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Abstract

In this dissertation, a new method is developed to study BVPs of the modified

Helmholtz and Helmholtz equations in a semi-infinite strip subject to the Poincare

type, impedance and higher order boundary conditions. The main machinery used

here is the theory of Riemann-Hilbert problems, the residue theory of complex

variables and the theory of integral transforms. A special kind of interconnected

Laplace transforms are introduced whose parameters are related through branch

of a multi-valued function. In the chapter 1 a brief review of the unified transform

method used to solve BVPs of linear and non-linear integrable PDEs in convex

polygons is given. Then unified transform method is applied to the BVP of the

modified Helmholtz equation in a semi-infinite strip subject to the Poincare type

and impedance boundary conditions. In the case of BVP of the modified Helmholtz

equation in a semi-infinite strip subject to the impedance boundary conditions, two

scalar RHPs are derived, then the closed form solutions of the given BVP are de-

rived. The difficulty in application of the unified transform method to BVP of the

Helmholtz equation in a semi infinite strip is discussed later on. The chapter 2

contains application of the finite integral transform (FIT) method to study the

BVP for the Helmholtz equation in a semi-infinite strip subject to the Poincare

type and impedance boundary conditions. In the case of the impedance boundary

conditions, a series representation of the solution of the BVP for the Helmholtz

equation in a semi-infinite strip is derived. The Burniston-Siewert method to find

integral representations of a certain transcendental equation is presented. The roots

of this equation are required for both methods, the FIT method and the RHP based

method. To implement the Burniston-Siewert method, we solve a scalar RHP on

vi



several segments of the real axis.

In chapter 3, we have applied the new method to study the Poincare type and

impedance BVPs for the Helmholtz equation in a semi-infinite strip. In the case

of the Poincare type boundary conditions an order two vector RHP is derived.

In general, it is not possible to find closed form solution of an order two vector

RHP. In the case of the impedance boundary conditions two scalar RHPs are

derived whose closed form solutions are found. Then the series representation for

solution of the BVP of the Helmholtz equation in a semi-infinite strip subject

to the impedance boundary conditions, is recovered using the inverse transform

operator and the residue theory of complex variables. The numerical results are

presented for various values of the parameters involved. It is observed that the FIT

method and the new method generate exactly the same solution of the BVP of

the Helmholtz equation in a semi-infinite strip subject to the impedance boundary

conditions. In chapter 4, we have applied the new method to study the acoustic

scattering from a semi-infinite strip subject to higher order boundary conditions.

Two scalar RHPs are derived whose closed form solutions are found. A unique

solution of the problem is obtained.

vii



Chapter 1
Introduction

1.1 Historical Back Ground

D’Alembert and Euler discovered a general approach for solving a large class of

two dimensional partial differential equations (PDEs). This approach includes sep-

aration of variables, and superimposing solutions of resulting ordinary differential

equations. The method of separation of variables is actually the solution of a PDE

by a transform pair. Examples of such pairs are Fourier transform and a variation

of it are the Laplace transform, Mellin transform, sine transform, cosine transform

and their discrete analogues. The transform method depends on the given PDE,

domain, and the boundary conditions. Consider the general evolution equation

( ∂
∂t

+ iΣn
j=0αj(−i ∂∂x)j)) q(x, t) = 0, −∞ < x < ∞, t > 0, q(x, 0) = q0(x) ∈

S(R), where αj ∈ R, S(R) is the space of Schwartz functions, q(x, t) and its

derivatives decay as | x |→ ∞, uniformly in t. This initial value problem can be

solved by the Fourier transform:

q(x, t) =
2

π

∫ ∞
−∞

eikx−ω(k)tq̂0(k)dk,

ω(k) = Σn
j=0αjk

j, q̂0(k) =

∫ ∞
−∞

e−ikxq0(x)dx.

Consider the 2nd order initial boundary value problem:

i
∂q

∂t
+
∂2q

∂x2
= 0, 0 < x <∞, t > 0,

q(x, 0) = q0(x), q(0, t) = f0(t), q(x) ∈ S(R+), f0(t) ∈ C1,

q0(x), f0(t) are compatible at x = t = 0. This initial boundary value problem can

be solved by the sine transform:
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q(x, t) =
2

π

∫ ∞
0

sin(kx)[e−ik
2tq̂0(t) + ik

∫ t

0

e−ik
2

(t− τ)f0(τ)dτ ]dk,

q̂0(k) =

∫ ∞
0

sin(kx)q0(x)dx.

The transform method is used to solve a wide variety of initial boundary value

problems, but for complicated problems, the classical transform method fails. For

example, there does not exist classical transforms to solve even a 2nd order el-

liptic PDE in simple domains. The main difficulty with the classical transform

method is the identification of a proper transform pair to be used. Some other

available methods are the Wiener-Hopf factorization method and Sommerfield’s

integral representation method. The Wiener-Hopf technique is extensively used

to solve many classical problems in acoustics, diffraction, electromagnetism, fluid

mechanics etc. The unified transform method was introduced by A.S. Fokas, to

solve boundary and initial value problems for two dimensional linear and non lin-

ear integrable PDEs [16]. This method was further developed in [15], [17], [18].

The unified transform method for boundary value problems (BVPS) for PDEs in

convex polygons consists of three steps:

(a) Given a PDE, construct two compatible eigen value equations, which in ac-

cordance with the theory of non linear integrable PDEs, are called as Lax

pair.

(b) Perform simultaneous spectral analysis of the Lax pair. This will generate an

integral representation of q(x1, x2) in terms of a function q̂(k), which is called

as spectral function, and an integral representation of q̂(k). The integral

representation of q̂(k) involves values of q(x1, x2) and of its derivatives on the

boundary of the domain. The implementation of this step for some simple
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evolution equations, and for the Laplace equation in some simple domains,

is explained in [16] and [15]. Implementation of this step for the Laplace

equation in convex polygons is explored in [19].

(c) For the given appropriate boundary conditions, analyze the global relation

satisfied by the boundary values of q(x1, x2) and of its derivatives. This step

is necessary because q̂(k) involves some unknown boundary data. This step is

discussed in detail for some simple domains in [16] and [15]. This step for the

Laplace equation in convex polygons is discussed in [19], and expressions for

q̂(k) in terms of the given boundary data are given. To carry out this step,

some specified domains are required, because for arbitrary domains this step

becomes prohibitively complicated.

In the following section some terminology is defined.

1.2 Terminology

Definition 1.2.1. To define Schwartz space of functions S(Rn), let α = (α1, α2,

· · · , αn), β = (β1, β2, · · · , βn) with αj, βj ≥ 0. Define

∂αφ(x) =
∂α1

∂xα1
1

∂α2

∂xα2
2

· · · ∂
αn

∂xαnn
φ(x),

xα = xα1
1 x

α2
2 · · ·xαnn .

Such multi-indices are denoted by α, β ≥ 0. Note that |α| = α1 +α2 +α3 + · · ·+αn

denotes length of the multi-index α. A function φ(x) ∈ S(Rn) if φ(x) is a smooth

function on Rn and

sup
x∈Rn
|xβ∂αφ(x)| <∞,

holds for all multi-indices α, β ≥ 0. The space S(Rn) is a topological vector space.
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For every pair of multi-indices α, β ≥ 0 and φ(x) ∈ S(Rn), a norm on S(Rn) is

defined as

‖ φ ‖α,β= sup
x∈Rn
|xβ∂αφ(x)|.

A sequence of functions {φn, n ∈ N}, where φn(x) ∈ S(Rn), converges to φ(x) ∈

S(Rn) if

‖ φn(x)− φ(x) ‖α,β −→ 0 as n −→∞.

Note 1.2.1. Definition 1.2.1 reveals that the Schwartz space of functions S(Rn)

consists of all smooth functions whose all the derivatives, and the functions them-

selves decay at infinity faster than reciprocal of any polynomial. S(Rn) is also

referred as a space of rapidly decreasing functions.

Example 1.2.1. Let f : Rn → Rn is defined by

f(x) = e−|x|
2

.

Then f(x) ∈ S(Rn) because f(x) is infinitely differentiable (f(x) ∈ C∞(Rn)) and

decays at infinity faster than reciprocal of any polynomial. If p(x) is any polynomial

then q(x) = p(x)e−|x|
2

also belongs to S(Rn).

Example 1.2.2. Let φ : Rn → Rn be a smooth function with support in a compact

set. Then supx∈Rn |∂αφ(x)| < ∞ for any multi-index α ≥ 0 because a continuous

function on a compact set is bounded. The linear space of all such functions is

denoted by C∞0 (Rn). If the support of φ ∈ B(0, r), then

sup
x∈Rn
|xβ∂αφ(x)| ≤ r|β| sup

x∈Rn
|∂αφ(x)| <∞,

holds for all multi-indices α, β ≥ 0. Hence C∞0 (Rn) ⊂ S(Rn).

Example 1.2.3. Let f : R→ R be defined by

f(x) = e−x
2

sin(ex
2

).

4



Then f(x) /∈ S(R) because f ′(x) is not decaying as |x| → ∞.

Example 1.2.4. Let f : R → R be defined by f(x) = 1
(1+|x|2)n

, where n is a non

negative integer. The f(x) /∈ S(R) because |x|2nf(x) is not decaying as |x| → ∞.

1.2.1 Lax pair for linear PDEs

Proposition 1.2.1. [17] Suppose q(x, y) satisfies the PDE with constant coeffi-

cients

L(∂x, ∂y)q(x, y) = 0, (1.1)

where L(∂x, ∂y) is a linear operator of ∂x and ∂y with constant coefficients. The

PDE (1.1) possesses the Lax pair

∂xµ(x, y, k)− ikµ(x, y, k) = q(x, y), k ∈ C, (1.2)

L(∂x, ∂y)µ(x, y) = 0, (1.3)

where µ(x, y, k) is a scalar function. Note that if q(x, y) satisfies

L(∂x, ∂y)q(x, y) = 0, then the equations (1.2) and (1.3) are compatible.

Proof. Apply the operator L(∂x, ∂y) on equation (1.2) to get

L(∂x, ∂y)(∂x − ik)µ(x, y, k)) = L(∂x, ∂y)q(x, y), k ∈ C. (1.4)

Operators L(∂x, ∂y) and ∂x − ik commute, so

(∂x − ik)L(∂x, ∂y)µ(x, y, k) = L(∂x, ∂y)q(x, y). (1.5)

Use the compatibility condition of equations (1.2) and (1.3) in equation (1.5) to

get the given PDE L(∂x, ∂y)q(x, y) = 0.

Example 1.2.5. Consider the linearized nonlinear Schrödinger equation

i∂tq(x, t) + ∂xxq(x, t) = 0, 0 < x <∞, t > 0. (1.6)

5



A Lax pair associated with the PDE (1.6) is

µx(x, t, k)− ikµ(x, t, k) = q(x, t), k ∈ C,

µt(x, t, k) + ik2µ(x, t, k) = i∂xq(x, t)− kq(x, t).

Proof. Using proposition 1.2.1, a Lax pair associated with PDE (1.6) is

∂xµ(x, t, k)− ikµ(x, t, k) = q(x, t), k ∈ C, (1.7)

i∂tµ(x, t, k) + ∂xxµ(x, t, k) = 0. (1.8)

To eliminate ∂xxµ(x, t, k) from equation (1.8), apply the operator ∂x on equation

(1.7), and simplify to get

∂xxµ(x, t, k) = ik∂xµ(x, t, k) + ∂xq(x, t).

Use equation (1.7), to find the value of ∂xµ(x, t, k) and insert that value in

the above equation to get,

∂xxµ(x, t, k) = ik[ikµ(x, t, k) + q(x, t)] + ∂xq(x, t),

∂xxµ(x, t, k) = (ik)2µ(x, t, k) + ikq(x, t) + ∂xq(x, t).

(1.9)

Insert the value of ∂xxµ(x, t, k) in equation (1.8) and simplify to get

∂tµ(x, t, k) = i[(ik)2µ(x, t, k) + ikq(x, t) + ∂xq(x, t)],

∂tµ(x, t, k) + ik2µ(x, t, k) = i∂xq(x, t)− kq(x, t).
(1.10)

Remark 1.2.1. Another Lax pair associated with the linearized nonlinear Schrödinger

equation (1.6) is

∂tµ(x, t, k)− ikµ(x, t, k) = q(x, t), k ∈ C, (1.11)

∂xxµ(x, t, k) + kµ(x, t, k) = −iq(x, t). (1.12)
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Example 1.2.6. Consider the linearized Korteweg-de Vries equation

∂tq(x, t) + ∂xxxq(x, t) = 0. (1.13)

A Lax pair of PDE (1.13) is

µx(x, t, k)− ikµ(x, t, k) = q(x, t) k ∈ C

µt(x, t, k)− ik3µ(x, t, k) = −∂xxq(x, t)− ik∂xq(x, t) + k2q(x, t).

Proof. Using proposition 1.2.1, a Lax pair associated with PDE (1.13) is

∂xµ(x, t, k)− ikµ(x, t, k) = q(x, t), k ∈ C, (1.14)

∂tµ(x, t, k) + ∂xxxµ(x, t, k) = 0. (1.15)

To eliminate ∂xxxµ(x, t, k) from equation (1.15), apply the operator ∂x on equation

(1.14), and simplify to get

∂xxµ(x, t, k) = ik∂xµ(x, t, k) + ∂xq(x, t).

Use equation (1.14) to the find value of ∂xµ(x, t, k) and insert that value in the

above equation to get,

∂xxµ(x, t, k) = ik(ikµ(x, t, k) + q(x, t)) + ∂xq(x, t),

∂xxµ(x, t, k) = (ik)2µ(x, t, k) + ikq(x, t) + ∂xq(x, t).

(1.16)

Apply the operator ∂x on the above equation and simplify to get

∂xxxµ(x, t, k) = (ik)3µ(x, t, k) + (ik)2q(x, t) + ik∂xq(x, t) + ∂xxq(x, t).

Insert the value of ∂xxxµ(x, t, k) in equation (1.15) and simplify to get

∂tµ(x, t, k) = −[(ik)3µ(x, t, k) + (ik)2q(x, t) + ik∂xq(x, t) + ∂xxq(x, t)],

∂tµ(x, t, k)− ik3µ(x, t, k) = −∂xxq(x, t)− ik∂xq(x, t) + k2q(x, t).

(1.17)
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Example 1.2.7. Suppose q(x, t) satisfies the evolution equation

(∂t +

n0∑
j=0

αj(−i∂x)j)q(x, t) = 0, −∞ < x <∞, t > 0, n0 ∈ Z+. (1.18)

where αj, 0 ≤ j ≤ n0, are constants. A Lax pair associated with PDE (1.18) is

µx(x, t, k)− ikµ(x, t, k) = q(x, t), k ∈ C,

µt(x, t, k) +

n0∑
j=0

αjk
jµ(x, t, k) = −q∗(x, t), where,

q∗(x, t) =

n0∑
j=1

αj[(−i∂x)j−1 + k(−i∂x)j−2 + k2(−i∂x)j−3

+ · · ·+ kj−1]q(x, t).

Remark 1.2.2. Another Lax pair associated with the linear PDE (1.18) is

∂tµ(x, t, k)− ikµ(x, t, k) = q(x, t), k ∈ C, (1.19)

Lµ(x, t, k) = 0,where, (1.20)

L = ∂t +

n0∑
j=0

αj(−i∂x)j. (1.21)

Example 1.2.8. Consider the elliptic PDE

(∂2
x + ∂2

y + 4α)q(x, y) = 0, (1.22)

where α is a constant. For α = 0,−β2, β2, β ∈ R equation (1.22) is the Laplace

equation, the modified Helmholtz equation and the Helmholtz equation, respectively.

A Lax pair for equation (1.22) is

µx(x, y, k)− i(k +
α

k
)µ(x, y, k) =

1

2
(qx(x, y)− iqy(x, y))− iα

k
q(x, y) k ∈ C,

(1.23)

µy(x, y, k) + (k − α

k
)µ(x, y, k) =

1

2
(iqx(x, y) + qy(x, y))− α

k
q(x, y). (1.24)
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Let z = x + iy, z̄ = x − iy, then we have the operators ∂z = 1
2
(∂x − i∂y) and

∂z̄ = 1
2
(∂x + i∂y). The elliptic PDE (1.22), and corresponding Lax pair defined by

equations (1.23) and (1.24) become

qzz̄(z, z̄) + αq(z, z̄) = 0, (1.25)

µz(z, z̄, k)− ikµ(z, z̄, k) = qz(z, z̄), k ∈ C, (1.26)

µz̄(z, z̄, k)− iα
k
µ(z, z̄, k) = −iα

k
q(z, z̄). (1.27)

1.2.2 Simultaneous spectral analysis

Consider the generic case of a Lax pair i.e., it is assumed that while writing the

Lax pair in a matrix form, a matrix is obtained that can be diagonalized. So,

Lq(x, y) = 0 can be written as a compatibility condition of the two linear 1st order

equations:

µx(x, y, k)− if1(k)µ(x, y, k) = q1(x, y, k), (1.28)

µy(x, y, k)− if2(k)µ(x, y, k) = q2(x, y, k). (1.29)

Note 1.2.2. f1(k), f2(k) are given analytic functions of k ∈ C, and q1(x, y, k) and

q2(x, y, k) are analytic functions of k ∈ C depending on q(x, y) and its derivatives.

To carry out the spectral analysis of equations (1.28) and (1.29), construction of

a sectionally analytic function µ(x, y, k) in the complex k-plane i.e., µ(x, y, k) =

µj(x, y, k) for k ∈ Dj, ∪nj=1Dj = C and each µj(x, y, k) is analytic in Dj, is

required.

Write equations (1.28) and (1.29) in the form

(eµ(x, y, k))x = eq1, (eµ(x, y, k))y = eq2,

where e = Exp[−if1(k)x− if2(k)y]. A particular solution of equations (1.28) and

(1.29) is

µj(x, y, k) =

∫ ζ

ζj

eif1(k)(x−x′)+if2(k)(y−y′)[q1(x′, y′, k)dx′ + q2(x′, y′, k)dy′].

9



∫ ζ
ζj

denotes the line integral from the fixed point ζj to an arbitrary point ζ =

x + iy. The function µj(x, y, k) is a solution of the equations (1.28) and (1.29),

even if the line integral is replaced by any smooth curve from ζj to ζ, and it is

independent of choice of this curve. The compatibility of equations (1.28) and

(1.29), and application of the Green’s theorem imply that for any smooth closed

curve∮
eq1(x, y, k)dx+ eq2(x, y, k)dy =

∫ ∫
[(eq2(x, y, k))x − (eq1(x, y, k))y]dxdy = 0.

It is shown in [18] that if ζj, j = 1, 2, 3, ......, n are the corners of a polygon then

µj(x, y, k) is holomorphic in Sj, and ∪nj=1Sj = C. Let Lij be a curve in intersection

of Si, and Sj, i 6= j. Then

µi(x, y, k)− µj(x, y, k) = eif1(k)x+if2(k)yρi,j(k), (1.30)

ρi,j(k) =

∫ ζj

ζi

e−if1(k)x−if2(k)y[q1(x, y, k)dx+ q2(x, y, k)dy]. (1.31)

Using the Sokhotski-Plemelj formulae, it is possible to reconstruct the unique solu-

tion of this scalar Riemann Hilbert problem (RHP). Hence the required sectionally

analytic function is

µ(x, y, k) =
1

2πi

∑
i,j

∫
Li,j

eif1(k′)x+if2(k′)y ρi,j(k
′)

k′ − k
dk′. (1.32)

Equation (1.32) expresses µ(x, y, k) in terms of the spectral function q̂(k), where

q̂(k) = ρi,j(k). The spectral function q̂(k) involves q(x, y) and its derivatives along

the boundary of the polygon. Let L = ∪ni,j=1Li,j, then either equation (1.28) or

(1.29) generates q(x, y) in terms of the spectral function q̂(k) along the curve L.

If the Lax pair is expressed in (z, z̄) coordinates, then equations (1.28) and (1.29)

become

µz(z, z̄, k)− if1(k)µ(z, z̄, k) = q1(z, z̄, k), (1.33)

µz̄(z, z̄, k)− if2(k)µ(z, z̄, k) = q2(z, z̄, k). (1.34)
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Now the particular solution

µj(z, z, k) =

∫ z

zj

eif1(k)(z−z′)+if2(k)(z−z′)(q1(z′, z̄′)dz′ + q2(z̄, z̄′)dz̄′), (1.35)

is also well defined. This is obvious from the complex form of Green’s theorem.

Hence corresponding to equations (1.31) and (1.32)

ρi,j(k) =

∫ zj

zi

e−if1(k)z−if2(k)z(q1(z, z, k)dz + q2(z, z, k)dz), (1.36)

µ(z, z, k) =
1

2πi

∑
i,j

∫
Li,j

eif1(k′)z+if2(k′)z ρi,j(k
′)

k′ − k
dk′. (1.37)

1.2.3 Analysis of the global relation

The formulae representing the solution q(x, y) of a given BVP depend on the given

PDE and domain, these are valid for any boundary conditions, provided these

boundary conditions generate a well posed BVP. A basic limitation of these for-

mulae is that, these are derived under a priori assumption of existence of solutions.

Also, for a given BVP, the spectral function q̂(k) contains some unknown bound-

ary data. The part of q̂(k) involving unknown boundary data in terms of the given

boundary conditions, can be expressed by the following three steps[18]:

(a) For convex closed polygons, the global relation is Σn
j=1ρj+1,j(k) = 0, k ∈ C,

and for unbounded convex polygons the global relation is Σn−1
j=1ρj+1,j(k) = 0,

k ∈ S1 ∩ Sn, where S1 and Sn are sectors in complex k-plane. The definition

of q̂(k) is used to express it in terms of the given boundary conditions and

some unknown functions denoted by ψj(k). Insert these expressions in the

global relation to obtain an equation for the unknown functions ψj(k).

(b) Use certain invariant transformations in the complex k-plane to construct a

set of additional equations from the equation obtained in step (a).

(c) [6] shows that ψj(k) can be obtained either through a system of algebraic

equations or through the solution of a RHP which is obtained in step (b). For
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implementation of step (c), it is observed that for general BVPs for elliptic

equations, the functions ψj(k) satisfy a RHP. This RHP can be obtained as

follows:

1. Determine the domains in the complex k-plane, where each unknown function

is bounded and analytic. These domains are separated by certain curves.

2. For each of these curves, use the equations obtained in step (b) to compute

the jumps of these functions.

Theorem 1.2.1. [17] Let Ω be a convex closed polygon in the complex z-plane,

z = x + iy, with corners z1, z2, · · · , zn, a part of Ω is shown in figure 1.1. Let

q(x, y) be a real valued function satisfying the 2nd order PDE

(∂2
x + ∂2

y + 4α)q(x, y) = 0, (x, y) ∈ Ω. (1.38)

Suppose that appropriate boundary conditions are prescribed on the boundary of

Ω such that there exists a solution q(x, y) which is sufficiently smooth up to the

boundary of Ω. Then q(x, y) can be expressed as follows:

FIGURE 1.1. A part of a convex closed polygon Ω.
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FIGURE 1.2. Contours and spectral functions for the Laplace equation in a convex closed
polygon Ω.

1. For the Laplace equation i.e. equation (1.38) with α = 0

∂zq(z, z̄) =
1

2π

n∑
j=1

∫
lj

eikzρj+1,j(k)dk, (1.39)

ρj+1,j(k) =

∫ zj

zj+1

e−ikzqz(z, z̄)dz, zn+1 = zn. (1.40)

lj are rays in complex k-plane oriented from zero to ∞, and defined by

lj = {k ∈ C : arg(k) = −arg(zj − zj+1)}, j = 1, 2, 3, · · · , n. (1.41)

Contours and spectral functions for Laplace equation in a convex closed poly-

gon are shown in figure 1.2.

2. For the modified Helmholtz equation i.e. equation (1.38) with α = −β2

q(z, z̄) =
1

2πi

n∑
j=1

∫
lj

eikz−( iβ
2

k
)z̄ρj+1,j(k)

dk

k
, (1.42)

ρj+1,j(k) =

∫ zj

zj+1

e−ikz+(iβ
2

k
)z̄(qz(z, z̄)dz + i

β2

k
q(z, z̄)dz̄), zn+1 = zn. (1.43)

lj are the same as in case of Laplace equation, and are defined by equation

(1.41), and improper integrals are assumed where needed. Contours and spec-

tral functions for the modified Helmholtz equation in the convex closed polygon

13



Ω are the same as for the Laplace equation in the convex closed polygon Ω

shown in figure 1.2.

3. For the Helmholtz equation i.e. equation (1.38) with α = β2

q(z, z̄) =
1

2πi
[
n∑
j=1

∫
l̃j

eikz+( iβ
2

k
)z̄ρj+1,j(k)

dk

k
+

2n∑
j=1

∫
Lj

eikz+( iβ
2

k
)z̄ρ(j)(k)]

dk

k
,

(1.44)

ρj+1,j(k) =

∫ zj

zj+1

e−ikz−(iβ
2

k
)z̄(qz(z, z̄)dz − iβ

2

k
q(z, z̄)dz̄), zn+1 = zn. (1.45)

Define l̃j, Lj, ρ
(j)(k) as: l̃j is union of two rays, originating from origin, given

by

l̃j = {k ∈ C : [arg(k) = −arg(zj − zj+1), |k| > β]∪

[arg(k) = π − arg(zj − zj+1), |k| < β]}.

Note that Lj are circular arcs formed by intersection of the ray l̃j with the

FIGURE 1.3. Contours and spectral functions for the Helmholtz equation in a convex
closed polygon Ω.

circle |k| = β; if pj+1, bi, pj are points of intersection of the circle |k| = β
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with the rays {l̃j+1, |k| < β}, {l̃i, |k| > β}, {l̃j, |k| < β}, where bi is between

pj+1 and pj, then ρ(j) on Lj = (bi, αj) is ρi,j+1. The spectral functions satisfy

the global relation
n∑
j=1

ρj+1,j(k) = 0, k ∈ C. (1.46)

If Ω is open, the following modifications are made. The corners z1 and

zn are moved to ∞, and assume that q(x, y) has sufficient decay as z →

∞. The spectral function ρ1,n(k) is zero, hence the summation in equations

(1.39),(1.42) and (1.44) is only up to (n− 1). The spectral functions ρ2,1(k)

and ρn,n−1(k) are not defined for all k ∈ C but for k in S1 and Sn, respec-

tively. S1 and Sn are defined as: for the Laplace and modified Helmholtz equa-

tions S1 and Sn are the half planes defined by

S1 = {k ∈ C, arg(k) ∈ [−arg(z2 − z1), π − arg(z2 − z1)]}, (1.47)

Sn = {k ∈ C, arg(k) ∈ [−arg(zn−1 − zn), π − arg(zn−1 − zn)]}. (1.48)

For the Helmholtz equation, S̃1, S̃n are defined by equations (1.47) and (1.48)

with k replaced by λ. Then S1 and Sn are domains in complex k-plane ob-

tained from the map λ = (1 − β2

|k|2 )k of the sectors S̃1 and S̃n respectively.

The global relation is

n−1∑
j=1

ρj+1,j(k) = 0, k ∈ S1 ∩ Sn. (1.49)

1.3 Modified Helmholtz equation in a semi-infinite strip Ω

In this section we give a summary of the results obtained in [3] for a BVP of the

modified Helmholtz equation in a semi-infinite strip subject to the Poincare type

boundary conditions. Consider the modified Helmholtz equation

(∂2
x + ∂2

y − 4β2)q(x, y) = 0, β ∈ R, (x, y) ∈ Ω, (1.50)
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where Ω is a semi-infinite strip with Poincare type boundary conditions shown in

figure 1.4, with corners z1 =∞, z2 = 0 , z3 = ia, z4 =∞+ ia, a > 0.

FIGURE 1.4. Semi-infinite strip with Poincare type boundary conditions.

The Poincare type boundary conditions are

∂q

∂ν

∣∣∣∣
ej

+ γjq = gj, (1.51)

where ∂q
∂ν

∣∣∣∣
ej

= 5q · ej is the directional derivative in the direction ej specified by

constant βj (0 < βj < π), γj is a real non negative constant, and gj is a real

valued function with appropriate smoothness and decay. The boundary conditions

in equation (1.51) can be written as:

side1 : cos β1qx − sin β1qy + γ1q = g1(x), 0 < x <∞, y = 0, (1.52)

side2 : cos β2qy − sin β2qx + γ2q = g2(y), x = 0, 0 < y < a, (1.53)

side3 : cos β3qx + sin β3qy + γ3q = g3(x), 0 < x <∞, y = a. (1.54)

The functions g1(x) , g3(x) vanish at the points x = 0 and x =∞, sin βj 6= 0, j =

1, 2, 3. Let z = x + iy and z̄ = x − iy, then ∂z = 1
2
(∂x − i∂y), ∂z = 1

2
(∂x + i∂y).
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Equation (1.50) becomes

(
∂2

∂z∂z̄
− β2)q(z, z̄) = 0. (1.55)

In example 1.2.8, a Lax pair related to equation (1.55) is given by equations (1.26)

and (1.27) with α = −β2. Simultaneous spectral analysis of the Lax pair in Ω

yields a sectionally holomorphic function:

µ(z, z̄, k) =
1

2πi

3∑
i,j=1

∫
Li,j

eiḱz+i
β2

k′ z̄
ρi,j(ḱ)

ḱ − k
dḱ, (1.56)

ρi,j(k) =

∫ zj

zi

e−ikz+i
β2

k
z̄(qz(z, z̄)dz + i

β2

k
q(z, z̄)dz̄), i = j + 1. (1.57)

Li,j are curves formed by intersection of sectors S̃i and S̃j defined by equations

S̃j = {λ ∈ C, arg(λ) ∈ [−arg(zj−1 − zj), π − arg(zj+1 − zj)}, 2 ≤ j < n,

S̃i = {λ ∈ C, arg(λ) ∈ [−arg(zi−1 − zi), π − arg(zi+1 − zi)} , 2 ≤ j < n,

i = j + 1.

(1.58)

For the modified Helmholtz equation in semi-infinite strip Ω, S̃1 and S̃n are the

half planes, obtained by using equations (1.47) and (1.48) and replacing k by λ.

S̃1 = {λ ∈ C, arg(λ) ∈ [−arg(z2 − z1), π − arg(z2 − z1)]}

= {λ ∈ C, arg(λ) ∈ [−π, 0]}

S̃n = {λ ∈ C, arg(λ) ∈ [−arg(zn−1 − zn), π − arg(zn−1 − zn)]}

S̃n = {λ ∈ C, arg(λ) ∈ [−arg(z3 − z4), π − arg(z3 − z4)]}

= {λ ∈ C, arg(λ) ∈ [−π, 0]}

Now Sj is found by the map λ = (1 + β2

|k|2 )k from S̃j → Sj. It is observed that Sj

coincide with S̃j. Hence curves Li,j are just the curves lj defined by equation (1.41).

Now for the modified Helmholtz equation the sectionally holomorphic function in
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complex k-plane becomes

µ(z, z̄, k) =
1

2πi

3∑
j=1

∫
lj

eiḱz+i
β2

k′ z̄
ρi,j(ḱ)

ḱ − k
dḱ, (1.59)

ρj+1,j(k) =

∫ zj

zj+1

e−ikz+i
β2

k
z̄(qz(z, z̄)dz + i

β2

k
q(z, z̄)dz̄), j = 1, 2, 3. (1.60)

FIGURE 1.5. Contours and spectral functions for the modified Helmholtz equation in
semi-infinite strip Ω.

In figure 1.5, contours and spectral functions for the modified Helmholtz equation

in semi-infinite strip Ω, are obtained by using equation (1.41).

l1 = {k ∈ C : arg(k) = −arg(z1 − z2)} = {k ∈ C : arg(k) = 0}

l2 = {k ∈ C : arg(k) = −arg(z2 − z3)} = {k ∈ C : arg(k) =
π

2
}

l3 = {k ∈ C : arg(k) = −arg(z3 − z4)} = {k ∈ C : arg(k) = −π}

For the modified Helmholtz equation, S̃j coincides with Sj, so, S1 and Sn are:

S1 = {λ ∈ C, arg(k) ∈ [−π, 0]},

Sn = {λ ∈ C, arg(k) ∈ [−π, 0]}.
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Note that S1 and Sn represent the lower half complex k-plane, thus their inter-

section is the lower half complex k-plane denoted by S. Using theorem 1.2.1 the

global relation becomes

n−1∑
j=1

ρj+1,j(k) = 0, j = 1, 2, 3, ∀k ∈ S1 ∩ S2 = S. (1.61)

Now a relationship between the global relation and a closed 1-form W (x, y, k), k ∈

C, is defined. A closed 1-form related to an arbitrary linear partial differential

equation with constant coefficients is given in [20]. A closed 1-form for the modified

Helmholtz equation (1.55) is

W (z, z̄, k) = e−ikz+i
β2

k
z̄(qz(z, z̄)dz + i

β2

k
q(z, z̄)dz̄), k ∈ C.

Apply the differential operator

dW = (e−ikz+i
β2

k
z̄qz(z, z̄))z̄dz̄ ∧ dz + (i

β2

k
e−ikz+i

β2

k
z̄q(z, z̄))zdz ∧ dz̄

= e−ikz+i
β2

k
z̄[(qzz̄(z, z̄) + i

β2

k
qz(z, z̄))dz̄ ∧ dz + (i

β2

k
qz(z, z̄) + β2q(z, z̄))

dz ∧ dz̄],

dz ∧ dz̄ = −dz̄ ∧ dz use this relation to get,

dW = e−ikz+i
β2

k
z̄(qzz̄(z, z̄)− β2q(z, z̄))dz̄ ∧ dz.

So, W (z, z̄, k), k ∈ C is closed if and only if q(z, z̄) satisfies equation (1.55). If the

integrable PDE satisfied by q(z, z̄) is valid in a closed simply connected domain D

with boundary ∂D, then dW = 0 is equivalent to∫
∂D

W (z, z̄, k) = 0, k ∈ C. (1.62)

Hence equation (1.62) becomes global relation of the unified transform method for

an integrable PDE in a closed polygon, the term coined in [16], [17] and [18]. In the

given BVP of the modified Helmholtz equation in a semi-infinite strip Ω, equation
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(1.62) with Im(k) ≤ 0 becomes the global relation defined by equation (1.61).

Now, it is evident that for the BVP of the modified Helmholtz in a semi-infinite

strip Ω, both the global relation and definition of spectral function {ρj+1,j(k)}n−1
j=1

are a direct consequence of the closed 1-form W (z, z̄, k).

