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ABSTRACT 

 Elevated inflammation is associated with several chronic diseases, including 

obesity.  Exercise is an established effective treatment of this condition by decreasing adiposity 

and independently regulating inflammatory pathways.  The potential for vitamin D to confer 

anti-inflammatory benefits has been explored in cell culture studies, but few have explored its 

action at the whole body level.  PURPOSE: To investigate the relationship between 

inflammatory markers in trained and untrained individuals with vitamin D levels either above or 

below a suggested optimal concentration.  METHODS: College-aged females (N = 63), both 

trained and untrained, reported to the lab four times: to assess body size and composition, for 

blood collection, for a maximal aerobic test, and a test of anaerobic power. Blood was analyzed 

for serum 25OHD and CRP concentrations, stimulated with LPS to assess IL-6 

production.  Samples were prepared for FACS analysis for CD14, CD16, and TLR4 

expression.  RESULTS: Trained individuals presented with higher 25OHD levels, even prior to 

stratification into high and low groups (p = 0.015).  VO2peak was significantly higher (p < 

0.0001) and fatigue during the test for anaerobic power was significantly lower (p = 0.021) in 

trained individuals.  Untrained individuals had a higher average body weight (p = 0.039) and 

estimated percent body fat (p = 0.011) compared to trained individuals, although the average 

estimated percent body fat of both groups was higher than the recommended level for this age 

group.  Additionally, measures of sun exposure were negatively correlated with measures of 

body size and composition, although these relationships did not exist between serum 

25OHD.  CONCLUSION: In this study, regular physical activity was associated with higher 

serum 25OHD, lower BMI, waist circumference, and estimated percent body fat as well as 

reduced LPS-stimulated IL-6 production.  Optimal vitamin D status did not appear to provide 

any additional health related or anti-inflammatory benefit in those with regular physical activity 
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habits.  However, in individuals not participating in a regular exercise program, the potential for 

vitamin D to mediate inflammation appeared more likely.  More specifically, untrained people 

with optimal vitamin D status had lower numbers of total monocytes, CD14+CD16- cells, and 

decreased TLR4 expression on CD14+CD16+ cells; however, these differences did not translate 

into a change in overall cell function or markers of systemic inflammation as there was no 

difference between optimal and suboptimal groups with respect to LPS-stimulated IL-6 

production or resting CRP concentrations.  An expanded exploration of the relationship between 

vitamin D and inflammation may include assessing other inflammatory biomarkers, immune cell 

types, the vitamin D receptor, and the role of adipose tissue.  
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CHAPTER 1 – INTRODUCTION 

 Chronic, systemic inflammation is associated with diseases such as obesity, diabetes, 

cardiovascular disease, and others (1, 2).  While there are a number of pharmaceutical anti-

inflammatory treatments, many are associated with a multitude of negative side effects (3).  

Consequently, many experts speculate that altering the diet and increasing exercise may be the 

most beneficial treatment options for decreasing inflammation (4).  Exercise training plays a role 

in mediating the inflammatory response at both an acute and chronic level, and while 

inflammation is peaked after an acute bout of exercise, it leads to decreased basal levels after 

long-term exercise training (5).   

 Vitamin D is most commonly known for its importance in calcium homeostasis, but new 

research indicates the potential for this nutrient to mediate inflammation (6, 7).  Research has 

identified the many benefits related to adequate vitamin D status, which is commonly evaluated 

using serum 25-hydroxyvitamin D (25OHD), including decreasing the risk for certain types of 

cancer, reducing the symptoms of depression, decreasing inflammation, and altering body 

composition (8).  Despite the ability of vitamin D to potentially ameliorate inflammation, its 

mechanisms of action in this process are unclear. 

 Because high levels of inflammatory markers such as interleukin-6 (IL-6) and C-reactive 

protein (CRP) are associated with chronic diseases, understanding how both vitamin D and 

physical activity are capable of decreasing the levels of circulating inflammatory markers could 

provide a potential treatment for these conditions (6, 9).  Accordingly, the purpose of this study 

is to investigate the influence of training status and vitamin D status on circulating inflammatory 

markers, and monocyte number and function.  Briefly, trained and untrained women with either 

high or low levels of serum 25OHD will be recruited in this study.  Whole blood samples will be 

stimulated with the bacterial endotoxin lipopolysaccharide (LPS), which has been shown to elicit 
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an inflammatory response in monocytes through the toll-like receptor 4 (TLR4) (10).  Baseline 

and circulating concentrations of IL-6 following stimulation, and resting CRP concentrations will 

be assessed using enzyme-linked immunosorbent assay (ELISA).  Monocyte phenotype, 

classified as the classical CD14+CD16- or the non-classical CD14+CD16+, will be assessed in 

blood samples via flow cytometry.  Data from trained and untrained subjects will be compared, 

as will the results from those with suboptimal 25OHD compared to those who have optimal 

25OHD serum content in both trained and untrained groups. 

1.1 Specific Aims 

 Aim 1: Are vitamin D and training status related to measures of aerobic fitness, anaerobic 

power, and the presence of the inflammatory biomarker, CRP?  

 Aim 2: Are vitamin D and training status related to the phenotype and function of 

monocytes?    
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CHAPTER 2 – LITERATURE REVIEW 

Chronic, systemic, low-grade inflammation is tightly linked to the development and 

progression of obesity, type 2 diabetes, and cardiovascular disease (1).  Inflammation can be 

assessed using a number of different biomarkers, including IL-6 and CRP, and a number of 

interventions have been evaluated in an effort to reduce the concentrations of these agents (11, 

12).  Significant, transient increases in these inflammatory biomarkers have been observed 

during and immediately following acute bouts of exercise; however chronic bouts of exercise 

have been shown to reduce systemic inflammation (6, 9).  Vitamin D has also emerged as a 

significant mediator in the inflammatory process (7, 12, 13).  This literature review will provide 

a summary of the inflammatory process associated with chronic disease, the inflammatory 

response to acute and chronic exercise with a focus on the role of monocytes and TLR4, and how 

exercise and vitamin D can modulate the inflammatory response.  

2.1 Inflammation and Disease 

Inflammation is an immune response elicited by the body during stress, characterized by 

the production of cytokines from immune and non-immune cells that mediate the inflammatory 

reaction (14).  Inflammation can arise from a number of different stimuli, including traumatic 

events, sickness, or injury; alternatively, acute increases in inflammation also occur after an 

intense bout of exercise (14).  Inflammation is also exacerbated over long periods of time in 

cases of obesity (1).  This consistent stimulus for cell damage may lead to the progression of a 

number of obesity-related diseases, including insulin resistance, atherosclerosis and 

cardiovascular disease (CVD) (14, 15).   

Adipose tissue, skeletal muscle, hepatocytes, and immune cells such as monocytes and 

macrophages, are stimulated via integrated pathways that results in co-activation of 

inflammatory pathways and increased levels of cytokines in circulation (15).  Of particular 
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interest is the cytokine IL-6, in which increased concentrations are present in a number of 

chronic conditions that are associated with obesity (1).  Another biomarker, CRP, is often used 

by clinicians to assess systemic inflammation and is most notably used as a risk factor for CVD 

(14).  

2.1.1 Exercise and Inflammation 

 Exercise training presents a paradoxical situation with respect to the inflammation.  That 

is, an acute bout of exercise can produce levels of inflammatory cytokines many times greater 

than resting levels (16).  In some cases, exercise-induced levels of inflammatory cytokines meet 

or exceed the levels observed during stressors such as surgery, trauma, or sepsis (17).  The 

marked increase in inflammation may lead many individuals to wonder about the benefits 

exercise would pose, when the stimulus is as stressful as other physiological catastrophic events.  

In most cases, the height of the response after an acute bout of exercise is proportional to 

exercise intensity (17).  While endurance exercise is often recommended as treatment for 

inflammation due to its effect on weight loss, resistance training has often proven to be as 

effective in reducing inflammation as well (18, 19).  Of additional interest are the different 

effects that combined resistance training and endurance training can produce in the inflammatory 

profile, although both modalities tend to produce successful overall results in the long term (20).  

However, the significant reductions in the concentration of inflammatory markers that 

accompany exercise training have been observed in a number of studies suggest that chronic 

exercise is a key mediator for this health risk (19, 21, 22).  The important message from existing 

studies is that while the exercise stimulus causes a peak in inflammatory markers in the short 

term, chronic exercise of any modality may lower resting levels of inflammation and an 

increased ability to respond to a hyper-inflammatory state after exposure to stressful stimuli (23). 
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 Cross-sectional studies provide beneficial insight into the inverse relationship between 

inflammation and exercise.  To date, most studies indicate that consistent exercise leads to a 

reduction in resting levels of most inflammatory markers, including tumor necrosis factor-alpha 

(TNF-α), IL-6, and CRP (20, 24).  Perhaps the biggest limitation of these studies is that they rely 

upon self-reported exercise habits, making associations between intensity or modality of exercise 

and levels of inflammatory markers difficult because of the wide interpretation and variety of 

physical activity habits between subjects and studies (23, 25).   

While cross-sectional studies provide some clarity with respect to the correlation between 

inflammation and exercise, results from intervention studies are not as conclusive.  There are a 

number of large cohort studies that indicate a strong inverse relationship between regular 

exercise and inflammation (25-27).  This relationship is observed regardless of the population, 

intensity of exercise, and whether inflammation status is assessed through a single biomarker or 

several (23).  However, observed improvement in longitudinal studies is most likely due to the 

enrollment of overweight or obese subjects or individuals with chronic diseases that tend to be 

characterized by high levels of basal inflammation, such as type 2 diabetes or CVD (23).  In 

many cases, it is important to separate the reduction of systemic inflammation related to exercise 

training from the changes following a loss of body fat.  Adipocytes are a major production center 

of many inflammatory cytokines; because exercise results in lipolysis, the capability to produce 

these inflammatory markers in this is decreased due to the reduction in the amount of adipose 

tissue (2).  In a study implementing six months of exercise training in adults with type 2 diabetes, 

it was speculated that the changes in inflammation were modulated by the decreases in fat mass 

that also occurred with training (28).  This study, along with several others, show improvement 

in markers of inflammation with changes to lifestyle habits; it is unknown as to whether this 
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change due to alterations in body composition independent of the stimulus of exercise training 

unless further analysis is carried out.   

 Exercise alone may not be the only method of reducing inflammation.  In a study 

investigating the combined versus the independent effects of a hypocaloric diet or exercise 

intervention in obese women, the combined use of a diet and exercise intervention was capable 

of significantly reducing serum CRP and IL-6 concentrations (26).  Interestingly, changes in diet 

alone were not capable of causing a significant reduction in these inflammatory markers (26).  

The effects of exercise on CRP concentrations are not consistently observed, although this does 

not indicate that training is not beneficial for overall health, especially in those suffering from 

chronic disease (29, 30).  In a study implementing aerobic, resistance, or a combined training 

program in adults suffering from type 2 diabetes, none of the three treatment protocols were 

successful at significantly reducing CRP from baseline (31).  While inflammation was not 

reduced, fasting glucose levels and total percent body fat were beneficially altered with exercise 

training, which may serve to change inflammatory markers and positively influence overall 

health in the future (31).  Because of their significant role in reflecting progression of chronic 

conditions, especially those associated with obesity, understanding the role that IL-6 and CRP 

play in physiology and how they are altered with exercise is of ultimate importance. 

2.2 Inflammatory Markers: Interleukin-6 

 Interleukin-6 is produced by monocytes and macrophages, as well as T and B 

lymphocytes, in response to elevated concentrations of other inflammatory markers (16, 32).  

Normal IL-6 concentrations are close to 0 pg/mL in healthy individuals, but can reach levels as 

high as 80 pg/mL after a prolonged bout of endurance exercise, such as after a marathon (27).  

This inflammatory marker is also associated with several diseases, as levels of this cytokine can 

be elevated 10-fold over normal resting levels in individuals who are obese (2).  Interleukin-6 is 
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also considered a myokine, as it is produced in muscle cells during contraction (32).  There is 

some speculation that the role of IL-6 as a myokine may be protective, as it has been shown to 

have inhibitory feedback on the production of tumor necrosis factor-alpha (TNF-α), and also 

positively influence substrate availability during endurance exercise events (33).  When IL-6 is 

produced from monocytes through the intracellular nuclear factor kappa-light-chain-enhancer of 

activated B cells (NF-κB) pathway, it acts in an inflammatory manner in response to production 

of TNF-α (34).  When IL-6 is produced as a myokine, it acts independently of binding 

circulating inflammatory ligands and exerts its actions through calcium signaling and the 

mitogen activated protein kinase (MAPK) pathways (35).  

2.2.1 Interleukin-6 Response to Exercise 

Interleukin-6 is one of the most frequently investigated cytokines in the field of exercise 

immunology, because of its rapid and drastic changes with an acute bout of exercise as well as its 

likelihood to respond to chronic training.  When plasma IL-6 levels were assessed in 15 male 

endurance athletes both prior to a marathon event and in 30-minute increments up to four hours 

following the end of the race in 15 male endurance athletes, plasma IL-6 was increased 126 

times higher than resting levels immediately following the race, and remained significantly 

higher than normal for all time points in the four hours (27).    

Although early studies investigating the use of exercise to treat elevated systemic 

inflammation have focused on the use of aerobic activities, resistance training may provide an 

alternate form of activity for individuals who are not inclined to endurance types of exercise.  

The peak of IL-6 following a single bout of resistance training is not as high as what might be 

reached during endurance exercise, which might be beneficial for individuals who are at risk for 

negative health events when exposed to overly stressful stimuli (18).  In a study with a crossover 

design comparing elevated cytokines in endurance and resistance trained individuals, IL-6 
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peaked to an increase of 44-fold after endurance activity while it only peaked to 4-fold after 

resistance activity (36).  However, these subjects were trained prior to enrollment in the modality 

in which they were tested. 

 Significant increases in IL-6 immediately after exercise have been consistently observed 

in a variety of populations and after a variety of activities; this elevation can last for up to five 

hours, depending on other health factors of the individual (16, 37).  Levels of IL-6 increase 

almost immediately with the onset of exercise due to the production by both monocytes and 

myocytes (38).  The magnitude of increase in IL-6 concentration is tightly correlated with the 

duration of the exercise event, although modality and intensity of exercise may also play a role in 

the elevation as well (37).  For example, increases in IL-6 concentration may occur after one 

hour of running ranging from four to 30-fold, while two and a half hours of running can lead to 

observed increases in IL-6 concentrations of 8- to 109-fold (38).  These increases can progress 

even higher if the duration of the activity continues longer (38).  This pattern is also replicated in 

cycling, where one hour of cycling results in increases between 2- and 5-fold, and two hours of 

cycling can result in a 38-fold increase in serum IL-6 concentrations (38).  It is important to note 

that the variability in IL-6 increases are likely due to the individual characteristics related to 

biomechanical efficiency or training status or the nutrition and supplementation habits of the 

athletes prior to the exercise event (38).  The variability may also stem from the different sources 

of IL-6, as it comes from both stimulated monocytes and contracting muscle tissue (32). 

 Prolonged exercise training programs have been shown to decrease both levels of IL-6 at 

rest, as well as blunt the peak of IL-6 during exercise, suggesting that regular exercise produces 

an adaptation to the inflammatory stimuli (38).  There is speculation that this decrease in IL-6 

concentration with chronic exercise training is due to an increase in sensitivity to IL-6, as there is 

evidence that there is significant upregulation in production of IL-6 receptor mRNA following 
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exercise training (25, 32).  Those who remain active throughout life are also prone to lower 

resting levels of this inflammatory marker due to the sustained and repeated exercise stimulus, 

which may allow the body to adapt to this stressor (39, 40).  In a study comparing old and young 

marathoners, it was shown that those who were physically active had significantly lower levels 

of IL-6 compared to the control subjects, with no age by group interaction (39).   

2.3 Inflammatory Markers: C-Reactive Protein 

 The release of IL-6 and other inflammatory cytokines is known to stimulate the liver to 

produce substances known as acute phase proteins, which enhance the overall immune response 

to a stimulus (16, 41).  C-reactive protein is one such acute phase protein, released during 

traumatic events such as tissue injury or myocardial infarction, as well as intense bouts of 

exercise (16).  Concentrations above 2.0 mg/L are considered elevated, although values below 

1.0 mg/L are desirable and considered to be low risk for cardiovascular events (30, 42).   

2.3.1 C-Reactive Protein Response to Exercise 

 Changes in CRP in conjunction with acute and chronic exercise are often studied because 

of the marked differences time course and exercise modality have on the increase in this 

biomarker.  A long, single bout of exercise is required to stimulate an increase in CRP 

concentration, and depending on the intensity and duration of the exercise, CRP can remain 

elevated from several hours after completion of the activity to several days later (16).  When 

measured in 90 endurance runners, CRP was significantly elevated immediately following the 

completion of a marathon, and remained elevated for up to 48 hours following the finish of the 

race (43).  

 Many studies have indicated that exercise training is successful in suppressing the acute 

phase response, leading to lower levels of CRP at rest (22).  When previously untrained 

individuals completed nine weeks of endurance exercise training, the CRP response to a stressful 
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exercise stimulus peaked at a lower concentration and was attenuated more quickly than when 

the subjects were exposed to the stressful stimulus prior to training (44). This study did not 

measure changes in inflammation over time, but managed to illustrate the importance of 

remaining active with respect to counteracting the changes in inflammation that occur with aging 

(39).  Another study implemented a 6-month aerobic exercise training protocol in obese adults 

with type 2 diabetes.  After completion of the training period, CRP was decreased when 

compared to levels obtained prior to training (28).  Similarly, in a study comparing levels of 

inflammatory cytokines between young and old runners to age-matched inactive controls, it was 

shown that CRP levels were lower in the older active individuals than the older inactive 

participants (39).   

While endurance activities are most commonly prescribed to lower inflammation, 

especially in overweight individuals, resistance training has also been investigated as a potential 

exercise modality for decreasing CRP as well.  In one study, obese post-menopausal women 

experienced a decrease in CRP following 12 weeks of a prescribed resistance training program 

(45).  Similarly, when overweight individuals were prescribed a resistance training program 

lasting one year, there was a significant decrease in basal CRP concentrations (46).  Because of 

the efficacy of both aerobic and resistance training in lowering inflammation, using an exercise 

training program that incorporates both modalities also seems to be successful.  When old and 

young inactive participants were prescribed an exercise program of both endurance and 

resistance components, it was shown that serum CRP was decreased from baseline 

concentrations in both age groups (22).  However, another study using subjects classified as 

either at high risk or at low risk for metabolic syndrome showed that resistance training did not 

alter resting levels of CRP in either risk group (47).  Subjects in this study underwent a 10-week 

resistance training program of seven different exercises, three days per week (47).  It is likely 
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that the inclusion of both genders without equal stratification across the treatment and risk 

groups may have altered the results of the study.  These studies serve to highlight the fact that 

resistance training is a promising tool for lowering CRP, although the degree to which this 

biomarker is reduced by this modality alone is not understood and more research is needed in 

this area.   

2.4 The Role of Monocytes in the Inflammatory Process 

 Monocytes are cells that serve as precursors for macrophages, which in addition to 

producing inflammatory markers, phagocytize foreign bodies found in circulation (48).  After 

being produced in the bone marrow, monocytes enter circulation for several days, and then 

migrate to tissues throughout the body to carry out their protective role (48).  There are several 

different populations of monocytes that have varying degrees of inflammatory function, and each 

population is characterized by different cell-surface markers (48).  Monocytes are typically 

identified by the presence of the marker CD14 on the cell surface (5).  Another cell surface 

marker, CD16, is present on a subset of the CD14 monocytes (5).  This results in the 

identification of two types of monocytes: classical monocytes, CD14+CD16-, containing the 

CD14 but not CD16 marker with low inflammatory activity, and the non-classical CD14+CD16+ 

monocytes, which have high inflammatory activity (5, 48).  Some have suggested that the 

difference in inflammatory activity stems from the difference in toll-like receptor (TLR) 

expression, which is present in large quantities on the non-classical CD14+CD16+ monocytes (5, 

49). 

2.5 The Toll-Like Receptor Pathway 

 Toll-like receptors are a key component of the immune function, as they are important in 

recognizing pathogens within the body and recruit other immune cells to the site of infection in 

order to protect the body (50).  There are a number of TLRs, ranging from TLR1 to TLR13, 
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within various vertebrates that respond to different stimuli (50).  Toll-like receptor 4 is one of the 

most recognized receptors in humans and is located on the surface of monocytes and other 

leukocytes, as well as non-immune cells such as endothelial cells, thyroid cells, endometrial 

cells, pancreatic beta cells, and adipocytes (51).  The TLR4 is stimulated by LPS and produces 

several inflammatory markers, including IL-6 and TNF-α (50, 52).  For example, when human 

embryonic kidney cells were transfected with the TLR4 gene and then stimulated with LPS, the 

NF-κB inflammatory pathway was activated (52).  In this instance, NF-κB activity was assessed 

by measuring luciferase activity of a downstream enzyme dependent on NF-κB activation (52).  

When the same cells were treated with a TLR4 antagonist, this inflammatory pathway was 

blocked and resulting luciferase activity was negligible (52). 

2.6 Monocyte and Toll-Like Receptor 4 Response to Exercise 

 Exercise has been demonstrated to decrease the number of inflammatory monocytes, as 

well as TLR4 expression on the surface of these immune cells (49).  One cross-sectional study 

showed that a single bout of resistance exercise was capable of decreasing TNF-α production 

after LPS stimulation in blood samples from overweight, postmenopausal women (45).  

