus 10% fetal bovine serum supplemented with 5µg/ml insulin. Five days later, 

the fully differentiated adipocytes were used in the experiments.  

          HEK293 cell line was purchased from the ATCC and maintained in the DMEM containing 

high glucose and supplemented with 5% fetal bovine serum and 5% CO2 at 37°C. 

        Transfection and Luciferase Assay 

              The luciferase reporter driven by adiponectin gene promoter
 
(–1,300/+18) was kindly 

provided by Dr. Jianhua Shao (Graduate
 
Center for Nutritional Sciences, University of Kentucky, 

Lexington,
 
KY). The reporter

 
plasmids were transfected into 3T3-L1 adipocytes by 

electroporation
 
using the Nucleofector II electroporater (Amaxa Biosystems,

 
Cologne, Germany). 

Program T030 was used in electroporation. For TNF-α and troglitazone treatment, the cells were 

kept in serum-free medium for 16 h and treated with TNF-α or troglitazone for 24 h before the 

reporter assay. Mouse PPAR-γ gene promoter (-2000/+45) was generated by Dr. Jin Zhang. 
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HEK 293 cells, 3T3-L1 fibroblasts transient transfection was conducted in triplicate in 12-

well plates. Cells (1.5 X 10
5
/well) were plated for 16 h and transfected with plasmid DNA 

utilizing Lipofectamine 2000 reagent according to the manufacturer’s instruction. In co-

transfection system, the expression plasmids for ssIκB, C/EBP, C/EBPδ, HDAC3 RNAi were 

used. For TNF-α and troglitazone treatment, the cells were kept in serum-free medium for 16 h 

and treated with TNF-α or troglitazone for 24 h before reporter assay.  

In all of the transient transfection experiments, the internal control reporter is 0.1µg/well 

of SV40-Renilla luciferase reporter plasmid, and the total DNA concentration was corrected in 

each well with a control plasmid. The luciferase reporter assay was conducted using a 96-well 

luminometer with the dual luciferase substrate system (Promega). The luciferase activity was 

normalized with the internal control Renilla luciferase activity, and a mean value together with a 

standard error of the triplicate samples were used to determine the reporter activity. Each 

experiment was repeated at least three times. 

        The Supersuppressor IκBα (ssIκBα) Cell Line and 3T3-L1 Adipocytes 

              To make the ssIκBα stable cell line, 3T3-L1 fibroblasts were infected with 

pBabe retrovirus that carries the FLAG- ssIκBα expression cassette. The positive clone was 

selected by culturing the infected cells in puromycin containing medium for 2 days followed by a 

screening of the FLAG epitope in the whole cell lysate using a western-blotting. 3T3-L1 

adipocytes were obtained by differentiation of the fibroblasts in the standard adipogenic mixture 

as described above. 

        Western Blotting 

              Whole cell lysate protein was made in lysis buffer [1% Triton X-100, 50 mM KCI, 25 

mM HEPES (pH 7.8), 10 µg/ml leupeptin, 20 µg/ml aprotinin, 125 µM dithiothreitol, 1 mM 
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phenylmethylsulfonyl fluoride (PMSF), and 1 mM sodium orthovanadate] via sonication to 

break both cytoplasmic and nuclear membranes. The protein (100 µg) in 50 µl of reducing 

sample buffer was boiled for 3 min and resolved in 8% mini-SDS-PAGE for 90 min at 100 volts. 

Then, the protein was transferred onto polyvinylidene difluoride membrane (162-0184; Bio-Rad, 

Hercules, CA) at 50 volts for 120 min. The membrane was blotted with the first antibody for 1–

24 h and the secondary antibody for 30 min. The horseradish peroxidase-conjugated secondary 

antibodies (NA934V or NA931; GE Healthcare, Little Chalfont, UK) were used with 

chemiluminescence reagent (NEL-105; PerkinElmer Life Sciences, Wellesley, MA) for 

generation of the light signal. To detect multiple signals from one membrane, the membrane was 

treated with a stripping buffer (59 mM Tri-HCI, 2% SDS, 0.75% 2-mercaptoethanol) for 20 min 

at 37 °C after each cycle of blotting to remove the bound antibody. All of the experiments were 

conducted three or more times. The intensity of the western blotting signal was quantified using 

a computer program, PDQuest 7.1 (Bio-Rad). 