1.3.1 Derivation of order two vector Riemann-Hilbert problem

It is shown in [18] that the generalized direct and inverse Fourier transform pair

associated with modified Helmholtz equation (1.55) is

ρi,j(k) =

∫ zj

zi

e−(ikz+β2

ik
z̄)(qz(z, z̄)dz + i

β2

k
q(z, z̄)dz̄),

i = j + 1, Im(k) ≤ 0, for j = 1, 3 and k ∈ C for j = 2,

(1.63)

q(z, z̄) =
1

2πi

3∑
j=1

∫
lj

eikz+(β
2

ik
)z̄ρj+1,j(k)

dk

k
. (1.64)

Rays lj are defined by equation (1.41). Use ∂zq = 1
2
(∂xq − i∂yq), z = x along

side(1), z = iy along side(2) and z = x+ ia along side(3). Equation (1.63) yields

ρ2,1(k) =

∫ ∞
0

e−(ik+β2

ik
)x(

1

2
∂xq −

i

2
∂yq −

β2

ik
q)(x, 0)dx, Im(k) ≤ 0, (1.65)

ρ3,2(k) = −i
∫ a

0

e(k+β2

k
)y(

1

2
∂xq −

i

2
∂yq −

iβ2

k
q)(0, y)dy, k ∈ C, (1.66)

ρ4,3(k) = −e(k+β2

k
)a

∫ ∞
0

e−(ik+β2

ik
)x(

1

2
∂xq−

i

2
∂yq−

β2

ik
q)(x, a)dx, Im(k) ≤ 0. (1.67)

From equations (1.122), (1.123) and (1.124), find qy(x, 0), qx(0, y), qy(x, a) as fol-

lows:

qy(x, 0) =
1

sin β1

[−g1(x) + cos β1qx(x, 0) + γ1q(x, 0)], (1.68)

qx(0, y) =
1

sin β2

[−g2(y) + cos β2qy(0, y) + γ2q(0, y)], (1.69)

qy(x, a) =
1

sin β3

[g3(x)− cos β3qx(x, a)− γ3q(x, a)]. (1.70)

From equation (1.68), use value of qy(x, 0) in equation (1.65) and integrate by parts

to get

ρ2,1(k) = ih1(k), Im(k) ≤ 0, (1.71)
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where h1(k) = −J1(ik)Ψ1(−ik) +G1(−ik) +
eiβ1d0

2 sin β1

, arg(k) = 0, (1.72)

J1(k) =
γ1 + β2

k
e−iβ1 + keiβ1

2 sin β1

, (1.73)

G1(k) =
1

2 sin β1

∫ ∞
0

e(k+β2

k
)xg1(x)dx, Re(k) ≤ 0, (1.74)

d0 = q(0, 0). (1.75)

ψ1(k) is the unknown function defined by

ψ1(k) =

∫ ∞
0

e(k+β2

k
)xq(x, 0)dx, Re(k) < 0. (1.76)

From equation (1.69), use value of qx(0, y) in equation (1.66) and integrate by parts

to get

ρ3,2(k) = i[−J2(k)Ψ2(k) +G2(k)− E(k)d1 − d0

2eiβ2 sin β2

], k ∈ C, (1.77)

J2(k) =
γ2 − β2

k
eiβ2 − ke−iβ2

2 sin β2

, (1.78)

G2(k) =
1

2 sin β2

∫ a

0

e(k+β2

k
)yg2(y)dy, k ∈ C, (1.79)

E(k) = e(k+β2

k
)a, (1.80)

d1 = q(0, a). (1.81)

Note that ψ2(k) is the unknown function defined by

ψ2(k) =

∫ a

0

e(k+β2

k
)yq(0, y)dy, k ∈ C. (1.82)

From equation (1.70), use value of qy(x, a) in equation (1.67) and integrate by parts

to get

ρ4,3(k) = ih3(k), Im(k) ≤ 0, (1.83)
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where h3(k) = E(k)[−J3(ik)Ψ3(−ik) +G3(−ik) +
e−iβ3d1

2 sin β3

], arg(k) = π,

(1.84)

J3(k) =
γ3 + β2

k
eiβ3 + ke−iβ3

2 sin β3

, (1.85)

G3(k) =
1

2 sin β3

∫ ∞
0

e(k+β2

k
)xg3(x)dx, Re(k) ≤ 0. (1.86)

ψ3(k) is the unknown function defined by

ψ3(k) =

∫ ∞
0

e(k+β2

k
)xq(x, a)dx, Re(k) < 0. (1.87)

Application of the abelian theorem to integrals defining ψ1(k) and ψ3(k) implies

that ψ1(k) and ψ3(k) decay as k → 0 or k →∞. Use values of ρ2,1(k), ρ3,2(k) and

ρ4,3(k) from equations (1.71), (1.77) and (1.83) respectively, in the global relation

defined by equation (1.61), and simplify to get

J1(ik)ψ1(−ik) + J2(k)ψ2(k) + E(k)J3(ik)ψ3(−ik) = G(k), Im(k) ≤ 0, where,

(1.88)

G(k) = G1(−ik) +G2(k) + E(k)G3(−ik) +
d0

2
(
eiβ1

sin β1

+
e−iβ2

sin β2

)− d1

2
E(k)

× (
e−iβ2

sin β2

− e−iβ3

sin β3

).

(1.89)

Take complex conjugate of equation (1.88) and replace k by k̄ to get

J̄1(−ik)ψ1(ik) + J̄2(k)ψ2(k) + E(k)J̄3(−ik)ψ3(ik) = Ḡ(k), Im(k) ≥ 0. (1.90)

From equation (1.90), find ψ2(k) in terms of ψ1(ik) and ψ3(ik). Using the resulting

value of ψ2(k) in (1.88), and making use of equation (1.77), the result obtained is

ρ3,2(k) = ih2(k). Note that

h2(k) =
J2(k)

J̄2(k)
[J̄1(−ik)Ψ1(ik) + E(k)J̄3(−ik)Ψ3(ik)− Ḡ(k)] +G2(k)

− E(k)d1 − d0

2eiβ2 sin β2

, arg(k) =
π

2
.

(1.91)
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Both equations (1.88) and (1.90) are valid for k ∈ R (contour of RHP), ψ1(ik), ψ3(ik)

are holomorphic functions for Im(k) > 0, and ψ1(−ik), ψ3(−ik) are holomorphic

functions for Im(k) < 0. Now ψ2(k) is eliminated from equations (1.88) and (1.90)

to get

J̄1(−ik)

J̄2(k)
ψ1(ik)− J1(ik)

J2(k)
ψ1(−ik) + E(k)[

J̄3(−ik)

J̄2(k)
ψ3(ik)− J3(ik)

J2(k)
ψ3(−ik)] =

Ḡ(k)

J̄2(k)
− G(k)

J2(k)
, k ∈ R.

(1.92)

Replace k by −k in equation (1.92) to get

J̄1(ik)

J̄2(−k)
ψ1(−ik)− J1(−ik)

J2(−k)
ψ1(ik) + E(−k)× [

J̄3(ik)

J̄2(−k)
ψ3(−ik)− J3(−ik)

J2(−k)
ψ3(ik)] =

Ḡ(−k)

J̄2(−k)
− G(−k)

J2(−k)
k ∈ R.

(1.93)

Write equations (1.92) and (1.93) in matrix form

J(k)

 ψ1(ik)

ψ3(ik)

 = J̄(k)

 ψ1(−ik)

ψ3(−ik)

+

 f(k)

−f(−k)

 , k ∈ R, (1.94)

J(k) =


J1(−ik)

J2(k)
E(k)J3(−ik)

J2(k)

J1(−ik)
J2(−k)

E(−k)J3(−ik)
J2(−k)

 , J(k) =


J1(ik)
J2(k)

E(k)J3(ik)
J2(k)

J1(ik)

J2(−k)
E(−k) J3(ik)

J2(−k)

 , (1.95)

(1.96)

f(k) =
G(k)

J2(k)
− G(k)

J2(k)
. (1.97)

Equation (1.94) is the order two vector RHP which is equivalent to the BVP for

the modified Helmholtz equation in a semi-infinite strip Ω subject to the Poincare

type boundary conditions. Note that ψ1(ik), ψ3(ik) are unknown holomorphic func-

tions in the upper half complex k-plane, and ψ1(−ik), ψ3(−ik) are the unknown
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holomorphic functions in the lower half complex k-plane. It is already observed

that

ψ1(k) = ◦(1), ψ3(k) = ◦(1) as k → 0 or k →∞. (1.98)

To obtain the standard form of the order two vector RHP, multiply equation (1.94)

with [J(k)]−1 to get
ψ1(ik)

ψ3(ik)

 = H(k)


ψ1(−ik)

ψ3(−ik)

+


µ1(k)

µ3(k)

 , k ∈ R, (1.99)

H(k) =
1

detJ(k)


H11(k) H12(k)

H21(k) H22(k)

 ,

µ1(k)

µ3(k)

 = [J(k)]−1


f(k)

−f(−k)

 .
(1.100)

Note that

H11(k) =
J1(ik)J3(−ik)

J2(k)J2(−k)
E(−k)− J̄1(ik)J̄3(−ik)

J̄2(k)J̄2(−k)
E(k), (1.101)

H12(k) =
J3(ik)J3(−ik)

J2(k)J2(−k)
− J̄3(ik)J̄3(−ik)

J̄2(k)J̄2(−k)
, (1.102)

H21(k) = −J1(ik)J1(−ik)

J2(k)J2(−k)
+
J̄1(ik)J̄1(−ik)

J̄2(k)J̄2(−k)
, (1.103)

H22(k) = −J1(−ik)J3(ik)

J2(k)J2(−k)
E(k) +

J̄1(−ik)J̄3(ik)

J̄2(k)J̄2(−k)
E(−k). (1.104)

Generally, it is not possible to find closed form solution of the order two vector

RHP. The Closed form solution of the order two vector RHP is possible in some

special cases like scalar and triangular [3].

Remark 1.3.1. If q(x, 0) = O(xδ0), −1 < δ0 < 0, i.e. q(x, 0) has a power sin-

gularity at x = 0 then integrals ρ2,1(k) and ρ4,3(k) defined by equations (1.65) and
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(1.66 ) respectively, are understood in regularized sense, and d0 = 0. Correspond-

ingly, if q(x, a) = O(xδ1) as x → 0 and −1 < δ1 < 0, then d1 = 0, and ρ3,2(k)

defined by equation (1.67) is understood in regularized sense[3].

1.3.2 Scalar cases

Let

Jj2(k) =
Jj(ik)J̄2(k)

J̄j(−ik)J2(k)
, j = 1, 3. (1.105)

Using relation (1.105), rewrite relation (1.94) as follows:

J̄1(−ik)

J̄2(k)
[ψ1(ik)− J12(k)ψ1(−ik)] +

E(k)J̄3(−ik)

J̄2(k)
[ψ3(ik)− J32(k)ψ3(−ik)] =

Ḡ(k)

J̄2(k)
− G(k)

J2(k)
, k ∈ R,

(1.106)

J̄1(ik)

J̄2(−k)
J12(−k)[ψ1(ik)− ψ1(−ik)

J12(−k)
] +

E(−k)J̄3(ik)

J̄2(−k)
J32(−k)[ψ3(ik)− ψ3(−ik)

J32(−k)
=

G(−k)

J2(−k)
− Ḡ(−k)

J̄2(−k)
, k ∈ R.

(1.107)

Let

Jj2(k)Jj2(−k) = 1, j = 1, 3. (1.108)

Using this relation in equations (1.106) and (1.107), ψ1(ik) − J12(k)ψ1(−ik) and

ψ1(ik)− J12(k)ψ1(−ik) are obtained as follows:

ψ1(ik) = J12(k)ψ1(−ik) + ω1(k), k ∈ R, (1.109)

ψ3(ik) = J32(k)ψ3(−ik) + ω3(k), k ∈ R. (1.110)

Equations (1.109) and (1.110) define two scalar RHPs, ψ1(ik), and ψ3(ik) are

the holomorphic functions in upper half complex k-plane, where as ψ1(−ik) and
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ψ3(−ik) are holomorphic functions in the lower half complex k-plane. Note that

ω1(k) = −E(k)J̄3(−ik)

J̄1(−ik)
ω3(k) +

1

J̄1(−ik)
[Ḡ(k)− J̄2(k)

J2(k)
G(k)],

ω3(k) = [
E(−k)J3(−ik)

J2(−k)
− E(k)J1(−ik)J̄3(−ik)

J̄1(−ik)J2(−k)
]−1×

{G(−k)

J2(−k)
− Ḡ(−k)

J̄2(−k)
− J1(−ik)

J̄1(−ik)J2(−k)
[Ḡ(k)− J̄2(k)

J2(k)
G(k)]},

ω1(k) = ◦(1) as k → ±∞, or k → 0 and ω3(k) = ◦(1) as k → ±∞.

(1.111)

Conditions for the scalar RHPs are defined by equation (1.108). Simplification of

these conditions in terms of βj and γj results in the following relations:

j = 1 : e4i(β1+β2) = 1, (2β2 − γ2
2) sin 2β1 − (2β2 − γ2

1) sin 2β2 = 0, (1.112)

j = 3 : e4i(β1β3) = 1, (2β2 − γ2
2) sin 2β3 − (2β2 − γ2

3) sin 2β3 = 0. (1.113)

Since βj ∈ (0, π) and γj > 0, (j = 1, 2, 3), the above relations generate

j = 1 : β1 + β2 =
mπ

2
, 2β2 − γ2

2 + (−1)m(2β2 − γ2
1) = 0, m = 1, 2, 3, (1.114)

j = 3 : β2 − β3 =
mπ

2
, (−1)m(2β2 − γ2

2) + 2β2 − γ2
3) = 0, m = −1, 0, 1. (1.115)

Hence conditions of the scalar RHPs given by equation (1.108) are simplified in

terms of the parameters involved in the given BVP of the modified Helmholtz

equation in a semi-infinite strip Ω i.e. βj ∈ (0, π) and γj > 0, (j = 1, 2, 3), in the

following cases:

1. γ1 = γ3 =
√

4β2 − γ2
2 , 0 < γj < 2|β|, β1 = π − β2, β3 = β2;

2. γ1 =
√

4β2 − γ2
2 , γ3 = γ2, 0 < γj < 2|β|, β1 = π − β2, β3 = β2 ± π

2
;

3. γ1 = γ2, γ3 =
√

4β2 − γ2
2 , 0 < γj < 2|β|, β1 = π − β2 ± π

2
, β3 = β2;
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4. γ1 = γ2 = γ3, β1 = π
2
− β2, β3 = π

2
+ β2, 0 < β2 <

π
2
;

5. γ1 = γ2 = γ3, β1 = 3π
2
− β2, β3 = β2 − π

2
, π

2
< β2 < π.

Boundary conditions (1.109) and (1.110) imply that the functions ψ1(−ik) and

ψ3(−ik) can be analytically continued into C+ through the following relations:

ψ1(−ik) =
ψ1(ik)− ω1(k)

J12(k)
, k ∈ C+, (1.116)

ψ3(−ik) =
ψ3(ik)− ω3(k)

J32(k)
, k ∈ C+. (1.117)

Use values of ψ1(ik) and ψ3(ik) in equation (1.90), and simplify to get the function

ψ2(k) as

ψ2(k) = − J̄1(−ik)

J̄2(k)
ψ1(ik)− E(k)

J̄3(−ik)

J̄2(k)
ψ3(ik) +

Ḡ(k)

J̄2(k)
. (1.118)

Now ρ2,1(k), ρ3,2(k) and ρ4,3(k) given by equations (1.71), (1.77) and (1.83) re-

spectively, are expressed in terms of ψ1(ik) and ψ3(ik), by using equations (1.116),

(1.117), and (1.118). Then the inverse transformation equation (1.64) generates

q(z, z̄) = I0 + I1 + I2 + I3. (1.119)

Note that

2πI0 =

∫ ∞
0

[
J̄1(−ik)J2(k)

J̄2(k)
ω1(k) +G1(−ik) +

eiβ1d0

2 sin β1

]eikz+
β2

ik
z̄ dk

k
+∫ i∞

0

[−J2(k)

J̄2(k)
Ḡ(k) +G2(k)− E(k)d1 − d0

2eiβ2 sin β2

]eikz+
β2

ik
z̄ dk

k

−
∫ 0

−∞
[G3(−ik) +

e−iβ3d1

2 sin β3

]E(k)eikz+
β2

ik
z̄ dk

k
,

I1 = − 1

2π

∫
L++

J̄1(−ik)J2(k)

J̄2(k)
ψ1(ik)eikz+

β2

ik
z̄ dk

k
,

I2 = − 1

2π

∫ 0

−∞

J̄3(−ik)J2(k)

J̄2(k)
ω3(k)E(k)eikz+

β2

ik
z̄ dk

k
,

I3 =
1

2π

∫
L−+

J̄3(−ik)J2(k)

J̄2(k)
Ψ3(ik)E(k)eikz+

β2

ik
z̄ dk

k
.

(1.120)
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Here L++ = {(i∞, 0)∪ (0,∞)} and L−+ = {(−∞, 0)∪ (0, i∞)} denote the bound-

aries of the first and second quadrant of the complex k-plane, drawn anti-clockwise.

Note that the integrals I0 and I2 are expressed in terms of given boundary condi-

tions, where as the integrals I1 and I3 involve the unknown functions ψ1(ik) and

ψ3(ik) which are analytic in C+. The closed form solutions of the scalar RHPs

(1.109) and (1.110) and hence the solution of given BVP of modified Helmholtz

equation in a semi-infinite strip Ω subject to the Poincare type boundary condi-

tions, are derived in [3].

1.3.3 Triangular cases

Let the relation defined by equation (1.108) is valid for j = 1, but is not valid for

j = 3, i.e.

J12(k)J12(−k) = 1, J32(k)J32(−k) 6= 1. (1.121)

The first equation in relation (1.121) reveals that

(a) γ1 =
√

4β2 − γ2
2 , β1 = π − β2 or

(b) γ1 = γ2, β1 = π − β2 ± π
2
.

Using the above defined conditions (a) or (b) in the order two vector RHP (1.99),

a triangular order two vector RHP is obtained [3]. The closed form solution of

the triangular order two vector RHP, and hence the solution of given BVP of the

modified Helmholtz equation in a semi-infinite strip Ω subject to the Poincare type

boundary conditions, are derived in [3].

1.4 Impedance boundary conditions

This case is not explicitly discussed in [3]. Now we discuss this case here. Insert

β1 = β2 = β3 = π
2

in equations (1.122), (1.123) and (1.124). Then the impedance
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boundary conditions are:

side1 : −qy + γ1q = g1(x), 0 < x <∞, y = 0, (1.122)

side2 : −qx + γ2q = g2(y), x = 0, 0 < y < a, (1.123)

side3 : qy + γ3q = g3(x), 0 < x <∞, y = a. (1.124)

FIGURE 1.6. Impedance boundary condtions along the sides of Ω.

Figure 1.6 shows a semi-infinite strip Ω subject to the impedance boundary con-

ditions. To find the corresponding scalar RHP in this case, consider the following

results from equations (1.100), (1.101), (1.102), (1.103) and (1.104):

H(k) =
1

detJ(k)


H11(k) H12(k)

H21(k) H22(k)

 , (1.125)

detJ(k) =
J3(−ik)J1(−ik)E(−k)− J1(−ik)J3(−ik)E(k)

J2(−k)J2(k)
, (1.126)
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H11(k) =
J1(ik)J3(−ik)

J2(k)J2(−k)
E(−k)− J̄1(ik)J̄3(−ik)

J̄2(k)J̄2(−k)
E(k), (1.127)

H12(k) =
J3(ik)J3(−ik)

J2(k)J2(−k)
− J̄3(ik)J̄3(−ik)

J̄2(k)J̄2(−k)
, (1.128)

H21(k) = −J1(ik)J1(−ik)

J2(k)J2(−k)
+
J̄1(ik)J̄1(−ik)

J̄2(k)J̄2(−k)
, (1.129)

H22(k) = −J1(−ik)J3(ik)

J2(k)J2(−k)
E(k) +

J̄1(−ik)J̄3(ik)

J̄2(k)J̄2(−k)
E(−k), (1.130)

µ1(k)

µ2(k)

 = [J(k)]−1


f(k)

−f(−k)

 . (1.131)

From equation (1.95)

J [k]−1 =
1

detJ(k)


J3(−ik)E(−k)

J2(−k)
−J3(−ik)E(k)

J2(k)

−J1(−ik)
J2(−k)

J1(−ik)

J2(k)

 , (1.132)

f(k) =
G(k)

J2(k)
− G(k)

J2(k)
. (1.133)

Note that G(k) is given by substituting β1 = β2 = β3 = π
2

in equation (1.89)

G(k) = G1(−ik) +G2(k) +G3(−ik). (1.134)

G1(−ik), G2(k), E(k) and G3(−ik) are given below. To find H11(k), H12(k), H21(k)

and H22(k) substitute β1 = β2 = β3 = π
2

in equations (1.72), (1.84), (1.91),(1.73),

(1.74), (1.78), (1.79), (1.85), (1.86) to get the following:

h1(k) = −J1(ik)ψ1(−ik) +G1(−ik) +
id0

2
, arg(k) = 0, (1.135)

J1(k) =
ik2 + γ1k − iβ2

2k
, (1.136)

G1(k) =
1

2

∫ ∞
0

e(k+β2

k
)xg1(x)dx, Re(k) ≤ 0, (1.137)

d0 = q(0, 0), (1.138)
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h2(k) =
J2(k)

J̄2(k)
[J̄1(−ik)ψ1(ik) + E(k)J̄3(−ik)ψ3(ik)− Ḡ(k)] +G2(k)

i
E(k)d1 − d0

2
, arg(k) =

π

2
,

(1.139)

J2(k) =
ik2 + γ2k − iβ2

2k
, (1.140)

G2(k) =
1

2

∫ a

0

e(k+β2

k
)yg2(y)dy, k ∈ C, (1.141)

E(k) = e(k+β2

k
)a, (1.142)

d1 = q(0, a), (1.143)

h3(k) = E(k)[−J3(ik)ψ3(−ik) +G3(−ik) +
−id1

2
], arg(k) = π, (1.144)

J3(k) =
−ik2 + γ3k + iβ2

2k
, (1.145)

G3(k) =
1

2

∫ ∞
0

e(k+β2

k
)xg3(x)dx, Re(k) ≤ 0. (1.146)

Since J2[−k] = J2(k), J2(k)J2(−k) = J2(k)J2(−k), J3(ik)J3(−ik) = J3(ik)J3(−ik),

and J1(ik)J1(−ik) = J1(ik)J1(−ik), equations (1.127), (1.128), (1.129), (1.130)

and (1.132) become

H11(k) =
J1(ik)J3(−ik)E(−k)− J1(ik)J3(−ik)E(k)

J2(k)J2(−k)
, (1.147)

H12(k) =
J3(ik)J3(−ik)J3(ik)J3(−ik)

J2(k)J2(−k)
= 0, (1.148)

H21(k) =
−J1(ik)J1(−ik) + J1(ik)J1(−ik)

J2(k)J2(−k)
= 0, (1.149)

H22(k) =
−J1(−ik)J3(ik)E(k) + J1(−ik)J3(ik)E(−k)

J2(k)J2(−k)
, (1.150)

J [k]−1 =
1

J2(−k)detJ(k)

 J3(−ik)E(−k) −J3(−ik)E(k)

−J1(−ik) J1(−ik)

 . (1.151)
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Note that detJ(k) is given by equation (1.126). Use value of J [k]−1 from equation

(1.151) in equation (1.131) to get
µ1(k)

µ3(k)

 =
1

J2(−k)detJ(k)

 J3(−ik)E(−k)f(k) + J3(−ik)E(k)f(−k)

−J1(−ik)f(k)− J1(−ik)f(−k)

 .
(1.152)

Use the value of f(k) from equation (1.133) in equation (1.152) to get

µ1(k) =
J3(−ik)E(−k){ G(k)

J2(k)
− G(k)

J2(k)
}+ J3(−ik)E(k){ G(−k)

J2(−k)
− G(−k)

J2(−k)
}

J2(−k)detJ(k)
, (1.153)

µ3(k) =
−J1(−ik){ G(k)

J2(k)
− G(k)

J2(k)
} − J1(−ik){ G(−k)

J2(−k)
− G(−k)

J2(−k)
}

J2(−k)detJ(k)
. (1.154)

Note that E(k) and G(k) are given by equations (1.142) and (1.134). From equa-

tions (1.136), (1.140), (1.145), (1.142) and (1.126) use the values of J1(k), J2(k)

and J3(k), E(k) and detJ(k) respectively, in equations (1.126), (1.147), (1.148),

(1.149), (1.150), (1.153) and (1.154) to get

H11(k)

detJ(k)
=

(k2 + β2 − kγ1)(k2 − β2 + ikγ2)

(k2 + β2 + kγ1)(k2 − β2 − ikγ2)
, (1.155)

H21(k)

detJ(k)
= 0, (1.156)

H21(k)

detJ(k)
= 0, (1.157)

H22(k)

detJ(k)
=

(k2 − β2 + ikγ2)(k2 + β2 + kγ3)

(k2 − β2 − ikγ2)(k2 + β2 − kγ3)
, (1.158)

µ1(k) =
iea(k+β2

k
)(k2 + β2 − kγ3)

Q(k)
[

G(−k)

k2 − β2 + ikγ2

+
G(−k)

k2 − β2 − ikγ2

]−

ie−a(k+β2

k
)(k2 + β2 − kγ3)

Q(k)
[

G(k)

k2 − β2 − ikγ2

+
G(k)

k2 − β2 + ikγ2

],

(1.159)

µ3(k) =
i(k2 + β2 + kγ1)[(k2 − β2 − ikγ2)G(−k) + (k2 − β2 + ikγ2)G(−k)]

Q(k)[k4 + β4 + k2(−2β2 + γ2
2)]

+

(k2 + β2 + kγ1)[(−ik2 + iβ2 + kγ2)G(k)− i(k2 − β2 − ikγ2)G(k)]

Q(k)[k4 + β4 + k2(−2β2 + γ2
2)]

.

(1.160)

32



Note that

Q(k) = J2(−k)detJ(k)

=
i(k2 + β2 + kγ1)(k2 + β2 − kγ3)e−a(k+β2

k
)(−1 + e2a(k+β2

k
))

2k(k2 − β2 + ikγ2)
.

(1.161)

From equations (1.155), (1.156), (1.157) and (1.158) use the values ofH11(k), H12(k),

H21(k), H22(k) in equation (1.125) to get

H(k) =

 p1(k) 0

0 p3(k)

 , where (1.162)

p1(k) =
(k2 + β2 − kγ1)(k2 − β2 + ikγ2)

(k2 + β2 + kγ1)(k2 − β2 − ikγ2)
, (1.163)

p3(k) =
(k2 − β2 + ikγ2)(k2 + β2 + kγ3)

(k2 − β2 − ikγ2)(k2 + β2 − kγ3)
. (1.164)

From equation (1.162) use the value of H(k) in equation (1.99), then the order two

vector RHP becomes ψ1(ik)

ψ3(ik)

 =

 p1(k) 0

0 p3(k)


 ψ1(−ik)

ψ3(−ik)

+

 µ1(k)

µ3(k)

 , k ∈ R. (1.165)

µ1(k), µ3(k), p1(k), and p3(k) are given by equations (1.159), (1.160), (1.163), (1.164).

Equation (1.165) is equivalent to the following scalar RHPs:

ψ1(ik) = p1(k)ψ1(−ik) + µ1(k), k ∈ R, (1.166)

ψ3(ik) = p3(k)ψ3(−ik) + µ3(k), k ∈ R. (1.167)

Note that equations (1.166) and (1.167) indicate that the functions ψ1(ik) and

ψ3(ik) can be analytically continued into C+ through the following relations.

ψ1(−ik) =
1

p1(k)
ψ1(ik)− µ1(k)

p1(k)
, k ∈ C+, (1.168)

ψ3(−ik) =
1

p3(k)
ψ3(ik)− µ3(k)

p3(k)
, k ∈ C+. (1.169)
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Substitute ρj+1,j(k) = ihj(k), j = 1, 2, 3 in equation (1.64) to get

q(z, z̄) =
1

2π

3∑
j=1

∫
lj

eikz+(β
2

ik
)z̄hj(k)

dk

k
. (1.170)

Now, to find an expression for the solution q(z, z̄), consider

1

2π

∫
l1

h1(k)eikz+(β
2

ik
)z̄ dk

k

from equation (1.135) insert value of h1(k) in the above equation to get

=
1

2π

∫
l1

[−J1(ik)ψ1(−ik) +G1(−ik) +
id0

2
]eikz+(β

2

ik
)z̄ dk

k
, arg(k) = 0,

use the value of ψ1(−ik) from equation (1.168) in the above equation

=
1

2π

∫
l1

[−J1(ik){ 1

p1(k)
ψ1(ik)− µ1(k)

p1(k)
}+G1(−ik) +

id0

2
]eikz+(β

2

ik
)z̄ dk

k
,

arg(k) = 0, ψ1(ik) is analytic in C+

=
1

2π

∫ ∞
0

[J1(ik)
µ1(k)

p1(k)
+G1(−ik) +

id0

2
]eikz+(β

2

ik
)z̄ dk

k
+

− 1

2π

∫
L++

J1(ik)
1

p1(k)
ψ1(ik)eikz+(β

2

ik
)z̄ dk

k
.

(1.171)

Note that L++ = {(i∞, 0)∪ (0,∞)} denotes anticlockwise boundary of first quad-

rant of the complex k-plane. Now consider

1

2π

∫
l2

h2(k)eikz+(β
2

ik
)z̄ dk

k

from equation (1.139) insert the value of h2(k) in the above equation to get

=
1

2π

∫
l2

[
J2(k)

J̄2(k)
{J̄1(−ik)ψ1(ik) + E(k)J̄3(−ik)ψ3(ik)− Ḡ(k)}

+G2(k) + i
E(k)d1 − d0

2
]eikz+(β

2

ik
)z̄ dk

k
, arg(k) =

π

2
,

=
1

2π

∫ i∞

0

[−J2(k)

J̄2(k)
Ḡ(k) +G2(k) + i

E(k)d1 − d0

2
]eikz+(β

2

ik
)z̄ dk

k
+

1

2π

∫ i∞

0

J2(k)

J̄2(k)
[J̄1(−ik)ψ1(ik) + E(k)J̄3(−ik)ψ3(ik)]eikz+(β

2

ik
)z̄ dk

k
.

(1.172)
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Since ψ1(ik) and ψ3(ik) are analytic functions in C+, and the integrand in the 2nd

integral in equation (1.172) has zeroes only in C−, integrand in the second integral

is analytic in C+. Hence the application of Cauchy’s theorem and Jordan’s lemma

implies that the value of 2nd integral in equation(1.172) is zero. Hence, equation

(1.172) becomes

1

2π

∫
l2

h2(k)eikz+(β
2

ik
)z̄ dk

k

=
1

2π

∫ i∞

0

[−J2(k)

J̄2(k)
Ḡ(k) +G2(k) + i

E(k)d1 − d0

2ei
π
2

]eikz+(β
2

ik
)z̄ dk

k
.

(1.173)

Now consider

1

2π

∫
l3

h3(k)eikz+(β
2

ik
)z̄ dk

k

from equation(1.144) insert the value of h3(k) in the above equation to get

=
1

2π

∫
l3

E(k)[−J3(ik)ψ3(−ik) +G3(−ik)− id1

2
]eikz+(β

2

ik
)z̄ dk

k
, arg(k) = π,

from equation (1.169) insert the value of ψ3(−ik) in the above equation to get

=
1

2π

∫
l3

E(k)[−J3(ik){ 1

p3(k)
ψ3(ik)− µ3(k)

p3(k)
}+G3(−ik)− id1

2
]eikz+(β

2

ik
)z̄ dk

k
,

arg(k) = π, ψ3(ik) is analytic in C+.

(1.174)

Equation (1.174) can be written as

1

2π

∫
l3

h3(k)eikz+(β
2

ik
)z̄ dk

k
=

1

2π

∫ −∞
0

E(k)[G3(−ik)− id1

2
]eikz+(β

2

ik
)z̄ dk

k
+

1

2π

∫ −∞
0

E(k)J3(ik)
µ3(k)

p3(k)
eikz+(β

2

ik
)z̄ dk

k
+

1

2π

∫
L+−
−E(k)J3(ik)

1

p3(k)
ψ3(ik)eikz+(β

2

ik
)z̄ dk

k

1

2π

∫
l3

h3(k)eikz+(β
2

ik
)z̄ dk

k
= − 1

2π

∫ 0

−∞
E(k)[G3(−ik)− id1

2
]eikz+(β

2

ik
)z̄ dk

k

− 1

2π

∫ 0

−∞
E(k)J3(ik)

µ3(k)

p3(k)
eikz+(β

2

ik
)z̄ dk

k
+

1

2π

∫
L−+

E(k)J3(ik)
1

p3(k)
ψ3(ik)eikz+(β

2

ik
)z̄ dk

k
.

(1.175)
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Note that L+− = {(i∞, 0) ∪ (0,−∞)} denotes the clockwise drawn boundary of

the 2nd quadrant of the complex k-plane, and L−+ = {(−∞, 0)∪ (0, i∞)} denotes

the anticlockwise drawn boundary of 2nd quadrant of the complex k-plane. Use

the values of the integral expressions from equations (1.171), (1.173), (1.175) in

equation (1.170) to get

q(z, z̄) = I0 + I1 + I2 + I3, where (1.176)

I0 =
1

2π

∫ ∞
0

[J1(ik)
µ1(k)

p1(k)
+G1(−ik) +

id0

2
]eikz+(β

2

ik
)z̄ dk

k

+
1

2π

∫ i∞

0

[−J2(k)

J̄2(k)
Ḡ(k) +G2(k) + i

E(k)d1 − d0

2ei
π
2

]eikz+(β
2

ik
)z̄ dk

k

− 1

2π

∫ 0

−∞
E(k)[G3(−ik)− id1

2
]eikz+(β

2

ik
)z̄ dk

k
,

(1.177)

I1 = − 1

2π

∫
L++

J1(ik)
1

p1(k)
ψ1(ik)eikz+(β

2

ik
)z̄ dk

k
, (1.178)

I2 = − 1

2π

∫ 0

−∞
E(k)J3(ik)

µ3(k)

p3(k)
)eikz+(β

2

ik
)z̄ dk

k
, (1.179)

I3 =
1

2π

∫
L−+

E(k)J3(ik)
1

p3(k)
ψ3(ik)eikz+(β

2

ik
)z̄ dk

k
. (1.180)

Now to find the solution q(z, z̄) from equation (1.176), I0, I1, I2, and I3 are required

to be evaluated. Note that I0 and I2 are independent of the unkknown analytic

functions ψ1(ik) and ψ3(ik), where as I1 and I3 contain the unknown functions

ψ1(ik) and ψ3(ik) which are analytic in C+. So, we will first evaluate I1 and I3, to

check whether we can avoid the solution of scalar RHPs (1.166) and (1.167). Use

the values of J1(ik), J3(ik), p1(k), p3(k) from equations (1.136), (1.145), (1.163) and

(1.164) in equations (1.178) and (1.180), and simplify to get

I1 =
1

4π

∫
L++

(k2 + β2 + kγ1)(k2 − β2 − ikγ2)

k2(k2 − β2 + ikγ2)
ψ1(ik)eikz+(β

2

ik
)z̄dk, (1.181)

I3 =
1

4π

∫
L−+

(k2 − β2 − ikγ2)(k2 + β2 − kγ3)

k2(k2 − β2 + ikγ2)
E(k)ψ3(ik)eikz+(β

2

ik
)z̄dk. (1.182)
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Equations (1.181) and (1.182) can be expressed as

I1 =
1

4π

∫
L++

(k2 + β2 + kγ1)(k2 − β2 − ikγ2)

k2S(k)
ψ1(ik)eikz+(β

2

ik
)z̄dk, (1.183)

I3 =
1

4π

∫
L−+

(k2 − β2 − ikγ2)(k2 + β2 − kγ3)

k2S(k)
E(k)ψ3(ik)eikz+(β

2

ik
)z̄dk. (1.184)

Note that S(k) = k2+ikγ2−β2, and L++ = {(i∞, 0)∪(0,∞)}, L−+ = {(−∞, 0)∪

(0, i∞)} denote the positively oriented boundaries of the first and second quadrants

of the complex k-plane. To find the values of I1 and I3, zeroes of S(k) = k2 +ikγ2−

β2 are needed.

• Case-(a): If γ2 = 2|β|, then the zeroes of S(k) are k1,2 = −iγ2

2
, γ2 > 0.

• Case-(b): If γ2 > 2|β|, then the zeroes of S(k) are k1,2 = i(−γ2

2
±
√
p

2
), γ2 > 0,

p = γ2
2 − 4β2 > 0.

• Case-(c): If γ2 < 2|β|, then the zeroes of S(k) are k1,2 = −iγ2

2
±
√
p1

2
, γ2 > 0,

p1 = 4β2 − γ2
2 > 0.

To find the value of I1 in case-(a), it is observed that in this case the zeroes of S(k)

i.e. k1,2 ∈ C−. Note that ψ1(ik) is analytic and bounded in C+, so, it is analytic and

bounded in the region defined by x ≥ 0, y ≥ 0, 1
k2 e

ikz+β2

ik
z̄ is analytic and bounded

in the region defined by x ≥ 0, y ≥ 0. Also, the second degree polynomials in the

numerator of the integrand are analytic and bounded in the region x ≥ 0, y ≥ 0.

This implies that the integrand in I1 is analytic and bounded in the region defined

x ≥ 0, y ≥ 0. Hence application of Cauchy’s theorem and Jordan’s lemma to I1

defined by equation (1.183), gives the following result.

I1 = 0.

To find the value of I1 in case-(b) and case-(c), it is observed that in these cases, the

only possibility for the zeroes of S(k) is k1,2 ∈ C−. Then using the same reasoning
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as in case-(a), the result is

I1 = 0.

To find the value of I3 in case-(a), note that in this case the zeroes of S(k)

i.e. k1,2 ∈ C−. It is observed that ψ3(ik) is analytic and bounded in C+, so, it is

analytic and bounded in the region defined by x ≤ 0, y ≥ 0, 1
k2E(k)eikz+

β2

ik
z̄ =

1
k2 e

(k+β2

k
)a+ikz+β2

ik
z̄ is analytic and bounded in the region defined by x ≤ 0, y ≥ 0.

Also, the second degree polynomials in the numerator of the integrand are analytic

and bounded in the region x ≤ 0, y ≥ 0. This implies that the integrand in I3 is

analytic and bounded in the region defined by x ≤ 0, y ≥ 0. Hence application of

Cauchy’s theorem and Jordans lemma to I3 defined by equation (1.184), gives the

following result:

I3 = 0.

