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Abstract

In this thesis, we have two distinct but related subjects: optimal control and nonlin-

ear programming. In the first part of this thesis, we prove that the value function,

propagated from initial or terminal costs, and constraints, in the form of a differen-

tial equation, satisfy a subgradient form of the Hamilton-Jacobi equation in which

the Hamiltonian is measurable with respect to time. In the second part of this the-

sis, we first construct a concrete example to demonstrate conjugate duality theory

in vector optimization as developed by Tanino. We also define the normal cones

corresponding to Tanino’s concept of the subgradient of a set valued mapping and

derive some infimal convolution properties for convex set-valued mappings. Then

we deduce necessary and sufficient conditions for maximizing an objective function

with constraints subject to any convex, pointed and closed cone.

Keywords: sub-Lipschitz, convex, essential value, multiobjective, fully-convex

control, Hamilton-Jacobi equation, method of characteristics, subgradient, con-

jugate mapping, duality.
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Chapter 1
Introduction

1.1 General Comments on Organization

We have two main distinct but related parts in this thesis and these are: (1)

optimal control and (2) nonlinear programming. For the first part of this thesis,

we study the Hamilton-Jacobi equation with measurable time dependence for an

optimal control problem. The second half of this thesis focuses on multiobjective

optimization and nonlinear programming.

Optimal control emerged as a unified theory combining optimization problems

with ordinary differential equations (ODEs). Such problems include scheduling and

the control of engineering devices which lie beyond the reach of traditional analyt-

ical and computational techniques. The general theory is usually called dynamic

optimization, since the constraints for the objectives to be optimized are subject

to ODEs.

Rockafellar and Wolenski [7] provide an analysis of the value function and

Hamilton-Jacobi theory in an autonomous, fully convex Lagrangian case. They

give regularity properties of the value function, develop a method of characteris-

tics, and examine connections to a dual problem. Our main result in this thesis

extends this result to the case of measurable time dependent data. Such an exten-

sion is not trivial and requires concepts previously defined by Clarke [8] and Vinter

[10].

Nonlinear programming is a mature field that has experienced major develop-

ments in the last fifty years. It treats Lagrangian multipliers and duality using

two different but complementary approaches: a variational approach based on the
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implicit function theorem, and a convex analysis approach based on geometrical

arguments. The former approach can be applied to a broader class of problems,

while the latter is more elegant and more powerful for the variational programs to

which it applies.

Multiobjective programming has evolved in the past two decades into a recog-

nized specialty of operations research. It is concerned with decision-making prob-

lems in which there are several conflicting or competing objectives. Most realistic

optimization problems, particularly those in design, require the simultaneous opti-

mization of more than one objective function. For example, in bridge construction,

a good design is characterized by low total mass and high stiffness. Aircraft de-

sign requires simultaneous optimization of fuel efficiency, payload, and weight. It is

unlikely that the different objectives would be optimized by the same alternative

parameter choices.

Kuhn and Tucker [26] formulate necessary and sufficient conditions for a maxi-

mum function constrained by inequalities involving differentiable functions through

a saddle value Lagrangian function. In their paper, they also assume that the

functions are convex in some open region containing the nonnegative orthant of x,

which generates the nonnegative orthant cone. In this thesis, we first deduce neces-

sary and sufficient conditions for a multiobjective optimization problem similar to

Kuhn-Tucker conditions, with the equality constraints subject to a multiobjective

function, by introducing the corresponding value function as in [9]. Then we set

up a convex program, which minimizes an objective function constrained by a set-

valued mapping, and its dual problem through Lagrange multipliers. We further

conclude that an optimal solution pair to the convex program and its dual problem

is a saddle point of the Lagrangian. We also denote the normal cones from the new

concept of the subgradient of a set valued mapping and tackle some infimal convo-
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lution properties for convex set-valued mappings. Based on Tanino’s definition of

the supremum of a set, we also deduce necessary and sufficient conditions for the

optimization problems with constraints subject to any pointed, convex and closed

cone K. This is an improvement allowing greater flexibility for the decision makers

in their choices of a preference.

1.1.1 History and Recent Developments in Optimal
Control

The systematic study of optimal control problems dates from the late 1950s, when

two important advances were made. One was the maximum principle, a set of

necessary conditions for a control function to be optimal. The other was dynamic

programming, a procedure that reduces the search for an optimal control func-

tion to finding the solution to a partial differential equation (the Hamilton-Jacobi

equation).

In the 1970s, further progress was made by investigating local properties of

nonsmooth functions, i.e., those that are not necessarily differentiable in the tra-

ditional sense. Nonsmooth functions played and will play an important role in

extending the applicability of necessary conditions such as the maximum princi-

ple. A notable feature of the maximum principle is that it can take account of

pathwise constraints on values of the control functions. For some practical prob-

lems with vector-valued state variable, one way to derive necessary conditions is

to reformulate them as generalized problems in the calculus of variations, whose

cost integrands include infinite penalty terms to take account of constraints. Hence

the route to necessary conditions via generalized problems in the calculus of vari-

ations can be followed provided that we know how to adapt traditional necessary

conditions to allow for nonsmooth cost integrands.
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Convexity is very important in the study of extremum problems in many areas

of applied mathematics. Rockafellar [2] provided an exposition of the theory of

convex sets and functions in which applications to extremum problems played a

central role. Furthermore, Rockafellar [6] first imposed the joint convexity on the

Lagrangian L(x, ẋ) with respect to both x and ẋ so that the generalized problem of

Bolza became a minimization of a convex function. These convexity assumptions

made the theory of duality possible.

Two further important breakthroughs occurred in 1970’s. One was Clarke’s the-

ory of generalized subgradients which provided the bridge to necessary conditions

of optimality for nonsmooth variational problems, and in particular for optimality

problems reformulated as generalized problems in the calculus of variations. The

other was the concept of the viscosity solutions, due to Crandall and Lions, which

provided a framework for proving existence and uniqueness of generalized solutions

to Hamilton-Jacobi equations arising in optimal control.

Many problems in the calculus of variations and optimal control can be formu-

lated as generalized problems of Bolza. Rockafellar [6] showed that if certain con-

vexity assumptions and mild regularity assumptions were satisfied, such a problem

had associated with it a dual problem, which was likewise a generalized problem of

Bolza. The dual of the dual problem was the original problem. In [4], Rockafellar

showed that some duality theorems could yield new results, which could even be

related to some “nonconvex” problems, on the existence of the optimal arcs, as

well as necessary and sufficient conditions for optimality. He used the separation

theorem to derive the existence of the optimal arcs, a derivation was entirely dif-

ferent from the usual one. It was shown that a minimizing sequence of arcs had a

subsequence that converges to a solution to the problem.
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The main theoretical background for the results in Chapter 2 is as follows: in the

early 1980s, nonsmooth analysis and viscosity methods overcame a bottleneck in

optimal control and had a significant impact on nonlinear analysis as a whole. Non-

smooth analysis provided a new perspective: useful properties of functions, even

differentiable functions, could be proved by examining the related nondifferentiable

functions, in the same way that trigonometric identities relating to real numbers

could sometimes simply be derived by a temporary excursion into the field of com-

plex numbers. Viscosity methods, on the other hand, provided a fruitful method to

study generalized solutions to broad classes of nonlinear partial differential equa-

tions which extend beyond Hamilton-Jacobi equations of optimal control and their

approximation for computational purposes.

In the 1990s, Frankowska in [13] proved viability and invariance theorems for

systems with dynamics depending on time in a measurable way and having time de-

pendent state constraints. He applied the results to define and to study lower semi-

continuous solutions of the Hamilton-Jacobi-Bellman equation with the Hamilto-

nian H(t, x, p) measurable with respect to time, locally Lipschitz with respect to x,

and convex with respect to p. Meanwhile Vinter [10] derived necessary conditions

for (FT),

(FT )



Minimize g(S, x(S), T, x(T ))

over arcs x satisfying

ẋ(t) ∈ F (t, x(t)) a.e. t ∈ [S, T ]

(S, x(S), T, x(T )) ∈ C, closed,

under hypotheses that require the differential inclusion to have the right side F (t, x)

merely measurable with respect to time. The motivation for treating the measur-

able time-dependence case is partly to unify the theory of necessary conditions for
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fixed and free end-time optimal control problems. A framework that requires the

dynamic constraint to be merely measurable with respect to time is widely adopted

for fixed end-time problems. But there are also practical reasons for developing a

theory of free end-time problems, which allows the “dynamic constraint” to be dis-

continuous with respect to time. For example, optimal control problems arising in

resource economics typically require us to minimize a cost that involves an integral

cost, which is discontinuous with respect to time, to take account of, for example,

abrupt changes in interest rates.

In 2000, Rockafellar and Wolenski [7] showed that value functions, which could

take on ∞, satisfied a subgradient form of the Hamilton-Jacobi equation which

strongly supported the properties of local Lipschitz continuity, semi-differentiability

and Clarke regularity by using an extended method of characteristics. They pro-

vided an analysis of value functions and Hamilton-Jacobi theory in an autonomous,

fully convex Lagrangian case.

Based on Rockafellar and Wolenski’s work [7], Galbraith [14] examined the gen-

eralized solutions to the Hamilton-Jacobi equation. He used recently improved

necessary optimality conditions to prove the existence and uniqueness of the lower

semicontinuous solutions (value functions) of certain class of generalized Bolza

problems. Viability was also used in a new way in connection to differential inclu-

sions with unbounded images.

1.2 Fully Convex Control Hamiltonian

Rockafellar and Wolenski [7] focused on functions V : [0,∞)×Rn → R := [−∞,∞]

of the type

V (τ, ξ) := inf{g(x(0)) +

∫ τ

0

L(t, x(t), ẋ(t))dt|x(τ) = ξ},

V (0, ξ) = g(0, ξ),

(1.2.1)
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with an initial cost function g : Rn → R and a Lagrangian function L : [0,∞)×Rn×

Rn → R. The minimization takes place over the arc space A1
n[0, τ ], which contains

all the absolutely continuous functions (“arcs”) x(·)[0, τ ] → Rn with derivative

ẋ(·) ∈ LPn [0, τ ]. Under the assumptions given in section 2 in [7], some consequent

results were illustrated. Relying on the background in [1], they made progress in

several ways. They first demonstrated the existence of a dual value function Ṽ ,

propagated by a dual Lagrangian L̃, such that the value functions Ṽ (τ, ·) and

V (τ, ·) were conjugate to each other under the Legendre-Fenchel transform for

every τ. Then they used this duality theory to deduce a subgradient Hamilton-

Jacobi equation satisfied directly by V, and a dual one for Ṽ . They also estab-

lished a new subgradient form of the “method of characteristics” for determining

these functions from the Hamiltonian H. Central to their approach is a general-

ized Hamiltonian ODE associated with H, which is actually a differential inclusion

in terms of subgradients instead of gradients. The Lagrangian function in [7] is

independent of t, which forces the corresponding Hamiltonian to be constant on

any trajectory (x(·), y(·)). In this thesis, we keep to the case of a measurably

time-dependent Lagrangian function L. We instead consider the value functions

V : [0,∞)× [0,∞)× Rn → R := [−∞,∞] of the type


V (t1, t2, ξ) := inf{g(t1, x(t1)) +

∫ t2
t1
L(t, x(t), υ(t))dt|x(t1) = ξ′, x(t2) = ξ},

V (t1, ξ) = g(t1, ξ),

where the minimization takes place over the arc space A1
n[t1, t2]. Its generality rests

on allowing L(t, x, υ) to be measurable in time and the terminal time to be free.

With new assumptions given in Chapter 2, it yields the first main result:
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Main Result: Under (A), the sub-gradients of V on [0,∞)× [0,∞)×Rn have

the property that for any fixed time t1,

(σ, η) ∈ ∂t2,ξV (t1, t2, ξ)⇐⇒ (σ, η) ∈ ∂̂t2,ξV (t1, t2, ξ)

⇐⇒ η ∈ ∂ξV (t1, t2, ξ), σ ∈ (−ess t̄2→t2H(t̄2, ξ, η)).

(1.2.2)

In particular, therefore, V satisfies the generalized Hamiltonian-Jacobi equation σ+

H(t2, ξ, η) = 0, for some sequence of tν2 which are Lebsgue points of the Hamiltonian

convergent to t2 satisfying that (σ, η) ∈ ∂t2,ξV (t1, t2, ξ).

1.3 Multiobjective Optimal Control: The Main

Results

Practical decision problems often involve many factors and can be described by

a vector-valued decision function whose components describe several competing

objectives, for which the relative importance is not so obvious. The economist

Pareto [35] in 1896 first formulated such a problem, which has since blossomed

into the subject, vector valued optimization that remains popular in diverse areas

such as economics,operations research and control engineering. The papers [26],

[32], [34],[35], are of the representative samplings in these fields.

Da Cunha and Polak [32] used the method “scalarization” to get some necessary

conditions by converting the vector valued problem into a family of optimization

problems. Scalarization is very important because standard linear programming

becomes applicable.

In [16], Debreu proved that a preference ≺ is determined by a continuous utility

function if and only if ≺ is continuous in the sense that, for any x, the sets {y :

x ≺ y} and {x : y ≺ x} are closed. This theorem is an existence theorem. It does

not provide methods for determining the utility function for a given preference.

The most classical preference is the preference relation in the weak Pareto sense,
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which is defined by x ≺ y if and only if xi ≤ yi for each component i = 1, . . . ,m

and at least one of the inequalities is strict. We can also use cones in the definition

of the preference relations and the positive ortant cone generates the weak Pareto

preference.

Tanino [39] first defined the supremum of a set in the extended multi-dimensional

Euclidean space on the basis of weak efficiency. Based on the newly defined supre-

mum, he developed the conjugate duality in vector optimization, which provided

a much easier and more understandable proof. Song in [36],[37] extended Tanino’s

result to a convex-like set-valued optimization problem without the requirements

of closedness and boundedness. Furthermore, he deduced similar results for nearly

convex-like and quasi-convex multifunctions and used them to derive Lagrangian

conditions and duality results for vector optimization problems.

John [31] derived necessary conditions for the equality constraints and

Mangasarian and Fromovitz [23] extended his result to both equality and inequal-

ity constraints. Kuhn and Tucker [26] also derived their necessary conditions by

imposing some constraint qualifications on the constraints. However, the constraint

qualifications in these papers are subject to the positive orthant cone. In this thesis,

we denote an ordinary convex program (P ) as the following problem:

(P )


Minimize f(x)

subject to x ∈ C,G(x) ∈ −K

where f : Rn → R and G : Rn → Rm are given set-valued mapping, C ⊂ Rn is a

nonempty convex set in Rn. We define a Lagrange multiplier that is not related to

a local extremum and has no differentiability condition of the cost and constraint

functions. Assume that if x∗ is a global minimum and a regular point, there exists

a vector such that µ∗ = {µ∗1, . . . , µ∗m} ∈ −K∗ = {y ∈ Rm|〈x, y〉 ≤ 0, x ∈ K} and

9



∑
j µ
∗
jGj(x) = 0, and

f ∗ = f(x∗) = min
x∈Rn

L(x, µ∗),

where L : Rn+m → R is the Lagrangian function

L(x, µ) = f(x) +
m∑
j=1

µjGj(x) = f(x) + µ′G(x),

for µ ∈ −K∗. We further deduce that the solution pair to (P ) and its conjugate

dual problem is actually a saddle point of the Lagrange multiplier. These results

form the two following theorems in Chapter 3.

Theorem 1.3.1. (x∗, µ∗) is an optimal solution-Lagrange multiplier pair if and

only if

x∗ ∈ C,G(x∗) ∈ −K,

µ∗ ∈ −K∗,

x∗ = argminx∈CL(x, µ∗),

m∑
j=1

µjGj(x) = 0.

Theorem 1.3.2. (x∗, µ∗) is an optimal solution-Lagrange multiplier pair if and

only if x∗ ∈ C, µ∗ ∈ −K∗ and (x∗, µ∗) is a saddle point of the Lagrangian, in the

sense that

L(x∗, µ) ≤ L(x∗, µ∗) ≤ L(x, µ∗), ∀x ∈ C, µ ∈ −K∗.

Moreover, we deduce necessary and sufficient conditions for the following two

optimization problems A and B based on the process in [26].

(A)


Minimize F (x)

Subject to H(x) = 0,

where F : Rn → Rm and H : Rn → Rp are K− convex set-valued mappings. We

obtain the following theorem by considering the corresponding value function in

A.

10



Theorem 1.3.3. Let F (x) have a local minimum at x = x0 subject to H(x) = 0.

Then there exist µi and mj such that

m∑
i=1

µi∇Fi(x0) +

p∑
j=1

mj∇Hj(x0) = 0,

where at least one µi or mj is nonzero.

Next, we consider the optimization problem

(B)


Maximize g(x)

subject to F (x) ∈ K2, x ∈ K1

where F (x) is a differentiable mapping from Rn to Rm and g(x) is a differentiable

convex function from Rn to R. We treat the vector u ∈ −K∗2 as the Lagrange

multiplier and form the function

ϕ(x, u) = g(x) + u′F (x).

Theorem 1.3.4. Assume that F (K1) ⊂ K2. In order that x0 be a solution of the

minimum problem A, it is necessary that x0 and some u0 satisfy conditions

ϕ0
x ∈ K∗1 , ϕ0′

x x
0 = 0, x0 ∈ K1,

ϕ0
u ∈ K2, ϕ

0′

u u
0 = 0, u0 ∈ −K∗2 ,

for ϕ(x, u) = g(x) + u′F (x).

Zhu [17] discussed Hamiltonian and necessary conditions for a nonsmooth mul-

tiobjective optimal control problem with endpoint constraints involving a general

preference. He used normal cones to the level sets of the preference to state the

transversality condition.

Bellaassali and Jourani [18] considered a nonsmooth multiobjective optimal con-

trol problem involving differential inclusion and endpoints constraints with a gen-

eral preference. They used the limiting Fréchet subdifferential to express necessary

and Hamiltonian conditions.
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In the future, we plan to extend these results in [17], [18] by adding an integral

cost to the objective function. Then it becomes a multiobjective optimization prob-

lem with both endpoint constraints and regularity constraints on the Lagrangian.

1.4 Outline of the Thesis

The previous sections have outlined the research to follow. The rest of this thesis

is organized as follows: In chapter 2, a value function with measurable depen-

dent time Lagrangian is proved to satisfy a subgradient form of the generalized

Hamilton-Jacobi equation in the sense of essential values. Chapter 3 is devoted

to deduce necessary and sufficient conditions for an objective function with con-

straints subject to any convex, pointed and closed cones. We give a conclusion in

Chapter 4 and offer a prospectus for future work.
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Chapter 2
Convexity in Hamilton-Jacobi Equation
with Measurable Time Dependence

2.1 Introduction

Consider value functions V : [0,∞)× [0,∞)× Rn → R := (−∞,∞] of the type

(2.1.1)


V (t1, t2, ξ) := inf{g(t1, x) +

∫ t2
t1
L(t, x(t), υ(t))dt|x(t1) = ξ′, x(t2) = ξ},

V (t1, ξ) = g(t1, ξ),

where the minimization takes place over the arc space A1
n[t1, t2], which contains

all the absolutely continuous functions (“arcs”) x(·) : [t1, t2]→ Rn with derivative

ẋ(·) ∈ LPn [t1, t2], which denotes the usual Banach space of summable functions. Its

generality rests on allowing L(t, x, υ) to be Lebesgue measurable in time and the

terminal time t2 to be free. Here the value function described how an involving

function propagates an initial cost function g : [0,∞)×Rn → R at time t1 forward

to the terminal time t2 in a manner dictated by a Lagrangian function L : [0,∞)×

Rn × Rn → R.

When the value function is differentiable, it is known to satisfy the generalized

Hamilton-Jacob equation in the classical sense. However, in many cases, the value

function is merely lower semicontinuous.

In [7], Rockafellar and Wolenski examined such value functions which are lower

semicontinuous in both time and state variables. They provided an analysis of the

value function and Hamiltonian-Jacobi theory in an autonomous and fully convex

case. Furthermore, the Lagrangian in the value functions can take on ∞. They

also assumed the linear growth property and the coercivity on the Lagrangian and

showed that the value functions with these assumptions satisfied a subgradient form

of the Hamilton-Jacobi equation. They used an extended method of characteristics
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to determine the value function from the Hamiltonian dynamics underlying the

given Lagrangian.

However, Rockafellar and Wolenski did not present a uniqueness result, but

rather give regularity properties of the value function and examine a connection

to the dual problem.