        RNA extraction 

              Total RNA from 3T3-L1 adipocytes was isolated from each individual rat 

following the RNA extraction protocol. 1 ml TRIZOL was added and incubated at room 

temperature for 5 min. Then 200 µl chloroform was added and the samples vortexed thoroughly 

each sample for 3 min. Each sample was centrifuged at 13000 x g for 15 min at 4°C. The upper 

aqueous phase RNA was collected and then 500 µl isopropanol was added, and then samples 

were vortexed for 10 min, then centrifuged at 13000 x g for 20 min at 4°C. Supernatant was 

discharged and pellet washed with 1 ml 75% ethanol. Then the supernatant was spun at 7500 x g 

for 5 min at 4 °C. Again, the the supernatant was discharged and the RNA pellet was dried for 10 

min.  Then 30 ul of RNase-free water was used to dissolve the RNA pellet and the pellet was 
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stored at -70°C. For RNA quantification, 2 ul of sample RNA was used to measure the optical 

density (OD) 260 and (OD) 280 nm using Nanodrop via UV spectrophotometry. 

        Quantitative Real Time RT-PCR  

              Quantitative Real time RT-PCR was used to determine TNF-α (Mm00443258_m1, 

Applied Biosystems), adiponectin (Mm00456425_m1, Applied Biosystems), PPAR-γ 

(Mm00440945-m1, Applied Biosystems), P65 (Mm00501346_m1), Applied Biosystems), 

C/EBPα (5’-GCGAGCACGAGACGTCTATAGA-3’;5’-GCCAGGAACTCGTCGTTGAA-3’), 

C/EBPβ (5’-AGCGGCTGCAGAAGAAGGT-3’,5’-GGCAGCTGCTTGAACAAGTTC-3’) and 

C/EBPδ(5’-CATCGACTTCAGCGCCTACAT-3’, 5’-TGAAGAGGTCGGCGAAGAGT-3’) 

mRNA levels in the samples. Mouse 18s rRNA was used as an internal control to normalize the 

RNA levels in each sample. Real time RT-PCR reaction mixture was 10 ul total volume, 

including 15 ng of sample RNA, 1 X PCR buffer, 5.5mM MgCl2, dATP, dCTP, dUTP and 

dGTP each 0.3 mM, 200 nM forward primers, 200 nM reverse primers, 100 nM Taqman probes, 

1 U RNase inhibitor, 2.5 U MuLV reverse transcriptase, 0.25 U AmpliTaq Gold DNA 

polymerase and RNase-free H2O. Each sample was tested in duplicate. Reverse transcription was 

carried out at 48°C for 30 min. PCR was carried out at 95°C for 10 min for one cycle, followed 

by 40 cycles of 95°C for 15 sec and 60°C for 1 min. Data was output as Ct number (cycle 

threshold number) and the data within the linear region of the amplification curve were analyzed 

according to ABI's User Bulletin #2. The relative amounts of adiponectin and PPAR-γ mRNA 

were calculated using ΔΔCt method and normalized over 18S ribosomal RNA gene. 

        Statistical Analysis  

               Each experiment was conducted at least three times with consistent results. The digital 

data was presented as a mean ± SEM. In the reporter assay, triplicates were used at each point.  
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 The data were analyzed using Student’s t test with significance p < 0.05.  

Results 

        Expression of TNF-α and adiponectin in aP2-P65 and obese mouse models. 

        Previous studies have demonstrated that adiponectin was significantly down-regulated in 

the WAT of ob/ob mice and high fat diet (HFD)-fed mice (Barth et al., 2002). The reduction was 

associated with increased expression of TNF-α. In cultured cells, TNF-α was shown to inhibit 

adiponectin mRNA. To confirm the cause/result relationship in vivo, we used aP2-P65 mice 

which have enhanced TNF-α expression by over expression of RelA (p65) in the adipose tissue. 

RelA (p65) gene is a member of NF-κB protein complex. Our previous study showed that aP2-

P65 transgenic mice exhibit a high activity of chronic inflammation. TNF-α mRNA was 

increased in the adipose tissue in the absence of obesity (Fig. 1A), while adiponectin mRNA was 

dramatically reduced (Fig. 1B). These results exclude possibilities that are associated with 

obesity and support the idea that TNF-α inhibits adiponectin in adipose tissue.  

        TNF-α inhibits adiponectin gene expression in mature 3T3-L1 adipocytes 

        To explore the mechanism of adiponectin inhibition, we tested an in vitro model of TNF-α 

treatment in 3T3-L1 adipocytes. Adiponectin mRNA and protein were reduced by TNF-α (Fig. 