To find the value of I3 in case-(b) and case-(c), it is observed that in these cases, the

only possibility for the zeroes of S(k) is k1,2 ∈ C−. Then using the same reasoning

as in case-(a), the result is

I3 = 0.

Note that I0 and I2 are independent of ψ1(ik) and ψ3(ik), and I1 and I3 which

involve ψ1(ik) and ψ3(ik) have values equal to zero. Hence, in the case of impedance

boundary conditions, there is no need to solve the scalar RHPs given by equations

(1.166) and (1.167). Use the values of I1 and I3 in equation (1.176) to get

q(z, z̄) = I0 + I2, (1.185)
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where I0 and I2 are given by equations (1.177) and (1.179) shown below.

I0 =
1

2π

∫ ∞
0

[J1(ik)
µ1(k)

p1(k)
+G1(−ik) +

id0

2
]eikz+(β

2

ik
)z̄ dk

k

+
1

2π

∫ i∞

0

[−J2(k)

J̄2(k)
Ḡ(k) +G2(k) + i

E(k)d1 − d0

2ei
π
2

]eikz+(β
2

ik
)z̄ dk

k

− 1

2π

∫ 0

−∞
E(k)[G3(−ik)− id1

2
]eikz+(β

2

ik
)z̄ dk

k
,

I2 = − 1

2π

∫ 0

−∞
E(k)J3(ik)

µ3(k)

p3(k)
)eikz+(β

2

ik
)z̄ dk

k
.

(1.186)

J1(k), J2(k), J3(k) and E(k) are defined by equations (1.136), (1.140), (1.145)

and (1.142). Equations (1.137), (1.141), (1.146), (1.159) and (1.160) give expres-

sions for G1(k), G2(k), G3(k), µ1(k) and µ3(k) respectively. Equation (1.185) gives

the solution of the modified Helmholtz equation in a semi-infinite strip Ω subject

to the impedance boundary conditions. The constants involved in I0 and I2 are

obtained in the following way. Substitute x = 0, y = 0 in equation (1.64) to get

d0 = q(0, 0), and x = 0, y = a in equation (1.64) to get d1 = q(0, a). Expressions

defining d0 and d1 are given by

d0 =
1

2π

3∑
j=1

∫
lj

hj(k)
dk

k
, d1 =

1

2π

3∑
j=1

∫
lj

e−(k+β2

k
)ahj(k)

dk

k
.

Note that h1(k), h2(k), h3(k) are given by equations (1.135), (1.139) and (1.144).

1.5 Helmholtz equation in a semi-infinite strip Ω

In this section we use the results developed by A. S. Fokas in [16], [17] and [18].

Consider the Helmholtz equation

(∂2
x + ∂2

y + 4β2)q(x, y) = g(x, y), β ∈ R, (x, y) ∈ Ω, (1.187)

where Ω is a semi-infinite strip subject to the Poincare type boundary conditions

shown in figure 1.4, with corners z1 =∞, z2 = 0 , z3 = ia, z4 =∞+ ia, a > 0. A

Lax pair related to equation (1.187) is given in example 1.2.8 by equations (1.26)
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and (1.27) with α = β2. Simultaneous spectral analysis of the Lax pair yields the

following sectionally holomorphic function in complex k-plane.

µ(z, z̄, k) =
1

2πi

3∑
i,j=1

∫
Li,j

Exp[iḱz + i
β2

ḱ
z̄]
ρi,j(ḱ)

ḱ − k
dḱ (1.188)

ρi,j(k) =

∫ zj

zi

Exp[−ikz − iβ
2

k
z̄](qz(z, z̄)dz − iβ

2

k
q(z, z̄)dz̄), i = j + 1 (1.189)

Li,j are the curves formed by intersection of the sectors S̄i and S̄j defined by the

equations

S̃j = {λ ∈ C, arg(λ) ∈ [−arg(zj−1 − zj), π − arg(zj+1 − zj)}, 2 ≤ j < n, (1.190)

S̃i = {λ ∈ C, arg(λ) ∈ [−arg(zi−1 − zi), π − arg(zi+1 − zi)}, 2 ≤ j < n

i = j + 1,

(1.191)

For the Helmholtz equation in a semi-infinite strip Ω, S̃1 and S̃n are the half planes,

obtained by using equations (1.47) and (1.48) and replacing k by λ.

S̃1 = {λ ∈ C, arg(λ) ∈ [−arg(z2 − z1), π − arg(z2 − z1)]}

= {λ ∈ C, arg(λ) ∈ [−π, 0]}

S̃n = {λ ∈ C, arg(λ) ∈ [−arg(zn−1 − zn), π − arg(zn−1 − zn)]}

S̃n = {λ ∈ C, arg(λ) ∈ [−arg(z3 − z4), π − arg(z3 − z4)]}

= {λ ∈ C, arg(λ) ∈ [−π, 0]}

Contours and spectral functions for the Helmholtz equation in a semi-infinite

strip Ω are shown in figure 1.7. The contours in figure 1.7 are calculated as follows:

l̃j = {k ∈ C : [arg(k) = −arg(zj − zj+1), |k| > β]∪

[arg(k) = π − arg(zj − zj+1), |k| < β]},
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FIGURE 1.7. Contours and spectral functions for the Helmholtz equation in a semi-in-
finite strip Ω.

l̃1 = {k ∈ C : [arg(k) = −arg(z1 − z2), |k| > β]∪

[arg(k) = π − arg(z1 − z2), |k| < β]}

= {k ∈ C : [arg(k) = 0, |k| > β] ∪ [arg(k) = π, |k| < β]},

l̃2 = {k ∈ C : [arg(k) = −arg(z2 − z3), |k| > β]∪

[arg(k) = π − arg(z2 − z3), |k| < β]}

= {k ∈ C : [arg(k) =
π

2
, |k| > β] ∪ [arg(k) =

3π

2
, |k| < β]},

l̃3 = {k ∈ C : [arg(k) = −arg(z3 − z4), |k| > β]∪

[arg(k) = π − arg(z3 − z4), |k| < β]}

= {k ∈ C : [arg(k) = −π, |k| > β] ∪ [arg(k) = 0, |k| < β]}.

Note that Lj are the circular arcs formed by the intersection of ray l̃j with the circle

|k| = β; if αj+1, bi, αj are the points of intersection of the circle |k| = β with the

rays {l̃j+1, |k| < β}, {l̃i, |k| > β}, {l̃j, |k| < β} where bi is between αj+1 and αj.

Then ρ(j) on Lj = (bi, αj) is ρi,j+1. Now Sj is found by the map λ = (1 − β2

|k|2 )k

from S̃j → Sj. To carry out analysis of the global relation, S1 and Sn are required.
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These are obtained through the map λ = (1− β2

|k|2 )k : S̃1 → S1; S̃n → Sn.

S1 = {k ∈ C : {arg(k) ∈ [−arg(z2 − z1), π − arg(z2 − z1)], |k| > β}∪

{arg(k) ∈ [π − arg(z2 − z1), 2π − arg(z2 − z1)], |k| < β}}

= {k ∈ C : {arg(k) ∈ [−π, 0], |k| > β}∪

{arg(k) ∈ [0, π], |k| < β}},

Sn = {k ∈ C : {arg(k) ∈ [−π, 0], |k| > β}∪

{arg(k) ∈ [0, π], |k| < β}}.

FIGURE 1.8. Domain of global relation for the Helmholtz equation in a semi-infinite
strip Ω

Note that S1 = Sn, hence S = S1 ∩ Sn which is shown in figure 1.8. The global

relation in this case becomes

n−1∑
j=1

ρj+1,j(k) = 0, j = 1, 2, 3, ∀ k ∈ S,

ρ2,1(k) + ρ3,2(k) + ρ4,3(k) = 0.

Note that contour L is dividing the complex k-plane into the regions S = D1 ∪D2

and Ś = D3 ∪ D4 which are shown in figure 1.9. Following the unified transform
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FIGURE 1.9. Contour and domain of analiticity of RHP for the Helmholtz equation in
a semi-infinite strip.

method, to find the unknown boundary data, we need to form a RHP on the

contour L, which should yield a function which is holomorphic in S and Ś. In the

literature, we do not have a method to deal with such type of a vector RHP.

1.6 Statement of problem and motivation

1.6.1 Statement of problem

We want to devise a method which can be used to find the solution of both the

Helmholtz and modified Helmholtz equation in a semi-infinite strip not only subject

to the Poincare type but the higher order boundary conditions also.

1.6.2 Motivation

Since introduction of the unified transform method in 1997, this method has been

successfully applied to solve the Laplace and modified Helmholtz equations in some

closed and open polygonal domains. Some of the applications of this method are

discussed below. The unified transform method is used to discuss solution of the

modified Helmholtz equation in a wedge [2]. This solution is used to find the ex-

plicit steady state of the diffusion-coalescence, on the half line, with trap source at

the origin. The unified transform method is used to find solution of the modified

Helmholtz equation in a triangular domain 0 ≤ x ≤ a − y ≤ a, subject to mixed
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boundary conditions [1]. This solution is applied to the problem of diffusion-limited

coalescence, in the segment (−a
2
, a

2
) with traps at the edges. The solution of the

Laplace equation in a semi-infinite strip, the upper half complex plane, the first

quadrant of the complex plane and a wedge, under different types of boundary con-

ditions and classes of solutions, are discussed in [19]. The unified transform method

is used to investigate in detail the solution of the modified Helmholtz and Laplace

equations in a semi-infinite strip subject to the Poincare type and the Dirichlet

boundary conditions [3]. In the case of the modified Helmholtz equation in a semi-

infinite strip, it is exhibited that solution of the RHP formed along the real axis

can be avoided in some cases. Such cases are referred as algebraic cases. It is shown

that when solving the modified Helmholtz equation in a semi-infinite strip with

the Poincare type boundary conditions, the problem is transformed to an order

two vector RHP. Generally, it is not possible to find the closed form solution of an

order two vector RHP. Also, it is shown that when the parameters involved in the

boundary conditions satisfy certain algebraic relations, then the order two vector

RHP is equivalent to two scalar RHPs or an order two triangular vector RHP. If

closed form (integral representation) solutions of the scalar RHPs and order two

triangular vector RHP are found, then the solution of the BVP of the modified

Helmholtz equation in a semi-infinite strip Ω in the scalar and triangular cases, is

found in closed form. The unified transform method is applied to find the solution

of basic elliptic equations (Laplace, modified Helmholtz and Helmholtz equations)

in an equilateral triangular domain subject to the Dirichlet boundary conditions,

the oblique Robin boundary conditions and the Poincare type boundary conditions

[13].
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Recently, Antipov [4] used the Laplace transform with respect to two variables

to solve a system of two Helmholtz equations coupled by impedance boundary

conditions. That system models diffraction of an electromagnetic plane wave by a

right-angled wedge. The main feature of the method [4] is that the parameter of

the second Laplace transform is a function ζ(η), where η is the parameter of the

first Laplace transform. The function ζ is a root of the characteristic polynomial

of the ordinary differential operator that is the Laplace image of the Helmholtz

operator. Here, we want to further develop this method which can be used to find

the solution of both the Helmholtz and modified Helmholtz equations in a semi-

infinite strip with the impedance boundary conditions and their generalizations.

There is a lot of literature related to applications of the Helmholtz equation

in a semi-infinite strip subject to higher order boundary conditions in acoustics,

fluid mechanics, marine technology and arctic engineering [36]. Solution of the

Helmholtz equation in a semi-infinite strip subject to higher order boundary con-

ditions is discussed in [26]. The problem under discussion arises in determination

of the acoustic field generated by a point source in a plane semi-infinite wave guide

with thin elastic walls, and also inside an infinite acoustic wave guide with thin

elastic baffle. In this problem, the higher order boundary conditions exists due to

the structure of the wave guide. It shows a good attempt to solve the problem

but the derived solution depends on ansatz. Some applications of the Helmholtz

equation in a semi-infinite strip subject to higher order boundary conditions are

discussed in [27], [7]. There are a lot of physical situations that can be modeled

in terms of propagation and scattering of acoustic waves in a wave guide with

higher order boundary conditions [29]. Often such problems comprise of pipes or

ducts with abrupt changes of material property or geometry, for example, in car
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silencer designs, where there is a sudden change in cross sectional area, or when the

bounding wall is lagged. The paper [29] investigates a class of problems in which

the boundary conditions at the duct walls are not of the Dirichlet, Neumann or of

impedance type, but these contain second or higher order derivative of the depen-

dent variable. These type of boundary conditions are commonly found in models

of fluid structural interactions, for example, membrane or plate boundaries, and

in electromagnetic wave propagation. To use the mode matching technique, ex-

tra edge conditions imposed at points of discontinuity must be included because

for these type of models eigen functions are not orthogonal. A new orthogonality

relation is presented, for eigen functions involved for the general class of prob-

lems containing a scalar wave equation and higher order boundary conditions. The

paper [29] also, sheds light on the process for taking into account the necessary

edge conditions. By taking two specific examples from structural acoustics, which

possess exact solution obtainable from other techniques, it is exhibited that the

orthogonality relation permits mode matching to follow the same way as for sim-

pler boundary conditions. Some techniques which are used to solve the problems in

the field of fluid structure interactions involving a second order partial differential

equation with higher order boundary conditions, are discussed in [31]. In particu-

lar, it considers the Laplace equation with higher boundary conditions in case of

a semi-infinite strip 0 < x < ∞, and 0 < y < h. Mode coupling relations are de-

rived by utilizing the Fourier integral theorem and the expansion for the velocity

potential in terms of corresponding eigen functions of the BVP. The symmetric

wave potential, or the so called Green’s function of the BVP of fluxural gravity

wave maker is derived by utilizing expansion of the velocity potential. Then the

expansion formulae for velocity potential are recovered by using integral form of

the wave source potential indicating completeness of the eigen functions involved.
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Oblique wave scattering due to cracks in a floating ice sheet in case of infinite

depth is analyzed.

A boundary value problem for the Helmholtz equation which originates from

context of the wave diffraction theory is investigated in [9]. In this paper, the

Helmholtz equation in a strip Ω subject to higher order imperfect boundary condi-

tions is studied by the view point of operator theory. Using the operator theoretical

machinery, the physical problem is transformed in the language of operator theory,

to study properties of certain types of operators. It involves Wiener Hopf and con-

volution type operators on finite intervals with semi-almost periodic Fourier symbol

matrices. These operators are considered in Lebesgue and also Sobolev space be-

cause the original problem is considered in terms of Bessel potential spaces. In this

work algebraic, operator and function theoretic features of operator theory are used

in a constructive way. To formulate the problem some definitions and notations

are given. S(Rn) denotes Schwartz space of rapidly decreasing functions, Ś(Rn) de-

notes the dual space of tempered distributions on Rn. The Bessel potential space

is denoted by Hs(Rn), s ∈ R and is defined as:

Hs(Rn) = {φ ∈ Ś(Rn) : ‖φ‖Hs(Rn) = ‖F−1(1 + |ξ|2)
s
2 · Fφ‖L2(Rn) < +∞},

where F = Fx→ξ is Fourier transformation in Rn, and is defined as:

(Fφ)(ξ) =

∫
Rn
eiξ·xφ(x)dx, ξ ∈ Rn.

Let D ⊂ Rn is a Lipschitz domain, H̃s(D) denotes the closed subspace of Hs(Rn).

The elements of H̃s(D) have support in D̄ and Hs(D) is the space of generalized

functions which have extensions into Rn that belongs toHs(Rn). Subspace topology

is induced on H̃s(D), and norm of the quotient space Hs(Rn)

H̃s(Rn
D̄ )

is introduced onHs(D).
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Note that

Rn
± = {x = (x1, x2, x3, ....., xn−1, xn) ∈ Rn,±xn ≥ 0}.

Now the boundary transmission problem is formulated in the language of oper-

ator theory. For n ∈ N0, N0 denotes the set of non negative integers, properties

of an element u ∈ H1+ε(Ω) for some ε ≥ 0, satisfying the Helmholtz equation, are

analyzed. Consider the Helmholtz equation in a strip Ω

(4+ k2)u(x, y) = 0, (x, y) ∈ Ω, (1.192)

subject to the boundary conditions:

u+
n+1 − ip+u+

n = h+ 0n Σ, where Σ denotes boundary of Ω,

u−n+1 − ip−u−n = h− 0n Σ.

The wave number k ∈ C and the impedance parameter p± ∈ C are given. Note

that h± ∈ H− 1
2
−n+ε(Σ) are arbitrary given elements and u±n := (∂

nu
∂yn

)|y=±0 denote

traces of u(x, y) on the top and bottom of Σ, respectively. For n = 0 and n = 1, u±n

are the traditional Dirichlet and Neumann traces. The relations between the oper-

ators of the problem and new Wiener Hopf operators are established. Then these

operator relations are used to investigate invertibility and the Fredholm properties

of the operators related to the given problem. A problem of wave diffraction by

a strip subject to higher order reactance boundary conditions by view point of

integral equations is analyzed in [10]. The problem is formulated as a boundary

transmission problem of the Helmholtz equation in a strip in the Bessel potential

space Hs(Rn), s ∈ R. By using integral equations and operator theoretical meth-

ods, many convolution type equations are constructed and related to the given

problem. Solvability of the problem is discussed for a range of regularity orders

of Bessel potential spaces. A problem of wave diffraction by a union of infinite
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strips subject to higher order boundary conditions from the operator theory view

point, is analyzed in [11]. It is investigated, under which conditions the operators

associated with the problem possess the Fredholm property. To achieve the target,

several operator extension methods are constructed between used convolution type

operators.The Bessel potential space Hs(Rn), s ∈ R is used to formulate the prob-

lem and the operators, hence the Fredholm property is found for a set of regularity

indices of Hs(Rn).

1.7 Order of dissertation

The rest of dissertation is ordered as follows:

• In chapter 2, a finite integral transformation and the Sturm Liouville prob-

lem method is used, to analyze the Helmholtz equation in a semi-infinite

strip subject to the Poincare type boundary conditions. Then the Helmholtz

equation in a semi-infinite strip subject to the impedance boundary condi-

tions is analyzed. Later on, the Burniston-Siewert method to find zeroes of a

transcendental equation in a complex plane is presented. This method gives

us numerical as well as exact expressions for the zeroes of a transcendental

equation.

• In chapter 3, using a special kind of interconnected Laplace transforms, and

theory of RHPs, we have developed a new method to find solutions of both

the Helmholtz and modified Helmholtz equations in a semi-infinite strip sub-

ject to the Poincare type boundary conditions and impedance boundary con-

ditions. Some examples are solved by the new method and their results are

compared by the finite integral transformation and the Sturm Liouville prob-

lem method introduced in chapter 2. This gives us verification of the new

method. This newly developed method is quite efficient to solve both the

49



Helmholtz and modified Helmholtz equations in a semi-infinite strip subject

to higher boundary conditions also.

• In chapter 4, an application of the new method to a physical model which

generates a BVP of the Helmholtz equation in a semi-infinite strip subject

to higher order boundary conditions is considered. Some properties of the

solution are investigated.

50



Chapter 2

Finite integral transform method and

Burniston-Siewert method

2.1 Finite integral transform method: Poincare type boundary

conditions

Consider the Helmholtz equation

(∂2
x + ∂2

y + k2)q(x, y) = g(x, y), Im(k) > 0, (x, y) ∈ Ω, (2.1)

where Ω is a semi-infinite strip shown in figure 3.1, with corners z1 = ∞, z2 = 0,

z3 = ia, z4 = ∞ + ia, a > 0. Figure 2.1 shows the Poincare type boundary

conditions along three sides of Ω.

FIGURE 2.1. The Poincare type boundary conditions along the sides of Ω.

The Poincare type boundary conditions are

∂q

∂ν

∣∣∣∣
ej

+ µjq = gj, (2.2)
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for j = 0, 1, 2, ∂q
∂ν

∣∣∣∣
ej

= 5q · ej is the directional derivative in direction ej specified

by constant βj, j = 0, 1, 2, where (0 < β1 < π, π
2
< β2 < 3π

2
, π < β0 < 2π), µj

is a real non negative constant, and gj is a real valued function with appropriate

smoothness and decay. The boundary conditions in equation (3.9) can be written

as:

side1 : cos β0qx + sin β0qy + µ0q = g0(x), 0 < x <∞, y = 0, (2.3)

side2 : cos β2qy + sin β2qx + µ2q = g2(y), x = 0, 0 < y < a, (2.4)

side3 : cos β1qx + sin β1qy + µ1q = g1(x), 0 < x <∞, y = a. (2.5)

The functions g0(x) and g1(x) vanish at the points x = 0 and x = ∞, sin βj 6=

0, j = 0, 1, 2. To solve the given BVP of the Helmholtz equation in a semi-infinite

strip Ω subject to the Poincare type boundary conditions by finite integral trans-

form (FIT) method, we need to apply the finite integral transform to given BVP

of the Helmholtz equation in a semi-infinite strip. This step generates a Sturm

Liouville (SL) problem. Then we solve the SL problem to find related eigen values,

and the kernel of the finite integral transform. So, to check validity of this method

to the given BVP of Helmholtz equation in a semi-infinite strip, multiply equation

(2.4) by the kernel Kλ(y) of the finite integral transform, and integrate from 0 to a

to get

∫ a

0

g2(y)Kλ(y)dy =

∫ a

0

cos β2qy(x, y)Kλ(y)dy +

∫ a

0

sin β2qx(x, y)Kλ(y)dy+∫ a

0

µ2q(x, y)Kλ(y)dy, 0 < y < a, x = 0.

Use definition of the finite integral transform in the above equation to get

g2λ = cos β2

∫ a

0

qy(x, y)Kλ(y)dy + sin β2
∂

∂x
qλ(x) + µ2qλ(x), 0 < y < a, x = 0.

(2.6)

52



Now evaluate
∫ a

0
qy(x, y)Kλ(y)dy.∫ a

0

qy(x, y)Kλ(y)dy = Kλ(y)q(x, y)|y=a
y=0 −

∫ a

0

q(x, y)
Kλ

dy
(y)dy (2.7)

Note that
∫ a

0
q(x, y)Kλ

dy
(y)dy 6= qλ(x) because the finite integral transform is defined

for the kernel Kλ(y) not for d
dy
Kλ(y). Hence we cannot apply FIT method in

the case of Helmholtz equation in a semi-infinte strip subject to Poincare type

boundary conditions.

2.2 Impedance boundary conditions

To find solution of the Helmholtz equation in a semi-infinite strip subject to the

impedance boundary conditions, substitute β1 = π
2
, β2 = π, β0 = 3π

2
in equations

(2.3), (2.4) and (2.5). Consider the Helmholtz equation

(∂2
x + ∂2

y + k2)q(x, y) = g(x, y), Im(k) > 0, (x, y) ∈ Ω, (2.8)

where Ω is a semi-infinite strip shown in figure 2.2, with the corners z1 = ∞,

z2 = 0, z3 = ia, z4 =∞+ ia, a > 0. The impedance boundary conditions are

side1 : −qy(x, y) + µ0q(x, y) = g0(x), 0 < x <∞, y = 0, (2.9)

side2 : −qx(x, y) + µ2q(x, y) = g2(y), x = 0, 0 < y < a, (2.10)

side3 : qy(x, y) + µ1q(x, y) = g1(x), 0 < x <∞, y = a. (2.11)

Figure 2.2 shows the impedance boundary conditions for Helmholtz equation in

the semi-infinite strip Ω, along the sides of semi-infinte strip Ω. Note that µj, j =

0, 1, 2, is a real non negative constant, and gj, j = 0, 1, 2, is a real valued function

with appropriate smoothness and decay. Let

q(x, y) = q∗(x, y) + q∗(x, y), (2.12)

q∗(x, y) = (A1y + A2)g0(x) + (B1y +B2)g1(x). (2.13)
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FIGURE 2.2. Impedance boundary condtions along sides of Ω.

Since q(x, y) is a solution of the given BVP of the Helmholtz equation in a semi-

infinite strip subject to the impedance boundary conditions, equation (2.12) indi-

cates that the sum q∗(x, y) + q∗(x, y) is also a solution of the given BVP. Hence

boundary conditions defined by equations (2.9) and (2.11) become

side1 : −∂q∗
∂y

(x, y) + µ0q∗(x, y) = g0(x), 0 < x <∞, y = 0, (2.14)

side3 :
∂q∗
∂y

(x, y) + µ1q∗(x, y) = g1(x), 0 < x <∞, y = a. (2.15)

Substitute the value of q∗(x, y) from equation (2.13) in equations (2.14) and (2.15)

to get

−(A1g0(x) +B1g1(x)) + µ0(A2g0(x) +B2g1(x)) = g0(x),

(A1g0(x) +B1g1(x)) + µ1[(A1a+ A2)g0(x) + (B1a+B2)g1(x)] = g1(x).

Simplify the above equations to get

(−A1 + µ0A2)g0(x) + (−B1 + µ0B2)g1(x) = g0(x), (2.16)

[A1 + µ1(aA1 + A2)]g0(x) + [B1 + µ1(B1a+B2)]g1(x)) = g1(x). (2.17)
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Solve equations (2.16) and (2.17) to get

A1 =
−µ1

δ
, A2 =

1 + aµ1

δ
, B1 =

µ0

δ
, B2 =

1

δ
, δ = µ0 + µ1 + aµ0µ1.

(2.18)

From equation (2.12), use q(x, y) = q∗(x, y) + q∗(x, y) in the BVP defined by

equations (2.8), (2.9), (2.10) and (2.11), then the BVP of Helmholtz equation in a

semi-infinite strip subject to the impedance boundary conditions becomes

(∂2
x + ∂2

y + k2)q∗(x, y) = g∗(x, y), Im(k) > 0, (x, y) ∈ Ω, (2.19)

where Ω is the semi-infinite strip shown in figure 2.2, with the corners z1 = ∞,

z2 = 0 , z3 = ia, z4 =∞+ ia, a > 0. The impedance boundary conditions are

side1 : −∂q
∗

∂y
(x, y) + µ0q

∗(x, y) = 0, 0 < x <∞, y = 0, (2.20)

side2 : −∂q
∗

∂x
(x, y) + µ2q

∗(x, y) = g∗2(y), x = 0, 0 < y < a, (2.21)

side3 :
∂q∗

∂y
(x, y) + µ1q

∗(x, y) = 0, 0 < x <∞, y = a. (2.22)

Note that

g∗2(y) = g2(y)− [−∂q∗
∂x

(x, y) + µ2q∗(x, y)]x=0 = g2(y) + (A1y + A2)

(g′0(0)− µ2g0(0)) + (B1y +B2)(g′1(0)− µ2g0(0)),

(2.23)

g∗(x, y) = g(x, y)− (A1y + A2)g′′0(x)− (B1y +B2)g′′1(x)

− k2(A1y + A2)g0x− k2(B1y +B2)g1(x).

(2.24)

2.2.1 Kernel of the finite integral transform

We apply the finite integral transform to the BVP defined by equations (2.19),

(2.20), (2.21) and (2.22), to obtain a SL problem. Then we solve that SL problem

to find related eigen values, and the kernel of the finite integral transform. So,
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multiply equation (2.19) by the kernel Kλ(y) and integrate from 0 to a to get

gλ(x) = (k2 +
d2

dx2
)

∫ a

0

Kλ(y)q∗(x, y)dy +

∫ a

0

Kλ(y)
∂2q∗

∂y2
(x, y)dy, (2.25)

gλ(x) =

∫ a

0

Kλ(y)g∗(x, y)dy, g∗(x, y) is given by equation (2.24). (2.26)

Now evaluate
∫ a

0
Kλ(y)∂

2q∗

∂y2 (x, y)dy as follows.∫ a

0

Kλ(y)
∂2q∗

∂y2
(x, y)dy = Kλ(y)

∂q∗

∂y
|y=a
y=0 −

∫ a

0

∂q∗

∂y

d

dy
Kλ(y)dy

= Kλ(y)
∂q∗

∂y
|y=a
y=0 − q∗

d

dy
Kλ(y)|y=a

y=0 +

∫ a

0

q∗(x, y)
d2

dy2
Kλ(y)dy.

(2.27)

Let

d2

dy2
Kλ(y) = −λ2Kλ(y), 0 < y < a. (2.28)

The boundary conditions defined by equations (2.20) and (2.22) can be expressed

as

∂q∗
∂y

(x, y) = µ0q∗(x, y), y = 0, (2.29)

∂q∗
∂y

(x, y) = −µ1q∗(x, y), y = a. (2.30)

Use equations (2.29), (2.30) to find

Kλ(y)
∂q∗

∂y
|y=a
y=0 − q∗

d

dy
Kλ(y)|y=a

y=0 = [−Kλ(y)µ1q
∗(x, y)− d

dy
Kλ(y)q∗(x, y)]y=a

− [Kλ(y)µ0q
∗(x, y)− d

dy
Kλ(y)q∗(x, y)]y=0.

(2.31)

Let

µ0Kλ(y) =
d

dy
Kλ(y), y = 0, (2.32)

−µ1Kλ(y) =
d

dy
Kλ(y), y = a. (2.33)
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Substitute the values of µ0Kλ(y) and µ1Kλ(y) in equation (2.31), then use the

resultant value, and the value of d2

dy2Kλ(y) from equation (2.28) in equation (2.27)

to get ∫ a

0

Kλ(y)
∂2q∗

∂y2
(x, y)dy = −λ2

∫ a

0

q∗(x, y)Kλ(y)dy = −λ2qλ(x). (2.34)

Let the kernel of the finite integral transform Kλ(y) solves the following SL problem

which is obtained from equations (2.28), (2.32) and (2.33). The SL problem is

(
d2

dy2
+ λ2)Kλ(y) = 0, 0 < y < a, (2.35)

d

dy
Kλ(y)− µ0Kλ(y) = 0, y = 0, (2.36)

d

dy
Kλ(y) + µ1Kλ(y) = 0, y = a. (2.37)

Now to find the transformed Helmholtz equation, substitute the value of∫ a
0
Kλ(y)∂

2q∗

∂y2 (x, y)dy from equation (2.34), in equation (2.25), and simplify to get

[
d2

dx2
+ (k2 − λ2)]qλ(x) = gλ(x), 0 < x <∞,

[
d2

dx2
− ζ̂2]qλ(x) = gλ(x), 0 < x <∞,

(2.38)

where gλ(x) is the finite integral transform of g∗(x, y) and is given by equation

(2.26). We fix a branch of the multi-valued function ζ̂ =
√
λ2 − k2 by Re(ζ̂) ≥ 0.

Note that ±k are the branch points of the multi-valued funtion ζ̂, and its branch

cut is shown in figure 2.3.

To transform the boundary condition along side 2 of the semi-infinite strip Ω,

multiply equation (2.10) by the kernel Kλ(y) and integrate from 0 to a to get

− d

dx
qλ(x) + µ2qλ(x) = g2λ, x = 0, 0 < y < a, qλ(+∞) = 0, (2.39)

g2λ =

∫ a

0

g∗2(y)Kλ(y)dy, g∗2(y) is given by equation (2.23). (2.40)
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FIGURE 2.3. A branch cut of multi-valued function ζ̂

If Kλ(y) solves the SL problem defined by equations (2.35), (2.36) and (2.37) then

the transformed Helmholtz equation, and the boundary condition along side 2 of

the semi-infinite strip Ω, are defined by equations (2.38) and (2.39), respectively.

To find the solution of this SL problem, we need the solution of the 2nd order

ordinary linear differential equation (2.35), and it is

Kλ(y) = C1 cosλy + C2 sinλy. (2.41)

The Sturm Liouville theory for the boundary value problems implies that the eigen

values λn of the given SL problem are non negative real numbers. It is verified that

λn = 0 is not an eigen value of the given SL problem. We find eigen values when

λn > 0. Equation (2.41) gives

Kλ(0) = C1, Kλ(a) = C1 cosλa+ C2 sinλa, K ′λ(0) = C2λ, (2.42)

K ′λ(a) = −λC1 sinλa+ C2λ cosλa. (2.43)
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Substitute values of K ′λ(0), Kλ(0), K ′λ(a) and Kλ(a) from equations (2.42) and

(2.43) in the boundary conditions defined by equations (2.36) and (2.37) to get

0 = λC2 − µ0C1, C1 =
λC2

µ0

, (2.44)

0 = C1(−λ sinλa+ µ1 cosλa) + C2(λ cosλa+ µ1 sinλa). (2.45)

Substitute the value of C1 from equation (2.44) in equation (2.45), and simplify to

get

C2[λ(−λ sinλa+ µ1 cosλa) + µ0(λ cosλa+ µ1 sinλa)] = 0. (2.46)

For a non trivial solution C2 6= 0, so, equation (2.46) becomes

[λ(−λ sinλa+ µ1 cosλa) + µ0(λ cosλa+ µ1 sinλa)] = 0. (2.47)

Simplify equation (2.47) to get

tanλa =
λ(µ0 + µ1)

λ2 − µ0µ1

. (2.48)

2.2.2 1-dimensional boundary value problem

We will find roots of the transcendental equation (2.48) using the Burniston-Siewert

method which will be explained in section 2.3. Let positive roots of the transcen-

dental equation (2.48) are denoted by λn. Note that λn. are the eigen values of

the SL problem defined by equations (2.35), (2.36) and (2.37). The corresponding

eigen functions of the given SL problem are Kλn(y), and are defined by

Kλn(y) = C1 cosλny + C2 sinλny. (2.49)

From equation (2.44), use C1 = λnC2

µ0
in equation (2.49), and simplify to get

Kλn(y) = C2[
λn
µ0

cosλny + sinλny]. (2.50)
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To make {Kλn}∞n=0 an orthonormal system. Let ‖ Kλn(y) ‖= 1. Use definition of

norm, and simplify to get

C2
2

∫ a

0

[
λn
µ0

cosλny + sinλny]2dy = 1

C2
2σ

2
n = 1, C2 =

1

σn
, where

σn =

√∫ a

0

[
λn
µ0

cosλny + sinλny]2dy

σn =
1

2
√
λnµ0

[2λn(2µ0 sin2 4aλn + a2λ2
n + aµ2

0) + (λ2
n − µ2

0) sin 2aλn].

(2.51)

From equation (2.51) use the value of C2 in equation (2.50) to get corresponding

eigen functions of the SL problem defined by equations (2.35), (2.36) and (2.37).

Kλn(y) =
1

σn
[
λn
µ0

cosλny + sinλny], ‖ Kλn ‖= 1. (2.52)

For the given BVP of the Helmholtz equation in a semi-infinite strip Ω, the kernel

of the finite integral transform Kλn(y) is given by equation (2.52). Hence corre-

sponding to the eigen values λn and kernel Kλn(y), the transformed Helmholtz

equation and the boundary condition along side 2 of the semi-infinite strip Ω are

[
d2

dx2
− ζ̂n

2
]qλn(x) = gλn(x), 0 < x <∞, where (2.53)

gλn(x) =

∫ a

0

Kλn(y)g∗(x, y)dy, (2.54)

− d

dx
qλn(x) + µ2qλn(x) = g2λn , x = 0, 0 < y < a, qλn(+∞) = 0, (2.55)

g2λn =

∫ a

0

g∗2(y)Kλn(y)dy. (2.56)

Note that ζ̂n =
√
λ2
n − k2 is a multi-valued function. We fix a branch of it by

Re(ζ̂n) ≥ 0, qλn(x) =
∫ a

0
Kλn(y)q∗(x, y)dy is the direct finite integral transform of
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q∗(x, y). The inverse finite integral transform of qλn(x) is recovered as

q∗(x, y) =
∞∑
n=0

Cn(x)Kλn(y), multiply by Kλm(y) and integrate from 0 to a∫ a

0

q∗(x, y)Kλm(y)dy =
∞∑
n=0

Cn(X)

∫ a

0

Kλn(y)Kλm(y)dy,∫ a

0

q∗(x, y)Kλm(y)dy =
∞∑
n=0

δnmCm(x), δnm, is Kroneckor’s delta,

Cm(x) =

∫ a

0

q∗(x, y)Kλm(y)dy = qλm(x).

(2.57)

To solve the 1-dimensional BVP defined by equations (2.53) and (2.55), we define

U0[F (x)] = (− d

dx
+ µ2)F (x)|x=0, F (+∞) = 0, (2.58)

where U0 is the functional of the boundary condition along the side x = 0, 0 < y < a

of the semi-infinite strip Ω. The Green’s function of the 1-dimensional BVP is

G(x, ξ) = φ(x, ξ)− U0[φ(x, ξ)]ψ(x), (2.59)

where φ(x, ξ) is the fundamental function of differential the operator L = d2

dx2− ζ̂n
2
,

and is defined by φ(x, ξ) = − 1

2ζ̂n
e−ζ̂n|x−ξ|. Note that ψ(x) is the basis function

satisfying the following properties:

1. ψ(x) solves the 2nd order ordinary linear differential equation L[ψ(x)] = 0.