Similarly, a study using young and old physically inactive individuals showed that 12 weeks of 

combined resistance and aerobic exercise training was capable of reducing IL-6 production 

following LPS stimulation in both groups (21).  Flow cytometry analysis confirmed that the 

exercise training reduced cell-surface expression of TLR4 on inflammatory monocytes in both 

young and old individuals (21).  Toll-like receptors are sensitive to a variety of circulating 

inflammatory cytokines, so it is possible that the repeated, transient increase in inflammatory 

cytokines, such as IL-6, that occur with physical activity may work to downregulate the 

expression of TLRs (49).  However, this reduction in TLR4 expression is not consistently 

observed.  In the study that demonstrated a reduction in the percentage of CD14+CD16+ among 
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total monocyte population, there was not a significant reduction in the TLR4 expression on these 

monocytes (49). This finding may indicate that the reduction in inflammation stems from the 

decrease in cell number, not the receptor expression (5). 

2.7 Vitamin D 

Exercise is certainly a useful tool in improving overall health and decreasing 

inflammation, but dietary nutrients, specifically vitamin D, have emerged as potential tool to 

reduce inflammation as well (53).  Vitamin D is well known as an important nutrient for bone 

health and regulating calcium levels throughout the body; however, recent studies have 

suggested that this compound can improve aspects of overall health and exercise performance as 

well (54).  The benefits of increasing vitamin D intake are not limited to those interested in 

enhancing athletic performance, as it is believed that vitamin D may also elicit beneficial 

changes in body composition by decreasing adiposity (55).  There are a number of health 

benefits associated with decreasing body fat, including the important alterations that occur in the 

concentrations of inflammatory cytokines.  Interestingly, vitamin D is believed to directly affect 

levels of chronic inflammation by altering pathways within many different types of cells as well 

(6, 7).   

2.7.1 Vitamin D Isoforms 

Because there are multiple isoforms of vitamin D that occur throughout the metabolic 

pathway, a complete understanding of the mechanism of action of this compound in various 

physiological processes has not been completely elucidated (56).  These structures arise from the 

variety of sources of the vitamin, including the complex metabolic reactions required to produce 

active metabolites, and the subsequent reactions needed to break down the active metabolite once 

it is no longer needed (57).   
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 Vitamin D is not only a vitamin but is also considered a steroid hormone, composed of 

three carbon rings and a side chain (56).  Modifications to the rings or the side chain through 

addition of hydroxyl groups, methyl groups, or double bonds, alter the potency of the compound 

(56). Two forms, ergocalciferol, or D2, and cholecalciferol, or D3, are found in the diet (56).  

Vitamin D2 differs from D3 by a double bond between carbons 22 and 23 in the side chain, and a 

methyl group on carbon 24; due to these differences, it has up to one-third of the biological 

potency that D3 (56). 

2.7.2 Vitamin D Metabolism 

 The metabolism of vitamin D is a complex process with many steps, all of which are 

intertwined and depend on concentrations of other vitamin D metabolites and nutrients in the 

body.  This process is additionally confounded by the fact that vitamin D can also come from 

dietary sources.  There are both individual and environmental factors that influence the 

metabolism and breakdown of vitamin D, making the understanding of the metabolism of 

vitamin D somewhat complicated. 

 The synthesis of vitamin D within the body involves a number of steps to activate the 

compound and convert it to a form that can elicit physiological actions.  The pathway of vitamin 

D metabolism involves the production of 25OHD in the liver and 1,25-dihydroxyvitamin D 

(1,25(OH)2D) in the kidney (57).  The oxidation of 1,25(OH)2D in target cells acts to mark the 

compound for catabolism and a secondary catabolic pathway converts both 25OHD and 

1,25(OH)2D to lactone products (57).  Each metabolite of vitamin D has varying levels of 

biological activity, which is directly tied to the chemical structure of the compound and variable 

conditions within the body (57). 

 Vitamin D is considered a non-essential nutrient, because it can be made naturally in the 

body (56).  The process begins with the activation of 7-dehydrocholesterol (7DHC), which is 
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synthesized from cholesterol in the diet and absorbed through the wall of the intestine and stored 

in large quantities in the epidermis and dermis layers of the skin (58, 59).  When ultraviolet (UV) 

light from the sun reaches 7DHC, a conformational change occurs to form the compound known 

as previtamin D (58).  This process occurs most efficiently at wavelengths of 290 to 315 nm, 

contained within the ultraviolet wavelengths that range from 10 to 400 nm (58, 60). 

 Previtamin D is taken up by the liver for hydroxylation, the first step in creating a 

biologically active isoform, 25OHD (56).  Once 25OHD is produced in the liver, the 

hydrophobic structure is bound to a protein to allow for more stability in circulation (56).  

Because 25OHD and 1,25(OH)2D are both insoluble in water, the active metabolites must be 

bound to a protein, known as D binding protein (DBP), for transportation and stability (57).  

Vitamin D from dietary sources, found mostly in the form of vitamin D2 or D3 and small 

amounts as 25OHD, is absorbed in the small intestine and integrated with other fat-soluble 

particles as part of the chylomicron (57).  This allows it to be taken up by muscle and adipose 

tissue directly due to the action of lipoprotein lipase in these tissues (57).  The vitamin D that is 

not taken up from the chylomicrons is absorbed by the liver in the chylomicron remnant, and 

subsequently bound to DBP.  Dietary vitamin D has a low affinity for DBP, so while some is 

transferred to the protein in circulation, this process happens much more slowly than as if it were 

absorbed from the chylomicrons and transported to the liver (57).  Almost all of the vitamin D 

that is synthesized from 7DHC in the skin is bound to DBP once it enters circulation (57).  25-

hydroxyvitamin D is the form of vitamin D found in circulation that is used to establish vitamin 

D status (56).  When 25OHD reaches the kidney, it is hydroxylated again to produce the 

biologically active metabolite, 1,25(OH)2D (56, 58). 

 After the body no longer needs 1,25(OH)2D for physiological processes, the compound 

must be broken down into a number of byproducts before it can be removed from the body (57).  
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The enzyme responsible for inactivating 1,25(OH)2D is also capable of inactivating 25OHD; 

even though 25OHD is not responsible for eliciting actions throughout the body, it must also be 

inactivated so that it is no longer converted to 1,25(OH)2D and levels can continue to decrease.  

1,25-dihyrdoxyvitamin D is hydroxylated to produce 1,24,25(OH)3D; the new hydroxyl group is 

ketonized; another hydroxyl group is added to carbon 23, and then the molecule is cleaved to 

produce 1,23(OH)2D and calcitroic acid, which are both water soluble and can be excreted in the 

bile (56).  Even though this pathway is the primary method of breakdown for the active 

metabolites, there is also a secondary pathway that is far less understood, which results in the 

production of lactone products that are marked for excretion (57). 

2.7.3 Influences on Vitamin D Status 

 Given the complexity of vitamin D metabolism, it is not surprising that there are a 

number of factors that can augment the amount of vitamin D available to be used within the 

body.  These vitamin D-altering factors are linked to individual qualities such as skin 

pigmentation, the presence of disease, and environmental factors such as location and season (60, 

61).  Because of the number and complexity of each of these variables involved in determining 

the bioavailability of vitamin D, it is difficult to establish recommendations related to dietary 

intake and sun exposure for the general public. 

2.7.4 Environmental Influences on Vitamin D Concentrations 

 There are a number of environmental factors that drastically decrease the amount of 

1,25(OH)2D that is produced from 7DHC.  Conversion of 7DHC occurs most rapidly at UV 

wavelengths between 290 and 315 nm, although these wavelengths are not likely to reach the 

earth’s surface in significant amounts due to pollution or at latitudes further away from the 

equator (58).  Even in the absence of pollution, oxygen and nitrogen molecules in the ozone can 

interfere with UV radiation, which by some measures, can decrease vitamin D production to only 
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1% of optimal levels (58).  In addition, both time of day and season can influence the overall 

amount of UV light that reaches the surface of the earth.  Maximal ultraviolet radiation occurs in 

the middle of the day during the summer (58).  However, while the UV light is sufficient to 

produce at least some 25OHD all year long at latitudes below 40°N, equivalent to the location of 

Philadelphia, Pennsylvania, vitamin D production via UV radiation ceases for at least some 

portion of the year in a large portion of the world (58).  For instance, a study by Close et al. 

examining the 25OHD status in athletes showed that 60 out of 91 total subjects had serum 

25OHD levels below 20 ng/mL during the winter in the UK (54).  On the other hand, living at 

lower latitudes where UV light is sufficient all year does not exclude individuals in these regions 

from insufficient levels of 25OHD, as individual factors must also be considered (13, 62).  

Because season and geographic location are related to a significant amount of 25OHD variation, 

it is nearly impossible to estimate the amount of vitamin D that could be endogenously produced 

for any given amount of time in a single population (58). 

2.7.5 Individual Factors Influencing Vitamin D Status 

 Individual factors and behaviors also influence endogenous production of vitamin D.  

Production through UV radiation can be attenuated through the use of sunscreen and melanin 

levels in the skin (58, 60).  A number of studies have investigated the efficacy of various levels 

of protection from sunscreen, with the results indicating that even when applied incorrectly, 

sunscreen with an SPF as low as 8 is capable of blocking most endogenous production of vitamin 

D (58).   

Melanin, a compound produced by the melanocytes in the skin that results in 

pigmentation, also competes with 7DHC for UV radiation (58).  Different ethnic groups with 

higher levels of melanin, specifically African-American and Hispanic individuals, are more at 

risk for insufficient or deficient levels of vitamin D because of the increased levels of melanin 
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that occurs naturally in these populations (60, 63, 64).  Melanin decreases production of vitamin 

D by absorbing UV radiation at a wider spectrum of wavelengths when compared to 7DHC (58).  

The inverse relationship between skin pigmentation and 7DHC leads to a decrease in the 

potential of endogenous vitamin D production (63, 64).  In fact, several studies have investigated 

the relationship between ethnicity and prevalence of low levels of vitamin D, showing that 

minorities tend to have lower serum 25OHD than Caucasian individuals (63, 65).  Also, aging 

and damage to the skin from burns or scars can decrease the amount of 7DHC stored in the skin, 

which decreases the potential amount of vitamin D that can be produced (15).   

Synthesis of 25OHD rarely exceeds 10 to 15% of the conversion of 7DHC, which may be 

an evolutionary mechanism to prevent toxicity (58).  Because of this reason, toxicity due to 

excess UV exposure has never been observed (60).  Previtamin D and vitamin D are also able to 

absorb UV light, which converts them to the biologically inactive byproducts lumestrol and 

tachysterols that remain in circulation for later conversion back to vitamin D, if necessary (58, 

60).  Excessive UV radiation can also degrade vitamin D, resulting in the formation of 

suprasterol, which cannot be converted back to vitamin D (60).  For this reason, even those who 

spend sufficient or even excessive time in the sun are still at risk for suboptimal serum levels of 

25OHD.  Furthermore, the conversion of previtamin D to vitamin D is positively correlated to 

skin temperature; while this thermal reaction usually occurs efficiently because skin temperature 

is increased at times when UV exposure is also high, the temperature of skin can vary widely 

between individuals and location, which causes fluctuations in vitamin D synthesis as well (60). 

2.7.6 Dietary Influences on Vitamin D Concentrations 

 Vitamin D is obtained from the diet in addition to the endogenous production through 

sunlight.  However, recent reports suggest that dietary intake can be considered almost negligible 

because such small quantities are consumed (58).  While vitamin D is classified as a hormone 
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because of the capability of the body to produce it endogenously, it received its title as a vitamin 

due to its need for growth in the body and ability to be obtained from a variety of dietary sources.  

Small amounts of vitamin D are found in a western diet and natural production of vitamin D in 

the skin accounts for the majority of this compound in the body (58).  While the endogenous 

metabolism of vitamin D requires many more conversions in order to produce the active form 

from the precursor that is found in the epidermis, dietary sources are able to bypass these 

reactions and enter the same metabolic pathway (58).  Vitamin D from the diet is ingested and is 

then transported to the liver either in chylomicrons or bound to DBP to create 25OHD.  From 

there, it is subject to the same hydroxylation reactions as 25OHD that results from endogenous 

production (58). 

Vitamin D is naturally occurring in a variety of foods (66).  Dietary sources are 

composed of both vitamin D2 and D3.  Vitamin D2 is derived from invertebrates, fungi, and plant 

sources, and D3 comes from vertebrate sources, found in products such as dairy products and 

fatty fish (58).  Both vitamin D2 and D3 have been used to treat osteomalacia, rickets and overall 

suboptimal status, although D3 is more effective in raising serum levels of 25OHD (58, 67).   

The US, Canada and several European countries require that certain fruit juices, dairy sources, 

and whole grain products be fortified with vitamin D (63).  Even though vitamin D3-fortified 

foods are available to consumers in industrialized countries, the relative amount of vitamin D 

present in these sources and consumption of these foods relative to other sources is low (63).  For 

this reason, some nutritionists suggest that because dietary consumption of vitamin D is so small, 

the contribution of these sources to overall vitamin D levels in the body should be considered 

negligible (60).  For example, 3.5 ounces of cooked salmon provides only about 250 

International Units (IU) of vitamin D (63).  This value decreases by about 50% for every type of 

fish when it is fried (63).  Also, just one 8-ounce glass of fortified whole milk provides just 
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around 100 IU of vitamin D3.  Interestingly, one study found that the variability in vitamin D3 

content present in fortified milk can range from 10% to 300% of the reported value on the label, 

with several samples containing no detectable vitamin D (63, 64). 

2.7.7 Vitamin D Requirements 

With the recent surge in interest of exploring the benefits of vitamin D, it is expected that 

a debate concerning the optimal status of this hormone would occur.  In fact, there is a 

discrepancy between the current intake and optimal serum levels recommended by the Institute 

of Medicine (IOM), and levels believed to be optimal by experts in the field (60).  The variability 

in serum levels caused by exogenous intake and endogenous production only adds to the 

uncertainty of the exact amount of vitamin D to be included in the diet, how much UV exposure 

is absolutely necessary, and optimal serum 25OHD for different populations (58). 

 While vitamin D is consumed in the diet, most clinicians agree that the amounts are so 

small that food and drink should not be considered as a primary means for increasing serum 

levels in the body (60, 61).  Dietary sources were not needed many years ago, as individuals 

spent maximal time in sunlight and produced most of the vitamin D needed through the 

ultraviolet activation of 7DHC in the skin (60).  The recommended intake value established in 

1989 was determined before serum 25OHD could be measured in the general population. 

Proponents of increasing vitamin D intake requirements argue that because there is an increase in 

the prevalence of 25OHD deficiency, there should be an increase in the Daily Recommended 

Intake (DRI) (60).  There is also a movement for the DRI of vitamin D to become more 

modernized to accommodate current lifestyles, as many individuals are reducing the amount of 

time they spend in the sunlight to decrease their risk of skin cancer or demands placed on their 

schedule because of their occupations (60). 
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 The IOM is the governing body in the field of nutrition, responsible for establishing the 

recommended guidelines of intake of various nutrients (68).  The IOM published new 

recommendations in 2010 as emerging studies began to establish potential new benefits for 

vitamin D.  Indeed, the recommended intake was increased from 400 IU per day to 600 IU, and 

the recommendation was established as a Recommended Daily Allowance (RDA) instead of the 

previous Adequate Intake (AI) published in 1997.  While it may seem insignificant, the change 

in designation to an RDA indicates that there was more evidence to prove that vitamin D would 

provide the benefits that were published (68).  Interestingly, the vitamin D Dietary Reference 

Intake (DRI) published in 1997 was based solely on the well-established, direct relationship 

between bone health and serum 25OHD levels, which caused some controversy with nutritionists 

(60, 68).  The IOM investigated indicators beyond bone health including calcium absorption, 

25OHD and parathyroid hormone (PTH) interactions, risk of cancers and neoplasms, 

cardiovascular disease, hypertension, diabetes and metabolic syndrome, immune dysfunction, 

infectious diseases, pregnancy disorders, neurological dysfunction, as well as reduced exercise 

performance and risk of falls.  However, after considering all of these potential outcomes, the 

IOM felt there were no consistent results that would warrant a further increase in the DRI (31).  

The IOM correctly noted that there are, to date, very few randomized control trials or clinical 

trials showing a dose-response and causal relationships concerning outcomes other than the 

effect of vitamin D on bone density (31).  While more conclusive evidence supporting the use of 

vitamin D in the treatment of these diseases has surfaced in the past few years, it is clear that the 

IOM established such a low intake level because the recommendation was based on the only 

reliable and convincing results that were available at that time. 

Another factor related to the lack of an increase in the IOM recommended intake levels 

of vitamin D is centered on the reported levels of insufficiency.  Many studies in a wide variety 
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of populations have revealed an increased proportion of subjects with low levels of 25OHD (65, 

66, 69, 70).  However, the IOM cites that insufficiency is likely over-reported in these studies, 

due to the lack of standards defining serum levels establishing insufficiency and deficiency (68).  

Again, this is a glaring lack of understanding in the area of vitamin D research, and the IOM 

could not recommend a more radical increase in optimal intake when the levels are meant to 

apply to the public at large (68).  This fact only highlights the importance for an increase in 

understanding as to how best establish recommendations for optimal vitamin D intake. 

 Of course, there are two sides to the vitamin D intake controversy.  While the IOM has 

taken a more conservative approach to establishing recommended intake levels, many 

nutritionists would appreciate recommendations based on current lifestyles with a more 

modernized intake and optimal serum level (60).  “Normal” serum levels were once determined 

by taking repeated samples and plotting the distribution with the mean of the population used to 

establish as normal values (60).  It is argued that optimal levels should not be defined by average 

serum 25OHD content of whole populations, because the inclusion of individuals with impaired 

vitamin D metabolism due to disease or lifestyle would significantly reduce overall levels (60).  

Those in favor of increasing the ideal serum 25OHD concentration argue that humans evolved by 

spending significant periods of time in the sunlight and produced thousands of IU per day; 

therefore, recommendations should account for the fact that more modern lifestyles do not allow 

for this much time outdoors (60, 61).  If humans evolved in the presence of thousands of IU 

produced endogenously, yet are not currently produced in the same quantity, the DRI should be 

increased far above 600 IU per day to compensate for the lack of UV exposure (60). 

 Yet another point of contention is centered on the amount of vitamin D produced or 

consumed that will translate to optimal serum concentrations of 25OHD.  Those living in sun-

rich environments with no blocking to UV exposure routinely present with 54 to 90 ng/mL 
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25OHD, although this range is obviously highly variable based on season and geographical 

location (58, 60, 61).  There is also considerable variability in the amount of vitamin D ingested 

and the resulting increase in serum 25OHD (58).  Research has shown that negative feedback can 

occur between serum 25OHD levels prior to supplementation and the amount included in the 

supplementation regimen.  That is, those with higher baseline 25OHD prior to supplementation 

will show a lower rate of improvement in serum 25OHD concentrations, and those with more 

impaired baseline 25OHD status will respond better to vitamin D treatment (58).  This is most 

likely due to decreased 25-hydroxylase activity in those with higher baseline 25OHD.  Based on 

existing research, basal 25OHD levels below 20 ng/mL will increase approximately 0.48 ng/mL 

with every 40 IU per day and those suffering from severe deficiency with levels below 4 ng/mL 

will see an increase in 1.38 ng/mL for every 40 IU per day.  However, those with serum levels 

above 28 ng/mL prior to supplementation only raise serum levels an average 0.28 ng/mL for 

every 40 IU contained in the daily supplement (58, 60). 

 The key to increasing recommended intake and optimal serum levels is centered on the 

incidence of injury and illness that occurs when intake and serum levels are maintained at those 

set forth by the IOM.  Because of the inverse relationship between 25OHD and PTH 

concentrations, secondary hyperparathyroidism can occur when 25OHD levels are low.  In fact, 

deficient elderly individuals often present with hyperparathyroidism when serum levels are 

below 30 ng/mL, and the condition is resolved when serum levels reach at least 32 ng/mL (60).  

This is an important piece of evidence supporting the official increase vitamin D intake 

recommendations, because calcium absorption is impaired when 25OHD serum levels fall below 

32 ng/mL, the same concentration that prevents hyperparathyroidism (60).  The National Health 

and Nutrition Examination Survey (NHANES) III indicated the relationship between 25OHD 

and bone mineral density, confirming there was a clear optimization of calcium levels and bone 
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mineral density (BMD) when 25OHD reached 32 ng/mL (60).  Further, there is a distinct 

association with severely low BMD and high incidence of fractures in individuals with serum 

levels in the range to be considered “normal” by the IOM of 10 to 15 ng/mL (60).  Data indicates 

that no known harmful effects occur with serum 25OHD levels greater than 100 ng/mL, but there 

are serious risks related to keeping serum levels below 32 ng/mL, especially for clinical 

populations (60). 

2.7.8 Vitamin D and Health Outcomes in Older Populations 

 Vitamin D is most recognized for improving bone health by regulating calcium 

concentrations (71).  However, relationships first emerged between improvements in vitamin D 

status and exercise performance as early as the 1940s, when the Germans discovered that athletes 

who received more ultraviolet exposure had faster 100-meter sprint times (71, 72).  These 

findings were largely ignored until researchers began to explore the usefulness of using calcium 

supplementation in older adults to increase BMD (73).  It was through this research that a 

significant portion of older adults was found with deficient serum levels of vitamin D.  Vitamin 

D may also be involved in regulating many other physiological processes outside of increasing 

bone density (74). 