2). At 4 h with TNF-α (20 ng/ml) treatment, the adiponectin mRNA was reduced by 50% in 

qRT-PCR assay (Fig. 2A). Adiponectin protein was measured in the cell supernatant by western 

blotting. Adiponectin expression was significantly reduced after 8h with TNF-α treatment (Fig. 

2B). These data confirm that adiponectin expression is suppressed by TNF-α in adipocytes. 
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Figure 1. Adiponectin and TNF- expression in white adipose tissue of wild type, aP2-P65, 

HFD-fed mice and ob/ob mice. Epididymal fat tissues were collected from the mice at the age of 

20 weeks, and the total RNA was extracted and subjected to quantitative real time RT-PCR 

analysis for TNF- mRNA (A) and adiponectin mRNA (B). In this figure, each bar represents 

mean ± SEM (n=3). *, P<0.05, **, P<0.01. 
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Figure 2. Inhibition of adiponectin expression by TNF- in 3T3-L1 adipocytes. A: inhibition of 

adiponectin mRNA by TNF-. The cells were serum starved in DMEM supplemented with 

0.25% BSA overnight and treated with TNF- (20 ng/ml) for different times as indicated. The 

total RNA was extracted and subjected to quantitative real time RT-PCR analysis for adiponectin 

mRNA. B: Inhibition of adiponectin secretion by TNF-. The cells were serum starved overnight 

and treated with TNF- for different times as indicated. Culture medium from 3T3-L1 

adipocytes was analyzed by western blot with anti-adiponectin antibody. Quantification of 

adiponectin protein in the western blot was determined by densitometry. In this figure, each bar 

represents mean ± SEM (n=3). *, P< 0.05.  
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TNF-α inhibits the adiponectin transcription and mRNA stability. 

        Since both transcriptional and post-transcriptional events influence mRNA levels, our goal 

was to find out which event is important for adiponectin inhibition. We tested transcription using 

the -2.0 kb human adiponectin promoter in a reporter assay. A luciferase reporter driven by the 

promoter was transfected into 3T3-L1 adipocytes in a transient transfection. The reporter was 

enhanced by troglitazone (a PPAR-γ activator) by 4.5 fold (Fig. 3A). The induction was 

completely inhibited in the presence of TNF-α (20 ng/ml) (Fig. 3A). The data indicates that 

TNF-α may target PPAR-γ in the transcriptional inhibition of adiponectin.  

         To determine whether the posttranscriptional events are involved in the reduction of 

adiponectin mRNA, we examined the effects of TNF-α on the stability of adiponectin mRNA. In 

the study, mRNA synthesis was blocked by Actinomycin D (5 µg/ml) and the remaining 

adiponectin mRNA was measured at multiple time points thereafter. The mRNA stability is 

indicated by reduction rate of mRNA. The qRT-PCR result suggests that the mRNA degradation 

of adiponectin was significantly accelerated by TNF-α (Fig. 3B). The mRNA is very stable with 

only 10% reduction at 16 hrs. In the TNF-treated cells, the mRNA was reduced by 50% at 12 hrs. 

These results together suggest that TNF-α inhibits the adiponectin expression at both 

transcriptional and post-transcriptional levels. 

TNF-α inhibits PPAR-γ gene expression through NF-κB pathway 

        Since PPAR-γ is a key transcription activator in the adiponectin gene promoter, a loss of 

PPAR-γ function may account for the adiponectin inhibition. We conducted more investigation 

into the mechanism in 3T3-L1 adipocytes. As shown in Fig. 4A, the expression of PPAR-γ 

mRNA was significantly decreased in the presence of 20 ng/ml TNF-α, There was an inhibition 

of 40% observed as early as 4h with TNF treatment. The PPAR-γ protein was decreased 
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consistently by 70% at 8 hr (Fig. 4B). These data indicate that TNF-α suppresses the expression 

of PPAR-γ mRNA and protein in the differentiated adipocytes. We also examined the PPAR- 

mRNA stability. The stability was not changed in the absence or presence of TNF-α, indicating 

that TNF-α does not affect PPAR- mRNA stability. Several signaling pathways are activated by 