2. U0[ψ(x)] = [− d
dx
ψ(x) + µ2ψ(x)]x=0 = 1.

3. ψ(+∞) = 0.

To find the basis function ψ(x), general solution of the 2nd order ordinary linear

differential equation L[ψ(x)] = 0 is given by

ψ(x) = C0e
ζ̂nx + C1e

−ζ̂nx. (2.60)
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The condition ψ(x)→ 0 as x→∞ is only satisfied when C0 = 0. Hence, equation

(2.60) becomes ψ(x) = C1e
−ζ̂nx. To find value of C1 use the condition

U0[ψ(x)]x=0 = 1 (2.61)

Apply the functional U0 and simplify to get

[− d

dx
ψ(x) + µ2ψ(x)] = 1

− (−ζ̂nC1) + µ2C1 = 1.

(2.62)

Simplify equation (2.62) to get

C1 =
1

µ2 + ζ̂n
. (2.63)

From equation (2.63) use the value of C1 in (2.60) to get ψ(x).

ψ(x) =
1

µ2 + ζ̂n
e−ζ̂nx (2.64)

Now consider

φ(x, ξ) = − 1

2ζ̂n
e−ζ̂n|x−ξ|. (2.65)

Apply the operator ∂
∂x

to equation (2.65), and simplify to get

∂xφ(x, ξ) =
1

2
e−ζ̂n|x−ξ|sgn(x− ξ). (2.66)

We find the value of U0[φ(x, ξ)] as follows:

U0[φ(x, ξ)] = [(− d

dx
+ µ2)φ(x, ξ)]x=0

= −dφ
dx

(x, ξ)|x=0 + µ2φ(x, ξ)|x=0.

(2.67)

Now equation (2.67) becomes

U0[φ(x, ξ)] =
1

2
e−ζ̂nξ − µ2e

−ζ̂nξ

2ζ̂n

=
ζ̂n − µ2

2ζ̂n
e−ζ̂nξ.

(2.68)
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Substitute the values of φ(x, ξ), ψ(x) and U0[φ(x, ξ)] from equations (2.65), (2.64)

and (2.68) in equation (2.59) to get Green’s function of the 1-dimensional BVP.

G(x, ξ) = − 1

2ζ̂n
e−ζ̂n|x−ξ| − (ζ̂n − µ2)

2ζ̂n(ζ̂n + µ2)
e−ζ̂n(x+ξ) (2.69)

Solution of the 1-dimensional BVP is

qλn(x) =

∫ ∞
0

G(x, ξ)gλn(ξ)dξ + ψ(x)g2λn . (2.70)

Substitute the values of ψ(x) and G(x, ξ) from equations (2.64) and (2.69) respec-

tively, in equation (2.70) to get

qλn(x) =

∫ ∞
0

[− 1

2ζ̂n
e−ζ̂n|x−ξ| − (ζ̂n − µ2)

2ζ̂n(ζ̂n + µ2)
e−ζ̂n(x+ξ)]gλn(ξ)dξ +

1

ζ̂n + µ2

e−ζ̂nxg2λn ,

(2.71)

where ζ̂n =
√
λ2
n − k2, for n = 0, 1, 2, 3, 4, .... To find the solution of the BVP

defined by equations (2.19), (2.20), (2.21) and (2.22), suppose that q∗(x, y) satisfies

the SL problem given by equations (2.35), (2.36) and (2.37) for the eigen values λn,

and q∗(x, y) ∈ C2(0, a) as a function of y, then the inverse finite integral transform

given by relation (2.57) becomes

q∗(x, y) =
∞∑
n=0

Cn(x)Kλn(y), where (2.72)

Cn(x) =

∫ a

0

q∗(x, y)Kλn(y)dy = qλn(x). (2.73)

From equation (2.71) use the value of qλn(x) in equation (2.73) to get

Cn(x) =

∫ ∞
0

[− 1

2ζ̂n
e−ζ̂n|x−ξ| − (ζ̂n − µ2)

2ζ̂n(ζ̂n + µ2)
e−ζ̂n(x+ξ)]gλn(ξ)dξ +

1

ζ̂n + µ2

e−ζ̂nxg2λn .

(2.74)

Note that in this case, q∗(x, y) defined by equation (2.72) is uniformly convergent

on (0, a).
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2.2.3 Solution of the BVP of Helmholtz equation in a semi-infinite

strip Ω: analysis; numerical results

Solution of the BVP of Helmholtz equation in a semi-infinite strip subject to the

impedance boundary conditions, defined by equations (2.19), (2.20), (2.21) and

(2.22), is found by substituting values of Cn(x) and Kλn(y) from equations (2.74)

and (2.52) respectively, in equation (2.72). The required solution is given by

q∗(x, y) =
∞∑
0

[− 1

2ζ̂n

∫ ∞
0

(e−ζ̂n|x−ξ| +
(ζ̂n − µ2)

(ζ̂n + µ2)
e−ζ̂n(x+ξ))gλn(ξ)dξ+

1

ζ̂n + µ2

e−ζ̂nxg2λn ]× 1

σn
[
λn
µ0

cosλny + sinλny],

(2.75)

where σn is given by relation (2.51). Now solution of the given BVP of the Helmholtz

equation in a semi infinite strip Ω defined by equations (2.8), (2.9), (2.10) and

(2.11), is obtained by substituting values of q∗(x, y) and q∗(x, y) from equations

(2.13) and (2.75) in equation (2.12). The required solution is

q(x, y) =
∞∑
0

[− 1

2ζ̂n

∫ ∞
0

(e−ζ̂n|x−ξ| +
(ζ̂n − µ2)

(ζ̂n + µ2)
e−ζ̂n(x+ξ))gλn(ξ)dξ +

1

ζ̂n + µ2

e−ζ̂nxg2λn ]

× 1

σn
[
λn
µ0

cosλny + sinλny] + (A1y + A2)g0(x) + (B1y +B2)g1(x),

(2.76)

where σn is given by relation (2.51). The constants A1, A2, B1, B2 are given by

relation (2.18). To discuss numerical results, we need to find the zeroes of the

transcendental equation (2.47). In the next section, we give the Burniston-Siewert

method, used to find all roots of a certain transcendental equation in a complex

plane.

2.3 Burniston-Siewert method for solving certain transcendental

equations

An elegant method to solve a certain type of transcendental equations is introduced

in [8]. This method gives roots of a transcendental equation in closed form, which
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is not possible by using any numerical technique. This method for finding roots of

a transcendental equation is based on complex analysis, and ultimately requires a

canonical solution of a RHP. The crux of this method is to establish a suitable RHP,

and using several elementary properties of the resulting solution to deduce roots

of the given transcendental equation. To explain this method, some terminology,

and theorems are given below.

Definition 2.3.1. Let f be a complex valued function defined on a closed set

S ⊂ C. We say that f satisfies Hölder’s condition for a point z0 ∈ D if there exists

constants µ, ν > 0 such that |f(z) − f(z0)| ≤ µ|z − z0|γ for all z ∈ D sufficiently

close to z0. The constant γ is called exponent of Hölder’s condition. If f satisfies the

above inequality for all z ∈ D, then f is said to satisfy uniform Hölder’s condition

on D. For 0 < γ ≤ 1, all functions which satisfy the inequality (??) on D belong

to Lipschitz class of order γ denoted by Lipγ.

Note 2.3.1. Any function belonging to Lipγ is uniformly continuous on D but

converse is not true. In example 2.3.2 given below, φ(x) is uniformly continuous

0n 0 ≤ x ≤ 1
2

but does not satisfy Höder’s condition for 0 ≤ x ≤ 1
2

and 0 < γ ≤ 1.

Example 2.3.1. Let f(x) =
√
x. It is evident that f(x) satisfies the Hölder’s

condition for the exponent γ = 1
2
.
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Example 2.3.2. Let φ(x) = 1
lnx
, for 0 < x ≤ 1

2
and φ(0) = 0. Note that φ(x) is

continuous for 0 ≤ x ≤ 1
2

but |φ(x)−φ(0)| = 1
| lnx| > Axγ because limx→0 x

γ lnx = 0

for any γ > 0, and any values of A and λ. Hence φ(x) does not belong to class

Lipγ for 0 < γ ≤ 1.

Definition 2.3.2. Let L be a smooth, closed, and positively oriented contour in the

plane of complex variables z. We denote the domain within contour L by D+, and

is called interior domain. The domain complement to D+ +L, is called exterior do-

main denoted by D−. If f(z) is an analytic function for all z ∈ D+ and continuous

on D+ + L, then by Cauchy’s formula in the theory of complex variables,

1

2πi

∫
L

f(τ)

τ − z
dτ =


f(z), z ∈ D+,

0, z ∈ D−.

If f(z) is analytic in D− and continuous on D− + L, then

1

2πi

∫
L

f(τ)

τ − z
dτ =


f(∞), z ∈ D+,

−f(z) + f(∞), z ∈ D−.

Definition 2.3.3. Let L be a smooth, closed or open positively oriented contour.

If L is closed then D+ and D− are the interior and exterior domains as defined in

66



definition 2.3.2. If L is open then D+ is on left side of L and D− on right side of

L, as one walks around the contour L. If τ ∈ L denotes complex coordinates of a

point on L, and φ(τ) is a continuous function of τ on L then the integral

Φ(z) =
1

2πi

∫
L

φ(τ)

τ − z
dτ, z ∈ C \ L (2.77)

is called a Cauchy integral. The function φ(τ) is called the density ,and 1
τ−z is

called the kernel of Φ(z).

Definition 2.3.4. Let L be a smooth closed contour, and G(t) be a continuous

function on L such that G(t) 6= 0 ∀t ∈ L. Index of the function G(t) w.r.t the

counter L is defined as the change in argument of G(t) divided by 2π when t

traverses one round of L. If [argG(t)]L denotes change in argument of G(t) when

t traverses one round of L, then

χ = IndG(t) =
1

2π
[argG(t)]L. (2.78)

Since lnG(t) = ln|G(t)|+iargG(t), and after having traversed the counter L, |G(t)|

returns to its original value hence [argG(t)]L = 1
i
[lnG(t)]L. So, equation (2.78) can

be written as χ = IndG(t) = 1
2πi

[lnG(t)]L. Hence the index χ can be represented
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by the following integral

χ = IndG(t) =
1

2π

∫
L

dargG(t) =
1

2πi

∫
L

dlnG(t). (2.79)

The integral in equation (2.79) is understood in Stieljes sense. For non vanishing

continuous functions F (t) and G(t), we have the following observations:

1. The indices of F (t) and G(t) on a closed contour L are always integers.

2. Ind[G(t)F (t)] = IndG(t) + IndF (t).

3. Ind[G(t)
F (t)

] = IndG(t)− IndF (t).

4. Let G(t) be the boundary value of a function G(z) which is analytic inside or

outside the closed contour L. Then its index is equal to the number of zeroes

(counting multiplicities) of the function inside or outside the closed contour

L, with negative sign.

5. Let G(z) be a meromorphic function inside or outside a closed contour L. If

Z denotes the number of zeroes of G(z) inside the closed contour L, and P

denotes number of poles inside the closed contour L, then

χ = IndG(t) = Z − P.
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Theorem 2.3.1. [23] Let L be a common smooth boundary of two domains D1 and D2,

f1(z) and F2(z) be two analytic functions in domains D1 and D2 respectively. Sup-

pose that for any point t ∈ L, f ∗1 (t) = limz→t f1(z), z ∈ D1 and f ∗2 (t) =

limz→t f2(z), z ∈ D2, are continuous and f ∗1 (t) = f ∗2 (t) ∀t ∈ L. Then the func-

tions f1(z) and f2(z) are regarded as the analytic continuation of each other.

Theorem 2.3.2. [23] Let a function f(z) be analytic in entire complex plane,

except at the points a0 = ∞, ak(k = 1, 2, 3, ...., n), where the function f(z) has

poles. Suppose that in vicinities of the poles z = a0 =∞ and z = ak, the principal

parts of the expansions of f(z) have forms

G0(z) = C0
1z + C0

2z
2 + C0

3z
3 + ...........+ C0

cnz
n0
n ,

G(
1

z − ak
) =

Ck
1

z − ak
+

Ck
2

(z − ak)2
+ ........+

Ck
mk

(z − ak)mk
,

respectively. Then the function f(z) is representable as a rational function f(z) =

C +G0(z) +
∑n

k=1 Gk(
1

z−ak
). In the case, when f(z) has only a pole of order m at

∞ then f(z) has the form f(z) = C0 + C1z + .........+ Cmz
m.

Definition 2.3.5. To define a RHP or a Privalov problem, let L be a positively

oriented smooth contour (open or closed) dividing the plane of complex variables

69



z into D+ and D− as in definition 2.3.3. Define G(t) and g(t) two continuous

functions of position on the contour L which satisfy Holder’s condition on L. Also,

G(t) and g(t) are non zero functions for every point on the contour L. We want

to find a sectionally analytic function

Φ(z) =


Φ+(z), z ∈ D+

Φ−(z), z ∈ D− ∪ {∞}

which satisfies the following condition on the contour L

Φ+(t) = G(t)Φ−(t) ∀ t ∈ L (homogeneous problem) or (2.80)

Φ+(t) = G(t)Φ−(t) + g(t) ∀ t ∈ L (non homogeneous problem). (2.81)

Note that

Φ+(t) = lim
z→t

Φ(z), z ∈ D+, t ∈ L,

Φ−(t) = lim
z→t

Φ(z), z ∈ D−, t ∈ L.

Lemma 2.3.1. [24] If index of G(t) is zero, then the general solution of the RHP

defined by equation (2.80) is Φ(z) = CΦ0(z), where C is an arbitrary constant ,

and Φ0(z) = el(z), l(z) = 1
2πi

∫
L
logG(t)
t−z dt. Note that L is a smooth closed contour

dividing the complex plane into D+ and D− as in definition 2.3.2.
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Theorem 2.3.3. [24] Let Γ be a smooth closed positively oriented contour enclosing

origin O. Suppose that G(t) be a non vanishing function on Γ which belongs to Lipγ

for some 0 < γ < 1. If the index χ of G(t) is non negative, then the general solution

of homogeneous RHP defined by equation (2.80) is given by

Φ(z) =


p(z)Φ1(z), z ∈ D+

z−nΦ1(z), z ∈ D−

where, p(z) is a polynomial of degree ≤ n, and

Φ1(z) = el1(z), l1(z) =
1

2πi

∫
Γ

log[t−nG(t)]

t− z
dt. (2.82)

If n < 0, the only solution of homogeneous RHP defined by equation (2.80) is a

trivial solution.

Theorem 2.3.4. [24] Let Γ be the contour as defined in theorem 2.3.3. Suppose

that G(t) and g(t) are non vanishing Hölder continuous functions on Γ for 0 <

γ < 1. If the index χ of G(t) is a non negative integer, then the general solution
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of non homogeneous RHP defined by equation 2.81 is given by

Φ(z) =


[p(z) + k(z)]el1(z), z ∈ D+

z−n[p(z) + k(z)]el1(z), z ∈ D−

where, p(z) is a polynomial of degree ≤ n, and

Φ1(z) = el1(z), l1(z) =
1

2πi

∫
Γ

log[t−nG(t)]

t− z
dt. (2.83)

Note that k(z) is defined as k(z) = 1
2πi

∫
Γ
g(t)e−l1(t)

t−z dt, k(z) = O(zn), as z → ∞.

If χ = −1, then the problem defined by equation (2.81) has precisely one solution. If

χ < −1, then the non homogeneous RHP defined by equation (2.81) has a solution

only if g(t) satisfies

∫
Γ

thg(t)e−l
+
1 (t)dt = 0, h = 0, 1, 2, 3, 4, ..........,−n− 2, where (2.84)

l+1 (t) = l1(z) as z → t (t ∈ Γ is an interior point of Γ, z ∈ D+) (2.85)

In either case, the solution of non homogeneous RHP defined by equation (2.81)

(if it exists) is given by

Φ(z) =


zn[k1(z)− k1(0)]el1(z), z ∈ D+

[k1(z)− k1(0)]el1(z), z ∈ D−
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k1(z) =
1

2πi

∫
Γ

t−ng(t)

Φ+
1 (t)(t− z)

dt, Φ1(z) = Φ(z)[k(z)]−1. (2.86)

Theorem 2.3.5. [24] Let Γ : t = t(τ), α ≤ τ ≤ β be a smooth open contour, and

G(t) be a non vanishing function of position on Γ satisfying Hölder’s condition on

Γ. The totality of solutions of homogeneous RHP (2.80) are given by

Φ1(z) = s(z)Φ0(z), where Φ0(z) = el(z), l(z) =
1

2πi

∫
Γ

logG(t)

t− z
dt. (2.87)

Note that s(z) is any analytic function with isolated singularities at the end points

t0 and t1 of Γ, and having at most a pole at ∞.

Lemma 2.3.2. [23] Let Γ is a smooth positively oriented open contour with end

points a and b. Suppose that φ(t) satisfies Hölder’s condition ∀t ∈ Γ including the

end points a and b. The Cauchy integral Φ(z) = 1
2πi

∫
Γ
φ(τ)
τ−z dτ, z ∈ C \ Γ has the

following behaviour near the end points a and b of contour Γ.

1. When z ∈ C \ Γ and z → a, then Φ(z) = −φ(a)
2πi

ln(z − a) + Φa(z).

2. When z ∈ C \ Γ and z → b, then Φ(z) = φ(b)
2πi
ln(z − b) + Φb(z).

Note that Φa(z) and Φb(z) are bounded functions in vicinities of the respective end

points, and tend to a definite value as z → a or b respectively, where z ∈ C \ Γ.
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So, the Cauchy type integral possess singularities of logarithmic type at end points

of the contour which are determined by the values of Φa(a) and Φb(b).

Definition 2.3.6. Let Γ : t = t(τ), α ≤ τ ≤ β, be a simple contour such that

t′(τ) ∈ Lipγ and t′(τ) 6= 0∀τ ∈ [α, β] and 0 < γ < 1. Let Φ(t) be a function

defined on Γ satisfying the following properties.

i. Φ(z) is an analytic function ∀z ∈ C \ Γ.

ii. Φ(z) has at most a pole at ∞.

iii. Φ(z) is not required to be meromorphic at the end points t0 = t(α) and t1 =

t(β) of contour Γ. It is only required to be analytic at these end points. The

behaviour of Φ(z) at the end points t0 and t1 should be pole like i.e. there exist

real numbers δ, ε and µ such that , if |z − tj| is sufficiently small, z ∈ C \ Γ,

then µ|z − tj|δ ≤ |Φ(z)| ≤ µ|z − tj|ε, j = 0, 1.

iv. Φ+(t) = limz→t Φ(z), t ∈ Γ is an interior point of Γ, z ∈ D+,

Φ−(t) = limz→t Φ(z), t ∈ Γ is an interior point of Γ, z ∈ D−,

exist and are non zero.
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v. Define a(t) = Φ+(t)
Φ−(t)

, ∀t ∈ Γ, where limt→t0 a(t) and limt→t1 a(t). Note

that loga(t) (a branch of the multi-valued function Loga(t)) is defined ∀ t ∈

Γ, such that loga(t) ∈ Lipγ for 0 < γ < 1.

Theorem 2.3.6. [24] Let Φ(z) be a function satisfying the hypothesis given in

definition 2.3.6. Then Φ(z) satisfies the following properties.

a. The function Φ(z) has finitely many zeroes.

b. A polynomial whose zeroes are exactly the zeroes of Φ(z), can be constructed

rationally in terms of finitely many of the Laurent coefficients of Φ(z) at ∞,

and finitely many of the quantities mk = 1
2πi

∫
Γ
tkloga(t)dt, k = 0, 1, 2, 3, ....

Note that loga(t) denotes any continuous logarithm of a(t).

Proof. Since Φ(z) satisfies the conditions (i), (ii), (iv) and (v) given in definition

2.3.6, so, Φ(z) is a solution of the homogeneous RHP

Φ+(t) = a(t)Φ−(t) ∀ t ∈ Γ, (2.88)

where a(t) is a non vanishing Hölder continuous function on Γ. Application of

theorem 2.3.5 indicates that a special solution of the RHP defined by equation
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(2.88) is given by Φ0(z) = eg(z), where g(z) is the Cauchy integral

g(z) =
1

2πi

∫
Γ

loga(t)

t− z
dt. (2.89)

Also, theorem 2.3.5 asserts that every solution of the RHP defined by equation

(2.88), is of the form

Φ(z) = s(z)Φ0(z) (2.90)

where the function s(z) has isolated singularities (at most) at the points t0, t1 and ∞.

Conditions (ii) and (iii) in definition 2.3.6 imply that the singularities of s(z) at

these points are at most poles, and thus s(z) in equation (2.90) is a rational func-

tion. Since Φ0(z) 6= 0, z ∈ C \ Γ, equation (2.90) indicates that zeroes of Φ(z)

are those of s(z). Now identification of s(z) is required. From above use value

Φ0(z) = eg(z) in equation (2.90), and simplify to get

s(z) = Φ(z)e−g(z). (2.91)

Using equation (2.91) Laurent’s series of s(z) at ∞ can be calculated because the

Laurent’s series of Φ(z) is assumed to be known

Φ(z) =
∞∑

n=−l

anz
−n, where l is the order of pole of Φ(z) at ∞. (2.92)
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From equation (2.89) consider

−g(z) =
1

2zπi

∫
Γ

loga(t)

1− t
z

dt, (2.93)

(1− t

z
)−1 = 1 +

t

z
+
t2

z2
+
t3

z3
+ ..., (2.94)

1

z
(1− t

z
)−1 =

1

z
+

t

z2
+
t2

z3
+ .... (2.95)

Use value of 1
z
(1− t

z
)−1 from equation (2.95) in equation(2.93) to get

−g(z) =
1

2πi

∫
Γ

loga(t)dt[
1

z
+

t

z2
+
t2

z3
+ ...]. (2.96)

Let mn = 1
2πi

∫
Γ
tnloga(t)dt, n = 0, 1, 2, 3, 4, .... Then equation (2.96) becomes

−g(z) =
∞∑
n=0

mn

zn+1
. (2.97)

Hence, the Laurent’s series of e−g(z) is

e−g(z) =
∞∑
n=0

bnz
−n. (2.98)

The coefficients bn in equation (2.98) can be computed by comparing coefficients

in the identity

d

dz
(−e−g(z)) = ǵ(z)e−g(z). (2.99)

Use values of g′(z), g(z) and e−g(z) from equations (2.97) and (2.98) in equation

(2.99) to get
∑∞

n=1
nbn
zn+1 =

∑∞
n=1

nmn−1

zn+1

∑∞
j=0

bj
zj
. This equation yields the recur-
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rence relation b0 = 1, nbn = nmn−1b0 + (n − 1)mn−2b1 + · · · + 1.m0bn−1, n =

1, 2, 3, 4, .... Note that equations (2.92) and (2.98) give Laurent series expansion for

Φ(z) and e−g(z) at ∞. Then using series representations of Φ(z) and e−g(z) from

equations (2.92) and (2.98) respectively, in equation (2.91), and forming a Cauchy

product, as many Laurent coefficients sn can be constructed in the following ex-

pansion as one likes.

s(z) =
∞∑

n=−l

snz
−n (2.100)

Note that knowing finitely many coefficients in the expansion defined by equation

(2.100) is not sufficient, however, to identify s(z), even if s(z) be a rational function.

If, on the other hand, a bound for the order of poles of s(z) were known, then

identification can be made. Suppose that the order of the poles of s(z) at tj be at

most rj, j = 0, 1. Since a rational function is the sum of its principal parts, so,

s(z) must be of the form

s(z) =
l∑

n=0

s−nz
n(s0 + principal part at ∞) +

r0∑
n=1

a0,n

(z − t0)n
(principal part at t0)

+

r1∑
n=1

a1,n

(z − t1)n
( principal part at t1).

(2.101)
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The coefficients aj,n in equation (2.101) are yet, unknown. However, one can expand

the principal parts in equation (2.101) into their Laurent series at ∞ using the

following formula.

1

(z − tj)n
= z−n(1− tj

z
)−n = z−n

∞∑
p=0

(n)p
p!

(
tj
z

)p (2.102)

Using expansion of 1
(z−tj)n from equation (2.102) in equation (2.101), it is evident

that the coefficients of z−n in the Laurent series of s(z) at∞ can be expressed as a

linear combination of aj,k, for all k ≤ n. Now equating these expressions to sn for

1 ≤ n ≤ r0 + r1, a system of linear equations for r0 + r1 unknowns aj,n is obtained.

This system of linear equations is used to determine the unknowns aj,n, and hence

s(z). To complete the construction of s(z), it is necessary to find bounds rj for the

order of poles of s(z) at tj, j = 0, 1. Condition (iii) in definition 2.3.6 controls

the behaviour of Φ(z) at these points. To study the behaviour of Φ−1
0 (z) = e−g(z)

near the end points t0 and t1, of Γ, lemma 2.3.2 is used. Application of lemma 2.3.2

gives the following result.

g(z) =
1

2πi

∫
Γ

loga(t)

t− z
dt behaves like − 1

2πi
loga(t0)log(z − t0). (2.103)
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Use the above relation to find behavior of e−g(z) as z → t0. Note that

for z → t0, z ∈ C \ Γ, e−g(z) ∼ constant (z − t0)
1

2πi
log a(t0). (2.104)

Similarly, for z → t1, z ∈ C \ Γ, e−g(z) ∼ constant (z − t1)−
1

2πi
log a(t1).

(2.105)

Note that Condition (iii), equation (2.91), relation (2.104), and condition (iii),

equation (2.91), relation (2.105) gives following results.

|s(z)| ≤ constant |z − t0|ε+Re
1

2πi
loga(t0) as z → t0 (2.106)

|s(z)| ≤ constant |z − t1|ε−Re
1

2πi
loga(t1) as z → t1 (2.107)

Relations (2.106) and (2.107) indicate that the bounds for the order of poles at t0

and t1 are given by r0 = −[ε + Re 1
2πi
loga(t0)], r1 = −[ε − Re 1

2πi
loga(t1)]. Note

that Burniston-Siewert method also holds for a finite collection of non intersecting

smooth arcs.

2.4 Zeroes of the transcendental equation occurring in the solution of

BVP of Helmholtz equation in a semi-infinite strip using FIT

method

We apply the Burniston-Siewert method to find the zeroes of the following tran-

scendental equation:

tanλa =
λ(µ0 + µ1)

λ2 − µ0µ1

, µ0, µ1 > 0. (2.108)
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While solving the BVP of the Helmholtz equation in a semi-infinite strip using

FIT method, equation (2.108) occurs in chapter 2 subsection 2.2.1 page 59.

Let ζ = −iλa, divide by ia to get λ = iζ
a
. Then equation (2.108) becomes

tan iζ =
iζ(µ0 + µ1)

a(− ζ2

a2 − µ0µ1)
, simplify to get tan iζ =

iζ(µ0 + µ1)a

−ζ2 − µ0µ1a2
.

Use trigonometric and hyperbolic identities to get

tanhζ = −aζ(µ0 + µ1)

ζ2 + µ0µ1a2
, definition of tanhζ gives

e2ζ − 1

e2ζ + 1
= −aζ(µ0 + µ1)

ζ2 + µ0µ1a2
.

Cross multiply and simplify to get

(e2ζ − 1)(ζ2 + c2) = −bζ(e2ζ + 1), c = a
√
µ0µ1 > 0, b = a(µ0 + µ1) > 0,

e2ζ(ζ2 + bζ + c2) = ζ2 − bζ + c2, e2ζ =
ζ2 − bζ + c2

ζ2 + bζ + c2
,

ζ =
1

2
Log

ζ2 − bζ + c2

ζ2 + bζ + c2
+ πik.

(2.109)

Using equation(2.109), we define the function f(ζ) as follows:

f(ζ) =
1

2
Log

ζ2 − bζ + c2

ζ2 + bζ + c2
+ πik − ζ. (2.110)

Let α0 = aµ0 > 0, α1 = aµ1 > 0 and α1 > α0. Then equation (2.110) becomes

f(ζ) =
1

2
Log

(ζ − α0)(ζ − α1)

(ζ + α0)(ζ + α1)
+ πik − ζ, k = 0,±1,±2,±3,±4, .... (2.111)

Note that Log (ζ−α0)(ζ−α1)
(ζ+α0)(ζ+α1)

is a multi-valued function with branch points α0, α1,−α0

and−α1. The individual factor Log(ζ−α0) has the branch points α0 and ∞, similar

is true for the other factors Log(ζ − α1), Log(ζ + α0) and Log(ζ + α1). We fix a

branch of f(ζ) by drawing branch cuts in the complex plane as shown in figure

2.4.
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FIGURE 2.4. A branch cut for the multi-valued function f(ζ)

We denote a single branch of Log (ζ−α0)(ζ−α1)
(ζ+α0)(ζ+α1)

by log (ζ−α0)(ζ−α1)
(ζ+α0)(ζ+α1)

. For this single

branch we have

Arg(ζ − αj) = θ+
j , −π ≤ θ+

j ≤ π, j = 0, 1,

Arg(ζ + αj) = θ−j , −π ≤ θ−j ≤ π, j = 0, 1.

For the single branch log (ζ−α0)(ζ−α1)
(ζ+α0)(ζ+α1)

, equation (2.111) becomes

f(ζ) =
1

2
log

(ζ − α0)(ζ − α1)

(ζ + α0)(ζ + α1)
+ πik − ζ, k = 0,±1,±2,±3,±4, ...

=
1

2
log|(ζ − α0)(ζ − α1)

(ζ + α0)(ζ + α1)
|+ i

2
[arg(ζ − α0) + arg(ζ − α1)−

arg(ζ + α0)− arg(ζ + α1)] + πik − ζ, k = 0,±1,±2,±3, ....

(2.112)

Equation (2.112) can be expressed as

f(ζ) = f∗(ζ) +
i

2
[arg(ζ − α0) + arg(ζ − α1)− arg(ζ + α0)− arg(ζ + α1)]

+ πik − ζ, f∗(ζ) =
1

2
log|(ζ − α0)(ζ − α1)

(ζ + α0)(ζ + α1)
|.

(2.113)
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For ζ = ζ1 ± i0, −∞ < ζ1 < α1, we have θ+
0 = θ+

1 = θ−0 = θ−1 = ±π. (2.114)

Now equation (2.113) becomes f(ζ1 ± i0) = f∗(ζ1) + πik − ζ1. (2.115)

For ζ = ζ1 ± i0, − α1 < ζ1 < −α0, we have θ+
0 = θ+

1 = θ−0 = ±π, θ−1 = 0.

(2.116)

Now equation (2.113) becomes f(ζ1 ± i0) = f∗(ζ1)± π

2
i+ πik − ζ1. (2.117)

For ζ = ζ1 ± i0, − α0 < ζ1 < α0, we have θ+
0 = θ+

1 = ±π, θ−0 = θ−1 = 0. (2.118)

Now equation (2.113) becomes f(ζ1 ± i0) = f∗(ζ1)± πi+ πik − ζ1. (2.119)

For ζ = ζ1 ± i0, α0 < ζ1 < α1, we have θ+
1 = ±π, θ+

0 = θ−0 = θ−1 = 0. (2.120)

Now equation (2.113) becomes f(ζ1 ± i0) = f∗(ζ1)± π

2
i+ πik − ζ1. (2.121)

For ζ = ζ1 ± i0, α1 < ζ1 <∞, we have θ+
0 = θ+

1 = θ−0 = θ−1 = 0. (2.122)

Now equation (2.113) becomes f(ζ1 ± i0) = f∗(ζ1) + πik − ζ1. (2.123)

We denote the values of f(ζ) on the upper and lower edges of the contour Γ = Γ0∪

Γ1 by f+(t) and f−(t) respectively, these values are determined by using equations

(2.115), (2.117), (2.119), (2.121) and (2.123). So, the values of f+(t) and f−(t) are

f+(t) = φ(t) +


πi(k + 1

2
), α0 < |t| < α1 = Γ1

πi(k + 1), |t| < α0 = Γ0

(2.124)

f−(t) = φ(t) +


πi(k − 1

2
), α0 < |t| < α1 = Γ1

πi(k − 1), |t| < α0 = Γ0.

(2.125)

Note that φ(t) = f∗(t)− t =
1

2
log|(ζ − α0)(ζ − α1)

(ζ + α0)(ζ + α1)
| − t. (2.126)

It is observed that φ(t)→ −∞, as t→ α0 or t→ α1, (2.127)

φ(t)→ +∞, as t→ −α0 or t→ −α1. (2.128)
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Now we define

a(t) =
f+(t)

f−(t)
=
φ(t) + πi(k + 1

2
)

φ(t) + πi(k − 1
2
)
, t ∈ Γ1 = [−α1,−α0] ∪ [α0, α1], (2.129)

a(t) =
f+(t)

f−(t)
=
φ(t) + πi(k + 1)

φ(t) + πi(k − 1)
, t ∈ Γ0 = [−α0, α0]. (2.130)

Note that f(ζ) defined by equation (2.113) satisfies the five hypothesis given in

definition 2.3.6.

Case-I. For k = 0, equations (2.129) and (2.130) give

log a(t) = log
φ(t) + πi

2

φ(t)− πi
2

, t ∈ Γ1 = [−α1,−α0] ∪ [α0, α1], (2.131)

log a(t) = log
φ(t) + πi

φ(t)− πi
, t ∈ Γ0 = [−α0, α0]. (2.132)

Consider the segment [−α1,−α0], using equation (2.131), we find that |a(t)| = 1,

and

Arga(t) = Arg(φ(t) +
iπ

2
)− arg(φ(t)− iπ

2
) using equation (2.128) to get

= 0− 0 = 0.

(2.133)

Using above results, log a(t) = log |a(t)| + iarga(t) = 0, as t → −α1 + 0 or t →

−α0 − 0. Now consider the segment [α0, α1], using equation (2.131), we find that

|a(t)| = 1, and

Arga(t) = arg(φ(t) +
iπ

2
)− arg(φ(t)− iπ

2
) using equation (2.127) to get

= π − (−π)

= 2π.

(2.134)

Using above results, log a(t) = log |a(t)| + iArga(t) = 2πi, as t → α0 + 0 or t →

α1− 0. Similarly, we can find behavoir of log a(t) at the end points of the segment

[−α0, α0].
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TABLE 2.1. Values of log a(t)

−α1 + 0 −α0 − 0 −α0 + 0 α0 − 0 α0 + 0 α1 − 0

log a(t) 0 0 0 2πi 2πi 2πi

Table 2.1 shows values for loga(t) for different values of t in the contours Γ0 and Γ1.

Case-II. For k = 1, equations (2.129) and (2.130) give

loga(t) = log
φ(t) + 3πi

2

φ(t) + πi
2

, t ∈ Γ1 = [−α1,−α0] ∪ [α0, α1], (2.135)

loga(t) = log
φ(t) + 2πi

φ(t)
, t ∈ Γ0 = [−α0, α0]. (2.136)

Table 2.2 shows values for loga(t) for different values of t in the contours Γ0 and Γ1.

TABLE 2.2. Values of log a(t)

−α1 + 0 −α0 − 0 −α0 + 0 α0 − 0 −α0 + 0 α1 − 0

log a(t) 0 0 0 0 0 0

Case-III. For k = −1, equations (2.129) and (2.130) give the same Table 2.2.

Case-IV. For k > 1 or k < −1, equations (2.129) and (2.130) give the same

Table 2.2.

Riemann Hilbert problem is:

f+(t) = a(t)f−(t), t ∈ Γ = Γ0 ∪ Γ1. (2.137)

Application of theorem 2.3.5 indicates that a special solution of the RHP defined

by equation (2.137) is given by f0(ζ) = eg(ζ), where g(ζ) is the Cauchy integral

given by

g(ζ) =
1

2πi

∫
Γ

loga(t)

t− ζ
dt. (2.138)

The Burniston-Siewert method given by theorem 2.3.6 shows that our solution is

of the following form.

f(ζ) = s(ζ)f0(ζ) (2.139)
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Note that s(ζ) is a rational function that may have poles at ±α0,±α1, and ∞,

also, f0(ζ) 6= 0. Equation (2.139) indicates that zeroes of f(ζ) and s(ζ) are same.

