
Louisiana State University Louisiana State University 

LSU Scholarly Repository LSU Scholarly Repository 

LSU Master's Theses Graduate School 

2010 

Dopaminergic input to the equine pituitary: seasonal and estradiol Dopaminergic input to the equine pituitary: seasonal and estradiol 

effects effects 

Sarah Case Clavier 
Louisiana State University and Agricultural and Mechanical College 

Follow this and additional works at: https://repository.lsu.edu/gradschool_theses 

 Part of the Dairy Science Commons 

Recommended Citation Recommended Citation 
Clavier, Sarah Case, "Dopaminergic input to the equine pituitary: seasonal and estradiol effects" (2010). 
LSU Master's Theses. 3493. 
https://repository.lsu.edu/gradschool_theses/3493 

This Thesis is brought to you for free and open access by the Graduate School at LSU Scholarly Repository. It has 
been accepted for inclusion in LSU Master's Theses by an authorized graduate school editor of LSU Scholarly 
Repository. For more information, please contact gradetd@lsu.edu. 

https://repository.lsu.edu/
https://repository.lsu.edu/gradschool_theses
https://repository.lsu.edu/gradschool
https://repository.lsu.edu/gradschool_theses?utm_source=repository.lsu.edu%2Fgradschool_theses%2F3493&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/79?utm_source=repository.lsu.edu%2Fgradschool_theses%2F3493&utm_medium=PDF&utm_campaign=PDFCoverPages
https://repository.lsu.edu/gradschool_theses/3493?utm_source=repository.lsu.edu%2Fgradschool_theses%2F3493&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:gradetd@lsu.edu


 

 

 
 

DOPAMINERGIC INPUT TO THE EQUINE PITUITARY: 
SEASONAL AND ESTRADIOL EFFECTS 

 
 
 
 
 
 
 
 
 
 
 
 
 

A Thesis 
 

Submitted to the Graduate Faculty of the 
Louisiana State University and 

Agricultural and Mechanical College 
in partial fulfillment of the 

requirements for the degree of 
Master of Science 

 
in 
 

The Interdepartmental Program in 
the School of Animal Sciences 

 
 
 
 
 
 

by 
Sarah Case Clavier 

B.S., University of Louisiana at Lafayette, 2006 
December 2010 



ii 

 

ACKNOWLEDGEMENTS 

I would like to express my deepest appreciation and gratitude to my major professor, Dr. 

Donald L. Thompson, Jr. for his guidance, council and his patience throughout my career at 

LSU.  I would also like to thank the other two members of my graduate committee, Dr. Cathleen 

C. Williams and Dr. Kenneth R. Bondioli, for their advice and support throughout my research.  

A huge thank you goes to Mr. Franklin “Randy” Wright for his help and accommodation 

throughout all of my research at the LSU Horse Farm.  Appreciation is also extended to Dr. 

Laura R. Gentry for all her assistance and coaching in the RIA lab, and to Mrs. Sally Turner for 

always helping out with that last-minute something or other. 

 Another group of thanks goes to my fellow graduate students for their unending help and 

support throughout my time at LSU.  To Thomas J. Caltabilota, your help was invaluable and 

your friendship is one of my most valued.  Thank you to Lisa R. Earl, Pamela B. Mitcham and 

Thomas J. Stevens for your hours at the farm and time spent in the lab.  A big thanks goes to all 

the students and student workers who assisted in the lab and at the farm. 

 Another thanks goes to my family for their support and love throughout my graduate 

career.  To my mother, thanks for teaching me not to give up and for supporting me in all my 

decisions.  To my father, thanks for all your support along the way, even when you didn’t know I 

needed it.  To my sister, thanks for always being there for me when I just needed someone to 

listen.  And to my in-laws, the Clavier family, thank all of you for being a stable place for me 

through tough times. 

Last but not least, the largest thanks goes to my amazing husband, Kris.  You are my 

biggest fan, my strongest supporter, my best friend and my hero.  I love you, always. 



iii 

 

TABLE OF CONTENTS 

ACKNOWLEDGEMENTS……………………………………………………………….…….. ii 

LIST OF FIGURES………………………………………………………………………………iv 

ABSTRACT......……..……………………………………………………...………...………..... v 

INTRODUCTION ......................................................................................................................... 1 

CHAPTER 

I. REVIEW OF LITERATURE……..…….......……………………………….………........3 

Hypothalamic-pituitary-gonadal axis………………………………….….…....................3 

Prolactin………………………… ……………………………….……............……....... 4 

Seasonal effects on prolactin ..............................................................................................4 

Dopamine and dopamine antagonists …………………………….............………......... ..6 

Thyrotropin-releasing hormone (TRH).……………………………………….........…......7 

Exercise and stress……………………………………………………….............………..8 

Estradiol effects on prolactin…………………………………………………..............….9 

Rationale for current experiments……………………………………….…...............…....9 

  

II. DOPAMINERGIC INPUT TO THE ADENOHYPOPHYSIS: 

REGULATION OF PROLACTIN SECRETION ACROSS FOUR SEASONS  

OF THE YEAR.................................................................................................................11 

Introduction …………………....……………………….....................……………….....11 

Materials and Methods …………………………………………….................................12 

Results ………………………………………................………….....................….........13 

Discussion ……………………………………….................................................……...15 

 

III. DOPAMINERGIC INPUT TO THE ADENOHYPOPHYSIS:  

THE STIMULATORY ROLE OF ESTRADIOL.............................................................18    

Introduction…………………………………………………….................…......…........18 

Materials and Methods……………………………………………..........…....................19 

Results…………………………………………………………………….......................20 

Discussion………………………………………………………………...................…..22 

 

SUMMARY AND CONCLUSIONS...........................................................................................25 

LITERATURE CITED ............................................................................................................... 26 

VITA ........................................................................................................................................... 31 



iv 

 