In [14], Galbraith examined the generalized solutions to the Hamilton-Jacobi

equations. He presented a result on the uniqueness and existence solution to the

Hamilton-Jacobi equation with the solution given as Definition 1.1 in [14]. The

Hamiltonian H(t, x, p) is assumed convex in x, but without linear growth property

in this variable. Instead, he assumed a mild growth condition on H which was

related to the stronger condition introduced by Rockafellar in [15] and a kind of

sub-Lipschitz behavior on the epigraphical mapping of the Lagrangian, which is less

restrictive to deal with the unbounded epigraphical mapping and eventually gives

the uniqueness in the main result. With these assumptions, he obtained that the

epigraph of the value function was both viable and invariant to a certain unbounded

differential inclusion. Then he used necessary optimality conditions to prove that

there exists a unique solution to the generalized Hamilton-Jacobi equation.

In this paper, if we instead assume that the Hamiltonian H(t, x, p) is continuous

with respect to t and the other assumptions remain unaltered, we can also have

the uniqueness and existence of solutions to the generalized Hamiltonian-Jacobi

equation similar to that in Galbraith’s paper [14].

Our result covers a much broader class of Hamitonians, as there is no restriction

on time t for Hamiltonians other than the Lebesgue measurable time dependence.

In this sense, Theorem 2.6.1 improves on previous results in [14] and [7].

The outline of this paper is as follows: In section 2.2 we address some basic

definitions and lemmas to prove the main result. Section 2.3 is devoted to the
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hypothesis on the Hamiltonians and elaboration of the convexity and growth con-

ditions. Some consequences for Bolza problem duality are derived in section 2.4.

An extended characteristics method was developed in section 2.5. Finally, we state

and prove the main result in section 2.6.

2.2 Preliminaries

Throughout this paper, we abbreviate lower semicontinuity by “lsc” and let R

stand for R ∪ {∞}. The following definitions and propositions are used to prove

the consequences in section 2.3.

Definition 2.2.1. The epi-continuity is the continuity of the set-valued mapping

τ → epi V (τ, ·) with respect to Painlevé-Kuratowski set convergence, which is

equivalent to the following statement (2.2.1) whenever tν2 → t2 with ν ≥ 0, one

has: lim infν V (t1, t
ν
2, ξ

ν) ≥ V (t1, t2, ξ) for every sequence ξν → ξ

lim supν V (t1, t
ν
2, ξ

ν) ≤ V (t1, t2, ξ) for some sequence ξν → ξ
(2.2.1)

where the first limit property is the lower semi-continuity of V on [0,∞)× [0,∞)×

Rn.

The epi-convergence of the value function has some implications for the subgra-

dients of the value function. For a proper convex function f : [0,∞) × Rn → R

and a point x and 0 ≤ t, a vector y ∈ Rn is a subgradient in the sense of convex

analysis if

f(t, x′) ≥ f(t, x) + 〈y, x′ − x〉 for all x′ ∈ Rn.

The set of such subgradients is denoted by ∂xf(t, x). The subgradient mapping

∂xf(t, ·) : x 7−→ ∂xf(t, x) has graph

gph ∂xf(t, x) := {(x, y)|y ∈ ∂xf(t, x)} ⊂ Rn × Rn.
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The following properties will be used to prove the main result in section 2.4.

Definition 2.2.2. [11] If f ∈ L1(Rk), any x ∈ Rk for which it is true that

lim
r→0

1

m(Br)

∫
Br(x,y)

|f(y)− f(x)|dm(y) = 0

is called a Lebesgue point of f .

Lemma 2.2.3. [11] If f ∈ L1(Rk), then almost every x ∈ Rk is a Lebesgue point

of f .

In this chapter, we assume that the Hamiltonian is measurable in time, so we

cannot take the subgradient of the associated value function by point evaluation,

but rather by the essential values of the Hamiltonians. The operation of taking the

“essential values” of a given real-valued function on the real line is a generalization

of point evaluation of a continuous function. The most remarkable property is that

the essential values of the functions are unaffected by modifications on a nullset.

Definition 2.2.4. [10] Take an open interval I ⊂ R, an essentially bounded func-

tion f : I → R and a point t ∈ I. The essential value of f at t is the set

essτ→tf(τ) := [a−, a+],

where

a− := lim
δ↓0

essinft−δ≤τ≤t+δf(τ)

and

a+ := lim
δ↓0

esssupt−δ≤τ≤t+δf(τ).

We then talk about some convergent properties for the essentially bounded func-

tions. In fact, the following proposition was given by Richard Vinter in [10]. It sum-

marizes some salient properties of the essential values. He defined the operation
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of a multifunction t → essτ→tf(τ) taking as values closed, possibly unbounded,

intervals.

Proposition 2.2.5. [10] Take an open interval I ⊂ R and a set A ⊂ Rn.

(i) If an essentially bounded function f : I → R has left and right limits f(t−)

and f(t+) at a point t ∈ I, then

essτ→tf(τ) = [α−, α+],

where

α− := min{f(t−), f(t+)} and α+ := max{f(t−), f(t+)}.

It follows that, if f is continuous at t, then

essτ→tf(τ) = {f(t)}.

(ii) If f : I → R and g : I → R are two essentially bounded functions such that

f(t) ≥ g(t) a.e., then, for each t ∈ R,

essτ→tf(τ) ≥ essτ→tg(τ).

It follows that, if f and g coincide almost everywhere, then

essτ→tf(τ) = essτ→tg(τ).

(iii) For any essentially bounded, measurable function f : I → R, ξ ∈ R, t ∈ R,

and σi ↓ 0 such that

lim
σi→0

σ−1
i

∫ t+σi

t

f(σ)dσ = ξ,

we have

ξ ∈ essσ→tf(σ).
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(iv) Take a function d : I × A → R such that d(·, x) is essentially bounded for

each x and d(τ, ·) is continuous on A, uniformly with respect to τ ∈ I. Then

for any convergent sequences xi → x, ti → t, and ξi → ξ such that

ξi ∈ essτ→tid(τ, xi) for all i,

we have that ξ ∈ essτ→td(τ, x).

Proof. Properties (i) and (iii) are consequences of the definition of the essential

values.

As for (iv), we choose an open interval (t − δ, t + δ) ⊂ I of t. By the uniform

continuity, there exists εi > 0 such that

εi ≥ ess infti−δ/2≤τ≤ti+δ/2d(τ, xi) ≥ ess infti−δ≤τ≤ti+δd(τ, xi)

for all i sufficiently large. It follows that

ε = lim
i
εi ≥ ess infti−δ≤τ≤ti+δd(τ, xi)

On the other hand, we can also demonstrate that

ε ≤ ess supti−δ≤τ≤ti+δd(τ, xi)

Because these relationships are true for all δ > 0, we can conclude that

ξ ∈ essτ→td(τ, x).

Definition 2.2.6. A measurable function where (Ω,A, µ) is a measurable space,

is said to be summable if the Lebesgue integral of the absolute value of f exists

and is finite, ∫
Ω

|f |dµ < +∞.
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Let Lpn denote the usual Banach space of summable functions.In [4], Rockafellar

assumed that the following conditions hold:

(C0) For each y ∈ Rn, there exist functions s ∈ L1
n and α′ ∈ L1

1 such that

L(t, x, υ) ≥ 〈x, s(t)〉+ 〈υ, p〉 − α′(t).

(D0) For each x ∈ Rn, there exist functions υ ∈ L1
n and β′ ∈ L1

1 such that

L(t, x, υ(t)) ≤ β′(t).

In [4], the Lagrangian function L(t, x, υ) could be equivalently expressed in terms

of the Hamiltonian function

H(t, x, y) := sup
υ
{〈υ, y〉 − L(t, x, υ)|υ ∈ Rn}. (2.2.2)

He also showed that condition C0 and D0 are dual to each other. Both C0 and D0

hold if and only if H(t, x, p) is finite and summable in t for every (x, p) ∈ Rn×Rn.

In the case where L is independent of t, D0 holds if and only if H nowhere has the

value −∞, while C0 holds if and only if H nowhere has the value +∞.

Lemma 2.2.7. Let (A2) and (A3) be given as in section 2.3. Then C0 is stronger

than (A2) and D0 is stronger than (A3).

Proof. Under (2.2.2), the condition C0 is equivalent to the following:

H(t, x, y) = sup
υ
{〈υ, y〉 − L(t, x, υ)}

≤ sup
υ
{〈υ, y〉 − 〈x, s(t)〉 − 〈υ, y〉+ α′(t)}

= α′(t)− 〈x, s(t)〉

≤ α′(t) + |s(t)||x|

Assume that condition (A2) holds. Let φ(t, y) = α′(t), β(t) = |s(t)| and α(t) = 0.

β(t) is summable in time t, so it follows that s(t) is also summable in t. It is clear

α′(t) is summable in t since α′(t) is summable in t. Thus (C0) holds.
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The condition D0 is equivalent to the following:

H(t, x, y) = sup
υ
{〈υ(t), y〉 − L(t, x, υ(t))}

≥ sup
υ
{〈υ(t), y〉 − β′(t)}

≥ sup
υ(t)

{−|υ(t)| · |y|} − β′(t)

≥ −|υ(t)| · |y| − β′(t)

Assume that (A3) holds. Let ψ(t, y) = −β′(t), γ(t) = 0 and δ(t) = −|υ(t)|. Thus

β′(t) and υ(t) are summable since φ(t, y) is summable in t and δ(t) is summable.

Thus (D0) holds.

2.3 Hypothesis and More Convex Analysis
2.3.1 Hypothesis of Main Results

In this section, we first review some concepts from convex analysis that are perti-

nent in this chapter. Let f be a mapping from Rn → R. We define the epigraph of

f as

epif := {(x, r)|f(x) ≥ r}.

Definition 2.3.1. [7] An extended-real-valued function f is given on a set S ⊂ Rn

is said to be lower semi-continuous at a point x of S if

f(x) ≤ lim inf
i→∞

f(xi)

for every sequence x1, x2, . . . in S such that xi converges to x and the limit of

f(x1), f(x2), . . . , exists in [−∞,∞].

Definition 2.3.2. [7] A convex function is said to be proper if its epigraph is

non-empty and contains no vertical lines, i.e., if f(x) < +∞ for at least one x and

f(x) > −∞ for every x.
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Definition 2.3.3. [7] We denote the Euclidean norm by | · | and call θ coercive

when it is bounded from below and has
θ(t, υ)

|υ|
→ ∞ uniformly in t as |υ| → ∞.

In optimal control, the extent to which the value function can be characterized

in terms of the Hamiltonian function associated with the Lagrangian is an impor-

tant issue. We formulate the conditions that will be used throughout this chapter

as below. The convexity of f corresponds to the convexity of epi f , while lower

semi-continuity of f corresponds to the closedness of epi f. Convexity of f im-

plies convexity of dom f, but lower semi-continuity of f need not entail closedness

of dom f. For a proper convex function f on Rn, coercivity is equivalent to the

finiteness of the conjugate convex function f ∗ on Rn under the Lebesgue-Fenchel

transform: f ∗(y) := supυ{〈υ, y〉 − f(υ)}.

In this section, we give the basic assumptions on the Hamiltonian as follows:

Basic Assumptions (A).

(A0) The initial function g is convex, proper, and lsc on [0,∞)× Rn.

(A1) H(·, x, y) is Lebesgue measurable and for each fixed time t, the Hamiltonian

H(t, x, y) is convex in y, concave in x, finite, proper and lsc on Rn × Rn.

(A2) There exist a locally bounded functions α(t), and a locally bounded and

summable function β(t) and a finite function ϕ(t, y) summable in t and con-

vex in y such that H(t, x, y) ≤ ϕ(t, y) + (α(t)|y|+ β(t))|x|, for all x, y.

(A3) There exist a locally bounded functions γ(t), and a locally bounded and

summable function δ(t) and a finite function ψ(t, y) summable in t and convex

in y such that H(t, x, y) ≥ ψ(t, y)− (γ(t)|x|+ δ(t))|y|, for all x, y.
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In [4], Rockafellar showed that these conditions C0 and D0 can be equivalently

expressed in terms of the Hamiltonian function

H(t, x, y) := sup
υ
{〈υ, y〉 − L(t, x, υ)|υ ∈ Rn}. (2.3.1)

With straightforward calculations, we can deduce that C0 is stronger than Assump-

tion (A2) by choosing a constant convex function ϕ(t, y) and α being 0. Similarly,

D0 is stronger than (A3). Under assumptions (A), the reciprocal formula in (2.3.2)

holds and then every property of H must have some counterpart in L. Therefore

L(t, x, ·) is in turn conjugate to H(t, x, ·):

L(t, x, υ) = sup
y
{〈υ, y〉 −H(t, x, y)|y ∈ Rn}. (2.3.2)

The following theorem describes how the Hamiltonian associates with the La-

grangian.

Theorem 2.3.4. A function L : [0,∞) × Rn × Rn → R is the Lagrangian for a

Hamiltonian H satisfying (A1), (A2), and (A3) if and only if L(t, x, υ) is proper,

lsc, jointly convex in x and υ, and the following growth condition hold, where (a)

is equivalent to (A3), and (b) is equivalent to (A2):

(a) The set F (t, x) := dom L(t, x, ·) is nonempty for all x, and there is a locally

bounded and summable function ρ(t) such that dist (0, F (t, x)) ≤ ρ(t)(1+ |x|)

for all x.

(b) There exist a locally bounded functions α(t) and a locally bounded and summable

function β(t) and θ(t, υ) summable in t and coercive, proper, and non-decreasing

in υ such that L(t, x, υ) ≥ θ(t,max {0, |υ| − α(t)|x|})− β(t)|x| for all x and

υ.
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Proof. Under the Legendre-Fenchel transform, the finiteness of the Hamiltonian

corresponds to the coercivity of the Lagrangian and concavity of H(t, x, y) in x

corresponds then to joint convexity of L(t, x, υ) in x and υ.

Next, we will show that the Hamiltonian H satisfying (A1) and condition (A2)

is equivalent to the growth condition in (b). Beginning with (A2), define ψ(t, r) =

max{ϕ(t, y)||y| ≤ r} to get a finite, nondecreasing, convex function ψ(t, ·) on [0,∞)

and ψ(t, ·) ∈ L1[0,∞) for almost every fixed time t. The equality in (A2) yields

H(t, x, y) ≤ ϕ(t, y) + (α(t)|y| + β(t))|x|, and consequently through L(t, x, υ) =

supy{〈υ, y〉 −H(t, x, y)} that

L(t, x, υ) ≥ sup
y
{〈υ, y〉 − ϕ(t, y)− (α(t)|y|+ β(t))|x|}

= sup
r≥0

sup
|y|≤r
{〈υ, y〉 − ϕ(t, y)− (α(t)|y|+ β(t))|x|}

≥ sup
r≥0
{|υ|r − ψ(t, r)− (α(t)r + β(t))|x|}

= ψ∗(t, [|υ| − α(t)|x|]+)− β(t)|x|,

ψ∗(t, ·) is coercive, proper and nondecreasing on [0,∞). Taking θ = ψ∗, we get (b).

Conversely from (b), without loss of generality we assume that α(t) ≥ 0 for

some fixed time t. Then we can estimate the Hamiltonian through the formula

H(t, x, y) := supυ{〈υ, y〉 − L(t, x, υ)} so that

H(t, x, y) ≤ sup
υ
{〈υ, y〉 − θ([|υ| − α(t)|x|]+) + β(t)|x|}

= sup
s≥0

sup
|υ|≤s
{〈υ, y〉 − θ([|υ| − α(t)|x|]+) + β(t)|x|}

= sup
s≥0
{s|y| − θ([s− α(t)|x|]+) + β(t)|x|},

Let r(t) = s− α(t)|x| for fixed time t. Then for each fixed time t, it yields that

H(t, x, y) ≤ sup
r(t)≥−α(t)|x|

{(r + α(t)|x|)|y| − θ([|r(t)|]+) + β(t)|x|}

= sup
r(t)≥0

{r|y| − θ(t, r)}+ (α(t)|y|+ β(t))|x|

= θ∗(t, |y|) + (α(t)|y|+ β(t))|x|,
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where θ∗(t, ·) is finite, convex and nondecreasing. The function ϕ(t, y) = θ∗(t, |y|)

is then convex on Rn for each time t (see [2, 15.3]). Thus, we have the growth

condition in (A2).

Therefore we conclude that the assumptions (A) can also be reformulated as the

assumptions on the Lagrangian as:

Equivalent assumptions (B):

(B0) The initial function g is convex, proper, and lsc on [0,∞)× Rn.

(B1) The lagrange function L(t, x, υ) is Lebesgue measurable in t and convex,

proper, lsc for each (x, υ) ∈ Rn × Rn.

(B2) The set F (t, x) := dom L(t, x, ·) is nonempty for all x, and there is a locally

bounded and summable function ρ(t) such that dist (0, F (t, x)) ≤ ρ(t)(1+|x|)

for all x.

(B3) There exist a locally bounded functions α(t) and a locally bounded and

summable function β(t) and θ(t, υ) summable in t and coercive, proper, and

non-decreasing in υ such that L(t, x, υ) ≥ θ(t,max {0, |υ|−α(t)|x|})−β(t)|x|

for all x and υ.

Combining (B0) and the first part of (B1), we can get the convexity of the value

function, while the second part of (B1) gives the lower semicontinuity of value

function in time t because of the absolute continuity of x(·). Let the arcs y(·)

together with the arcs x(·) in the Hamiltonian dynamics be related to the forward

propagation of the conjugate initial function g∗, satisfying

g∗(t, y) := sup
x
{〈x, y〉 − g(t, x)}, g(t, x) := sup

y
{〈x, y〉 − g∗(t, y)},
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with respect to the dual Lagrangian L̃, satisfying

L̃(t, y, w) = L∗(t, w, y) = sup
x,υ
{〈x,w〉+ 〈υ, y〉 − L(t, x, υ)},

L(t, x, υ) = L̃∗(t, υ, x) = sup
y,w
{〈x,w〉+ 〈υ, y〉 − L̃(t, y, w)}.

2.3.2 Exploration of Hypothesis and More Convex
Analysis

A common sort of extreme problem is that of maximizing a linear function 〈·, x∗〉

over a convex set C. Rockafellar defines the support function δ∗(·|C) of C:

δ∗(x∗|C) = sup{〈x, x∗〉|x ∈ C}

The effective domain of δ∗(·|C) is:

domδ∗ = {x∗|δ∗(·|C) < +∞}

= {x∗| sup{〈x, x∗〉|x ∈ C} < +∞}

Rockafellar [2] also proves that the barrier cone of the convex set C is the effective

domain of δ∗(·|C). The correspondence between convex sets and their support

functions reflects a certain duality positive homogeneity and the property of being

an indicator function. Thus, if f(x) = δ(x|K) for a nonempty convex cone K, then

f ∗(x∗) = δ(x∗|K0). This K0 is called the polar of K and defined as

K0 = {x∗|∀x ∈ K, 〈x, x∗〉 ≤ 0}.

Let L : [0,∞) × Rn × Rn → (−∞,∞] satiesfy Assumption (B). Rockafellar

[2] claims that if L is a proper, lower semicontinuous convex function, then L

is closed. If L(t, ·, ·) is a closed convex function, then for each fixed time t, the

recession function of L is defined as:

L̂(t, x, υ) = lim
λ→+∞

L(t, x0 + λx, υ0 + λυ)− L(t, x0, υ0)

λ
(2.3.3)
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where (x0, υ0) ∈ dom L(t, ·, ·). The recession cone O+C of a convex set C is the set

of all vectors y ∈ Rn satisfying the condition x+ λy ∈ C for all λ ≥ 0 and x ∈ C.

Let C = cl dom L∗. The effective domain of δ∗(·|C),which is also the barrier cone

of C, can be derived as:

dom δ∗(·|C) (2.3.4)

=dom δ∗(·|cl dom L∗(t, ·, ·))

={(x, υ)| sup{〈x, y〉+ 〈υ, w〉|〈y, w〉 ∈ C} < +∞}

Furthermore, since L(t, ·, ·) is proper for each fixed time t, it follows that L(t, ·, ·) >

−∞. Hence

dom δ∗(·|C)

={(x, υ)| sup{〈x, y〉+ 〈υ, w〉 − L(t, x, υ)|〈y, w〉 ∈ C} < +∞}

Lemma 2.3.5. Let L satisfy the assumption (B1) and L∗ be the conjugate of

L. Then the polar of the effective domain of δ∗(·|cl dom L∗) is the same as the

recession cone of cl dom L∗.