TNF-α, such as the IKK/NF-κB pathway and MAPKs (ERK, JNK, and p38) pathways. To 

determine which pathway is required for the TNF-α inhibition of PPAR-γ expression, kinase-

specific chemical inhibitors were used to evaluate each pathway. These inhibitors include IKK2 

inhibitor 15dPGJ2 (15-deoxy-12,14-prostaglandin J2), JNK inhibitor SP600125 (anthra[1,9-

cd]pyrazol-6(2H)-one), p38 MAPK kinase inhibitor SB203580 (4-(4-fluorophenyl)-2-(4-

methylsulfinylphenyl)-5-(4-pyridyl)-1H-imidazole) and MEK/ERK inhibitor PD98059 (2-(2-

amino-3-methyoxyphenyl)-4H-1-benzopyran-4-one). 3T3-L1 adipocytes were pretreated with 

the inhibitors before TNF-α exposure. The inhibitor activity was determined with the PPAR-γ 

mRNA. 15dPGJ2 that inhibits NF-κB activity through inhibition of IKKβ activity blocked the 

TNF-α activity (Fig. 4D). The inhibitors to MAPKs were unable to block the TNF activity (Fig. 

4D). To further ascertain whether NF-κB activation is involved in TNF-α mediated PPAR-γ gene 

expression, a PPAR-γ reporter system was used in the transient transfection of NIH3T3 

fibroblasts, at which the reporter activity was induced by the synthetic troglitazone (Fig. 4E). 

TNF-α led to a 40% reduction in the PPAR-γ reporter and this reduction was completely blocked 

by expression of the super suppressor IκBα (ssIκBα), a non-degradable mutant of IκBα 

(IκBα
S32A/S36A

) that blocks NF-κB activation (Gao et al., 2006). These data suggest that NF-κB 

mediates the suppression of PPAR-γ by TNF-α.        
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         IKK/NF-κB pathway mediates TNF-α activity on adiponectin 

         To determine the role of NF-κB pathway on adiponectin expression, we examined the 

adiponectin mRNA after NF-κB was inhibited. 15dPGJ2 blocked the TNF-α inhibition of 

adiponectin (Fig. 5A). In the ssIκBα 3T3-L1 cell line that has a reduced NF-κB activity, 

adiponectin inhibition was attenuated significantly (Fig. 5B).  The adiponectin protein expression 

was examined during the adipogenesis of ssIκBα 3T3-L1 cells. In this study, cells were exposed 

to TNF-α during the course of adipogenesis for 7 days. As shown in Fig. 5C, in the presence of 

TNF-α, adiponectin was completely blocked in the 3T3-L1 control cells, but not in the ssIκBα 

3T3-L1 cells, suggesting that ssIκBα cells are resistant to TNF-α activity. These results indicate 

that TNF-α activity is dependent on activation of the IκBα /NF-κB pathway, and IKK/NF-κB 

pathway in the inhibition of adiponectin gene transcription.        

        Troglitazone antagonizes TNF-α activity by inhibition of NF-κB  

        It was reported that NF-κB activity was inhibited by PPAR-γ ligands thiazolidinediones 

(Xie et al., 2005). Here we tested troglitazone on suppression of NF-κB activity. Incubation with 

troglitazone increased adiponectin mRNA expression (Fig. 6A) and adiponectin protein secretion 

(Fig. 6B) into the media in a dose-dependent manner. Troglitazone treatment for 24 h induced 

the adiponectin mRNA expression (Fig. 6A).  The adiponectin protein was also increased (Fig. 

6B). The inhibition of adiponectin by TNF-α was partly reversed by troglitazone in 3T3-L1 

adipocytes (Fig. 6 A and B). To determine inhibition of NF-κB by troglitazone, we examined 

mRNA levels of NF-κB target genes, such as TNF-α and IκBα. Upon TNF-α stimulation, TNF-α 

and IκBα mRNA levels increased dramatically (Fig. 6 C and D). Troglitazone inhibited IκBα 

mRNA by 40% (Fig. 6C), and TNF-α mRNA by 75% (Fig. 6D). The data support that 

troglitazone antagonizes the action of TNF-α through inhibition of the NF-κB pathway.    
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Figure 3. Adiponectin transcription and mRNA stability pathway. A. Inhibition of adiponectin 

gene promoter by TNF-. The transcriptional activity of mouse adiponectin promoter (–

1,300/+18) was analyzed in 3T3-L1 adipocytes in a transient transfection. After 24 h transfection, 

the cells were serum starved overnight and treated with Troglitazone (10 µM) and TNF- (20 

ng/ml) for 16 h. B. Influence of TNF- on adiponectin mRNA stability. De novo mRNA 

transcription was inhibited by the addition of actinomycin D (5 µg/ml), and 3T3-L1 adipocytes 

were incubated with TNF-α treatment (20 ng/ml, open square) or not (filled square) for the 

indicated time intervals. The residual mRNAs of adiponectin were quantified by qRT-PCR. 