 Aging is associated with sarcopenia and bone loss (75).  The changes that occur with 

insufficient levels of vitamin D and relationship of this hormone to the aging process seem to 

have been of particular interest over the course of the last several years.  Suboptimal vitamin D 

levels in older individuals can lead to changes that include decreased BMD and the development 

of sarcopenia, which is the loss of muscle mass that occurs naturally over time with increased 

age (76, 77).  Diets low in vitamin D content and decreased sun exposure, often observed in the 

lifestyles of older individuals, are major factors in the observed vitamin D insufficiencies.  The 
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7DHC content present in the epidermis declines as a result of aging, leading to a decreased 

ability to produce vitamin D and overall progression of poor bone and muscle health (75). 

 Decreased muscle strength and bone density cause older populations to be at significant 

risk for health-related consequences including increased falls risk, fractures, and decreased 

quality of life (74, 77).  One study showed a significant inverse relationship between 25OHD and 

body sway in community-dwelling women with an average age of 63 years (78). Other 

significant relationships emerged among body sway, incidence of falls and fractures (78).  

Because some have speculated that the relationships between falls and fractures are mediated by 

25OHD, increasing the status of these individuals may be a key to preventing serious injury (77, 

78). 

Older populations are at risk for poor nutrition, and this condition can directly fuel the 

progression of many chronic conditions.  Consequently, these individuals are often used in 

supplementation studies involving one or more nutrients.  This includes a fairly large body of 

work investigating the effects of calcium supplementation, either alone or paired with vitamin D, 

and the changes in BMD and activities of daily living (74).  Work in this area shows that 

increased calcium intake results in a healthier skeletal system, fewer falls, more independence 

and an overall greater quality of life.   

 Parathyroid hormone is important in the regulation of calcium levels, and becomes 

elevated as 25OHD levels drop (79).  When calcium levels drop and PTH levels increase, 

softening of the bone tissue known as osteomalacia occurs.  Osteomalacia is related to low levels 

of vitamin D, which leads to the release of calcium from the bone matrix and softening of the 

bones.  In most cases, sarcopenia is associated with osteomalacia.  Some have suggested that the 

drop in 25OHD and associated increase in PTH may accelerate the development of sarcopenia 

associated with osteomalacia. As observed in some studies, using supplements to increase 
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calcium concentrations cause PTH levels to return to closer to normal, which has helped 

ameliorate the effects of loss of sarcopenia associated with osteomalacia (79).   

 When comparing the studies in this area, there are several confounding variables that 

make researching a consensus difficult.  The most complicated aspect of this area of research is 

centered on the variable dosage amounts of vitamin D and age of the subjects between studies.  

Furthermore, the pathology of individuals considered to have entered old age but are still 

relatively healthy is drastically different from those who are elderly and suffer from a range of 

debilitating diseases.  This disparity may lead to a difference in both baseline measures and an 

ability to detect a response (79). 

 Vitamin D-mediated improvements in strength and power output in older adults are one 

of the most promising areas of research (73, 77, 79).  Several studies show similar positive 

relationships between 25OHD and markers of muscular health that result in improvements in 

functional ability, including body sway, balance, 8-foot walk tests, sit-to-stand times, and 

reaction times (74).  A cross-sectional study indicated power, as measured by leg extension, 

declined with age and was positively correlated with, a less common indicator of vitamin D 

status, 1,25(OH)2D, in both men and women between ages 64 and 99 years (77).  Of further 

interest was the significantly lower power for those who were considered deficient, which was 

defined for this study as serum 25OHD levels below 12 ng/mL (77).  A separate, longitudinal 

study showed that there was a positive association between 25OHD levels and grip strength, as 

well as the loss of muscle mass over time (76).  Given these relationships, the authors concluded 

that higher levels of 25OHD acted to protect against the signs of sarcopenia over the three years 

of study observation (76).  This included a strong association between serum 25OHD and grip 

strength when subjects were divided into categories based on 25OHD concentrations, with 

individuals being considered deficient with serum levels below 10 ng/mL and sufficient when 
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serum levels were above 20 ng/mL (76).  Those with serum 25OHD below 10 ng/mL were 2.14 

times more likely to develop sarcopenia when based on grip strength, and 2.59 times more likely 

when based on skeletal muscle mass (76).  The relative importance of this particular study is that 

it connects the observational and cross-sectional studies with those that supplement individuals 

and observe increases in strength (76). 

2.7.9 Vitamin D and Exercise Performance 

 Recent reports suggest that vitamin D may have the potential to alter muscle tissue 

physiology, leading to improved strength and power measures in younger, healthy populations 

(74).  Interestingly, these studies revealed an unexpected lack of vitamin D intake and low serum 

25OHD concentrations in this population as well (54, 60).  To date, the results of these studies 

are inconclusive, but suggest that increasing intake of vitamin D in younger populations may 

lead to beneficial changes in muscle physiology.  However, several recent findings have piqued 

the interest in vitamin D and muscle function in younger individuals.  This includes the 

discovery that many otherwise healthy individuals may suffer from low levels of vitamin D, 

possibly due to being overweight (79).  There is also the potential of vitamin D to increase 

athletic performance in those that are of healthy body weight and without the presence of 

significant illness (79, 80). 

Vitamin D is important in maintaining bone density, increasing muscle synthesis and 

immune function in athletes (9).  Unfortunately, most have only speculated that increasing 

vitamin D status in these individuals may improve athletic performance and never explicitly 

explored this hypothesis. Some of the first studies investigating the effects of vitamin D and 

athletic performance were carried out in Germany in the 1940s and 50s, when it was determined 

that individuals with increased UV exposure time routinely experienced improvements in athletic 

performance (72).  In one study, thirty-two students underwent irradiation from a sun lamp twice 
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a week for six weeks, and experienced improved performance on a cycle ergometer test 

compared to the unexposed control subjects (9).  More recent research indicates that athletes who 

train indoors or during the winter are at increased risk for deficient 25OHD levels and decreased 

performance (54).  One such study showed that gymnasts had significantly lower serum 25OHD 

levels, and 37% of participants’ levels were in the range for potential osteomalacia and 45% had 

symptoms of hypocalcemia (81).  While these findings were not correlated directly with a 

decrease in performance, the risk associated with low levels of calcium, such as softened bone 

tissue and grand mal seizures (as observed in the study), certainly lead to unsafe conditions for 

athletic performance (81).  

Although there has been consistent interest in the relationship between vitamin D and 

muscular strength and power, there is comparatively little information on the potential 

relationship between vitamin D and aerobic performance.  To date, only a handful of studies 

have observed cross-sectional relationships between 25OHD and various aerobic outcome 

measures, while no studies have investigated the long-term effects of increasing vitamin D status 

and potential improvements in aerobic performance (53). Several cross sectional studies show a 

positive relationship between 25OHD status and aerobic performance (11, 53, 82).  These studies 

also show that athletes of all modalities are at the same risk for vitamin D insufficiency or 

deficiency when compared to the population at large, indicating that increasing these individuals’ 

status is equally important not only for overall health, but improving athletic ability as well (53). 

Two studies that were part of the Cooper Center Longitudinal Study established a 

positive relationship between serum 25OHD levels and cardiorespiratory fitness (CRF), detected 

independently in both men and women.  In these studies, CRF was determined via maximal 

treadmill testing (11, 82).  Statistical analysis showed that there was a significant positive 

relationship between CRF and 25OHD (11, 82).  Some have speculated that those who are more 
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aerobically fit tend to spend more time outdoors and consume healthier diets with higher vitamin 

D content, driving the observed relationship between these three variables (11, 82).  However, it 

is not outside the realm of possibility that 25OHD may play a role in increasing CRF to some 

degree. 

Results from a cross sectional study conducted in our lab are consistent with the studies 

above.  A total of 39 subjects, both male and female, reported to our laboratory for various 

athletic performance measurements. Subjects were split into groups for analysis based on 

whether their serum 25OHD concentrations fell above or below 35 ng/mL, as this level has been 

recommended as optimal 25OHD levels for all healthy individuals, especially those who are 

physically active (53, 72).  Analysis indicated that males with 25OHD levels above 35 ng/mL 

had significantly higher VO2max levels compared to males whose serum levels were below 35 

ng/mL (83).  

2.7.10 Vitamin D and Inflammation 

 To date, a number of cases have suggested that there is an inverse relationship between 

serum 25OHD and concentrations of inflammatory markers such as CRP, TNF-α, and IL-6 (6, 

12, 13, 69).  It appears that changes in inflammation with vitamin D supplementation, with or 

without a parallel exercise training program, depend on the vitamin D status of the subjects prior 

to initiation of treatment (6).  In some cases, it may be that individuals respond differently to 

increased vitamin D status; although the outcome measure of a given research project may not be 

considered significantly changed, another health outcome not analyzed in the project may have 

improved.   

Vitamin D supplementation has the potential to alter the concentrations of inflammatory 

biomarkers but the relationship is not consistent, nor is the mechanism behind this observation 

understood.  One study, using active adults with insufficient 25OHD levels, investigated the 
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relationship between serum 25OHD and concentrations of inflammatory cytokines and peak 

power output; it was observed that there were no differences in power output based on 25OHD 

status (6).  Nonetheless, levels of the inflammatory cytokines interleukin-2 (IL-2), interferon-

gamma (IFN-γ), TNF-α, and interleukin-1 beta (IL-1β) were all significantly elevated in 

individuals with serum 25OHD levels below 32 ng/mL (6).  Further, 25OHD concentrations 

were significantly inversely related to IL-1β and IFN-γ, and positively correlated with peak 

power output determined via single-leg jump heights (6).  Based on the high levels of 

inflammatory cytokines with no associated changes in the anti-inflammatory cytokine 

interleukin-10 (IL-10), as well as the relationship with peak power output observed in this study, 

it is possible that lower levels of 25OHD could mediate the inflammatory cascade without 

completely affecting the capacity of skeletal muscle in insufficient adults (6).  This reasoning 

could also lead to an explanation as to the inconsistent results when investigating the relationship 

between vitamin D and athletic performance outcomes. 

 Relationships between 25OHD and inflammatory cytokines have also been observed in 

endurance athletes; however, the evidence is inconclusive.  For example, when serum 25OHD 

and TNF-α, IFN-γ, IL-4, and IL-10 were measured in a total of 19 endurance runners, the only 

significant correlation that was observed was the inverse relationship between 25OHD and TNF-

α (13).  Although the mean serum 25OHD concentrations were considered sufficient, with males 

(average 25OHD = 33.8 ng/mL) and females (average 25OHD = 43.1 ng/mL), eight of the 19 

subjects had levels below 32 ng/mL and two more subjects had serum levels below 20 ng/mL 

(13).  As with other studies, this study proves further investigation is warranted in a larger 

population with variables such as physical activity and modality, as well as body composition or 

diet being more controlled. 
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In a longitudinal study with overweight and obese adults (average baseline serum 25OHD 

concentration of 19.3 ng/mL) supplemented with either 4000 IU of vitamin D per day or a 

matching placebo, participated in a resistance training program for 12 weeks (84).  Although no 

changes in CRP, IL-6, or TNF-α were observed over time, there was a significant correlation 

between 25OHD and CRP following the 12-week treatment when treatment groups were 

combined, indicating that the effects of decreased inflammation were mediated in part due to the 

resistance training program and altered body composition, not necessarily due to the changes in 

25OHD (84).  Blood samples from subjects were also treated with lipopolysaccharide (LPS) to 

elicit an inflammatory response (84).  Even though both vitamin D and placebo groups 

experienced a reduction in TNF-α levels at the end of the treatment period, only the samples 

from the placebo group experienced an increase in LPS-stimulated TNF-α levels, which suggests 

that vitamin D blunts the acute inflammatory response (84). 
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CHAPTER 3 – METHODS 

3.1 Study Design 

 The purpose of this study was to investigate the relationship between vitamin D status 

and exercise habits and their relationship with markers of inflammation, immune cell response, 

and monocyte phenotypes.  Healthy females, who were either regularly physically active (PA) or 

did not have a history of regular physical activity (NPA), were recruited for this project.  

Subjects were further stratified into groups based on their vitamin D status (high vitamin D 

status, HD; or low vitamin D status, LD).  Four groups were formed based on the stratification 

strategy above: active individuals with high vitamin D levels (PA-H), active individuals with low 

vitamin D levels (PA-L), inactive individuals with high vitamin D levels (NPA-H), and inactive 

subjects with low levels of vitamin D (NPA-L).  This project was approved by the Louisiana 

State University Institutional Review Board. 

3.2 Subjects 

Female subjects, with no apparent chronic illness and between the ages of 19 and 35 

years, were placed into one of four groups based on activity level, either trained (PA) or 

untrained (NPA), and vitamin D status, either below (LD) or above (HD) a given optimal serum 

concentration.  For the purpose of this study, optimal levels of serum 25OHD were considered 

32 ng/mL for the trained group and 20 ng/mL for the untrained group.  These levels have been 

proposed by several different governing bodies in the areas of nutrition and athletic performance 

as the optimal levels for these populations (68, 72, 85).  The IOM determined in 2010 that 20 

ng/mL is a sufficient concentration of 25OHD in a healthy population (68, 85).  However, those 

in the area of sport nutrition believe that there is evidence that concentrations higher than the 

IOM recommendation may be beneficial for those who are physically active (72).  Those in PA 

reported following a consistent exercise training regimen for at least the past three months, 
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consisting of a minimum of 150 minutes per week of moderate to vigorous activity.  Those in 

NPA did not report engaging in a regular exercise program.  Groups were further subdivided 

using both exercise habits and vitamin D status: physically active subjects with high levels of 

vitamin D (PA-H), active subjects with low levels of vitamin D (PA-L), inactive subjects with 

high levels of vitamin D (NPA-H), and untrained subjects with low levels of vitamin D (NPA-L). 

There were several criteria that would exclude a potential subject from participating.  

Any individual reporting any history of smoking, regardless of frequency or if they had quit 

habitual or recreational use, was excluded from participation.  Additionally, subjects without 

regular menstrual cycles were not recruited.  Subjects on pharmaceutical birth control or using 

birth control methods that delayed a monthly cycle were allowed to participate.  Any subject 

reporting a change in body weight greater than 5% in the past three months was also excluded 

from participation. 

3.3 Study Visit Description 

Subjects reported to the lab for four visits: first, to sign the consent forms and take 

anthropometric measures; second, for blood collection; third, for aerobic capacity assessment; 

and fourth, for anaerobic power evaluation.  

In the first visit, subjects were presented with the consent form and were disclosed of all 

pertinent information relating to the study.  Subjects also completed an extensive medical health 

history form.  This questionnaire required the subject to document use of prescription 

medications, family history of significant medical conditions, and history of major medical 

condition diagnosis.  The form also included an obstetric and gynecological portion concerning 

the subject’s history of pregnancy, birth control use, and hysterectomy.  The date of the subject’s 

last menstrual period was recorded, and the investigator made verbal confirmation that the 

subject experienced a regular schedule and/or was on birth control.  There were also questions 
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concerning alcohol and tobacco use. After the subject read and signed the informed consent and 

completed the medical health history form, she filled out a questionnaire known as the Physical 

Activity Readiness Questionnaire (PARQ), which evaluated the individual’s overall health and 

ability to participate in exercise testing (86).  Any “yes” answer to questions on the PARQ 

resulted in exclusion from the study.  Participants also filled out an additional questionnaire 

assessing physical activity habits.  The International Physical Activity Questionnaire (IPAQ)-

Short Format is used to obtain internationally comparable estimates of physical activity with 

adults aged 18-65 years (87).  It also is designed to assess health-related aspects of physical 

activity and sedentary behaviors.  The short version contains four items (seven questions) 

targeting time spent in vigorous- and moderate-intensity activity, walking, and in sedentary 

activity (87).  Appendix 1 contains all forms presented in the first visit. 

Height and weight were measured on a traditional stadiometer, and used to calculate body 

mass index (BMI).  Waist and hip circumference were measured using a Guillick tension tape, 

and used to calculate waist-to-hip ratio (W:H).  Skinfold measurements were taken at seven sites 

across the body with a skinfold caliper: triceps, subscapular, midaxillary, chest, abdomen, 

suprailiac, and thigh (88).  Measurements were repeated three times and averaged.  The sum of 

the averages was then used to determine body density, which was applied to an equation to 

estimate body fat percent (88). 

Subjects were then instructed to complete two forms during the week prior to blood 

collection to characterize dietary intake of vitamin D and sun exposure.  The diet log required 

subjects to list all food they ate for two weekdays and one weekend day.  Each item was then 

analyzed for total vitamin D content from the USDA database, which provides amounts of 

vitamin D, both vitamin D2 and D3, for many foods (89).  Amounts of vitamin D, in total IU, 

were totaled for the three days.  Sun exposure logs characterized time spent in the sunlight for 
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the week prior to blood collection.  In addition to the total time spent outdoors each day, subjects 

were also asked to list what type of clothing they wore that day or “exposure” their body 

received.  This method, proposed by Hanwell et al, allows for total quantification of UV 

exposure (90).  Time outdoors and exposure are each given a numerical score; these scores are 

multiplied for the day and added for the week.  Scoring is as follows: 

Time Spent Outdoors Exposure 

< 5 minutes – 0 points Face and Hands Only = 1 point 

5-30 minutes – 1 point Face, Hands, and Arms = 2 points 

> 30 minutes – 2 points Face, Hands, Arms, and Legs = 3 points 

 Bathing Suit = 4 points 

 

This allows for a scoring range between 0 and 56 points for the weekly total.  Habitual use of 

sunscreen and vitamin D or multivitamin supplements were noted at this time. 

Subjects reported to the laboratory for the second time for blood collection by a certified 

Emergency Medical Technician.  Samples were collected between 6 and 7:30 am following a 10-

hour fast, during which time subjects were instructed to drink only water and avoid food and 

other drinks.  Blood collection was conducted during days 5 to 7 of the menstrual cycle.  

Subjects were asked to refrain from alcohol for 48 hours prior and vigorous exercise for 72 hours 

prior to testing.   

The third visit involved a test of cardiorespiratory fitness, or a VO2peak test.  While there 

are a number of different protocols for VO2peak testing, the Bruce Ramp protocol, tested using a 

treadmill (ProForm Treadmills, Logan, UT) and standard metabolic system (AEI Technologies, 

Pittsburgh, PA), was used for this study (91).  This protocol uses both walking and running 
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speeds, allowing the same protocol to be used on a subject pool with varying levels of fitness 

(91).  Briefly, subjects wear a mouthpiece that is connected to a metabolic cart for the entirety of 

the test, which analyzes the amount and composition of inhaled and exhaled gases.  In the Bruce 

Ramp protocol, the initial stage is one minute in duration, where the subject walks at 1 mile per 

hour with no incline in order to check the placement of the metabolic cart and mask as well as 

familiarize the subject with walking on the treadmill.  Each stage following the warm-up is three 

minutes in length, increasing the speed by 0.3-0.4 miles per hour and incline by 2-3% at the end 

of each stage.  The subject continued to walk or run until they could no longer continue, which 

varied for each participant depending on her aerobic capacity (88).  Subjects also wore a heart 

rate monitor and asked to report their rating of perceived exertion (RPE), which is a scale 

ranging from 6 to 20 and used to assess subjective workload.  Heart rate, RPE, and VO2 were 

recorded at the end of each three minute stage.  VO2peak was considered the highest recorded 

VO2 during the course of the test. 

 Results from the VO2peak test will be used to categorize the subjects into fitness levels, 

as determined by the American College of Sports Medicine (ACSM).  These classifications are 

based on percentiles of VO2max values obtained from large populations of individuals and are 

divided by gender and age group.  Percentile values for maximal aerobic capacity are provided 

by ACSM for these gender and age groups, with classifications of “superior,” “excellent,” 

“good,” “fair,” “poor,” and “very poor” that correspond to increments of the percentile values.  

Reference values for obtained VO2max from females ages 20-29 are listed below (88). 
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Percentile Classification VO2max (mL/kg/min) 

95th Superior 50.2 

80th Excellent 44.0 

60th Good 39.5 

40th Fair 35.5 

20th Poor 31.6 

1st Very Poor 22.6 

 

The fourth and final visit involved an evaluation of anaerobic power using a Wingate test, 

carried out on a cycle ergometer (Monark Exercise AB, Vansboro, Sweden).  Prior to the start of 

the actual test, subjects were allowed a warm-up period at 50 watts, during which they adjusted 

the height of the seat and became acclimatized to the cycle ergometer.  Once the subjects were 

ready to begin, they pedaled at an all-out effort for 30 seconds against a given resistance based 

on their body weight.  Revolutions were counted over the course of the 30 seconds and in five-

second intervals.  This information was then used to calculate peak power output and anaerobic 

capacity, relative peak power and anaerobic capacity based on body weight, and fatigue index 

(92).   

3.4 Blood Analysis 

 One resting blood sample of 30 mL was collected for analyses.  Samples were collected 

in three 10 mL tubes, containing 1) no additive, 2) sodium heparin, or 3) 

ethylenediaminetetraacetic acid (EDTA), resulting in a total sample of approximately 30 mL.  