Proof. Let C = cl dom L∗. The equation (2.3.4) yields that the effective domain

of δ∗(·|cl dom L∗) can be written as:

dom δ∗(·|C) = {(x, υ)| sup{〈x, y〉+ 〈υ, w〉|〈y, w〉 ∈ C} < +∞}

Then the polar of the effective domain of δ∗ is:

{(r, p)|〈x, r〉+ 〈υ, p〉 ≤ 0, ∀(x, υ) ∈ dom δ∗(·|C)}

Let (r, p) ∈ 0+(cl dom L∗(t, ·, ·)). Then for any (y, w) ∈ cl dom L∗(t, ·, ·) and λ ≥ 0,

it follows that (y, w)+λ(r, p) ∈ cl dom L∗(t, ·, ·). Then the conjugate L∗ of L is the
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pointwise supremum of the affine functions G(t, y, w) = 〈x, y〉+ 〈υ, w〉 − µ, where

(x, υ, µ) ∈ epi L(t, ·, ·). Thus we can arrive at:

L∗(t, y + λr, w + λp) = sup
y,w
{〈x, y + λr〉+ 〈υ, w + λp〉 − µ} < +∞

for all λ ≥ 0 and (y, w) such that L∗(t, y, w) = supx,υ{〈x, y〉 + 〈υ, w〉 − µ} < +∞

holds. Then it is clear that

L∗(t, y + λr, w + λp) < +∞

⇐⇒ sup
x,υ
{〈x, y + λp〉+ 〈υ, w + λp〉 − µ}

⇐⇒ sup
x,υ
{〈x, y〉+ 〈υ, w〉 − µ+ λ(〈x, r〉+ 〈υ, p〉)} < +∞

⇐⇒ sup
x,υ
{λ(〈r, x〉+ 〈p, υ〉)} < +∞

⇐⇒〈r, x〉+ 〈p, υ〉 ≤ 0

Hence the recession cone of C can be derived as:

0+(cl dom L∗(t, ·, ·)) = {(r, p)|〈r, x〉+ 〈p, υ〉 ≤ 0},

where (x, υ) satisfies the condition that L∗(t, y, w) = supx,υ{〈x, y〉+ 〈υ, w〉 − µ} <

+∞ holds for any (y, w) ∈ C. Hence it completes the proof.

We then associate with L the followings sets: first the nonempty closed convex

cone

K1(L) = cl dom L̂ = cl {(y, z)|L̂(y, z) < +∞}, (2.3.5)

and second the recession cone of cl dom L,

K2(L) = {(y, z)|(x, υ) + λ(y, z) ∈ cl dom L,∀(x, υ) ∈ dom L, λ ≥ 0}. (2.3.6)

The dual Lagrangian is defined as L̃(t, p, w) = L∗(t, w, p), where L∗ is the conjugate

of L.
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Lemma 2.3.6. Let K1(L)0 be the polar of the cone K1(L). Then

K1(L)0 = {(r, q)|(q, r) ∈ K2(L̃)} (2.3.7)

Proof.

K1(L)0 = {x∗|∀x ∈ K1(L), 〈x, x∗〉 ≤ 0}

= {(r, q)|∀(x, υ) ∈ cl dom L̂, 〈r, x〉+ 〈q, υ〉 ≤ 0}.

Assume that (x, υ) ∈ cl dom L̂. It follows that L̂(t, x, υ) < +∞, which implies that

L(t, x0 + λx, υ0 + λυ)− L(t, x, υ)

λ
< +∞

which also implies that (x, υ) satisfies that supx,υ{〈x, y〉 + 〈υ, w〉 − L(t, x, υ)} as

proved in Lemma 2.3.5.

The condition

(q, r) ∈ K2(L̃)

⇔(w, y) + λ(q, r) ∈ cl dom L̃(t, ·, ·),∀(w, y) ∈ cl dom L̃(t, ·, ·), λ ≥ 0

⇔(y, w) + λ(r, q) ∈ cl dom L∗(t, ·, ·),∀(y, w) ∈ cl dom L∗(t, ·, ·), λ ≥ 0

⇔L∗(t, y + λr, w + λq) < +∞,∀λ ≥ 0, (y, w) such that L∗(t, y, w) < +∞

Let (y, w, µ) ∈ epi L(t, x, υ). It yields that

L∗(t, y + λr, w + λq) = sup{〈x, y + λr〉+ 〈υ, w + λq〉 − µ} < +∞

⇔ sup{〈x, y〉+ 〈x, λr〉+ 〈υ, w〉+ 〈υ, λq〉 − µ} < +∞

⇔λ(〈r, x〉+ 〈q, υ〉) < +∞, ∀λ ≥ 0

⇔〈r, x〉+ 〈q, υ〉 ≤ 0

where (x, υ) satisfies that L∗(t, y, w) = supx,υ{〈x, y〉 + 〈υ, w〉 − L(t, x, υ)}. Hence

it completes the proof.
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Lemma 2.3.7. Assume that (0, z) ∈ K1(L) implies that z = 0. Then for any

q ∈ Rn, there exists an r ∈ Rn with (q, r) ∈ K2(L̃).

Proof. From the proof of Lemma 2.3.6, we know that (q, r) ∈ K2(L̃) is equivalent

to for any q ∈ Rn, there exists r ∈ Rn such that 〈x, r〉 + 〈υ, q〉 ≤ 0 for all (x, v) ∈

cl dom L.

Assume that (0, z) ∈ K1(L) implies that z = 0. Then it means that if x = 0,

then υ = 0. For any q and r, it follows that 〈x, r〉+ 〈υ, w〉 = 0. If x 6= 0, then the

existence of r is also clear.

Definition 2.3.8. [7] For any nonempty subset C ⊂ Rn, the horizon cone is the

closed cone

C∞ := {w ∈ Rn|∃xν ∈ C, λν ↘ 0,with λνxν → w}

Theorem 2.3.9. [2] Let C be a non-empty closed convex set, and let y 6= 0. If

there exists even one x such that the half line {x + λy|λ ≥ 0} is contained in C,

then the same thing is true for every x ∈ C, i.e. one has y ∈ 0+C.

Theorem 2.3.9 implies that if C is convex and closed, C∞ is actually the recession

cone 0+C of C. It will be crucial to consider L not just as a function on [0,∞)×

Rn × Rn but in terms of the associated function-valued mapping x → L(t, x, ·)

that assigns to each x ∈ Rn the function L(t, x, ·) : Rn → R. Here we give a

new definition similar to the “bifunction” mapping, but in the sense that it is also

locally bounded in t.

It will be important in the context of conditions (B1),(B2) and (B3) to view

L not just as a function on [0,∞) × Rn × Rn but in terms of the associated

function-valued mapping x → L(t, x, ·) that assigns to each x ∈ Rn the function
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L(t, x, ·) : [0,∞)×Rn×Rn → R. A function-valued mapping is a bifunction in the

terminology.

Definition 2.3.10. A function-valued mapping from Rn to the space of the extended-

real-valued functions on Rn, as specified in the form x 7−→ Λ(t, x, ·) by a function

Λ : [0,∞)× Rn × Rn → R, is called a regular convex bifunction if

(a1) Λ is proper, lsc, convex as a function on [0,∞) × Rn × Rn and Lebesgue

measurable on time t;

(a2) for almost each fixed time t, and there exists z ∈ Rn with (w, z) ∈ (dom Λ)∞

for each w ∈ Rn;

(a3) for almost any fixed time t, (0, z) ∈ cl (dom Λ∞) implies that z = 0.

Proposition 2.3.11. For Λ : [0,∞) × Rn × Rn → R̄, suppose that the mapping

x 7−→ Λ(t, x, ·) is a regular convex bifunction. Then for the conjugate function

Λ∗ : [0,∞) × Rn × Rn → R̄, the mapping y 7−→ Λ∗(t, ·, y) is a regular convex

bifunction.

Indeed, conditions (a2) and (a3) of the above definition are dual to each other in

the sense that, under (a1), Λ satisfies (a2) if and only if Λ∗ satisfies (a3), where

Λ satisfies (a3) if and only if Λ∗ satisfies (a2).

Proof. This proof is the same as the proof of Lemma 2.3.7.

Lemma 2.3.12. For a function Λ : [0,∞) × Rn × Rn → R̄ satisfying condition

(a1) of the above definition, condition (a2) is equivalent to the existence of a locally

bounded and summable matrix function A(t)n×n and locally bounded and summable

functions a(t) and b(t) such that

(x,A(t)x+ |x|a(t)+b(t)) ∈ ri(domΛ(t, ·, ·)) for all x ∈ Rn and almost

all time t.
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Proof. The necessity part of the proof was similar to the first half of the proof in

Theorem 5 of [5]. For each fixed time t and every a ∈ Rn, the equation

ẋ(t) = A(t)x(t) + |x(t)|a(t) + b(t), x(0) = a

has a unique solution x over [0,∞) such that ẋ(t) is actually continuous. The

existence of solution also implies that A(t), a(t), b(t) are summable functions. As

for the sufficiency, it is clear that (2.3.1) implies that (0, b) ∈ C. For any λ > 0, it

follows that (0, b) + λ(x,A(t)x+ |x|a(t)) ∈ C, which implies (x,A(t)x+ |x|a(t)) ∈

(domΛ(t, ·, ·))∞ for all x ∈ Rn.

Proposition 2.3.13. A function L : [0,∞) × Rn × Rn → R satisfies (B1), (B2)

and (B3) if and only if the mapping x 7−→ L(t, x, ·) is a regular convex bifunction.

Specifically in the context of the definition with Λ = L, (B1) corresponds to (a1),

and then one has an equivalence of (B2) with (a2) and that of (B3) with (a3).

Proof. When Λ = L, (B1) is identical to (a1). Assuming this property now, we

argue the equivalences.

(B2) =⇒ (a2). For any fixed time t, we assume that for any w ∈ Rn, there exists

υ ∈ Rn such that υ ∈ F (t, x) with

|υ| ≤ ρ(t)(1 + |x|) and x = λnw.

Then

1

λn
(x, υ) = (w,

υ

λn
) ∈ (dom Λ)∞. (2.3.8)

Since υ
λn
≤ ρ(t)(1 + | x

λn
|) = ρ(t)(1 + |w|), it follows that υ

λn
is bounded in Rn. Thus

there exists a cluster point z such that (w, z) ∈ (dom Λ)∞.

(a2) =⇒ (B2). Applying Lemma 3.12, for almost each fixed time t, we get the

existence of a locally bounded and summable matrix function A(t) and locally
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bounded and summable vector functions a(t) and b(t) such that A(t)x+ |x|a(t) +

b(t) ∈ F (t, x) for all x. Then dist (0, F (t, x)) ≤ |A(t)||x| + |x||a(t)| + |b(t)|, so we

can get the bound in (B2) by taking ρ(t) = max{|b(t)|, |A(t)| + |a(t)|} for each

fixed time t.

(B3) =⇒ (a3). Let (x̄, ῡ) ∈ ri (dom L) = ri (dom Λ). Then it is clear that

Λ(t, x̄, ῡ) < +∞. For any (w, z) and almost each fixed time t, it is clear that

Λ∞(t, w, z) = lim
λ→∞

Λ(t, x̄+ λw, ῡ + λz)− Λ(t, x̄, ῡ)

λ

= lim
λ→∞

Λ(t, x̄+ λw, ῡ + λz)

λ
.

because
Λ(t, x̄, ῡ)

λ
goes to 0 as λ goes to ∞. On the basis of (B3) this yields, in

the notation [s]+ = max{0, s},

Λ∞(t, w, z) ≥ lim
λ→∞

λ−1[θ([t, |ῡ + λz| − α(t)|x̄+ λw|]+)− β(t)|x̄+ λw|]

= lim
λ→∞

[λ−1θ(t, λ[λ−1|ῡ + z| − α(t)|λ−1x̄+ w|]+)]

−β(t)|λ−1x̄+ w|]

=

 −β|w| if [|z| − α(t)|w|]+ = 0

∞ if [|z| − α(t)|w|]+ > 0

Hence dom Λ∞(t, ·, ·) ⊂ {(w, z)||z| ≤ α(t)|w|}. Any (0, z) ∈ cl (dom Λ∞) then has

|z| ≤ α|0|, hence z = 0, so (a3) holds.

(a3) =⇒ (B3). According to the duality between (a3) and (a2), condition (a3)

on the mapping x 7−→ Λ(t, x, ·) is equivalent to condition (a2) on the mapping

y 7−→ Λ(t, ·, y). By Lemma 3.12, there exist a locally bounded and summable

matrix function A(t) and locally bounded and summable vector functions a(t) and

b(t) such that

(A(t) + |y|a(t) + b(t), y) ∈ ri (dom Λ∗(t, ·, ·)) for all y ∈ Rn.
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Any convex function is continuous over the relative interior of its effective domain,

so the function y 7−→ Λ(t, A(t) + |y|a(t) + b(t), y) is (finite and) continuous on

Rn (although not necessarily convex). For almost each fixed time t, we define the

function φ on [0,∞)× [0,∞) by φ(t, r) = max{Λ∗(t, A(t)y+ |y|a(t) + b(t), y)||y| ≤

r}. Then φ(t, ·) is finite, continuous, and nondecreasing. Because

Λ(t, x, υ) = Λ∗∗(t, x, υ) = sup
z,y
{〈x, z〉+ 〈υ, y〉 − Λ∗(t, z, y)}

under (a1), we have

Λ(t, x, υ) ≥ sup
y
{〈x,A(t)y + |y|a(t) + b(t)〉+ 〈υ, y〉

−Λ∗(t, A(t)y + |y|a(t) + b(t), y)}

≥ sup
y
{−|x|(|A(t)||y|+ |y||a(t)|+ |b(t)|) + 〈υ, y〉 − φ(|y|)}

= sup
y
{−|x||y|(|A(t)|+ |a(t)|)− |x||b(t)|+ |υ||y| − φ(|y|)}

= −|x||b(t)|+ sup
r≥0
{r[|υ| − |x|(|A(t)|+ |a(t)|)]− φ(r)}

= φ∗([|υ| − |x|(|A(t)|+ |a(t)|)]+)− |b(t)||x|,

where again [s]+ := max{0, s}. Let α(t) = |A(t)| + |a(t)|, β(t) = |b(t)|, and

θ(t, ·) = φ∗(t, ·). Then the inequality in (B3) holds for L = Λ. Then for almost

each fixed time t, the function θ has θ(t, 0) = −φ(t, 0) (finite) and is the pointwise

supremum of a collection of affine functions of the form s 7−→ rs−φ(t, r) with r ≥ 0

and φ(t, r) always finite for almost each fixed time t. Hence θ(t, r) is summable in

t and convex, proper, nondecreasing in r, and in addition has lims→∞ θ(t, s)/s ≥ r

for almost each fixed time t and all r ≥ 0, which implies coercivity.

Proposition 2.3.14. If the Lagrangian L : [0,∞)× Rn × Rn → R satisfies (B1),

(B2), and (B3), then so too does the dual Lagrangian L̃ : [0,∞)× Rn × Rn → R.

Indeed, (B1) for L yields (B1) for L̃ and the reciprocal formula, and then (B2)

33



for L corresponds to (B3) for L̃, whereas (B3) for L corresponds to (B2) for L̃.

Furthermore, the dual Hamiltonian

H̃(t, y, x) := sup
w
{〈x,w〉 − L̃(t, y, w)}

associated with L̃ is then related to the Hamiltonian H for L by

H̃(t, y, x) = −H(t, x, y).

Proof. It is clear to get the dualization of (B1), (B2), and (B3) to L̃ by Proposition

3.13 in [7]. By the assumption (A), we know that H(t, x, ·) is finite on Rn. H(t, x, y)

being convex in y and concave in x associate with the joint convexity of L(t, x, υ)

in x and υ (see [2, 33.3] or [1, 11.48]). We can use the conjugate formula to prove

the Hamiltonian relationship. Thus we can obtain that

L̃(t, y, w) = sup
x,υ
{〈x,w〉+ 〈υ, z〉 − L(t, x, υ)} = sup

x
{〈x,w〉+H(t, x, y)}.

Fix any y and let h(·) = −H(t, ·, y), noting that h(·) is a finite convex function on

Rn because H(t, ·, y) is concave. Therefore, we have L̃(t, y, ·) = h∗(·), and it follows

that h∗∗(·) = H̃(t, y, ·). The locally boundedness and convexity of h ensures that

h∗∗ = h, so that H̃(t, y, ·) = −H(t, ·, y) as claimed.

2.4 Duality Framework

The properties for L andH lead to stronger results about duality for the generalized

problems of Bolza of convex type. The duality theory, as expressed over the time

interval [t1, t2], centers on a problem of the form

(P) minimize J((x(·)) :=

∫ t2

t1

L(t, x(t), ẋ(t))dt+ l(t1, x(t1), x(t2))

over x(·) ∈ A1
n[t1, t2], where the endpoint function l : [0,∞) × Rn × Rn → R is

proper, lsc, and convex, and on the corresponding dual problem

(P̃) minimize J̃(y(·)) =

∫ t2

t1

L̃(t, y(t), ẏ(t))dt+ l̃(t1, y(t1), y(t2))
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over y(·) ∈ A1
n[t1, t2], where the dual endpoint function l̃ : Rn×Rn → R is generated

through conjugacy:

l̃(t1, η, η
′) = l∗(t1, η,−η′) = sup

ξ′,ξ
{〈η, ξ′〉 − 〈η′, ξ〉 − l(t1, ξ′, ξ)},

l(t1, ξ, ξ
′) = l̃∗(t1, ξ,−ξ′) = sup

η′,η
{〈η, ξ′〉 − 〈η′, ξ〉 − l̃(t1, η′, ξ)},

A major role in characterizing optimality in the generalized Bolza problem (P)

and (P̃) is played by the generalized Euler-Lagrange condition

(ẏ(t), y(t)) ∈ ∂x,υL(t, x(t), ẋ(t))

for almost each fixed time t, which can also be written in the dual form (ẋ(t), x(t)) ∈

∂y,ωL̃(t, y(t), ẏ(t)) for almost each fixed time t.

Theorem 2.4.1. For almost each fixed time t and for any functions L(t, ·, ·) and

l(t, ·, ·) that are proper, lsc, and convex on Rn×Rn, the optimal values in P and P̃

satisfy inf(P) ≤ −inf(P̃). Moreover, for any arcs x(·) and y(·) in A1
n[t1, t2], the

following properties are equivalent:

(a) (x(·), y(·)) is a Hamiltonian trajectory satisfying the transversality condition;

(b) x(·) solves (P), y(·) solves (P̃), and inf(P) = −inf(P̃).

Proof. It is basically the proof of Theorem 5 of [6] for fixed time by using Theorem

1 in [3] to translate the Euler-Lagrange condition to the Hamiltonian condition.

Next, we introduce the dual value function Ṽ generated by L̃ and g∗:

Ṽ (t1, t2, η) := inf{g∗(t1, y) +

∫ t2

t1

L̃(t, y(t), ẏ(t))dt|y(t2) = η},

Ṽ (t1, t2, η) = g∗(t1, η),

where the minimum is taken over all arcs y(·) ∈ A1
n[t1, t2]. Therefore all that

we prove for V automatically holds for Ṽ as well since L̃ and g∗ inherit these
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properties from L and g. Then for any fixed time t1 ≥ 0 and any vector η̄, we let

l(t1, ξ
′, ξ) = g(t1, ξ

′)− 〈ξ, η̄〉 in the Bolza problem P . Then the corresponding dual

endpoint function is

l̃(t1, η
′, η) = sup

ξ′,ξ
{〈η′, ξ′〉 − 〈η, ξ〉 − l(t1, ξ′, ξ)}

= sup
ξ′,ξ
{〈η′, ξ′〉 − 〈η, ξ〉 − g(t1, ξ

′) + 〈ξ, η̄〉}

= g∗(t1, η
′)

(2.4.1)

when η = η̄, otherwise it is ∞. Then the Bolza problem can be written as

inf(P) = − sup
ξ
{〈ξ, η̄〉 − V (t1, t2, ξ)}, inf(P̃) = Ṽ (t1, t2, η̄).

Thus we can conclude that −inf(P) = inf(P̃) by Theorem 4.5(a) in [7]. This is also

equivalent to say that

Ṽ (t1, t2, η) = sup
ξ
{〈ξ, η〉 − V (t1, t2, ξ)},

V (t1, t2, ξ) = sup
η
{〈ξ, η〉 − Ṽ (t1, t2, η)}.

(2.4.2)

Next, under the assumption (A), we will present several consequences, which are

similar to the results in [4].

Theorem 2.4.2. Under (A), the function Vt2 = V (t1, t2, ·) is proper, lsc and

convex on Rn for each t2 > t1 ≥ 0. Moreover, Vt2 depends epi-continuously on t2.

In particular, V is proper, and lsc as a function on [0,∞)× [0,∞)× Rn, and Vt2

epi-converges to g(t1, x) as t2 ↘ 0.

