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RESEARCH

Exploring the effects of genetic variation 
on gene regulation in cancer in the context 
of 3D genome structure
Noha Osman1,2,3, Abd‑El‑Monsif Shawky1 and Michal Brylinski1,4* 

Abstract 

Background: Numerous genome‑wide association studies (GWAS) conducted to date revealed genetic variants 
associated with various diseases, including breast and prostate cancers. Despite the availability of these large‑scale 
data, relatively few variants have been functionally characterized, mainly because the majority of single‑nucleotide 
polymorphisms (SNPs) map to the non‑coding regions of the human genome. The functional characterization of 
these non‑coding variants and the identification of their target genes remain challenging.

Results: In this communication, we explore the potential functional mechanisms of non‑coding SNPs by integrating 
GWAS with the high‑resolution chromosome conformation capture (Hi‑C) data for breast and prostate cancers. We 
show that more genetic variants map to regulatory elements through the 3D genome structure than the 1D linear 
genome lacking physical chromatin interactions. Importantly, the association of enhancers, transcription factors, and 
their target genes with breast and prostate cancers tends to be higher when these regulatory elements are mapped 
to high‑risk SNPs through spatial interactions compared to simply using a linear proximity. Finally, we demonstrate 
that topologically associating domains (TADs) carrying high‑risk SNPs also contain gene regulatory elements whose 
association with cancer is generally higher than those belonging to control TADs containing no high‑risk variants.

Conclusions: Our results suggest that many SNPs may contribute to the cancer development by affecting the 
expression of certain tumor‑related genes through long‑range chromatin interactions with gene regulatory elements. 
Integrating large‑scale genetic datasets with the 3D genome structure offers an attractive and unique approach to 
systematically investigate the functional mechanisms of genetic variants in disease risk and progression.

Keywords: 3D genome structure, Genetic variation, Single‑nucleotide polymorphism, Gene regulation, Chromosome 
conformation capture, Genome‑wide association study, Topologically associating domains, Transcription factors, 
Enhancers, Breast cancer, Prostate cancer
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Background
Cancer is a complex disease involving strong interac-
tions between genetic and environmental factors, and 
the second leading cause of death globally [1, 2]. The 
dysregulation of oncogenes and/or tumor suppressor 

genes has an impact on cell proliferation and apoptosis 
in cancer pathogenesis through genetic alterations such 
as mutations [3, 4]. Further, the chromatin structure and 
regulatory elements can dysregulate gene expression sub-
sequently leading to cancer development [5, 6]. Among 
different types of tumors, breast and prostate cancers 
create significant health problems worldwide because of 
their high incidence, health-related costs, and mortality 
rates [7, 8]. Breast cancer is the most predominant malig-
nancy in women with a high incidence rate, prevalence, 
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and mortality [9–11]. The extremely complex and heter-
ogenous etiology of breast cancer, involving numerous 
components such as endocrine and environmental fac-
tors, other medical conditions, and genetic susceptibil-
ity [12, 13], is not yet fully understood. Prostate cancer is 
the second most frequent tumor in men worldwide [14]. 
Similar to breast cancer, it has a high genetic heritability 
with ethnic and geographical factors having a significant 
effect on the disease progression as well [15].

Genome-wide association study (GWAS) provides a 
systematic way to identify genetic risk factors for various 
diseases, including cancer [16], type 2 diabetes [17], Alz-
heimer’s disease [18], inflammatory bowel disease [19], 
and many others. The goal of GWAS is to reveal geno-
type-phenotype associations by detecting genomic loci 
that are common and low-penetrant in a specific disease 
state without any prior knowledge of their locations and 
functions [20, 21]. In the last decade, GWAS conducted 
on many different tumor types, including pancreatic [22], 
ovarian [23], lung [24], prostate [25], and breast cancer 
[26], identified numerous risk alleles, most of which are 
common and individually confer only a modest increase 
in disease risk. For instance, GWAS revealed 31 novel 
genetic susceptibility loci associated with the genetic pre-
disposition for breast cancer [27] and 12 novel loci for 
prostate cancer [28]. Notably, the vast majority of genetic 
variants identified through GWAS (> 90%) are located in 
the non-coding regions of the genome [29]. These vari-
ants can provide useful insights into mechanisms respon-
sible for the development and progression of various 
diseases through the alteration of regulatory elements, 
such as transcription factors (TFs) and active enhancers, 
affecting the expression of certain disease-related genes 
[30, 31].

A number of studies investigated the downstream 
effects of a single-nucleotide polymorphism (SNP) 
in disease states [32–35]. One of the first reports was 
focused on a single nucleotide substitution in the pro-
moter region of β-thalassemic globin gene decreasing the 
expression of β-globin in patients with thalassemia [36]. 
Other studies investigated the effect of SNPs located in a 
promoter region on the promoter activity [37] as well as 
those located at TF binding sites affecting the binding of 
TFs and, subsequently, altering the gene expression [38]. 
Although the presence of SNPs in the non-coding regions 
of the genome, such as introns and intergenic regions, 
can alter the susceptibility to disease, the exact regulatory 
mechanisms of gene expression are often not fully eluci-
dated [39, 40]. This difficulty can be attributed to the fact 
that SNPs may affect the expression of genes located even 
hundreds of kilobase pairs (kbp) away complicating the 
illumination of cis-regulatory mechanisms [31, 41]. Deci-
phering the effects of high-risk SNPs is not only critical 

to understand the molecular pathogenesis of cancer, but 
it can also improve cancer diagnostics and prognosis 
[42], and reveal potentially novel targets for pharmaco-
therapy [43].