Values represent percentage of residual mRNA versus mRNA level at time 0. Results are means 

± SEM (n=3). *, P< 0.05. ***, P< 0.001.  
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Figure 4. TNF- inhibits PPAR- expression through the NF-B pathway. A: Inhibition of 

PPAR- mRNA expression by TNF- in 3T3-L1 adipocytes. The cells were serum starved 

overnight and treated with TNF- (20 ng/ml) for different times as indicated. The total RNA was 

extracted and subjected to qRT-PCR analysis for PPAR- mRNA. B: Inhibition of PPAR- 

protein expression by TNF- . The cells were serum starved overnight and treated with TNF- 

(20 ng/ml). The PPAR- protein was determined in the whole cell lysate in a western blot with 

anti-PPAR- antibody. C: Influence of TNF- on the PPAR- mRNA stability. De novo mRNA 

transcription was inhibited by the addition of actinomycin D (5 µg/ml), and 3T3-L1 adipocytes 

were incubated with TNF-α treatment (20 ng/ml, open square) or not (filled square) for the 

indicated time intervals. The residual mRNAs of PPAR- was quantified by qRT-PCR. Values 

represent percentage of residual mRNA versus mRNA level at time 0. D: Blocking of TNF- 

activity by the NF-B inhibitor. The 3T3-L1 adipocytes were pretreated with the 

pharmacological inhibitors for 30 min before addition of TNF- . The inhibitors were SB203580 

(SB;10 µM), SP600125 (SP;25 µM), PD98059 (PD;40 µM), 15dPGJ2 (15 µM). mRNAs were 

determined in the cells 16 h later. E: The transcriptional activity of PPAR- was analyzed in 3T3-

L1 fibroblasts using the PPRE (3X)-luciferase reporter system in the transient transfection. The 

expression vector of ssIB was co-transfected to block NF-B activation. At 24 h after 

transfection, the cells were serum starved overnight and treated with Troglitazone (10 µM) and 

TNF- (20 ng/ml). In this figure, each bar represents mean ± SEM (n=3). *, P< 0.05. 
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        TNF-α inhibited C/EBPα but induced C/EBPδ expression 

        C/EBPs were reported as key transcription activators in the adiponectin gene (Weyer et al., 

2001). To elucidate whether C/EBPs are involved in the TNF-α inhibition of adiponectin, we 

next examined the expression and function of C/EBPs. As expected, TNF-α treatment 

significantly decreased the mRNA level of C/EBPα (Fig. 7A). However, C/EBPδ mRNA level 

was induced by TNF-α (Fig. 7C). C/EBPβ mRNA was not dramatically changed by TNF-α (Fig. 

7B). At the protein level, C/EBPα was reduced at 8 h, while C/EBPβ and C/EBPδ proteins were 

modestly induced by TNF-α (Fig. 7D). To confirm the regulation of C/EBPs by TNF-α in vivo, 

the expression was determined in aP2-P65 transgenic mice. As shown in Fig. 7E, C/EBPα 

mRNA was decreased by 48%, while C/EBPδ was up-regulated by 30% in the aP2-P65 

transgenic mice. No change was found in C/EBPβ. Based on these results, C/EBPs may 

participate in TNF signaling. To test the possibility, we examined the PPAR-γ promoter activity 

in the transient transfection. Transfection of C/EBPα or C/EBPδ induced the PPAR-γ (Fig. 7F). 

The transactivation activity of C/EBPδ activity was inhibited by TNF-α, and the inhibition was 

blocked by ssIκBα (Fig. 7G), suggesting that NF-κB activity was required for inhibition of the 

promoter activity. NF-κB may inhibit C/EBP function through HDAC3 as indicated by an early 

study in which we observed that HDAC3 activity was induced by NF-κB (Gao et al., 2006). To 

test the possibility, HDAC3 activity was reduced by RNAi-mediated gene knockdown. The 

TNF-α activity was abolished by HDAC3 RNAi, but not by the control RNAi (Fig. 7H). These 

data suggest that HDAC3 is required for PPAR-γ inhibition by TNF-α and might be involved in 

suppression of C/EBPδ by NF-κB. 
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Figure 5. IκBα/NF-B pathway mediates TNF- activity. A: Blocking of TNF- activity by the 

NF-B inhibitor. The 3T3-L1 adipocytes were pretreated with pharmacological inhibitors for 30 

min before addition of TNF- . The inhibitors were SB203580 (SB;10 µM), SP600125 (SP;25 

µM), PD98059 (PD;40 µM), and 15dPGJ2 (15 µM). mRNA levels were determined in the cells 

16 h later. B: Inhibition of TNF-α activity in 3T3-ssIB stable cells. 3T3-L1 adipocytes and 

3T3-ssIB cells were serum starved overnight and treated with TNF- (20 ng/ml) for 16 h. 