Proof. The proof of the theorem relies on the scheme in [7]. It is clear that

V (t1, t2, ξ) and Ṽ (t1, t2, η) are convex and lsc. It will be easier to deal with the

corresponding property of Ṽ at the same time and appeal to the duality between

V and Ṽ in simplifying the arguments. By this approach and the definition of the

epi-continuity, we can simply prove that
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(a) Whenever t2 ≥ t1 > 0 and tν2 ↘ t2, one has

 lim supν V (t1, t
ν
2, ξ

ν) ≤ V (t1, t2, ξ) for some sequence ξν → ξ,

lim infν Ṽ (t1, t
ν
2, η

ν) ≥ Ṽ (t1, t2, η) for every sequence ην → η,

(2.4.3)

(b) Whenever t2 ≥ t1 > 0 and tν2 ↗ t2, one has

 lim supν V (t1, t
ν
2, ξ

ν) ≤ V (t1, t2, ξ) for some sequence ξν → ξ,

lim infν Ṽ (t1, t
ν
2, η

ν) ≥ Ṽ (t1, t2, η) for every sequence ην → η,
(2.4.4)

since these “subproperties” yield by duality the corresponding ones with V and Ṽ

reversed.

Argument for (2.4.3): Fix any t̄2 > t1 and ξ̄ ∈ domV (t1, t̄2, ·). We want to prove

that the first limit in (a) holds for (t1, t̄2, ξ̄). Pick any sequence tν2 ↘ t̄2 in (t̄2, t̂2).

Let ξν = x(tν2) and ξ̄ = x(t̄2) Then ξν → ξ̄ by the continuity of x(·). Then it suffices

to show that

lim sup
ν

V (t1, t
ν
2, ξ

ν) ≤ V (t1, t̄2, ξ̄).

By Corollary 4.4 in [4], there exists an arc x(·) ∈ A1
n[t̄2, t̂2] such that

∫ t̂2
t̄2
L(t, x, υ)dt <

∞ with x(t̄2) = ξ̄ and x(t̂2) = ξ̂. Thus for every t2 ∈ (t̄2, t̂2), we have
∫ t2
t̄2
L(t, x, υ)dt <

∞ and it follows that

V (t1, t2, x(t2)) ≤ V (t1, t̄2, ξ̄) + α(t2) for α(t2) :=

∫ t2

t̄2

L(t, x, υ)dt.

Then we can obtain that

lim sup
ν

V (t1, t
ν
2, ξ

ν) ≤ lim sup
ν
{V (t1, t̄2, ξ̄) + α(tν2)} = V (t1, t̄2, ξ̄),
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as desired. In establishing the second limit in (a), we observe that the conjugacy of

the value function gives Ṽ (t1, t
ν
2, ·) ≥ 〈ξν , ·〉 − V (t1, t

ν
2, ξ

ν). For any η̄ and sequence

ην → η̄, it yields

lim inf
ν

Ṽ (t1, t
ν
2, η

ν) ≥ lim inf
ν
{〈ξν , ην〉 − V (t1, t

ν
2, ξ

ν)}

≥ 〈ξ̄, η̄〉 − V (t1, t̄2, ξ̄).

(2.4.5)

But ξ̄ was an arbitrary point in domV (t1, t̄2, ·), so we get the rest of what is needed

in (a):

lim inf
ν

Ṽ (t1, t
ν
2, η

ν) ≥ sup
ξ
{〈ξ̄, η̄〉 − V (t1, t̄2, ξ)} = Ṽ (t1, t̄2, η̄). (2.4.6)

Argument for (2.4.4): Fix any t̄2 ≥ 0 and ξ̄ ∈ domV (t1, t̄2, ·). We will verify that

the second limit in (a) holds for (t1, t̄2, ξ̄). Let ε > 0. Because V (t1, t̄2, ξ̄) <∞, there

exists x(·) ∈ A1
n[t1, t̄2] with x(t̄2) = ξ̄ and g(t1, x)+

∫ t̄2
t1
L(t, x, υ)dt < V (t1, t̄2, ξ̄)+ε.

Then for all t2 ∈ (t1, t̄2),

V (t1, t2, x(t2)) ≤ g(t1, x) +

∫ t̄2

t1

L(t, x, υ)dt

≤ V (t1, t̄2, ξ̄) + ε− α(t2)

for α(t2) =

∫ t̄2

t2

L(t, x, υ)dt. Consider any sequence tν2 ↗ t̄2 in (t1, t̄2). Let ξν =

x(tν2). Then ξν → ξ̄ and we have

lim sup
ν

V (t1, t
ν
2, ξ

ν) ≤ lim sup
ν
{V (t1, t̄2, ξ̄) + ε− α(tν2)} ≤ V (t1, t̄2, ξ̄) + ε.

We have constructed a sequence with ξν → ξ̄ with the above property for arbitrary

ε, then we can get a sequence ξν → ξ̄ with

lim supν V (t1, t
ν
2, ξ

ν) ≤ V (t1, t̄2, ξ̄) by diagonalization. Fixing such a sequence and

combining the inequality Ṽ (t1, t
ν
2, ·) ≥ 〈ξν , ·〉−V (t1, t

ν
2, ξ

ν), we can obtain the limits

in part (b).
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In the study of generalized problems of Bolza and Lagrangian of convex type, we

only needed subgradients to express the Hamiltonian dynamics in characterizing

optimality. Here the generalized Hamiltonian system is

ẋ(t) ∈ ∂yH(t, x, y), −ẏ(t) ∈ ∂̃xH(t, x, y). (2.4.7)

A Hamiltonian trajectory over [t1, t2] is an arc (x(·), y(·)) ∈ A1
2n[t1, t2] that satisfies

(2.4.7) for almost every t. However, H(t, x(t), y(t) may not necessarily be constant

along any trajectory (x(·), y(·)). Here we also define the corresponding Hamiltonian

flow as the set of set-valued mappings St1,t2 for t2 > t1 ≥ 0 by

St1,t2(ξ1, η1) := {(ξ2, η2)|∃ Hamiltonian function (x(·), y(·))

such that ξ(t1) = ξ1, ξ(t2) = ξ2, η(t1) = η1, η(t2) = η2}.
(2.4.8)

Then we obtain similar property as in [4] that the graph of the sub-gradient map-

ping

gph ∂ξV (t1, t2, ξ) := {(ξ, η)|η ∈ ∂ξV (t1, t2, ξ)} ⊂ Rn × Rn, (2.4.9)

evolves through such dynamics from the graph of the sub-gradient mapping ∂ξV (t1, t1, ·) =

∂g(t1, ·).

Theorem 2.4.3. Under (A), for almost each fixed time t1, one has η ∈ ∂ξV (t1, t2, ξ)

if and only if, for some η1 ∈ ∂ξg(t1, ξ1), there is a Hamiltonian trajectory (x(·), y(·))

over [t1, t2] with (x(t1), y(t1)) = (ξ1, η1) and (x(t2), y(t2)) = (ξ, η). Thus, the graph

of ∂ξV (t1, t2, ·) is the image of the graph of ∂ξg(t1, ·) under the flow mapping St1,t2:

gph ∂ξV (t1, t2, ·) = St1,t2(gph ∂ξg(t1, ·)) for all t2 > t1 ≥ 0. (2.4.10)

The proof will be given in next section. This theorem is the basis for a generalized

method of characteristics for determining V from g and H.
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2.5 Hamiltonian Dynamics and Method of

Characteristics

In this section, we will discuss the generalized Hamiltonian system written in the

form

(ẋ(t), ẏ(t)) ∈ G(x(t), y(t)) for almost every t (2.5.1)

for the set-valued mapping:

G : (x, y) 7−→ ∂yH(t, x, y)×−∂̃xH(t, x, y), (2.5.2)

which derives from the subgradient mapping (x, y) 7−→ ∂̃xH(t, x, y)× ∂yH(t, x, y)

due to the concave-convex assumption on the Hamiltonian H. Through these prop-

erties of G, it assures the local existence of a Hamiltonian trajectory through every

point. Furthermore, the local boundedness of G makes any trajectory (x(·), y(·))

over a time interval [t1, t2] be Lipschitz continuous.

In spite of the single-valuedness of G for fixed time, there exist more than one

Hamiltonian trajectory in certain situations. The system St1,t2 can even be non-

convex sets containing more than finitely many points. Then we are ready to prove

Theorem 2.4.3.

Proof. Fix t2 > 0 and any vector ξ̄ and η̄. Assume that η̄ ∈ ∂ξV (t1, t2, ξ̄). Then it

yields that for any ξ′,

V (t1, t2, ξ
′) ≥ V (t1, t2, ξ̄) + 〈η̄, ξ′ − ξ̄〉

〈η̄, ξ̄〉 − V (t1, t2, ξ̄) ≥ 〈η̄, ξ′〉 − V (t1, t2, ξ
′)

≥ sup
ξ′
{〈η̄, ξ′〉 − V (t1, t2, ξ

′)}

= Ṽ (t1, t2, η̄)

Ṽ (t1, t2, η
′) ≥ Ṽ (t1, t2, η̄) + 〈ξ̄, η′ − η̄〉.
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Then the relation η̄ ∈ ∂ξV (t1, t2, ξ̄) is equivalent to ξ̄ ∈ ∂ηṼ (t1, t2, η̄). We observe

that this also corresponds to the existence of the optimal arcs x(·) for P and y(·)

for the dual function P̃ such that x(t2) = ξ̄.

On the other hand, we obtain from Theorem 2.4.1 in [4] that arcs x(·) and y(·)

solve these problems if and only if (x(·), y(·)) is a Hamiltonian trajectory over [t1, t2]

satisfying the generalized transversality condition (y(t1),−y(t2)) ∈ ∂l(x(t1), ξ̄). By

the definition of l(ξ′, ξ) = g(t1, ξ
′)− 〈ξ, η̄〉, the transversality condition reduces to

the relation y(t1) ∈ ∂xg(t1, x) and y(t2) = η̄.

Therefore, we can conclude that η̄ ∈ ∂Vt2(t1, ξ̄) if and only if there is a trajectory

(x(·), y(·)) over [t1, t2] such that x(t2) = ξ̄, y(t1) ∈ ∂g(t1, x) and y(t2) = η̄.

The scheme of the following two theorems rely on the theorems in [7].

Proposition 2.5.1. (characteristic manifolds for convex functions). Let f : [0,∞)×

Rn → R be convex, proper, and lsc, and let

M = {(x, y, z)|y ∈ ∂xf(t, x), z = f(t, x)} ⊂ Rn ×Rn ×R. (2.5.3)

Then M is an n−dimensional Lipschitzian manifold in the following terms. For

almost each fixed time t, there is a one-to-one, locally Lipschitz continuous mapping

F : R× Rn →M, F (t, u) = (P (t, u), Q(t, u), R(t, u)),

whose range is all of M and whose inverse is Lipschitz continuous as well, in fact

with

F−1(x, y, z) = x+ y for (x, y, z) ∈M.

For fixed time t, the components of F are given by

P (t, u) = argminx{f(t, x) +
1

2
|x− u|2}, Q = I − P, R = f ◦ P, (2.5.4)
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where P and Q, like F−1, are globally Lipschitz continuous with constant 1, and R

is Lipschitz continuous with constant r on the ball {u||u| ≤ r} for each r > 0.

Proof. For fixed time t, the mapping u 7−→ (P (t, u), Q(t, u)) is the Minty parame-

terization of the graph of ∂xf(t, x)(see [1, 12.15]). With this parametrization, the

component z = R(t, u) must be f(t, P (t, u)), so the additional issue is just the

claimed Lipschitz property of this expression. According to the formulas P and Q

in (2.5.4), for fixed time t, we have x = P (t, u) if and only if f(t, x) + 1
2
|x − u|2

reaches its infimum. Then we can conclude that

R(t, u) = f(t, P (t, u) +
1

2
|P (u)− u|2 − 1

2
|P (u)− u|2

= min
x
{f(t, x) +

1

2
|x− u|2} − 1

2
|P (u)− u|2

= p(u)− 1

2
|Q(u)|2,

(2.5.5)

for p(u) = minx{f(t, x)) + 1
2
|x − u|2}. The function p is smooth with gradient

∇up(t, u) = Q(t, u)(see [1, 2.26]). Because P and Q are Lipschitz continuous with

constant 1 and satisfy P + Q = I, they are differentiable at almost every point

u, their Jacobian matrices satisfying ∇uP (t, u) + ∇Q(t, u) = I and having at

most 1. For fixed time t and any such point u, R is differentiable as well, with

∇uR(t, u) = Q(t, u) −∇uQ(t, u)Q(t, u) = ∇uP (t, u)Q(t, u), so that |∇uR(t, u)| ≤

|∇uP (t, u)||Q(t, u)| ≤ |Q(t, u)| ≤ |u|. Thus, |∇uR(t, u)| ≤ r on the ball {u||u| ≤ r},

and consequently R is Lipschitz continuous with constant r on that ball.

Next, we describe how the manifold for Vt2(t1, ξ) evolves from that of g. We

introduce the following extension of the Hamiltonian system (2.5.1) and (2.5.2),

which is called as characteristic system in [8] associated with H:

(ẋ(t), ẏ(t), ż(t)) ∈ G̃(x(t), y(t)) (2.5.6)
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for a.e. t and for the set-valued mapping G̃ defined by

G̃(x, y) := {(υ, w, u)|(υ, w) ∈ G(x, y), u = 〈υ, y〉 −H(t, x, y)}. (2.5.7)

The trajectories (x(·), y(·), z(·)) of this system will be called characteristic trajec-

tories. Like G itself, G̃ is nonempty-closed-convex-valued and locally bounded with

closed graph, so a characteristic trajectory exists, at least locally, through every

point of Rn × Rn × R. The corresponding flow mapping for each t2 ∈ [t1,∞] will

be denoted by S̄t:

S̄t2 : (ξt1 , ηt1 , ζt1) 7−→ {(ξ, η, ζ)|

∃ charateristic trajectory (x(·), y(·), z(·)) over [t1, t2] with

(x(t1), y(t1), z(t1)) = (ξt1 , ηt1 , ζt1), (x(t2), y(t2), z(t2)) = (ξ, η, ζ)}.

(2.5.8)

Theorem 2.5.2. (Subgradient method of characteristics). Let Mt2 be the char-

acteristic manifold for Vt2 = V (t1, t2, ·), with Mt1 the characteristic manifold for

g(t1, ξ) = Vt2(t1, t2, ξ). Then

Mt2 = S̃t2(Mt1) for all t2 > t1 > 0.

Moreover Mt2 , as a closed subset of Rn ×Rn ×R×R depends continuously on t2.

Proof. It is easy to see the continuity of the mapping t2 7−→ Mt2 and the epi-

continuity in Theorem 2.4.2. The evolution of ∂ξV (t1, t2, ·) through (2.5.1) and

(2.5.2) has already been proved in Theorem 2.4.3, so the only issue here is what

happens when the z component is added in (2.5.6) and (2.5.7). We have

ż(t) = 〈ẋ(t), y(t)〉 −H(t, x(t), y(t)) = L(t, x, υ) (2.5.9)

when (ẋ(t), ẏ(t)) ∈ G(x(t), y(t)), since that relation entails ẋ(t) ∈ ∂yH(t, x(t), y(t)),

which is equivalent to the second equation of (2.5.9) because the convex functions

H(t, x(t), ·) and L(t, x(t), ·) are conjugate to each other. The arc x(·) is optimal
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for the minimization problem which defines V (t1, t2, ξ), so that

V (t1, t2, ξ) = g(t1, x) +

∫ t2

t1

L(t, x(t), ẋ(t))dt = z(t1) +

∫ t2

t1

ż(t)dt = z(t2).

The trajectory (t, x(·), y(·), z(·)) does, therefore, carry the point

(x(t1), y(t1), z(t1)) ∈ Mt1 to the point (x(t2), y(t2), z(t2)) ∈ Mt2 . Conversely, it is

clear by (5.9).

2.6 Main Result

Consider any function f : [0,+∞) × Rn → R and let x be any point at which

f(t, x) is finite for each time t. A vector y ∈ Rn is a regular sub-gradient of ft at x

for each fixed time t, written y ∈ ∂̂ft(x), if

f(t, x′) ≥ f(t, x) + 〈y, x′ − x〉+ o(|x′ − x|).

It is a (general) subgradient of f(t, ·) at x, written y ∈ ∂xf(t, x), if there is a

sequence of points xν → x with f(t, xν) → f(t, x) for which regular subgradients

yν ∈ ∂̂xf(t, xν) exist with yν → y. For a value function V , the following partial

subgradient notation is used:

∂ξV (t1, t2, ξ) = {η|η ∈ ∂ξV (t1, t2, ξ)}.

However, for measurably time-dependent data, we cannot take the partial sub-

gradient of the value function with respect to time by the point evaluation. In this

more general setting, we take a different approach. This involves replacing point

evaluation of the Hamiltonian by another operation, namely, calculating the “es-

sential values” of the Hamiltonian. Taking essential values of a given real-valued

function is a generalization of the point evaluation of a continuous function. But

the essential values is unaltered if the function is only changed on a set of Lebesgue

measure zero.
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Theorem 2.6.1. Under (A), the sub-gradients of V on [0,∞)× [0,∞)×Rn have

the property that for any fixed time t1,

(σ, η) ∈ ∂t2,ξV (t1, t2, ξ)⇐⇒ (σ, η) ∈ ∂̂t2,ξV (t1, t2, ξ)

⇐⇒ η ∈ ∂ξV (t1, t2, ξ), σ ∈ (−ess t̄2→t2H(t̄2, ξ, η)).

(2.6.1)

In particular, therefore, V satisfies the generalized Hamiltonian-Jacobi equation

σ + H(t2, ξ, η) = 0, for some sequence of tν2 which are Lebesgue points of the

Hamiltonian convergent to t2 satisfying (σ, η) ∈ ∂t2,ξV (t1, t2, ξ).

Proof. Step I: Assume almost every time t is a Lebsgue point of the Hamiltonian.

First we will prove that

(σ, η) ∈ ∂̂t2,ξV (t1, t2, ξ)⇐⇒ η ∈ ∂ξV (t1, t2, ξ), σ = H(t2, ξ, η).

Pick any time t̄2 which is a Lebesgue point of the Hamiltonian. Let η̄t̄2 ∈

∂ξV (t1, t̄2, ξ̄) with t̄2 > t1 ≥ 0.We need to show that (−H(t̄2, ξ̄, η̄), η̄t̄2) ∈ ∂̂t2,ξV (t1, t̄2, ξ̄),

which is equivalent to

V (t1, t2, ξ)− V (t1, t̄2, ξ̄) + (t2 − t̄2)H(t̄2, ξ̄, η̄)− 〈ξ − ξ̄, η̄t̄2〉

≥o(|(t1, t2, ξ)− (t1, t̄2, ξ̄)|).
(2.6.2)

By Theorem 2.4.3, there is a Hamiltonian trajectory (x(·), y(·)) over [t1, t̄2] that

starts in gph ∂g(t1, ξ) and goes to (ξ̄, η̄). Here we can extend this trajectory to a

larger interval [t1, t̄2 +ε] by the local existence property of the Hamiltonian system.

Let y(t2) ∈ ∂ξV (t1, t2, x(t2)) for all t2 ∈ [t1, t2 + ε]. We can arrive at

V (t1, t2, ξ) ≥ V (t1, t2, x(t2)) + 〈ξ − x(t2), y(t2)〉 for all ξ ∈ Rn (2.6.3)

when t2 ∈ [t1, t̄2 + ε]. Because the convex functions H(t, x(t), ·) and L(t, x(t), ·) are

conjugate to each other and have the relation ẋ(t) ∈ ∂yH(t, x(t), y(t)), it follows

that

〈ẋ(t), y(t)〉 −H(t, x(t), y(t)) = L(t, x(t), ẋ(t)). (2.6.4)
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Hence, we have V (t1, t2, x(t2)) = g(t1, x)+
∫ t2
t1

[〈ẋ(t), y(t)〉−H(t, x(t), y(t))]dt. Then

we can conclude that

V (t1, t2, x(t2)) = V (t1, t̄2, ξ̄) +

∫ t2

t̄2

[〈ẋ(t), y(t)〉 −H(t, x(t), y(t))]dt, (2.6.5)

when t2 ∈ [t1, t̄2 + ε]. Also∫ t2

t̄2

〈ẋ(t), y(t)〉dt = 〈x(t2), y(t2)〉 − 〈x(t̄2), y(t̄2)〉 −
∫ t2

t̄2

〈x(t), ẏ(t)〉dt, (2.6.6)

so combining (2.6.5) and (2.6.6), we observe that the left side of (2.6.2) is bounded

below by the expression

−〈ξ − ξ̄, η̄〉+ 〈ξ − x(t2), y(t2)〉 − 〈x(t̄2), y(t̄2)〉 −
∫ t2

t̄2

〈x(t), ẏ(t)〉

+

∫ t2

t̄2

[H(t̄2, ξ̄, η̄)−H(t, x(t), y(t))]dt

= 〈ξ − ξ̄, y(t2)− η̄〉+ 〈ξ̄, y(t2)− η̄〉 −
∫ t2

t̄2

〈x(t), ẏ(t)〉dt

+

∫ t2

t̄2

[H(t̄2, ξ̄, η̄)−H(t, x(t), y(t))]dt

= 〈ξ − ξ̄, y(t2)− y(t̄2)〉 −
∫ t2

t̄2

〈x(t)− x(t̄2), ẏ(t)〉dt

+

∫ t2

t̄2

[H(t̄2, ξ̄, η̄)−H(t, x(t), y(t))]dt

Claim: This expression is of type o(|(t1, t2, ξ)− (t1, t̄2, ξ̄)|).