Traditionally, the genome has intensively been stud-
ied as a unidimensional, linear entity often using the 
number of base pairs as a distance between various 
genomic elements. More recently, the three-dimensional 
(3D) structure of the genome started drawing signifi-
cant attention because the regulation of gene expres-
sion and, consequently, cellular functions in physiology 
and disease cannot be grasped without considering the 
genome organization and the nuclear architecture. High-
resolution chromosome conformation capture (Hi-C) is 
the latest variant of chromosome confirmation capture 
(3C) techniques developed to investigate the 3D genome 
structure using next-generation sequencing strategies 
[44]. This method enables researchers to profile pair-
read contacts in all-versus-all manner in order to calcu-
late the interaction frequency both within chromosomes 
(intra-chromosomal contacts) and between different 
chromosomes (inter-chromosomal contacts). The Hi-C 
resolution is determined based on the fragmentation 
of chromosomes and can vary from a low resolution of 
1000 kbp to as high as 5 kbp, in which each fragment 
comprises 5000 base pairs [45]. Further, the genome is 
systematically arranged into topologically associating 
domains (TADs) defined as those genomic regions form-
ing numerous self-interactions whose frequency is much 
higher compared to contacts with other parts of the same 
chromosome [46, 47]. TADs often contain multiple genes 
and regulatory elements, and have been shown to play a 
crucial role in the development of a wide array of diseases 
including cancer [48, 49]. Overall, the Hi-C data give 
invaluable insights into the 3D genome structure facili-
tating the identification of physical interactions among 
genetic variants, regulatory elements, and their corre-
sponding target genes.

In situ Hi-C [50] was recently combined with whole-
genome bisulfite sequencing at base resolution [51] to 
simultaneously profile chromatin conformation and 
DNA methylation in single cells [52]. Interestingly, this 
study revealed not only the coordinated DNA methyla-
tion status between distal genomic segments located in a 
spatial proximity in the nucleus, but also the heterogene-
ity of the chromatin architecture and the DNA methyl-
ome in a mixed population of cells. Integrating Hi-C with 
DNA methylation detection opens up a possibility to 
simultaneously characterize the cell-type-specific chro-
matin organization and epigenome in complex tissues. 
Other studies investigated the genetic variation related to 
human diseases in the context of the 3D genome struc-
ture assembled from the Hi-C data [53, 54]. For example, 
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the Hi-C data have been collected for different cancer 
types in order to gain new insights into the effects of 
SNPs on regulatory elements leading to tumor progres-
sion. This approach can help identify high-risk mutations 
modulating gene expression in cancer by affecting regula-
tory elements located far away from their target genes in 
the linear genome [55–57].

The Hi-C data are often used in conjunction with the 
expression quantitative trait loci (eQTL) analysis to 
reveal risk loci contributing to cancer progression. For 
instance, the rs2981579 variant maps to the transcription 
start site of fibroblast growth factor receptor 2 (FGFR2) 
forming interaction peaks with several distal fragments 
[58]. These regions are located hundreds kbp from the 
capture region and co-localize with DNAse I hypersen-
sitive sites, CTCF, FOXA1, GATA3, and ERα binding 
sites in breast cancer and normal breast epithelial cell 
lines. Translating these interactions helped explain the 
association of this SNP with FGFR2 gene regulation in 
breast cancer. Another example is rs4442975 associated 
with the susceptibility to breast cancer. According to the 
Hi-C data, this variant is located near a transcriptional 
enhancer forming physical interactions with the pro-
moter region of insulin-like growth factor binding pro-
tein 5 (IGFBP5) [59]. IGFBP5 displays allele-specific gene 
expression with g-allele downregulating the expression of 
IGFBP5 leading to the increased susceptibility to breast 
cancer. Genetic variants are also associated with prostate 
cancer through long-range chromatin interactions with 
regulatory elements, such as the promoter regions of a 
specific gene (rs10486567) [54] and active enhancers reg-
ulating the expression of multiple disease-related genes 
(rs55958994) [60].

Although various studies were conducted to illumi-
nate the effects of a specific genetic variation through 
chromatin interactions with selected gene regulatory ele-
ments, functional relationships among SNPs, regulatory 
elements, and disease-associated genes have not been 
systematically evaluated at the level of the entire human 
genome. In this communication, we present a large-scale 
analysis of the Hi-C data in the context of relationships 
among high-risk SNPs identified by GWAS for breast 
and prostate cancers, regulatory elements including TFs 
and enhancers, and genes associated with both diseases. 
The results highlight the importance of including the 3D 
genome structure in the investigation of the effects of 
genetic variation on gene regulation in cancer.

Results
Mapping genetic variants to regulatory elements 
and target genes
In this study, we compare two distinct approaches to 
link genetic variants highly associated with disease, with 

a p-value of ≤5 ×  10− 8 according to the GWAS data, to 
regulatory elements and their target genes (Fig.  1). The 
first approach, schematically shown in Fig. 1A, employs 
the unidimensional (1D) genome structure to identify 
those enhancers and TF binding sites located in the linear 
proximity up and downstream of a SNP. In this example, a 
TF binding site (green shape) is found downstream from 
a SNP (red star) and an enhancer (orange rectangle) is 
found upstream. For prostate cancer, the search distance 
is set to 5 kbp on both sides of the SNP in order to cre-
ate a SNP-centered window whose size is the same as the 
resolution of the Hi-C data (10 kbp). Since the resolution 
of the Hi-C data for breast cancer used in this study is 
5 kbp, we search for regulatory elements located 2.5 kbp 
down and 2.5 kbp upstream of a SNP. Both regulatory 
elements shown in Fig. 1A affect the expression of their 
target genes, either indirectly through TF (blue teardrop) 
binding (genes G1–3, purple ovals) or directly (genes 
G4–6, yellow ovals). The search for regulatory elements 
in the linear proximity from 808 SNPs highly associated 
with breast cancer identified 12 TF binding sites affecting 
8 genes for 59 SNPs and 51 enhancers affecting 33 genes 
for 50 SNPs. A similar search conducted for 13,447 SNPs 
highly associated with prostate cancer resulted in 247 TF 
binding sites affecting 180 genes for 986 SNPs and 3851 
enhancers affecting 613 genes for 7641 SNPs.

The second approach maps SNPs highly associated 
with cancer at a p-value of ≤5 ×  10− 8 to regulatory ele-
ments located in the spatial proximity according to the 
3D genome structure. Here, we utilize highly confident 
intra- and inter-chromosomal contacts obtained from 
the Hi-C data with a q-value of ≤0.05. Specifically, for 
each SNP, we collected those DNA fragments contain-
ing at least one regulatory element and forming physical 
contacts with that SNP. Next, we selected one fragment 
with the lowest q-value for a contact; in case of multiple 
fragments having the same lowest q-value for contacts, 
the longest-range fragment from the SNP was picked. 
As shown in Fig. 1B, a DNA fragment containing a dis-
ease-associated SNP (red star) physically interacts with 
another fragment through a highly confident long-range 
contact. In this example, the interacting fragment con-
tains a binding site (green shape) for a TF (blue teardrop) 
and an active enhancer (orange rectangle). Just as in the 
first approach utilizing the 1D linear genome, these ele-
ments regulate the expression of their target genes, G1–3 
(purple ovals) and G4–6 (yellow ovals), respectively.