LIST OF FIGURES 

Figure 

2.1 Prolactin responses to the 8 doses (µg/kg BW) of sulpiride, averaged  

over both sexes and four seasons of the year.……………………..................…………. 14 

 

2.2 Mean areas under the response curves for stallions and mares in the  

four seasons of the year. ………………………….............................................………. 14 

 

2.3 Mean maximum prolactin responses (area under curve) for stallions  

and mares in the four seasons of the year. ……………………...................…………... 15  

 

2.4 Mean ln(ED50) averaged over stallions and mares for the four seasons  

across the year. ………………………………............................................................… 16 

 

3.1 Mean plasma concentrations of estradiol in geldings receiving an i.m.  

injection of 100 mg of ECP (+ECP) or vegetable oil (control)  …………...................... 21 

 

3.2 Mean plasma concentrations of LH in geldings receiving an i.m. injection  

of 100 mg of ECP (+ECP) or vegetable oil or control .....................................................21  

 

3.3 Mean prolactin responses, expressed as areas under the curve, in  

geldings administered 100 mg of ECP (+ECP) or vegetable oil (control)........................22 

 



v 

 

ABSTRACT 

Two experiments were conducted to study the effects of season and estradiol 

administration on dopaminergic input to the equine adenohypophysis.  Experiment 1 began in the 

spring with 16 horses (8 mares, 8 stallions) and was repeated again in the summer, fall, and 

winter.  Horses were given sulpiride injections of eight incremental concentrations (0.25 to 32 

µg/kg BW).  Within each group of 8 horses, half received the sulpiride in an increasing manner, 

the other half in a decreasing manner.  Prolactin concentrations peaked in the first 15 to 30 min 

in all horses in all seasons.  Prolactin areas under the curve increased (P < 0.001) with increasing 

doses of sulpiride, and were highest (P < 0.05) in March for stallions, but in June for mares.  The 

calculated half-maximum values, which should be proportional to the dopaminergic input to the 

pituitary, were lowest (P < 0.05) in June and greatest in September.  The variation in half-

maximum values with season indicated a change in dopaminergic input to the pituitary, with 

lowest input occurring in June in both genders.  The lack of gender effect for half-maximal 

values indicated that mares and stallions respond similarly to the seasonal signals that result in 

changes in hypothalamic dopamine input to the pituitary.  Experiment 2 was designed to 

determine if the degree of dopaminergic input to the adenohypophysis is altered by estradiol 

administration.  Twelve geldings were used.  On day 0, all geldings received an i.m. injection of 

either estradiol cypionate (ECP) or vegetable oil.  Of the 6 geldings receiving ECP, half  received 

2 mL of a solution of 50 mg/mL (100 mg)  and half received 10 mL of a solution of 10 mg/mL 

(100 mg) with control oil injection volumes matching those of treatment injections.  On day 6, all 

geldings received an injection of sulpiride at 0.082 µg/kg BW in saline.  This regimen was 

repeated every other day with the dose increasing each day, from 0.164 to 100 µg/kg BW.  

Estradiol pretreatment increased (P < 0.05) the prolactin response to sulpiride at the 1.025 µg/kg 
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dose and higher.  However, the half-maximum values for ECP-treated and control geldings did 

not differ, indicating that the amount of sulpiride needed to counterbalance the amount of 

dopamine reaching the pituitary was unaltered by estradiol treatment.  It was concluded that 

estradiol likely stimulates prolactin production and secretion after sulpiride directly at the 

lactotrope level, rather than by decreasing hypothalamic dopamine input to the lactotropes. 
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INTRODUCTION 

 The horse is a seasonal breeder.  Mares experience periods of estrus activity during the 

spring and summer months and a period of inactivity during the winter months (Ginther, 1992; 

Daels and Hughes, 1993).  Due to a long-standing practice by many breed associations of using 

January 1st as the official birth date of all foals born within a calendar year, most breeders 

consider it economically important to have foals born as close to that date as possible.  Thus, the 

goal of most producers is to have mares pregnant in mid-February of any given year, so that the 

resulting foals will be born soon after, but not before, the January 1st birth date.  Such foals 

would be expected to have a size and growth advantage on foals born later in the season, thus 

countless time, money, and effort have been put into research of methods to stimulate early 

ovarian activity in the otherwise anovulatory mare. 

As the natural period of seasonal breeding activity approaches, several hormones display 

increased concentration levels in the mare (Thompson et al., 1986).  The adenohypophyseal 

hormone prolactin, which is associated with lactation in most mammalian species, also displays 

an increase in the mare during this time.  This increase in prolactin is accompanied by an 

increase in the number of viable follicles for ovulation.  In 1993, Nequin et al. showed that 

increase in prolactin levels, both by administration of dopamine antagonist or bovine prolactin, 

stimulated follicular growth during the anovulatory period.  However, it was later reported that 

administration of sulpiride, a dopamine antagonist, did not stimulate follicular development 

enough during the winter months to facilitate early breeding (Donadeu and Thompson, 2002).  

One possible explanation for an insufficient increase in prolactin in response to dopamine 

antagonist administration is estrogen.  In 1991, Thompson et al. showed that during the breeding 

season (summer months), estrogen administration increased the production and also secretion of 
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prolactin.  Estrogen is lacking during the anovulatory period of the winter months.  In 2006, 

Kelley et al. reported that prolactin concentrations were dramatically increased in response to 

sulpiride after estradiol treatment, with the date of first ovulation being advanced by an average 

of 45 days.  As in other species, prolactin production and secretion are most likely under a tonic 

inhibitory control in the horse, based on the positive secretory response to administration of 

dopamine antagonists.  If dopamine input is the only regulation of prolactin production and 

secretion, then prolactin increases with increasing day length, or increases after estradiol 

stimulation, would be expected to be a result of reduced dopaminergic input to the 

adenohypophysis.  If such changes were not accompanied by changes in dopaminergic input, 

then some other stimulatory factor(s) would be inferred.  Therefore, the purpose of the first 

experiment was to test the hypothesis that changes in dopaminergic input to the adenohypophysis 

would explain the naturally occurring changes in prolactin secretion throughout the four seasons 

of the year.  The second experiment was designed to determine whether the degree of 

dopaminergic input to the adenohypophysis is altered by the administration of estradiol.   
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CHAPTER I 