Because x(·) and y(·) are continuous, obviously 〈ξ−ξ̄, y(t2)−y(t̄2)〉 and−
∫ t2
t̄2
〈x(t)−

x(t̄2), ẏ(t)〉dt is of type o(|(t1, t2, ξ) − (t1, t̄2, ξ̄)|) by straight calculations. Since t̄2

is a Lebesgue point of the Hamiltonian, by the definition of the Lebesgue point, it

yields that

lim
t2→t̄2

1

t2 − t̄2

∫ t2

t̄2

|H(t, x(t), y(t))−H(t̄2, ξ̄, η̄)|dt = 0.

Therefore,
∫ t2
t̄2

[H(t̄2, ξ̄, η̄)−H(t, x(t), y(t))]dt is also of type o(|(t1, t2, ξ)−(t1, t̄2, ξ̄)|).

Thus, (−H(t̄2, ξ̄, η̄), η̄t̄2) ∈ ∂̂t2,ξV (t1, t̄2, ξ̄), as claimed.
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To argue the converse implication, we consider any pair (σ̄, η̄) ∈ ∂̂t2,ξ(t1, t̄2, ξ̄)

such that

V (t1, t2, ξ) ≥ V (t1, t̄2, ξ̄) + (t2 − t̄2)σ̄ + 〈ξ − ξ̄, η̄〉+ o(|(t1, t2, ξ)− (t1, t̄2, ξ̄)|).

Since the function V (t1, t2, ·) is convex, ∂ξV (t1, t2, ξ) is the same as ∂̂ξV (t1, t2, ξ).

Hence, we have η̄ ∈ ∂̂ξV (t1, t̄2, ξ̄) = ∂ξV (t1, t̄2, ξ̄), and we therefore have, as just

explained, the existence of a Hamiltonian trajectory (x(·), y(·)) for which it holds.

Specializing to ξ = x(t2) and using the expression for V (t1, t2, x(t2)), we obtain

V (t1, t̄2, ξ̄)−
∫ t2

t̄2

H(t, x(t), y(t))dt+

∫ t2

t̄2

〈ẋ(t), y(t)〉dt

≥ V (t1, t̄2, ξ̄) + (t2 − t̄2)σ̄ + 〈x(t2)− x(t̄2), η̄〉+ o(|(t1, t2, x(t2))− (t1, t̄2, x(t̄2))|),

where the final term is of type o(|t2−t̄2|) because x(·) is locally Lipschitz continuous

and the integral term is also of type o(|t2− t̄2|) because the essential boundedness

of ẋ(·). Then ∫ t2

t̄2

[σ̄ +H(t, x(t), y(t))]dt ≤ o(|t2 − t̄2|),

Claim: σ̄ +H(t̄2, ξ̄, η̄) = 0.

By the definition of the Lebesgue point, we can obtain that

lim
t2→t̄2

1

t2 − t̄2

∫ t2

t̄2

|H(t, ξ, η)−H(t̄2, ξ̄, η̄)|dt = 0

⇒ lim
t2→t̄2

1

t2 − t̄2

∫ t2

t̄2

H(t, ξ, η)dt = H(t̄2, ξ̄, η̄)

Thus we can obtain that ∫ t2

t̄2

[σ̄ +H(t, x(t), y(t))]dt

=(t2 − t̄2)σ̄ +

∫ t2

t̄2

H(t, x(t), y(t))dt

=(t2 − t̄2)(σ̄ +H(t̄2, ξ̄, η̄))
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as t2 → t̄2. Thus, σ̄ +H(t̄2, ξ̄, η̄) = 0, as claimed.

We turn now to showing that ∂t2,ξV (t1, t2, ξ) = ∂̂t2,ξV (t1, t2, ξ) for all ξ and

t2 > t1 > 0. Since ∂̂t2,ξV (t1, t2, ξ) ⊂ ∂t2,ξV (t1, t2, ξ) in general, only the opposite

inclusion has to be checked. Suppose (σ, η) ∈ ∂t2,ξV (t1, t2, ξ). By definition, there

are sequences (tν2, ξ
ν)→ (t2, ξ) where tν2 are Lebesgue points of H(t, x(t), y(t)), and

(σν , ην) → (σ, η) with V (t1, t
ν
2, ξ

ν) → V (t1, t2, ξ) and (σν , ην) ∈ ∂̂t2,ξV (t1, t
ν
2, ξ

ν).

We have seen that the latter means σν = −H(tν2, ξ
ν , ην) by the proof above and

ην ∈ ∂ξV (t1, t
ν
2, ξ

ν).

Claim: σ = −H(t2, ξ, η).

Since t2 is a Lebesgue point of the Hamiltonian, it follows that

lim
tν2→t2

1

tν2 − t2

∫ tν2

t2

|H(tν2, ξ
ν , ην)−H(t2, ξ, η)|dt = 0

Thus we can obtain that

H(t2, ξ, η) = lim
tν2→t2

1

tν2 − t2

∫ tν2

t2

H(tν2, ξ
ν , ην)dt

= − lim
tν2→t2

1

tν2 − t2

∫ tν2

t2

σνdt

= − lim
tν2→t2

σν

= −σ

On the other hand, the sets Cν = gph ∂ξV (t1, t
ν
2, ·) converge to C = gph ∂ξV (t1, t2, ·).

Hence from having ην ∈ ∂ξV (t1, t
ν
2, ξ

ν) we get η ∈ ∂ξV (t1, t2, ξ). The pair (σ, η) thus

satisfies the conditions we have identified as describing the elements of ∂̂t2,ξV (t1, t2, ξ).

Step II: The Hamiltonian is measurable-dependent on time t. We also want to

prove the equivalence of conditions:

(σ, η) ∈ ∂̂t2,ξV (t1, t2, ξ)⇐⇒ η ∈ ∂ξV (t1, t2, ξ), σ ∈ (−esst̄2→t2H(t̄2, ξ, η)).
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Since the function V (t1, t2, ·) is convex, it follows that ∂ξV (t1, t2, ξ) is the same as

∂̂ξV (t1, t2, ξ).

Let η̄t̄2 ∈ ∂ξV (t1, t̄2, ξ̄) with t̄2 > t1. We also need to show that for all σ̄t̄2 ∈

essτ̄→t̄2H(τ̄ , ξ̄, η̄), it holds that

V (t1, t2, ξ)− V (t1, t̄2, ξ̄) + (t2 − t̄2)σ̄t̄2 − 〈ξ − ξ̄, η̄t̄2〉

≥o(|(t1, t2, ξ)− (t1, t̄2, ξ̄)|).
(2.6.7)

Pick a sequence of {t̄ν2} which are Lebesgue points the Hamiltonian, for t̄ν2 → t̄2,

such that

lim
t̄ν2→t̄2

1

(t̄ν2 − t̄2)

∫ t2

t̄ν2

H(t, x(t), y(t))dt = σ̄t̄2

By the same argument in Step I, we can extend the trajectory to a larger interval

[t1, t̄2 + ε], in which y(t2) ∈ ∂ξV (t1, t2, x(t2)) for all t2 ∈ [t1, t̄2 + ε], so that

V (t1, t2, ξ) ≥ V (t1, t2, x(t2)) + 〈ξ − x(t2), y(t2)〉 (2.6.8)

for all ξ ∈ Rn and t2 ∈ [t1, t̄2 + ε]. By the duality of H(t, x, ·) and L(t, x, ·), we can

conclude that

V (t1, t2, x(t2)) = V (t1, t̄2, ξ̄) +

∫ t2

t̄2

[〈ẋ(t), y(t)〉 −H(t, x(t), y(t))]dt (2.6.9)

when t2 ∈ [t1, t̄2 + ε]. Also

∫ t2

t̄2

〈ẋ(t), y(t)〉dt = 〈x(t2), y(t2)〉 − 〈x(t̄2), y(t̄2)〉 −
∫ t2

t̄2

〈x(t), ẏ(t)〉〉dt,
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In combing (2.6.8)with (2.6.9), the expression (6.6) is bounded below by

−〈ξ − ξ̄, η̄〉+ 〈ξ − x(t2), y(t2)〉 − 〈x(t̄2), y(t̄2)〉 −
∫ t2

t̄2

〈x(t), ẏ(t)〉

+

∫ t2

t̄2

[σ̄t̄2 −H(t, x(t), y(t))]dt

= 〈ξ − ξ̄, y(t2)− η̄〉+ 〈ξ̄, y(t2)− η̄〉 −
∫ t2

t̄2

〈x(t), ẏ(t)〉dt

+

∫ t2

t̄2

[σ̄t̄2 −H(t, x(t), y(t))]dt

= 〈ξ − ξ̄, y(t2)− y(t̄2)〉 −
∫ t2

t̄2

〈x(t)− x(t̄2), ẏ(t)〉dt

+

∫ t2

t̄2

[σ̄t̄2 −H(t, x(t), y(t))]dt

Thus there exists a sequence of {t̄ν2} which are Lebesgue points the Hamiltonian

such that the expression |
∫ t2
t̄2
σ̄t̄2 − H(t, x(t), y(t))dt| is of type o(|(t − 1, t2, ξ) −

(t1, t̄2, ξ̄)|) for some sequence of Lebesgue points. As proved in Step I, it follows

that (σ̄t̄2 , η̄t̄2) ∈ ∂̂t2,ξV (t1, t̄2, ξ̄). Futhermore, by Theorem 8.3.1 (iii) in [10], we know

that σ̄t̄2 ∈ essτ̄→t̄2H(τ̄ , ξ̄, η̄). Also, by the arbitrariness of η̄t̄2 , we can conclude that

(−esst̄2→t2H(t̄2, ξ, η), η̄t̄2) ∈ ess t̄2→t2 ∂̂t2,ξV (t1, t̄2, ξ̄), as claimed.

To argue the converse implication, we consider any pair (σ̄, η̄) ∈ ∂̂t2,ξ(t1, t̄2, ξ̄)

satisfying

V (t1, t2, ξ) ≥ V (t1, t̄2, ξ̄) + (t2 − t̄2)σ̄ + 〈ξ − ξ̄, η̄〉+ o(|(t1, t2, ξ)− (t1, t̄2, ξ̄)|).

(2.6.10)

We also know that η̄ ∈ ∂̂ξV (t1, t̄2, ξ̄) = ∂ξV (t1, t̄2, ξ̄) by the convexity of V (t1, t2, ·)

and there exists a Hamiltonian trajectory (x(·), y(·)) for which (5.8) holds. Let

ξ = x(t2). We arrive at

V (t1, t̄2, ξ̄)−
∫ t2

t̄2

H(t, x(t), y(t))dt+

∫ t2

t̄2

〈ẋ(t), y(t)〉dt

≥ V (t1, t̄2, ξ̄) + (t2 − t̄2)σ̄ + 〈x(t2)− x(t̄2), η̄〉+ o(|(t1, t2, x(t2))− (t1, t̄2, x(t̄2))|),
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where the final term is type of o(|t2 − t̄2|) because x(·) is locally Lipschitz contin-

uous. Then∫ t2

t̄2

σ̄ +H(t, x(t), y(t))dt ≤
∫ t2

t̄2

〈ẋ(t), y(t)− y(t̄2)〉dt+ o(|t2 − t̄2|),

where the integral term on the right hand side is also of type o(|t2 − t̄2|) by the

same argument as in Step I. Then∫ t2

t̄2

σ̄ +H(t, x(t), y(t))dt = 0

=⇒
∫ t2

t̄2

H(t, x(t), y(t))dt = −σ̄(t2 − t̄2)

=⇒ lim
t2→t̄2

1

(t2 − t̄2)

∫ t2

t̄2

H(t, x(t), y(t))dt = −σ̄

Thus by Theorem 8.3.2 (iii) in [10], we know that σ ∈ (−esst̄2→t2H(t̄2, ξ, η)).

Next, we turn now to showing that ∂V (t1, t2, ξ) = ∂̂V (t1, t2, ξ) for all ξ and

t2 > t1 > 0. Since ∂̂V (t1, t2, ξ) ⊂ ∂V (t1, t2, ξ) in general, only the opposite inclu-

sion has to be checked. Suppose (σ, η) ∈ ∂t2,ξV (t1, t2, ξ). By definition, there are se-

quences (tν2, ξ
ν)→ (t2, ξ) and (σν , ην)→ (σ, η) with V (t1, t

ν
2, ξ

ν)→ V (t1, t2, ξ) and

(σν , ην) ∈ ∂̂V (t1, t
ν
2, ξ

ν).We have seen that the latter means σν ∈ essτν→tν2 (−H(τ ν , ξν , ην))

and ην ∈ ∂ξV (t1, t
ν
2, ξ

ν). Then σ ∈ essτ→t2(−H(t2, ξ, η)) by Theorem 8.2.3 (iv) in

[10].

On the other hand, the sets Cν = gph ∂ξV (t1, t
ν
2, ·) converge to C = gph ∂ξV (t1, t2, ·).

Hence from having ην ∈ ∂ξV (t1, t
ν
2, ξ

ν) we get η ∈ ∂ξV (t1, t2, ξ). The pair (σ, η) thus

satisfies the conditions we have identified as describing the elements of ∂̂t2,ξV (t1, t2, ξ).

2.7 Summary

In this chapter, we prove that the value function, propagated from initial or termi-

nal costs, and constraints, in form of a differential equation, satisfy a subgradient
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form of the Hamilton-Jacobi equation in which the Hamiltonian is with measurable

time dependence.
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Chapter 3
Nonlinear Programming

3.1 Introduction

Optimality conditions are the foundations of mathematical programming and these

conditions include both necessary and sufficient conditions. The best known nec-

essary optimality condition for mathematical programming is the Kuhn-Tucker

condition. In [26], Kuhn and Tucker formulated necessary and sufficient condi-

tions for a maximum function constrained by inequalities involving differentiable

functions through a saddle value Lagrangian function. In their paper, they also as-

sumed that the functions were convex in some open region containing the orthant

of nonnegative x. In this thesis, we derive necessary conditions, which are similar

to Kuhn-Tucker conditions, with the equality constraints subject to any pointed,

convex and closed cone K by introducing the corresponding value function as in

[9].

However, the Fritz-John condition [31] is more general in some sense. It can be

used to derive a form of the constraint conditions for the Kuhn-Tucker conditions.

But Fritz-John derived his conditions for the case of inequality alone. Mangasarian

and Fromovitz [23] extended these necessary conditions with a constraint condition

for both equalities and inequalities together. But all of their work is done for the

constraints subject to a positive orthant cone. In this chapter, we use the method

in [26] to derive necessary conditions to a maximum problem for the constraints

subject to any pointed, convex and closed cone K, with the aid of the Lagrange

multipliers from the corresponding polar cone K∗.
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The outline of this chapter is as follows: In section 3.2, we address some ba-

sic definitions and lemmas for the set-valued convex mappings. Some results of

conjugate mappings and subgradients are developed in section 3.3. Section 3.4 is

devoted to develop some convex analysis aspects of multi-valued set mappings. Sec-

tion 3.5 is aimed to deduce the necessary conditions for a optimization problem of a

K−convex set-valued mapping. The weak duality theory for a convex optimization

problem is developped in Section 3.6. Finally, necessary and sufficient conditions

for a saddle valued probelem are deduced with the aid of Lagrange multipliers.

3.2 Preliminaries

Let Y be a real topological vector space which is partially ordered by a pointed,

closed, and convex cone K with a nonempty interior Int K in Y. We use the

notations y ≥ y′ if and only if y − y′ ∈ K and y > y′ if and only if y − y′ ∈ Int K.

In this chapter, we assume henceforth that K is Dedekind complete.

Definition 3.2.1. If a relation ≤ on a set D is both transitive and reflexive such

that for any two elements a, b ∈ D, there exists an element c ∈ D, such that a ≤ c

and b ≤ c, then the relation ≤ is said to direct the set D. We say D converges

to z, if for any open set U with z ∈ U, there exists a d0 ∈ D such that d ∈ U

whenever d ≥ d0. A closed cone K is called Dedekind complete if for every directed

set D ⊆ Y which is bounded above, the least upper bound supD of D exists, and

the directed set D converges to supD.

If Y = R, we set Sup Y = +∞ if Y is not bounded above and Sup Y = −∞ if

Y is empty. In this case, we can easily check that K = R+, which is the set of all

nonnegative numbers, is Dedekind complete. Furthermore, we denote the extended

space Y by adding two imaginary points +∞ and −∞ to Y and we also suppose
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that for any y ∈ Y, it follows that

−∞ < y < +∞,+∞+ y = +∞,

−∞+ y = −∞,− (+∞) = −∞

and +∞−∞ is not considered here.

Given a set Z ⊂ Y , we define the set A(Z) of all points above Z, and the set

B(Z) of all points below Z by

A(Z) = {y ∈ Y |y > y′ for some y′ ∈ Z}

and

B(Z) = {y ∈ Y |y < y′ for some y′ ∈ Z}

respectively.

Definition 3.2.2. Given a set Z ⊂ Y , a point ȳ ∈ Y is said to be a maximal

point of Z if ȳ ∈ Z and there is no y′ ∈ Z such that ȳ < y′. The set of all maximal

points of Z is called the maximum of Z and is denoted by Max Z. The minimum

of Z, Min Z, is defined analogously.

Definition 3.2.3. Given a set Z ⊂ Y , a point ȳ ∈ Y is said to be a supremal

point of Z if ȳ /∈ B(Z) and B(ȳ) ⊂ B(Z), that is, there is no y ∈ Z such that

ȳ < y and the relation y′ < ȳ implies the existence of some y ∈ Z such that y′ < y.

The set of all supremal points of Z is called the supremum of Z and is denoted by

Sup Z. The infimum of Z, Inf Z, is defined analogously.

Proposition 3.2.4. Let Z ⊂ Y. Then Sup Z = {−∞} if and only if B(Z) = ∅.

B(Z) = B(SupZ)

This proposition was proved by Tanino [39]. However the assumption, the cone K

is Dedekind complete, was missed in Proposition 2.4 in [39]. The following example

shows that it is necessary to require K to be Dedekind complete.
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Example 3.2.5. Let Y = C([−1, 1],R) be the space of all continuous functions

from [−1, 1] to R. Let fn : [−1, 1]→ R be defined as:

fn(x) =


x

1
n , x > 0

0 x ≤ 0

Then it is clear that fn(x) ∈ C([−1, 1],R). Let Z = {fn : n ∈ Z}. Thus

f(x) =


1, x > 0

0, x ≤ 0

is the supremum of fn. But f(x) is not continuous and thus does not belong to

C([0, 1],R). Then Sup Z = ∅. Thus it follows that B(Sup Z) = {−∞}. However,

B(Z) is not empty.

Lemma 3.2.6. If the cone K ⊆ Y is Dedekind complete and Int K 6= ∅, then

(a) For all A ⊆ Y, Inf A and Sup A exist and are nonempty.

(b) For every x ∈ A, there exist u ∈ Inf A and v ∈ Sup A such that u ≤ x ≤ v.

Proof. We will prove this lemma in two cases:

Case I: If A = ∅, then Sup A = {−∞}. If A is unbounded above, then

Sup A = {+∞}.

Case II: Suppose A 6= ∅ has an upper bound b ∈ Y. Let x ∈ A. By Zorn’s lemma,

there exists a maximal chain M ⊆ A with x ∈M. Then M is directed and bounded

above by b, so M has a least upper bound d = supM by Dedekind completeness

of the cone K. We claim d ∈ Sup A. By definition, x ≤ d. Let d � q. If q ∈ A,

then {q} ∪M is a chain contained in A, larger than M, a contradiction with M

is a maximal chain in A. Thus q 6∈ A. Let p < d. Then p + Int K is an open set

containing d. Since M converges to d, there exists m ∈M such that m ∈ p+Int K.

56



That is equivalent to say that m−p ∈ Int K, which implies that p < m ∈M. Thus

d ∈ Sup A. Since Inf A = −Sup (−A), it follows for all x ∈ A that there exists an

e ∈ Inf A such that x ≥ e. This completes the proof.

Lemma 3.2.7. Assume two sets A,B ⊂ Y ordered by a pointed, closed and convex

cone K. Then

Sup (A+B) ⊆ Sup A+ Sup B.

Proof. Proposition 2.6 in [39] yields that

Sup (A+ Sup B) = Sup (A+B).