Following this procedure, we identified 19,240 chro-
matin fragments forming highly confident contacts 
with 808 SNPs associated with breast cancer. Select-
ing only one long-range chromatin contact per SNP 
with the lowest q-value resulted in 702 fragments con-
taining regulatory elements. These elements include 
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239 enhancers having 147 target genes in contact with 
702 SNPs and 83 binding sites for TFs having 70 tar-
get genes in contact with 459 SNPs. Similar to breast 
cancer, selecting one long-range chromatin contact per 
SNP with the lowest q-value from 1,952,907 chromatin 
fragments forming contacts with 13,447 SNPs associ-
ated with prostate cancer resulted in 13,429 contacts. 
Among these interactions, 13,410 contacts are between 
13,410 SNPs and 3585 enhancers with 747 target genes, 
and 1387 contacts are between 1387 SNPs and 324 
binding sites for TFs with 190 target genes.

Disease association of enhancers connected to genetic 
variants in cancer
In order to measure the relevance of those regulatory 
elements affected by SNPs to a disease, a series of dis-
ease association (DA) scores were computed. For each 
high-risk SNP, we calculated the median DA score 
for mapped enhancers and TFs as well as the median 
DA score for target genes whose expression is regu-
lated by these elements. The number of SNPs along 
with quantile and inter-quantile range (IQR) values 
are reported in Table 1 (enhancers) and Table 2 (TFs). 

Fig. 1 Schematic representation of the procedure to map SNPs to regulatory elements and target genes. The mapping is shown for A the 1D 
linear genome and B the 3D genome structure constructed at the Hi‑C resolution of 10 kbp. Red stars are a SNPs highly associated with a disease 
at a p‑value of ≤5 ×  10− 8. Regulatory elements include transcription factors (TF, blue teardrops) and their binding sites (BS, green sectors), and 
enhancers (orange rounded rectangles). Each regulatory element is linked to its target genes (G1–3, purple ovals for TFs and G4–6, yellow ovals for 
enhancers). In (A), regulatory elements are identified within a DNA window of 10 kbp centered on the SNP, whereas in (B), regulatory elements are 
identified in a DNA fragment forming a physical contact with the fragment containing the SNP
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The distribution of DA scores for active enhancers is 
presented in Fig.  2. Figure  2A shows that the median 
(2nd quantile) DA score of 4.80 for enhancers linked 
to highly associated SNPs in breast cancer in the 3D 
genome structure is higher compared to 2.91 in the 
1D linear genome (Table  1). Similar to breast cancer, 
Fig.  2B and Table  1 show that the median DA score 
for enhancers linked to SNPs highly associated with 
prostate cancer is higher in 3D (4.81) than 1D (4.14). 
To further corroborate these results, we computed DA 
scores for target genes whose expression is affected by 
enhancers linked to genetic variants in cancer. Figure 3 
and Table  1 show that the median DA scores are sys-
tematically higher in 3D compared to 1D in breast can-
cer (Fig. 3A, 2.4 for 1D and 5.0 for 3D) and in prostate 
cancer (Fig. 3B, 2.4 for 1D and 3.2 for 3D). In addition 
to higher DA scores, IQRs are typically smaller in the 
3D genome structure compared to 1D (Table  1), for 
instance, the IQR for the enhancer DA score is 0.40 in 
3D and 0.61 in 1D for breast cancer, and 0.43 in 3D and 
0.83 in 1D for prostate cancer.

Disease association of transcription factors connected 
to genetic variants in cancer
Next, we analyze the disease association of TFs linked 
to SNPs highly associated with cancer (Fig. 4) and their 
target genes (Fig. 5) with statistics reported in Table 2. 
The distribution of DA scores for TFs mapped to breast 
cancer is presented in Fig.  4A. Here, the median DA 
score of 12.0 in the 3D genome structure is higher than 
3.0 in 1D. In addition, Fig.  5A shows that the median 
DA score of TF target genes is also higher in 3D (4.7) 
compared to 1D (2.7). In the absence of numerical DA 
scores for TFs linked to SNPs highly associated with 
prostate cancer, we conducted the analysis using the 
fraction of disease-associated TF (Fig. 4B). On average, 
about two-thirds of TF mapped to SNPs in 3D are dis-
ease-associated, whereas this fraction is only one-third 
in 1D. Further, Fig. 5B shows that the median DA score 
of the corresponding target genes is higher in 3D (3.2) 
than in 1D (1.9). In contrast to active enhancers, IQRs 
for TFs are similar between 1D and 3D, except for the 

Table 1 Disease association (DA) statistics for enhancers linked to significant SNPs in breast and prostate cancer. Statistics for 
enhancers identified with 1D and 3D approaches include the number of SNPs used in the analysis, quantiles, and the inter‑quantile 
range (IQR). For each cancer type, DA scores for enhancers and their target genes are reported

Statistic Breast cancer Prostate cancer

Enhancer DA score DA score for target gene Enhancer DA score DA score for target 
gene

1D 3D 1D 3D 1D 3D 1D 3D

# of SNPs 50 702 50 662 7,641 13,410 7,213 12,010

1st quantile 2.69 4.61 2.1 4.3 3.74 4.59 1.9 2.6

2nd quantile 2.91 4.80 2.4 5.0 4.14 4.81 2.4 3.2

3rd quantile 3.30 5.01 2.6 5.2 4.57 5.02 3.4 3.9

IQR 0.61 0.40 0.5 0.9 0.83 0.43 1.5 1.3

Table 2 Disease association (DA) statistics for transcription factors (TFs) linked to significant SNPs in breast and prostate cancer. 
Statistics for enhancers identified with 1D and 3D approaches include the number of SNPs used in the analysis, quantiles, and the 
inter‑quantile range (IQR). For each cancer type, DA scores for enhancers and their target genes are reported

a  Fraction of disease-associated TFs within a set of all TFs linked to significant SNPs