Equation (2.139) can be expressed as

s(ζ) = f(ζ)e−g(ζ). (2.140)

Analysis of the Cauchy integral (2.138) indicates that

−g(ζ) ∼ − 1

2πi
loga(α1)log(ζ − α1), as ζ → α1. (2.141)

Now we consider the following cases:

a. k = 0

loga(t) = log
φ(t) + πi

2

φ(t)− πi
2

∀t ∈ Γ1 = (−α1,−α0) ∪ (α0, α1) (2.142)

Using relations defined by (2.127), (2.128) and (2.142), we notice that loga(t) ∼

2πi, as t→ α1, hence relation (2.141) simplifies to

−g(ζ) ∼ −log(ζ − α1), as ζ → α1. (2.143)

Relations (2.140) and (2.143) give the following result.

s(ζ) ∼ constant
1

ζ − α1

, as ζ → α1. (2.144)

Since loga(t) = 0 for t→ ±α0,−α1, using lemma 2.3.2 and equation (2.140),

it is observed that s(ζ) has removable singularities at the points ±α0, and −

α1. Note that f(ζ) ∼ −ζ as ζ →∞, this implies that s(ζ) ∼ −ζ as ζ →∞.

(because f(ζ) and s(ζ) have same behavior as ζ → ∞.) Hence, application
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of generalized Liouville’s theorem 2.3.2 gives the following result.

s(ζ) = −ζ +
c

ζ − α1

+ c1

s(ζ) = −ζ +
c

ζ(1− α1

ζ
)

+ c1

s(ζ) = −ζ +
c

ζ
[1 +

α1

ζ
+
α2

1

ζ2
+
α3

1

ζ3
+ · · · ] + c1 as ζ →∞

s(ζ) = −ζ +
c

ζ
+ c1 +O(

1

ζ2
), as ζ →∞.

(2.145)

Equation (2.145) can be written as

s(ζ) ∼ −ζ +
c

ζ
+ c1, as ζ →∞. (2.146)

Now, we judge the behavior of f(ζ) at ∞ , for k = 0 equation (2.113) can be

expressed as

f(ζ) =
1

2
log

(1− α0

ζ
)(1− α1

ζ
)

(1 + α0

ζ
)(1 + α1

ζ

)− ζ

f(ζ) =
1

2
[log(1− α0

ζ
) + log(1− α1

ζ
)− log(1 +

α0

ζ
)− log(1 +

α1

ζ
)]− ζ

log(1 +
α0

ζ
) =

α0

ζ
− α2

0

2ζ2
+
α3

0

3ζ3
− α4

0

4ζ4
+ ... use this relation to get

f(ζ) =
1

2
[(−α0

ζ
− α2

0

2ζ2
− α3

0

3ζ3
− ...) + (−α1

ζ
− α2

1

2ζ2
− α3

1

3ζ3
− ...)−

(
α0

ζ
− α2

0

2ζ2
+
α3

0

3ζ3
− · · · )− (

α1

ζ
− α2

1

2ζ2
+
α3

1

3ζ3
− ...)]− ζ, as ζ →∞.

(2.147)

Equation (2.147) can be expressed as

f(ζ) =
1

ζ
(−α0 − α1) +O(

1

ζ2
)− ζ, as ζ →∞. (2.148)

From equation (2.138), the Cauchy integral becomes

− g(ζ) = − 1

2πi

∫
Γ

loga(t)

t− ζ
dt, t ∈ Γ = Γ0 ∪ Γ1.

− g(ζ) =
1

2ζπi

∫
Γ

loga(t)(1− t

ζ
)−1dt =

∞∑
n=0

1

ζn+1

∫
Γ

loga(t)tndt.

(2.149)
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Equation (2.149) can be expressed as

− g(ζ) =
∞∑
n=0

mn

ζn+1
, mn =

∫
Γ

loga(t)tndt

e−g(ζ) can be expressed in series representation as

e−g(ζ) = e
∑∞
n=0

mn
ζn+1 = e

m0
ζ

+
m1
ζ2

+···

e−g(ζ) = 1 +
m0

ζ
+
m1

ζ2
+
m2

ζ3
+ ......+

(m0

ζ
+ m1

ζ2 + m2

ζ3 + · · · )2

2!
+ ....

e−g(ζ) = 1 +
m0

ζ
+
m1

ζ2
+
m2

0

2ζ2
+O(

1

ζ3
), as ζ →∞.

(2.150)

Substitute the values of e−g(ζ) and f(ζ) from equations (2.150) and (2.148)

in equation (2.140), to get

s(ζ) = [
1

ζ
(−α0 − α1) +O(

1

ζ2
)− ζ][1 +

m0

ζ
+
m1

ζ2
+
m2

0

2ζ2
+O(

1

ζ3
)],

as ζ →∞. Simplification gives

s(ζ) = [
1

ζ
(−α0 − α1)− ζ −m0 −

m1

ζ
− m2

0

2ζ
+O(

1

ζ2
)], as ζ →∞.

(2.151)

Compare the expressions for s(ζ) from equations (2.145) and (2.151) to get

c = −α0 − α1 −m1 − m2
0

2
, c1 = −m0. Hence relation (2.146) becomes

s(ζ) = −ζ +
c

ζ
−m0, c = −α0 − α1 −m1 −

m2
0

2
. (2.152)

Note that s(ζ) = 0⇔ ζ2 +m0ζ− c = 0. Solve this equation to get two zeroes

of the transcendental equation (2.108).

b. k 6= 0.

Without loss of generality, suppose that k > 0. Consider t ∈ Γ1, then

log a(t) = log |a(t)|+ iArg a(t), use equation (2.129) to get

log a(t) = log |
φ(t) + πi(k + 1

2
)

φ(t) + πi(k − 1
2
)
|+ iArg[

φ(t) + πi(k + 1
2
)

φ(t) + πi(k − 1
2
)
].

(2.153)
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Equation (2.153) can be simplified to

log a(t) =
1

2
log[

φ(t)2 + π2(k + 1
2
)2

φ(t)2 + π2(k − 1
2
)2

] + iArg[
φ(t)2 + φ(t)πi+ π2(k2 − 1

4
)

φ(t)2 + π2(k − 1
2
)2

]

log a(t) =
1

2
log[

φ(t)2 + π2(k + 1
2
)2

φ(t)2 + π2(k − 1
2
)2

] + i arctan[
φ(t)π

φ(t)2 + π2(k2 − 1
4
)
].

(2.154)

From relation (2.128), φ(t)→ +∞, as t→ −α0 or t→ −α1. Hence equation

(2.154) indicates that log a(t) → 0 when φ(t) → +∞, as t → −α0 or t →

−α1.Now using the relations defined by (2.127) and (2.154), we have log a(t)→

0 when φ(t)→ −∞, as t→ α0 or t→ α1. Similarly, we can show that, when

t ∈ Γ0, and ζ → ±α0, or ± α1, where ζ ∈ C \ Γ, then log a(t) → 0. Table

2.2 shows the similar results. Equation (2.111) can be expressed as

f(ζ) = −ζ + πik +O(
1

ζ
), as ζ →∞. (2.155)

Equation (2.155) indicates that f(ζ) has a pole at ζ = ∞. So, we concude

that s(ζ) has a pole at ∞. (f(ζ) and s(ζ) have same behaviour as ζ →∞.)

We have already shown that log a(ζ)→ 0, as ζ → ±α0, or ±α1, where ζ ∈

C \ Γ.

Since g(ζ) =
1

2πi

∫
Γ

loga(τ)

τ − ζ
dτ, ζ ∈ C \ Γ, Γ = Γ0 ∪ Γ1 (2.156)

Equation (2.156) indicates that g(ζ) is vanishing at the end points ±α0,±α1.

Hence, [f0(ζ)]−1 = e−g(ζ) is bounded at the end points ±α0,±α1. So, from

equation (2.140) s(ζ) = f(ζ)e−g(ζ), we conclude that s(ζ) is bounded at the

points ±α0,±α1. (This means that s(ζ) has removable singularities at the

points ±α0,±α1.) Since s(ζ) has a pole at ∞, and is bounded at the points

±α0,±α1. So, application of the generalized Liouville’s theorem 2.3.2 gives

s(ζ) = aζ + b. (2.157)
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From equation (2.150), e−g(ζ) can be expressed as

e−g(ζ) = 1 +
m0

ζ
+O(

1

ζ2
). (2.158)

From equations (2.158) and (2.155) use values of e−g(ζ) and f(ζ) in equation

(2.140) to get

s(ζ) = [−ζ + πik +O(
1

ζ)
][1 +

m0

ζ
+O(

1

ζ2
)]

s(ζ) = −ζ + πik −m0 +O(
1

ζ
).

(2.159)

Compare equations (2.157) and (2.159) to get a = −1, b = πik−m0. Hence

equation (2.157) becomes

s(ζ) = −ζ + πik −m0, m0 =
1

2πi

∫
Γ

loga(t)dt,

m0 = m0(k), k = 1, 2, 3, · · ·
(2.160)

Using the Burniston-Siewert method, we have calculated the zeroes of the tran-

scendental equation (2.108) for µ0 = 2, µ1 = 3, a = 5. These are shown in the

tables 2.3 and 2.4.

TABLE 2.3: Zeroes of transcendental equation (2.108) when

k ≥ 0.

k λ

0 0.5399633576

1 1.087479972

2 1.646783217

3 2.801213276

4 3.392922352

5 3.991706387

90



Continuation of Table 2.3

k λ

6 4.595979567

7 5.204505695

8 5.816345

9 6.430788563

10 7.047300816

11 7.665474543

12 8.284997332

13 8.905627065

14 9.527174117

15 10.14948842

16 10.77245001

17 11.39596204

18 12.01994564

19 12.64433599

20 13.26907944

21 13.89413119

22 14.5194536

23 15.14501483

24 15.77078779

25 16.39674927

26 17.02287932

27 17.64916065

28 18.27557826
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Continuation of Table 2.3

k λ

29 18.90211903

30 19.52877147

31 20.15552546

32 20.78237206

33 21.40930335

34 22.03631226

35 22.6633925

36 23.29053843

37 23.91774498

38 24.54500761

39 25.17232219

40 25.799685

41 26.42709267

42 27.05454211

43 27.68203054

44 28.3095554

45 28.93711435

46 29.56470525

47 30.19232613

48 30.81997518

49 31.44765074

50 32.07535127

51 32.70307534
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Continuation of Table 2.3

k λ

52 33.33082164

53 33.95858895

54 34.58637613

55 35.21418214

56 35.84200598

57 36.46984676

58 37.09770361

59 37.72557574

60 38.35346241

TABLE 2.4: Zeroes of transcendental equation (2.108) when

k ≤ 0.

k λ

0 -0.5399633576

-1 -1.087479972

-2 -1.646783217

-3 -2.801213276

-4 -3.392922352

-5 -3.991706387

-6 -4.595979567

-7 -5.204505695

-8 -5.816345

-9 -6.430788563
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Continuation of Table 2.4

k λ

-10 -7.047300816

-11 -7.665474543

-12 -8.284997332

-13 -8.905627065

-14 -9.527174117

-15 -10.14948842

-16 -10.77245001

-17 -11.39596204

-18 -12.01994564

-19 -12.64433599

-20 -13.26907944

-21 -13.89413119

-22 -14.5194536

-23 -15.14501483

-24 -15.77078779

-25 -16.39674927

-26 -17.02287932

-27 -17.64916065

-28 -18.27557826

-29 -18.90211903

-30 -19.52877147

-31 -20.15552546

-32 -20.78237206
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Continuation of Table 2.4

k λ

-33 -21.40930335

-34 -22.03631226

-35 -22.6633925

-36 -23.29053843

-37 -23.91774498

-38 -24.54500761

-39 -25.17232219

-40 -25.799685

-41 -26.42709267

-42 -27.05454211

-43 -27.68203054

-44 -28.3095554

-45 -28.93711435

-46 -29.56470525

-47 -30.19232613

-48 -30.81997518

-49 -31.44765074

-50 -32.07535127

-51 -32.70307534

-52 -33.33082164

-53 -33.95858895

-54 -34.58637613

-55 -35.21418214
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Continuation of Table 2.4

k λ

-56 -35.84200598

-57 -36.46984676

-58 -37.09770361

-59 -37.72557574

-60 -38.35346241

Mathematica programming is used to find the zeroes of the transcendental equa-

tion (2.108). These values are verified by applying the fixed point iteration method

to the transcendental equation (2.108), and using matlab programming. Burniston-

Siewert method gives numerical values for zeroes of the transcendental equation

(2.108) along with closed form expressions for zeroes of the transcendental equa-

tion (2.108). It is not possible to get closed form expressions for zeroes of the

transcendental equation (2.108) by applying any numerical technique.
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Chapter 3

Riemann-Hilbert problem approach for

Helmholtz equation in a semi-infinite

strip

3.1 Preliminaries

Definition 3.1.1. Let Lx denotes the Laplace transform operator w.r.t. x ∈ (0,∞).

If u(., y) ∈ L1(R+), then the Laplace transform of u(x, y) w.r.t x ∈ (0,∞) is

denoted by ũ(η, y) and is defined by ũ(η, y) = Lx[u(x, y)] =
∫∞

0
u(x, y)eiηxdx, η ∈ C.

Note that ũ(η, y) → 0 as η → ∞. If the inverse Laplace transform operator is

denoted by L−1
x , and u(x, y) is continuous w.r.t. x on each finite interval (0, A),

0 < A <∞, then the inverse Laplace transform of ũ(η, y), is defined by

u(x, y) = L−1
x [ũ(η, y)] =

1

2π

∫ ∞
−∞

ũ(η, y)e−iηxdη

Definition 3.1.2. Let Ly denotes the Laplace transform operator w.r.t. y ∈ (0, a), a >

0. If u(x, .) ∈ L1(0, a), and u(x, y) = 0,∀y > a, then the Laplace transform

of u(x, y) w.r.t y ∈ (0, a) is denoted by û(x, iλ) and is defined by û(x, iλ) =

Ly[u(x, y)] =
∫ a

0
u(x, y)e−λydy, λ ∈ C. Note that û(x, iλ) → 0 as λ → ∞. If the
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inverse Laplace transform operator is denoted by L−1
y , and u(x, y) is continuous

w.r.t. y on each finite interval (0, A), 0 < A <∞, then the inverse Laplace trans-

form of û(x, iλ), is defined by u(x, y) = L−1
y [û(x, iλ)] = 1

2πi

∫
Γ
û(x, iλ)eλydλ. Note

that Γ = (c − i∞, c + i∞), where c = Re(λ) and u(x, .) ∈ L1(0, a), and satisfies

∫∞
o
e−cx|u(x, y)|dy <∞. Γ is referred to as the Bromwich contour, and c is taken

to the right of all the singularities in order to satisfy the above condition.

Definition 3.1.3. Let L be a smooth closed or open contour in the complex plane.

If L is a positively oriented closed contour then L divides the complex plane in

two parts namely D+ and D−. If L is an open contour then positive orientation

of L means that if a person is walking on the contour L then D+ is always on

his left hand side while D− is on his right hand side. Let G(t) = (Gi,j)i,j be

a non singular matrix on L and Gi,j ∈ H(L)( Holder continuous on L) and

g(t) = (gi,j)i,j, gi,j ∈ H(L). By the term vector RHP, we mean to find two vec-

tors Φ+(z) and Φ−(z) analytic in D+ and D− respectively, such that their limiting

values satisfy the boundary condition

Φ+(t) = G(t)Φ−(t) + g(t), ∀t ∈ L.
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Theorem 3.1.1. [23] Let L be smooth positively oriented contour(open or closed),

and φ(τ) a function of position for all τ ∈ L which satisfies Holder’s condition on

L. If L is closed, then D+ denotes domain interior to L, and D− is complement

to D+ + L. If L is open, then D+ is on the left side of L and D− is on the right

side of L as one walks along the contour L. Then the Cauchy type integral given

by definition 2.3.3

Φ(z) =
1

2πi

∫
L

φ(τ)

τ − z
dτ, z ∈ C \ L (3.1)

has limiting values Φ+(t) and Φ−(t) where

Φ+(t) = lim
z→t

Φ(z), z ∈ D+, t ∈ L, and t is not an end point of L, (3.2)

Φ−(t) = lim
z→t

Φ(z), z ∈ D−, t ∈ L, and t is not an end point of L. (3.3)

Φ+(t) and Φ−(t) are related to the singular integral 1
2πi

∫
L
φ(τ)
τ−t dτ, t ∈ L, and the

density φ(t) of the singular integral through following relations:

Φ+(t) =
1

2
φ(t) +

1

2πi

∫
L

φ(τ)

τ − t
dτ, t ∈ L, (3.4)

Φ−(t) = −1

2
φ(t) +

1

2πi

∫
L

φ(τ)

τ − t
dτ, t ∈ L. (3.5)
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These are called the Sokhotski Plemelj formulae. By adding and subtracting equa-

tions (3.4) and (3.5), we get another form of the Sokhotski Plemelj formulas:

Φ+(t) + Φ−(t) =
1

πi

∫
L

φ(τ)

τ − t
dτ, t ∈ L, (3.6)

Φ+(t)− Φ−(t) = φ(t), t ∈ L. (3.7)

3.2 Helmholtz equation in a semi-infinite strip subject to the

Poincare type boundary conditions

Consider the Helmholtz equation

(∂2
x + ∂2

y + k2)q(x, y) = g(x, y), Im(k) > 0, (x, y) ∈ Ω, (3.8)

where Ω is a semi-infinite strip shown in figure 3.1 , with corners z1 =∞, z2 = 0 ,

z3 = ia, z4 =∞+ ia, a > 0. Figure 3.1 shows Poincare type boundary conditions

along three sides of Ω .

FIGURE 3.1. Poincare boundary conditions along sides of Ω.
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The Poincare type boundary conditions are

∂q

∂ν

∣∣∣∣
ej

+ µjq = gj, (3.9)

where, for j = 0, 1, 2, ∂q
∂ν

∣∣∣∣
ej

= 5q · ej is the directional derivative in direction ej

specified by constant βj, j = 0, 1, 2 where, (0 < β1 < π, π
2
< β2 < 3π

2
, π <

β0 < 2π), µj is a real non negative constant, and gj is a real valued function with

appropriate smoothness and decay. The boundary conditions in equation (3.9) can

be written as:

side1 : cos β0qx + sin β0qy + µ0q = g0(x), 0 < x <∞, y = 0, (3.10)

side2 : cos β2qy + sin β2qx + µ2q = g2(y), x = 0, 0 < y < a, (3.11)

side3 : cos β1qx + sin β1qy + µ1q = g1(x), 0 < x <∞, y = a. (3.12)

The functions g1(x), g3(x) vanish at the points x = 0 and x =∞, sin βj 6= 0, j =

0, 1, 2. Apply the the operator Lx from definition 3.1.1 to equation (3.8), to get∫ ∞
0

∂2
xq(x, y)eiηxdx+∂2

y

∫ ∞
0

q(x, y)eiηxdx+k2

∫ ∞
0

q(x, y)eiηxdx =

∫ ∞
0

g(x, y)eiηxdx.

(3.13)

Evaluate
∫∞

0
∂2
xq(x, y)eiηxdx.∫ ∞

0

∂2
xq(x, y)eiηxdx = eiηx∂xq(x, y)|∞x=0 −

∫ ∞
0

∂xq(x, y)eiηx(iη)dx,

q(x, y) ∈ C1(Ω) ∩ C2(Ω) and q(x, y)|x=∞ = ∂xq(x, y)|x=∞ = 0,

= −∂xq(0, y)− iη
∫ ∞

0

∂xq(x, y)eiηxdx integrate by parts

= −∂xq(0, y)− iη[eiηxq(x, y)|∞x=0 −
∫ ∞

0

q(x, y)iηeiηxdx]

(3.14)

Use the property q(x, y) ∈ C1(Ω) ∩ C2(Ω) and q(x, y)|x=∞ = ∂xq(x, y)|x=∞ = 0

and definition 3.1.1 in equation (3.14), to get∫ ∞
0

∂2
xq(x, y)eiηxdx = −∂xq(0, y) + iηq(0, y)− η2

∫ ∞
0

q(x, y)eiηxdx. (3.15)
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Insert the value of
∫∞

0
∂2
xq(x, y)eiηxdx in equation (3.8), and simplify to get

(
d2

dy2
− ζ2)q̃(η, y) =

∂

∂x
q(0, y)− iηq(0, y) + g̃(η, y). (3.16)

Note that ζ =
√
η2 − k2 is a multi-valued function. We fix a branch of it by

Re(ζ) ≥ 0, and ±k are the branch points of this multi-valued function. The branch

cut of this multi-valued function is shown in figure 3.2. Write equation (3.16) as

(
d2

dy2
− ζ2)q̃(η, y) = f(y), f(y) = ∂xq(0, y)− iηq(0, y) + g̃(η, y). (3.17)

From definition 3.1.1 apply the the operator Lx to equation (3.10) to get

∫ ∞
0

g0(x)eiηxdx = cos β0

∫ ∞
0

∂xq(x, y)eiηxdx+ sin β0
d

dy

∫ ∞
0

q(x, y)eiηxdx+

µ0

∫ ∞
0

q(x, y)eiηxdx, 0 < x <∞, y = 0.

(3.18)

Integrate by parts and use definition 3.1.1

g̃0(η) = cos β0[q(x, y)eiηx|∞x=0 −
∫ ∞

0

q(x, y)eiηx(iηx)dx] + sin β0
d

dy
q̃(η, y)+

µ0q̃(η, y), 0 < x <∞, y = 0.

Use the property q(x, y) ∈ C1(Ω) ∩ C2(Ω) and q(x, y)|x=∞ = ∂xq(x, y)|x=∞ = 0,

and simplify to get

sin β0
d

dy
q̃(η, 0) + (µ0 − iη cos β0)q̃(η, 0) = g̃0(η) + q(0, 0) cos β0.

(3.19)
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From definition 3.1.1 apply the the operator Lx to equation (3.12) to get

∫ ∞
0

g1(x)eiηxdx = cos β1

∫ ∞
0

∂xq(x, y)eiηxdx+ sin β1
d

dy

∫ ∞
0

q(x, y)eiηxdx+

µ1

∫ ∞
0

q(x, y)eiηxdx, 0 < x <∞, y = a.

Integrate by parts and use definition 3.1.1

g̃1(η) = cos β1[q(x, y)eiηx|∞x=0 −
∫ ∞

0

q(x, y)eiηx(iη)dx] + sin β1
d

dy
q̃(η, y)+

µ1q̃(η, y), 0 < x <∞, y = a.

Use the property q(x, y) ∈ C1(Ω) ∩ C2(Ω) and q(x, y)|x=∞ = ∂xq(x, y)|x=∞ = 0,

and simplify to get

sin β1
d

dy
q̃(η, a) + (µ1 − iη cos β1)q̃(η, a) = g̃1(η) + q(0, a) cos β1.

(3.20)

Now we define the functionals of the boundary conditions W0 and W1 as follows:

W0[F (y)] =
d

dy
F |y=0 sin β0 + F |y=0(µ0 − iη cos β0),

W1[F (y)] =
d

dy
F |y=a sin β1 + F |y=a(µ1 − iη cos β1).

(3.21)

Consider the homogeneous system of the Laplace transformed equations obtained

FIGURE 3.2. A branch cut for the multi-valued function ζ
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from the above steps.

(
d2

dy2
− ζ2)q̃(η, y) = 0 (3.22)

sin β0
d

dy
q̃(η, 0) + (µ0 − iη cos β0)q̃(η, 0) = 0 (3.23)

sin β1
d

dy
q̃(η, a) + (µ1 − iη cos β1)q̃(η, a) = 0 (3.24)

Green’s function of the system defined by equations (3.22), (3.23) and (3.24) is

G(y, ξ) = ψ(y, ξ)−
1∑
j=0

Wj[ψ(y, ξ)]ψj(y), (3.25)

where ψ(y, ξ) is the fundamental function of the second order linear differential

the operator L = d2

dy2 − ζ2, and is defined by

ψ(y, ξ) = − 1

2ζ
e−ζ|y−ξ|. (3.26)

Note that ψ0(y) and ψ1(y) are the basis functions of the the operator L and satisfies

the following properties: ({ψ0(y), ψ1(y)} forms a basis of the solution space of the

the operator L.)

L(ψj) = 0, j = 0, 1 and Wj[ψl] = δjl j, l = 0, 1. (3.27)

ψ0(y), ψ1(y) and their derivative are given below

ψ0(y) = c00 cosh ζy + c01 sinh ζy, ψ′0(y) = ζc00 sinh ζy + ζc01 cosh ζy, (3.28)

ψ1(y) = c10 cosh ζy + c11 sinh ζy, ψ′1(y) = ζc10 sinh ζy + ζc11 cosh ζy. (3.29)

Let α00 = sin β0, α01 = µ0 − iη cos β0, q(0, 0) = q0, (3.30)

α10 = sin β1, α11 = µ1 − iη cos β1, q(0, a) = q1. (3.31)

Hence equations (3.19) and (3.20) become

α00
d

dy
q̃(η, 0) + α01q̃(η, 0) = g̃0(η) + q0 cos β0, (3.32)

α10
d

dy
q̃(η, a) + α11q̃(η, a) = g̃1(η) + q1 cos β1. (3.33)

104



Apply the functionals of boundary condition W0 and W1 to ψ0(y).

W0[ψ0(y)] = α00
d

dy
ψ0(y)|y=0 + α01ψ0(y)|y=0 (3.34)

Use equations (3.27) and (3.28 in the above equation to get

1 = α00ζc01 + α01c00. (3.35)

W1[ψ0(y)] = α10
d

dy
ψ0(y)|y=a + α11ψ0(y)|y=a (3.36)

Use equations (3.27) and (3.28 in the above equation to get

0 = (ζα10 sinh ζa+ α11 cosh ζa)c00 + (ζα10 cosh ζa+ α11 sinh ζa)c01. (3.37)

Solve equations (3.35) and (3.37) to find values of c00 and c01

c00 = −(α10ζ cosh ζa+ α11 sinh ζa)

d
, (3.38)

c01 =
α10ζ sinh ζa+ α11 cosh ζa

d
, (3.39)

d = (ζ2α00α10 − α01α11) sinh ζa+ (ζα00α11 − α01ζα10) cosh ζa. (3.40)

Similarly, apply the functionals of boundary condition W0 and W1 on ψ1(y), to get

0 = α00ζc11 + α01c10 (3.41)

1 = (ζα10 cosh ζa+ α11 sinh ζa)c11 + (ζα10 sinh ζa+ α11 cosh ζa)c10 (3.42)

Solve equations (3.41) and (3.42) to find the values of c10 and c11

c11 = −α01

d
, c10 =

α00ζ

d
. (3.43)

Insert the values of c00, c01, c10 and c11 in equations (3.28) and (3.29) to get ψ0(y)

and ψ1(y) given by

ψ0(y) = −α10ζ cosh[(a− y)ζ] + α11 sinh[(a− y)ζ]

d
, (3.44)

ψ1(y) =
α00ζ cosh[ζy]− α01 sinh[ζy]

d
. (3.45)
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Now we find W0[ψ](ξ) and W1[ψ](ξ).

W0[ψ](ξ) = α00
∂

∂y
ψ(y, ξ)|y=0 + α01ψ(y, ξ)|y=0 (3.46)

Use equation (3.26) to find

∂

∂y
ψ(y, ξ)|y=0 = − 1

2ζ
e−ζ|y−ξ|(−ζ)Sgn(y − ξ)|y=0

∂

∂y
ψ(y, ξ)|y=0 =

1

2
e−ζξSgn(−ξ), 0 < ξ < a

∂

∂y
ψ(y, ξ)|y=0 = −1

2
e−ζξ

ψ(y, ξ)|y=0 = − 1

2ζ
e−ζξ.

(3.47)

Insert the values of ∂
∂y
ψ(y, ξ)|y=0 and ψ(y, ξ)|y=0 in equation (3.46) to get

W0[ψ](ξ) = −e
−ζξ

2
(α00 +

α01

ζ
). (3.48)

Now consider

W1[ψ](ξ) = α10
∂

∂y
ψ(y, ξ)|y=a + α11ψ(y, ξ)|y=a. (3.49)

Use equation (3.26) to find

∂

∂y
ψ(y, ξ)|y=a = − 1

2ζ
e−ζ|y−ξ|(−ζ)Sgn(y − ξ)|y=a

∂

∂y
ψ(y, ξ)|y=a =

1

2
e−ζ|a−ξ|Sgn(a− ξ), 0 < ξ < a

∂

∂y
ψ(y, ξ)|y=0 =

1

2
e−ζ(a−ξ)

ψ(y, ξ)|y=a = − 1

2ζ
e−ζ(a−ξ)

(3.50)

Insert the values of ∂
∂y
ψ(y, ξ)|y=a and ψ(y, ξ)|y=a in equation (3.49) to get

W1[ψ](ξ) =
e−ζ(a−ξ)

2
(α10 −

α11

ζ
). (3.51)

Take the values of ψ(y, ξ), ψ0(y), ψ1(y),W0[ψ](ξ), and W1[ψ](ξ) from equations

(3.26), (3.44), (3.45), (3.48) and (3.49) respectively, and insert in equation (3.25),
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to get

G(y, ξ) =
−e−ζ|y−ξ|

2ζ
− e−ζξ

2dζ
(α00ζ + α01)(α10ζ cosh[(a− y)ζ] + α11 sinh[(a− y)ζ])

− e−ζ(a−ξ)

2dζ
(α10ζ − α11)(α00ζ cosh[ζy]− α01 sinh[ζy]).

(3.52)

Now consider the following non homogeneous BVP consisting of equations (3.16),

(3.32) and (3.33):

(
d2

dy2
− ζ2)q̃(η, y) =

∂

∂x
q(0, y)− iηq(0, y) + g̃(η, y),

α00
d

dy
q̃(η, 0) + α01q̃(η, 0) = g̃0(η) + q0 cos β0,

α10
d

dy
q̃(η, a) + α11q̃(η, a) = g̃1(η) + q1 cos β1.

(3.53)

Solution of the non homogeneous BVP defined by equations labeled by (3.53) is

q̃(η, y) =

∫ a

0

G(y, ξ)f(ξ)dξ + [g̃0(η) + q0 cos β0]ψ0(y) + [g̃1(η) + q1 cos β1]ψ1(y).

(3.54)

Insert y = 0 in equation (3.54), then from equations (3.52), (3.17), (3.44), and

(3.45), find the values of G(0, ξ), f(ξ), ψ0(0) and ψ1(0), respectively, and insert

these values in resulting equation to get

q̃(η, 0) =

∫ a

0

G(0, ξ)f(ξ)dξ + [g̃0(η) + q0 cos β0]ψ0(0) + [g̃1(η) + q1 cos β1]ψ1(0)

q̃(η, 0) =

∫ a

0

[− 1

2ζ
e−ζξ − e−ζξ(α00ζ + α01)

2ζd
(α10ζ cosh[aζ] + α11 sinh[aζ])

− e−ζ(a−ξ)α00(α10ζ − α11)

2d
]× [

∂

∂x
q(0, ξ)− iηq(0, ξ) + g̃(η, ξ)]dξ+

[g̃0(η) + q0 cos β0](
α10ζ cosh[aζ] + α11 sinh[aζ]

−d
)

+ [g̃1(η) + q1 cos β1](
ζα00

d
).

(3.55)
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Consider∫ a

0

[− 1

2ζ
e−ζξ − e−ζξ

2dζ
(α00ζ + α01)(α10ζ cosh[aζ] + α11 sinh[aζ])

× [
∂

∂x
q(0, ξ)− iηq(0, ξ)]dξ

= − 1

2ζ
[1 +

(α00ζ + α01)(α10ζ cosh[aζ] + α11 sinh[aζ]

d
]

×
∫ a

0

[e−ζξ
∂

∂x
q(0, ξ)− iηq(0, ξ)]dξ

= − 1

2ζ
[1 +

(α00ζ + α01)(α10ζ cosh[aζ] + α11 sinh[aζ]

d
]

× (
∂

∂x
− iη)

∫ a

0

ei(iζ)ξq(0, ξ)dξ use definition 3.1.2

= Λ11(ζ, η)(
∂

∂x
− iη)q̂(0, iζ), where

(3.56)

Λ11(ζ, η) = − 1

2ζ
[1 +

(α00ζ + α01)(α10ζ cosh[aζ] + α11 sinh[aζ]

d
]. (3.57)

Now consider∫ a

0

−e
−ζ(a−ξ)

2d
α00(α10ζ − α11)× [

∂

∂x
q(0, ξ)− iηq(0, ξ)]dξ

= −e
−ζa

2d
α00(α10ζ − α11)(

∂

∂x
− iη)

∫ a

0

eζξq(0, ξ)dξ

= −e
−ζa

2d
α00(α10ζ − α11)(

∂

∂x
− iη)

∫ a

0

ei(−iζ)ξq(0, ξ)dξ.

(3.58)

Use definition (3.1.2) in equation (3.58) to get∫ a

0

−e
−ζ(a−ξ)

2d
α00(α10ζ − α11)× [

∂

∂x
q(0, ξ)− iηq(0, ξ)]dξ

= Λ12(ζ, η)(
∂

∂x
− iη)q̂(0,−iζ), where

Λ12(ζ, η) = −e
−ζa

2d
α00(α10ζ − α11).

(3.59)

Use the integrals defined by equations (3.56) and (3.59) in equation (3.55), to get

q̃(η, 0) = Λ11(ζ, η)
∂

∂x
q̂(0, iζ)− iηΛ11(ζ, η)q̂(0, iζ) + Λ12(ζ, η)

∂

∂x
q̂(0,−iζ)

− iηΛ12(ζ, η)q̂(0,−iζ) + h0(ζ, η).

(3.60)
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Note that

h0(ζ, η) =

∫ a

0

[− 1

2ζ
e−ζξ − e−ζξ(α00ζ + α01)

2ζd
(α10ζ cosh[aζ] + α11 sinh[aζ])

− e−ζ(a−ξ)α00(α10ζ − α11)

2d
]g̃(η, ξ)dξ + [g̃1(η) + q1 cos β1](

ζα00

d
)

+ [g̃0(η) + q0 cos β0](
α10ζ cosh[aζ] + α11 sinh[aζ]

−d
)

= Λ11(ζ, η)

∫ a

0

e−ζξg̃(η, ξ)dξ + Λ12(ζ, η)

∫ a

0

eζξg̃(η, ξ)dξ

+ [g̃1(η) + q1 cos β1](
ζα00

d
)− [g̃0(η) + q0 cos β0]×

(α10ζ cosh[aζ] + α11 sinh[aζ])

d

= Λ11(ζ, η)ˆ̃g(η, iζ) + Λ12(ζ, η)ˆ̃g(η,−iζ) + [g̃1(η) + q1 cos β1](
ζα00

d
)

− [g̃0(η) + q0 cos β0]
(α10ζ cosh[aζ] + α11 sinh[aζ]

d
.

(3.61)

Replace η by −η in equation (3.60) to get

q̃(−η, 0) = Λ11(ζ,−η)
∂

∂x
q̂(0, iζ) + iηΛ11(ζ,−η)q̂(0, iζ) + Λ12(ζ,−η)

∂

∂x
q̂(0,−iζ)

+ iηΛ12(ζ,−η)q̂(0,−iζ) + h0(ζ,−η).

(3.62)

Now insert y = a in equation (3.54), then from equations (3.52), (3.17), (3.44),

and (3.45), find the values of G(0, ξ), f(ξ), ψ0(0) and ψ1(0), respectively, and insert

these values in the resulting equation to get

q̃(η, a) =

∫ a

0

G(a, ξ)f(ξ)dξ + [g̃0(η) + q0 cos β0]ψ0(a) + [g̃1(η) + q1 cos β1]ψ1(a)

q̃(η, a) =

∫ a

0

[− 1

2ζ
e−ζ(a−ξ) − e−ζ(a−ξ)

2dζ
(α10ζ − α11)(α00ζ cosh[aζ]− α01 sinh[aζ])

− e−ζξ

2d
α10(ζα00 + α01)]× [

∂

∂x
q(0, ξ)− iηq(0, ξ) + g̃(η, ξ)]dξ

− [g̃0(η) + q0 cos β0]
α10ζ

d
+ [g̃1(η) + q1 cos β1]

(ζα00 cosh[ζa]− α01 sinh[ζa])

d
.

(3.63)
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Consider∫ a

0

−e
−ζξ

2d
α10(ζα00 + α01)× [

∂

∂x
q(0, ξ)− iηq(0, ξ)]dξ

= Λ21(ζ, η)(
∂

∂x
− iη)

∫ a

0

ei(iζ)ξq(0, ξ)dξ use definition 3.1.2

= Λ21(ζ, η)(
∂

∂x
− iη)q̂(0, iζ)

= Λ21(ζ, η)
∂

∂x
q̂(0, iζ)− iηΛ21(ζ, η)q̂(0, iζ), where

Λ21(ζ, η) = − 1

2d
α10(ζα00 + α01).