Then it suffices to show that Sup (A+ Sup B) ⊆ Sup A+ Sup B. If x̄ ∈ Sup (A+

Sup B), then it satisfies the following two conditions:

(1) There is no a ∈ A and b̄ ∈ Sup B such that a+ b̄ > x̄.

(2) If x′ < x̄, then there exists a′ ∈ A and b̄′ ∈ Sup B such that x′ < a′ + b̄.

Next, we will prove that x̄ ∈ Sup A + Sup B. First, it is clear that there is no

a ∈ A such that a > x̄ − b̄ for any fixed b̄ ∈ Sup B. Otherwise it will contradict

with condition (1). Second, for any a0 < x̄ − b̄, a0 + b̄ < x̄. Let x′ = a0 + b̄. By

condition (2), there exists a′ ∈ A and b̄′ ∈ Sup B such that

a0 + b̄ < a′ + b̄′.

a) If b̄ = b̄′, then there exists a′ ∈ A such that a0 < a′ holds. Thus x̄− b̄ ∈ Sup A

and x̄ ∈ Sup A+ Sup B follows.

b) If b̄ 6= b̄′, then there is no a′ ∈ A such that a0 + b̄ < a′ + b̄. Thus a0 + b̄ ∈

Sup (A+b̄). Thus a0 ∈ Sup A and a0+b̄ ∈ Sup A+Sup B. Because x′ = a0+b̄ < x̄,

we then can obtain that x̄ ∈ Sup A+ Sup B. This completes the proof.

Example 3.2.8. This example shows that the equality does not hold in Lemma

3.2.7. Let K be the positive quadrant cone in R2. For any two vectors x, y ∈ R2,
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we define that x ≤ y if and only if y ∈ x + K. We let A = {

4

1

 ,
1

3

}, and

B = {

2

1

 ,
1

5

}. Then A = SupA and B = SupB. We calculate that

SupA+ SupB = {

6

2

 ,
5

6

 ,
3

4

 ,
2

8

}.
However the set Sup(A+B) will become:

Sup(A+B) = {

6

2

 ,
5

6

 ,
2

8

}.
Thus we can obtain that Sup(A+B) $ SupA+ SupB.

3.3 Conjugate Mappings and Subgradients

Let X and Y be real topological vector spaces and L(X, Y ) be the space of all

linear continuous operators from X to Y. Let F be a set-valued mapping from X

to Y . We define the effective domain of F by

dom F = {x ∈ X|F (x) ∩ Y 6= ∅}.

Definition 3.3.1. A set-valued mapping F ∗ from L(X, Y ) to Y defined by

F ∗(T ) = Sup
⋃
x∈X

[Tx− F (x)] for T ∈ L(X, Y )

is called the conjugate mapping of F . Moreover, a set-valued mapping F ∗∗ from

X to Y defined by

F ∗∗(x) = Sup
⋃

T∈L(X,Y )

[Tx− F ∗(T )] for x ∈ X

is called the biconjugate mapping of F.
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Lemma 3.3.2. Let Inf F be a set valued mapping from X to Y defined by (Inf F )(x) =

Inf F (x) for all x ∈ X. Then

F ∗(T ) = (Inf F )∗(T ), F ∗∗(x) = (Inf F )∗∗(x)

Proof.

(Inf F )∗(T ) = Sup
⋃
x∈X

[Tx− (Inf F )(x)]

= Sup
⋃
x∈X

Sup [Tx− F (x)]

= Sup
⋃
x∈X

[Tx− F (x)]

= F ∗(T ).

F ∗∗(x) = (Inf F )∗∗(x) follows directly from the above relation.

Definition 3.3.3. Let x̄ ∈ X and ȳ ∈ F (x̄). An element T ∈ L(X, Y ) is said to

be a subgradient of F at (x̄, ȳ) if

T x̄− ȳ ∈ Max
⋃
x∈X

[Tx− F (x)].

The set of all subgradients of F at (x̄, ȳ) is called the subdifferential of F at (x̄, ȳ)

and is denoted by ∂F (x̄, ȳ). Moreover, we let

∂F (x̄) =
⋃

ȳ∈F (x̄)

∂F (x̄, ȳ).

When ∂F (x̄, ȳ) 6= ∅ for every ȳ ∈ F (x̄), F is said to be subdifferentiable at x̄.

As direct consequences of the definitions of subgradient and conjugate mapping,

we have the following propositions.

Proposition 3.3.4. Suppose that F is a set-valued mapping from X to Y. A point

ȳ ∈ F (x̄) is in Min
⋃
x F (x) if and only if 0 ∈ ∂F (x̄, ȳ), where 0 is a linear

operator from X to Y.
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Proof. This is obvious from the definition of the subgradient.

Proposition 3.3.5. Suppose that F is a set-valued mapping from X to Y. Let

ȳ ∈ F (x̄) for some x̄ ∈ X. Then T ∈ ∂F (x̄, ȳ) only if T x̄− ȳ ∈ F ∗(T ).

Proof. From the definition of the subgradient, T ∈ ∂F (x̄, ȳ) only if

T x̄− ȳ ∈ Max
⋃
x∈X

[Tx− F (x)] ⊂ Sup
⋃
x∈X

[Tx− F (x)] = F ∗(T ).

For the converse direction, assume that T x̄ − ȳ ∈ F ∗(T ) = Sup
⋃
x[Tx − F (x)].

It is clear that T x̄ − ȳ ∈
⋃
x[Tx − F (x)] due to the fact that ȳ ∈ F (x̄) for some

x̄ ∈ X. Thus we can obtain that

T x̄− ȳ ∈ {Sup
⋃
x

[Tx− F (x)]}
⋂
{
⋃
x

[Tx− F (x)]} = Max
⋃
x

[Tx− F (x)].

The following relationship between a mapping and its biconjugate was proved

by Tanino in [39].

Proposition 3.3.6. Suppose that F is a set-valued mapping from X to Y. If F is

subdifferentiable at x0, then F (x0) ⊂ F ∗∗(x0). Moreover, if, in addition, F (x0) =

Inf F (x0), then F (x0) = F ∗∗(x0).

Proof. By Proposition 3.1 in [39], it is sufficient to prove the case x0 = 0. First,

let y ∈ F (0). Since F is subdifferentiable at 0, there exists a linear operator

T̂ ∈ L(X, Y ) such that y ∈ Max x[T̂ x− F (x)] = −F ∗(T̂ ).

Claim: If y ∈ F (0) and y′ ∈ −F ∗(T ), then y ≮ y′.

Proof. The definition of the conjugate mapping yields that −y′ ∈ Sup
⋃
x[Tx −

F (x)]. For x = 0 on the right hand side of the formula, it follows that −y′ ≮ −y

for any y ∈ F (0), that is, y ≮ y′.
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Then we obtain that for y ∈ F (0),

y ∈ Max
⋃
T

[−F ∗(T )] ⊂ Sup
⋃
T

[−F ∗(T )] = F ∗∗(0).

Thus we proved that F (0) ⊂ F ∗∗(0). Next we assume that F (0) = Inf F (0) and

take an arbitrary ȳ ∈ F ∗∗(0). From Proposition 2.5 [39],

Y = F (0) ∪ A(F (0)) ∪B(F (0)).

In view of Corollary 3.2 [39], ȳ 6∈ A(F (0)). If we suppose that ȳ ∈ B(F (0)),

there exists y′ ∈ F (0) such that ȳ < y′. Then there exists T ′ ∈ L(X, Y ) such

that y′ ∈ −F ∗(T ′) since F is assumed to be subdifferentiable at 0. However, this

implies that ȳ ∈ B(−F ∗(T ′)) and hence contradicts the assumption ȳ ∈ F ∗∗(0) =

Sup
⋃
T∈L(X,Y )[−F ∗(T )]. Therefore ȳ ∈ F (0) and we have proved that F ∗∗(x0) ⊂

F (x0).

Definition 3.3.7. The preference relation for two vectors x, y ∈ Rm in a weak

Pareto sense is defined by x < y if and only if xi ≤ yi, i = 1, . . . ,m, and at least

one of the inequalities is strict. In other words, x <p y if and only if x− y ∈ K =

{z ∈ Rm : z has nonpositive components} and x 6= y.

In the following example, we assume that Rn is partially ordered by a positive

orthant cone K: for two vectors x, y ∈ Rm, the relation x < y holds if and only if

xi ≤ yi, i = 1, . . . ,m, and at least one of the inequalities is strict. we can explicitly

demonstrate the theorems and propositions above.

Example 3.3.8. Let F be a set valued mapping that maps x = (x1, x2) ∈ R2

to ([x2
1,∞), [x2

2,∞)). Let T be identified with a 2 × 2 matrix and T ∈ L(R2,R2).

Without loss of generality, suppose that

T =

a b

c d

 .
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Then the conjugate mapping F ∗ of F is defined as:

F ∗(T ) = Sup
⋃
x

{Tx− F (x)}

= Sup
⋃
x

{

a b

c d


x1

x2

−
[x2

1,∞)

[x2
2,∞)

}
= Sup

⋃
x

{

ax1 + bx2

cx1 + dx2

−
[x2

1,∞)

[x2
2,∞)

}
= Sup

⋃
x

{

(−∞, ax1 + bx2 − x2
1]

(−∞, cx1 + dx2 − x2
2]

}
If b 6= 0 or c 6= 0, then it is clear that F ∗(T ) = +∞ for all T ∈ L(R2,R2). If

b = 0, c = 0, then it follows that

F ∗(T ) =

a2

4

d2

4


Furthermore, we can calculate the biconjugate F ∗∗ of F as:

F ∗∗(x) = Sup
⋃
T

{Tx− F ∗(T )}

= Sup
⋃
T

{

a 0

0 d


x1

x2

− F ∗(T )}

= Sup
⋃
T

{

ax1

dx2

− F ∗(T )}

= Sup
⋃
a,d

{

ax1 − a2

4

dx2 − b2

4

}
=

x2
1

x2
2


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It is obvious that F ∗∗(x) ⊂ F (x), but it contradicts with the conclusion of Propo-

sition 3.2.8 that F (x) ⊂ F ∗∗(x). Thus we claim that F (x) is not subdifferentiable.

The subgradient of F is defined as the set of linear continuous operators T :

∂F (x0, y0) = {T |Tx0 − y0 ∈ Max
⋃
x

{Tx− F (x)}}

Let x0 =

x01

x02

 and y0 =

y01

y02

 , where y01 ≥ x2
01 and y02 ≥ x2

02. Then it yields

that a b

c d


x01

x02

−
y01

y02

 ∈ Max
⋃
x

{

a b

c d


x1

x2

−
[x2

1,∞)

[x2
2,∞)

}
= Max

⋃
x

{

(−∞, ax1 + bx2 − x2
1]

(−∞, cx1 + dx2 − x2
2]

}
If b 6= 0 or c 6= 0, the maximum of the right hand side is +∞. It is clear that the

left hand side cannot reach∞ for a fixed point and operator T. Thus we only need

consider the case b = c = 0, and the maximum for the right hand side is

a2

4

b2

4

 .
Thus if T ∈ ∂F (x0, y0) if and only ifa 0

0 d


x01

x02

−
y01

y02

 =

a2

4

d2

4

 ,
which is equivalently to say thatax01 − y01

dx02 − y02

 =

a2

4

d2

4

 ,
Thus the subgradient of F is the set:

∂F (x0, y0) = {T =

a b

c d

 |b = c = 0, ax01 − y01 =
a2

4
, dx02 − y02 =

d2

4
}
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Furthermore, if 02×2 ∈ ∂F (x0, y0), it implies that−y01

−y02

 =

a2

4

d2

4

 =

0

0

 .

It is clear that y ∈ Min
⋃
x F (x) = {

0

0

}. This coincides with Proposition 4.1 in

Tanino’s paper [39].

This example also implies that the condition F is differentiable at x̄ is necessary

to deduce that F (x̄) ⊂ F ∗∗(x̄). In this example, we can easily check that F is

not differentiable at x̄. Assume that there exists a matrix T =

a b

c d

 such that

b = c = 0, ax01 − y01 = a2

4
, dx02 − y02 = d2

4
. The determinant of the first equation

is x2
01 − y01 ≤ 0 by the assumption y01 ≥ x2

01. This implies it only has a solution

when x2
01−y01 = 0. Thus the equation does not have a solution for any y0 ∈ F (x0),

which implies that F is not differentiable at x0.

3.4 Convex Analysis

Definition 3.4.1. Let F be a set-valued mapping from X to Y. A mapping F is

called K−convex if it satisfies for any λ ∈ [0, 1],

F (λx+ (1− λ)y) ∩ Y ⊂ λF (x) ∩ Y + (1− λ)F (y) ∩ Y +K. (3.4.1)

Furthermore, we call F strictly K−convex if it satisfies:

F (λx+ (1− λ)y) ∩ Y ⊂ λF (x) ∩ Y + (1− λ)F (y) ∩ Y + Int K. (3.4.2)

We define the epigraph of a set-valued mapping F as the set:

epi F = {(x, y) ∈ X × Y |y ∈ F (x) +K}.

It is clear that F is K−convex if and only if epi F is a convex set in X × Y.
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Lemma 3.4.2. Assume that F is a K−convex set-valued mapping from X to Y

and the infimum of F is attained. Let K be a pointed, closed and convex cone in

Y such that for any x, y ∈ Y, we have x ≤ y if and only if y ∈ x + K. Then F

attains its infimum on a convex set.

Proof. Assume that F attains its infimum at more than one point, without loss of

generality, say x̄ and ȳ. Let a ∈ F (x̄) ∩ Y ∩ Inf F and b ∈ F (ȳ) ∩ Y ∩ Inf F. The

convexity of F yields that

λa+ (1− λ)b ∈ F (λx̄+ (1− λ)ȳ) ∩ Y +K. (3.4.3)

Case I: Assume that a = b. The convexity (3.4.1) yields that a ∈ F (λx̄ +

(1 − λ)ȳ) ∩ Y + K for any λ ∈ [0, 1]. Since a ∈ Inf F, there is no other z ∈

F (λx̄+(1−λ)ȳ)∩Y such that a ∈ z+K except for a = z. Thus a ∈ F (λx̄+(1−λ)ȳ).

Case II: Assume that a 6= b. Since a, b are both in Inf F, they are not comparable

with each other in the sense of the cone K, which means that there is no z ∈ K

such that a = b+z or b = a+z. It is also clear that λa+(1−λ)b is not comparable

with a or b for all λ ∈ (0, 1). Otherwise, assume that λa+ (1− λ)b � a. It follows

that (1 − λ)b � (1 − λ)a, which implies that b � a. This is a contradiction with

the assumption that a and b are not comparable. Similarly we can deduce that no

two λa+ (1− λ)b are comparable with each other for different λ ∈ (0, 1). Thus we

can conclude

λa+ (1− λ)b ∈ Inf F.

By (3.4.1), it yields that λa + (1 − λ)b ∈ F (λx̄ + (1 − λ)ȳ) for any λ ∈ (0, 1)

by the same argument as in Case I. This implies that F attains its infimum at

λx+ (1− λ)y for all λ ∈ (0, 1). Therefore the set of infimum of F is convex and F

attains its infimum on a convex set.
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Corollary 3.4.3. Assume that F is a K−cocave set-valued mapping from X to

Y and the maximum of F is attained. Let K be a pointed, closed and convex cone

in Y such that for any x, y ∈ Y, we have x ≤ y if and only if y ∈ x + K. Then F

attains its maximum on a convex set.

Lemma 3.4.4. Assume that F is a strictly K−convex set-valued mapping from

X to Y and the infimum of F is attained. Let K be a pointed, closed and convex

cone in Y such that for any x, y ∈ Y, we have x ≤ y if y ∈ x+K. Then F attains

its infimum on a single point.

Proof. From Lemma 3.4.2, we know that if F is convex, then F attains its infimum

on a convex set. Then it is enough to show that F cannot attain its infimum

at more than one point. We will prove this lemma by contradiction. Let a ∈

F (x̄)∩Y ∩Inf F, b ∈ F (ȳ)∩Y ∩Inf F. If a = b, then the strict convexity assumption

yields that a ∈ F (λx+(1−λ)y)∩Y +Int K, which is a contradiction with a ∈ Inf F.

If a 6= b, then it follows that λa+(1−λ)b ∈ F (λx+(1−λ)y)∩Y +Int K by the strict

convexity of F. This is a contradiction because there is no c ∈ F (λx + (1 − λ)y)

such that λa+ (1− λ)b ∈ c+ Int K since λa+ (1− λ)b ∈ Inf F.

Corollary 3.4.5. Assume that F is a strictly K−cocave set-valued mapping from

X to Y and the maximum of F is attained. Let K be a pointed, closed and convex

cone in Y such that for any x, y ∈ Y, we have x ≤ y if and only if y ∈ x+K. Then

F attains its maximum on a single point.

Proposition 3.4.6. Assume that F1, F2 : X → Y are set-valued mappings. If

dom (Max
⋃
x F1(x)) ∩ dom (Max

⋃
x F2(x)) 6= ∅, then

Max
⋃
x

[F1(x) + F2(x)] ∩ (Max
⋃
x

F1(x) +Max
⋃
x

F2(x)) 6= ∅.
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Example 3.4.7. Assume that

F1(x) =



1

2

 , x ∈

x1 ∈ R

x2 > 0


1

1

 , x ∈

 x1R

x2 < 0


0

0

 , x ∈

x1 ∈ R

x2 = 0


and

F2(x) =



1

1

 , x ∈

x1 ∈ R

x2 > 0


1

2

 , x ∈

 x1R

x2 < 0


0

0

 , x ∈

x1 ∈ R

x2 = 0



Then Max
⋃
x[F1(x)+F2(x)] =

1

3

 , but Max
⋃
x F1(x)+Max

⋃
x F2(x) =

1

2

+

1

2

 =

1

4

 .
Theorem 3.4.8. Assume that F1, . . . , Fn is strictly K−convex set-valued mappings

from X to Y and its minimum is attained. Then the following hold:

(i)
∑

i Fi is K− convex.

(ii) If at least one Fi is strictly convex, then
∑

i Fi is also strictly convex.
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(iii) Assume that Fi attains its minimum at x̄. Then it follows that 0 ∈ ∂Fi(x̄).

Furthermore, if 0 ∈ ∂Fi(x̄) for each i = 1, . . . , n, then it yields that 0 ∈ ∂F (x̄)

where T =
∑n

i=1 Ti and F =
∑n

i=1 Fi.

Proof. The first three properties follows from definitions of K-convexity and strict

K-convexity. By Lemma 3.4.4, the strict convexity of Fi implies that Fi attains

its minimum on a single point x̄. Then there exists ȳi ∈ F (x̄) such that ȳi ∈

Min
⋃
x Fi(x). Then 0 · x̄ − ȳi ∈ Max

⋃
x[0 · x − Fi(x)], which implies that 0 ∈

∂Fi(x̄, ȳi) ⊂ ∂Fi(x̄). Furthermore, if 0 ∈ ∂Fi(x̄), then it implies that Fi attains its

minimum on x̄. By the strict convexity of Fi, we know that F =
∑n

i=1 Fi also has

a minimum on x̄. Thus 0 ∈ ∂F (x̄).

Theorem 3.4.9. Assume that F1, . . . , Fi are strictly K−convex set-valued map-

pings from X to Y and its minimum is attained. For each i, Fi is subdifferentiable

at x̄. Then ∂F (x̄) ⊂
∑n

i=1 ∂Fi(x̄), where F =
∑n

i=1 Fi.

Proof. Assume that Fi is strictly convex set-valued mapping. Then −Fi is strictly

concave function from X to Y . Let G(x) = Tx − Fi(x), where T is any linear

mapping from X to Y . It is easy to check that G is also strictly concave. By

Corollary 3.4.4, G can attain its maximum on a single point. On the other hand,

since Fi is subdifferentiable at x̄, it follows that there exists a Ti such that

Tix̄− yi ∈ Max
⋃
x

[Tix− Fi(x)] = {Tix̄− yj|yj ∈ Min Fi(x̄)}.

Then it follows that

n∑
i=1

Tix̄−
n∑
i=1

yi ∈
n∑
i=1

{Tix̄− yj|yj ∈ Min Fi(x̄)}

By Lemma 3.2.7, it follows that

n∑
i=1

{Tix̄− yj|yj ∈ Min Fi(x̄)} ⊇ {
n∑
i=1

Tix̄−
n∑
j=1

yj|yj ∈ Min Fi(x̄)}. (3.4.4)
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Assume that F is subdifferentiable at x̄. Then there exists T ∈ ∂F (x̄) such that

T x̄− y ∈ Max
⋃
x

[Tx− F (x)] = {T x̄− y|y ∈ Min F (x̄)},

where the last equality holds because of the strict K-convexity of F. The condition

y ∈ Min F (x̄) ⊂
∑n

i=1 Min Fi(x̄) implies that there exists yi such that y =
∑n

i=1 yi

and yi ∈ Min Fi(x̄).