First, serum was isolated from blood collection tubes with no additive (Beckton Dickinson, East 

Rutherford, NJ) for determination of serum 25OHD and CRP concentrations.  Samples were 

allowed to cool immediately after collection at 8°C for up to two hours.  Following cooling, 

samples were centrifuged at 1000 rcf for 20 minutes at 10°C.  Serum was then aliquoted and 
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frozen at -80°C until analysis.  Serum 25OHD and CRP were assessed using enzyme-linked 

immunosorbent assays (ELISA; Alpco Diagnostics, Salem, NH).  These kits are commercially 

available and provide a reliable assessment of a variety of circulating compounds in the blood.  

Samples were prepared in a 1:100 dilution prior to CRP analysis, according to manufacturers’ 

instructions. 

Blood samples from tubes treated with sodium heparin (Becton Dickinson, East 

Rutherford, NJ) were cultured with lipopolysaccharide (LPS) to assess the production of IL-6.  

Roswell Park Memorial Institute (RPMI) cell culture media (Sigma Aldrich, St. Louis, MO) was 

prepared in a 1:100 dilution with L-glutamine, streptomycin, and penicillin (Sigma Aldrich, St. 

Louis, MO).  Samples were then prepared in a 1:10 dilution in the prepared media.  Samples 

were plated in 2 mL volumes and treated with 50 μL of 1 mg/1 mL LPS (S. enteriditis; Sigma 

Aldrich, St. Louis, MO), for a final concentration of 25 μL.  Control wells were treated with 50 

μL of media.  After 24 hours of incubation at 37°C and 5% CO2, plates were centrifuged for 8 

minutes at 800 rcf.  Supernatants were harvested, aliquoted, and stored at -80°C until analysis.  

Stimulated samples were diluted 1:1000 prior to analysis with ELISA kits (Alpco Diagnostics, 

Salem, NH).   

Whole blood samples from EDTA-treated blood collection tubes (Beckton Dickinson, 

East Rutherford, NJ) were incubated with fluorescent-labeled antibodies for the CD14 (anti-

human CD14-FITC), CD16 (anti-human CD16-PE), and TLR4 receptors (anti-human CD284 

(TLR4)-APC) (eBioscience, San Diego, CA).  Matching isotype control samples were also 

prepared (mouse IgG1 iso control-FITC, mouse IgG1 iso control-PE, mouse IgG2a iso control-

APC; eBioscience, San Diego, CA).  Samples were then analyzed on a FACS Calibur flow 

cytometer (BD Biosciences, San Jose, CA) utilizing a 488 nm argon-ion laser and a 635 nm red 

diode laser configured for FITC, PE, and APC measurements with log amplification and 
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analyzed with CellQuest Pro Software (BD Biosciences, San Jose, CA).  Gates were set to 

analyze monocytes in each sample for the presence of each of the three receptors.  Cell counts 

were provided for total monocytes and CD14+CD16-, CD14+dimCD16+bright, 

CD14+brightCD16+dim populations, while mean fluorescence channel (MFC) was provided for 

TLR4 presence in both the CD14+CD16- and CD14+CD16+ subsets. 

3.5 Statistical Analysis 

All statistical analysis was carried out in JMP Pro 11 (SAS Software, Cary, NC).  Group 

means and standard deviations were calculated for all descriptive and outcome variables.  

Pearson’s correlations between all outcome variables were determined for the overall data set, 

trained and untrained groups, and each of the four subgroups, and were considered significant at 

the α = 0.05 level.  Additionally, a two-by-two group ANOVA was used to compare the 

differences in outcome variables between each of the four groups.  Student’s t-tests were 

performed post hoc for any significant differences detected at the α = 0.05 level.  Concentrations 

of CRP were log transformed to adjust for normality for statistical analysis. 
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CHAPTER 4 – RESULTS 

 Females (N = 63) were allocated into one of four groups based on physical activity habits 

and serum 25OHD level (physically active & low 25OHD, PA-L (n = 15); physically active & 

high 25OHD, PA-H (n = 15); not physically active & low 25OHD, NPA-L (n = 14); not 

physically active & high 25OHD, NPA-H (n = 19)).  When subgroups were combined based on 

activity habits (PA-L with PA-H vs. NPA-L with NPA-H), there were 30 subjects in the trained 

category (PA) and 33 subjects in the inactive group (NPA).  Physically active subjects (PA) with 

serum levels below 32 ng/mL were considered to be in the low group, while 20 ng/mL was used 

for NPA.  When subgroups were combined into high and low 25OHD groups (PA-L with NPA-L 

vs. PA-H with NPA-H), there were 29 individuals with serum 25OHD concentrations below 

optimal (LD) and 34 subjects with levels above optimal (HD). 

4.1 Descriptive Measures 

Age, height, and waist to hip ratio (W:H) were not significantly different between PA and 

NPA.  Three subjects were African-American, while the remaining subjects were Caucasian.  

Weight ranged from 103 to 163.5 lbs in PA, and 103.75 to 255 in NPA, and the average body 

weight in PA was significantly lower than NPA (p = 0.039) (Table 1).  Body mass index and 

estimated percent body fat were also significantly lower in PA compared to NPA (p = 0.015, p = 

0.011) (Table 1).  Additionally, PA had significantly higher serum 25OHD compared to NPA, 

even before being stratified into PA-L or PA-H and NPA-L or NPA-H (p = 0.015).  Average 

values for all descriptive measures are provided in Table 1.   

4.2 Vitamin D Status: Measures of Intake and Serum Content 

The mean dietary intake for all subjects was 466.75 IU over the course of three days, 

which was not related to serum 25OHD content (r = -0.186, p = 0.144) (Table 2).  Additionally, 

there were no significant relationships between sun exposure and 25OHD, measured either as the  
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composite score from the survey or as total minutes spent outdoors per week (r = -0.022, p = 

0.865; r = -0.096, p = 0.463).   Six of the 63 subjects met the Estimated Average Requirement 

(EAR), which is the intake level estimated to meet the requirement of half of the population.  For 

this age group, the EAR is 400 IU per day.  The scores of the survey ranged from 19 to 46 in the 

current study (Table 2).  While there were no correlations between either the sun exposure score  

 Total PA NPA LD HD 

n 63 30 33 29 34 

Age 21.9 ± 2.8 22.1 ± 2.7 21.8 ± 2.9 22.1 ± 2.9 21.8 ± 2.8 

Weight (lb) 139.49 ± 29.6 131.46 ± 14.4* 146.79 ± 37.3 145.15 ± 39.3 134.66 ± 16.6 

BMI 24.00 ± 4.56 22.55 ± 2.02* 25.31 ± 5.74 25.03 ± 5.87 23.11 ± 2.86 

Waist (in) 27.54 ± 3.33 28.80 ± 1.57 28.22 ± 4.27 28.36 ± 4.23 26.85 ± 2.13 

Waist:Hip 0.800 ± 0.05 0.798 ± 0.05 0.801 ± 0.05 0.813 ± 0.05 0.788 ± 0.04* 

Body Fat (%) 34.4 ± 7.8 31.8 ± 4.5* 36.7 ± 9.3 35.9 ± 8.5 33.1 ± 6.9 

      

 Total PA-L PA-H NPA-L NPA-H 

n 63 15 15 14 19 

Age 21.9 ± 2.8 22.5 ± 3.2 21.7 ± 2.1 21.7 ± 2.6 21.8 ± 3.3 

Weight (lb) 139.49 ± 29.6 127.56 ± 12.6 135.35 ± 15.5 164.00 ± 49.2 134.11 ± 17.8 

BMI 24.00 ± 4.56 22.49 ± 1.72 22.60 ± 2.35  27.75 ± 6.46 23.52 ± 3.21 

Waist (in) 27.54 ± 3.33 26.63 ± 1.59 26.97 ± 1.60 30.21 ± 5.37 26.75 ± 2.52 

Waist:Hip 0.800 ± 0.05 0.806 ± 0.05 0.790 ± 0.05 0.820 ± 0.05 0.787 ± 0.04 

Body Fat (%) 34.4 ± 7.8 31.8 ± 4.4 31.8 ± 4.7 40.3 ± 9.8 34.1 ± 8.2 

Table 1 – Descriptive Measures. * indicates a significant difference between paired groups at 

p < 0.05, reported as mean ± SD.  PA = physically active, NPA = not physically active, LD = 

low vitamin D, HD = high vitamin D.  PA-L = physically active & low vitamin D, PA-H = 

physically active & high vitamin D, NPA-L = not physically active & low vitamin D, NPA-H 

= not physically active & high vitamin D.  BMI = body mass index. 
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or time spent outdoors and serum 25OHD in the overall data set (all subjects analyzed together),  

sun exposure scores and time spent outdoors were correlated with each other (r = 0.528, p < 

0.0001).  There were no significant differences between PA and NPA in either the sun exposure 

survey scores or time spent outdoors (Table 2). 

 

 Total  PA NPA LD HD 

n 63 30 33 29 34 

25OHD 

(ng/mL) 
30.79 ± 17.8 36.42 ± 18.2a 25.67 ± 15.9 17.05 ± 7.4 42.52 ± 15.5a 

Time Outdoors 

(min/week) 

580.20 ± 

361.5 

519.07 ± 

304.2 

639.36 ± 

405.6 

521.48 ± 

365.6 

627.62 ± 

344.9 

Survey Score 33.36 ± 7.5 34.47 ± 6.9 32.39 ± 7.9 33.97 ± 7.6 32.59 ± 7.4 

Dietary Intake 

(IU/day) 

155.04 ± 

181.9 

136.34 ± 

131.6 

172.04 ± 

218.6 

181.35 ± 

230.7 

132.61 ± 

126.0 

      

 Total PA-L PA-H NPA-L NPA-H 

n 63 15 15 14 19 

25OHD 

(ng/mL) 
30.79 ± 17.8 22.15 ± 5.4b 

50.70 ± 

14.9a,b 11.58 ± 4.9 36.06 ± 12.9a 

Time Outdoors 

(min/week) 

580.20 ± 

361.5 

473.33 ± 

295.5 

564.80 ± 

315.9 

574.85 ± 

451.3 

685.94 ± 

375.5 

Survey Score 33.36 ± 7.5 34.67 ± 7.9 34.27 ± 6.0 33.08 ± 7.7 31.7 ± 8.2 

Dietary Intake 

(IU/day) 

155.04 ± 

181.9 

158.24 ± 

163.4  

114.44 ±  

90.4 

206.09 ± 

290.9 

146.95 ± 

149.2 

Table 2 = Vitamin D Status and Measures of Intake.  Differences calculated between paired 

groups, reported as mean ± SD.  Pairs not connected by a common letter are significantly 

different (p < 0.05).  PA = physically active, NPA = not physically active, LD = low vitamin 

D, HD = high vitamin D.  PA-L = physically active & low vitamin D, PA-H = physically 

active & high vitamin D, NPA-L = not physically active & low vitamin D, NPA-H = not 

physically active & high vitamin D.  25OHD = serum 25-hydroxyvitamin D, IU = 

international units. 
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There were several observed relationships between sun exposure survey scores and 

measures of body size and composition.  Weight (r = -0.288, p = 0.022), BMI (r = -0.335, p = 

0.007), and waist circumference (r = -0.270, p = 0.032) were inversely related to sun exposure 

scores in the overall data set.  The relationship between sun exposure survey score and weight (r 

= -0.355, p = 0.042) and BMI (r = -0.385, p = 0.027) was also significant in NPA.  Furthermore, 

weight (r = -0.661, p = 0.010), BMI (r = -0.673, p = 0.008), waist circumference (r = -0.665, p = 

0.010), and estimated percent body fat (r = -0.594, p = 0.025) were all inversely related to the 

sun exposure survey in NPA-L.  No significant relationships emerged between sun exposure 

scores and body size and composition in PA, or the subgroups NPA-H, PA-H, or PA-L.  

Additionally, while these relationships emerged between sun exposure survey scores, there were 

no observed relationships between serum 25OHD concentrations and measures of body 

composition across any groups. 

4.3 Exercise Performance Measures 

Aerobic capacity, as assessed by VO2peak, was significantly different between PA and 

NPA (p < 0.0001) (Table 3).  There were no untrained individuals with VO2peak values falling 

higher than 39.4 mL/kg/min and no trained individuals with values lower than 35.5 mL/kg/min.  

Fifteen subjects in NPA had VO2peak values in the “good” category, while the remaining 

subjects fell in either the “fair” or “poor” groups of the norms set forth by ACSM.  All 

individuals in PA had VO2peak values higher than the classification of “good” (88).  These 

classifications further serve to indicate the difference in aerobic capacity between the trained and 

untrained groups.  

 There were no significant differences in peak power output or anaerobic capacity 

between PA and NPA.  However, relative peak power and fatigue index were significantly 

different between the training groups (p = 0.029, p = 0.021) (Table 3).  Relative peak power 
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standardizes the peak power output by dividing power output by the subjects’ body weights, 

allowing values to be compared across different body sizes.  Fatigue index is a measure of the 

subjects’ ability to sustain the same level of power output throughout the duration of the test, and 

was significantly lower in PA compared to NPA (Table 3).  There were significant differences in 

both relative peak power (p = 0.030) and relative anaerobic capacity (p = 0.024) in NPA-L and 

NPA-H (Table 3). 

4.4 Serum CRP and Stimulated Cytokine Production 

There were no significant differences between PA and NPA with respect to CRP 

concentrations, or in the four subgroups (Table 4).  When considering the overall data set, there 

was an inverse relationship between CRP and VO2peak (r = -0.265, p = 0.036) (Figure 2).  There  

Figure 1 – Fitness and Vitamin D Status of Subgroups.  Differences calculated between paired 

groups.  Pairs not connected by a common letter are significantly different (p < 0.05).  Graphs 

A and C show vitamin D status and aerobic fitness by training group.  Graphs B and D show 

vitamin D status and aerobic fitness by four subgroups.  25OHD = serum 25-hydroxyvitamin 

D concentration. 

A 

C 

B 

D 
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were also positive correlations between CRP and BMI (r = 0.774, p < 0.0001) and estimated 

percent body fat (r = 0.324, p = 0.010).  

 While baseline IL-6 concentrations were not significantly different between PA and 

NPA, IL-6 concentrations following LPS stimulation were significantly lower in PA compared to 

NPA (p = 0.016) (Table 4).  The IL-6 production, defined as the difference between stimulated 

and unstimulated IL-6 concentrations, was also significantly lower in PA than NPA (p = 0.016) 

(Figure 3).  There was a positive relationship between IL-6 production and time spent outdoors 

in NPA-L (r = 0.6153, p = 0.0192).  When IL-6 production was expressed per monocyte, the  

 
Total PA NPA LD HD 

n 63 30 33 29 34 

VO2peak           

(mL/kg/min) 

37.68 ± 

7.38 

43.23 ± 

4.63a 

32.63 ± 

5.55 

39.44 ± 

7.34a 

36.18 ± 

7.18 

Peak Power (w) 
394.06 ± 

87.55 

402.76 ± 

83.01 

386.16 ± 

92.04 

379.00 ± 

98.38 

406.91 ± 

76.28 

Relative Peak 

Power (w/kg) 
6.36 ± 1.4 6.76 ± 1.2a 6.00 ± 1.5 5.98 ± 1.6 6.70 ± 1.1a 

Anaerobic 

Capacity (kJ) 
9.13 ± 1.9 9.52 ± 1.7 8.78 ± 2.1 8.86 ± 2.0 9.37 ± 1.89 

Relative 

Anaerobic 

Capacity (kJ/kg) 

0.160 ± 

0.09 

0.161 ± 

0.02 

0.158 ± 

0.12 

0.167 ± 

0.13 

0.154 ± 

0.30 

Fatigue Index (%) 40.4 ± 12.1 36.8 ± 13.6a 43.8 ± 9.6 38.6 ± 12.6 42.0 ± 11.4 

Table 3 – Exercise Performance Measures. Differences calculated between paired groups.  

Pairs not connected by a common letter are significantly different (p < 0.05), reported as 

mean ± SD. PA = physically active, NPA = not physically active, LD = low vitamin D, HD = 

high vitamin D.  PA-L = physically active & low vitamin D, PA-H = physically active & high 

vitamin D, NPA-L = not physically active & low vitamin D, NPA-H = not physically active & 

high vitamin D. 

Table 3 Exercise Performance Measures.  Differences calculated between paired groups.  

Pairs not connected by a common letter are significantly different (p < 0.05) 

fkghfjhgfjhgfjhfghvgh. 
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difference between PA and NPA was trending towards significance (p = 0.063), but no 

differences were detected among the four subgroups or HD and LD. 

4.5 Monocyte Phenotype and TLR4 Surface Expression 

 
Total PA-L PA-H NPA-L NPA-H 

n 63 15 15 14 19 

VO2peak           

(mL/kg/min) 

37.68 ± 

7.38 

44.83 ± 

2.83 

41.63 ± 

5.55 

33.66 ± 

6.14 

31.87 ± 

5.12 

Peak Power (w) 
394.06 ± 

87.55 

385.89 ± 

85.8 

419.62 ± 

79.4 

371.62 ± 

113.2 

396.87 ± 

74.3 

Relative Peak 

Power (w/kg) 
6.36 ± 1.4 6.70 ± 1.4 6.82 ± 1.0 5.20 ± 1.5 6.60 ± 1.2a 

Anaerobic  

Capacity (kJ) 
9.13 ± 1.9 9.27 ± 1.4 9.77 ± 1.9 8.41 ± 2.4 9.05 ± 1.8 

Relative 

Anaerobic 

Capacity (kJ/kg) 

0.160 ± 

0.09 

0.164 ± 

0.02 

0.159 ± 

0.02 

0.170 ± 

0.18a 

0.150 ± 

0.03 

Fatigue Index (%) 40.4 ± 12.1 34.5 ± 13.1 39.0 ± 14.2 43.1 ± 11.4 44.3 ± 8.2 

Table 3 – Exercise Performance Measures (continued). 

Figure 2 – Serum C-Reactive Protein Concentrations by Subgroup.  25OHD = serum 25-

hydroxyvitamin D. 
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There were no significant differences in total monocyte numbers, or in counts of the 

monocyte subpopulations CD14+CD16-, CD14++CD16+, or CD14+CD16++ between PA and 

NPA (Table 4).  Subjects in NPA-H had significantly lower numbers of total monocytes and the  

CD14+CD16- subset when compared to NPA-L (p = 0.016, p = 0.037) (Table 4).  Additionally, 

there was no significant difference between the relative expression of CD14+CD16- or 

CD14+CD16+ monocytes expressing TLR4 between PA and NPA, although the NPA-L had a 

significantly higher expression of TLR4 (reported as MFC) on the CD14+CD16- subset 

compared to NPA-H (Table 4). 

There were several correlations in the overall data between body size and composition 

and monocyte phenotypes. Total monocyte count was positively correlated with weight (r = 

0.338, p = 0.007), BMI (r = 0.372, p = 0.003), waist circumference (r = 0.382, p = 0.002), hip 

circumference (r = 0.329, p = 0.009), and estimated percent body fat (r = 0.284, p = 0.024).  

Additionally, CD14+CD16- monocyte counts were positively correlated with weight (r = 0.368, 

p = 0.003), BMI (r = 0.399, p = 0.001), waist circumference (r = 0.412, p = 0.001), hip 

circumference (r = 0.345, p = 0.006), and estimated percent body fat (r = 0.291, p = 0.021) in the 

overall data set.  Total monocytes were also correlated with weight (r = 0.522, p = 0.002), BMI  

Figure 3 – IL-6 Production by Training Group, as absolute concentration and per monocyte.  

Differences calculated between paired groups.  a indicates a significant difference (p < 0.05).  

Graph A shows stimulated IL-6 production by training group, Graph B shows IL-6 production 

per monocyte by training group. 

A B 
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(r = 0.489, p = 0.004), waist circumference (r = 0.515, p = 0.002), and hip circumference (r = 

0.506, p = 0.003) in NPA.  CD14+CD16- was also related to weight (r = 0.533, p = 0.001), BMI 

(r = 0.514, p = 0.002), waist circumference (r = 0.534, p = 0.001), and hip circumference (r = 

0.494, p = 0.004) in NPA.  Within NPA-L, total monocytes were related to weight (r = 0.620, p = 

0.018), BMI (r = 0.587, p = 0.027), waist circumference (r = 0.594, p = 0.025) and hip 

circumference (r = 0.585, p = 0.028).  CD14+CD16- was also related to weight (r = 0.680, p = 

0.007), BMI (r = 0.672, p = 0.009), waist circumference (r = 0.655, p = 0.011), and hip 

circumference (r = 0.618, p = 0.019) in the NPA-L subgroup. Even though no monocyte 

subpopulation was correlated with body composition or size measures in NPA-H, CD14+CD16+ 

monocytes expressing TLR4 were positively related to weight (r = 0.583, p = 0.009), BMI (r = 

0.523, p = 0.022), waist circumference (r = 0.496, p = 0.031), hip circumference (r = 0.631, p =  

0.004), and estimated percent body fat (r = 0.587, p = 0.008).  Interestingly, the monocyte subset 

CD14++CD16+ was positively correlated with W:H in PA (r = 0.410, p = 0.025), although this 

relationship was not present in either PA-H or PA-L.  Within the overall data set, most monocyte 

populations were correlated with each other (Table 5). 