Adiponectin mRNA was determined by quantitative real time RT-PCR. C: Adiponectin 

expression during adipogenesis.  The cells were treated with TNF- (20 ng/ml) during 

adipogenesis. Adiponectin was determined in the whole cell lysate at 7 and 8 days of 

differentiation. In this figure, each bar represents mean ± SEM (n=3).  
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Figure 6. Troglitazone increases mRNA expression and plasma concentration of adiponectin 

through inhibiting NF-B pathway. A, B: Dose effects of Troglitazone with or without TNF-  

on the adiponectin mRNA level (A) and the secreted amount in medium (B) is shown. 3T3-L1 

adipocytes were serum starved overnight and treated with the indicated concentration of 

troglitazone, 0, 1, 3, 10 µM plus TNF- (20 ng/ml) for 24 h. The total mRNA was extracted and 

subjected to qRT-PCR analysis for adiponectin mRNA. The amount of adiponectin secreted into 

medium was measured by western blot. The adiponectin protein signal was determined by 

densitometry. C: NF-κB target genes (IB, TNF- ) were measured with troglitazone and TNF-

 treatment. 3T3-L1 adipocytes were serum starved overnight and treated with the Trog, 0, 1, 3, 

10 µM plus TNF-  (20 ng/ml) for 24 h. The total mRNA was extracted and subjected to qRT-

PCR analysis for IkBα and TNF- mRNA. In this figure, each bar represents mean ± SEM (n=3). 

*, P<0.05. 
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Figure 7. Effects of TNF-α on C/EBPs transcription. A,B,C: C/EBPα, C/EBPβ and C/EBPδ 

mRNA expression levels with TNF-α treatment in 3T3-L1 adipocytes. The cells were serum 

starved overnight and treated with TNF- (20 ng/ml) for different times as indicated. The total 

RNA was extracted and subjected to qRT-PCR analysis for C/EBPα, C/EBPβ and C/EBPδ 

mRNA. D: C/EBPα, C/EBPβ and C/EBPδ protein levels with TNF-α treatment in 3T3-L1 

adipocytes. The cells were serum starved overnight and treated with TNF- (20 ng/ml). The 

C/EBP protein was determined in the whole cell lysate in a western blot with anti-C/EBPα, β, δ 

antibody.  E: C/EBPα, C/EBPβ and C/EBPδ mRNA expression levels in aP2-P65 transgenic 

mice. Epididymal fat tissues were collected at the age of 20 weeks from wild type and aP2-P65 

mice and the total RNA was extracted and subjected to quantitative real time RT-PCR analysis 

for C/EBPα, C/EBPβ,C/EBPδ and P65. F: Stimulation of PPAR-γ gene promoter by C/EBPα and 

C/EBPδ. The transcriptional activity of mouse PPAR-γ promoter (-2000/+45) was analyzed in 

HEK 293 cells, which were transiently co-transfected with C/EBPα or C/EBPδ by Lipofectamine 

according to the manufacture’s instructions. After 24 hours of transfection, cell lysates were 

measured by the luciferase assay system. G: The transcriptional activity of PPAR- was analyzed 

in HEK 293 cells using the luciferase reporter system in the transient transfection. C/EBPδ and 

ssIB were co-transfected. At 24 h after transfection, the cells were serum starved overnight 

and treated with TNF- (20 ng/ml) for 24 h. H: Analysis of corepressor HDAC3 with RNAi-

mediated gene knockdown in the PPAR-γ reporter assay. C/EBPδ and HDAC3 or RNAi control 

were co-transfected with the reporter system into HEK 293 cells. At 24 h after transfection, the 

cells were serum starved overnight and treated with TNF- (20 ng/ml) for 24 h. In this figure, 

each bar represents mean ± SEM (n=6). *, P<0.05; **, P<0.01. 
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 Discussion 

         TNF-, isolated 30 years ago, is a multifunctional cytokine implicated in apoptosis and cell 

survival as well as in inflammation and immunity. TNF- was mainly secreted by macrophages, 