T x̄− y ∈Max
⋃
x

[Tx− F (x)]

=Max [T x̄− F (x̄)]

={T x̄− y|y ∈ Min F (x̄)}

={T x̄−
∑
j

yj|
∑
j

yj ∈ Min
∑
j

Fj(x̄)}

⊆{T x̄−
n∑
i=1

yi|yi ∈ Min Fi(x̄)}

Assume that there doesn’t exist Tis such that T =
∑

i Ti. Then there exists at

least one Ti 6∈ ∂Fi(x̄), which implies that

Tix̄− yi 6∈ Max [T x̄− F (x̄)]

= {T x̄− yj|yj ∈ Min F (x̄)}.

Then there exists some y′ ∈ F (x̄) such that y′ < yi. Thus it follows that

∑
j

Tjx̄−
∑
j

yj <
∑
i 6=j

Tjx̄−
∑
i 6=j

yj + Tix̄− y′,

which is a contradiction with the assumption. Thus we can conclude that there

exist Tis such that T =
∑

i Ti and Ti ∈ ∂Fi(x̄). Combine with (3.4.4), we can claim

that T ∈
∑n

i=1 ∂Fi(x̄).
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Definition 3.4.10. We define the operation �, infimal convolution, for any two

K−convex set valued mappings F and G from Rn → Rm by

(F�G)(x) = Infy{F (x− y) +G(y)}.

Theorem 3.4.11. Let F1, F2, . . . , Fm be proper convex set-valued mappings from

X to Y. Then

(F1�F2� . . .�Fm)∗ ⊂ F ∗1 + . . .+ F ∗m;

(F ∗1 � . . .�F ∗m)∗(x) ⊂ F ∗∗1 + . . .+ F ∗∗m .

Proof. By definition of conjugate mappings,

(F1�F2)∗(T ) = Sup
⋃
x

{Tx− Infx1+x2=x{F1(x1) + F2(x2)}}

= Sup
⋃
x

Sup
⋃

x1+x2=x

{Tx− F1(x1)− F2(x2)}

= Sup
⋃
x1,x2

{Tx1 + Tx2 − F1(x1)− F2(x2)}

= Sup
⋃
x1

{Tx1 − F1(x1) + Sup
⋃
x2

{Tx2 − F2(x2)}}

= Sup
⋃
x1

{Tx1 − F1(x1) + F ∗2 (T )}

⊂ Sup
⋃
x1

{Tx1 − F1(x1)}+ F ∗2 (T )

= F ∗1 (T ) + F ∗2 (T )

The inclusion above holds by Lemma 3.2.7. Furthermore, we can generalize our

result to any finite sums,

(F1�F2� . . .�Fm)∗(T ) ⊂ F ∗1 (T ) + . . .+ F ∗m(T ).
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Furthermore, we can obtain that

(F ∗1 �F ∗2 )∗(x)

=Sup
⋃
T

{Tx− InfT1+T2=T (F ∗1 (T1) + F ∗2 (T2))}

=Sup
⋃

T1+T2=T

{Tx− F ∗1 (T1)− F ∗2 (T2))}

=Sup
⋃

T1+T2=T

{T1x− F ∗1 (T1) + T2x− F ∗2 (T2))}

=Sup
⋃
T1

{T1x− F ∗1 (T1) + Sup
⋃
T2

[T2x− F ∗2 (T2)]}

=Sup
⋃
T1

{T1x− F ∗1 (T1) + F ∗∗2 (x)}

⊂F ∗∗1 (x) + F ∗∗2 (x)

Similarly, we can generalize the result to finite sum:

(F ∗1 � . . .�F ∗m)∗(x) ⊂ F ∗∗1 + . . .+ F ∗∗m .

Theorem 3.4.12. For any K−convex set-valued mapping F : X → Y and any

vector x, the following four conditions on T ∈ L(X, Y ) are equivalent to each other:

(a) T ∈ ∂F (x);

(b) Tz − F (z) achieves its maximum at z = x for some y ∈ F (x);

(c) For some y ∈ F (x) and any z ∈ F ∗(T ), we have Tx ∈ y + z +K if they are

comparable;

(d) For some y ∈ F (x), there exists z ∈ F ∗(T ) such that y + z = Tx.

Proof. Assume that T ∈ ∂F (x). Then there exists some y ∈ F (x) such that

T ∈ ∂F (x, y).
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Thus we can obtain that Tx − y ∈ Max
⋃
z[Tz − F (z)], which is part (b). The

condition (b) yields that Tx − y ∈ Max
⋃
z{Tz − F (z)} for some y ∈ F (x). By

Proposition 2.1 in [39], we know that Max
⋃
z{Tz−F (z)} ⊂ Sup

⋃
z{Tz−F (z)} =

F ∗(T ). It is clear that Tx − y ∈ F ∗(T ). Thus there exists a z ∈ F ∗(T ) such that

y + z = Tx. Furthermore, for any z ∈ F ∗(T ), we have Tx ∈ y + z +K if they are

comparable.

Theorem 3.4.13. Let F1, F2, . . . , Fm be K−convex set-valued mappings from Rn

to Rm and let F = F1 + . . .+ Fm. Then for any ȳ ∈ F (x̄), it yields that

∂F (x̄, ȳ) ⊂ ∂F1(x̄, ȳ1) + . . .+ ∂Fm(x̄, ȳm),

where x ∈ X and ȳ =
∑

i ȳi.

Proof. The assumption yields F (z) =
∑

i Fi(z), which is equivalent to say that

F (z) = {
∑
i

yi|yi ∈ Fi(z)}.

Then for any ȳ ∈ F (x̄), there exists ȳi ∈ Fi(x̄) such that
∑

i ȳi = ȳ. Let T ∈

∂F (x̄, ȳ). It suffices to show that there exist Ti ∈ ∂Fi(x̄, ȳi), i = 1, . . . ,m, for some

ȳi ∈ Fi(x̄) such that T = T1 + . . .+ Tm. The subgradient of F at x̄ yields that

T x̄− ȳ ∈ Max
⋃
z

[Tz − F (z)].

By Theorem 3.4.12, we know that there exists w ∈ F ∗(T ) such that ȳ + w =

T x̄. By theorem 3.4.12, we also know that w ∈ F ∗(T ) = Max
⋃
z[Tz − F (z)] ⊂∑

i Max
⋃
z[Tiz − Fi(z)] for some T =

∑
i Ti. It follows that

∑
i

[Tix̄− yi] ∈
∑
i

Max
⋃
z

[Tiz − Fi(z)].

Thus we can conclude that Ti ∈ ∂Fi(x̄, yi), i = 1, . . . ,m. This also implies that

that T ∈ ∂F1(x̄, y1) + . . .+ ∂Fm(x̄, ym).
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Definition 3.4.14. Suppose X is a topological space, x0 is a point in X and

F : X → Y is a set-valued mapping. We say that F is K−lower semi-continuous

at x0 if for any neighborhood V of F (x0), there exists a neighborhood U of x0 such

that F (x) ⊆ F (x0) + V +K for all x ∈ (x0 + U) ∩ dom F.

We denote the indicator function

F (x) =


0 ∈ Y , if x ∈ S

∅, if x 6∈ S

where S is a closed set in X. For any point x0 ∈ S, the subgradient of the indicator

function F at x0 is the set

{T |Tx0 − y0 ∈ Max
⋃
x∈X

[Tx− F (x)]}, for some y0 ∈ F (x0),

which is equal to the following set by the definition of the indicator function:

{T |Tx0 ∈ Max
⋃
x∈S

Tx}.

We call the above set the normal cone of S at x0:

NS(x0) = {T |Tx0 ∈ Max
⋃
x∈S

Tx}.

Proposition 3.4.15. Assume that a set valued mapping F from X to Y ∪ {+∞}

is K-lower semicontinuous on dom F with F (x) + K closed for x ∈ dom F. Let

x0 ∈ X and y0 ∈ F (x0). Assume that an element F has a subgradient at (x0, y0).

Then T ∈ ∂F (x0, y0) if and only if (T,−I) ∈ Nepi F (x0, y0) for some y0 ∈ F (x0),

where I is the identity operator from Y to Y .

Proof. Since F isK−lower semicontinuous, it follows that epi F is closed by Propo-

sition 2.6 in [37]. By the definition of normal cone, it yields that

Nepi F (x0, y0) = {Λ|Λ(x0, y0) ∈ Max
⋃

(x,y)∈epi F

Λ(x, y)}
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where Λ ∈ L(X × Y, Y ) and y0 ∈ F (x0). Assume that F has a subgradient at

(x0, y0) and (T,−I) ∈ Nepi F (x0, y0). It yields that

〈T,−I〉 · 〈x0, y0〉 ∈ Max
⋃

(x,y)∈epi F

〈T,−I〉 · 〈x, y〉

⇐⇒Tx0 − y0 ∈ Max
⋃

(x,y)∈epi F

[Tx− y]

⇐⇒Tx0 − y0 ∈ Max
⋃

x∈X, y∈F (x)

[Tx− y]

⇐⇒T ∈ ∂F (x0, y0)

Conversely, assume that T ∈ ∂F (x0, y0). Then the proof follows by reverse the

proof above.

Given a set-valued mapping F : X → Y and a point from its graph gph F :=

{(x, y) ∈ X × Y |y ∈ F (x)}, the normal cone is defined as:

Ngph F ((x̄, ȳ)) = {〈T,−Λ〉|〈T,−Λ〉〈x̄, ȳ〉 ∈ Max
⋃

(x,y)∈gph F

〈T,−Λ〉〈x, y〉}

= {〈T,−Λ〉|T x̄− Λȳ ∈ Max
⋃

(x,y)∈gph F

(Tx− Λy)}

Lemma 3.4.16. Let F (x) define the indicator function:

F (x) =


0 ∈ Y , if x ∈ Ω

∅, if x 6∈ Ω.

Then for any ȳ ∈ F (x̄), it follows that (T,−Λ) ∈ Ngph F ((x̄, ȳ)) if and only if

T ∈ N(x).
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Proof. According to the definition of the normal cone, the normal cone of the graph

of the indicator function F :

Ngph F ((x̄, ȳ)) = {(T,−Λ)|〈T,−Λ〉〈x̄, ȳ〉 ∈ Max
⋃

(x,y)∈gph F

〈T,−Λ〉〈x, y〉}

= {(T,−Λ)|T x̄− Λȳ ∈ Max
⋃

(x,y)∈gph F

[Tx− Λy]}

= {(T,−Λ)|T x̄ ∈ Max
⋃
x

Tx}

That is also equivalent to say that T ∈ N(x).

3.5 Necessary Conditions

In this section, we consider the problem with equality constraints of the form

(A)


Minimize F (x)

Subject to 0 ∈ H(x),

where F : Rn → Rm and H : Rn → Rp are K-convex set-valued mappings, where

K is a convex, closed and pointed cone, which means that if x minimizes F (x),

then there is no other x′ such that F (x) ∈ F (x′) +K.

Theorem 3.5.1. Let F (x) have a local minimum at x = x0 subject to H(x) = 0.

Then there exist µi and mj such that

m∑
i=1

µi∂Fi(x0) +

p∑
j=1

mj∂Hj(x0) = 0,

where at least one µi or mj is nonzero.

Before we prove this theorem, we would like to introduce the following lemma

which will be essential in proving the above theorem. Consider the minimization

problem without any constraints:

(Px) Min F (x) subject to x ∈ Rn.
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Lemma 3.5.2. Assume that F (x) is differentiable at x0 and K-convex on Rn. Let

L(Rn,Rm) be the set of all linear continuous operators from Rn to Rm. Then x0

solves (Px) if and only if the operator 0 ∈ ∂F (x0).

Proof. Assume that F (x) has a local minimum at x0. Then there exists y0 ∈ F (x0)

such that y0 ∈ Min
⋃
x F (x), which implies that −y0 ∈ Max

⋃
x[−F (x)]. It is easy

to see that 0 · x0 − y0 ∈ Max
⋃
x[0 · x − F (x)]. Because F has a subgradient at

(x0, y0), we then can conclude that 0 ∈ ∂F (x0, y0) ⊂ ∂F (x0).

Then we are ready to prove the theorem by introducing the corresponding value

function.

Proof. Consider a family of related problems (Pα) parameterized by α ∈ K:

(Pα)


Minimize F (x)

Subject to 0 ∈ H(x) + α,

where F : Rn → Rm is a K−convex mapping and H : Rn → Rp is a K−convex

mapping and α ∈ K. Let Φ(α) be the feasible set for (Pα) :

Φ(α) := {x ∈ Rn|0 ∈ H(x) + α, α ∈ K}.

The value function V (α) associated with (Pα) is defined as:

V (α) = Inf {F (x)|0 ∈ H(x) + α}.

Let x0 be a solution to (Pα) at α = 0. This implies that there exists a y0 ∈ F (x0)

such that y0 ∈ V (0). Assume that T belongs to the subgradient set of V (α) at
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α = 0. It yields that

T · 0− y0 ∈ Max α{T · α− V (α)}

−y0 ∈ Maxx∈Φ(α){T · (−H(x))− F (x)}

y0 ∈ Minx∈Φ(α){T · (H(x)) + F (x)}

By Lemma 3.5.2, we can obtain that

0 ∈ ∂(T ·H(x0) + F (x0))

⇐⇒0 · x0 − y0 ∈ Max
⋃
x

{0 · x− (T ·H(x) + F (x))}

⇐⇒− y0 ∈ Max
⋃
x

{0 · x− (T ·H(x) + F (x))} ⊂ Max
⋃
x

{−T ·H(x))}+ Max
⋃
x

{F (x))}

Thus there exist y1 ∈ T · H(x0), y2 ∈ F (x0) such that −y1 ∈ Max
⋃
x{−T ·

H(x))},−y2 ∈ Max
⋃
x{F (x))}. Thus it follows that 0 ∈ ∂(T ·H(x0)), 0 ∈ ∂G(x0).

Then we can conclude that ∂Fi(x0) and ∂Hi(x0) are linearly dependent. Thus there

exist µi,mj which are not all zeros such that

0 ∈
m∑
i=1

µi∂Fi(x0) +

p∑
j=1

mj∂Hj(x0).

Thus it completes the proof.

Corollary 3.5.3. Let Rm be partially ordered by the positive cone K and F (x)

has a local minimum at x = x0 subject to 0 ∈ H(x). Then there exist nonnegative

numbers µi ≥ 0,mj ≥ 0 such that

0 ∈
m∑
i=1

µi∂Fi(x0) +

p∑
j=1

mj∂Hj(x0),

where at least one µi or mj is nonzero.
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Proof. From the proof of Theorem 3.5.3, it follows that there exists some y0 ∈

F (x0) such that

y0 ∈ Minx∈Φ(α){T · (H(x)) + F (x)}.

By the assumption that Rm is partially ordered by the positive cone K, it is

equivalent to say that for each component y0i, we have

y0i ≤
∑
j

Tij ·Hj(x) + Fi(x)

for any H(x) ∈ K and some (Tij)i ∈ K. This also implies that Tij ≥ 0 for each j.

It completes the proof of corollary.

3.6 Convex Programs and Lagrange Multipliers

We define an ordinary convex program (P ) as the following problem:

(P )


Minimize f(x)

subject to x ∈ C,G(x) ∈ −K

where f : Rn → R and G : Rn → Rm are given set-valued mapping, and C ⊂ Rn is

a nonempty convex set in Rn. Let K be a pointed, closed and convex cone in Rm.

We refer to this problem as the primal problem and we denote by f ∗ its optimal

value:

f ∗ = inf
x∈C,G(x)∈−K

f(x).

Throughout this section we assume that there always exists at least one feasible

solution for the primal problem and the cost is bounded below.

First, we define a Lagrange multiplier that is not related to a local extremum

and has no differentiability condition of the cost and constraint functions. Assume

that x∗ is a global minimum and a regular point, there exists a vector such that

µ∗ = {µ∗1, . . . , µ∗m} ∈ −K∗ and
∑

j µ
∗
jGj(x) = 0, and

f ∗ = f(x∗) = min
x∈Rn

L(x, µ∗),
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where L : Rn+m → R is the Lagrangian function

L(x, µ) = f(x) +
m∑
j=1

µjGj(x) = f(x) + µ′G(x),

for µ ∈ −K∗.

Definition 3.6.1. A vector µ∗ = {µ∗1, . . . , µ∗m} is said to be a Lagrange multiplier

vector for the primal problem (P ) if µ∗ ∈ −K∗ and f ∗ = infx∈C L(x, µ∗)

Proposition 3.6.2. Let µ∗ be a Lagrange multiplier. Then x∗ is a global minimum

of the primal problem (P ) if and only if x∗ is feasible and

f ∗ = f(x∗) = argminx∈XL(x, µ∗),
m∑
j=1

µjGj = 0. (3.6.1)

Proof. Assume that x∗ is a global minimum, then x∗ is feasible and furthermore,

f ∗ = f(x∗) ≥ f(x∗) +
m∑
j=1

µjGj(x
∗) = L(x∗, µ∗) ≥ inf

x∈C
L(x, µ∗).

According to the definition of Lagrange multipliers, we deduce that f ∗ = infx∈C L(x, µ∗),

so that equality (3.6.1) holds everywhere, and it implies that

f(x∗) = argminx∈XL(x, µ∗),
m∑
j=1

µjGj = 0.

Conversely, we suppose that x∗ is feasible and the equation (3.6.1) holds, it

follows that

f(x∗) = f(x∗) +
m∑
j=1

µjGj(x
∗) = L(x∗, µ∗) = min

x∈C
L(x, µ∗) = f ∗,

hence x∗ is a global minimizer.

3.6.1 The Weak Duality Theorem

We consider the dual function q : Rn × Rm → R defined for µ ∈ Rm by

q(µ) = inf
x∈C

L(x, µ).
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Then the dual problem is defined as

(P ′)


Maximize q(µ)

subject to µ ∈ −K∗,

Theorem 3.6.3.

q∗ ≤ f ∗

Proof. For all µ ∈ −K∗, and x ∈ C with G(x) ∈ −K, we have

q(µ) = inf
x∈C

L(x, µ) ≤ f(x) +
m∑
j=1

µjGj(x) ≤ f(x),

so

q∗ = sup
µ∈−K∗

q(µ) ≤ inf
x∈C,G(x)∈−K

f(x) = f ∗.

The following two propositions are the characterization of primal and dual op-

timal solution pairs.

Theorem 3.6.4. (x∗, µ∗) is an optimal solution-Lagrange multiplier pair if and

only if

x∗ ∈ C,G(x∗) ∈ −K, (3.6.2)

µ∗ ∈ −K∗, (3.6.3)

x∗ = argminx∈CL(x, µ∗), (3.6.4)

m∑
j=1

µjGj(x) = 0. (3.6.5)

Proof. Assume that (x∗, µ∗) is an optimal solution-Lagrange multiplier pair. Then

(3.6.4) and (3.6.5) follows from Proposition 3.6.2.

Conversely, we assume that (3.6.2)− (3.6.5) hold. Then

f ∗ ≤ f(x∗) = L(x∗, µ∗) = min
x∈C

L(x, µ∗) = q(µ∗) = q∗.
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By Proposition 3.6.3, we know that q∗ ≤ f ∗. Thus q∗ = f ∗. Then (x∗, µ∗) is an

optimal solution pair because there is no duality gap.

Theorem 3.6.5. (x∗, µ∗) is an optimal solution-Lagrange multiplier pair if and

only if x∗ ∈ C, µ∗ ∈ −K∗ and (x∗, µ∗) is a saddle point of the Lagrangian, in the

sense that

L(x∗, µ) ≤ L(x∗, µ∗) ≤ L(x, µ∗), ∀x ∈ C, µ ∈ −K∗.

Proof. Assume that (x∗, µ∗) is an optimal solution pair such that x∗ ∈ C, µ∗ ∈ −K∗

and f ∗ = argmin L(x, µ∗). Thus it yields that

L(x∗, µ∗) = f(x∗) = argmin L(x, µ∗) ≤ L(x, µ∗).

For all µ∗ ∈ −K∗, using the fact that G(x∗) ∈ −K, we can obtain that µ′G(x∗) ≤ 0.

Therefore, it yields that

L(x∗, µ) = f(x∗) + µ′G(x∗) ≤ f(x∗) = L(x∗, µ∗).

Conversely, we suppose that x∗ ∈ C and µ∗ ∈ −K∗ satisfies that L(x∗, µ) ≤

L(x∗, µ∗) ≤ L(x, µ∗). Then we can easily arrive at:

sup
µ∈K∗

L(x∗, µ) = sup
µ∈K∗
{f(x∗) + µG(x∗)} =


f(x∗) if g(x∗) ∈ −K

∞ otherwise

Therefore from the left hand side inequality, we know that (3.6.2), (3.6.3) and

(3.6.5) hold. It is clear that (3.6.4) also holds due to the right hand side inequality.