Within NPA, there were several interesting relationships that emerged between vitamin D 

status and monocyte phenotypes.  Total monocyte numbers (r = -0.428, p = 0.013), 

CD14+CD16- (r = -0.367, p = 0.036), and CD14+CD16++ (r = -0.405, p = 0.020) were inversely 

related to 25OHD serum concentrations.  These correlations were not observed in PA or the 

overall data set.  When further divided into NPA-L and NPA-H, the differences were not 

observed in NPA-H, but the relationship between CD14+CD16- and serum 25OHD continued to 

remain significant in NPA-L (r = 0.544, p = 0.045).  Interestingly, there was a positive 

relationship observed between CD14++CD16+ and time spent outdoors in NPA (r = 0.451, p = 

0.008), as well as NPA-L (r = 0.757, p = 0.002). 
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Total PA NPA LD HD 

n 63 30 33 29 34 

IL-6 CTRL  

(pg/mL) 

49.99 ± 

63.4 

37.00 ±     

35.7 

61.81 ±     

89.2 

51.03 ±     

62.1 

49.12 ±     

65.3 

IL-6 STIM   

(pg/mL) 

4980.70 ± 

2653.9 

4145.12 ± 

1858.9* 

5740.31 ± 

3043.9 

4777.19 ± 

2306.4 

5154.27 ± 

2941.4 

CRP (mg/L) 1.43 ± 1.7 1.29 ± 0.5 1.56 ± 1.7 1.25 ± 1.5 1.58 ± 1.8 

Total 

Monocytes 

19,123.46 

± 5988.5 

18,690.30 ± 

5664.1 

19,571.24 ± 

6330.3 

20,493.03 ± 

5895.0 

17.955.29 ± 

5902.2 

CD14+CD16- 
15,882.81 

± 5497.1 

15,500.60 ± 

4967.7 

16,230.37 ± 

5993.5 

17,066.14 ± 

5405.0 

14,873.50 ± 

5450.3 

CD14++CD16+ 
776.24 ± 

991.5 

777.20 ± 

1026.5 

775.36 ± 

974.5 

978.55 ± 

1244.1 

603.77 ± 

683.2 

CD14+CD16++ 
1352.43 ± 

859.3 

1528.70 ± 

968.8 

1192.18 ± 

724.1 

1539.21 ± 

971.7 

1193.11 ± 

727.5 

CD14+CD16+ 
2128.67 ± 

1484.0 

2305.90 ± 

1518.5 

1967.55 ± 

1456.4 

2517.76 ± 

1723.0 

1796.79 ± 

1171.5 

CD14+CD16- 

TLR4+ (MFC) 
11.61 ± 6.1 11.85 ± 1.6 11.39 ± 1.6 11.69 ± 1.7 11.53 ± 1.5 

CD14+CD16+ 

TLR4+ (MFC) 
15.34 ± 4.3 15.52 ± 4.2 15.14 ± 4.5 15.91 ± 5.0 14.85 ± 3.7 

Table 4 – Inflammatory Measures.  Differences calculated between paired groups.  * indicates 

a significant difference from its paired group (p < 0.05), reported as mean ± SD.  PA = 

physically active, NPA = not physically active, LD = low vitamin D, HD = high vitamin D.  

PA-L = physically active & low vitamin D, PA-H = physically active & high vitamin D, 

NPA-L = not physically active & low vitamin D, NPA-H = not physically active & high 

vitamin D.  IL-6 CTRL = resting concentrations, IL-6 STIM = concentrations following LPS 

stimulation.  CRP = C-reactive protein resting concentrations.  Total monocytes, 

CD14+CD16-, CD14++CD16+, CD14+CD16++, and CD14+CD16+ = total cell numbers.  

MFC = median fluorescence channel. 
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Total PA-L PA-H NPA-L NPA-H 

n 63 15 15 14 19 

IL-6 CTRL  

(pg/mL) 

49.99 ± 

63.4 

33.42 ± 

27.1 

40.58 ± 

24.8 
69.89 ± 82.4 55.86 ± 85.1 

IL-6 STIM   

(pg/mL) 

4980.70 ± 

2653.9 

4097.23 ± 

2121.0 

4193.01 ± 

1629.2 

5505.71 ± 

2346.8 

5913.17 ± 

3524.2 

CRP (mg/L) 1.43 ± 1.7 1.19 ± 1.7 1.38 ± 1.6 1.32 ± 1.2 1.74 ± 2.1 

Total 

Monocytes 

19,123.46 ± 

5988.5 

18,429.47 ± 

4788.1 

18,951.13 ± 

6586.6 

22,704.00 ± 

6323.2 

17,169.11 ± 

5352.1a 

CD14+CD16- 
15,882.81 ± 

5497.1 

15,264.93 ± 

4293.6 

15,736.27 ± 

5706.5 

18,996.00 ± 

5942.7 

14,192.37 ± 

5293.6a 

CD14++CD16+ 
776.24 ± 

991.5 

823.73 ± 

1077.9 

730.67 ± 

1008.0 

1144.43 ± 

1423.1 

503.42 ± 

203.7 

CD14+CD16++ 
1352.43 ± 

859.3 

1598.80 ± 

1126.0 

1458.60 ± 

816.0 

1475.36 ± 

812.3 

983.53 ± 

589.4 

CD14+CD16+ 
2128.67 ± 

1484.0 

2422.53 ± 

1529.9 

2189.27 ± 

1551.2 

2619.79 ± 

1962.5 

1486.95 ± 

644.1 

CD14+CD16- 

TLR4+ (MFC) 
11.61 ± 6.1 11.54 ± 1.5 12.16 ± 1.7 11.86 ± 1.9 11.04 ± 1.2 

CD14+CD16+ 

TLR4+ (MFC) 
15.34 ± 4.3 14.76 ± 3.4 16.35 ± 4.8 17.14 ± 6.1 13.67 ± 1.7a 

Table 4 – Inflammatory Measures (continued). 
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Total 

Monocytes 
CD14+CD16- CD14++CD16+ CD14+CD16++ 

CD14+CD16- 

TLR4+ (MFC) 

CD14+CD16+ 

TLR4+ (MFC) 

Total 

Monocytes  

r = 0.9634 

p < 0.0001* 

r = 0.3263 

p = 0.0091* 

r = 0.4709 

p < 0.0001* 

r = 0.0496 

p = 0.6996 

r = -0.1020 

p = 0.4264 

CD14+CD16- 
r = 0.9634 

p < 0.0001*  

r = 0.1605 

p = 0.2090 

r = 0.3575 

p = 0.0040* 

r = -0.0047 

p = 0.9711 

r = -0.1230 

p = 0.3367 

CD14++CD16+ 
r = 0.3263 

p = 0.0091* 

r = 0.1605 

p = 0.2090  

r = 0.2823 

p = 0.0205* 

r = 0.1259 

p =0.3255 

r = 0.0375 

p = 0.7705 

CD14+CD16++ 
r = 0.4709 

p < 0.0001* 

r = 0.3575 

p = 0.0040* 

r = 0.2823 

p = 0.0205*  

r = 0.0738 

p = 0.5652 

r = -0.1228 

p = 0.3376 

CD14+CD16- 

TLR4+ 

r = 0.0496 

p = 0.6996 

r = -0.0047 

p = 0.9711 

r = 0.1259 

p =0.3255 

r = 0.0738 

p = 0.5652  

r = 0.5304 

p < 0.0001* 

CD14+CD16+ 

TLR4+ 

r = -0.1020 

p = 0.4264 

r = -0.1230 

p = 0.3367 

r = 0.0375 

p = 0.7705 

r = -0.1228 

p = 0.3376 

r = 0.5304 

p < 0.0001*  

Table 5 – Relationships Between Monocyte Populations.  Relationships between all monocyte phenotypes reported.  Total 

monocytes, CD14+CD16-, CD14++CD16+, and CD14+CD16++ = total cell counts.  MFC = median fluorescence channel. * denotes 

significant correlations (p < 0.05). 
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CHAPTER 5 – DISCUSSION  

5.1 Chapter Overview   

 Exercise has been well established as an effective intervention in decreasing 

inflammation (33).  Recent studies have implicated the role of vitamin D in mediating 

inflammation as well (7).  However, research examining the effects of exercise training in 

conjunction with vitamin D status on markers is lacking, especially in young and healthy 

individuals.  Accordingly, the purpose of this study was to investigate whether vitamin D and 

physical activity status were associated with measures of fitness and overall inflammation, as 

well as shifts in specific monocyte populations and cell function. 

 In this chapter, the results of the study will be compared to findings in the literature, I 

will discuss limitations of the study design and interpretation of results, and identify future 

directions of research in this area.  This chapter will highlight descriptive measures of the overall 

population, measures of vitamin D intake and serum content, exercise performance measures, 

serum CRP and stimulated cytokine production, and finally monocyte phenotype and TLR4 

expression. 

5.2 Descriptive Measures of the Overall Population 

Average body size and composition measures were one of the most clinically relevant 

outcomes of the current study.  Subjects weighed between 103 to 225 lbs in the overall data set 

(mean = 139.45 lbs), which is comparable to the average weight for this age group according to 

NHANES (National Health and Nutrition Examination Survey) data (mean = 139 lbs) (93).  

However, estimated percent body fat averaged 34.4% in this study (range 12.8% to 58.7%), and 

was higher compared to the average for this population (mean = 30.8%) (93).  In fact, only six of 

the 63 subjects were below 25% estimated body fat, which is the current recommendation for 

this age group (94).  When groups were divided by physical activity status, weight and estimated 
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percent body fat were below the NHANES reported averages in PA but were much higher in 

NPA.  Although PA had healthier anthropometric measures compared to NPA, the differences in 

these outcome variables were not statistically significant, suggesting that regular exercise may 

not be the only factor mediating healthy body composition.   

Awareness of the obesity epidemic in young adults has become increasingly marked in 

the general public, and considerable efforts have been made to improve overall health in this age 

group (95).  However, the findings of this study show that young individuals are still likely to 

have unhealthy body size and composition even if they report regular physical activity.  

Furthermore, the unhealthy body size and composition measures observed in this study may have 

been associated with insalubrious drinking habits, with many subjects disclosing high 

consumption of alcoholic beverages on the weekends.  Consequently, individuals in this age 

group should understand the relationship between increased weight and adiposity and overall 

health, especially considering the potential for these factors to exacerbate the detrimental effects 

of the aging process.  Lifestyle choices developed around this age are often kept for most of the 

individuals’ life and emphasis should be placed on maintaining a healthy body composition 

through vigorous activity and healthy eating habits (94, 96).   

5.3 Vitamin D Status: Measures of Intake and Serum Content 

Despite the lack of significant relationships in PA, sun exposure data, particularly in 

NPA, provided additional insight related to the impact of lifestyle habits on serum 25OHD 

concentration and inflammatory markers.  Sun exposure survey scores were negatively correlated 

with body weight, BMI, waist circumference, and estimated percent body fat in NPA.  The 

relationships between sun exposure survey scores and body composition persisted in NPA-L as 

well.  These observations are thought provoking, as several studies suggest a potential for 

vitamin D to modulate overall body composition and adipocyte biology (97-99).  Although there 
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were no observed relationships between serum 25OHD and body size and composition variables 

in the present study, there is a possibility that because the relationships reported above existed 

exclusively in NPA and NPA-L, vitamin D made through the endogenous pathway may have 

been sequestered in adipose tissue as opposed to being present in circulation (55).  Vitamin D is 

a fat-soluble vitamin, and therefore has a greater affinity to be retained in adipocytes rather than 

enter the circulation and elicit physiological changes; those who have higher amounts of adipose 

tissue therefore have greater “reserves” in which vitamin D would reside (55, 58).  In the present 

study, NPA and NPA-L had higher average weight and estimated percent body fat than their 

group counterparts (NPA = 36.7%, NPA-L = 35.9% vs. PA = 31.7%, NPA-H = 33.1%).  These 

differences may be clinically significant although not statistically different due to high 

variability. 

 Dietary analysis in the current study supports the emerging trend of lack of vitamin D in 

the average American diet. Recommended intake for the age group used in this study is 600 

IU/day (68), and reported vitamin D intake in this study averaged 466 IU for three days (average 

= 155.33 IU/day).  This trend has been observed in the average adult population (60, 100); and 

was previously reported in our lab with a similar population (83).  Although some have 

suggested that supplement use is the only way to reach a healthy vitamin D status, only three 

subjects out of the 63 reported habitual use of a multivitamin or vitamin D supplement.  Two of 

these subjects were in NPA-H and had sufficient serum 25OHD levels, and one person fell in 

PA-L and did not have sufficient serum 25OHD concentration despite their use of a 

multivitamin.  Many studies have noted that it is very difficult to obtain the recommended intake 

of vitamin D from the diet, and the results of this study confirm this notion (60).  This trend is 

likely observed for several reasons.  First, those who are highly trained may tend to indulge in 

unhealthy eating habits, which may be due to disordered eating to maintain weight, or a diet 
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higher in fatty foods considered a “reward” for a difficult training day (101, 102).  Additionally, 

it is possible that those who are untrained do not place as much inherent value on a regularly 

healthy diet, thereby limiting their vitamin D intake (103).  

Another important relationship that emerged was the disparity between serum 25OHD 

concentrations in PA and NPA.  Subjects in PA had 29.5% higher concentrations of 25OHD 

compared to NPA, which was statistically significant.  This difference serves to support a 

common theory about the relationship between vitamin D status and physical activity level.  

Studies from the Cooper Center support the notion that those individuals who are physically 

active are more likely to spend increased time outdoors and have healthier diets, and therefore 

have higher circulating levels of 25OHD and lower levels of body fat (11, 82).  The implication 

of these studies is that while being physically active will in fact keep levels of body fat lower, 

vitamin D may be an independent factor with the potential to modulate changes in body 

composition.  The negative relationships observed in NPA between sun exposure survey scores 

and body weight, BMI, waist circumference, and estimated percent body fat certainly support the 

notion that vitamin D could mediate beneficial changes in adiposity.  This finding supports our 

initial hypothesis that vitamin D status would be related measures of fitness. 

5.4 Exercise Performance Measures  

 The International Physical Activity Questionnaire was used to assess physical activity 

habits of the subjects upon enrollment into the study.  Successful screening and group 

designation was confirmed by the 24.5% difference in VO2peak between PA and NPA (Table 3).  

The mean VO2peak observed for all subjects in this study is consistent with trends reported in the 

literature concerning this population.  For example, a study characterizing the fitness habits and 

body composition of college students reported an average VO2max of 34 mL/kg/min (104).  This 

value is very close to the overall average of 37.68 mL/kg/min in the overall data set of the 
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present study.  Studies using other protocols or submaximal estimate protocols also provide 

comparable values for this population (105, 106).   

 The observed differences in relative anaerobic capacity and fatigue index in PA and NPA 

also accurately reflected the training status of the groups (Table 3).  Subjects in NPA appear to 

have produced the same level of power output as those in PA at the start of the test, but fatigued 

much more quickly and to a greater degree.  This response may be driven by the fact that on 

average, subjects in NPA were required to work against higher resistance; the prescribed force 

setting is determined by body weight, which was significantly higher in NPA.  Consequently, it 

is not surprising that they did not produce as much power over the course of the entire test.  

Interestingly, fatigue index was inversely related to serum 25OHD concentrations in the PA-H, 

indicating the potential that vitamin D may play an additional role in generating and sustaining 

muscular power output beyond the effects of regular exercise training.  Even though causality 

cannot be determined due to the nature of this study, this finding supports our hypothesis that 

there would be a link between vitamin D status and exercise outcome variables.   

While no studies have explicitly measured significant relationships between anaerobic 

power indices in the Wingate protocol and serum 25OHD, other studies have noted positive 

correlations between vitamin D and muscular power assessed through other means (107, 108).  

In a study investigating the effect of 25OHD concentrations in adolescent females, two-legged 

jump height was used to assess muscular power and jump height and velocity.  Significant 

positive relationships emerged between vitamin D and the major outcome variables (107).  

Values obtained in the Wingate test in the current study were comparable to those obtained in a 

previous study conducted by our lab using a similar population (83). 
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5.5 Serum CRP and Stimulated Cytokine Production 

5.5.1 Resting CRP Concentrations 

 C-reactive protein is an inflammatory marker produced by the liver in response to 

circulating inflammatory cytokines (109).  Serum CRP concentrations are used to assess 

systemic inflammation with respect to a number of chronic diseases, most commonly used to 

assess an individual’s risk for CVD (109).  Concentrations of CRP less than 1 mg/L indicate a 

low risk category, 1-3 mg/L indicate moderate risk, and greater than 3 mg/L indicates a high 

cardiovascular risk (42).  In this study, the average CRP concentration was 1.43 mg/L, with 

seven of the 63 subjects reporting with concentrations in the high-risk category (all values less 

than 5.621 mg/L), three of whom were in PA.  There is a chance that subjects reported with high 

CRP concentrations due to engaging in stressful activities the few days prior to blood collection, 

or had an undisclosed acute sickness, leading to uncharacteristically elevated values. 

There were no significant differences in CRP concentrations between PA and NPA, or 

between HD and LD or among any of the four subgroups.  The lack of relationship between CRP 

and training status was unexpected, although still supported by some of the literature (110).  

However, there was a negative relationship between CRP and VO2peak in the overall data set, 

which is consistent with previous findings (24).  Exercise has significant anti-inflammatory 

properties, but some studies have suggested that this response is mediated to a greater degree by 

body composition (110, 111).  There were also positive relationships between CRP and BMI and 

estimated percent body fat (69).  While subjects were recruited into “trained” or “untrained” 

groups based on physical activity patterns, it is important to note that subjects in NPA were not 

sedentary nor were they unhealthy.  No untrained subject reported overt chronic illness, and 

although some subjects were overweight, there were also several subjects in this group with very 

low levels of body fat.  The lack of relationship between CRP and serum 25OHD is actually 
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supported by the literature, as correlations between these variables only seem to appear in cases 

of chronic disease or when serum 25OHD levels are extremely low (112-114).  However, this 

finding disproves our initial hypothesis that there would be a link between vitamin D status and 

overall inflammation. 

5.5.2 Stimulated IL-6 Production 

 When whole blood samples were cultured with LPS, PA produced significantly less IL-6 

compared to NPA (-34.8%); other studies have found similar responses with exercise training 

(33, 115).  This response is provocative; however, expressing IL-6 production per monocyte 

allows for comparison of monocyte inflammatory capability, indicating that the individual 

monocytes of NPA were more responsive to an inflammatory stimulus than PA.  Values of LPS-

stimulated IL-6 production in this study (average IL-6 production = 4930.7 pg/mL; average IL-6 

production per monocyte = 279.0 fg/monocyte) were similar to other values using the same 

protocol published in the literature (45). For example, in a study by Phillips et al, trained 

individuals produced and average of 308.7 fg per monocyte and untrained individuals produced 

550.2 fg per monocyte following LPS stimulation.  In the current study, PA produced an average 

of 233.9 fg/monocyte and NPA 320.1 fg/monocyte following the same LPS stimulation protocol. 

 There were no significant differences in IL-6 production among the four subgroups, 

reducing the possibility that vitamin D modulates this inflammatory pathway in a physiological 

model, which does not support our original hypothesis that vitamin D might lead to lower 

inflammation following LPS stimulation.  Although the studies using a cell culture model 

suggest that vitamin D plays an anti-inflammatory role by downregulating the MAPK-1 

pathway, it is possible that there were no differences observed in the present study due to the 

lack of a supraphysiological dose of vitamin D that was utilized in the cell culture model (7).  In 

the study by Zhang et al, whole blood samples were cultured with an additional amount of 
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25OHD, ranging from 0 to 70 ng/mL beyond what was already in the blood (7).  This additional 

additive was required to stimulate an anti-inflammatory reaction against a response to the LPS.  

In fact, another study that explored vitamin D mediated changes in whole blood LPS stimulated 

response yielded a slightly different outcome.  When overweight subjects participated in a 12-

week resistance training program while taking either a 4000 IU daily supplement or matching 

placebo, LPS-stimulated TNF-α production was significantly higher in the placebo group 

compared to the group receiving the supplement (84).  While IL-6 was not assessed in this 

situation, this study serves to illustrate the potential of vitamin D to inhibit LPS-induced 

inflammation. 

Interestingly, there was a positive correlation between IL-6 production and time spent 

outdoors in NPA-L.  These subjects had serum 25OHD concentrations lower than 20 ng/mL, the 

concentration considered to be healthy by the IOM.  It is possible that although subjects were 

increasing the potential for endogenous vitamin D production by being outside, they were 

possibly engaging in activities that may have blunted these anti-inflammatory effects as 

demonstrated by the higher levels of IL-6 production in NPA and NPA-L following the LPS 

stimulation (Table 4).  Subject recruitment and data collection took place during late summer and 

early fall at a large university with a significant cultural importance placed on football and 

tailgating.  Because these subjects were primarily college students and participated in this study 

during football season, it is possible that they were engaging in tailgating activities and 

consuming a high amount of alcoholic beverages while still spending long periods of time 

outdoors without engaging in physical activity.  Therefore, it is likely that these unhealthy 

behaviors were blunting the anti-inflammatory effects of vitamin D.   

IL-6 has been shown to bind to the promoter region of the CRP gene to induce 

transcription.  Interestingly, there was no significant relationship between LPS-stimulated IL-6 
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production and serum CRP in the overall data set (p = 0.1997), suggesting that whole blood 

production of IL-6 may only partially contribute to overall changes in CRP in the body.  This 

response is supported by other studies, which suggests that IL-6 can be produced in many other 

tissues in the body including adipose tissue (116).  This hypothesis is supported by our data, 

which revealed a positive correlation between body fat percent and CRP (r = 0.3239; p = 

0.0096).  