(3.64)

Now consider∫ a

0

[− 1

2ζ
e−ζ(a−ξ) − e−ζ(a−ξ)

2dζ
(α10ζ − α11)(α00ζ cosh[aζ]− α01 sinh[aζ])]

× [
∂

∂x
q(0, ξ)− iηq(0, ξ)]dξ

= Λ22(ζ, η)(
∂

∂x
− iη)

∫ a

0

ei(−iζ)ξq(0, ξ)dξ use definition3.1.2

= Λ22(ζ, η)(
∂

∂x
− iη)q̂(0,−iζ)

= Λ22(ζ, η)
∂

∂x
q̂(0,−iζ)− iηΛ22(ζ, η)q̂(0,−iζ)

Λ22(ζ, η) = − 1

2ζ
e−ζa[1 +

(α10ζ − α11)

d
(α00ζ cosh[aζ]− α01 sinh[aζ])].

(3.65)

Use the integrals defined by equations (3.64) and (3.65) in equation (3.63), to get

q̃(η, a) = Λ21(ζ, η)
∂

∂x
q̂(0, iζ)− iηΛ21(ζ, η)q̂(0, iζ) + Λ22(ζ, η)

∂

∂x
q̂(0,−iζ)

− iηΛ22(ζ, η)q̂(0,−iζ) + h1(ζ, η).

(3.66)

Note that

h1(ζ, η) =

∫ a

0

[− 1

2ζ
e−ζ(a−ξ) − e−ζ(a−ξ)

2dζ
(α10ζ − α11)(α00ζ cosh[aζ]− α01 sinh[aζ])

− e−ζξ

2d
α10(ζα00 + α01)]× g̃(η, ξ)]dξ − [g̃0(η) + q0 cos β0](

α10ζ

d
)

+ [g̃1(η) + q1 cos β1](
ζα00 cosh[ζa]− α01 sinh[ζa]

d
)

h1(ζ, η) = Λ21(ζ, η)ˆ̃g(η, iζ) + Λ22(ζ, η)ˆ̃g(η,−iζ)− [g̃0(η) + q0 cos β0]
α10ζ

d

+ [g̃1(η) + q1 cos β1]
(α00ζ cosh[aζ]− α01 sinh[aζ])

d
.

(3.67)
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Replace η by −η in equation (3.66) to get

q̃(−η, a) = Λ21(ζ,−η)
∂

∂x
q̂(0, iζ) + iηΛ21(ζ,−η)q̂(0, iζ) + Λ22(ζ,−η)

∂

∂x
q̂(0,−iζ)

+ iηΛ22(ζ,−η)q̂(0,−iζ) + h1(ζ,−η).

(3.68)

Equations (3.60), (3.62), (3.66) and (3.68) define a system of four equations for

four unknowns described as:

q̃(η, 0)− h0(ζ, η) = Λ11(ζ, η)
∂

∂x
q̂(0, iζ)− iηΛ11(ζ, η)q̂(0, iζ)+

Λ12(ζ, η)
∂

∂x
q̂(0,−iζ)− iηΛ12(ζ, η)q̂(0,−iζ),

(3.69)

q̃(−η, 0)− h0(ζ,−η) = Λ11(ζ,−η)
∂

∂x
q̂(0, iζ) + iηΛ11(ζ,−η)q̂(0, iζ)+

Λ12(ζ,−η)
∂

∂x
q̂(0,−iζ) + iηΛ12(ζ,−η)q̂(0,−iζ),

(3.70)

q̃(η, a)− h1(ζ, η) = Λ21(ζ, η)
∂

∂x
q̂(0, iζ)− iηΛ21(ζ, η)q̂(0, iζ)+

Λ22(ζ, η)
∂

∂x
q̂(0,−iζ)− iηΛ22(ζ, η)q̂(0,−iζ),

(3.71)

q̃(−η, a)− h1(ζ,−η) = Λ21(ζ,−η)
∂

∂x
q̂(0, iζ) + iηΛ21(ζ,−η)q̂(0, iζ)+

Λ22(ζ,−η)
∂

∂x
q̂(0,−iζ) + iηΛ22(ζ,−η)q̂(0,−iζ).

(3.72)

Note that

Λ11(ζ, η) = − 1

2ζ
[1 +

(α00ζ + α01)(α10ζ cosh[aζ] + α11 sinh[aζ]

d
], (3.73)

Λ12(ζ, η) = −e
−ζa

2d
α00(α10ζ − α11), (3.74)

Λ21(ζ, η) = − 1

2d
α10(ζα00 + α01), (3.75)

Λ22(ζ, η) = − 1

2ζ
e−ζa[1 +

(α10ζ − α11)

d
(α00ζ cosh[aζ]− α01 sinh[aζ])], (3.76)

d = d(ζ, η) = (ζ2α00α10 − α01α11) sinh[aζ] + (ζα00α11 − α01ζα10) cosh[aζ], (3.77)

α00 = sin β0 α01 = µ0 − iη cos β0, α10 = sin β1, α11 = µ1 − iη cos β1,

(3.78)
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h0(ζ, η) = Λ11(ζ, η)ˆ̃g(η, iζ) + Λ12(ζ, η)ˆ̃g(η,−iζ) + [g̃1(η) + q1 cos β1](
ζα00

d
)

− [g̃0(η) + q0 cos β0]
(α10ζ cosh[aζ] + α11 sinh[aζ]

d

h1(ζ, η) = Λ21(ζ, η)ˆ̃g(η, iζ) + Λ22(ζ, η)ˆ̃g(η,−iζ)− [g̃0(η) + q0 cos β0]
α10ζ

d

+ [g̃1(η) + q1 cos β1]
(α00ζ cosh[aζ]− α01 sinh[aζ])

d
.

(3.79)

To find the unknowns ∂
∂x
q̂(0,±iζ) and q̂(0,±iζ), write the system defined by equa-

tions (3.69), (3.70), (3.71) and (3.72) in the matrix form shown below.

Λ(ζ, η)



∂
∂x
q̂(0, iζ)

q̂(0, iζ)

∂
∂x
q̂(0,−iζ)

q̂(0,−iζ)


=



q̃(η, 0)− h0(ζ, η)

q̃(−η, 0)− h0(ζ,−η)

tildeq(η, a)− h1(ζ, η)

q̃(−η, a)− h1(ζ,−η)


, η ∈ R, where (3.80)

Λ(ζ, η) =



Λ11(ζ, η) −iηΛ11(ζ, η) Λ12(ζ, η) −iηΛ12(ζ, η)

Λ11(ζ,−η) iηΛ11(ζ,−η) Λ12(ζ,−η) iηΛ12(ζ,−η)

Λ21(ζ, η) −iηΛ21(ζ, η) Λ22(ζ, η) −iηΛ22(ζ, η)

Λ21(ζ,−η) iηΛ21(ζ,−η) Λ22(ζ,−η) iηΛ22(ζ,−η)


. (3.81)

Note that Λ11(ζ, η),Λ12(ζ, η),Λ21(ζ, η),Λ22(ζ, η), d, h0(ζ, η) and h1(ζ, η) are given

by equations (3.73), (3.74), (3.75), (3.76), (3.77) and (3.79). Solving the system de-

fined by equation (3.80), the values of ∂
∂x
q̂(0, iζ), q̂(0, iζ), ∂

∂x
q̂(0,−iζ) and q̂(0,−iζ)

are:

∂

∂x
q̂(0, iζ) = −sin β0(−µ1 + iη cos β1 + ζ sin β1)

d(p1 + p2)
qap+

[d+ (−µ1 + iη cos β1 + ζ sin β1)(ζ cosh aζ sin β0 − (µ0 − iη cos β0) sinh aζ)]q0p

dζ(p1 + p2)

− sin β0(−µ1 − iη cos β1 + ζ sin β1)

d1(p3 + p4)
qam+

[d1 + (−µ1 − iη cos β1 + ζ sin β1)(ζ cosh aζ sin β0 − (µ0 + iη cos β0) sinh aζ)]q0m

d1ζ(p3 + p4)
,

(3.82)

112



q̂(0, iζ) =
−i
η

[
sin β0(−µ1 + iη cos β1 + ζ sin β1)

d(p1 + p2)
qap−

[d+ (−µ1 + iη cos β1 + ζ sin β1)(ζ cosh aζ sin β0 − (µ0 − iη cos β0) sinh aζ)]q0p

dζ(p1 + p2)

− sin β0(−µ1 − iη cos β1 + ζ sin β1)

d1(p3 + p4)
qam+

[d1 + (−µ1 − iη cos β1 + ζ sin β1)(ζ cosh aζ sin β0 − (µ0 + iη cos β0) sinh aζ)]q0m

d1ζ(p3 + p4)
,

(3.83)
∂

∂x
q̂(0,−iζ) = eaζ [−sin β1(µ0 − iη cos β0 + ζ sin β0)

d(p1 + p2)
q0p+

[d+ (µ0 − iη cos β0 + ζ sin β0)(ζ cosh aζ sin β1 + (µ1 − iη cos β1) sinh aζ)]qap
dζ(p1 + p2)

− sin β1(µ0 + iη cos β0 + ζ sin β0)

d1(p3 + p4)
q0m+

[d1 + (µ0 + iη cos β0 + ζ sin β0)(ζ cosh aζ sin β1 + (µ1 + iη cos β1) sinh aζ)]qam
d1ζ(p3 + p4)

,

(3.84)

q̂(0,−iζ) =
−i
η
eaζ [

sin β1(µ0 − iη cos β0 + ζ sin β0)

d(p1 + p2)
q0p−

[d+ (µ0 − iη cos β0 + ζ sin β0)(ζ cosh aζ sin β1 + (µ1 − iη cos β1) sinh aζ)]

dζ(p1 + p2)
qap

− sin β1(µ0 + iη cos β0 + ζ sin β0)

d1(p3 + p4)
q0m+

[d1 + (µ0 + iη cos β0 + ζ sin β0)(ζ cosh aζ sin β1 + (µ1 + iη cos β1) sinh aζ)]

d1ζ(p3 + p4)
qam].

(3.85)

Note that p1, p2, p3, p4, q0p, q0m, qap and qam are:

p1 =
sin β0(µ0 − iη cos β0 + ζ sin β0) sin β1(−µ1 + iη cos β1 + ζ sin β1)

d2
, (3.86)

p2 =
−[d+ (−µ1 + iη cos β1 + ζ sin β1)(ζ cosh[aζ] sin β0 − (µ0 − iη cos β0) sinh[aζ])]

dζ2

× [d+ (µ0 − iη cos β0 + ζ sin β0)(ζ cosh[aζ] sin β1 + (µ1 − iη cos β1) sinh[aζ])],

(3.87)
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p3 =
sin β0(µ0 + iη cos β0 + ζ sin β0) sin β1(−µ1 − iη cos β1 + ζ sin β1)

d2
1

, (3.88)

p4 =
−[d1 + (−µ1 − iη cos β1 + ζ sin β1)(ζ cosh[aζ] sin β0 − (µ0 + iη cos β0) sinh[aζ])]

d1ζ2

× [d1 + (µ0 + iη cos β0 + ζ sin β0)(ζ cosh[aζ] sin β1 + (µ1 + iη cos β1) sinh[aζ]), ]

(3.89)

q0p = q̃(η, 0)− h0(ζ, η), q0m = q̃(−η, 0)− h0(ζ,−η), (3.90)

qap = q̃(η, a)− h1(ζ, η), qam = q̃(−η, a)− h1(ζ,−η). (3.91)

Now apply the the operator Ly to the boundary condition along side 2 of semi-

infinite strip Ω defined by equation (3.11), to get∫ a

0

g2(y)ei(iζ)ydy = cos β2

∫ a

0

∂

∂x
q(x, y)ei(iζ)ydy + sin β2

∫ a

0

∂

∂y
q(x, y)ei(iζy)dy

+ µ2

∫ a

0

q(x, y)ei(iζ)dy, x = 0, 0 < y < a, integrate by parts

= cos β2
∂

∂x

∫ a

0

q(x, y)ei(iζ)ydy + sin β2[ei(iζ)yq(x, y)|ay=0

−
∫ a

0

q(x, y)ei(iζ)y(−ζ)dy] + µ2

∫ a

0

q(x, y)ei(iζ)ydy.

(3.92)

Use definition 3.1.2 in equation (3.92) to get

ĝ2(iζ) = cos β2
∂

∂x
q̂(0, iζ) + sin β2e

−ζaq(0, a)− sin β2q(0, 0)

+ sin β2ζq̂(0, iζ) + µ2q̂(0, iζ).

(3.93)

Let q(0, 0) = q0 q(0, a) = q1. Then equation (3.93) becomes

cos β2
∂

∂x
q̂(0, iζ) + (µ2 + ζ sin β2)q̂(0, iζ) = ĝ2(iζ) + (q0 − e−ζaq1) sin β2. (3.94)

Replace ζ by −ζ in equation (3.94) to get

cos β2
∂

∂x
q̂(0,−iζ) + (µ2− ζ sin β2)q̂(0,−iζ) = ĝ2(−iζ) + (q0− eζaq1) sin β2. (3.95)

Now we have a system of two equations for four unknowns ∂
∂x
q̂(0,±iζ) and q̂(0,±iζ)

defined by equations (3.94) and (3.95). From equations (3.82), (3.83), (3.84), and

114



(3.85), use the values of unkowns in equations (3.94) and (3.95) to get

[cos β2k11 + (µ2 + ζ sin β2)k21]q̃(η, 0) + [cos β2k13 + (µ2 + ζ sin β2)k23]q̃(η, a) =

− [cos β2k12 + (µ2 + ζ sin β2)k22]q̃(−η, 0)− [cos β2k14 + (µ2 + ζ sin β2)k24]q̃(−η, a)

+ [cos β2k11 + (µ2 + ζ sin β2)k21]h0(η) + [cos β2k12 + (µ2 + ζ sin β2)k22]h0(−η)

+ [cos β2k13 + (µ2 + ζ sin β2)k23]h1(η) + [cos β2k14 + (µ2 + ζ sin β2)k24]h1(−η)

+ ĝ2(iζ) + (q0 − e−ζaq1) sin β2.

(3.96)

Simplify equation (3.96) to get

a11q̃(η, 0) + a12q̃(η, a) = b11q̃(−η, 0) + b12q̃(−η, a) + a11h0(η)− b11h0(−η)

+ a12h1(η)− b12h1(−η) + ĝ2(iζ) + (q0 − e−ζaq1) sin β2.

(3.97)

[cos β2k31 + (µ2 − ζ sin β2)k41]q̃(η, 0) + [cos β2k33 + (µ2 − ζ sin β2)k43]q̃(η, a) =

− [cos β2k32 + (µ2 − ζ sin β2)k42]q̃(−η, 0)− [cos β2k34 + (µ2 − ζ sin β2)k44]q̃(−η, a)

+ [cos β2k31 + (µ2 − ζ sin β2)k41]h0(η) + [cos β2k32 + (µ2 − ζ sin β2)k42]h0(−η)

+ [cos β2k33 + (µ2 − ζ sin β2)k43]h1(η) + [cos β2k32 + (µ2 − ζ sin β2)k44]h1(−η)

+ ĝ2(−iζ) + (q0 − eζaq1) sin β2.

(3.98)

Simplify equation (3.98) to get

a21q̃(η, 0) + a22q̃(η, a) = b21q̃(−η, 0) + b22q̃(−η, a) + a21h0(η)− b21h0(−η)

+ a22h1(η)− b22h1(−η) + ĝ2(−iζ) + (q0 − eζaq1) sin β2.

(3.99)

The coefficients a11, a12, a21, a22, b11, b12, b21, b22 are defined below.

a11 =
i(µ2 + ζ sin β2)

dζη(p1 + p2)
[d+ (−µ1 + iη cos β1 + ζ sin β1)×

(ζ cosh[aζ] sin β0 + (−µ0 + iη cos β0) sinh[aζ])]

+
cos β2

dζ(p1 + p2)
[d+ (−µ1 + iη cos β1 + ζ sin β1)×

(ζ cosh[aζ] sin β0 + (−µ0 + iη cos β0) sinh[aζ])]

(3.100)
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a12 = −cos β2 sin β0(−µ1 + iη cos β1 + ζ sin β1)

d(p1 + p2)

− i sin β0(−µ1 + iη cos β1 + ζ sin β1)(µ2 + ζ sin β2)

dη(p1 + p2)

(3.101)

a21 = −e
aζ [cos β2(µ0 − iη cos β0 + ζ sin β0) sin β1]

d(p1 + p2)

− [ieaζ(µ0 − iη cos β0 + ζ sin β0) sin β1(µ2 − ζ sin β2)]

dη(p1 + p2)

(3.102)

a22 =
ieaζ(µ2 − ζ sin β2)

dζη(p1 + p2)
[d+ (µ0 − iη cos β0 + ζ sin β0)×

(ζ cosh[aζ] sin β1 + (µ1 − iη cos β1) sinh[aζ])]

+
eaζ cos β2

dζ(p1 + p2)
[d+ (µ0 − iη cos β0 + ζ sin β0)×

(ζ cosh[aζ] sin β1 + (µ1 − iη cos β1) sinh[aζ])]

(3.103)

b11 =
i(µ2 + ζ sin β2)

d1ζη(p3 + p4)
[d1 + (−µ1 − iη cos β1 + ζ sin β1)×

(ζ cosh[aζ] sin β0 − (µ0 + iη cos β0) sinh[aζ])]

− cos β2

d1ζ(p3 + p4)
[d1 + (−µ1 − iη cos β1 + ζ sin β1)×

(ζ cosh[aζ] sin β0 − (µ0 + iη cos β0) sinh[aζ])]

(3.104)

b12 =
cos β2 sin β0(−µ1 − iη cos β1 + ζ sin β1)

d1(p3 + p4)

− i sin β0(−µ1 − iη cos β1 + ζ sin β1)(µ2 + ζ sin β2)

d1η(p3 + p4)

(3.105)

b21 =
eaζ cos β2(µ0 + iη cos β0 + ζ sin β0) sin β1

d1(p3 + p4)

− ieaζ(µ0 + iη cos β0 + ζ sin β0) sin β1(µ2 − ζ sin β2)

d1η(p3 + p4)

(3.106)

b22 =
ieaζ(µ2 − ζ sin β2)

d1ζη(p3 + p4)
[d1 + (µ0 + iη cos β0 + ζ sin β0)×

(ζ cosh[aζ] sin β1 + (µ1 + iη cos β1) sinh[aζ])]

− eaζ cos β2

d1ζ(p3 + p4)
[d1 + (µ0 + iη cos β0 + ζ sin β0)×

(ζ cosh[aζ] sin β1 + (µ1 + iη cos β1) sinh[aζ])].

(3.107)
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Write the system of two equations defined by (3.97) and (3.99) in matrix form to

get a11 a12

a21 a22


 q̃(η, 0)

q̃(η, a)

 =

 b11 b12

b21 b22


 q̃(−η, 0)

q̃(−η, a)

+

 a11 a12

a21 a22


 h0(η)

h1(η)


−

 b11 b12

b21 b22


 h0(−η)

h1(−η)

+

 ĝ2(iζ) + (q0 − e−ζaq1) sin β2

ĝ2(−iζ) + (q0 − eζaq1) sin β2

 , η ∈ R.

(3.108)

Equation (3.108)can be written as

A

 q̃(η, 0)

q̃(η, a)

 = B

 q̃(−η, 0)

q̃(−η, a)

+ A

 h0(η)

h1(η)

−B
 h0(−η)

h1(−η)


+

 ĝ2(iζ) + (q0 − e−ζaq1) sin β2

ĝ2(−iζ) + (q0 − eζaq1) sin β2

 , where

(3.109)

A =

 a11 a12

a21 a22

 , B =

 b11 b12

b21 b22

 . (3.110)

Note that a11, a12, a21, a22, b11, b12, b21, b22 are given by equations (3.100), (3.101),

(3.102), (3.103), (3.104), (3.105), (3.106) and (3.107), respectively. Now multiply

equation (3.109) from left side by A−1, to get q̃(η, 0)

q̃(η, a)

 = G(η)

 q̃(−η, 0)

q̃(−η, a)

+

 h0(η)

h1(η)

−G(η)

 h0(−η)

h1(−η)


+ A−1

 ĝ2(iζ) + (q0 − e−ζaq1) sin β2

ĝ2(−iζ) + (q0 − eζaq1) sin β2

 , η ∈ R.

(3.111)

Equation (3.111) can be expressed as

φ+(η) = G(η)φ−(η) + F (η), η ∈ R, where (3.112)
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φ+(η) =

 φ+
1 (η) = q̃(η, 0)

φ+
2 (η) = q̃(η, a)

 , φ−(η) =

 φ−1 (η) = q̃(−η, 0)

φ−2 (η) = q̃(−η, a)

 , (3.113)

F (η) =

 h0(η)

h1(η)

−G(η)

 h0(−η)

h1(−η)

+ A−1

 ĝ2(iζ) + (q0 − e−ζaq1) sin β2

ĝ2(−iζ) + (q0 − eζaq1) sin β2

 ,
(3.114)

G(η) = A−1B =

 g11 g12

g21 g22

 . (3.115)

Note that g11, g12, g21 and g22 are given as follows.

g11 = s1 + s2

s1 = − sin β0(µ0 + iη cos β0 + ζ sin β0) sin β1

dd1(−µ2 + iη cos β2 + ζ sin β2)(p3 + p4)
{−η cos β2 + i(µ2 − ζ sin β2)}×

{η cos β1 + i(µ1 − ζ sin β1)}

s2 =
{d1 + (µ1 + iη cos β1 − ζ sin β1)(−ζ cosh[aζ] sin β0 + (µ0 + iη cos β0) sinh[aζ])}

dd1ζ2(µ2 − iη cos β2 + ζ sin β2)(p3 + p4)

× {id+ ζ cosh[aζ](η cos β0 + i(µ0 + ζ sin β0)) sin β1 + (iµ1 + η cos β1)

× (µ0 − iη cos β0 + ζ sin β0) sinh[aζ]} × {i(µ2 + ζ sin β2)− η cos β2}
(3.116)

g12 = s3 + s4

s3 =
sin β0(−µ1 − iη cos β1 + ζ sin β1)

dd1ζ(µ2 − iη cos β2 + ζ sin β2)(p3 + p4)
× {η cos β2 − i(µ2 + ζ sin β2)}

× {id+ ζ cosh[aζ](η cos β0 + i(µ0 + ζ sin β0)) sin β1 + (iµ1 + η cos β1)

× (µ0 − iη cos β0 + ζ sin β0) sinh[aζ]}

s4 =
{d1 + (µ0 + iη cos β0 + ζ sin β0)(ζ cosh[aζ] sin β1 + (µ1 + iη cos β1) sinh[aζ])}

dd1ζ(−µ2 + iη cos β2 + ζ sin β2)(p3 + p4)

× sin β0{i(µ2 − ζ sin β2)− η cos β2} × {η cos β1 + i(µ1 − ζ sin β1)}
(3.117)
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g21 = s5 + s6

s5 =
i sin β1(µ0 + iη cos β0 + ζ sin β0)

dd1ζ(−µ2 + iη cos β2 + ζ sin β2)(p3 + p4)
{−η cos β2 + i(µ2 − ζ sin β2)}

× {d+ ζ cosh[aζ] sin β0(−µ1 + iη cos β1 + ζ sin β1) + (µ0 − iη cos β0)

× (µ1 − iη cos β1 − ζ sin β1) sinh[aζ]}

s6 =
{d1 + (µ1 + iη cos β1 − ζ sin β1)(−ζ cosh[aζ] sin β0 + (µ0 + iη cos β0) sinh[aζ])}

dd1ζ(µ2 − iη cos β2 + ζ sin β2)(p3 + p4)

× {i sin β1(µ0 − iη cos β0 + ζ sin β0}{i(µ2 + ζ sin β2)− η cos β2}
(3.118)

g22 = s7 + s8

s7 =
i sin β0(µ0 − iη cos β0 + ζ sin β0) sin β1

dd1(µ2 − iη cos β2 + ζ sin β2)(p3 + p4)
{η cos β2 − i(µ2 + ζ sin β2)}×

{−µ1 − iη cos β1 + ζ sin β1}

(3.119)

s8 =
{d1 + (µ0 + iη cos β0 + ζ sin β0)(ζ cosh[aζ] sin β1 + (µ1 + iη cos β1) sinh[aζ])}

dd1ζ2(−µ2 + iη cos β2 + ζ sin β2)(p3 + p4)

× {d+ ζ cosh[aζ] sin β0(−µ0 + iη cos β1 + ζ sin β1) + (µ0 − iη cos β0)

× (µ1 − iη cos β0)(µ1 − iη cos β1 − ζ sin β1) sinh[aζ]}{µ2 − ζ sin β2 − iη cos β2}
(3.120)

Note that equation (3.112) describes an order two vector RHP. Generally, in the

literature, we do not have a method to solve an order two vector RHP in closed

form. But we can find the closed form solution of an order two vector RHP in some

special cases i.e. scalar and triangular cases. In the next section, we will discuss a

scalar case, in which the directional derivatives are normal to the boundary of the

semi-infinite strip.

3.3 Impedance boundary conditions

We seek the solution of the Helmholtz equation in a semi-infinite strip subject to

the impedance boundary conditions. Substitute β0 = 3π
2
, β1 = π

2
and β2 = π in the

equations (3.8), (3.10), (3.11) and (3.12). Then the BVP of the Helmholtz equation
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in a semi-infinite strip subject to the impedance boundary conditions becomes

(∂2
x + ∂2

y + k2)q(x, y) = g(x, y), Im(k) > 0, (x, y) ∈ Ω, (3.121)

where Ω is a semi-infinite strip shown in figure 4.1 with the corners z1 =∞, z2 = 0,

z3 = ia, z4 =∞+ ia, a > 0. Figure 4.1 shows the impedance boundary conditions

along three sides of Ω. The impedance boundary conditions are

side1 : −qy(x, y) + µ0q(x, y) = g0(x), 0 < x <∞, y = 0, (3.122)

side2 : −qx(x, y) + µ2q(x, y) = g2(y), x = 0, 0 < y < a, (3.123)

side3 : qy(x, y) + µ1q(x, y) = g1(x), 0 < x <∞, y = a. (3.124)

µj, j = 0, 1, 2 is a real non negative constant. The functions g0(x) , g1(x) are real

valued, and vanish at the points x = 0 and x = ∞, sin βj 6= 0, j = 0, 1, 2.

Application of the Laplace transform the operator Lx from definition 3.1.1 to the

FIGURE 3.3. Impedance boundary condtions along sides of Ω.

120



Helmholtz equation (3.121) gives

(
d2

dy2
− ζ2)q̃(η, y) = f(y), 0 < y < a, where (3.125)

f(y) = ∂xq(0, y)− iηq(0, y) + g̃(η, y), 0 < y < a. (3.126)

Note that ζ =
√
η2 − k2 is a multi-valued function. We fix a branch of it byRe(ζ) ≥

0. The branch cut of this multi-valued function is shown in figure 3.2. Application of

the Laplace transform operator Lx to the boundary conditions defined by equations

(3.122) and (3.124), and q(x, y)|x=∞ = ∂xq(x, y)|x=∞ = 0, gives the following

results:

− d

dy
q̃(η, 0) + µ0q̃(η, 0) = g̃0(η), (3.127)

d

dy
q̃(η, a) + µ1q̃(η, a) = g̃1(η). (3.128)

Now we define the functionals of the boundary conditions W0 and W1 as follows:

W0[F (y)] = − d

dy
F |y=0 + µ0F |y=0, (3.129)

W1[F (y)] =
d

dy
F |y=a + µ1F |y=a. (3.130)

Equations (3.125), (3.127) and (3.128) are used to describe a homogeneous system

of Laplace transformed equations written as

(
d2

dy2
− ζ2)q̃(η, y) = 0, 0 < y < a, (3.131)

− d

dy
q̃(η, 0) + µ0q̃(η, 0) = 0, (3.132)

d

dy
q̃(η, a) + µ1q̃(η, a) = 0. (3.133)

Now Green’s function of the homogeneous system of the Laplace transformed equa-

tions (3.131), (3.132) and (3.133) is

G(y, ξ) = ψ(y, ξ)−
1∑
j=0

Wj[ψ(y, ξ)]ψj(y), (3.134)
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where, ψ(y, ξ) is the fundamental function of the second order linear differential

the operator L = d2

dy2 − ζ2, and is defined by

ψ(y, ξ) = − 1

2ζ
e−ζ|y−ξ|. (3.135)

Note that ψ0(y) and ψ1(y) are the basis functions of the the operator L. These are

found by using boundary functionals Wj, j = 0, 1 defined by equations (3.129) and

(3.130) , and properties of the basis functions which are

L(ψj) = 0, j = 0, 1 and Wj[ψl] = δjl j, l = 0, 1. (3.136)

Expressions for ψ0(y), ψ1(y) are

ψ0(y) =
ζ cosh[(a− y)ζ] + µ1 sinh[(a− y)ζ]

∆
, (3.137)

ψ1(y) =
ζ cosh[ζy] + µ0 sinh[ζy]

∆
, where (3.138)

∆ = (µ0 + µ1)ζ cosh[aζ] + (µ0µ1 + ζ2) sinh[aζ]. (3.139)

To find the Green’s function of the homogeneous BVP defined by equations (3.125),

(3.127) and (3.128), use equation (3.134), follow the procedure given in section 3.2

pages 104, 105, 105 and 107. The Green’s function is

G(y, ξ) = −e
−ζ|y−ξ|

2ζ
+
µ0 − ζ
2∆ζ

e−ζξ(ζ cosh[(a− y)ζ] + µ1 sinh[(a− y)ζ])

+ (
µ1 − ζ
2∆ζ

)e−ζ(a−ξ)(ζ cosh[ζy] + µ0 sinh[ζy]).

(3.140)

Solution of the non homogeneous BVP defined by equations (3.125), (3.127) and

(3.128) is

q̃(η, y) =

∫ a

0

G(y, ξ)f(ξ)dξ +
1∑
j=0

g̃j(η)ψj(y). (3.141)

Insert y = 0 in equation (3.141)to get

q̃(η, 0) =

∫ a

0

G(0, ξ)f(ξ)dξ + g̃0(η)ψ0(0) + g̃1(η)ψ1(0) (3.142)
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From equations (3.140), (3.126), (3.137) and (3.138), find values of G(0, ξ), f(ξ),

ψ0(0) and ψ1(0), respectively, and insert these values in equation (3.142)to get

q̃(η, 0) =

∫ a

0

[−e
−ζξ

2ζ
+
µ0 − ζ
2∆ζ

e−ζξ(ζ cosh[aζ] + µ1 sinh[aζ]) + (
µ1 − ζ

2∆
)e−ζ(a−ξ)]×

[
∂

∂x
q(0, ξ)− iηq(0, ξ) + g̃(η, ξ)]dξ + g̃0(η)

(ζ cosh[aζ] + µ1 sinh[aζ])

∆
)+

g̃1(η)
ζ

∆
(3.143)

Using equation (3.143), and procedure in section 3.2 pages 107 and 109, we find

that

q̃(η, 0) = Λ11(ζ)
∂

∂x
q̂(0, iζ)− iηΛ11(ζ)q̂(0, iζ) + Λ12(ζ)

∂

∂x
q̂(0,−iζ)

− iηΛ12(ζ)q̂(0,−iζ) + h0(η).

(3.144)

Note that

h0(η) = Λ11(ζ)ˆ̃g(η, iζ) + Λ12(ζ, η)ˆ̃g(η,−iζ) + g̃0(η)
(ζ cosh[aζ] + µ1 sinh[aζ])

∆

+ g̃1(η)
ζ

∆
,

(3.145)

Λ11(ζ) =
1

2ζ
[−1 +

(µ0 − ζ)

∆
(ζ cosh[aζ] + µ1 sinh[aζ])], (3.146)

Λ12(ζ) =
e−ζa

2∆
(µ1 − ζ), (3.147)

∆ = (µ0 + µ1)ζ cosh[aζ] + (µ0µ1 + ζ2) sinh[aζ]. (3.148)

Replace η by −η in equation (3.144) to get

q̃(−η, 0) = Λ11(ζ)
∂

∂x
q̂(0, iζ) + iηΛ11(ζ)q̂(0, iζ) + Λ12(ζ)

∂

∂x
q̂(0,−iζ)

+ iηΛ12(ζ)q̂(0,−iζ) + h0(−η).

(3.149)

Insert y = a in equation (3.141), then from equations (3.140), (3.126), (3.137), and

(3.138), find values of G(a, ξ), f(ξ), ψ0(a) and ψ1(a), respectively, and insert these
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values in resulting equation to get

q̃(η, a) =

∫ a

0

[−e
−ζ(a−ξ)

2ζ
+

(µ1 − ζ)

2∆ζ
e−ζ(a−ξ)(ζ cosh[aζ] + µ0 sinh[aζ])

+
(µ0 − ζ)

2∆
e−ζξ]× [

∂

∂x
q(0, ξ)− iηq(0, ξ) + g̃(η, ξ)]dξ + g̃0(η)

ζ

∆

+ g̃1(η)
(ζ cosh[ζa] + µ0 sinh[ζa])

∆
.

(3.150)

Using equation (3.150), and procedure in section 3.2 pages 109 and 110, we find

that

q̃(η, a) = Λ21(ζ)
∂

∂x
q̂(0, iζ)− iηΛ21(ζ)q̂(0, iζ) + Λ22(ζ)

∂

∂x
q̂(0,−iζ)

− iηΛ22(ζ)q̂(0,−iζ) + h1(η), where

(3.151)

h1(η) = Λ21(ζ)ˆ̃g(η, iζ) + Λ22(ζ, η)ˆ̃g(η,−iζ) + g̃1(η)
(ζ cosh[aζ] + µ0 sinh[aζ])

∆

+ g̃0(η)
ζ

∆
,

(3.152)

Λ21(ζ) =
µ0 − ζ

2∆
, Λ22(ζ) =

e−ζa

2ζ
(ζ cosh[aζ] + µ0 sinh[aζ]). (3.153)

Note that ∆ is given by equation (3.148). Now replace η by −η in equation (3.151)

to get

q̃(−η, a) = Λ21(ζ)
∂

∂x
q̂(0, iζ) + iηΛ21(ζ)q̂(0, iζ) + Λ22(ζ)

∂

∂x
q̂(0,−iζ)

+ iηΛ22(ζ)q̂(0,−iζ) + h1(−η).

(3.154)

Equations (3.143), (3.149), (3.150) and (3.154) describe the following system of

four equations for four unknowns:

q̃(η, 0)− h0(η) = Λ11(ζ)
∂

∂x
q̂(0, iζ)− iηΛ11(ζ)q̂(0, iζ) + Λ12(ζ)

∂

∂x
q̂(0,−iζ)

− iηΛ12(ζ)q̂(0,−iζ),

(3.155)
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q̃(−η, 0)− h0(−η) = Λ11(ζ)
∂

∂x
q̂(0, iζ) + iηΛ11(ζ)q̂(0, iζ) + Λ12(ζ)

∂

∂x
q̂(0,−iζ)

+ iηΛ12(ζ)q̂(0,−iζ),

q̃(η, a)− h1(η) = Λ21(ζ)
∂

∂x
q̂(0, iζ)− iηΛ21(ζ)q̂(0, iζ) + Λ22(ζ)

∂

∂x
q̂(0,−iζ)

− iηΛ22(ζ, η)q̂(0,−iζ),

q̃(−η, a)− h1(η) = Λ21(ζ)
∂

∂x
q̂(0, iζ) + iηΛ21(ζ)q̂(0, iζ) + Λ22(ζ)

∂

∂x
q̂(0,−iζ)

+ iηΛ22(ζ)q̂(0,−iζ).