3.7 Nonlinear Programming
3.7.1 Necessary and Sufficient Conditions for a Saddle

Point

In this section, let K1 and K2 be pointed, closed and convex cones in Rn and Rm

respectively. We say that x0 ≤ x1 in Rn if x1 ∈ x0 + K1 and u0 ≤ u1 in Rm if

81



u1 ∈ u0 + K2. Let ϕ(x, u) be a differentiable mapping from Rn × Rm to R, where

x is an n−dimension vector with x ∈ K1, and u is an m−dimension vector with

u ∈ K2. We denote that x0 ∈ K1 and u0 ∈ K2 is a saddle point for ϕ(x, u) if

ϕ(x, u0) ≤ ϕ(x0, u0) ≤ ϕ(x0, u), for all x ∈ K1, u ∈ K2.

Taking partial derivatives, evaluated at a particular point x0, u0, we let

ϕ0
x =

[
∂ϕ

∂xi

]0

, ϕ0
u =

[
∂ϕ

∂uj

]0

.

Saddle Value problem: To find vectors x0 ∈ K1 and u0 ∈ K2 such that

ϕ(x, u0) ≤ ϕ(x0, u0) ≤ ϕ(x0, u), for x ∈ K1, u ∈ K2.

Definition 3.7.1. A set K ⊂ Rn is a cone if any x ∈ K, t ≥ 0 imply that tx ∈ K.

The negative polar cone K∗ of a cone K is the set

K∗ := {y ∈ Rn : 〈x, y〉 ≤ 0 ∀x ∈ K}.

Lemma 3.7.2. The conditions

ϕ0
x ∈ K∗1 , ϕ0′

x x0 = 0, x0 ∈ K1, (3.7.1)

ϕ0
u ∈ −K∗2 , ϕ0′

u u0 = 0, u0 ∈ K2, (3.7.2)

are necessary that x0, u0 provide a solution for the saddle value problem.

Proof. Assume that x0, u0 provide a solution for the saddle value problem. Then

it yields that for all x ∈ K1, we have

ϕ(x, u0) ≤ ϕ(x0, u0)

⇐⇒ϕ(x, u0)− ϕ(x0, u0) ≤ 0

⇐⇒ϕ0
x · (x− x0) ≤ 0
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Then we claim that ϕ0′
x x0 = 0. From the above inequality, it is clear that ϕ0′

x x ≤

ϕ0′
x x0 for any x ∈ K1. If x0 =

−→
0 , clearly it holds. Otherwise, we can pick x =

(1 + δ)x0, (1 − δ)x0 respectively for some arbitrary small δ > 0, so it yields that

ϕ0′
x x0 = 0. Furthermore, we can arrive at

ϕ0′

x x ≤ 0, for each x ∈ K1,

which is equivalent to say that ϕ0
x has an non-acute angle with all x ∈ K1. Thus it

yields that ϕ0
x ∈ K∗1 , which is the condition (3.7.1). We can use a similar argument

to get condition (3.7.2).

Lemma 3.7.3. Conditions (3.7.1), (3.7.2) and

ϕ(x, u0) ≤ ϕ(x0, u0) + ϕ0′

x (x− x0) (3.7.3)

ϕ(x0, u) ≥ ϕ(x0, u0) + ϕ0′

u (u− u0) (3.7.4)

for all x ∈ K1, u ∈ K2, are sufficient that x0, u0 provide a solution for the saddle

value problem.

Proof.

ϕ(x, u0) ≤ ϕ(x0, u0) + ϕ0′

x (x− x0)

≤ ϕ(x0, u0)

≤ ϕ(x0, u0) + ϕ0′

u (u− u0)

≤ ϕ(x0, u)

for all x ∈ K1, u ∈ K2.

Corollary 3.7.4. Assume that ϕ(x, u0) is concave for x and ϕ(x0, u) is convex

in u, then conditions (3.7.1), (3.7.2) are sufficient and necessary conditions that

x0, u0 is a solution to the saddle value problem.
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Proof. The convexity-concavity of ϕ(x, u) implies that (3.7.3) and (3.7.4) hold. It

completes the proof by Lemma 3.7.1 and 3.7.2.

3.7.2 Lagrange Multipliers

Consider the following optimization problem

(A)


Max g(x)

subject to F (x) ∈ K2, x ∈ K1

where F (x) is a differentiable mapping from a vector Rn to a vector Rm and g(x)

is a differentiable convex function from Rn to R. We denote the partial derivatives

at x0 as:

F 0 =

[
∂fj
∂xi

]0

, g0 =

[
∂g

∂xi

]0

.

It is clear that F 0 is an m by n matrix and g0 is an n−vector. Let the value function

correspond to (A) be defined as:

V (α) = Min {g(x) : F (x) + α = 0, α ∈ −K2, x ∈ K1}.

Let Σ(α) be the solution to Pα and x0 ∈ Σ(0). Then the following conditions hold:

Min g(x0) ⊂ V (0), F (x0) = 0. The proximal subgradient inequality asserts that

V (α)− V (0) ≥ 〈ς, α〉.

Thus substitute g(x) ≥ V (−F (x)) into the subgradient, it follows that

g(x) + 〈ς, F (x)〉 ≥ g(x0)

for all x. This is equivalent to say that the function

x −→ g(x) + 〈ς, F (x)〉

admits a local minimum at x = x0, which implies that

g0 + F 0ς = 0.

Claim: ς ∈ −K∗2 .
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Proof.

g(x) + 〈ς, F (x)〉 ≥ g(x0)

⇐⇒g(x)− g(x0) ≥ 〈ς,−F (x)〉

⇐⇒0 ≥ 〈ς,−F (x)〉

⇐⇒ς ∈ −K∗2

The last step holds by the definition of the negative polar cone.

We treat the vector u ∈ −K∗2 as the Lagrange multiplier and form the function

ϕ(x, u) = g(x) + u′F (x).

Theorem 3.7.5. Assume that F (K1) ⊂ K2. In order that x0 be a solution of the

minimum problem A, it is necessary that x0 and some u0 satisfy conditions

ϕ0
x ∈ K∗1 , ϕ0′

x x
0 = 0, x0 ∈ K1, (3.7.5)

ϕ0
u ∈ K2, ϕ

0′

u u
0 = 0, u0 ∈ −K∗2 , (3.7.6)

for ϕ(x, u) = g(x) + u′F (x).

Proof. Assume that g(x) ≤ g(x0) for all x satisfying the constraints. Then g0(x−

x0) ≤ 0. We can pick some x = (1 + δ)x0, (1− δ)x0 for some arbitrary small δ > 0

and get g0x0 = 0. Thus it yields that g0x ≤ 0 for any x ∈ K1. So we can obtain

that g0 ∈ K∗1 . Let u0 = 0. Thus it follows that ϕ0
x = g0 + F 0u0 = g0 ∈ K∗1 . It

completes the proof.

Theorem 3.7.6. In order that x0 be a solution of the minimum problem A, it is

sufficient that x0 and some u0 satisfies the conditions (3.7.5), (3.7.6) and (3.7.3)

for ϕ(x, u) = g(x) + u′F (x).
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Proof.

g(x) + u
′

0F (x) = ϕ(x, u0)

≤ ϕ(x0, u0) + ϕ0′

x (x− x0)

≤ ϕ(x0, u0)

= g(x0) + u
′

0F (x0)

= g(x0)

Since u
′
0K
∗
1 , it follows that u

′
0F (x) ≥ 0 for all F (x) ∈ K1. Hence g(x) ≤ g(x0) for

all x satisfying the constraints.

Corollary 3.7.7. Let F (x), g(x) be convex mappings, then conditions (3.7.5) and

(3.7.6) are sufficient and necessary conditions.

Proof. The convexity of F (x) and g(x) implies that the the convexity of ϕ(x, u)

in x. Thus (3.7.3) follows and it completes the proof by Theorem (3.7.6) and

(3.7.7).

Example 3.7.8. Let g map R2 to R and F : R2 × R2 be a mapping. Let K1 be

the positive orthant cone in R2. Consider the optimization problem

Maximize g(x) = x1 + x2

Subject to F (x) = (x2
1, x

2
2) ∈ K1

x ∈ K2 =


−λ
λ




K1 is the positive orthant cone.

Then it is clear that g(x) = 0 for all x ∈ K1, F (x) ∈ K2. We can also calculate

ϕ0
x =

1

1

+

−2a 0

0 2a

u′
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where ϕ(x, u) = g(x) + u′F (x) and x0 =

−a
a

 . Let u0 =

0

0

 . For any x ∈ K1,

we can see that ϕ0′
x x = [1, 1]

−λ
λ

 = 0, which implies that ϕ0
x ∈ K∗1 . Thus (3.7.3)

holds and (3.7.4) holds because ϕ0
u = F (x) ∈ K2 and u0 =

0

0

 .
3.8 Summary

We first construct a concrete example to demonstrate conjugate duality theory in

vector optimization as developed in Tanino’s paper [39]. Then we define the normal

cones corresponding to Tanino’s new concept of the subgradients of a set-valued

mapping and derive some infimal convolution properties for convex set-valued map-

pings. Moreover, we deduce necessary and necessary conditions for multiobjective

optimization problem similar to Kuhn-Tucker conditions, with the equality con-

straints subject to a multiobjective function, by introducing the corresponding

value function as in [9]. We then set up a convex program, which minimizes an ob-

jective function constrained by a set-valued mapping, and its dual problem through

the Lagrange multipliers. We further conclude that an optimal solution pair to the

convex program and its dual problem is a saddle point of the Lagrangian. Based

on the theory above, we can also obtain necessary and sufficient conditions for the

optimization problems with a feasible set that is any pointed, convex and closed

cone K.
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Chapter 4
Future Work

Most realistic optimization problems, particularly those in design, require the si-

multaneous optimization of more than one objective function. Some examples:

· In bridge construction, a good design is characterized by low total mass and

high stiffness.

· Aircraft design requires simultaneous optimization of fuel efficiency, payload,

and weight.

· In chemical plant design, or in design of a groundwater remediation facility,

objectives to be considered include total investment and net operating costs.

· A good sunroof design in a car could aim to minimize the noise the driver

hears and maximize the ventilation.

· The traditional portfolio optimization problem attempts to simultaneously

minimize the risk and maximize the fiscal return.

In these and most other cases, it is unlikely that the different objectives would

be optimized by the same alternative parameter choices. Hence, some trade-off

between the criteria is needed to ensure a satisfactory design.

Multicriteria optimization has its roots in late-nineteenth-century welfare eco-

nomics, in the works of Edgeworth and Pareto. A mathematical description is as
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follows:

(MOP) min
x∈C

F (x) =



f1(x)

f2(x)

...

fn(x)


where n ≥ 2 and C = {x|h(x) = 0, g(x) ≤ 0, a ≤ x ≤ b} denotes the feasible set

constrained by equality and inequality constraints and explicit variable bounds.

The space in which the objective vector belongs is called the objective space and

image of the feasible set under F is called the attained set.

The scalar concept of “optimality” does not apply directly in the multiobjective

setting. A useful replacement is the notion of Pareto optimality. Essentially, a

vector x∗ ∈ C is said to be Pareto optimal for (MOP) if all other vectors x ∈ C

have a higher value for at least one of the objective functions fi(x), or else have

the same value for all objectives. Pareto optimal points are also known as efficient,

non-dominated, or non-inferior points.

Typically, there is an entire curve or surface of Pareto points, whose shape

indicates the nature of the tradeoff between different objectives. Several algorithms

have been developed in both linear framework and nonlinear problems. The typical

method to solve multiobjective problem is to combine the multiple objectives into

one scalar objective whose solution is a Pareto optimal point for the original MOP,

that is
n∑
i=1

αifi(x), αi ≥ 0,
n∑
i=1

αi = 1, i = 1, 2, . . . , n.

Due to the computational expense, more ambitious approaches are constructed to

minimize convex sums of the objectives for various settings of the convex weights,

therefore generating various points in the Pareto set. This approach gives an idea

of the shape of the Pareto surface and provides the user with more information
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about the trade-off among the various objectives. However, this method suffers

from two drawbacks. First, all the points found are clustered in certain parts of

the Pareto set with no point in the interesting “middle part” of the set, thereby

providing little insight into the shape of the trade-off curve. The second drawback

is that non-convex parts of the Pareto set cannot be obtained by minimizing convex

combinations of the objectives.

Rao and Papalambros [42] and Rakowska, Haftka, and Watson [41] developed

homotopy techniques to trace the complete Pareto curve in dimension two. By

tracing the full curve, they overcame the sampling deficiencies of the weighted-sum

approach. Das [43] instead constructed a goal programming method to minimize

one objective while constraining the remaining objectives to be less than the given

target values. The normal-boundary intersection method (NBI) was developed by

Das and Dennis [43] and used a geometrically intuitive parametrization to pro-

duce an even spread of points on the Pareto surface, giving an accurate picture

of the whole surface. NBI can handle problems where the Pareto surface is dis-

continuous or non-smooth. Unfortunately, a point generated by NBI may not be a

Pareto point if the boundary of the set attained in the objective space containing

the Pareto points is nonconvex. Furthermore, Tanino and Sawaragi [39] developed

a unified framework of the duality theory for multiobjective optimization by in-

troducing some new concepts, such as conjugate mappings and subgradients for

vector-valued, set-valued mappings. Kuhn and Tucker [26] formulated necessary

and sufficient conditions for a saddle value function of any differentiable function

of nonnegative arguments and applied them to a maximum for a differentiable

function constrained by inequalities involving differentiable functions through a

Lagrangian.

90



Tanino [39] recently defined the concept of a supremum of a set in the extended

multi-dimensional Euclidean space. Based on this definition of supremum of a set,

some useful definitions such as conjugate maps and subgradients were introduced

for set-valued mappings. In this thesis, we first construct a concrete example to

demonstrate the conjugate duality theory in vector optimization developed in [39].

Next, we define the corresponding normal cones from the new concept of subgradi-

ents and tackle some infimal convolution properties for convex set-valued mappings.

Then we denote an ordinary convex program (P ) as the following problem:

(P )


Minimize f(x)

subject to x ∈ C,G(x) ∈ −K

where f : Rn → R and G : Rn → Rm are given set-valued mapping, C ⊂ Rn is a

nonempty convex set in Rn. We define a Lagrange multiplier that is not related to

a local extremum and has no differentiability condition of the cost and constraint

functions. Assume that x∗ is a global minimum and a regular point, there exists a

vector such that µ∗ = {µ∗1, . . . , µ∗m} ∈ −K∗ and
∑

j µ
∗
jGj(x) = 0, and

f ∗ = f(x∗) = min
x∈Rn

L(x, µ∗),

where L : Rn+m → R is the Lagrange function

L(x, µ) = f(x) +
m∑
j=1

µjGj(x) = f(x) + µ′G(x),

for µ ∈ −K∗. We further observe that the solution pair to (P) and its conjugate

dual problem is actually the saddle point of the Lagrangian multiplier. This is an

improvement over the constraint set for the goal programming method since the

method developed by Das [43] cannot handle the points except for Pareto optimal

points. Moreover, we further deduce necessary and sufficient conditions for the
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following two optimization problems A and B based on the process in [26].

(A)


Minimize F (x)

Subject to H(x) = 0,

where F : Rn → Rm and H : Rn → Rp are continuously differentiable set-valued

mappings.

(B)


Max g(x)

subject to F (x) ∈ K2, x ∈ K1

where F (x) is a differentiable mapping from a vector Rn to a vector Rm and g(x)

is a differentiable convex function from Rn to R. This is another improvement over

the flexibility which the decision makers have to choose their preference. In the

future, we first plan to get necessary and sufficient conditions for the multiobjective

function with the constraint functions being subject to any pointed, convex and

closed cone. This can generalize the multiobjective optimization problem in the

weak Pareto sense into a much broader class of problems. It also gives a lot more

flexibility to the decision makers to determine a preference and more insight view

of the result. Technically it can also reduce the computational cost. Second, we

will extend the homotopy techniques to higher dimension case. Then we can trace

the full Pareto curve in finite dimensions and even infinite dimensions without

the deficiencies of the weighted-sum approach. We can also develop a normal-

boundary inspection method to find optimal points in the sense of any preference

for a general nonlinear multicriteria optimization problem. This method should

handle more than two objectives while retaining the computational efficiency of

continuation-type algorithm. It will be an progress since the typical NBI method

cannot easily be extended to handle the optimal points except those in the weak
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Pareto sense. Finally, we will provide a full analysis of the applications in industry

as mentioned at the beginning of this chapter.

The multitarget tracking problem is briefly stated as follows: given a large num-

ber of close measurements, we need determine trajectory estimates for any targets

that may be present. Since it is difficult to determine precisely which target (if

any) corresponds to each of the closely-spaced measurements, some targets may

go undetected, while others may have inaccurate trajectories attributed to them.

For example, an air traffic controller at a busy airport may incorrectly decide that

a new return on his radar display corresponds to an aircraft already being tracked,

rather than correctly recognizing the appearance of a new aircraft.

In this thesis, we consider the value function of the type

V (τ, ξ) := inf{g(x(t0)) +

∫ τ

t0

L(t, x(t), ẋ(t))dt|x(τ) = ξ},

V (t0, ξ) = g(t0, ξ),

where the value function propagates an initial cost function forward from time t0

in a manner dictated by way of a differential inclusion, or more broadly through a

Lagrangian that may take on∞. In this thesis, we provide an analysis of the value

function and Hamilton-Jacobi theory in a measurable time dependent Lagrangian

case. In this more general setting, we replace point evaluation of the Hamiltonian by

another operation, namely, calculating the “essential values” of the Hamiltonian.

We further prove the value function satisfy a subgradient form of the Hamilton-

Jacobi form in the sense of essential values. Central to our approach is a generalized

Hamiltonian ordinary differential equation associated with H, which is actually a

differentiable inclusion in terms of subgradients. Next, we plan to apply this theory

in some tracking problems. We can construct a model to track the target in the

sense of value functions. So we can plot the situation of target at any time according
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to the terminal cost of the value function. In the future, we will extend the value

functions from single objective function to multiobjective function and apply these

results to the multitarget tracking problem. Furthermore, we will also generalize

the tracking problem from the continuous time base to the measurable time base.

I intend on continuing to study multiobjective optimization and nonlinear pro-

gramming. Here are a few questions that I am working on and future avenues for

research:

(1) Are the value functions, associated with measurable time dependent La-

grangians, unique to satisfy a subgradient form of the Hamilton-Jacobi equa-

tion in the sense of essential values?

(2) Could we get sufficient and necessary conditions for the multiobjective func-

tion with the constraint functions being subject to any pointed, convex and

closed cone? This result would generalize the multiobjective optimization

problem in the weak Pareto sense into a much broader class of problems.

(3) Could we generalize the value functions [7] from single objective function

to multiobjective function and still have similar consequences? Furthermore,

could we apply these results to the multitarget tracking problem? Next, could

we even extend the tracking problem from the continuous time base to the

measurable time base?

(4) We also try to provide a full analysis of applications in the realistic optimiza-

tion problems.

(5) How do we define the limits and derivative of set-valued mappings?

(6) Develop an algorithmic procedure to construct feedback laws that utilizes

the duality structure.

94



References

[1] R. T. Rockafellar and R. J-B Wets, Variational Analysis, Springer-Verlag,
New York, 1997.

[2] R. T. Rockafellar, Convex Analysis, Princeton University Press, Princeton,
New Jersey, 1972.

[3] R. T. Rockafellar, Generalized Hamiltonian equations for convex problems of
Lagrange, Pacific J. Math., 33 (1970), 411-428.

[4] R. T. Rockafellar, Existence and duality theorems for convex problems of
Bolza, Trans. Amer. Math. Soc., 159 (1971), 1-40.

[5] R. T. Rockafellar, Semigroups of convex bifunctions generated by Lagrange
problems in the calculus of Variations, Math. Scand., 36 (1975), 137-158.

[6] R. T. Rockafellar, Conjugate convex functions in optimal control and the cal-
culus of variations, J. Math. Anal. Appl., 32 (1970), 174-222.

[7] R. T. Rockafellar and P. R. Wolenski, Convexity in Hamilton-Jacobi Theory
I: Dynamics and Duality, SIAM J. Control Optim., 39 (2000), 1323-1350.

[8] F. H. Clarke, Optimization and nonsmooth analysis, Wiley, New York, 1983.

[9] F. H. Clarke, Nonsmooth analysis and control theory, Springer-Verlag, New
York, 1998.

[10] R. Vinter, Optimal control, Berkhäuser, Boston, 2000.
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