5.6 Monocyte Phenotype and TLR4 Expression 

 Classical monocytes are considered CD14+CD16- and possess low inflammatory 

capability, compared to the non-classical monocytes with high inflammatory activity and 

classified as CD14+CD16+ (48).  In this study, three specific gates were generated based on the 

parabolic shape of CD14 and CD16 analysis within monocytes to categorize each monocyte 

more specifically.  Traditional FACS methodology only provides quadrant analysis based on 

whether the receptor is present or not.  Consequently, this particular evaluation allowed for the 

identification of two subpopulations with high inflammatory capability.  They are classified as 

CD14++CD16+, also referred to as CD14+brightCD16+ and CD14+CD16++, or 

CD14+dimCD16+bright subpopulations (48).  This approach also allows the researcher to quantify 

the receptors on the cell surface rather than simply whether that receptor is present or not.  

Additionally, TLR4 receptor analysis was provided as a histogram reflecting light intensity, 

where median fluorescent channel (MFC) is reported as opposed to a traditional cell count 

approach.  This analysis allows for the quantification of TLR4 receptor density on the monocyte 

cell surface instead of simply a number of cells possessing the receptor or not.  Although 

reporting the number of TLR4+ cells is commonly seen in older studies, using MFC provides 

more descriptive data and ensures that only monocytes expressing this receptor were included for 

analysis (117). 
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 While overall numbers of each monocyte phenotype are important, it is also critical to 

consider the percentages of each monocyte phenotype within the total monocyte population.  For 

example, an individual may have a considerably higher number of total monocytes, but the 

percentage of quiescent and activated monocytes may still be comparable to someone who has 

normal numbers of total monocytes.  In fact, this phenomenon was observed in the current study.  

Although not statistically significant, PA individuals had lower monocyte numbers in all 

measured phenotypes compared to NPA.  However, the percentages of the CD14+CD16- (PA 

82.75% vs. NPA 82.48%), CD14++CD16+ (PA 3.92% vs. NPA 3.85%), and CD14+CD16++ 

(8.15% vs. 6.27%) within the total monocyte population were virtually identical between PA and 

NPA.  This does not support our initial hypothesis, as we believed that trained individuals would 

have a lower percentage of CD14+CD16+ monocytes compared to untrained individuals.  In 

fact, several studies have indicated that the relative balance between populations of monocytes 

can be altered by events that might activate the innate immune response.  In some cases, the 

decreased presence of CD14++CD16+ relative to CD14+CD16++ may indicate the change in 

receptor expression within the same proinflammatory monocyte population in response to a 

stimulus, such as acute infections (118).  This means that there is a shift in the relative percent of 

monocytes expressing these receptors and the degree to which they are expressed (119).  In most 

cases, an increase in the number of monocytes expressing the CD16 receptor is correlated with 

an increase in inflammatory cytokine production, such as TNF-α and IL-6 (118).  There is also 

evidence that physical activity has the ability to significantly alter proportion of specific 

monocyte subpopulations (5, 119).  For example, in a study comparing monocyte phenotypes 

before, immediately after, and one hour after the cessation of 45 minutes of running at 75% 

VO2max, the proportion of CD14+CD16+ was 49% higher compared to baseline (resting) values 

immediately following exercise and fell an additional 24% below the resting values at one hour 
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following exercise (119).  Similarly, in a longitudinal study, 12 weeks of combined resistance 

and aerobic training led to an increase in absolute numbers of CD14+CD16-, while 

CD14++CD16+ and CD14+CD16++ were reduced, as well a downward shift the percentage of 

the CD14+CD16+ phenotype (5).  However, in the present study, no differences were observed 

in total monocyte numbers or any of the subpopulations between PA and NPA.  

The lack of an observed difference between the relative percentages of monocyte 

phenotypes in the present study may be explained by several variables.  First, the average 

estimated percent body fat in PA, while significantly lower than NPA, is higher than the 

recommended level for this age group.  Second, because the recruited subjects were mostly 

college students, the intensity of their regular exercise may not reach levels consistently high 

enough to elicit changes in monocyte phenotypes.  Finally, there is a chance that although the 

subjects were engaging in regular exercise, they may have also been participating in activities 

detrimental to overall health, such as consuming alcoholic beverages or maintaining unhealthy 

diets, that would counteract the anti-inflammatory effects of exercise.  Although subjects in this 

study were stratified into groups based on exercise training habits, it is very likely that no subject 

was entirely sedentary.  Furthermore, it was required that all subjects were healthy and did not 

have any blatant chronic illness.  Therefore, the lack of difference in monocyte populations 

between PA and NPA may be due to the fact that subjects in NPA still spent time outdoors doing 

recreational activities, such as walking to and from class.  Finally, it is possible that shifts in 

monocyte populations could potentially be occurring compartmentally, such that CD16 

expression was changing in the adipose tissue and these changes were not accurately reflected in 

the plasma (120).  

Correlational analysis indicating the relationship between body size and composition 

measures and overall monocyte numbers and phenotypes are consistent with the consensus that 
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exists in the literature.  Individuals with higher adiposity are known to have higher numbers of 

monocytes, particularly of the CD14+CD16+ phenotype (121); correlations in the overall data 

set between total monocyte number and weight, BMI, waist circumference, hip circumference, 

and estimated percent body fat support previously established findings.  In a study comparing 

overweight patients with controlled diabetes mellitus to normal controls, there were no 

differences in CD14+CD16- absolute numbers or percent of total monocytes between the normal 

and obese individuals (122).  The CD14+CD16+ monocytes accounted for 9% of the total 

monocyte population, which is comparable to the 11% in the overall data set, 12% in PA, and 

10% in NPA observed in this study (122).  Additionally, the number of CD14+CD16- monocytes 

was correlated with these measures as well.  Interestingly, these relationships persisted in NPA 

and NPA-L, but not NPA-H or PA or either PA-L or PA-H.  This suggests that when exercise 

training is not a mediating cofactor, serum 25OHD concentrations below optimal produce a 

stressful environment leading to increased monocyte numbers.  

The relationship between monocyte numbers and measures of body composition may be 

regulated by the increased adiposity that is commonly associated with lack of regular physical 

activity (123).  Adipose tissue is known to produce the chemokine monocyte chemoattractant 

protein-1 (MCP-1) (124, 125).  This protein regulates migration of monocytes and mature 

macrophages when their immune response is needed (125).  This occurs during times of stress or 

infection, but research has also indicated MCP-1 secretion and monocyte infiltration in adipose 

tissue (124).  When body fat is in excess, MCP-1 is produced at higher levels and would lead to 

increased numbers of monocytes in these individuals (124).  Interestingly, exercise is known to 

decrease MCP-1 independently of a decrease in body fat (126).  The suggestion that MCP-1 

levels are different between trained and untrained individuals, as well as in those with higher 

levels of adiposity, may provide an explanation as to why there was an observed positive 
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relationship between total monocyte numbers and the number of cells that are CD14+CD16- in 

NPA and NPA-L which did not persist in the PA or any of the other subgroups.  

 Although there were beneficial relationships between sun exposure scores and body 

composition measures in NPA, these correlations were not reflected between sun exposure and 

monocyte populations.  Additionally, no correlations appeared between 25OHD and the 

monocyte subpopulations, which allows us to reject our original hypothesis that vitamin D may 

alter the balance between monocyte phenotypes.  Given the previously described relationship 

between time outdoors and LPS stimulated IL-6 production, positive relationships between time 

outdoors and 1) the numbers of total monocytes, and 2) the CD14++CD16+ monocytes subset, it 

is possible that although untrained individuals were spending requisite time outdoors and there 

were beneficial relationships observed between sun exposure and body composition, these 

individuals were engaging in activities that elicited a stressful environment for the immune 

system.  This suggestion is further warranted by the lack of observed relationship in PA and 

either PA-L or PA-H. 

With respect to TLR+ cells, there were a number of significant positive relationships 

between the numbers of CD14+CD16+ TLR4+ cells and measures of body size and composition 

in NPA-H.  It is possible that this was likely mediated by the untrained status and levels of 

adiposity in this subgroup, rather than the fact that these individuals met the required serum 

25OHD requirement set forth by the IOM.  An emerging body of research indicates a 

relationship between TLR4 and 1,25(OH)2D, whereby TLR4 regulates the action of vitamin D 

metabolites rather than 25OHD or 1,25(OH)2D eliciting actions on this pathway (127).  There 

were no observed relationships between cells expressing TLR4 and serum 25OHD concentration 

in the overall data set or any of the subgroups.  This finding allows us to reject our initial 

hypothesis that vitamin D may alter monocyte populations and TLR4 expression.  Finally, there 
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were no significant relationships between the number of TLR4+ cells and IL-6 production in the 

overall data set, which may be due to the high variability of the IL-6 measure between subjects.   

5.7 Limitations 

 There are several limitations of this study that should be mentioned.  First, because this 

study was cross-sectional in nature, no causal relationships could be established.  The balance 

between inflammation and vitamin D levels or exercise training status does stress the importance 

of including this nutrient in the diet or remaining physically active, but the results of this study 

do not allow the freedom to say that exercise training or vitamin D cause a shift in inflammation 

or phenotypes of monocytes.  Future studies including exercise training with or without 

concurrent vitamin D supplementation interventions would certainly be interesting, and would 

expose a potential cause-and-effect relationship. 

 A second limitation of the current study was the lack of cutting-edge technology used 

throughout the project.  Body composition was determined via skinfold calipers, which are 

certainly not the standard of measurement in this area.  Dual-energy x-ray absorptiometry (DXA) 

is a newer technology that allows exact determination of bone, fat, and fat-free mass of an 

individual.  Because radiation is used to assess these measures, albeit at very low levels, there is 

an inherent risk to a female subject who may not know she is pregnant.  Therefore, the cost of 

this measure was outside of the proposed budget.  Because body composition was not an 

outcome variable of the study and only used as an anthropometric measure to characterize the 

different populations, the safer method of skinfold measurements was used instead.  Any future 

work in this area should consider the use of DXA technology.  Additionally, it should be noted 

that many researchers believe the use of HPLC is the best technique to measure serum 25OHD 

(128).  However, many studies have indicated that the use of ELISA protocols produce reliable 

data as well, and are much easier to carry out without producing significant error or variation in 
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the results (129).  Early studies assessing vitamin D status also used RIA kits, but ELISA plates 

do not require the use of radiation and are therefore a safer alternative to the investigator (129). 

 The sun exposure survey used in the study by Hanwell et al was used as a comprehensive 

measure of subjects’ exposure to UV light.  However, outside of the original study in which this 

survey was developed and used, this survey is not widely used in other research projects.  Total 

time spent outdoors is more commonly used as a way to quantify the potential for endogenous 

vitamin D production.  The survey proposed by Hanwell et al allows for a more comprehensive 

quantification of exposure to UV light, and therefore, potential vitamin D production.  Scores in 

the current study ranged from 19 to 63; for reference, scores in the original study ranged from 11 

to 52 (90).  While the use of this survey limits the ability of the results of this study to other 

studies in which time outdoors is related to vitamin D production and other outcome variables, it 

is in fact more detailed than simply adding time spent outdoors.  The use of this survey was 

validated by the correlation between sun exposure and time spent outdoors, which was 

significant across the overall data set as well as all subgroup analyses (p < 0.0001). 

 The population included in this study also proposed potential limitations in interpretation 

of the findings.  Only females were recruited for the study, which allowed for the use of an 

unstudied population.  Females are more likely to have disordered eating habits (130), allowing 

for the development of a subgroup of those who are very physically active and more likely to 

have lower levels of vitamin D due to lack of proper nutrition. However, in the future, the use of 

both males and females in longitudinal studies would allow for a better understanding of the anti-

inflammatory effects of vitamin D and exercise.   

 Finally, the identification between optimal and suboptimal vitamin D serum levels posed 

a difficult problem for analysis.  The initial study design for this project proposed that both 

trained and untrained groups be further divided into optimal and suboptimal vitamin D groups, 
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based on a set point of 32 ng/mL.  However, after initial subject recruitment and vitamin D 

determination, it was apparent that untrained individuals were not likely to reach serum levels of 

32 ng/mL.  There are several likely reasons for this phenomenon.  First, untrained individuals are 

not as likely to spend time outdoors in the sun and also more likely to have a less healthy diet 

than those who are trained.  Therefore, these individuals are not receiving exposure to the UV 

light to produce vitamin D endogenously, nor are they ingesting the proper levels from the diet.  

In this study, it was observed that untrained individuals spent as much time outdoors as trained 

individuals, eliminating this proposed discrepancy as a potential explanation for the difference in 

serum 25OHD concentrations.  There was also no difference between the amount of vitamin D 

consumed in the diet, likely due to the fact that most of the subjects were not meeting the 

required level of vitamin D intake.  Second, untrained individuals are more likely to have higher 

amounts of fat than trained individuals (123).  Because vitamin D is a fat soluble vitamin, these 

individuals may be receiving proper nutrition but the vitamin is being stored in the excess 

adipose tissue rather than circulating in the serum (55, 58).  As noted above, there is the small 

subset of untrained individuals who have low levels of body fat due to disordered eating habits; 

these individuals would also have low circulating levels of vitamin D because of improper 

nutrition. 

5.8 Future Directions 

 Vitamin D is implicated in increasing health in a variety of areas, such as decreasing the 

risk of cancer, treatment of existing cancer, decreasing the symptoms of anxiety and depression, 

as well as the areas of muscle physiology and inflammation investigated in this study (131-133).  

Because of its significant potential, a large body of work has determined correlations among a 

wide range of outcome variables.  However, there are very few studies investigating the effects 

of vitamin D supplementation and changes in overall health.  As it relates to the present study, 
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the next logical step would include a supplementation study with concurrent exercise training.  

Overweight or obese subjects might be most desirable in a study of this nature due to their 

propensity for vitamin D deficiency, but any changes in outcomes such as increases in fitness, 

body composition, or inflammation might be confounded due to changes in adiposity that would 

accompany consistent exercise training.  Therefore, use of normal weight individuals should also 

be considered.  TNF-α and the VDR also represent likely targets for future investigation. 

5.8.1 Tumor Necrosis Factor Alpha 

 Tumor necrosis factor-alpha is produced by several different types of leukocytes, 

including monocytes and macrophages (16).  Normal, resting levels of TNF-α are around 2 

pg/mL (27).  These levels can become elevated in overweight and obese individuals, as increases 

in adipose tissue leads to the prevalence of macrophages that are capable of producing TNF-α 

(134).  Once secreted, TNF-α can elicit a number of effects, such as binding to receptors present 

in a wide variety of tissues and leading to the production of other inflammatory cytokines (135).  

Activation of the NF-κB pathway increases the production of cytokines including IL-1β, IL-6, 

and IL-8 (135, 136).  The general consensus is that training exercise modality and volume, as 

well as existing tissue damage from a particularly difficult training bout prior to blood collection, 

may influence an individual’s capacity to produce TNF-α (16).  

 Because TNF-α acts as an inflammatory marker and also independently elicits the 

production of other inflammatory biomarkers, changes in its concentration are often studied after 

acute exercise training bouts (27).  This cytokine also has a unique time course in its changes in 

response to the exercise stimulus compared to other traditional markers of inflammation such as 

IL-6 (36).  Levels of TNF-α may not increase during or immediately following acute bouts of 

exercise, but may become increased in plasma between one and two hours after completion of 

the activity (16).  Changes in TNF-α levels with chronic exercise training have also been 
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documented, although there are mixed results.  Regular training results in lower resting levels of 

TNF-α, as well as the increased ability to return levels to normal after exposure to a stimulus, 

compared to those who are not physically active (20).  In a study comparing concentrations of 

TNF-α in both older (average age of 64 years) and younger (average age 24 years) and age-

matched sedentary controls, concentrations of were significantly different between older trained 

and older untrained subjects, although this difference did not exist in the younger subjects (39).  

The results were clinically relevant, as inflammation is normally a condition that develops and 

persists with increasing age, and this study highlighted the potential for exercise to slow the 

development of this condition (39).  Because changes in concentrations of this inflammatory 

cytokine have been observed in several studies, measuring the response of this variable in 

response to a stimulus should be considered for future projects.  

5.8.2 Vitamin D Receptor 

 The vitamin D receptor (VDR) adds yet another complex facet to the understanding of 

the role vitamin D plays in mediating the inflammatory response. Vitamin D works traditionally 

through an endocrine mechanism and controls genetic expression (137).  The VDR is located in 

the nucleus and binds with its ligand, 1,25(OH)2D, and forms a heterodimer with the retinoic X 

receptor in.  Once this heterodimer is formed, transcription of the genetic material proceeds 

(137).  The VDR is present in nearly every cell type in the body (137).   

Modulation by the VDR of the inflammatory response in immune cells is one of the areas 

of vitamin D research that gives promise of understanding a mechanism.  When monocytes were 

incubated with varying concentrations of either 25OHD or 1,25(OH)2D and stimulated with 

lipopolysaccharide (LPS), production of IL-6 and TNF-α was inhibited in a dose-dependent 

manner for both isoforms of vitamin D treatment (7).  To date, there have been no studies 

investigating the relationship between vitamin D status, with or without the influence of exercise 
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training status, on the presence and amount of VDR in a human model after the TLR pathway is 

stimulated. 

 The effect of exercise training on expression of the VDR has not been well documented.  

In a study with exercise-trained rats on vitamin D supplement or a matching placebo, it was 

determined that those rats on the vitamin D supplement and exercise training program had higher 

expression of the VDR in skeletal muscle compared to those rats on the placebo treatment (138).  

Rats were exposed to the same exercise treatment protocol and performance under varying 

exercise conditions was not assessed.  However, the inflammatory profiles of rats on the vitamin 

D supplement were significantly more favorable compared to those that were on the placebo, 

even though all rats underwent the same exercise stimulus (138).  Some work has focused on 

bone density in humans with different polymorphisms of the VDR, and speculated that those 

with polymorphisms that favor higher bone resorption may not perform as well in athletic events, 

although this line of research has not been pursued (139). 

 Relative presence of the VDR in states of vitamin D sufficiency and insufficiency is also 

another area of research that has presented conflicting results.  Some projects offer a positive 

relationship between VDR content and 1,25(OH)2D concentrations; this seems logical, as 

1,25(OH)2D is the ligand for the receptor (140).  As long as the ligand is present, the receptor 

remains present in order to elicit its action.  However, the relationship between 25OHD and 

1,25(OH)2D makes interpretation of this relationship difficult.  When the body is deficient of 

25OHD, 1,25(OH)2D continues to be produced, and may reach higher than normal levels in 

order for normal physiological processes to continue (141).  This means that in studies 

investigating the relationship between vitamin D status and the presence of the vitamin D 

receptor, those individuals that have suboptimal vitamin D status, as assessed by 25OHD 

concentration, may actually be expressing higher levels of VDR because of the inverse 
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relationship between the vitamin D biomarker used to establish vitamin D status and the vitamin 

D ligand used to elicit responses throughout the body.  Conversely, other studies have shown that 

individuals who are deficient in vitamin D still have decreased presence of VDR, even when 

1,25(OH)2D is present in elevated concentrations (142). 

 Considering its many implications in changes in inflammation and muscular health, work 

investigating VDR content and these variables is lacking.  Future work should focus on VDR 

content, particularly in trained and untrained individuals.  Using this methodology in a 

longitudinal training study would also provide insight into changes that exercise training might 

induce in VDR content and a potential mechanism by which vitamin D would elicit these 

changes.  Drawing correlations between VDR levels and monocyte subpopulations would also 

push the boundaries in the area of immune function research and increase the understanding 

vitamin D and VDR play in decreasing inflammation. 

5.9 Conclusion   

Exercise training has been shown to have anti-inflammatory effects with some studies 

suggesting that the intervention may reduce inflammatory monocyte numbers with concomitant 

reductions in the inflammatory capacity and overall levels of systemic inflammation in the body.  

The anti-inflammatory actions of vitamin D in the body are not as well defined.  In this study, 

regular physical activity was associated with higher levels of serum 25OHD, lower BMI and 

waist circumference and percent body fat as well as reduced LPS-stimulated IL-6 production.  

Optimal vitamin D status did not appear to confer any additional health related or anti-

inflammatory benefit in those engaging in regular exercise.  However, in individuals not 

participating in a regular exercise program, the potential for vitamin D to mediate inflammation 

appeared more likely.  More specifically, untrained people with optimal vitamin D status had 

lower numbers of monocytes, CD14+CD16- and TLR4 expression on CD14+CD16+ cells; 
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however, these differences did not translate into a change in overall cell function or markers of 

systemic inflammation as there was no difference between optimal and suboptimal groups with 

respect to LPS-stimulated IL-6 production and CRP.  An expanded exploration of the 

relationship between vitamin D and inflammation may include other inflammatory biomarkers, 

immune cell types, the vitamin D receptor and the role of adipose tissue.   
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APPENDIX 1 – CONSENT FORMS 

1.1 LSU IRB Approval 
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1.2 Medical History Form 

 

 

Page 1 of 8 

Last updated: 09/23/2007 

Medical History Information Form v1.5 

 

Medical History Information 
 

Place Patient Identification Sticker here 

 

 

  

 

 

 

 

 

 

 

 

CURRENT MEDICAL STATUS 

1. PRESENT Medical Problems:  

Do you have any known significant medical problems at the present time? (including any problems that 

require ongoing medical treatment or problems that cause you to miss work.)     □ Yes □ No  

If yes, please list the medical condition and the date of onset. 

 CONDITION DATE OF 

ONSET 

COMMENTS 

1a.     

1b.    

1c.    

1d.    

1e.    