REVIEW OF LITERATURE 

 

Hypothalamic-pituitary-gonadal axis 

 Extensive research has shown a link between the hypothalamic-pituitary-gonadal axis and 

reproductive function.  Environmental stimuli, such as photoperiod, cause the hypothalamus to 

send signals to other parts of the brain by way of chemical neurotransmitters (Guyton and Hall, 

1996).  A major hormone produced by the hypothalamus to regulate reproductive function is 

gonodotropin-releasing hormone (GnRH), a decapeptide hormone that affects the release of 

luteinizing hormone (LH) and follicle stimulating hormone (FSH) from the adenohypophysis 

(Alexander and Irvine, 1993).  Throughout the seasons of the year, circulating blood levels of 

these hormones fluctuate in accordance with the reproductive status of the mare (Irvine and 

Alexander, 1993).  When stimulated by external signals, such as photoperiod, stored GnRH from 

secretory granules within the median eminence of the hypothalamus is released and travels to the 

adenohypophysis via the capillary system of the primary plexus (Alexander and Irvine, 1993).  

Upon reaching the adenohypophysis, GnRH binds to receptors located on gonadotropes found in 

the pars distalis (Alexander and Irvine, 1993).  The release of GnRH, and thereby LH and FSH, 

is pulsatile in fashion (Alexander and Irvine, 1993).  A high frequency of GnRH pulses results in 

a greater rise in LH concentrations than FSH concentrations (Alexander and Irvine, 1993); 

alternately, a low frequency of GnRH pulses results in low LH and higher FSH secretion.  

 Ovarian function is highly dependent on the aforementioned gonadotropins (Alexander 

and Irvine, 1993).  Hormone-specific receptors are located on different areas of the equine ovary.  

Most FSH receptors are found on the granulosa cells of ovarian follicles, while LH receptors are 
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mainly located on thecal cells of the follicle (Alexander and Irvine, 1993).  Along with follicular 

maturation comes the production of estradiol by the follicle, through the cooperative actions of 

both thecal and granulosa cells (Alexander and Irvine, 1993).  This estradiol is responsible for 

the increase in LH that ultimately triggers follicular rupture and ovulation (Nett, 1993). Thus, it 

is likely that without the influence of the hypothalamic-pituitary axis on the gonads, there would 

be no functional reproductive cycle in the mare. 

Prolactin 

Stricker and Grueter reported in 1928 (cited by Hadley and Levine, 2006) that milk 

secretion was stimulated in rabbits given an extract of the adenohypophysis. However, when 

injected directly into the ducts of the mammary gland, only the adjacent alveoli responded with 

milk production.  This indicated that prolactin must act in concert with other hormones to 

stimulate generalized somatic effects (Hadley and Levine, 2006).  Riddle, Bates and Dykshorn 

concluded in 1933 (cited by Hadley and Levine, 2006) that there is a distinct part of bovine 

pituitary extract that, when administered to pigeons, stimulated the growth of their crop sac.  

They called this extract ‘prolactin’ (Hadley and Levine, 2006).  Prolactin is produced in the 

adenohypophysis and is a 199-amino acid, single-chain protein (Nett, 1993).  While generally 

thought of as a hormone associated primarily with mammary growth and lactation, prolactin is a 

diverse hormone that seems to be tied to aspects of reproductive function in females as well as 

males (Nett, 1993).   

Seasonal effects on prolactin 

Circulating levels of prolactin in mares are higher during the natural breeding season 

(Johnson, 1986), commonly accepted to be April to September in the northern hemisphere 

(Ginther, 1992). Photoperiod is not the only external factor that can affect prolactin levels, 
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however.  Mares exposed to 16 hours of light in the fall and winter displayed an increase in 

prolactin secretion (Johnson, 1986; Nett, 1993).  It was reported that exposure of anestrous mares 

to additional artificial light to simulate increased daylength of the spring and summer months 

could induce early onset of cyclicity (Sharp et al., 1975).  This practice of extended light 

exposure is commonly and effectively used to induce early cyclicity in seasonally anovulatory 

mares (Sharp and Davis, 1993).  However, using artificial light to induce early cyclicity in mares 

is expensive and labor intensive, and other methods of inducing ovarian stimulation are still 

being actively pursued. 

   In stallions, as well as geldings, circulating levels of prolactin display seasonal changes, 

indicating that in males, the gonads do not regulate prolactin secretion (Nett, 1993).  

Hypophysecotomy in adult male rats resulted in a decrease in the number of testicular LH 

receptors (Hadley and Levine, 2006).  In mares, both circulating and stored prolactin levels are 

highest in the summer and lowest in the winter (Thompson et al., 1986). Another seasonal effect 

that seems to be controlled by prolactin is hair shedding in horses (Thompson and Depew, 1997) 

as well as in sheep (Lincoln and Tortonese, 1995). It should be recognized, however, that aside 

from the annual variations in prolactin levels due to season, there are no notable variations in 

accordance with the stage of the estrus cycle of the mare (Worthy et al., 1986; Nett, 1993).  In 

smaller species, removal of the pituitary from its location under the hypothalamus and relocation 

to another part of the body results in a dramatic reduction in secretion rates of all 

adenohypophyseal hormones except for that of prolactin (Guyton and Hall, 1996), which actually 

increases.  This indicates that prolactin is not stimulated by hormones from the hypothalamus but 

is under constant inhibitory control (Hadley and Levine, 2006).  
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Dopamine and Dopamine Antagonists 

Dopamine is a neurohormone in the catecholamine class derived from the amino acid 

tyrosine (Guyton and Hall, 1996).  When stimulated, dopamine is released into the bloodstream 

and reaches postsynaptic neuronal membranes, where it typically has an inhibitory effect 

(Hadley and Levine, 2006).  It is believed that the normal regulation of prolactin production and 

secretion by the adenohypophysis is via tonic inhibition by dopamine (Guyton and Hall, 1996).  