Statistic Breast cancer Prostate cancer

TF DA score DA score for target gene Fraction of DA-TFsa DA score for target 
gene

1D 3D 1D 3D 1D 3D 1D 3D

# of SNPs 59 459 42 210 986 1,387 759 1,387

1st quantile 2.0 10.0 2.5 4.3 0.31 0.65 1.4 3.0

2nd quantile 3.0 12.0 2.7 4.7 0.33 0.67 1.9 3.2

3rd quantile 4.0 12.0 3.0 4.9 0.34 0.69 3.0 3.7

IQR 2.0 2.0 0.5 0.6 0.03 0.04 1.6 0.7
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Fig. 2 Distribution of disease‑association (DA) scores for enhancers linked to SNPs. Enhancers were identified by mapping SNPs highly associated 
with A breast and B prostate cancer in the unidimensional (1D, purple violins) and the three‑dimensional (3D, yellow violins) genome structure. In 
each violin, the horizontal black line is the median, the narrow gray box shows the first and third quantiles, and whiskers mark the minimum and 
maximum values excluding outliers, which are represented by black diamonds

Fig. 3 Distribution of disease‑association (DA) scores for the target genes of enhancers linked to SNPs. Enhancers were first identified by mapping 
SNPs highly associated with A breast and B prostate cancer in the unidimensional (1D, purple violins) and the three‑dimensional (3D, yellow violins) 
genome structure, and then linked to their target genes. In each violin, the horizontal black line is the median, the narrow gray box shows the first 
and third quantiles, and whiskers mark the minimum and maximum values excluding outliers, which are represented by black diamonds
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Fig. 4 Analysis of the disease association of transcription factors (TFs) linked to SNPs. A The distribution of disease‑association (DA) scores for TFs 
linked to SNPs highly associated with breast cancer. B The fraction of disease‑associated TFs linked to SNPs highly associated with prostate cancer. 
TFs were identified by mapping SNPs in the unidimensional (1D, purple violins) and the three‑dimensional (3D, yellow violins) genome structure. 
In each violin, the horizontal black line is the median, the narrow gray box shows the first and third quantiles, and whiskers mark the minimum and 
maximum values excluding outliers, which are represented by black diamonds

Fig. 5 Distribution of disease‑association (DA) scores for the target genes of transcription factors (TFs) linked to SNPs. TFs were first identified by 
mapping SNPs highly associated with A breast and B prostate cancer in the unidimensional (1D, purple violins) and the three‑dimensional (3D, 
yellow violins) genome structure, and then mapped to their target genes. In each violin, the horizontal black line is the median, the narrow gray 
box shows the first and third quantiles, and whiskers mark the minimum and maximum values excluding outliers, which are represented by black 
diamonds
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distribution of DA scores for TF target genes in pros-
tate cancer (1.6 and 0.7, respectively, Table 2).

Examples of gene regulation through chromatin 
interactions in breast cancer
We present several case studies in order to illustrate 
the significance of the 3D genome structure in linking 
genetic variation to gene regulation in breast cancer 
(Fig.  6). The locations of genomic elements discussed 
in this section and their association with breast cancer 
are provided in Supplementary Tables  S1-S3. The first 
example is mitogen-activated protein kinase kinase 
kinase 1 (MAP3K1), a serine/threonine kinase known to 
play an important role in different functions of the cell 
[61, 62]. MAP3K1 can be activated by different stim-
uli, such as cytokines and growth factors, that consti-
tute a complex signaling network controlling a diverse 
array of cellular functions [63]. In addition to numer-
ous studies focused on somatic mutations in MAP3K1 
[64–66], GWAS revealed associations between SNPs, 
including rs7714232 and rs16886272 regulating the 
expression of MAP3K1, and breast cancer [67, 68]. 
Further, multiple transcription factors, such as ER-α, 
FOXA1 and GATA3, were shown to upregulate the 
expression of MAP3K1 through long range chromatin 
interactions [67]. Figure  6A shows that rs7714232 at 
position Chr5:56,011,357 is in contact with a chromatin 
fragment containing an active enhancer 119,861, and 
rs16886272 at position Chr5:56,067,434 is in contact 
with a fragment containing a putative binding site for 
transcription factor GATA3 predicted with a p-value of 
2.2 ×  10− 5. Enhancer 119,861 is associated with breast 
cancer at a p-value of 2.4 ×  10− 5 and GATA3 has a high 

disease association score of 5.9. MAP3K1, which itself 
has a high disease association score of 5.3, is a target 
gene for both regulatory elements. Thus, rs7714232 
and rs16886272 may indirectly affect the expression of 
MAP3K1 through physical interactions with an active 
enhancer and a transcription factor binding site.

Fibroblast growth factor receptor 2 (FGFR2) belonging 
to the receptor tyrosine kinase family mediates the cel-
lular signaling and plays important roles in the develop-
mental induction, cell growth and differentiation, and 
cell fate [69–71]. Several studies reported the association 
between mutations affecting FGFR2 and breast cancer 
[72, 73]. For example, multiple SNPs located in the sec-
ond intron of FGFR2 cause the increased expression of 
FGFR2 linked to cancer progression [74]. Another study 
reported an association between the expression of FGFR2 
and the number of breast tumor initiating cells [75]. 
GWAS data revealed the association between FGFR2 
genetic variants and the risk of breast cancer [72, 76], for 
instance, rs4752575 was shown to alter the expression of 
FGFR2 leading to the increased susceptibility to breast 
cancer [77]. Figure  6B shows that rs4752575 located at 
position Chr10:123,407,187 physically interacts with a 
chromatin fragment containing multiple transcription 
factor binding sites, including a putative binding site 
for forkhead box protein A1 (FOXA1) predicted with a 
p-value of 4.5 ×  10− 4. FOXA1 is highly associated with 
breast cancer with a score of 5.8 and was identified as 
one of the master regulators of FGFR2 [78]. According to 
these data, we propose a new model explaining the high 
association of rs4752575 with breast cancer at a p-value 
of 5.5 ×  10− 9. Specifically, rs4752575 may dysregulate the 
expression of FGFR2 through the chromatin interaction 

Fig. 6 Case studies for genetic variants related to breast cancer. The possible effects of SNPs on the expression of A MAP3K1, B FGFR2, and C CDYL2 
genes are presented in the context of the 3D genome structure. Red stars are SNPs highly associated with a disease at a p‑value of ≤5 ×  10− 8 
affecting regulatory elements through long‑range physical interactions according to dashed black arrows. Dashed gray arrows link regulatory 
elements, including transcription factors (blue teardrops) and their binding sites (BS, green sectors), and enhancers (orange rounded rectangles) 
to target genes (purple ovals). Chromatin fragments from the Hi‑C data (gray double helices) annotated with their start and end coordinates are 
connected by solid black lines showing their order in the linear genome
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with the binding site for FOXA1, a master regulator of 
the FGFR2 gene.