 

PAST MEDICAL HISTORY 

2.  Significant PAST Illnesses:   

Have you had any other significant illnesses in the past (including any illnesses requiring hospitalization 
or ongoing Medical Treatment and excluding common illnesses such as Chicken Pox or strep throat)?           

□ Yes □ No             If  yes, please list the illness and the year(s) it occurred. 

 ILLNESS YEAR(S) COMMENTS 

2a.    

2b.    

2c.    

2d.    

2e.    

                 ACROSTIC: _________________                 

Please complete the following questionnaire as completely and accurately as possible.  All of 

your information will be kept CONFIDENTIAL and will be used by the researchers to 

ensure your safety. 

If you have questions, please ask a staff member for assistance. 

 

 
If you have questions, please ask a HART-D staff member for assistance. 
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1.3 Physical Activity Readiness Questionnaire 
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1.4 International Physical Activity Questionnaire  
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1.5 Sun Exposure Survey

Sun	Exposure	Log
ID:_________________																																																																				Dates:	From	_________	to	_________

Time Exposure Total

Monday

Sunday

Saturday

Friday

Thursday

Wednesday

Tuesday

Time Exposure

<	5	min/day	=	0	points Face	and	hands	only	=	1	point

5-30	min	=	1	point Face,	hands,	arms	=	2	points

>	30	min	=	2	points Face,	hands,	arms,	legs	=	3	points

Bathing	suit	=	4	points
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1.6 Diet Log 

 

Diet	Log	
	

Use	the	following	to	track	what	you	ate	over	the	course	of	a	week.		Be	sure	to	be	as	detailed	as	possible	–	don’t	just	put	“cereal,”	put	
what	type	of	cereal	and	how	much	you	had.		(Ex.	If	you	had	a	glass	of	milk,	was	it	2%	or	skim?	8	oz	or	more?	Be	aware	the	serving	
size	listed	on	the	box	is	usually	much	smaller	than	what	you	would	normally	eat.)	
	

	 Breakfast	 Lunch	 Dinner	 Snacks	

Monday	 	 	 	 	

Tuesday	 	 	 	 	

Wednesday		 	 	 	

Thursday	 	 	 	 	

Friday	 	 	 	 	

Saturday	 	 	 	 	

Sunday	 	 	 	 	
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APPENDIX 2 – RAW DATA 

Age 

 

Trained/Low Age  Trained/High Age 

T01 21  T03 21 

T02 21  T04 26 

T06 26  T05 21 

T09 21  T07 20 

T11 21  T08 27 

T12 20  T10 23 

T13 21  T15 21 

T14 32  T16 21 

T17 24  T18 20 

T21 25  T20 21 

T26 20  T23 22 

U03 21  T25 21 

U14 21  T27 20 

U16 21  T28 21 

U26 22  U02 21 

 

Untrained/Low Age  Untrained/High Age 

U05 22  T19 21 

U06 22  T30 21 

U10 21  U01 22 

U11 21  U04 35 

U13 30  U07 22 

U17 21  U08 21 

U19 21  U09 21 

U20 21  U12 21 

U22 23  U15 21 

U25 20  U18 22 

U27 21  U21 21 

U28 21  U23 21 

U29 19  U30 20 

U38 21  U31 21 

   U33 22 

   U34 20 

   U35 21 

   U37 21 

   U39 20 
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Weight (lbs) 

 

Trained/Low Weight  Trained/High Weight 

T01 132.25  T03 148 

T02 126  T04 123 

T06 143  T05 130 

T09 123.75  T07 142.25 

T11 107.25  T08 155.5 

T12 112.5  T10 149.25 

T13 123.75  T15 124 

T14 136  T16 144 

T17 132.5  T18 124.5 

T21 145  T20 125.5 

T26 124.5  T23 147 

U03 103  T25 111.75 

U14 134  T27 163.5 

U16 142.75  T28 125.75 

U26 127  U02 116.25 

 

Untrained/Low Weight  Untrained/High Weight 

U05 108  T19 166.25 

U06 169.5  T30 144 

U10 232.5  U01 145 

U11 136  U04 126.75 

U13 255  U07 150 

U17 130.25  U08 114.5 

U19 132  U09 126.25 

U20 138  U12 128.75 

U22 126.5  U15 144.5 

U25 117.5  U18 124.5 

U27 200  U21 152.25 

U28 223.75  U23 103.75 

U29 204  U30 122.75 

U38 123  U31 114.25 

   U33 119.5 

   U34 165.75 

   U35 150.75 

   U37 128.25 

   U39 120.25 
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Height (in) 

 

Trained/Low Height  Trained/High Height 

T01 61  T03 63 

T02 63.5  T04 64 

T06 66  T05 64.75 

T09 60.25  T07 65.5 

T11 61.5  T08 66.25 

T12 60  T10 67.25 

T13 65.25  T15 59 

T14 64  T16 67.5 

T17 60  T18 66 

T21 68  T20 60.25 

T26 63.25  T23 64.5 

U03 58.5  T25 65.5 

U14 63.5  T27 69.5 

U16 65.75  T28 65.75 

U26 66.5  U02 65 

 

Untrained/Low Height  Untrained/High Height 

U05 62.5  T19 65.5 

U06 64.75  T30 64 

U10 67.5  U01 67 

U11 64.5  U04 60 

U13 68.25  U07 61 

U17 63  U08 63 

U19 62  U09 63 

U20 67.25  U12 61.25 

U22 66  U15 64 

U25 63  U18 64.5 

U27 61  U21 63.5 

U28 64  U23 62 

U29 65  U30 65.5 

U38 61  U31 63 

   U33 62.5 

   U34 62 

   U35 63 

   U37 64.75 

   U39 64 
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BMI 

 

Trained/Low BMI  Trained/High BMI 

T01 25.00  T03 26.21 

T02 21.97  T04 21.11 

T06 23.08  T05 21.80 

T09 23.98  T07 23.30 

T11 19.93  T08 24.92 

T12 21.97  T10 23.19 

T13 20.43  T15 25.04 

T14 23.34  T16 22.22 

T17 25.87  T18 20.09 

T21 22.04  T20 24.30 

T26 21.88  T23 24.84 

U03 21.16  T25 18.31 

U14 23.36  T27 23.80 

U16 23.21  T28 20.45 

U26 20.19  U02 19.35 

 

Untrained/Low BMI  Untrained/High BMI 

U05 19.44  T19 27.24 

U06 28.42  T30 24.71 

U10 35.87  U01 22.71 

U11 22.98  U04 24.75 

U13 38.48  U07 28.34 

U17 23.06  U08 20.28 

U19 24.14  U09 22.36 

U20 21.45  U12 24.13 

U22 20.42  U15 24.80 

U25 20.81  U18 21.04 

U27 37.79  U21 26.54 

U28 38.40  U23 18.97 

U29 33.94  U30 20.11 

U38 23.24  U31 20.24 

   U33 21.51 

   U34 30.31 

   U35 26.70 

   U37 21.50 

   U39 20.64 
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Waist Circumference (in) 

 

Trained/Low Waist  Trained/High Waist 

T01 26.5  T03 28 

T02 26.5  T04 26 

T06 28  T05 28 

T09 25.5  T07 27 

T11 23.5  T08 28 

T12 25  T10 29 

T13 28.5  T15 28 

T14 28  T16 27.5 

T17 28  T18 24 

T21 27.5  T20 27.5 

T26 25  T23 29 

U03 26  T25 24 

U14 28.5  T27 27 

U16 28.5  T28 25 

U26 25  U02 26.5 

 

Untrained/Low Waist  Untrained/High Waist 

U05 23  T19 30 

U06 32.5  T30 29 

U10 38  U01 27.25 

U11 25.5  U04 26 

U13 40  U07 28.5 

U17 27  U08 26 

U19 27.5  U09 25.5 

U20 27.5  U12 27.5 

U22 26  U15 27 

U25 26  U18 25.5 

U27 34  U21 30 

U28 35  U23 24 

U29 35  U30 23 

U38 26  U31 24.5 

   U33 24.5 

   U34 33 

   U35 27.5 

   U37 25 

   U39 24.5 
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Hip Circumference (in) 

 

Trained/Low Hip  Trained/High Hip 

T01 36  T03 33.5 

T02 32.5  T04 32 

T06 37.5  T05 34 

T09 30  T07 35 

T11 30.5  T08 35.5 

T12 31  T10 36 

T13 32.5  T15 32.5 

T14 33  T16 35 

T17 34  T18 34 

T21 35.5  T20 32.5 

T26 32  T23 35 

U03 31  T25 32 

U14 33  T27 37 

U16 35  T28 34 

U26 33  U02 34.5 

 

Untrained/Low Hip  Untrained/High Hip 

U05 31  T19 37.5 

U06 36.75  T30 35 

U10 42.5  U01 35.0 

U11 32  U04 33 

U13 51  U07 35.5 

U17 33  U08 33 

U19 36  U09 33 

U20 36  U12 32 

U22 33  U15 34 

U25 31  U18 35 

U27 40  U21 37 

U28 42  U23 31 

U29 39  U30 31 

U38 32  U31 32 

   U33 32 

   U34 38 

   U35 37.5 

   U37 32.5 

   U39 31 
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Waist:Hip Ratio 

 

Trained/Low W:H  Trained/High W:H 

T01 0.736  T03 0.836 

T02 0.815  T04 0.813 

T06 0.733  T05 0.824 

T09 0.850  T07 0.771 

T11 0.770  T08 0.789 

T12 0.806  T10 0.806 

T13 0.877  T15 0.862 

T14 0.848  T16 0.786 

T17 0.824  T18 0.706 

T21 0.775  T20 0.846 

T26 0.781  T23 0.829 

U03 0.839  T25 0.750 

U14 0.864  T27 0.730 

U16 0.814  T28 0.735 

U26 0.758  U02 0.768 

 

Untrained/Low W:H  Untrained/High W:H 

U05 0.742  T19 0.800 

U06 0.884  T30 0.829 

U10 0.894  U01 0.779 

U11 0.797  U04 0.788 

U13 0.784  U07 0.803 

U17 0.818  U08 0.788 

U19 0.764  U09 0.773 

U20 0.775  U12 0.859 

U22 0.788  U15 0.794 

U25 0.839  U18 0.729 

U27 0.850  U21 0.811 

U28 0.833  U23 0.768 

U29 0.897  U30 0.742 

U38 0.813  U31 0.766 

   U33 0.766 

   U34 0.868 

   U35 0.733 

   U37 0.769 

   U39 0.790 
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Estimated Body Fat (%) 

 

Trained/Low Body Fat  Trained/High Body Fat 

T01 30.9  T03 28.6 

T02 25.2  T04 24.6 

T06 30.5  T05 33.9 

T09 31.6  T07 30.3 

T11 28.8  T08 39.5 

T12 27.6  T10 35.4 

T13 34.5  T15 32.6 

T14 39.0  T16 34.5 

T17 32.9  T18 32.1 

T21 34.1  T20 34.1 

T26 28.9  T23 38.8 

U03 24.7  T25 23.1 

U14 35.6  T27 33.3 

U16 39.3  T28 28.5 

U26 33.1  U02 28.1 

 

Untrained/Low Body Fat  Untrained/High Body Fat 

U05 29.4  T19 40.4 

U06 42.9  T30 39.6 

U10 41.1  U01 29.8 

U11 27.7  U04 37.9 

U13 58.7  U07 39.1 

U17 35.0  U08 26.9 

U19 41.9  U09 12.8 

U20 34.3  U12 32.2 

U22 39.4  U15 35.9 

U25 24.2  U18 32.8 

U27 51.3  U21 44.9 

U28 51.2  U23 30.8 

U29 47.6  U30 24.0 

U38 39.8  U31 27.5 

   U33 37.9 

   U34 49.5 

   U35 40.7 

   U37 31.2 

   U39 33.7 
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Serum 25OHD Concentration (ng/mL) 

 

Trained/Low 25OHD  Trained/High 25OHD 

T01 26.964  T03 61.986 

T02 27.270  T04 61.215 

T06 30.248  T05 74.638 

T09 22.920  T07 42.648 

T11 23.330  T08 84.955 

T12 20.160  T10 33.555 

T13 19.555  T15 33.619 

T14 22.810  T16 41.041 

T17 24.654  T18 54.474 

T21 30.565  T20 48.247 

T26 16.215  T23 39.255 

U03 23.117  T25 39.278 

U14 17.062  T27 54.634 

U16 14.752  T28 48.290 

U26 12.572  U02 42.609 

 

Untrained/Low 25OHD  Untrained/High 25OHD 

U05 14.657  T19 29.149 

U06 10.647  T30 35.910 

U10 14.665  U01 61.319 

U11 19.693  U04 24.990 

U13 13.920  U07 21.936 

U17 12.572  U08 20.560 

U19 6.495  U09 22.466 

U20 1.990  U12 49.184 

U22 6.229  U15 61.478 

U25 5.542  U18 44.025 

U27 13.804  U21 45.665 

U28 15.932  U23 35.288 

U29 14.912  U30 34.068 

U38 11.092  U31 25.620 

   U33 21.079 

   U34 33.550 

   U35 46.203 

   U37 27.848 

   U39 44.730 

 



 

 116 

Sun Exposure Survey Scores 

 

Trained/Low Score  Trained/High Score 

T01 44  T03 24 

T02 26  T04 42 

T06 27  T05 30 

T09 38  T07 35 

T11 48  T08 37 

T12 38  T10 36 

T13 34  T15 39 

T14 34  T16 42 

T17 24  T18 30 

T21 44  T20 30 

T26 30  T23 34 

U03 26  T25 35 

U14 30  T27 30 

U16 46  T28 44 

U26 31  U02 26 

 

Untrained/Low Score  Untrained/High Score 

U05 42  T19 20 

U06 28  T30 32 

U10 30  U01 38 

U11 32  U04 30 

U13 24  U07 24 

U17 42  U08 46 

U19 24  U09 21 

U20 42  U12 30 

U22 44  U15 28 

U25 36  U18 30 

U27 36  U21 39 

U28 23  U23 39 

U29 27  U30 42 

U38 35  U31 40 

   U33 19 

   U34 38 

   U35 22 

   U37 33 

   U39 23 
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Time Spent Outdoors (min/week) 

 

Trained/Low Time  Trained/High Time 

T01 1260  T03 260 

T02 120  T04 270 

T06 480  T05 195 

T09 330  T07 540 

T11 780  T08 395 

T12 395  T10 1380 

T13 395  T15 745 

T14 550  T16 945 

T17 240  T18 450 

T21 660  T20 480 

T26 315  T23 590 

U03 170  T25 540 

U14 260  T27 472 

U16 375  T28 900 

U26 770  U02 310 

 

Untrained/Low Time  Untrained/High Time 

U05 630  T19 660 

U06 603  T30 650 

U10 875  U01 420 

U11 550  U04 540 

U13 275  U07 592 

U17 685  U08 795 

U19 135  U09 255 

U20 510  U12 740 

U22 1900  U15 315 

U25 465  U18 635 

U27 400  U21 870 

U28 185  U23 1650 

U29 260  U30 1050 

U38 550  U31 1445 

   U33 360 

   U34 550 

   U35 360 

   U37 460 

   U39 520 
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Dietary Intake (IU/3 days) 

 

Trained/Low IU  Trained/High IU 

T01 436  T03 479 

T02 522  T04 58 

T06 162  T05 119 

T09 322  T07 752 

T11 187  T08 189 

T12 453  T10 293 

T13 66  T15 669 

T14 517  T16 178 

T17 216  T18 224 

T21 717  T20 249 

T26 1754  T23 978 

U03 1388  T25 480 

U14 261  T27 95 

U16 59  T28 222 

U26 61  U02 165 

 

Untrained/Low IU  Untrained/High IU 

U05 265  T19 266 

U06 74  T30 1785 

U10 134  U01 303 

U11 452  U04 108 

U13 452  U07 441 

U17 225  U08 117 

U19 223  U09 42 

U20 269  U12 181 

U22 471  U15 635 

U25 3111  U18 279 

U27 2082  U21 450 

U28 89  U23 412 

U29 347  U30 1017 

U38 462  U31 54 

   U33 162 

   U34 450 

   U35 135 

   U37 1203 

   U39 336 
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VO2peak (mL/kg/min) 

 

Trained/Low VO2  Trained/High VO2 

T01 48.5  T03 54.7 

T02 46.3  T04 48.7 

T06 46.2  T05 39.0 

T09 45.3  T07 42.6 

T11 45.4  T08 43.6 

T12 45.4  T10 39.7 

T13 37.9  T15 49.8 

T14 46.6  T16 35.7 

T17 40.6  T18 40.1 

T21 47.0  T20 37.9 

T26 46.2  T23 36.4 

U03 41.9  T25 35.5 

U14 46.5  T27 38.2 

U16 42.6  T28 41.7 

U26 46.1  U02 40.9 

 

Untrained/Low VO2  Untrained/High VO2 

U05 39.2  T19 33.9 

U06 37.7  T30 36.0 

U10 30.3  U01 26.3 

U11 37.6  U04 38.4 

U13 23.0  U07 36.4 

U17 38.2  U08 29.3 

U19 39.4  U09 27.5 

U20 37.0  U12 36.7 

U22 38.8  U15 35.5 

U25 27.0  U18 37.6 

U27 31.5  U21 26.9 

U28 21.2  U23 31.7 

U29 33.8  U30 38.6 

U38 36.5  U31 37.4 

   U33 28.7 

   U34 22.9 

   U35 25.6 

   U37 29.0 

   U39 27.1 
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Peak Power Output (w) 

 

Trained/Low w  Trained/High w 

T01 370.27  T03 474.01 

T02 403.50  T04 344.24 

T06 567.95  T05 311.86 

T09 494.97  T07 454.72 

T11 299.85  T08 497.69 

T12 405.33  T10 417.65 

T13 395.82  T15 396.62 

T14 326.25  T16 460.59 

T17 476.78  T18 348.44 

T21 289.87  T20 351.20 

T26 298.66  T23 528.96 

U03 329.88  T25 268.07 

U14 482.18  T27 522.96 

U16 342.44  T28 452.49 

U26 304.66  U02 464.84 

 

Untrained/Low w  Untrained/High w 

U05 344.57  T19 531.72 

U06 232.52  T30 460.59 

U10 650.69  U01 289.87 

U11 326.25  U04 304.06 

U13 509.73  U07 480.32 

U17 416.45  U08 366.22 

U19 316.66  U09 403.78 

U20 441.40  U12 514.26 

U22 252.88  U15 462.15 

U25 234.89  U18 448.00 

U27 319.85  U21 304.36 

U28 355.47  U23 290.37 

U29 407.81  U30 392.62 

U38 393.42  U31 365.47 

   U33 430.00 

   U34 331.32 

   U35 421.91 

   U37 358.94 

   U39 384.62 
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Relative Peak Power Output (w/kg) 

 

Trained/Low w  Trained/High w 

T01 6.17  T03 7.06 

T02 7.06  T04 6.18 

T06 8.76  T05 5.30 

T09 8.83  T07 7.05 

T11 6.17  T08 7.06 

T12 7.94  T10 6.17 

T13 7.06  T15 7.06 

T14 5.30  T16 7.06 

T17 7.94  T18 6.18 

T21 4.41  T20 6.18 

T26 5.30  T23 7.94 

U03 7.06  T25 5.30 

U14 7.95  T27 7.06 

U16 5.29  T28 7.94 

U26 5.30  U02 8.82 

 

Untrained/Low w  Untrained/High w 

U05 7.04  T19 7.06 

U06 3.03  T30 7.06 

U10 6.18  U01 4.41 

U11 5.30  U04 5.30 

U13 4.41  U07 7.06 

U17 7.06  U08 7.06 

U19 5.29  U09 7.06 

U20 7.06  U12 8.82 

U22 4.41  U15 7.06 

U25 4.41  U18 7.94 

U27 3.53  U21 4.41 

U28 3.53  U23 6.18 

U29 4.41  U30 7.06 

U38 7.06  U31 7.06 

   U33 7.94 

   U34 4.41 

   U35 6.18 

   U37 6.18 

   U39 7.06 
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Anaerobic Capacity (kJ) 

 

Trained/Low kJ  Trained/High kJ 

T01 9.77  T03 10.96 

T02 10.34  T04 6.88 

T06 12.56  T05 9.10 

T09 11.14  T07 10.52 

T11 7.71  T08 13.69 

T12 7.71  T10 9.84 

T13 8.91  T15 9.67 

T14 8.97  T16 9.50 

T17 10.60  T18 9.21 

T21 8.41  T20 8.53 

T26 7.96  T23 10.87 

U03 8.65  T25 5.36 

U14 9.91  T27 11.44 

U16 8.85  T28 10.56 

U26 7.62  U02 10.46 

 

Untrained/Low kJ  Untrained/High kJ 

U05 7.11  T19 13.29 

U06 5.15  T30 10.08 

U10 14.41  U01 7.54 

U11 8.97  U04 7.09 

U13 11.21  U07 10.51 

U17 10.15  U08 6.87 

U19 7.12  U09 10.10 

U20 9.38  U12 11.57 

U22 6.07  U15 10.40 

U25 5.87  U18 9.71 

U27 7.20  U21 7.00 

U28 8.00  U23 6.43 

U29 7.75  U30 8.83 

U38 9.34  U31 7.54 

   U33 10.51 

   U34 7.29 

   U35 9.34 

   U37 8.72 

   U39 9.14 
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Relative Anaerobic Capacity (kJ/kg) 

 