(3.156)

To find the unknowns ∂
∂x
q̂(0,±iζ) and q̂(0,±iζ), write the system defined by equa-

tions labeled by (3.155) and (3.156) in the matrix form shown below

Λ(ζ)



∂
∂x
q̂(0, iζ)

q̂(0, iζ)

∂
∂x
q̂(0,−iζ)

q̂(0,−iζ)


=



q̃(η, 0)− h0(η)

q̃(−η, 0)− h0(−η)

q̃(η, a)− h1(η)

q̃(−η, a)− h1(−η)


, η ∈ R, (3.157)

(3.158)

Λ(ζ) =



Λ11(ζ) −iηΛ11(ζ) Λ12(ζ) −iηΛ12(ζ)

Λ11(ζ) iηΛ11(ζ) Λ12(ζ) iηΛ12(ζ

Λ21(ζ) −iηΛ21(ζ) Λ22(ζ) −iηΛ22(ζ)

Λ21(ζ) iηΛ21(ζ) Λ22(ζ) iηΛ22(ζ)


. (3.159)

Note that h0(η), h1(η),Λ11(ζ),Λ12(ζ), Λ21(ζ), Λ22(ζ) are given by equations (3.145),

(3.152), (3.146), (3.147) and (3.153). Solving the system defined by equation (3.157),
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the values of ∂
∂x
q̂(0, iζ), q̂(0, iζ), ∂

∂x
q̂(0,−iζ) and q̂(0,−iζ) are

∂

∂x
q̂(0, iζ) = −−(qam + qap)(ζ − µ1) + (q0m + q0p)(ζ + µ0) cosh[aζ]

2(cosh[aζ] + sinh[aζ])

− (q0m + q0p)(ζ + µ0) sinh[aζ]

2(cosh[aζ] + sinh[aζ])

q̂(0, iζ) =
i{(−qam + qap)(ζ − µ1) + (q0m − q0p)(ζ + µ0) cosh[aζ]}

2η(cosh[aζ] + sinh[aζ])

+
i(q0m − q0p)(ζ + µ0) sinh[aζ]

2η(cosh[aζ] + sinh[aζ])

∂

∂x
q̂(0,−iζ) =

i{(q0m + q0p)(ζ − µ0)− eaζ(qam + qap)(ζ + µ1)}
2η

q̂(0,−iζ) =
i{(−q0m + q0p)(ζ − µ0) + eaζ(qam − qap)(ζ + µ1)}

2η
.

(3.160)

Note that q0p, q0m, qap, qam are:

q0p = q̃(η, 0)− h0(η), q0m = q̃(−η, 0)− h0(−η), (3.161)

qap = q̃(η, a)− h1(η), qam = q̃(−η, a)− h1(−η). (3.162)

Now application of the the operator Ly to the boundary condition along side 2 of

semi-infinite strip Ω, defined by equation (3.123), and use of definition 3.1.2 gives

the following result.

− ∂

∂x
q̂(0, iζ) + µ2q̂(0, iζ) = ĝ2(iζ) (3.163)

Replace ζ by −ζ to get

− ∂

∂x
q̂(0,−iζ) + µ2q̂(0,−iζ) = ĝ2(−iζ). (3.164)

From equations labeled by (3.160), use values of ∂
∂x
q̂(0,±iζ) and q̂(0,±iζ) in equa-

tions (3.163) and (3.164) to get the following system of two equations:

a11q̃(η, 0) + a12q̃(η, a) = b11q̃(−η, 0) + b12q̃(−η, a) + a11h0(η)− b11h0(−η)

+ a12h1(η)− b12h1(−η) + ĝ2(iζ),

(3.165)
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a21q̃(η, 0) + a22q̃(η, a) = b21q̃(−η, 0) + b22q̃(−η, a) + a21h0(η)− b21h0(−η)

+ a22h1(η)− b22h1(−η) + ĝ2(−iζ).

(3.166)

Note that

a11 =
(ζ + µ0)(η − iµ2) cosh[aζ] + (ζ + µ0)(η − iµ2) sinh[aζ]

2η(cosh[aζ] + sinh[aζ])
,

a12 = − (ζ − µ1)(η − iµ2)

2η(cosh[aζ] + sinh[aζ])
,

a21 =
η(−ζ + µ0) + i(ζ − µ0)µ2

2η
,

a22 =
ηeaζ(ζ + µ1)− ieaζ(ζ + µ1)µ2

2η
,

(3.167)

b11 =
(ζ + µ0)(η + iµ2) cosh[aζ] + (ζ + µ0)(η + iµ2) sinh[aζ]

2η(cosh[aζ] + sinh[aζ])
,

b12 = − (ζ − µ1)(η + iµ2)

2η(cosh[aζ] + sinh[aζ])
,

b21 =
η(−ζ + µ0) + i(−ζ + µ0)µ2

2η
,

b22 =
ηeaζ(ζ + µ1) + ieaζ(ζ + µ1)µ2

2η
.

(3.168)

Write the system of two equations (3.165) and (3.166) in matrix form to get

A

 q̃(η, 0)

q̃(η, a)

 = B

 q̃(−η, 0)

q̃(−η, a)

+ A

 h0(η)

h1(η)

−B
 h0(−η)

h1(−η)


+

 ĝ2(iζ)

ĝ2(−iζ)

 , where

A =

 a11 a12

a21 a22

 , B =

 b11 b12

b21 b22

 .

(3.169)
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Note that a11, a12, a21, a22, b11, b12, b21 and b22 are given by equations labeled by

(3.167) and (3.168). Now multiply equation (3.169) from left side by A−1 to get q̃(η, 0)

q̃(η, a)

 = G(η)

 q̃(−η, 0)

q̃(−η, a)

+

 h0(η)

h1(η)

−G(η)

 h0(−η)

h1(−η)



+ A−1

 ĝ2(iζ)

ĝ2(−iζ)

 , where η ∈ R.

(3.170)

Equation (3.170) can be expressed by

φ+(η) = G(η)φ−(η) + F (η), η ∈ R, where (3.171)

φ+(η) =

 φ1+(η) = q̃(η, 0)

φ2+(η) = q̃(η, a)

 , φ−(η) =

 φ1−(η) = q̃(−η, 0)

φ2−(η) = q̃(−η, a)

 (3.172)

F (η) =

 h0(η)

h1(η)

−G(η)

 h0(−η)

h1(−η)

+ A−1

 ĝ2(iζ)

ĝ2(−iζ)

 (3.173)

A−1 =
1

∆(η − iµ2)

 eaζη(ζ + µ1)ĝ2(iζ) ηe−aζ(ζ − µ1)ĝ2(−iζ)

η(ζ − µ0)ĝ2(iζ) η(ζ + µ0)ĝ2(−iζ)

 (3.174)

G(η) = A−1B =

 −η+iµ2

η−iµ2
0

0 −η+iµ2

η−iµ2

 . (3.175)

∆ is given from equation (3.148). Hence equation (3.173) can be expressed as

F (η) =

 h0(η)

h1(η)

−
 −η+Iµ2

η−Iµ2
0

0 −η+Iµ2

η−Iµ2


 h0(−η)

h1(−η)


+

1

∆(η − iµ2)

 eaζη(ζ + µ1)ĝ2(iζ) ηe−aζ(ζ − µ1)ĝ2(−iζ)

η(ζ − µ0)ĝ2(iζ) η(ζ + µ0)ĝ2(−iζ)


 ĝ2(iζ)

ĝ2(−iζ)

 .
(3.176)
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Equation (3.176) shows the components of F (η) are

F1(η) = h0(η) +
η + iµ2

η − iµ2

h0(−η) +
η

∆(η − iµ2)
[eaζ(ζ + µ1)ĝ2(iζ)

+ (ζ − µ1)e−aζ ĝ2(−iζ)],

F2(η) = h1(η) +
η + iµ2

η − iµ2

h1(−η) +
η

∆(η − iµ2)
[(ζ − µ0)ĝ2(iζ)

+ (ζ + µ0)ĝ2(−iζ)].

(3.177)

Insert the value of G(η) from equation (3.175) in equation (3.171), to obtain the

following two scalar RHPs:

φ+
j (η) = −η + iµ2

η − iµ2

φ−j (η) + Fj(η), η ∈ R, j = 1, 2, (3.178)

φ±1 (η) = q̃(±η, 0), φ±2 (η) = q̃(±η, a). (3.179)

Note that φ+
1 (η), φ+

2 (η) are analytic functions in the upper half η- complex plane,

where as φ−1 (η), φ−2 (η) are analytic functions in the lower half η-complex plane.

These functions satisfy the following symmetry conditions:

φ+
j (η) = φ−j (−η) ∀ η ∈ C+, j = 1, 2, (3.180)

φ−j (η) = φ+
j (−η) ∀ η ∈ C−. (3.181)

Due to this symmetry property, the scalar RHP defined by equation (3.171) is

called a symmetric order two vector RHP. Now consider

φ(η) =
hj(−η)

η − iµ2

+
hj(η)

η + iµ2

, j = 1, 2,

φ(−η) =
hj(η)

−η − iµ2

+
hj(−η)

−η + iµ2

,

φ(−η) = −(
hj(−η)

η − iµ2

+
hj(η)

η + iµ2

) = −φ(η).

(3.182)

Equation (3.182) indicates that φ(η) is an odd function in the variable η. Also note

that η
(η2+µ2

2)∆
[(ζ−µ1)e−aζ ĝ2(−iζ) + eaζ(ζ+µ1)ĝ2(iζ)] and η

(η2+µ2
2)∆

[(ζ−µ0)ĝ2(iζ) +

(ζ + µ0)ĝ2(−iζ)] are odd functions in η. Hence equations labeled by (3.177) imply
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that fj(η) =
Fj(η)

η+iµ2
, j = 1, 2 are odd functions in η. Now consider the Cauchy type

integral of fj.∫ ∞
−∞

fj(τ)

τ − η
dτ =

∫ 0

−∞

fj(τ)

τ − η
dτ +

∫ ∞
0

fj(τ)

τ − η
dτ

In first integral replace η by − η

=

∫ 0

−∞

fj(τ)

τ − η
dτ +

∫ ∞
0

fj(τ)

τ − η
dτ

use the property that fj(τ) is odd, and simplify

=

∫ ∞
0

fj(τ)

τ + η
dτ +

∫ ∞
0

fj(τ)

τ − η
dτ

=

∫ ∞
0

2τfj(τ)

τ 2 − η2
dτ.

Since
1

τ 2 − η2
= − 1

η2
+

1

τ 2 − η2
+

1

η2

1

τ 2 − η2
= − 1

η2
+

τ 2

η2(τ 2 − η2)
, therefore∫ ∞

−∞

fj(τ)

τ − η
dτ = − 1

η2

∫ ∞
0

2τfj(τ)dτ +
1

η2

∫ ∞
0

2τ 3 fj(τ)

τ 2 − η2
dτ.

Observe that τfj(τ) =
τFj(τ)

τ + iµ2

∈ L1(0,∞) i.e.∫ ∞
0

2τfj(τ)dτ <∞⇔ fj(τ) ∈ L1(0,∞), hence∫ ∞
−∞

fj(τ)

τ − η
dτ = O(

1

η2
), as η →∞.

(3.183)

Using the Sokhotski Plemelj formulae given in theorem 3.1.1 to the function fj(η) =

Fj(η)

η+iµ2
, we have

fj(η) =
Fj(η)

η + iµ2

= ψ+
j (η)− ψ−j (η), (3.184)

where ψ+
j (η) and ψ−j (η) are the analytic functions in upper and lower half η-

complex planes, respectively, and ψj(η) is the Cauchy type integral defined by

ψj(η) =
1

2πi

∫ ∞
−∞

1

τ − η
fj(τ)dτ, ∀η ∈ C \ R, use equation (3.183)

=
1

2πi

∫ ∞
0

2τ

τ 2 − η2
fj(τ)dτ.

(3.185)
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Use the value of fj(τ) from equation (3.184) in equation (3.185), and simplify to

get

ψj(η) =
1

πi

∫ ∞
0

τ

τ 2 − η2

Fj(τ)

τ + iµ2

dτ,

ψj(η) = ψj(−η).

(3.186)

Let

ψ+
j (η) = lim

z→η
ψj(η), z ∈ D+, and ψ−j (η) = lim

z→η
ψj(η), z ∈ D−. (3.187)

So, equation (3.186) satisfies the following realtions.

ψ+
j (η) = ψ−j (−η), ∀ η ∈ C+ (3.188)

ψ−j (η) = ψ+
j (−η), ∀ η ∈ C− (3.189)

Divide the scalar RHP defined by equation (3.178) by η+ iµ2, and insert the value

of
Fj(η)

η+iµ2
from equation (3.184) in the resulting equation to get

φ+
j (η)

η + iµ2

− ψ+
j (η) = −

φ−j (η)

η − iµ2

− ψ−j (η), ∀ η ∈ R. (3.190)

Since
φ+
j (η)

η+iµ2
− ψ+

j (η) and − φ−j (η)

η−iµ2
− ψ−j (η) are analytic functions in the upper and

lower half η-complex planes, respectively, and satisfy (3.190), hence the theorem

on analytic continuation 2.3.1 implies
φ+
j (η)

η+iµ2
− ψ+

j (η) = − φ−j (η)

η−iµ2
− ψ−j (η) is analytic

everywhere in the η-complex plane, and we notice that it is vanishing at∞. Hence

by generalized Liouville’s theorem 2.3.2, we have

φ+
j (η)

η + iµ2

− ψ+
j (η) = −

φ−j (η)

η − iµ2

− ψ−j (η) = 0. (3.191)

Equate each term to zero, and simplify to get

φ+
j (η) = (η + iµ2)ψ+

j (η) = O(
1

η
) as η →∞, (3.192)

φ−j (η) = −(η − iµ2)ψ−j (η) = O(
1

η
) as η →∞. (3.193)
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It is observed that

φ−j (−η) = −(−η − iµ2)ψ−j (−η) = (η + iµ2)ψ−j (−η), use equation (3.188) to get

φ−j (−η) = (η + iµ2)ψ+
j (η)

φ−j (−η) = φ+
j (η) ∀η ∈ C+, j = 1, 2.

(3.194)

Similarly

φ+
j (−η) = (−η + iµ2)ψ+

j (−η) = −(η − iµ2)ψ−j (−η), use equation (3.189) to get

φ+
j (−η) = −(η − iµ2)ψ−j (η)

φ+
j (−η) = φ−j (η) ∀η ∈ C−, j = 1, 2.

(3.195)

Equations (3.194) and (3.195) describe the symmetry condition for the order two

vector RHP defined by equation (3.171).

3.3.1 Formulae for reconstruction of solution of BVP of Helmholtz

equation in a semi-infinite strip Ω

We can reconstruct the solution of the given BVP of the Helmholtz equation in a

semi-infinite strip subject to the impedance boundary conditions, on the bound-

aries of the semi-infinite strip by using the inverse Laplace transforms given in

definitions 3.1.1 and 3.1.2. To derive the relation for q(x, 0), we consider the fol-

lowing inverse Laplace transform given in definition 3.1.1:

q(x, yj) =
1

2π

∫ ∞
−∞

q̃(η, yj)e
−iηxdη, j = 0, 1, y0 = 0, y1 = a, a > 0. (3.196)

For y0 = 0, equation (3.196) gives the following result:

q(x, 0) =
1

2π

∫ ∞
−∞

q̃(η, 0)e−iηxdη. (3.197)

The scalar RHPs defined by equation (3.178) gives

q̃(η, 0) = −η + iµ2

η − iµ2

q̃(−η, 0) + F1(η), η ∈ R. (3.198)
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Insert the value of q̃(η, 0) from equation (3.198) in equation (3.197) to get

q(x, 0) =
1

2π

∫ ∞
−∞

[−η + iµ2

η − iµ2

q̃(−η, 0) + F1(η)]e−iηxdη,

=
1

2π

∫ ∞
−∞
−η + iµ2

η − iµ2

q̃(−η, 0)e−iηxdη +
1

2π

∫ ∞
−∞

F1(η)e−iηxdη.

(3.199)

Since η+iµ2

η−iµ2
q̃(−η, 0)e−iηx is an analytic function in the lower half η-complex plane

C− and x > 0, so, draw a closed contour (R,−R)∪C−R as shown in the figure 3.5.

Application of the Cauchy’s theorem gives the following result:

∫ −R
R

−η + iµ2

η − iµ2

q̃(−η, 0)e−iηxdη +

∫
c−R

−η + iµ2

η − iµ2

q̃(−η, 0)e−iηxdη = 0. (3.200)

The integrand η+iµ2

η−iµ2
q̃(−η, 0)e−iηx in the second integral satisfies all the axioms of

Jordan’s lemma, so∫
C−R

−η + iµ2

η − iµ2

q̃(−η, 0)e−iηxdη = 0, as R→∞. (3.201)

When R→∞ equations (3.200) and (3.201) imply∫ −R
R

−η + iµ2

η − iµ2

q̃(−η, 0)e−iηxdη = 0 as R→∞ or∫ ∞
−∞
−η + iµ2

η − iµ2

q̃(−η, 0)e−iηxdη = 0.

(3.202)

Now equations (3.199) and (3.202) give the following result:

q(x, 0) =
1

2π

∫ ∞
−∞

F1(η)e−iηxdη. (3.203)

Now to derive the relation for q(x, a), insert y1 = a, in equation (3.196) to get

q(x, a) =
1

2π

∫ ∞
−∞

q̃(η, a)e−iηxdη. (3.204)

The scalar RHPs defined by equation (3.178) gives

q̃(η, a) = −η + iµ2

η − iµ2

q̃(−η, a) + F2(η), η ∈ R. (3.205)
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FIGURE 3.4. Contour to evaluate the integrals defining q(x, 0) and q(x, a).

Insert the value of q̃(η, a) from equation (3.205) in equation (3.204) to get

q(x, a) =
1

2π

∫ ∞
−∞

[−η + iµ2

η − iµ2

q̃(−η, a) + F2(η)]e−iηxdη

=
1

2π

∫ ∞
−∞
−η + iµ2

η − iµ2

q̃(−η, a)e−iηxdη +
1

2π

∫ ∞
−∞

F2(η)e−iηxdη.

(3.206)

Since η+iµ2

η−iµ2
q̃(−η, a)e−iηx is an anlytic function in the lower half η-complex plane

C− and x > 0, so, we draw a closed contour (R,−R) ∪ C−R as shown in the figure

3.5. Application of the Cauchy’s theorem gives the following result:∫ −R
R

−η + iµ2

η − iµ2

q̃(−η, a)e−iηxdη +

∫
c−R

−η + iµ2

η − iµ2

q̃(−η, a)e−iηxdη = 0. (3.207)

The integrand η+iµ2

η−iµ2
q̃(−η, a)e−iηx in the second integral satisfies all the axioms of

Jordan’s lemma, so,∫
C−R

−η + iµ2

η − iµ2

q̃(−η, a)e−iηxdη = 0, as R→∞. (3.208)

When R→∞ equations (3.207) and (3.208) imply∫ −R
R

−η + iµ2

η − iµ2

q̃(−η, a)e−iηxdη = 0 as R→∞ or∫ ∞
−∞
−η + iµ2

η − iµ2

q̃(−η, a)e−iηxdη = 0.

(3.209)
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Now equations (3.206) and (3.209) give the following result:

q(x, a) =
1

2π

∫ ∞
−∞

F2(η)e−iηxdη. (3.210)

Note 3.3.1. To evaluate the contour integrals defined by equations (3.203) and

(3.210), the residue theory of complex variables is used. To apply this theory to

evaluate these contour integrals, the integrands F1(η)e−iηx and F2(η)e−iηx should

be meromorphic functions of η. Since η is related to the multi-valued function ζ

through the relation ζ =
√
η2 − k2, the integrands F1(η)e−iηx and F2(η)e−iηx should

be even functions w.r.t ζ, to cancel out the effect of the branch cut in the η-complex

plane, and make the integrands meromorphic functions of η in the η-complex plane.

To find the solution along the side x = 0, 0 < y < a, of the semi-infinite strip Ω,

use the inverse Laplace transform the operator L−1
y given in definition 3.1.2. Using

definition 3.1.2, consider

q(0, y) =
1

2πi

∫
Γ

q̂(0, iζ)eζydζ, 0 < y < a, (3.211)

where q̂(0, iζ) is given by equation (3.160). To apply the residue theory of com-

plex variables to evaluate the integral defined by equation (3.211), the integrand

q̂(0, iζ)eζy should be a meromorphic function of ζ. Since ζ is a multi-valued func-

tion in the η-complex plane, and is related to η through the relation ζ =
√
η2 − k2.

So, we need the integrand q̂(0, iζ)eζy to be an even function w.r.t η, to cancel out

the effect of branch cut in the η-complex plane, and make the integrand a mero-

morphic function of ζ in the η-complex plane.
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To find solution of the BVP of the Helmholtz equation inside a semi-infinite

strip Ω, we use the inverse Laplace transform operator L−1
x given in definition

3.1.1. Consider

q(x, y) =
1

2π

∫ ∞
−∞

q̃(η, y)e−iηxdη. (3.212)

The residue theory of complex variables is used to evaluate the integral defined by

equation (3.212). To solve this integral, we need q̃(η, y) which is given by equation

(3.141). To apply the residue theory of complex variables, to evaluate the integral

defined by equation (3.212), the integrand q̃(η, y)e−iηx in equation (3.212) should

satisfy note 3.3.1. In the next section, we have considered a particular case to

elaborate the procedure for re-construction of solution on the boundaries of semi-

infinite strip Ω, of the given BVP of Helmholtz equation in a semi-infinite strip.

3.3.2 Solution of the BVP of Helmholtz equation in a semi-infinite

strip Ω along the vertical boundary: q(0, y)

Case study

Example 3.3.1. For the BVP defined by equations (3.121), (3.122), (3.123) and

(3.124), let g0(x) = g1(x) = 0, g2(y) = A (constant ), g(x, y) = 0. In this case

equations (3.145) and (3.152) after simplification become h0(η) = h1(η) = 0. Insert

these values in equations labeled by (3.177) to get

F1(η) =
2Aη(ζ sinh[aζ] + 2µ1 sinh2[aζ

2
])

(η − iµ2)ζ∆
, (3.213)

F2(η) =
2Aη(ζ sinh[aζ] + 2µ0 sinh2[aζ

2
])

(η − iµ2)ζ∆
, where (3.214)

∆ = (µ0 + µ1)ζ cosh[aζ] + (µ0µ1 + ζ2) sinh[aζ]. (3.215)
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To find the solution along the side x = 0, 0 < y < a of the semi-infinite strip Ω,

use definition 3.1.2, to get

q(0, y) =
1

2πi

∫
Γ

q̂(0, iζ)eζydζ, Γ = (−i∞, i∞), where (3.216)

q̂(0, iζ) is given by equation (3.160).

q̂(0, iζ) =
−i(ζ + µ0) cosh[aζ](h0(−η)− h0(η) + q̃(η, 0)− q̃(−η, 0))

2η(cosh[aζ] + sinh[aζ])
−

i(ζ + µ0) sinh[aζ](h0(−η)− h0(η) + q̃(η, 0)− q̃(−η, 0))

2η(cosh[aζ] + sinh[aζ])
+

i(ζ − µ1)(h1(−η)− h1(η) + q̃(η, a)− q̃(−η, a))

2η(cosh[aζ] + sinh[aζ])
.

(3.217)

Insert h0(η) = h1(η) = 0 in equation (3.217), and simplify to get

q̂(0, iζ) =
−i[(ζ + µ0)(q̃(η, 0)− q̃(−η, 0)− (ζ − µ1)(q̃(η, a)− q̃(−η, a))e−aζ ]

2η

= i(ζ − µ1)
(q̃(η, a)− q̃(−η, a))e−aζ

2η
− i(ζ + µ0)

(q̃(η, 0)− q̃(−η, 0))

2η
.

(3.218)

Note that q̃(η,0)−q̃(−η,0)
2η

is an even function of η in the η-complex plane because on

upper side of the cut shown in the figure 3.2, we have

q̃(η, 0)− q̃(−η, 0)

2η
=
q̃(η+, 0)− q̃(−η+, 0)

2η
(3.219)
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η+ is the value of η on the upper side of the cut. On the lower side of the cut shown

in figure 3.2, we have

q̃(η, 0)− q̃(−η, 0)

2η
=
q̃(η+, 0)− q̃(−η+, 0)

2η+
. (3.220)

Equations (3.219) and (3.220) prove the assertion that q̃(η,0)−q̃(−η,0)
2η

is an even

function w.r.t to η. So, this function is continuous through the cut in η-complex

plane. Since q̃(η,0)−q̃(−η,0)
2η

is continuous through the cut in the η- complex plane, and

it is analytic everywhere in the η-complex plane except at a finite number of poles

w.r.t ζ, hence it is a meromorphic function w.r.t ζ. We can continue analytically

q̃(−η, 0) and q̃(−η, a) into the plane Im(η) > 0 by using the boundary condition

of the RHP defined by equation (3.178), and is given as

φ+
j (η) = −η + iµ2

η − iµ2

φ−j (η) + Fj(η), η ∈ R, j = 1, 2. (3.221)

Express the above equation in component form, and simplify to get

q̃(−η, 0) = −η − iµ2

η + iµ2

[q̃(η, 0)− F1(η)], (3.222)

q̃(−η, a) = −η − iµ2

η + iµ2

[q̃(η, a)− F2(η)]. (3.223)
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Hence, equations (3.216), (3.218), (3.222) and (3.223) give the following result:

q(0, y) =
1

2π

∫
Γ

[−(ζ + µ0)(
q̃(η, 0)

η + iµ2

− η − iµ2

η + iµ2

F1(η)

2η
)

+ e−aζ(ζ − µ1)(
q̃(η, a)

η + iµ2

− η − iµ2

η + iµ2

F2(η)

2η
)]eζydζ

(3.224)

q(0, y) =
1

2π

∫
Γ

[
−(ζ + µ0)

η + iµ2

q̃(η, 0) +
ζ − µ1

η + iµ2

e−aζ q̃(η, a)+

(η − iµ2)

(η + iµ2)
(ζ + µ0)

F1(η)

2η
− e−aζ(ζ − µ1)

η − iµ2

η + iµ2

F2(η)

2η
]eζydζ

(3.225)

Using the values of F1(η) and F2(η) from equations (3.213) and (3.214), consider

the following expressions:

η − iµ2

η + iµ2

(ζ + µ0)
F1(η)

2η
=
ζ + µ0

2η
× η − iµ2

η + iµ2

[
2Aη(ζ sinh[aζ] + 2µ1 sinh2[aζ

2
])

(η − iµ2)ζ∆
]

=
(ζ + µ0)A

∆ζ(η + iµ2)
(ζ sinh[aζ] + 2µ1 sinh2[

aζ

2
]),

η − iµ2

η + iµ2

(ζ − µ1)e−aζ
F2(η)

2η
=
ζ − µ1

2η
× η − iµ2

η + iµ2

e−aζ [
2Aη(ζ sinh[aζ] + 2µ0 sinh2[aζ

2
])

(η − iµ2)ζ∆
]

=
(ζ − µ1)A

∆ζ(η + iµ2)
e−aζ(ζ sinh[aζ] + 2µ0 sinh2[

aζ

2
]).

(3.226)

Using equations labeled by (3.226), consider the following expressions:

− (ζ + µ0)

η + iµ2

q̃(η, 0) +
η − iµ2

η + iµ2

(ζ + µ0)
F1(η)

2η
=

(ζ + µ0)

η + iµ2

[−q̃(η, 0) +
A

∆ζ
×

(ζ sinh[aζ] + 2µ1 sinh2[
aζ

2
])]

(3.227)
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e−aζ(ζ − µ1)

η + iµ2

q̃(η, a)− e−aζ(ζ − µ1)
η − iµ2

η + iµ2

F2(η)

2η
=

(ζ − µ1)

η + iµ2

e−aζ [q̃(η, a)−

A

∆ζ
× (ζ sinh[aζ] + 2µ0 sinh2[

aζ

2
])].

(3.228)

Use expressions labeled by (3.227) and (3.228) in equation (3.225), and simplify

to get

q(0, y) = I1(y) + I2(y), where (3.229)

I1(y) =
1

2π

∫
Γ

(ζ + µ0)

η + iµ2

eζy[−q̃(η, 0) +
A

∆ζ
(ζ sinh[aζ] + 2µ1 sinh2[

aζ

2
])]dζ,

(3.230)

I2(y) =
1

2π

∫
Γ

(ζ − µ1)

η + iµ2

e(y−a)ζ [q̃(η, a)− A

∆ζ
(ζ sinh[aζ] + 2µ0 sinh2[

aζ

2
])]dζ. (3.231)

To evaluate the integrals I1(y) and I2(y), we need the zeroes of

∆ = (µ0 + µ1)ζ cosh[aζ] + (µ0µ1 + ζ2) sinh[aζ]. (3.232)

Now equation (3.230) can be expressed as

I1(y) = − 1

2π

∫
Γ

(ζ + µ0)

η + iµ2

eζy q̃(η, 0)dζ +
1

2π

∫
Γ

(ζ + µ0)

η + iµ2

eζy × A

∆ζ
(ζ sinh[aζ]

+ 2µ1 sinh2[
aζ

2
])dζ.

(3.233)
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FIGURE 3.5. Contour to evaluate the integral I1(y) defining q(0, y).

Note that Γ = (−i∞, i∞). Consider the contour S1 constructed by removing

the line segments ri from a line segment R. Since y > 0, we enclose the contour

(−iS1, iS1) by drawing semi circular arcs each of radius ri such that each singular-

ity of the integrand in I1(y) is to be on the right side of (−iS1, iS1) , then we draw a

semi-circle CS1
of radius S1, to the left side of (−iS1, iS1). In this way, all singular-

ities of the integrand in I1(y) are outside the closed contour CS1 ∪ (−iS1, iS1)∪γ1,

as shown in figure 3.5. Note that γ1 is the union of all small semi circles Cri of

radii ri as shown in figure 3.5. We observe that q̃(η, 0) is an analytic function in

C+, so, it is analytic in the region bounded by CS1∪(−iS1, iS1)∪γ1 which is in C+.

By using the boundary condition of the scalar RHP defined by equation (3.178),
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q̃(η, 0) can be analytically continued to C−, and hence it is analytic in the region in

C− which is enclosed in contour CS1∪(−iS1, iS1)∪γ1. Hence, q̃(η, 0) is an analytic

function in the region bounded by the closed contour CS1 ∪ (−iS1, iS1) ∪ γ1. Using

Cauchy’s theorem we have

∫ iS1

−iS1

(ζ + µ0)

η + iµ2

eζy q̃(η, 0)dζ +

∫
CS1

(ζ + µ0)

η + iµ2

eζy q̃(η, 0)dζ

+

∫
γ1

(ζ + µ0)

η + iµ2

eζy q̃(η, 0)dζ = 0

(3.234)

Simplify the above expression to get

∫ iS1

−iS1

(ζ + µ0)

η + iµ2

eζy q̃(η, 0)dζ +

∫
CS1

(ζ + µ0)

η + iµ2

eζy q̃(η, 0)dζ

+

n0∑
i=1

∫
Cri

(ζ + µ0)

η + iµ2

eζy q̃(η, 0)dζ = 0.

(3.235)

Note that the integrand in the second integral in equation (3.235) satisfies all ax-

ioms of Jordan’s lemma, so, for S1 →∞ the second integral is vanishing. Also, for

each ri, the third integral in equation (3.235) is vanishing because the integrand is

analytic in each small semi circle Cri. When S1 →∞ and ri → 0 for each i, then

equation (3.235) gives the following result.

∫ i∞

−i∞

(ζ + µ0)

η + iµ2

eζy q̃(η, 0)dζ = 0. (3.236)
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Use value of the integral from equation (3.236) in equation (3.230) to get

I1(y) =
1

2π

∫
Γ

(ζ + µ0)

η + iµ2

eζy
A

∆ζ
(ζ sinh[aζ] + 2µ1 sinh2[

aζ

2
])dζ. (3.237)

On pages 140 and 142, we have used a procedure to evaluate
∫ i∞
−i∞

(ζ+µ0)
η+iµ2

eζy q̃(η, 0)dζ.

Now, using that procedure on pages 140 and 142, for I1(y) given by equation

(3.237), we have

∫ iS1

−iS1

g(ζ, η)

2π
dζ +

∫
CS1

g(ζ, η)

2π
dζ +

∫
γ1

g(ζ, η)

2π
dζ = 0

∫ iS1

−iS1

g(ζ, η)

2π
dζ +

∫
CS1

g(ζ, η)

2π
dζ +

n0∑
i=1

∫
Cri

g(ζ, η)

2π
dζ = 0.

g(ζ, η) =
(ζ + µ0)

η + iµ2

eyζ
A

∆ζ
(ζ sinh[aζ] + 2µ1 sinh2[

aζ

2
]).

(3.238)

Since the integrand g(ζ,η)
2π

in the 2nd integral in equation (3.238), satisfies all axioms

of Jordan’s lemma, hence
∫
CS1

g(ζ,η)
2π

dζ → 0 as s1 →∞. When s1 →∞, and ri → 0

for each i then equation (3.238) becomes

I1(y) = − 1

2π
(−πi)[

∞∑
n=1

[Residue|
ζ=ζ+

n ,η=iζ̂+
n =iζ̂n

+Residue|
ζ=ζ−n ,η=iζ̂−n =iζ̂n

]g(ζ, η)),

g(ζ, η) =
(ζ + µ0)

η + iµ2

eyζ
A

∆ζ
(ζ sinh[aζ] + 2µ1 sinh2[

aζ

2
]).

(3.239)
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Equation (3.239) can be written as

I1(y) =
i

2

∞∑
n=1

Rn1 , where (3.240)

Rn1 = [Residue|
ζ=ζ+

n ,η=iζ̂+
n =iζ̂n

+Residue|
ζ=ζ−n ,η=iζ̂−n =iζ̂n

]g(ζ, η). (3.241)

To find Rn1 , we need the residue of g(η, ζ) at simple poles ζ+
n and ζ−n , for that

purpose, let

g1(η, ζ) =
A(ζ + µ0)

ζ(η + iµ2)
eζy[ζ sinh[aζ] + 2µ1 sinh2[

aζ

2
]], (3.242)

g2(ζ) = ∆ = (µ0 + µ1)ζ cosh[aζ] + (µ0µ1 + ζ2) sinh[aζ]. (3.243)

We evaluate g1(η, ζ) and d
dζ
g2(ζ) at simple poles ζ+

n = iλn and ζ−n = −iλn as

follows.

g1(η, ζ)|
ζ=ζ+

n =iλn,η=iζ̂+
n =iζ̂n

=
A(iλn + µ0)

(ζ̂n + µ2)λn
eiλny[λn sin[aλn] + 2µ1 sin2[

aλn
2

]]

g1(η, ζ)|
ζ=ζ−n =−iλn,η=iζ̂+

n =iζ̂n
=
A(iλn − µ0)

(ζ̂n + µ2)λn
e−iλny[λn sin[aλn] + 2µ1 sin2[

aλn
2

]]

∆0 =
dg2

dζ
(ζ)|ζ=ζ+

n =iλn
=
dg2

dζ
(ζ)|ζ=ζ−n =−iλn = (µ0 + µ1 + aµ0µ1 − aλ2

n) cos[aλn]

− λn sin[aλn](aµ0 + aµ1 + 2).

(3.244)
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Note that

Residue|
ζ=ζ+

n =iλn,η=iζ̂+
n =iζ̂n

g(η, ζ) =
g1(η, ζ)|

ζ=ζ+
n =iλn,η=iζ̂+

n =iζ̂n
dg2

dζ
(ζ)|ζ=ζ+

n =iλn

=
A(iλn + µ0)

∆0(ζ̂n + µ2)λn
eiλny[λn sin[aλn] + 2µ1 sin2[

aλn
2

]]

Residue|
ζ=ζ−n =−iλn,η=iζ̂−n =iζ̂n

g(η, ζ) =
g1(η, ζ)|

ζ=ζ−n =−iλn,η=iζ̂−n =iζ̂n
dg2

dζ
(ζ)|ζ=ζ−n =−iλn

=
A(iλn − µ0)

∆0(ζ̂n + µ2)λn
e−iλny[λn sin[aλn] + 2µ1 sin2[

aλn
2

]]

(3.245)

Now equations labeled by (3.241) and (3.245) give the following result:

Rn1 = −i
A(λn sin[aλn] + 2µ1 sin2[aλn

2
])

∆0λn(ζ̂n + µ2)
[(−λn + iµ0)eiλny + (−λn − iµ0)e−iλny].

(3.246)

Use the value of Rn1 from equation (3.246) in equation (3.240) to get

I1(y) =
∞∑
n=1

A(λn sin[aλn] + 2µ1 sin2[aλn
2

])

2∆0λn(ζ̂n + µ2)
[(−λn + iµ0)eiλny + (−λn − iµ0)e−iλny].

(3.247)

To evaluate I2(y), write equation (3.231) as follows.