Chromodomain Y-like protein 2 (CDYL2) is a puta-
tive epigenetic factor belonging to a family of proteins 
characterized by the presence of N-terminal chromodo-
main that binds methylated histones H3K9 and H3K27 
[79–81]. CDYL2 has been identified as either a tumor 
suppressor or oncogene depending on the cancer type 
[82, 83]. Moreover, CDYL2 was reported to be overex-
pressed in breast cancer supporting its role in disease 
progression [84]. The transcript variants of CDYL2 were 
found to be differently associated with breast cancer, 
suggesting a new therapeutic strategy targeting specific 
CDYL2 isoforms [85]. Several genetic variants related 
to CDYL2 have been identified by GWAS to be associ-
ated with breast cancer progression and development, 
including rs13329835 found in the intergenic region 
of CDYL2 gene [86, 87]. Another variant, rs9940301, at 
position Chr16:80,641,906 is strongly associated with 
breast cancer progression in women of African ancestry 
with a p-value of 2.0 ×  10− 9 [88]. According to the Hi-C 
data (Fig. 6C), rs9940301 is in contact with a chromatin 
fragment containing three putative enhancers, 2,317,260, 
2,317,262, and 2,317,263, all associated with breast can-
cer with a p-value of 9.0 ×  10− 6. These enhancers activate 
the expression of the CDYL2 gene suggesting a new asso-
ciation mechanism between rs9940301 and breast cancer 
through physical interactions with enhancers regulating 
CDYL2 gene expression.

Examples of gene regulation through chromatin 
interactions in prostate cancer
Figure 7 presents selected cases demonstrating how the 
genetic variation in prostate cancer can be linked to gene 
regulation by analyzing the 3D genome structure. The 
locations of genomic elements discussed in this section 
and their association with prostate cancer are provided 
in Supplementary Tables S1-S3. Androgen receptor (AR) 
is a master regulator belonging to the nuclear receptor 
superfamily [89]. It acts as a transcription factor bind-
ing a specific ligand molecule to control the expression of 
targeted genes [90]. Prostate function primarily depends 
on the androgen signaling axis through the regulation of 
AR target genes [91]. AR is highly associated with pros-
tate cancer with a score of 8.0, which is consistent with 
observations that it is often overexpressed in prostate 
cancer [92] and mutations in the AR gene are present 
in a large population of castration-resistant prostate 
cancer patients [93, 94]. The GWAS data revealed that 
numerous SNPs near the AR locus are associated with 
prostate cancer [95, 96]. For instance, rs6152 is located 
in the first exon of the AR gene and it is associated 
with a susceptibility to prostate cancer at a p-value of 
1.5 ×  10− 12 [97, 98]. We also found that rs6152 at position 
ChrX:66,765,627 forms a contact with a chromatin frag-
ment containing an active enhancer 2,765,787 associated 
with prostate cancer at a p-value of 1.6 ×  10− 2 and affect-
ing the expression of AR (Fig.  7A). Thus, the physical 
interaction between rs6152 and an enhancer may play a 

Fig. 7 Case studies for genetic variants related to prostate cancer. The possible effects of SNPs on the expression of A AR, B POU5F1B, and C OXT1 
and EHBP1 genes are presented in the context of the 3D genome structure. Red stars are SNPs highly associated with a disease at a p‑value of 
≤5 ×  10− 8 affecting regulatory elements through long‑range physical interactions according to dashed black arrows. Dashed gray arrows link 
regulatory elements, including transcription factors (blue teardrops) and their binding sites (BS, green sectors), and enhancers (orange rounded 
rectangles) to target genes (purple ovals). Chromatin fragments from the Hi‑C data (gray double helices) annotated with their start and end 
coordinates are connected by solid black lines showing their order in the linear genome
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role in the regulation of AR gene expression during pros-
tate cancer progression.

Octamer-binding transcription factor 4 (OCT4), a 
member of the POU domain-containing family of tran-
scription factors, is expressed in embryonic and adult 
stem cells [99]. Although six different pseudogenes iden-
tified for OCT4 are not expressed, these elements are 
believed to play a role in the regulation of OCT4 expres-
sion [100, 101]. Interestingly, two of these OCT4 pseu-
dogenes, POU5F1P5 and POU5F1B, were found to be 
transcribed in cancer cells [102]. POU5F1B was shown 
to be overexpressed in gastric cancer and its knock-
down confirmed a role for POU5F1B in the promotion 
of tumor cell growth [103]. Further, the methylation level 
near the POU5F1B gene [104] and the genetic variation 
around that region [105] were found to be associated 
with the prostate cancer risk. For instance, rs6983267 was 
reported to be in linkage disequilibrium with the open-
reading frame of the POU5F1B gene among people of 
European ancestry and associated with the expression of 
POU5F1B in prostate of white subjects [106]. Located at 
position Chr8:128,413,305, rs6983267 is associated with 
prostate cancer at a p-value of 2.8 ×  10− 141. Figure  7B 
shows that it is also in contact with a chromatin fragment 
containing multiple putative transcription factor binding 
sites including a confidently predicted binding site for AR 
with a p-value of 3.5 ×  10− 4, which regulates the expres-
sion of POU5F1B. According to these findings, rs6983267 
may play a role in regulating PO5F1B expression by 
affecting the binding of AR to its binding site.