T lymphocytes, and natural killer (NK) cells which are stimulated with bacterial product. As a 

molecular with anti-tumor properties, TNF- induces hemorrhagic necrosis in
 
a certain type of 

tumors including sarcomas, metastatic melanomas (van Horssen et al., 2006). However, as a 

proinflammatory cytokine, TNF- has been involved in a wide range of diseases such as type 2 

diabetes, obesity and circulatory disease. In the present study, we focused on the TNF-’s 

proinflammatory aspect. We investigated the mechanism of adiponectin inhibition by TNF-α 

treatment. We previously demonstrated that TNF-α is reversibly associated with adiponectin in 

adipose tissue in the absence of obesity in aP2-P65 mice. That study provided in vivo evidence 

that TNF-α may inhibit adiponectin expression. In the currently reported study, we investigated 

the mechanism. We demonstrated that transcription and posttranscription events are both 

involved in the adiponectin suppression by TNF-α. At the transcriptional level, we confirmed 

that PPAR-γ is a master transcription activator in the adiponectin gene. Meanwhile, our data 

suggest that C/EBPs may contribute to the adiponectin expression by increasing PPAR-γ 

expression. NF-κB is a dominant mediator of TNF-α signal in the suppression of adiponectin 

expression. NF-κB may act on C/EBPs for the suppression. We show here that C/EBPs enhance 

the promoter activity of PPAR-γ gene. Nuclear receptor co-repressor HDAC3 is required for NF-

κB inhibition of C/EBP function. The data suggest that TNF-α signal is mediated by NF-

κB/HDAC3/C/EBP/ PPAR-γ in the inhibition of adiponectin transcription. 

            PPAR-γ is a master nuclear factor in the control of adipogenesis (Gustafson et al., 2003; 

Iwaki et al., 2003; Ruan et al., 2003; Semple et al., 2006; Tsuchida et al., 2005). PPAR-γ 
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activates adiponectin transcription at a functional PPRE (peroxisome proliferator response 

element (Iwaki et al., 2003; Zhang et al., 1996). Our data suggest that TNF-α may inhibit 

adiponectin transcription by suppressing PPAR-γ activity. The suppression was observed at 

mRNA and gene promoter levels for PPAR-γ.  

         NF-κB is required for TNF-α inhibition of adiponectin. TNF-α has been reported to inhibit 

a number of genes including GLUT-4, aP2, UCP-1 and transcription factor C/EBPα, and the 

signaling pathway of TNF-α is different for each distinct gene. For example, TNF-α inhibits the 

UCP-1 expression through ERKs and p38MAPK pathway (Valladares et al., 2001).  Also ERK 

pathway is involved in the mechanism of TNF-α-induced lipolysis (Souza et al., 2003). NF-κB 

signaling pathway was shown in our study to mediate TNF-α inhibition of PPAR-. By using a 

chemical inhibitor of NF-κB (blocked IκκB to prevent degradation of IκB, which inhibits NF-κB) 

and ssIκBα (suppresses NF-κB) stable cell line, we showed that PPAR-γ mRNA was not 

inhibited by TNF-α if NF-κB activation was completely blocked. In these conditions, TNF-α also 

loses the activity to inhibit adiponectin. Furthermore, troglitazone, a synthetic PPAR ligand 

attenuated TNF-α activity. The mechanism is also related to inhibition of NF-κB. The role of 

NF- κB is supported by reduced PPAR-γ expression in aP2-P65 adipocytes, in which NF-κB is 

enhanced by over expression of the p65 subunit. Taken together, these results suggest that TNF-

α may suppress adiponectin expression by activation of NF-κB, which reduces PPAR-γ 

expression.            

          Our data suggest that C/EBPs may be involved in TNF-α regulation of PPAR-γ. C/EBPs 

regulate many adipocyte-specific genes, such as aP2 (Christy et al., 1989), GLUT4 (Yamamoto 

et al., 2002). Previous studies have reported that C/EBPα is required to fully activate the 

adiponectin gene (Qiao et al., 2005; Qiao et al., 2006). C/EBPδ was shown to interact with the 



 

- 36 - 

 

PPAR-γ gene promoter through a direct protein-DNA interaction. TNF-α has been shown to 

inhibit C/EBPα mRNA in 3T3-L1 adipocytes (Ron et al., 1992; Stephens and Pekala, 1991). 