As mentioned, disruption of the normal communication from the hypothalamus to the 

adenohypophysis results in increased prolactin secretion (Hadley and Levine, 2006).  This idea 

of hypothalamic inhibition is confirmed by the observation that pituitary cells in culture also 

increase prolactin production and secretion (Oosterom et al., 1983), and dopamine added to the 

culture reduces prolactin production and secretion (Zhang et al., 1990).  Like most other 

hypothalamic hormones, dopamine is secreted by the hypothalamus in response to neural signals 

transmitted from other parts of the brain (Guyton and Hall, 1996).  The transport of 

neurosecretory chemicals, such as dopamine, occurs via the tuberoinfundibular tract.  The 

neurons that make up the hypothalamus are divided into two groups – parvocellular and 

magnocellular, which are small and large cells, respectively (Hadley and Levine, 2006).  The 

neurons of the parvocellular system meet at the pituitary stalk.  This cluster is called the 

tuberoinfundibular tract and is so named for its connection from the tuber cinerum of the third 

ventricle to the infundibulum of the pituitary (Hadley and Levine, 2006).  The neurons of this 

system connect to the primary plexus of the hypophyseal portal system of the median eminence 

(Hadley and Levine, 2006).  This network of vascularization provides a restricted pathway 

between hypothalamic neurosecretory cells and those of the adenohypophysis (Hadley and 

Levine, 2006).   Two different sub-types of dopamine receptors were discovered in 1979, 
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referred to as D-1 and D-2 (Kebabian and Calne, 1979).  The D-2 type receptors are found on the 

lactotropes in the adenohypophysis and mediate the effect of dopamine on prolactin production 

and secretion (Munemura et al., 1980; Creese et al., 1983).   

Sulpiride is a D-2 dopamine receptor blocker, and is therefore referred to as a dopamine 

antagonist.  In 1978, Advis and Ojeda showed that in prepubertal female rats, the administration 

of sulpiride resulted in increased serum prolactin levels to the point of hyperprolactinemia as 

well as an early onset of puberty (Advis and Ojeda, 1978).  In 1987, Johnson and Becker showed 

that sulpiride stimulated prolactin secretion in mares.  Many studies followed to further explore 

this idea in mares as well as stallions (Colborn et al., 1991b; Thomson et al., 1996) and geldings 

(Thompson and Depew, 1997).  In 1994, Redmond et al. found that domperidone (another 

dompaminergic antagonist) and sulpiride were both effective ways to increase prolactin levels 

and thereby treat fescue toxicosis in pregnant mares.  Shortly thereafter, in 1997, Besognet et al. 

treated a group of seasonally anestrous mares with sulpiride in order to stimulate circulating 

prolactin concentrations and advance the mean date of their first ovulation.  Prolactin 

concentrations were elevated at 2 and 9 hours after sulpiride injection in treated mares; there was 

no significant elevation in control mares.  The treated group ovulated at a mean day of 77 (day of 

the year), whereas the control group ovulated at a mean of day 110. 

Thyrotropin-releasing hormone (TRH) 

 Thyroid-stimulating hormone (TSH), also referred to as thyrotropin, is a glycoprotein 

hormone synthesized in the adenohypophysis in response to stimulation from TRH, a tripeptide 

produced in the hypothalamus (Hadley and Levine, 2006).  The stimulation of TRH and 

subsequent release of TSH is accompanied by the release of prolactin in most mammals, an event 

mediated by specific receptors for TRH found on lactotropes (Gersch, 1979).  In 1987, Johnson 
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and Becker showed that administration of TRH to both mares in estrus and diestrus stimulated 

serum prolactin concentrations, indicating that this model holds true in the horse as well.  

Colborn et al. (1991b) reported that administration of TRH to stallions in winter resulted in an 

increase in serum prolactin concentrations.  Stallions previously treated with sulpiride for 10 

days had a much greater prolactin response to TRH compared to vehicle-treated stallions, 

indicating that sulpiride stimulated both the production and secretion of prolactin at this time of 

the year.  In contrast, daily treatment of mares with TRH in the winter resulted in a rapid (within 

4 days) loss of the prolactin response, indicating that pituitary stores were being depleted, and 

prolactin production was not being stimulated (Gentry et al., 2002).  

Exercise and Stress 

 In 1975, Euker et al. reported that acute stress stimulated serum prolactin concentrations 

in both intact and castrated male rats.  Sexual stimulation has also been reported to increase 

serum concentrations of prolactin in male rats (Kamel, 1975).  This response was shown to hold 

true for horses as well when, in 1989, Rabb et al. showed that sexual stimulation with and 

without ejaculation resulted in a rise in both serum prolactin and cortisol concentrations.  To test 

the effects of exercise-related stress as well as stress related to sexual stimulation, Colborn et al. 