EH domain-binding protein 1 (EHBP1) gene encodes 
Eps15 homology domain binding protein playing a role 
in endocytic trafficking [107]. Recently, GWAS reported 
the association of a genetic variant rs721048, located 
within one of the introns of the EHBP1 gene, and the sus-
ceptibility to prostate cancer [28, 108] with a p-value of 
5.0 ×  10− 22. Interestingly, Fig. 7C shows that rs721048 at 
position Chr2:63,131,731 forms a contact with a chroma-
tin fragment containing an active enhancer 406,774 asso-
ciated with prostate cancer at a p-value of 1.5 ×  10− 4 that 
regulates the expression of EHBP1. Further, enhancer 
406,774 also regulates the expression of orthodenticle 
homeobox 1 (OTX1), a transcription factor playing a crit-
ical role in multiple developmental processes, such as the 
neuronal differentiation [109]. Several studies reported 
the hypermethylation of the OTX1 gene promoter region 
in non-small lung cancer [110, 111] and an altered OTX1 
expression in medulloblastoma and other brain tumors 
[112]. It is important to note that the expression of OTX1 
is also associated with prostate cancer risk [113]. Further, 
OTX1 is one of several transcription factors involved in 
tumor-specific enhancer networks and it was found to be 
linked to active enhancers in prostate adenocarcinoma 

[114]. Our data suggest that rs721048 may be associ-
ated with prostate cancer through the disruption of the 
mechanism of action of certain tumor-specific enhancers 
causing the dysregulation of the expression of OTX1 and 
EHBP1 genes.

Mapping genetic variants to topologically associating 
domains
Next, TADs were identified from the Hi-C data and all 
regulatory elements and SNPs were mapped to these 
domains as shown in Fig.  8. Based on the presence of 
SNPs highly associated with cancer, the resulting TADs 
are divided into two groups, TADs containing no SNPs 
(control, Fig. 8A) and TADs containing at least one SNP 
with a p-value of ≤5 ×  10− 8 according to the GWAS 
data (SNP-rich, Fig.  8B). Specifically, we identified the 
total of 21,157 TADs from the Hi-C data for breast can-
cer, including 30 TADs enriched with disease-associ-
ated SNPs. Among 30 SNP-rich TADs, 26 also contain 
enhancers (477 in total) and 17 contain TF binding sites 
(36 in total). The control dataset for breast cancer com-
prises 16,473 TADs containing 259,780 enhancers and 
10,463 TADs containing 23,890 binding sites for TFs. In 
addition, the total of 17,435 TADs were detected from 
the Hi-C data for prostate cancer, including 304 TADs 
enriched with disease-associated SNPs; 291 of these 
SNP-rich TADs contain enhancers (7940 in total) and 
241 contain TF binding sites (686 in total). The control 
dataset for prostate cancer comprises 13,587 TADs con-
taining 250,789 enhancers and 10,070 TADs containing 
22,562 binding sites for TFs.

We first take a glance at selected genetic variants highly 
associated with breast (4 SNPs) and prostate (3 SNPs) 
cancers discussed above in order to determine whether 
gene regulatory elements located in their spatial proxim-
ity according to the Hi-C data reside in the same TAD. 
Interestingly, this holds true in almost all cases. Both var-
iants rs7714232 and rs16886272 associated with breast 
cancer, enhancer 119,861, and a binding site for tran-
scription factor GATA3 are located in TAD 6450 whose 
boundaries are Chr5:56,010,000 – Chr5:56,140,000. Fur-
ther, variant rs9940301 along with all three enhancers, 
2,317,260, 2,317,262, and 2,317,263, reside in the same 
TAD 17447 (Chr16:80,630,000 – Chr16:80,950,000). 
Variant rs4752575 and FOXA1 binding site belong 
to neighboring TADs 12,498 (Chr10:123,360,000 – 
Chr10:123,460,000) and 12,497 (Chr10:123,330,000 
– Chr10:123,360,000), respectively. In prostate can-
cer, TAD 1830 (Chr2:63,010,000 – Chr2:63,160,000) 
contains both rs721048 and enhancer 406,774, TAD 
8618 (Chr8:128,410,000 – Chr8:128,490,000) contains 
both rs6983267 and AR binding site, and TAD 16953 
(ChrX:66,530,000 – ChrX:67,270,000) contains both 
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rs6152 and enhancer 2,765,787. On that account, we 
expect TADs enriched in disease-associated SNPs to also 
contain those gene regulatory elements having higher 
disease association compared to control TADs, which is 
investigated in the following section.

Association of SNPs and regulatory elements with cancer 
in the context of TADs
In order to verify the assertion that those TADs carry-
ing genetic variants highly associated with cancer also 
contain gene regulatory elements whose disease associa-
tion is high, we first calculated DA scores for enhancers 
located within control and SNP-rich TADs. The dis-
tribution of DA scores is shown in Fig.  9 with the cor-
responding statistics reported in Table  3. Compared to 
a median DA score of 4.75 for control TADs in breast 
cancer, SNP-rich TADs contain enhancers with a higher 
median DA score of 5.66 (Fig. 9A). A median DA score 
of 5.66 for enhancers located in SNP-rich TADs is higher 
than a value of 4.69 for those belonging to control TADs 
in prostate cancer as well (Fig. 9B). Similar to enhancers, 
Fig.  10 shows the distribution of DA scores computed 
for TFs residing in SNP-rich and control TADs with the 
corresponding statistics reported in Table  3. In breast 
cancer, the median DA score of 11.5 for TFs located in 
control TADs is lower than a value of 17.0 for those pre-
sent in SNP-rich TADs, whereas in prostate cancer, the 
fraction of disease-associated TFs in SNP-rich TADs 
is twice as high as in control TADs (Fig.  10B). Further, 
Table 3 shows that IQRs for enhancers and TFs are very 

similar between SNP-rich and control TADs in both can-
cers. These results demonstrate that disease-associated 
genetic variants and gene regulatory elements indeed 
tend co-localize within certain TADs identified based on 
the 3D genome structure.