C/EBPβ and δ were shown to activate expression of PPAR-γ and C/EBPα during adipogenesis 

(Rosen and MacDougald, 2006).  C/EBPα may control the transcriptional expression of PPAR-γ 

(Wu et al., 1999). We observed that TNF-α inhibits C/EBPα expression, but inducing C/EBPδ 

expression in fully-differentiated 3T3-L1 adipocytes. Therefore, C/EBPα and δ exhibit opposite 

expression patterns in response to an inflammation reaction. It is possible that C/EBPδ will 

replace C/EBPα in the PPAR-γ gene promoter in the response to TNF-α. However, the switch 

was not able to rescue  PPAR-γ from the inhibition by TNF-α. Our reporter assay suggests that 

TNF-α may suppress the C/EBPδ activity by activation of HDAC3.  

         HDAC3 is a nuclear receptor co-repressor, which contains both nuclear export signal (180-

313 aa in the central portion), and the nuclear localization signal (312-428 aa in the C-terminal) 

(Yang et al., 2002). Previous studies have reported that HDAC3 shuttles between the cytoplasm 

and nucleus, and that IκBα is important in the control of HDAC3 shuttling. When IκBα is 

degraded, HDAC3 enters the nucleus to inhibit PPAR-γ function (Gao et al., 2006). In the 

present study, we observed that HDAC3 is required for suppression of C/EBPδ activity in the 

PPAR-γ gene promoter. The data supports that HDAC3 may mediate NF-κB signal in the 

suppression of C/EBPδ function. 

           Posttranscriptional regulation of mRNA stability is another pathway that controls 

adiponectin expression by TNF-α. In our study, TNF-α accelerated adiponectin mRNA 

degradation in adipocytes. This effect was independent of PPAR-γ effect since it was not rescued 

by a PPAR-γ activator. Adiponectin mRNA does not contain classical AU-rich motifs and poly 

(A) tail structures for mRNA stability. However, the mRNA has a long half life of more than 16 
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hrs. More studies are needed to explore the signaling pathway of the TNF-α regulation of 

adiponectin mRNA stability. 

        Although NF-κB inhibited the promoter activity of PPAR-γ gene, we did not find the NF-

κB binding sequence in the promoter DNA. In the gene promoter, NF-κB inhibited C/EBP 

response elements and the inhibition might be dependent on an indirect interaction. HDAC3, 

after activation by NF-κB, may mediate the NF-κB signal in the inhibition of C/EBPs. This 

possibility remains to be tested using ChIp assay in adipocytes. 

         In conclusion, our study demonstrates that TNF-α suppresses the adiponectin gene 

expression in differentiated 3T3-L1 adipocytes by inhibition of the adiponectin transcription 

level and mRNA stability. The inhibition is related to suppression of PPAR-γ activity. NF-κB 

mediates the TNF-α signal to inhibit PPAR-γ expression. NF-κB may target C/EBPs that are 

required for PPAR-γ expression. HDAC3 plays a role in the suppression of C/EBPδ by TNF-α.  
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CHAPTER 4 

CONCLUSION 

          The work in this thesis focused on the mechanism of the TNF-α role in adiponectin gene 

expression in differentiated 3T3-L1 adipocytes. Previously, our in vivo animal data provided 

evidence that a decrease in adiponectin expression was associated with an increase in TNF-α. We 

measured mRNA expression and protein levels of adiponectin in 3T3-L1 adipocytes with TNF-α 

treatment. We found that adiponectin mRNA and protein levels are suppressed by TNF-α 

treatment in a time dependent manner. A Luciferase reporter assay indicated that adiponectin 

inhibition by TNF-α may happen at the gene transcription level. Meanwhile, TNF-α was found to 

increase adiponectin mRNA degradation in differentiated 3T3-L1 adipocytes. Thus adiponectin 

mRNA reduction is a consequence of inhibition of gene transcription and mRNA stability. 

PPAR-γ is a candidate transcription factor implicated in adiponectin expression. We examined 

the effects of TNF-α on the transcription factor PPAR-γ. Our data demonstrated that TNF-α 

down regulates PPAR-γ mRNA and protein levels and this inhibition is mediated by the IκBα 

/NF-κB pathway. Troglitazone, which can protect against adiponectin inhibition by TNF-α 

treatment, was shown to decrease NF-κB target genes: TNF-α and IκB. C/EBPs, other 

important transcription factors implicated in adipogenesis, were tested in the research reported in 

this thesis. We observed C/EBPα and C/EBPδ functionally enhance PPAR-γ activity and may 

indirectly control adiponectin regulation. HDAC3, a nuclear receptor repressor, is involved in the 

TNF-α inhibition of PPAR-γ-C/EBPs interaction. 
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