(1991a) executed a series of experiments and found that plasma prolactin and cortisol 

concentrations increased after both sexual stimulation and acute physical exercise in stallions; 

only cortisol concentrations increased after epinephrine injection.  Those authors suggested that 

while the release of cortisol with regard to stress is likely due to a mass discharge of the 

sympathetic nervous system, the stress-related prolactin release is likely controlled by a neural 

pathway not mediated by catecholamines. 
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Estradiol effects on prolactin 

 In the mare, estradiol is produced and secreted by the growing ovarian follicle (Alexander 

and Irvine, 1993).  In 1984, Brar and Fink reported that estradiol (estradiol-17β) and estrone 

administered to male rats increased plasma concentrations of prolactin.  In 1991, Thompson et al. 

showed that treatment of ovariectomized pony mares with estradiol for 21 days briefly increased 

plasma prolactin levels about 15%, whereas the pituitary content at slaughter was increased 5-

fold relative to vehicle-treated controls.  Aurich et al. (1995) reported that estradiol benzoate, an 

estradiol analog, stimulated serum concentrations of both prolactin and LH, when administered 

in conjunction with naloxone, an opiod antagonist.  In an attempt to stimulate prolactin 

concentrations in seasonally anovulatory mares and hasten ovulation, Kelley et al. (2006) treated 

mares every other day with estradiol benzoate for 10 days, followed by daily injections of 

sulpiride.  Prolactin concentrations were dramatically increased in response to sulpiride after 

estradiol treatment relative to controls, and date of first ovulation was advanced by an average of 

45 days. 

Rationale for the present experiments 

 As mentioned earlier, prolactin production and secretion are assumed to be under tonic 

inhibitory control in the horse, as has been well described in other species, due to the positive 

secretory response to administration of dopamine antagonists.  However, there have been reports 

for other species of possible stimulatory factor(s) from the hypothalamus (putative prolactin 

releasing factors), other than TRH (Tóth et al., 2001).  If dopamine input were the only 

regulation of prolactin production and secretion, then prolactin increases with increasing 

daylength, or increases after estradiol stimulation, would be expected to be a result of reduced 

dopaminergic input to the adenohypophysis.  If such changes were not accompanied by changes 
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in dopaminergic input, then some other stimulatory factor(s) would be inferred.  The purpose of 

the two experiments described herein was to test the hypothesis that changes in dopaminergic 

input to the adenohypophysis would explain 1) the naturally occurring changes in prolactin 

secretion over the four seasons of the year and 2) the stimulation of prolactin production and 

secretion in response to estradiol treatment.  The approach was to use classic dose-response 

analysis (Tallarida, 1979) of the prolactin response to sulpiride to determine the half-maximum 

point (dose).  The half-maximum dose should be an indication of the relative amount of 

dopamine reaching the adenohypophysis at the time of testing, and shifting of the half-maximum 

point left (towards smaller doses) would imply lesser dopaminergic input; conversely, shifting to 

the right (towards higher doses) would imply a greater dopaminergic input. 
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CHAPTER II 

DOPAMINERGIC INPUT TO THE ADENOHYPOPHYSIS: REGULATION OF 
PROLACTIN SECRETION ACROSS FOUR SEASONS OF THE YEAR 

 

Introduction 

The current model of regulation of prolactin secretion in horses, similar to that of most 

mammals, is via dopamine input from the tuberoinfundibular dopaminergic (TIDA) system.  

Dopaminergic neurons that originate in the medialbasal hypothalamus project into the pars 

tuberalis of the adenohypophysis.  Dopamine is then secreted into the hypothalamic hypophyseal 

portal system that feeds into the pars distalis.  There, dopamine binds to the lactotropes and 

keeps prolactin secretion suppressed.  Excessive prolactin secretion, or exogenous administration 

of prolactin, feeds back on the TIDA system to enhance dopaminergic activity, thereby 

completing a short-loop feedback and maintaining prolactin secretion.  The TIDA neurons are 

also thought to be melatonin responsive, such that seasonal changes in photoperiod could be 

translated into increases or decreases in dopaminergic input to the pituitary.  This seasonal 

change could result in low prolactin production and secretion levels in the winter and high levels 

in the summer.  If seasonal variations in prolactin secretion in the horse are mediated by a 

variation in dopaminergic input from the TIDA system, then the dose of a dopaminergic 

antagonist to counterbalance this input should vary proportionally.  Based on this approach, the 

present experiment was designed to test the hypothesis that the degree of dopaminergic input to 

the adenohypophysis in mares and stallions differs across seasons proportionally with the 

changes in prolactin secretion. 
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Materials and methods 

Animals and treatments.  Sixteen horses were selected; all were either Quarter Horse or 

Thoroughbred type.   Both stallions and light horse mares were used, eight of each sex.  Ages of 

the subjects ranged from 7 to 19 years old.  Body condition scores (Henneke et al., 1983) of 

stallions ranged from 4.5 to 5.5 and that of mares ranged from 5.5 to 7.5.  All animals were 

housed at the Louisiana State University Agricultural Center Equine Unit, Ben Hur Farm.  

Stallions were kept in individual paddocks with run-in sheds and mares were kept in adjacent 

pastures.  Horses were maintained on native pasture grasses and supplemented with grass hay 

when necessary.  

Beginning in March 2008, the horses were administered sulpiride in saline (a racemic 

mixture was used; doses based on the L-isomer only) approximately every other day at the 

following doses: 0.25, 0.5, 1, 2, 4, 8, 16, 32 µg/kg of BW.  Half the horses of each sex (n = 8) 

received the successive doses in an increasing manner and the remaining horses (n = 8) received 

the doses in a decreasing manner, in order to assess possible accumulative effects of the 

treatment.  There was a minimum of 1or 2 days of rest with no injection between doses.  Mares 

were treated on alternate days from stallions to avoid unnecessary excitement and perturbation of 

prolactin levels.  The protocol and procedures were then repeated after the summer solstice in 

late June, 2008, after the autumnal equinox in late September, 2008, and after the winter solstice 

in late December into early January of 2009.  The majority of horses were used in all four 

seasons, with a few exceptions of horses that were replaced for reasons unrelated to the 

experiment.   

Blood sample collection and analysis.  Blood samples were collected by jugular 

venipuncture into evacuated, heparinized tubes at  0, 15, 30, 60, 90, and 120 min relative to i.v. 
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injection of sulpiride.  Blood was centrifuged at an r.p.m. of 3000,  plasma was harvested and 

stored at -20°C.  Prolactin concentrations were measured in plasma by radioimmunoassay (RIA) 

as validated previously for equine samples (Colborn et al., 1991b) once all samples were 

collected within a season. 