Discussion
Although a large number of genetic variants associated 
with cancer have been identified by GWAS, the exact 
mechanisms by which these mutations affect the phe-
notype have not yet been fully elucidated. A significant 
challenge in explaining the functional mechanisms of 
SNPs in cancer initiation and progression arises from the 
fact that the vast majority of disease-associated variants 
are located within the non-coding regions of the genome. 
Non-coding SNPs are thought to exert their pathologi-
cal effects by altering gene regulation rather than directly 
affecting the sequence, structure, and function of gene 
products. Accumulated data on the 3D genome structure 
collected from Hi-C experiments offer a unique oppor-
tunity to investigate the effects of genetic variation, par-
ticularly those located in the non-coding complement of 
the human genome, on gene regulation leading to cancer 
pathophenotypes. In this communication, we integrated 
the large-scale data provided by GWAS with the infor-
mation on chromatin structure and interactions in breast 
and prostate cancers in order to systematically evalu-
ate the effects of SNPs on gene regulatory mechanisms. 
We are specifically interested in the comparison of this 
3D method utilizing the Hi-C data to a 1D proximity 

Fig. 8 Schematic representation of topologically associating domains (TADs). Red stars are SNPs highly associated with a disease at a p‑value of 
≤5 ×  10− 8, orange rounded squares represent enhancers, green circles represent transcription factors, and blue square brackets show the location 
of TAD boundaries. TADs are divided into two groups, A control TADs containing no highly associated SNPs and B SNP‑rich TADs carrying at least 
one highly associated variant
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approach assuming that genetic variants affect regula-
tory elements located down- and up-stream in the linear 
DNA.

Focusing on SNPs highly associated with breast and 
prostate cancers, we conducted a comprehensive analysis 
of their relationships to various enhancers and binding 
sites for transcription factors regulating the expression 
of their target genes. Considering a vast body of evidence 
supporting the association of many regulatory elements 

with cancer phenotypes, we propose that genetic vari-
ants forming physical contacts with these elements may 
contribute to the development and progression of disease 
by altering the expression levels of cancer-related genes. 
There are several benefits of including the Hi-C data in 
the analysis of the effects of genetic variation on gene 
expression. The 3D genome structure allows for a more 
efficient mapping between variants and regulatory ele-
ments compared to the unidimensional genome lacking 

Fig. 9 Distribution of disease‑association (DA) scores for enhancers within TADs. DA scores against A breast and B prostate cancer are calculated for 
enhancers present in control (blue violins) and SNP‑rich (green violins) TADs. In each violin, the horizontal black line is the median, the narrow gray 
box shows the first and third quantiles, and whiskers mark the minimum and maximum values excluding outliers, which are represented by black 
diamonds

Table 3 Disease association (DA) statistics for enhancers and transcription factors (TFs) within TADs in breast and prostate cancer. 
TADs are divided into two groups, containing no SNPs with a significant association to disease (control) and those containing at least 
one SNP with a significant disease association (SNP‑rich). Statistics include the number of TADs used in the analysis, quantiles, and the 
inter‑quantile range (IQR)

a  Fraction of disease-associated TFs within TADs

Statistic Breast cancer Prostate cancer

Enhancer DA score TF DA score Enhancer DA score Fraction of DA-TFsa

Control SNP-rich Control SNP-rich Control SNP-rich Control SNP-rich

# of TADs 16,473 26 10,463 17 13,587 291 10,070 241

1st quantile 4.55 5.42 10.5 17.0 4.50 5.42 0.32 0.66

2nd quantile 4.75 5.66 11.5 17.0 4.69 5.66 0.33 0.67

3rd quantile 4.90 5.80 12.5 18.0 4.87 5.77 0.35 0.69

IQR 0.35 0.38 2.0 1.0 0.37 0.35 0.03 0.03
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physical chromatin interactions [115, 116]. Importantly, 
the disease association scores of enhancers and tran-
scription factors mapped to cancer-associated SNPs 
through chromatin contacts are consistently higher com-
pared to those identified using a linear DNA model. This 
also holds true for the target genes of these regulatory 
elements.

Our results are in line with numerous studies dem-
onstrating that the 3D structure of the genome, which 
facilitates certain DNA-DNA interactions regulating 
gene expression [117], can effectively be used to reveal 
the functional mechanisms of genetic variation as well 
as candidate genes related to cancer [118]. For instance, 
potentially functional non-coding mutations were iden-
tified by integrating cancer genome variation with cis-
regulatory networks, long-range chromatin interactions, 
and transcriptomic data [119]. This study demonstrated 
that frequently mutated regulatory elements not only 
show long-range chromatin interactions and mRNA 
abundance associations with target genes, but also are 
enriched in motif-rewiring mutations and structural 
variants. Another research characterized the mutational 
landscape of gene-regulatory and chromatin architectural 
elements in whole cancer genomes with transcriptional 
and pathway activity, functional conservation and recur-
rent driver events [120]. A statistical model to quantify 

mutational enrichment or depletion in classes of genomic 
elements through megabase-scale effects revealed that an 
increased mutation frequency in transcription start sites 
associates with mRNA abundance in most cancer types, 
while open-chromatin regions are generally enriched in 
mutations.

We finally investigated the relationship among genetic 
variants, regulatory elements, and their target genes in 
the context of TADs, relatively small, compact, and self-
interacting genomic regions [121]. As anticipated, we 
found that those TADs carrying cancer-associated SNPs 
also contain enhancers and binding sites for transcrip-
tion factors whose disease association is generally higher 
compared to regulatory elements located in control 
TADs devoid of high-risk SNPs. This analysis can further 
be expanded to include genome-wide epigenome pat-
terns highlighting an important role of the DNA meth-
ylation in the maintenance of 3D genome regulation. 
Interestingly, DNA methylation was found to intrinsically 
modulate chromatin structure and function by increas-
ing chromatin condensation in peri-centromeric regions, 
decreasing the overall DNA flexibility, and favoring the 
heterochromatin state [122]. Further, it has been shown 
that cancer-related methylation loss is associated with 
the deregulation of 3D genome organization leading 
to the disruption of the genome compartmentalization 

Fig. 10 Analysis of the disease association of transcription factors (TFs) within TADs. A The distribution of disease‑association (DA) scores against 
breast cancer and B the fraction of TFs associated with prostate cancer. Blue violins show the distribution of DA scores and the fraction within 
control TADs, whereas green violins show the distribution within SNP‑rich TADs. In each violin, the horizontal black line is the median, the narrow 
gray box shows the first and third quantiles, and whiskers mark the minimum and maximum values excluding outliers, which are represented by 
black diamonds
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[123]. DNA methylation can also inactivate TAD bound-
aries leading to the concomitant activation of key cancer 
drivers by enhancers located outside their normal TADs 
through long-range chromatin interactions [124].