Trained/Low kJ/kg  Trained/High kJ/kg 

T01 0.163  T03 0.163 

T02 0.181  T04 0.124 

T06 0.194  T05 0.154 

T09 0.199  T07 0.163 

T11 0.159  T08 0.194 

T12 0.194  T10 0.146 

T13 0.159  T15 0.172 

T14 0.146  T16 0.146 

T17 0.177  T18 0.163 

T21 0.128  T20 0.150 

T26 0.141  T23 0.163 

U03 0.185  T25 0.106 

U14 0.163  T27 0.155 

U16 0.137  T28 0.185 

U26 0.132  U02 0.199 

 

Untrained/Low kJ/kg  Untrained/High kJ/kg 

U05 0.145  T19 0.177 

U06 0.067  T30 0.155 

U10 0.137  U01 0.115 

U11 0.146  U04 0.124 

U13 0.097  U07 0.154 

U17 0.172  U08 0.132 

U19 0.119  U09 0.177 

U20 0.150  U12 0.198 

U22 0.106  U15 0.159 

U25 0.110  U18 0.172 

U27 0.079  U21 0.102 

U28 0.794  U23 0.137 

U29 0.084  U30 0.159 

U38 0.168  U31 0.146 

   U33 0.194 

   U34 0.097 

   U35 0.137 

   U37 0.150 

   U39 0.168 
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Fatigue Index (%) 

 

Trained/Low kJ/kg  Trained/High kJ/kg 

T01 42.9  T03 37.5 

T02 25.0  T04 17.4 

T06 25.0  T05 16.7 

T09 40.0  T07 50.0 

T11 14.3  T08 25.0 

T12 33.3  T10 42.8 

T13 37.5  T15 50.0 

T14 16.7  T16 50.0 

T17 44.4  T18 14.3 

T21 47.0  T20 42.9 

T26 33.3  T23 55.6 

U03 25.0  T25 50.0 

U14 66.7  T27 50.0 

U16 33.3  T28 33.3 

U26 33.3  U02 50.0 

 

Untrained/Low kJ/kg  Untrained/High kJ/kg 

U05 50.0  T19 37.5 

U06 42.9  T30 50.0 

U10 42.6  U01 40.0 

U11 16.7  U04 50.0 

U13 40.0  U07 50.0 

U17 37.5  U08 62.5 

U19 33.3  U09 37.5 

U20 62.5  U12 50.0 

U22 40.0  U15 37.5 

U25 40.0  U18 55.6 

U27 50.0  U21 40.0 

U28 50.0  U23 28.6 

U29 60.0  U30 50.0 

U38 37.5  U31 50.0 

   U33 33.3 

   U34 40.0 

   U35 42.9 

   U37 42.9 

   U39 42.9 
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Total Monocytes 

 

Trained/Low Count  Trained/High Count 

T01 20077  T03 14943 

T02 11409  T04 13455 

T06 19716  T05 24994 

T09 15646  T07 14124 

T11 26679  T08 22567 

T12 15555  T10 18132 

T13 18716  T15 35656 

T14 23951  T16 13071 

T17 19844  T18 19154 

T21 17936  T20 26384 

T26 16994  T23 17804 

U03 10701  T25 17155 

U14 19067  T27 8573 

U16 13641  T28 20903 

U26 26510  U02 17352 

 

Untrained/Low Count  Untrained/High Count 

U05 22648  T19 16802 

U06 23529  T30 30044 

U10 28509  U01 13447 

U11 26005  U04 12386 

U13 33222  U07 20364 

U17 9015  U08 12277 

U19 19257  U09 26673 

U20 15831  U12 15868 

U22 23802  U15 8668 

U25 22501  U18 22690 

U27 30749  U21 16487 

U28 20307  U23 18077 

U29 25788  U30 14437 

U38 16693  U31 16409 

   U33 18781 

   U34 16701 

   U35 16559 

   U37 20251 

   U39 9292 
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CD14+CD16+  

 

Trained/Low Count  Trained/High Count 

T01 17961  T03 13098 

T02 8345  T04 11169 

T06 16668  T05 20459 

T09 13571  T07 12570 

T11 20715  T08 18718 

T12 13442  T10 15880 

T13 16854  T15 31866 

T14 20855  T16 10041 

T17 14527  T18 16232 

T21 15679  T20 19445 

T26 14288  T23 14526 

U03 7657  T25 13895 

U14 13154  T27 7063 

U16 12332  T28 15342 

U26 22926  U02 15740 

 

Untrained/Low Count  Untrained/High Count 

U05 18438  T19 12311 

U06 21234  T30 27096 

U10 25141  U01 11383 

U11 23980  U04 10382 

U13 28389  U07 17430 

U17 7658  U08 10336 

U19 16013  U09 22943 

U20 12205  U12 13915 

U22 14623  U15 6514 

U25 17076  U18 20072 

U27 26913  U21 14829 

U28 17272  U23 15185 

U29 22402  U30 12093 

U38 14600  U31 9206 

   U33 15991 

   U34 14478 

   U35 9483 

   U37 18363 

   U39 7645 
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CD14++CD16+ 

 

Trained/Low Count  Trained/High Count 

T01 378  T03 18 

T02 529  T04 558 

T06 610  T05 1109 

T09 478  T07 305 

T11 721  T08 853 

T12 391  T10 563 

T13 516  T15 739 

T14 880  T16 359 

T17 1114  T18 286 

T21 458  T20 4231 

T26 509  T23 684 

U03 407  T25 261 

U14 4644  T27 224 

U16 297  T28 463 

U26 424  U02 307 

 

Untrained/Low Count  Untrained/High Count 

U05 621  T19 739 

U06 367  T30 600 

U10 790  U01 469 

U11 352  U04 467 

U13 2229  U07 326 

U17 229  U08 613 

U19 584  U09 1042 

U20 1365  U12 507 

U22 5704  U15 312 

U25 642  U18 347 

U27 1431  U21 457 

U28 453  U23 836 

U29 929  U30 342 

U38 326  U31 236 

   U33 511 

   U34 647 

   U35 380 

   U37 340 

   U39 394 
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CD14+CD16++ 

 

Trained/Low Count  Trained/High Count 

T01 27  T03 0 

T02 1505  T04 1328 

T06 1672  T05 2824 

T09 1157  T07 844 

T11 4550  T08 2248 

T12 1040  T10 1338 

T13 904  T15 2215 

T14 1505  T16 489 

T17 3595  T18 1279 

T21 1238  T20 2194 

T26 1604  T23 1628 

U03 1204  T25 2576 

U14 906  T27 1027 

U16 906  T28 1276 

U26 2169  U02 613 

 

Untrained/Low Count  Untrained/High Count 

U05 3017  T19 1427 

U06 1354  T30 1061 

U10 1611  U01 988 

U11 778  U04 819 

U13 2157  U07 2165 

U17 615  U08 888 

U19 1120  U09 1933 

U20 805  U12 16 

U22 2640  U15 1282 

U25 2079  U18 991 

U27 1499  U21 1 

U28 81  U23 620 

U29 1791  U30 1291 

U38 1108  U31 446 

   U33 1626 

   U34 118 

   U35 1124 

   U37 1061 

   U39 830 
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CD14+CD16- TLR4+ (MFC) 

 

Trained/Low MFC  Trained/High MFC 

T01 11.55  T03 11.14 

T02 11.97  T04 11.55 

T06 11.72  T05 11.97 

T09 13.82  T07 10.75 

T11 10.75  T08 11.97 

T12 10.37  T10 12.41 

T13 11.14  T15 12.86 

T14 12.86  T16 16.55 

T17 10.75  T18 10.00 

T21 10.00  T20 11.55 

T26 11.97  T23 10.37 

U03 14.33  T25 11.97 

U14 12.41  T27 11.97 

U16 8.66  T28 14.86 

U26 10.75  U02 12.41 

 

Untrained/Low MFC  Untrained/High MFC 

U05 15.40  T19 12.86 

U06 10.75  T30 9.65 

U10 10.00  U01 11.14 

U11 11.97  U04 10.37 

U13 11.14  U07 10.75 

U17 10.37  U08 9.31 

U19 14.33  U09 8.98 

U20 10.75  U12 11.14 

U22 12.86  U15 11.97 

U25 11.55  U18 11.56 

U27 13.34  U21 11.14 

U28 9.65  U23 12.86 

U29 14.33  U30 11.55 

U38 9.65  U31 10.37 

   U33 10.00 

   U34 13.34 

   U35 11.55 

   U37 11.14 

   U39 10.00 
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CD14+CD16+ TLR4+ (MFC) 

 

Trained/Low MFC  Trained/High MFC 

T01 13.34  T03 31.62 

T02 18.43  T04 13.82 

T06 16.03  T05 15.96 

T09 19.81  T07 13.82 

T11 12.86  T08 13.82 

T12 12.86  T10 16.55 

T13 13.82  T15 15.40 

T14 17.15  T16 22.07 

T17 11.14  T18 13.82 

T21 11.55  T20 14.33 

T26 12.86  T23 12.86 

U03 22.07  T25 14.33 

U14 16.55  T27 13.10 

U16 10.00  T28 17.78 

U26 12.86  U02 15.96 

 

Untrained/Low MFC  Untrained/High MFC 

U05 24.58  T19 17.15 

U06 14.33  T30 12.41 

U10 11.97  U01 13.34 

U11 15.40  U04 13.82 

U13 14.33  U07 13.82 

U17 16.55  U08 12.41 

U19 21.29  U09 10.37 

U20 33.98  U12 12.86 

U22 15.40  U15 15.96 

U25 12.86  U18 15.40 

U27 17.78  U21 14.33 

U28 11.55  U23 13.82 

U29 18.43  U30 13.82 

U38 11.55  U31 13.34 

   U33 12.86 

   U34 15.96 

   U35 14.86 

   U37 12.86 

   U39 10.37 
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CRP (mg/L) 

 

Trained/Low CRP  Trained/High CRP 

T01 0.097  T03 0.661 

T02 0.149  T04 0.832 

T06 0.364  T05 0.670 

T09 0.166  T07 0.660 

T11 0.474  T08 0.684 

T12 0.065  T10 0.126 

T13 0.245  T15 2.568 

T14 0.281  T16 4.499 

T17 0.063  T18 0.174 

T21 3.993  T20 5.194 

T26 0.175  T23 0.150 

U03 5.621  T25 1.360 

U14 2.413  T27 0.832 

U16 0.756  T28 0.431 

U26 3.053  U02 1.784 

 

Untrained/Low CRP  Untrained/High CRP 

U05 0.114  T19 2.905 

U06 1.408  T30 0.172 

U10 0.224  U01 0.881 

U11 0.081  U04 0.010 

U13 1.640  U07 4.850 

U17 0.255  U08 0.366 

U19 1.392  U09 0.247 

U20 0.221  U12 1.062 

U22 2.203  U15 0.563 

U25 1.990  U18 0.119 

U27 4.349  U21 6.433 

U28 2.223  U23 2.439 

U29 1.238  U30 0.372 

U38 1.118  U31 0.118 

   U33 0.134 

   U34 5.017 

   U35 4.581 

   U37 2.284 

   U39 0.522 
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IL-6 Control (pg/mL) 

 

Trained/Low CTRL  Trained/High CTRL 

T01 35.855  T03 37.416 

T02 46.560  T04 89.062 

T06 36.251  T05 65.943 

T09 96.498  T07 64.273 

T11 63.432  T08 15.226 

T12 17.277  T10 23.699 

T13 22.164  T15 75.653 

T14 68.643  T16 10.617 

T17 26.092  T18 52.418 

T21 44.197  T20 34.545 

T26 15.797  T23 37.926 

U03 2.542  T25 49.249 

U14 2.569  T27 22.652 

U16 1.104  T28 21.414 

U26 22.346  U02 8.651 

 

Untrained/Low CTRL  Untrained/High CTRL 

U05 31.482  T19 30.170 

U06 3.914  T30 17.689 

U10 50.879  U01 79.768 

U11 78.045  U04 98.831 

U13 31.480  U07 9.594 

U17 3.665  U08 17.279 

U19 18.299  U09 40.137 

U20 65.881  U12 17.020 

U22 314.551  U15 3.665 

U25 112.590  U18 54.901 

U27 14.445  U21 388.792 

U28 43.744  U23 23.226 

U29 157.262  U30 54.956 

U38 52.205  U31 56.837 

   U33 50.268 

   U34 10.368 

   U35 15.022 

   U37 76.668 

   U39 16.231 
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IL-6 Stimulated (pg/mL) 

 

Trained/Low STIM  Trained/High STIM 

T01 2635.3  T03 4638.4 

T02 3761.0  T04 1014.8 

T06 4698.4  T05 1767.9 

T09 6802.4  T07 2905.0 

T11 5959.6  T08 4022.2 

T12 1420.4  T10 6626.1 

T13 4091.7  T15 4745.4 

T14 1420.4  T16 3779.0 

T17 7857.2  T18 5377.9 

T21 6873.7  T20 6873.3 

T26 1519.4  T23 2826.1 

U03 3847.6  T25 5483.9 

U14 1701.6  T27 3793.1 

U16 3830.1  T28 4967.2 

U26 5039.7  U02 4074.8 

 

Untrained/Low STIM  Untrained/High STIM 

U05 2885.6  T19 2133.2 

U06 3691.6  T30 9013.5 

U10 9552.4  U01 2736.3 

U11 5195.1  U04 14859.6 

U13 5579.4  U07 4925.3 

U17 2433.8  U08 2905.0 

U19 5015.4  U09 4461.0 

U20 5450.2  U12 4478.7 

U22 10354.9  U15 7088.3 

U25 6758.5  U18 7870.0 

U27 4131.0  U21 12976.3 

U28 4208.5  U23 4564.4 

U29 4137.0  U30 7553.8 

U38 7686.6  U31 2887.5 

   U33 3367.0 

   U34 6781.8 

   U35 3730.9 

   U37 7551.6 

   U39 2466.0 

 

 



 

 134 

IL-6 Production (pg/mL) 

 

Trained/Low IL-6  Trained/High IL-6 

T01 2599.4  T03 4601.0 

T02 3714.4  T04 925.7 

T06 4662.1  T05 1702.0 

T09 6705.9  T07 2840.7 

T11 5896.2  T08 4007.0 

T12 1403.1  T10 6602.4 

T13 4069.5  T15 4669.7 

T14 1351.8  T16 3768.4 

T17 7831.1  T18 5325.5 

T21 6829.5  T20 6838.8 

T26 1503.6  T23 2788.2 

U03 3845.1  T25 5434.7 

U14 1699.0  T27 3770.4 

U16 3829.0  T28 4945.8 

U26 5017.4  U02 4066.1 

 

Untrained/Low IL-6  Untrained/High IL-6 

U05 2854.1  T19 2103.0 

U06 3687.7  T30 8995.8 

U10 9501.5  U01 2656.5 

U11 5117.1  U04 14760.8 

U13 5547.9  U07 4915.7 

U17 2430.1  U08 2887.7 

U19 4997.1  U09 4420.9 

U20 5384.3  U12 4461.7 

U22 10040.3  U15 7084.6 

U25 6645.9  U18 7815.1 

U27 4116.6  U21 12587.5 

U28 4164.8  U23 4541.2 

U29 3979.7  U30 7498.8 

U38 7634.4  U31 2830.7 

   U33 3316.7 

   U34 6771.4 

   U35 3715.9 

   U37 7474.9 

   U39 2449.8 
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APPENDIX 3 – PROTOCOLS 

3.1 FACS Analysis 

Materials  

 Blood collection tube, EDTA treated (Becton Dickinson, Franklin Lakes, NJ) 

 12x75 mm Falcon tubes (Becton Dickinson, Franklin Lakes, NJ) 

 Human Fc Receptor Blocking Inhibitor (eBioscience, San Diego, CA) 

 CD14-FITC antibody (eBioscience, San Diego, CA) 

 CD16-PE antibody (eBioscience, San Diego, CA) 

 CD284 (TLR4)-APC antibody (eBioscience, San Diego, CA) 

 Mouse IgG1 FITC isotype control antibody (eBioscience, San Diego, CA) 

 Mouse IgG1 PE isotype control antibody (eBioscience, San Diego, CA) 

 Mouse IgG2a APC isotype control antibody (eBioscience, San Diego, CA) 

 Red blood cell lysis buffer (Sigma Aldrich, St. Louis, MO) 

 1x PBS 

 1-2% formaldehyde (37% diluted with PBS; Sigma Aldrich, St. Louis, MO) 

Methods 

1. Collect blood sample following 10 hour fast in EDTA treated tubes 

2. Label tubes for isotype controls and test samples, as well as tubes for a single 

autofluorescent control and single-color controls.  Only one set of autofluorescent and 

single-color controls need to be provided for each set of samples. 

3. Aliquot 100 μL of blood from each sample into both control and test tubes.  Blood 

from any sample may be used for autofluorescent and single-color controls. 
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4. Pipette 20 μL of blocking inhibitor to each sample and incubate at room temperature 

for 20 minutes.  Vortex to mix. 

5. Pipette 5 μL of each antibody into test sample tubes and 5 μL of control antibody into 

isotype control tubes.  Use 5 μL of PBS for the autofluorescent control, and 5 μL of 

the respective test antibody for each single-color control.  Incubate at room 

temperature in the dark for 30 minutes.  Vortex to mix. 

6. Pipette 2 mL of RBC lysis buffer into each tube and invert to mix.  Incubate at room 

temperature for 10 minutes in the dark. 

7. Centrifuge at 1000 xg for 8 minutes at room temperature.  Decant the supernatant into 

a beaker containing bleach.  Do not pipette supernatant. 

8. Pipette 2 mL of 1x PBS to each tube.  Vortex to mix to dislodge cell pellet. 

9. Centrifuge at 1000 xg for 8 minutes at room temperature.  Decant the supernatant into 

a beaker containing bleach.  Do not pipette supernatant. 

10. Vortex cell pellet in remaining liquid.  Pipette 200 μL of 1-2% formaldehyde in a 

dropwise fashion to fix cells. 

11. Samples are ready for analysis.  Store at 2-8°C until analysis. 

3.2 LPS Cell Stimulation 

Materials 

 Blood collection tubes, sodium heparin treated (Becton Dickinson, Franklin Lakes, 

NJ) 

 Lipopolysaccharide, 1 mg/mL (S. enteriditis; Sigma Aldrich, St. Louis, MO) 

 RPMI-1640 cell culture media (Sigma Aldrich, St. Louis, MO) 
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 L-glutamine (200 mM)/penicillin (10,000 IU)/streptomycin (10 mg/mL) solution 

(Sigma Aldrich, St. Louis, MO) 

 24 well plates, 2 mL each (VWR, Radnor, PA) 

 Incubator at 37°C with 5% CO2 

 1.5 mL tubes 

Methods 

1. Collect blood sample following 10 hour fast in sodium heparin treated tubes. 

2. Note: all steps following collection should be carried out in a fume hood.  Prepare cell 

culture media in a 1:100 dilution with glutamine/penicillin/streptomycin mixture.  

Blood is diluted 1:10 with cell culture media, so a minimum of 3.6 mL RPMI is 

needed per sample. 

3. Prepare a 1:10 dilution of blood samples with RPMI treated with 

glutamine/penicillin/streptomycin.  Samples should be plated in duplicate, so a 

minimum of 4 mL of prepared blood is necessary. 

4. Plate 2 mL of blood in duplicate on plate. 

5. Treat stimulated wells with 50 μL of LPS, for a final concentration of 25 μg/mL.  Mix 

well. 

6. Treat control wells with 50 μL of RPMI media.  Mix well. 

7. Incubate at 37°C for 24 hours. 

8. Following incubation, centrifuge plate at 800 xg at 4°C for 10 minutes. 

9. Harvest supernatant in 1.5 mL tubes. 

10. Freeze at -80°C until analysis.   
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11. Prior to analysis for inflammatory cytokine production, samples should be 

centrifuged at 800 xg at 4°C to eliminate unavoidable cellular debris. 
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APPENDIX 4 – ABBREVIATIONS  

 

1,25OH2D 1,25-dihydroxyvitamin D 

25OHD 25-hydroxyvitamin D 

7DHC 7-dehydrocholesterol 

ACSM American College of Sports Medicine 

AI Adequate Intake 

BMI Body mass index 

BMD Bone mineral density 

CRF Cardiorespiratory fitness 

CRP C-reactive protein 

CVD Cardiovascular disease 

DBP D-binding protein 

DRI Daily Recommended Intake 

EDTA Ethylenediaminetetraacetic acid 

ELISA Enzyme-linked immunosorbent assay 

FACS Fluorescence-activated cell sorting 

HD High vitamin D group 

IFN-y Interferon-gamma 

IL-10 Interleukin-10 

IL-1b Interleukin-1 beta 

IL-2 Interleukin-2 

IL-4 Interleukin-4 

IL-6 Interleukin-6 

IOM Institute of Medicine 

IU International Units 

LD Low vitamin D group 

LPS Lipopolysaccharide 

MAPK Mitogen-activated protein kinase 

NHANES National Health and Nutrition Examination Survey 

NPA Not physically active groups 

NPA-H Not physically active & high vitamin D group 

NPA-L Not physically active & low vitamin D group 

PA Physically active group 

PA-H Physically active & high vitamin D group 

PA-L Physically active & low vitamin D group 

PTH Parathyroid hormone 

RDA Recommended Dietary Allowance 

RPE Rate of Perceived Exertion 
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TLR4 Toll-like receptor 4 

TNF-a Tumor necrosis factor-alpha 

UV Ultraviolet 

VDR Vitamin D receptor 

W:H Waist-to-hip ratio 
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