Statistical analyses. Plasma prolactin concentrations were analyzed for each season by 

ANOVA procedure of SAS (SAS Institute Inc., Cary, NC), which took into account the 

repetitive nature of the sampling.  Factors in the analysis were gender, dose, sampling time, and 

the appropriate interactions.  Prolactin areas under the response curves were calculated by 

subtracting the pre-injection prolactin concentrations, and then summing the net changes in 

prolactin x time interval increments from 15 to 120 min for each horse.  Areas were analyzed by 

ANOVA that tested the effects of dose, gender, season, and the appropriate interactions.  To 

assess for possible shifting of the sensitivity to sulpiride across genders and seasons, logit-log 

transformation was performed for the areas for each horse, and the half-maximum point 

estimated from regression analysis.  These data were analyzed by ANOVA for effects of gender, 

season, and their interaction. 

Results 

There was no effect (P > 0.1) of administering the sulpiride doses in an increasing vs. 

decreasing manner. Prolactin concentrations peaked in the first 15 to 30 min in all horses in all 

seasons (Figure 2.1).  Prolactin areas under the curve increased (P < 0.001) with increasing doses 

of sulpiride, and were highest (P < 0.05) in March for stallions, but in June for mares (Figure 

2.2).  The mean maximum prolactin response, expressed as area under the response curve 

(Figure 2.3), differed between sexes in March (P < 0.001) and December (P < 0.05), with 

stallions having greater responses than mares in both months.  The calculated half-maximum  
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Figure 2.1.  Prolactin responses to the 8 doses (µg/kg BW) of sulpiride, averaged over both sexes 
and four seasons of the year.  The maximum response generally occurred at 15 min, and 
occasionally at 30 min.  There was a dose x time interaction for prolactin concentrations (P < 
0.0001) in the ANOVA.  The pooled SEM was 5.6 ng/mL. 
 
 

 
 
Figure 2.2.  Mean areas under the response curves for stallions and mares in the four seasons of 
the year.  There was a sex x month x dose interaction (P = 0.021) in the ANOVA.  The pooled 
SEM was 10.7 area units. 
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Figure 2.3.  Mean maximum prolactin responses (area under curve) for stallions and mares 
in the four seasons of the year.  There was a sex x month interaction (P = 0.016) in the ANOVA.  
*Means differ between sexes (P < 0.05).  **Means differ between sexes (P < 0.001).  The pooled 
SEM was 15.2 area units. 
 
 
 
values, which should reflect (be proportional to) the dopaminergic input to the pituitary, were 

lowest (P < 0.05) in June and greatest in September (Figure 2.4); there was no effect of gender 

on half-maximum values, nor any gender x month interaction.   

Discussion 

As has been reported previously (Johnson, 1986; Thompson et al., 1986a, b; Aurich et al., 

2002), prolactin concentrations and response to sulpiride varied with season; however, the 

maximal responses differed between mares and stallions.  The greatest response in stallions was 

in March, whereas it was in June for mares.  Although cyclic activity of the mares was not 

monitored, it is likely that the mares were still anovulatory in March, and thus lacked the normal  

March June September December

Month

0

50

100

150

200

250

M
ax

im
um

 re
sp

on
se

, h
 x

 n
g/

m
L Stallions Mares

**
*



16 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 2.4.  Mean ln(ED50) averaged over stallions and mares for the four seasons across the 
year. a,bMean for June differed from that for September (P = 0.006) and for December (P = 
0.032).  The pooled SEM was 0.13. 
 
 
 
steroidal  (androgen or estrogen) stimulation of prolactin production and secretion. Thompson et 

al. (1994) reported that prolactin secretion was greater in mares and stallions in summer relative 

to geldings, which was attributed to the similar lack of gonadal steroids in the geldings. 

The doses of sulpiride used produced prolactin responses (areas under the curve) from 

zero at the lowest doses to close to 200 hours x ng/mL for stallions in March.  In general, the 

dose-response curves began to plateau at the highest dose, and in some cases, at lower doses.  

For instances when the curve was still increasing at the highest dose, a maximum response had to 

be estimated.  These estimates were calculated as the response for the highest dose plus the 

increment between the highest and second highest doses.   

Even though the maximal responses varied with month and between sexes, there was far 

less variation in the half-maximum values calculated from the dose-response curves. 

Theoretically, a shift in the dose-response curve to the left would indicate a decrease in 
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dopaminergic input - that is, less sulpiride needed to counterbalance the dopamine affecting the 

pituitary. There were indeed differences in the half-maximum values averaged across both sexes, 

with the lowest occurring in June.  This coincides with the maximum responses, at least in 

mares.  The highest half-maximum values might have been expected to be in December, when 

prolactin secretion and responses to sulpiride were low.  However, Steger and Bartke (1991), 

studying the seasonal golden hamster, concluded that short day lengths reduced prolactin 

secretion within 4 weeks, but that  an increase in inhibitory input from tuberoinfundibular 

dopaminergic neurons was clearly not involved. It appears that dopaminergic input begins to 

increase in the fall, but it remains constant into the winter.  The lack of gender effect for half-

maximal values indicated that mares and stallions respond similarly to the seasonal signals that 

result in changes in hypothalamic dopamine input to the pituitary. 