Integrating the chromatin structure with the multi-
omics data is a promising approach to study how the spa-
tial organization of the genome affects gene regulation 
through physical interactions between various genomic 
regions. This technique also holds promise to not only 
reveal hot spots within the human genome linked to dis-
ease, but also investigate subtle differences between the 
genetic makeup of individuals leading to varying levels of 
disease risk and progression. Overall, our work provides 
a new perspective for investigating the effects of genetic 
variation on gene regulation in cancer through the large-
scale analysis of long-range chromatin interactions shap-
ing the 3D genome structure.

Methods
Hi-C data
Hi-C data at 5 kbp resolution collected for the human 
mammary epithelial cell line were downloaded from 
the Gene Expression Omnibus database (GEO acces-
sion: GSE63525) [50]. The Hi-C data at 10 kbp resolu-
tion collected for the human normal prostate cell line 
were downloaded from the Gene Expression Omnibus 
database (GEO accession: GSM3564252) [125]. In order 
to effectively detect significant chromatin contacts, sta-
tistical confidence estimates for Hi-C contact maps were 
computed with the Fit-Hi-C programming application 
[126]. Specifically, the latest reimplementation, FitHiC2 
v2.0.7, was used to perform the genome-wide analysis 
of the high-resolution Hi-C data for breast and prostate 
cancers, including intra- and inter-chromosomal con-
tacts. This software first computes binomial p-values for 
the significance of observing a contact count that is at 
least equal to the observed integer count value or higher. 
P-values are then subjected to multiple testing correc-
tion using the Benjamini-Hochberg procedure to obtain 
q-values representing the minimum false discovery rate 
(FDR) threshold at which the contact is considered sig-
nificant [127]. We excluded low-confidence interactions 
keeping only those contacts whose q-values are ≤0.05 
[128].

Genome-wide association studies
In this study, we used the GWAS data for breast can-
cer generated for 122,977 cases and 105,974 controls of 
European ancestry and 14,068 cases and 13,104 of East 
Asian ancestry [129], and for prostate cancer generated 
for 46,939 cases and 27,910 controls of European ances-
try [130]. We first identified SNPs having OncoArray 
accession numbers resulting in 568,712 SNPs for breast 

cancer and 13,502,794 SNPs for prostate cancer, and then 
we selected 808 (breast cancer) and 13,447 (prostate can-
cer) highly associated SNPs with a p-value of ≤5 ×  10− 8 
according to the published work [131].

Gene regulatory elements
Data on enhancers, including their genomic location, tar-
get genes, and disease association scores were obtained 
from the Human Enhancer Disease Database (HEDD) 
database [132]. HEDD provides comprehensive informa-
tion for about 2.8 million human enhancers identified by 
ENCODE, FANTOM5 and RoadMap with disease asso-
ciation scores based on enhancer-gene and gene-disease 
associations. In this study, we used 262,490 enhancers 
related to breast cancer and 267,453 enhancers related to 
prostate cancer. The data on transcription factors were 
obtained from the TF2DNA database containing 1306 
TFs, 19,190 target genes, and 24,634,759 binding sites 
[133]. From these data, 164 TFs associated with breast 
cancer were selected based on an experimental and com-
putational pipeline integrating AccessTF, a Bayesian net-
work model to accurately predict protein-bound DNA 
sequence motifs based on chromatin accessibility, with 
TFScore, a scoring system that rank-orders transcription 
factors as candidates for being important for a biologi-
cal process [134]. Further, we identified 612 TFs associ-
ated with prostate cancer based on RegNetDriver, a novel 
computational method to identify tumorigenic drivers 
from the effects of coding and non-coding single nucleo-
tide variants, structural variants, and DNA methylation 
changes in the DNase I hypersensitivity based regulatory 
network [135]. Disease association scores for enhancer 
and TF target genes were collected from the DISEASES 
database [136]. This resource provides evidence on dis-
ease-gene associations primarily computed by an auto-
matic text mining of biomedical abstracts. A scoring 
scheme employed by DISEASES also integrates other 
types of evidence including manually curated disease-
gene associations, cancer mutation data, and genome-
wide association studies from multiple databases. We 
identified the total of 12,846 genes having an association 
score to breast cancer and 10,032 genes having an asso-
ciation score to prostate cancer.

Genome-wide mapping of genetic variants to regulatory 
elements
In the unidimensional approach, SNPs highly associ-
ated with breast and prostate cancer were mapped to 
enhancers and TF binding sites in the linear proximity 
using a 5 kbp window (2.5 kbp up and 2.5 kbp down-
stream from the SNP) for breast cancer and a 10 kbp 
window (5 kbp up and 5 kbp downstream from the 
SNP) for prostate cancer. These window sizes were 
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selected to match the resolution of the Hi-C data. For 
each SNP, we then calculated the median association 
score of mapped enhancers and TFs as well as their 
target genes with the exception of TFs in prostate can-
cer, for which we computed the fraction of disease-
associated TFs. In the three-dimensional approach, 
each highly associated SNP was mapped to regulatory 
elements present in a chromatin fragment forming the 
most confident contacts with the lowest q-value com-
puted by the FitHiC2 software. When multiple frag-
ments have the same lowest q-value, we selected the 
longest-range interaction. This way, the same number 
of chromatin fragments are utilized by both 1D and 3D 
approaches. The median association scores of regula-
tory elements and their target genes mapped through 
physical interactions were calculated in a similar man-
ner as in the 1D analysis.

Topologically associating domains
TADs were identified from intra-chromosomal contacts 
for each chromosome with TopDom v0.10.0 [137]. For 
each TAD, we calculated the median association scores 
for regulatory elements present in that domain as well as 
for their target genes. TADs were then divided into two 
groups, SNP-rich carrying at least one genetic variant 
highly associated with cancer at a p-value of ≤5 ×  10− 8 
and control TADs containing no highly associated SNPs.
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