It is concluded that dopaminergic input to the adenohypophysis does vary with season in 

mares and stallions, with a general trend for the least input in the summer. There does not appear 

to be a close correlation between dopaminergic input and average seasonal prolactin 

concentrations as described by Johnson (1986).  Whether other factors, such as a prolactin 

stimulatory factor, are involved in the long-term regulation of prolactin secretion needs to be 

determined. 
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CHAPTER III 

DOPAMINERGIC INPUT TO THE ADENOHYPOPHYSIS: 
THE STIMULATORY ROLE OF ESTRADIOL 

 

Introduction 

Regulation of prolactin secretion in mammals involves dopamine secretion from the 

hypothalamic tuberoinfundibular dopaminergic system, its release into the hypothalamic 

hypophyseal portal system, and its binding to lactotropes in the pars distalis (Hadley and Levine, 

2000).  This chain of events keeps prolactin secretion suppressed.  The horse seems to fit this 

model, given the positive response in prolactin secretion after administration of sulpiride or 

domperidone, both dopamine receptor antagonists (Johnson and Becker, 1987;  Colborn et al., 

1991b; Redmond et al., 1994; Thompson and Depew, 1997; Besognet et al., 1997).  Estradiol 

stimulates prolactin production and secretion by acting on adenohypophyseal lactotropes in 

various species.  Estradiol treatment of seasonally anovulatory mares greatly enhanced prolactin 

secretion after administration of sulpiride, resulting in induction of ovulation in 8 of 9 treated 

mares within 21 days (Kelley et al., 2006).  Whether or not the stimulatory effect of estradiol on 

prolactin secretion is via alteration of the dopaminergic input to the pituitary is not known.  The 

present experiment was designed to test the hypothesis that the degree of dopaminergic input to 

the adenohypophysis is altered by estradiol administration. Gradually increasing doses of 

sulpiride were used to construct prolactin dose-response curves in geldings administered 

estradiol or injection vehicle alone; the dose producing half-maximum response was compared 

for the two groups.  Geldings were used because they exhibit an estradiol-induced increase in 

prolactin secretion similar to that reported for mares and their lack of gonads ensured that the 

only source of estradiol would be treatment injections.   
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Materials and methods 

Animals and treatments.  Twelve long-term geldings were used and were of Quarter 

Horse and Thoroughbred types.  Their ages ranged from 7 to 24 years old.  Body condition 

scores were within a range of 6 to 8.  All horses were housed at Louisiana State University 

Equine Unit, Ben Hur Farm.  They were maintained on native grass pasture and supplemented 

with grass hay as needed when pasture grasses were dormant.  Treatments were initiated in early 

November.  On day 0, geldings (n = 6) received an i.m. injection of estradiol cypionate (ECP) or 

vegetable oil (controls; n = 6).  Of the 6 geldings receiving ECP, half (n = 3) received 2 mL of a 

solution of 50 mg/mL (100 mg) and half (n = 3) received 10 mL of a solution of 10 mg/mL (100 

mg).  Both solutions were obtained from BET Labs (Lexington, KY).  Control geldings received 

either 2 or 10 mL of vegetable oil (n = 3 each). 

Beginning on day 6, all geldings received an i.v. injection of sulpiride at 0.082 µg/kg BW 

in saline, followed by frequently collected blood samples.  This regimen was repeated every 

other day with the dose increasing each day.  The doses administered after day 6 were 0.164, 

0.4095, 1.025, 2.56, 6.4, 16, 40, and 100 µg/kg BW on day 8 through day 22. 

Blood sample collection and analyses.  Blood samples were collected by jugular 

venipuncture at 0, 15, 30, 60 and 120 min relative to injection into evacuated, heparinized tubes.  

Blood was centrifuged at 3000 r.p.m., plasma was harvested in all blood samples and stored at -

20°C.  Prolactin and LH concentrations were measured in plasma by RIA as validated previously 

for equine samples (LH: Thompson et al., 1983; prolactin: Colborn et al., 1991b). Estradiol was 

measured in dried acetone extracts of plasma by radioimmunoassay with commercially available 

reagents (Diagnostic Laboratory Systems, Webster, TX). 
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Statistical analyses.  Estradiol data were analyzed as a 2 x 2 factorial arrangement of 

treatments with repeated measures ANOVA with the GLM Procedure of SAS (SAS Institute 

Inc., Cary, NC); estradiol treatment and injection volume were main effects.  For each prolactin 

response to sulpiride injection, net area under the curve was calculated by subtracting the pre-

injection prolactin concentration, and then summing the net changes in prolactin x time interval 

increments from 15 to 120 min.  Areas were analyzed by ANOVA as described for estradiol 

concentrations.  Individual data for each group were analyzed by regression analysis after 

calculation of the log of the doses (x-axis) and logit transformation of the area (y-axis); the dose 

of sulpiride resulting in half-maximum areas was calculated for each gelding and analyzed by 

one-way ANOVA. 

Results 

Estradiol concentrations were affected by estradiol treatment (P < 0.026) and day (P < 

0.001), and there was a treatment x day interaction (P < 0.001; Figure 3.1).  Estradiol 

concentrations in geldings receiving ECP rose to approximately 20 pg/mL by day 1, and were 

above 10 ng/mL through day 8.  The volume of ECP administered did not affect estradiol 

concentrations (P > 0.1).  

 Mean LH concentrations were stimulated (P = 0.038) by ECP treatment (treatment effect 

and treatment x day interaction) and remained higher than those in control geldings for 

approximately 25 days (Figure 3.2).  There was no effect of estradiol volume on LH 

concentrations (P > 0.1).   

Estradiol pretreatment increased (P = 0.0054) the prolactin response to sulpiride at the 

1.025 µg/kg BW dose and higher (Figure 3.3).  There was a sulpiride dose x estradiol treatment  
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Figure 3.1.  Mean plasma concentrations of estradiol in geldings receiving an i.m. injection of 
100 mg of ECP (+ECP) or vegetable oil (control).  There was an effect of treatment (P < 0.026), 
day (P < 0.001), and treatment x day (P < 0.001) in the ANOVA.   There was no difference due 
to ECP volume (2 mL vs. 10 mL; P > 0.1). The polled SEM was 2.4 pg/mL. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 3.2.  Mean plasma concentrations of LH in geldings receiving an i.m. injection of 100 mg 
of ECP (+ECP) or vegetable oil (control).  There was an effect of treatment (P = 0.038), day (P < 
0.001), and treatment x day (P < 0.001) in the ANOVA.  The pooled SEM was 1.7 ng/mL.
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Figure 3.3.  Mean prolactin responses, expressed as areas under the curve, in geldings 
administered 100 mg of ECP (+ECP) or vegetable oil (control).  There was an effect of treatment 
(P = 0.0054) and dose (P < 0.001), as well as interaction of treatment x dose (P < 0.001) in the 
ANOVA.  Areas differed between estradiol-treated and control geldings at the 1.025 µg/kg BW 
dose and higher (P < 0.05). The pooled SEM was 5.0 area units. 
 
 
 
 
interaction (P < 0.001) in the ANOVA.  Analysis of the half-maximum values from the logit-log 

regression analysis revealed that the natural log of the mean half-maximum dose of sulpiride in 

control geldings was not different (P > 0.1) from that of estradiol-treated geldings. (2.12 vs. 2.82; 

SEM = 0.38); nor did the mean half-maximum values differ (11.4 vs. 24.1 µg/kg BW; SEM = 

6.8 µg/kg BW). 

Discussion 

 Treatment of geldings with ECP increased both LH secretion and the prolactin response 

to sulpiride as reported previously (Thompson et al., 2008).  Similar increases were reported for 

seasonally anovulatory mares (Aurich et al. 2002; Kelley et al., 2006; Mitcham et al., 2010).  The 

stimulatory effect of ECP on LH secretion was used to confirm the bioactivity of the ECP 
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injection, and it also indicates the duration after injection that the estradiol was active. As seen 

from Figure 3.2, the duration of stimulation for LH secretion was greater than 30 days, well 

beyond the last sulpiride injection in the series (day 22). 

 Although ECP administration stimulates LH secretion in the absence of sulpiride 

treatment (or any other dopamine antagonist) in horses (Garcia and Ginther, 1978; Thompson et 

al., 2008), the stimulatory effect of estradiol on prolactin secretion in the absence of a dopamine 

antagonist is minimal (Thompson et al., 1991).  Kelley et al. (2006) was the first to combine 

estradiol pretreatment with sulpiride injections to produce prolactin concentrations in seasonally 

anovulatory mares well in excess of those produced by sulpiride alone (Donadeu and Thompson, 

2002).  In fact, in geldings treated daily with sulpiride in the winter, prolactin responses actually 

decreased over time, indicating a depletion of pituitary stores and a lack of stimulation of 

production (Thompson and Depew, 1997); only as the day length increased did the prolactin 

responses begin to rise again.  Thus, the stimulatory effect of estradiol on prolactin secretion 

appears to be through some mechanism other than altering dopamine input from the 

hypothalamus to the adenohypophysis, but is maximally expressed only in conjunction with 

dopamine antagonist administration.  

 The half-maximum values obtained for control and ECP-treated geldings did not differ.  

This further indicates that the stimulatory effect of estradiol is via a mechanism other than 

altering the dopaminergic input to the adenohypophysis. Although many reports describe the 

"anti-dopaminergic" effects of estradiol in rats (i.e., a reduction in dopaminergic activity of the 

TIDA neurons; Raymond et al., 1978; Ferland et al., 1979; Morel et al., 2009), Stone et al. 

(1970) reported that 4 days of estradiol treatment of male rats increased the pituitary content 

mRNA for preprolactin, the precursor from which prolactin is eventually cleaved.  In 1985, de 
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Greef et al. reported that the estradiol-induced rise in prolactin secretion in female rats 3 days 

after injection was accompanied by a 50% reduction in dopamine concentrations in hypophyseal 

stalk blood and a 240% increase in TRH concentrations.  Alternatively, Pasqualini et al. (1986) 

suggested that estradiol treatment of ovariectomized rats caused a reduction in the dopaminergic 

receptors on the lactotropes in the adenohypophysis, thereby reducing the responsiveness to 

hypothalamic dopamine reaching the gland (hence greater prolactin secretion). And finally, 

Boockfor et al. (1986) reported that estradiol treatment of dispersed pituitary cells in vitro shifted 

the proportions of cells that released growth hormone, prolactin, or both hormones, which 

indicated that estradiol may convert cells that release only growth hormone to those that release 

both growth hormone and prolactin. It is evident that more research needs to be conducted with 

horses to determine the exact mechanism by which estradiol stimulates prolactin production and 

secretion in this species. 
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SUMMARY AND CONCLUSIONS 

Two experiments were conducted to examine whether the changes in dopaminergic input 

to the adenohypophysis would explain variations in prolactin secretion across the four seasons of 

the year as well as the stimulation of prolactin production and secretion in response to estradiol 

treatment.  In the first experiment, both prolactin concentrations and response to sulpiride varied 

with season.  However, maximal responses differed between mares and stallions.  The greatest 

response was in the spring for stallions but in the summer for mares.  The variation in half-

maximum values indicated a seasonal change in dopaminergic input to the pituitary, with lowest 

input occurring in June in both sexes.  This seasonal change is consistent with reports of 

variations in other seasonally breeding species in which dopaminergic control can be measured 

directly. 

As estradiol treatment has been shown to increase prolactin production and secretion, the 

second experiment tested whether the stimulatory effect of estradiol was associated with an 

alteration of the dopaminergic input to the pituitary. Estradiol administration did not alter the 

dosage of sulpiride necessary to counterbalance the dopaminergic input to the pituitary despite 

the fact that the estradiol treatment did double the prolactin response in treated geldings.  It was 

concluded that estradiol most likely stimulates prolactin production and secretion directly at the 

lactotrope level, rather than via decreasing hypothalamic dopamine input to the lactotropes.  

Further research is necessary to confirm this conclusion. 
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