I2(y) =
1

2π

∫
Γ

(ζ − µ1)

η + iµ2

e(y−a)ζ q̃(η, a)dζ − 1

2π

∫
Γ

(ζ − µ1)

η + iµ2

e(y−a)ζ A

∆ζ
×

(ζ sinh[aζ] + 2µ0 sinh2[
aζ

2
])dζ

(3.248)
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Note that Γ = (−i∞, i∞). Consider the contour R1 constructed by removing the

line segments ri from a line segment R. Since 0 < y < a, so, y − a < 0. So,

we enclose the contour (−iR1, iR1) by drawing semi circular arcs each of radius ri

such that each singularity of the integrand in I2(y) is to the left side of (−iR1, iR1),

then we draw a semi-circle CR1 of radius R1, to the right side of (−iR1, iR1). In

this way, all singularities of the integrand in I2(y) are outside the closed contour

CR1 ∪ (−iR1, iR1) ∪ γ, as shown in the figure 3.6. Note that γ is the union of all

small semi circles Cri of radii ri. We observe that q̃(η, a) is an analytic function

in C+, so, it is analytic in the region bounded by CR1 ∪ (−iR1, iR1)∪ γ which is in

C+. By using boundary condition of the scalar RHP defined by equation (3.178),

q̃(η, a) can be analytically continued to C−, and hence it is analytic in the region in

C− which is enclosed in contour CR1∪(−iR1, iR1)∪γ. Hence, q̃(η, a) is an analytic

function in the region bounded by the closed contour CR1 ∪ (−iR1, iR1) ∪ γ. Using

Cauchy’s theorem we have

∫ iR1

−iR1

(ζ − µ1)

η + iµ2

e(y−a)ζ q̃(η, a)dζ +

∫
CR1

(ζ − µ1)

η + iµ2

e(y−a)ζ q̃(η, a)dζ

+

∫
γ

(ζ − µ1)

η + iµ2

e(y−a)ζ q̃(η, a)dζ = 0.

(3.249)

146



Equation (3.249) becomes

∫ iR1

−iR1

(ζ − µ1)

η + iµ2

e(y−a)ζ q̃(η, a)dζ +

∫
CR1

(ζ − µ1)

η + iµ2

e(y−a)ζ q̃(η, a)dζ

+

n0∑
i=1

∫
Cri

(ζ − µ1)

η + iµ2

e(y−a)ζ q̃(η, a)dζ = 0.

(3.250)

FIGURE 3.6. Contour to evalute the integral I2(y) defining q(0, y).

Note that the integrand in the second integral in equation (3.250) satisfies all

axioms of Jordan’s lemma, so, for R1 →∞ the second integral is vanishing. Also,

for each ri, the third integral in equation (3.250) is vanishing because the integrand

is analytic in each small semi circle, Cri. When R1 → ∞ and ri → 0 for each i,

then equation (3.250) becomes

∫ i∞

−i∞

(ζ − µ1)

η + iµ2

e(y−a)ζ q̃(η, a)dζ = 0. (3.251)
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Use the value of the integral from equation (3.251) in equation (3.248) to get

I2(y) = − 1

2π

∫
Γ

(ζ − µ1)

η + iµ2

e(y−a)ζ A

∆ζ
(ζ sinh[aζ] + 2µ0 sinh2[

aζ

2
])dζ. (3.252)

On the page (147), we have used a procedure to evaluate
∫ i∞
−i∞

(ζ−µ1)
η+iµ2

e(y−a)ζ q̃(η, a)dζ.

Now, using that procedure on page (147), for I2(y) given by equation (3.252), we

have

∫ iR1

−iR1

h(ζ, η)

2π
dζ +

∫
CR1

h(ζ, η)

2π
dζ +

∫
γ

h(ζ, η)

2π
dζ = 0,

∫ iR1

−iR1

h(ζ, η)

2π
dζ +

∫
CR1

h(ζ, η)

2π
dζ +

n0∑
i=1

∫
Cri

h(ζ, η)

2π
dζ = 0,

h(ζ, η) =
(ζ − µ1)

η + iµ2

e(y−a)ζ A

∆ζ
(ζ sinh[aζ] + 2µ0 sinh2[

aζ

2
]).

(3.253)

Since the integrand h(ζ,η)
2π

in the 2nd integral in equation (3.253) satisfies all axioms

of Jordan’s lemma, hence
∫
CR1

h(ζ,η)
2π

dζ → 0 as R1 → ∞. When R1 → ∞, and

ri → 0 for each i then equation (3.253) becomes

I2(y) =
1

2π
(πi

∞∑
n=1

[Residue|
ζ=ζ+

n ,η=iζ̂+
n =iζ̂n

+Residue|
ζ=ζ−n ,η=iζ̂−n =iζ̂n

]h(ζ, η)),

h(ζ, η) =
(ζ − µ1)

η + iµ2

e(y−a)ζ A

∆ζ
(ζ sinh[aζ] + 2µ0 sinh2[

aζ

2
]).

(3.254)
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From equation (3.254) I2(y) can be written as

I2(y) =
i

2

∞∑
n=1

Rn2 , where (3.255)

Rn2 = [Residue|
ζ=ζ+

n ,η=iζ̂+
n =iζ̂n

+Residue|
ζ=ζ−n ,η=iζ̂−n =iζ̂n

]h(ζ, η)). (3.256)

To find Rn2 , we need the residue of h(η, ζ) at the simple poles ζ+
n and ζ−n , for that

purpose, let

h1(η, ζ) =
A(ζ − µ1)

ζ(η + iµ2)
e(y−a)ζ [ζ sinh[aζ] + 2µ0 sinh2[

aζ

2
]], (3.257)

h2(ζ) = ∆ = (µ0 + µ1)ζ cosh[aζ] + (µ0µ1 + ζ2) sinh[aζ]. (3.258)

We evaluate h1(η, ζ) and d
dζ
h2(ζ) at the simple poles ζ+

n = iλn and ζ−n = −iλn as

follows.

h1(η, ζ)|
ζ=ζ+

n =iλn,η=iζ̂+
n =iζ̂n

=
A(iλn − µ1)

(ζ̂n + µ2)λn
ei(y−a)λn [λn sin[aλn] + 2µ0 sin2[

aλn
2

]]

h1(η, ζ)|
ζ=ζ−n =−iλn,η=iζ̂+

n =iζ̂n
=
A(iλn + µ1)

(ζ̂n + µ2)λn
e−i(y−a)λn [λn sin[aλn] + 2µ0 sin2[

aλn
2

]]

∆0 =
dh2

dζ
(ζ)|ζ=ζ+

n =iλn
=
dg2

dζ
(ζ)|ζ=ζ−n =−iλn = (µ0 + µ1 + aµ0µ1 − aλ2

n) cos[aλn]

− λn sin[aλn](aµ0 + aµ1 + 2)

(3.259)
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Note that

Residue|
ζ=ζ+

n =iλn,η=iζ̂+
n =iζ̂n

h(η, ζ) =
h1(η, ζ)|

ζ=ζ+
n =iλn,η=iζ̂+

n =iζ̂n
dg2

dζ
(ζ)|ζ=ζ+

n =iλn

=
A(iλn − µ1)

∆0(ζ̂n + µ2)λn
ei(y−a)λn [λn sin[aλn] + 2µ0 sin2[

aλn
2

]],

Residue|
ζ=ζ−n =−iλn,η=iζ̂−n =iζ̂n

h(η, ζ) =
g1(η, ζ)|

ζ=ζ−n =−iλn,η=iζ̂−n =iζ̂n
dg2

dζ
(ζ)|ζ=ζ−n =−iλn

=
A(iλn + µ1)

∆0(ζ̂n + µ2)λn
e−i(y−a)λn [λn sin[aλn] + 2µ0 sin2[

aλn
2

]].

(3.260)

Use the values of expressions in equations labeled by (3.260) in equation (3.256)

to get

Rn2 =
A(λn sin[aλn] + 2µ0 sin2[aλn

2
])

∆0λn(ζ̂n + µ2)
[(iλn − µ1)ei(y−a)λn + e−i(y−a)λn(iλn + µ1)].

(3.261)

FIGURE 3.7. Solution along the boundary x = 0, 0 < y < a of semi-infinite strip Ω.
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Use the value of Rn2 from equation (3.261) in equation (3.255), and simplify to

get

I2(y) =
∞∑
n=1

A(λn sin[aλn] + 2µ0 sin2[aλn
2

])

2∆0λn(ζ̂n + µ2)
[(−λn−iµ1)ei(y−a)λn+e−i(y−a)λn(−λn+iµ1)].

(3.262)

Use the values of I1(y) and I2(y) from equations (3.247) and (3.262), and insert

in equation (3.229) to get

q(0, y) =
∞∑
n=1

[
A(λn sin[aλn] + 2µ1 sin2[aλn

2
])

2∆0λn(ζ̂n + µ2)
{(−λn + iµ0)eiλny + (−λn − iµ0)e−iλny}

+
A(λn sin[aλn] + 2µ0 sin2[aλn

2
])

2∆0λn(ζ̂n + µ2)
[(−λn − iµ1)ei(y−a)λn + e−i(y−a)λn(−λn + iµ1)]

q(0, y) =
∞∑
n=1

A

d0

[d1(d11e
iλny + d12e

−iλny) + d2(d21e
i(y−a)λn + d22e

−i(y−a)λn)].

(3.263)

Note that

d11 = −λn + iµ0, d12 = −(λn + iµ0), d21 = −(λn + iµ1), (3.264)

d22 = −λn + iµ1, d0 = 2λn(ζ̂n + µ2)∆0, (3.265)

d1 = λn sin[aλn] + 2µ1 sin2[
aλn
2

], d2 = λn sin[aλn] + 2µ0 sin2[
aλn
2

], (3.266)

∆0 = (µ0 + µ1 + aµ0µ1 − aλ2
n) cos[aλn]− λn sin[aλn](aµ0 + aµ1 + 2). (3.267)
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Now consider a particular case, in which A = 1, µ0 = 2, µ1 = 3, µ2 = 2, a =

5, k = 2i. In this case the simple poles are ζ = iλn, ζ = −iλn, and correspondingly

we have η = iζ̂+
n = iζ̂−n = iζ̂n = i

√
λ2
n − k2. Note that λn are given in Table 2.3

on page 90. Figure 3.7 shows the solution of the BVP of the Helmholtz equation

in the semi-infinite strip subject to the impedance boundary conditions, along the

side x = 0, 0 < y < a.

3.3.3 Solution of BVP of the Helmholtz equation in a semi-infinite

strip, along the horizontal boundaries: q(x, 0), q(x, a)

Equation (3.203) gives the solution q(x, 0)

q(x, 0) =
1

2π

∫ ∞
−∞

F1(η)e−iηxdη. (3.268)

F1(η) is given by equation (3.213), and observe that F1(η) can be written as

F1(η, ζ). Equation (3.213) shows that F1(η, ζ) = F1(η,−ζ). So, F1(η) = F1(η, ζ) is

an even function w.r.t. ζ. We know that η is related to the multi-valued function ζ

through the relation ζ =
√
η2 − k2. Since F1(η) = F1(η, ζ) is an even function w.r.t

ζ, so, it cancels out effect of the branch cut on values of F1(η) = F1(η, ζ) in the η-

complex plane, so, that F1(η) = F1(η, ζ) is continuous through the cut in η-complex

plane. Hence F1(η) is a meromorphic function of η in η-complex plane. To evalu-
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ate the integral given by equation (3.268), we note that x > 0, so, we enclose the

contour (−R,R) by drawing a semi- circle C−R in the lower half η-complex plane.

The poles of integrand F1(η)e−iηx are found by solving the following transcendental

equation:

∆ = (µ0 + µ1)ζ cosh[aζ] + (µ0µ1 + ζ2) sinh[aζ]. (3.269)

By substituting ζ = −iλn in equation (3.269), zeroes of the resulting equation

are found by ”Burniston-Siewert method for solving certain transcendental equa-

tions” in section 2.4. Notice that the poles of the integrand F1(η)e−iηx inside

the closed contour (−R,R) ∪ C−R , are ζ = −iλn and η = −iζ̂n, where ζ̂n =

√
λ2
n − k2, Re(ζ̂n) > 0. Note that λn are given in table 2.3 on page 90 Now ap-

ply Cauchy’s residue theorem to the integrand F1(η)e−iηx in the region enclosed by

the contour (R,−R) ∪ C−R , to get

∫ −R
R

F1(η)e−iηxdη +

∫
C−R

F1(η)e−iηxdη = 2πi
∞∑
n=1

Residue S(η, ζ)|ζ=−iλn,η=−iζ̂n .

(3.270)

The integrand F1(η)e−iηx in the first integral in equation (3.270)is satisfying all

axiom’s of Jordan’s lemma, so,
∫
C−R

F1(η)e−iηxdη → 0 as R → ∞. So, application
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of the limit R→∞ and Jordan’s lemma to equation (3.270) results in the following

equation.

∫ ∞
−∞

F1(η)e−iηxdη = −2πi
∞∑
n=1

Residue S(η, ζ)|ζ=−iλn,η=−iζ̂n (3.271)

S(η, ζ) =
2Aη(ζ sinh[aζ] + 2µ1 sinh[aζ

2
]2)e−iηx

∆(η − iµ2)ζ
(3.272)

Equations (3.268) and (3.271) give the following result:

q(x, 0) = −i
∞∑
n=1

Residue S(η, ζ)|ζ=−iλn,η=−iζ̂n . (3.273)

To find Residue S(η, ζ)|ζ=−iλn,η=−iζ̂n, let

S1(η, ζ) =
2Aη(ζ sinh[aζ] + 2µ1 sinh[aζ

2
]2)e−iηx

(η − iµ2)ζ
, (3.274)

S2(ζ) = ∆ = (µ0 + µ1)ζ cosh[aζ] + (µ0µ1 + ζ2) sinh[aζ], ζ =
√
η2 − k2, Re(ζ) > 0.

(3.275)

Use equation (3.274) to calculate

S1(η, ζ)|ζ=−iλn,η=−iζ̂n

=
2A(−iζ̂n)(−iλn sinh[a(−iλn)] + 2µ1 sinh[a(−iλn)

2
]2)e−i(−iζ̂n)x

(−iζ̂n − µ2)(−iλn)

=
−2iAζ̂n(λn sin[aλn] + 2µ1 sin[aλn

2
]2)e−ζ̂nx

(ζ̂n + µ2)λn
.

(3.276)
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Use equation (3.275) to calculate

dS2

dη
|ζ=−iλn,η=−iζ̂n =

dS2

dζ

dζ

dη
|ζ=−iλn,η=−iζ̂n

= [(µ0 + µ1) cos[aλn] + a(−λ2
n + µ0µ1) cos[aλn]− 2λn sin[aλn]

− aλn(µ0 + µ1) sin[aλn]]
ζ̂n
λn

(3.277)

Equation (3.277) can be expressed as

dS2

dη
|ζ=−iλn,η=−iζ̂n =

ζ̂n∆0

λn
, where

∆0 = (µ0 + µ1) cos[aλn] + a(−λ2
n + µ0µ1) cos[aλn]− 2λn sin[aλn]

− aλn(µ0 + µ1) sin[aλn].

(3.278)

Now Residue S(η, ζ)|ζ=−iλn,η=−iζ̂n is found as follows.

Residue S(η, ζ)|ζ=−iλn,η=−iζ̂n =
S1(η, ζ)|ζ=−iλn,η=−iζ̂n

dS2

dη
|ζ=−iλn,η=−iζ̂n

=
−2iA(λn sin[aλn] + 2µ1 sin[aλn

2
]2)e−ζ̂nx

∆0(ζ̂n + µ2)

(3.279)

From equation (3.279) use value of Residue S(η, ζ)|ζ=−iλn,η=−iζ̂n in equation

(3.273), and simplify to get
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FIGURE 3.8. Solution along the boundary 0 < x <∞, y = 0, of semi-infinite strip Ω.

q(x, 0) = −i
∞∑
n=1

Residue S(η, ζ)|ζ=−iλn,η=−iζ̂n

q(x, 0) =
∞∑
n=1

−2A(λn sin[aλn] + 2µ1 sin[aλn
2

]2)e−ζ̂nx

∆0(ζ̂n + µ2)
, where

∆0 = (µ0 + µ1) cos[aλn] + a(−λ2
n + µ0µ1) cos[aλn]− 2λn sin[aλn]

− aλn(µ0 + µ1) sin[aλn].

(3.280)

In the particular case, in which A = 1, µ0 = 2, µ1 = 3, µ2 = 2, a = 5, k = 2i,

simple poles of the integrand F1(η)e−iηx are ζ = −iλn, and correspondingly we have

η = −iζ̂n = −i
√
λ2
n − k2. Note that λn are given in Table 2.3 on page 90. Figure

3.8 shows the solution of the BVP of the Helmholtz equation in a semi-infinite strip

subject to the impedance boundary conditions, along the side 0 < x <∞, y = 0 of
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the semi-infinite strip. Equation (3.210) gives the solution q(x, a)

q(x, a) =
1

2π

∫ ∞
−∞

F2(η)e−iηxdη. (3.281)

F2(η) is given by equation (3.214), and observe that F2(η) can be written as

F2(η, ζ). Equation (3.214) shows that F2(η, ζ) = F2(η,−ζ). So, F2(η) = F2(η, ζ) is

an even function w.r.t. ζ. We know that η is related to the multi-valued function

ζ through the relation ζ =
√
η2 − k2. Since F2(η) = F2(η, ζ) is an even function

w.r.t ζ, so, it cancels out effect of the branch cut on values of F2(η) = F2(η, ζ)

in the η-complex plane, so, that F2(η) = F2(η, ζ) is continuous through the cut in

η-complex plane. Hence F2(η) is a meromorphic function of η in η-complex plane.

To evaluate the integral given by equation (3.281), we note that x > 0, so, we

enclose the contour (R,−R) by drawing a semi-circle C−R in lower half η-complex

plane as shown in figure 3.4. In equation (3.281), the simple poles of integrand

F2(η)e−iηx inside the contour (R,−R)∪C−R , are found as we did on page 153, and

these are ζ = −iλn and η = −iζ̂n, where ζ̂n =
√
λ2
n − k2, Re(ζ̂n) > 0. Now apply

Cauchy’s residue theorem to integrand F2(η)e−iηx in the region enclosed by contour
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(R,−R) ∪ C−R , to get

∫ −R
R

F2(η)e−iηxdη +

∫
C−R

F2(η)e−iηxdη = 2πi
∞∑
n=1

ResidueP (η, ζ)|ζ=−iλn,η=−iζ̂n ,

(3.282)

P (η, ζ) = F2(η)e−iηx =
2Aη(ζ sinh[aζ] + 2µ0 sinh[aζ

2
]2)e−iηx

∆(η − iµ2)ζ
. (3.283)

The integrand F2(η)e−iηx in first integral given by equation (3.282) is satisfying all

axiom’s of Jordan’s lemma, so,
∫
C−R

F2(η)e−iηxdη → 0 as R → ∞. So, application

of limit R → ∞ and Jordan’s lemma to equation (3.282) results in the following

equation.

∫ ∞
−∞

F2(η)e−iηxdη = −2πi
∞∑
n=1

Residue P (η, ζ)|ζ=−iλn,η=−iζ̂n (3.284)

Use the value of the integral from equation (3.284)in equation (3.281) to get

q(x, a) = −i
∞∑
n=1

Residue P (η, ζ)|ζ=−iλn,η=−iζ̂n . (3.285)

To find Residue p(η, ζ)|ζ=−iλn,η=−iζ̂n, let

P1(η, ζ) =
2Aη(ζ sinh[aζ] + 2µ0 sinh[aζ

2
]2)e−iηx

(η − iµ2)ζ
, (3.286)

P2(ζ) = ∆ = (µ0 + µ1)ζ cosh[aζ] + (µ0µ1 + ζ2) sinh[aζ], ζ =
√
η2 − k2, Re(ζ) > 0.

(3.287)
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Use equation (3.286) to calculate

P1(η, ζ)|ζ=−iλn,η=−iζ̂n

=
2A(−iζ̂n)(−iλn sinh[a(−iλn)] + 2µ0 sinh[a(−iλn)

2
]2)e−i(−iζ̂n)x

(−iζ̂n − µ2)(−iλn)

=
−2iAζ̂n(λn sin[aλn] + 2µ0 sin[aλn

2
]2)e−ζ̂nx

(ζ̂n + µ2)λn
.

(3.288)

Use equation (3.287) to calculate

dP2

dη
|ζ=−iλn,η=−iζ̂n =

dS2

dζ

dζ

dη
|ζ=−iλn,η=−iζ̂n

dP2

dη
|ζ=−iλn,η=−iζ̂n = [(µ0 + µ1) cos[aλn] + a(−λ2

n + µ0µ1) cos[aλn]

− 2λn sin[aλn]− aλn(µ0 + µ1) sin[aλn]]
ζ̂n
λn

dP2

dη
|ζ=−iλn,η=−iζ̂n =

ζ̂n∆0

λn
, where

∆0 = (µ0 + µ1) cos[aλn] + a(−λ2
n + µ0µ1) cos[aλn]− 2λn sin[aλn]

− aλn(µ0 + µ1) sin[aλn].

(3.289)

Now Residue P (η, ζ)|ζ=−iλn,η=−iζ̂n is found as follows.

Residue P (η, ζ)|ζ=−iλn,η=−iζ̂n =
P1(η, ζ)|ζ=−iλn,η=−iζ̂n

dP2

dη
|ζ=−iλn,η=−iζ̂n

=
−2iA(λn sin[aλn] + 2µ0 sin[aλn

2
]2)e−ζ̂nx

∆0(ζ̂n + µ2)

(3.290)
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FIGURE 3.9. Solution along the boundary 0 < x < ∞, y = a, of the semi-infinite strip

Ω.

Use the value of Residue P (η, ζ)|ζ=−iλn,η=−iζ̂n from equation (3.290) in equation

(3.285) to get

q(x, a) = −i
∞∑
n=1

Residue P (η, ζ)|ζ=−iλn,η=−iζ̂n

q(x, a) =
∞∑
n=1

−2A(λn sin[aλn] + 2µ0 sin[aλn
2

]2)e−ζ̂nx

∆0(ζ̂n + µ2)
, where

∆0 = (µ0 + µ1) cos[aλn] + a(−λ2
n + µ0µ1) cos[aλn]− 2λn sin[aλn]

− aλn(µ0 + µ1) sin[aλn].

(3.291)

In the particular case, in which A = 1, µ0 = 2, µ1 = 3, µ2 = 2, a = 5, k = 2i,

simple poles of the integrand F2(η)e−iηx are ζ = −iλn, and correspondingly we have

η = −iζ̂n = −i
√
λ2
n − k2. Note that λn are given in Table 2.3 on page 90. Figure

3.9 shows the solution of the BVP of the Helmholtz equation in a semi-infinite strip

160



subject to the impedance boundary conditions, along the side 0 < x <∞, y = a of

the semi-infinite strip.

Observation 3.3.1. In the present case when g0(x) = 0, g1(x) = 0, g2(y) =

A (constant), g(x, y) = 0, FIT method and the new method give the same solution

on boundaries of the semi-infinite strip Ω. This gives a verification for the new

method.

3.3.4 Interior solution of BVP of Helmholtz equation in a

semi-infinite strip Ω: q(x, y)

We know that the inverse transform defined by equation (3.212) can be used to

find the solution q(x, y) inside the semi infinite strip Ω. The residue theory of

complex variables is used to evaluate q(x, y) from equation (3.212), and the final

expression for q(x, y) contains a double series, that representation makes it harder

for computational purposes. So, in the present case g0(x) = 0, g1(x) = 0, g2(y) =

A (constant), g(x, y) = 0, we want to develop a formula to calculate q(x, y) which

is computationally more effective than the double series representation obtained by

application of inverse transform defined by equation (3.212). In the present case,

using FIT method (chapter 2), solution of the BVP of the Helmholtz equation

inside a semi-infinite strip Ω is

q(x, y) =
∞∑
n=1

Ae−ζ̂nx

(µ2 + ζ̂n)σ2
nµ

2
0λn

[µ0(1− cos[aλn]) + λn sin[aλn]]×

[λn cos[λny] + µ0 sin[λny]].

(3.292)
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The solution q(0, y) along the side x = 0, 0 < y < a of the semi-infinite strip Ω is

q(0, y) =
∞∑
n=1

A

(µ2 + ζ̂n)σ2
nµ

2
0λn

[µ0(1− cos[aλn]) + λn sin[aλn]]×

[λn cos[λny] + µ0 sin[λny]].

(3.293)

In the case when g0(x) = 0, g1(x) = 0, g2(y) = A (constant), g(x, y) = 0, equations

(3.292) and (3.293) reveal a relationship between q(x, y) and q(0, y). We observe

that the nth term of the series solution of q(x, y) defined by equation (3.292)

can be obtained by multiplying nth term of the series solution of q(0, y) given

by equation (3.293) by e−ζ̂nx. Note that ζ̂n =
√
λ2
n − k2, where λn are the eigen

values corresponding to the eigen vector Kλn(y) ( The kernel of the finite integral

transform in FIT method). Using the observation 3.3.1, we can exploit this property

to find q(x, y) by the new method. In the case when g0(x) = 0, g1(x) = 0, g2(y) =

A (constant), g(x, y) = 0, using the new method, equation (3.263) gives solution

along the side x = 0, 0 < y < a of semi-infinite strip Ω as follows:

q(0, y) =
∞∑
n=1

A

d0

[d1(d11e
iλny + d12e

−iλny) + d2(d21e
i(y−a)λn + d22e

−i(y−a)λn)].

(3.294)

Note that

d11 = −λn + iµ0, d12 = −(λn + iµ0), d21 = −(λn + iµ1), (3.295)

d22 = −λn + iµ1, d0 = 2λn(ζ̂n + µ2)∆0, (3.296)

d1 = λn sin[aλn] + 2µ1 sin2[
aλn
2

], d2 = λn sin[aλn] + 2µ0 sin2[
aλn
2

], (3.297)

∆0 = (µ0 + µ1 + aµ0µ1 − aλ2
n) cos[aλn]− λn sin[aλn](aµ0 + aµ1 + 2). (3.298)

Hence, in the case g0(x) = 0, g1(x) = 0, g2(y) = A (constant), g(x, y) = 0, using

the new method, the solution inside the semi-infinite Ω is

q(x, y) =
∞∑
n=1

Ae−ζ̂nx

d0

[d1(d11e
iλny + d12e

−iλny) + d2(d21e
i(y−a)λn + d22e

−i(y−a)λn)].

(3.299)
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In the given case, theoretically, the formula (3.299) to find the solution inside

the semi-infinite Ω can be derived from the double series representation of q(x, y)

obtained from inverse transform defined by equation (3.212). In particular case,

in which A = 1, µ0 = 2, µ1 = 3, µ2 = 2, a = 5, k = 2i, the simple poles of the

integrand in the integral defining q(x, y) given by equation (3.212), are ζ = −iλn,

and correspondingly we have η = −iζ̂n = −i
√
λ2
n − k2. Note that λn are given in

Table 2.3 on page 90. Figure 3.10 shows the solution q(x, y) of the BVP of the

Helmholtz equation inside a semi-infinite strip subject to the impedance boundary

conditions.

FIGURE 3.10. Solution of the BVP of the Helmholtz equation inside a semi-infinite strip

Ω subject to the impedance boundary conditions.

Example 3.3.2. Consider a particular case of the above example 3.3.1 for which

A = 1, µ0 = 2, µ1 = 3, µ2 = 2, a = 5, k = 3 + 2i. In this case the solution for the
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BVP of the Helmholtz along the boundaries of Ω and inside Ω are shown in the

figures 3.11, 3.12, 3.13 and 3.14.

FIGURE 3.11. Solution along the boundary x = 0, 0 < y < a, of the semi-infinite strip

Ω.

FIGURE 3.12. Solution along the boundary 0 < x <∞, y = 0, of the semi-infinite strip

Ω.
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FIGURE 3.13. Solution along the boundary 0 < x <∞, y = a, of the semi-infinite strip

Ω.

FIGURE 3.14. Solution of BVP of Helmholtz equation inside a semi-infinite strip Ω

subject to impedance boundary conditions.

Example 3.3.3. Consider a particular case of the above example 3.3.1 for which

A = 1, µ0 = 2, µ1 = 3, µ2 = 2, a = 5, k = 4. In this case the solution for the BVP
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of the Helmholtz along the boundaries of Ω and inside Ω are shown in the figures

3.15, 3.16, 3.17 and 3.18.

FIGURE 3.15. Solution along the boundary x = 0, 0 < y < a, of the semi-infinite strip

Ω.

FIGURE 3.16. Solution along the boundary 0 < x <∞, y = 0, of the semi-infinite strip

Ω.
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FIGURE 3.17. Solution along the boundary 0 < x <∞, y = a, of the semi-infinite strip

Ω.

FIGURE 3.18. Solution of the BVP of the Helmholtz equation inside a semi-infinite strip

Ω subject to the impedance boundary conditions.
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Chapter 4

Boundary value problems of Helmholtz

equation and higher order boundary

conditions

In this chapter we have applied the new method to solve the BVP of the Helmholtz

equation in a semi-infinite strip subject to the higher order boundary conditions.

4.1 Higher order boundary conditions

Consider the Helmholtz equation

(∂2
x + ∂2

y + k2)q(x, y) = g(x, y), Im(k) > 0, (x, y) ∈ Ω, (4.1)

where Ω is a semi-infinite strip shown in figure 4.1 with the corners z1 =∞, z2 = 0,

z3 = ia, z4 =∞+ia, a > 0. Assume that along the sides S1 and S2, the impedance

boundary conditions are imposed. The side S0 is an infinite membrane clamped at

the point (0,0) to the vertical side S2. The higher order boundary condition along

the side S0 is derived from [28]. The boundary conditions along the three sides of

Ω are:

S0 : (∂2
xx + k2

0)∂yq(x, y) + µ0q(x, y) = g0(x), 0 < x <∞, y = 0, (4.2)

S1 : qy(x, y) + µ1q(x, y) = g1(x), 0 < x <∞, y = a. (4.3)

S2 : −qx(x, y) + µ2q(x, y) = g2(y), x = 0, 0 < y < a, (4.4)

The functions g0(x) , g1(x) are real valued, and vanish at the points x = 0 and

x =∞, sin βj 6= 0, j = 0, 1, 2.

Since the side S0 is an infinite membrane, fixed at the point (0,0), so, there is

no deflection (vertical displacement) at the point (0,0). This phenomena generates
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FIGURE 4.1. Impedance and higher order boundary condtions along the sides of Ω.

the following edge condition to get the unique solution of the given BVP.

∂

∂y
q(x, 0)→ 0, as x→ 0+ (4.5)

For this particular problem, to discuss the scattering of sound waves by the semi-

infinite strip Ω, the parameters are selected in the following way. Note that k0 =

ω
√

m
T
,m is the mass per unit area, and T is the surface tension, so, k0 = k01 + ik02,

k01, k02 > 0. Now k = ω
c

is the wave number, c is the sound speed in the fluid,

and ω = ω1 + iω2, ω1, ω2 > 0 is the frequency. Hence k = ω
c

indicates that k =

k1 + ik2, k1, k2 > 0. Since µ0 = ρ0ω2

T
, ρ0 is the mean fluid density, this indicates that

µ0 = µ01 + iµ02, µ01, µ02 > 0. Due to the impedance boundary conditions along the

sides S1 and S2, µ1, µ2 > 0.

Application of the Laplace transform the operator Lx from definition 3.1.1 to

the Helmholtz equation (4.1) gives

(
d2

dy2
− ζ2)q̃(η, y) = f(y), 0 < y < a, where (4.6)

f(y) = ∂xq(0, y)− iηq(0, y) + g̃(η, y), 0 < y < a. (4.7)
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Note that ζ =
√
η2 − k2 is a multi-valued function. We fix a branch of it by

Re(ζ) ≥ 0. The branch cut of this multi-valued function is shown in figure 3.2.

From definition 3.1.1 apply the the operator Lx to the boundary condition defined

by equation (4.2) to get

∫ ∞
0

(∂2
xx + k2

0)∂yq(x, y)eiηx + µ0q̃(η, y) = g̃0(η). (4.8)

Consider the following integral

∫ ∞
0

∂3
xxyq(x, y)eiηxdx = eiηx∂2

xyq(x, y)|∞0 −
∫ ∞

0

∂2
xyq(x, y)iηeiηxdx. (4.9)

Use property that q(x, y) ∈ C2(Ω) ∩ C1(Ω) ∩ C3(S0) and q(x, y)|x=∞ = 0,

∂xq(x, y)|x=∞ = 0, ∂2
xyq(x, y)|x=∞ = 0, and integrate by parts to get∫ ∞

0

∂3
xxyq(x, y)eiηxdx = −∂2

xyq(0, 0)− iη[eiηx∂yq(x, y)|∞0 −
∫ ∞

0

∂yq(x, y)iηeiηxdx]

= −∂2
xyq(0, 0) + iη∂yq(0, 0)− η2 d

dy

∫ ∞
0

q(x, y)eiηxdx.

(4.10)

Use the edge condition (4.5) and ∂2

∂x∂y
q(0, 0) = C0 in equation (4.10) to get

∫ ∞
0

∂3
xxyq(x, y)eiηxdx = −C0 − η2 d

dy
q̃(η, 0). (4.11)

Use value of the integral from equation (4.11) in equation (4.8), to get

− C0 − η2 d

dy
q̃(η, 0) + k2

0

d

dy
q̃(η, 0) + µ0q̃(η, 0) = g̃0(η)

(−η2 + k2
0)
d

dy
q̃(η, 0) + µ0q̃(η, 0) = g̃0(η) + C0.

(4.12)

Simplify the above equation (4.12) to get

(− d

dy
+ µ̃0)q̃(η, 0) = ρ̃0(η), where (4.13)

µ̃0 =
µ0

η2 − k2
0

, ρ̃0(η) =
g̃0(η) + C0

η2 − k2
0

. (4.14)
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From definition 3.1.1 apply the the operator Lx to the boundary condition defined

by equation (4.3), and simplify to get

(
d

dy
+ µ1)q̃(η, a) = g̃1(η). (4.15)

Now equations (4.6), (4.13) and (4.15) describe the following non homogeneous

system of Laplace transformed equations

(
d2

dy2
− ζ2)q̃(η, y) = f(y), 0 < y < a, (4.16)

(− d

dy
+ µ̃0)q̃(η, 0) = ρ̃0(η), (4.17)

(
d

dy
+ µ1)q̃(η, a) = g̃1(η), (4.18)

where f(y), µ̃0 and ρ̃0(η) are given by equations (4.7) and (4.14). Now compare

the non homogeneous system of Laplace transformed equations (4.16), (4.17) and

(4.18) with the non homogeneous system of Laplace transformed equations (3.125),

(3.127) and (3.128), then the Green’s function of the system defined by equations

(4.16), (4.17) and (4.18) is given by replacing µ0 with µ̃0 in equation (3.140), and

is expressed as follows

G(y, ξ) = −e
−ζ|y−ξ|

2ζ
+
µ̃0 − ζ
2∆ζ

e−ζξ(ζ cosh[(a− y)ζ] + µ1 sinh[(a− y)ζ])

+ (
µ1 − ζ
2∆ζ

)e−ζ(a−ξ)(ζ cosh[ζy] + µ̃0 sinh[ζy]).

(4.19)

Note that

µ̃0 =
µ0

η2 − k2
0

, ∆ = (µ̃0 + µ1)ζ cosh[aζ] + (µ̃0µ1 + ζ2) sinh[aζ]. (4.20)

Then solution of the non homogeneous system of equations (4.16), (4.17) and (4.18)

is obtained by replacing g̃0(η) with ρ̃0(η) in equation (3.141)

q̃(η, y) =

∫ a

0

G(y, ξ)f(ξ)dξ + ρ̃0(η)ψ0(y) + g̃1(η)ψ1(y). (4.21)
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Insert y = 0 in equation (4.21) to get

q̃(η, 0) =

∫ a

0

G(0, ξ)f(ξ)dξ + ρ̃0(η)ψ0(0) + g̃1(η)ψ1(0). (4.22)

From equations (4.19), (4.7), (3.137) and (3.138), find the values of G(0, ξ), f(ξ),

ψ0(0) and ψ1(0), respectively, and insert these values in equation (4.22) to get

q̃(η, 0) =

∫ a

0

[−e
−ζξ

2ζ
+
µ̃0 − ζ
2∆ζ

e−ζξ(ζ cosh[aζ] + µ1 sinh[aζ]) + (
µ1 − ζ

2∆
)e−ζ(a−ξ)]×

[
∂

∂x
q(0, ξ)− iηq(0, ξ) + g̃(η, ξ)]dξ + ρ̃0(η)

(ζ cosh[aζ] + µ1 sinh[aζ])

∆
)+

g̃1(η)
ζ

∆
.

(4.23)

Using equation (4.23), and the procedure in section 3.2 pages 107 and 109, we find

that

q̃(η, 0) = Λ11(ζ)
∂

∂x
q̂(0, iζ)− iηΛ11(ζ)q̂(0, iζ) + Λ12(ζ)

∂

∂x
q̂(0,−iζ)

− iηΛ12(ζ)q̂(0,−iζ) + h0(η).

(4.24)

Note that

h0(η) = Λ11(ζ)ˆ̃g(η, iζ) + Λ12(ζ, η)ˆ̃g(η,−iζ) + ρ̃0(η)
(ζ cosh[aζ] + µ1 sinh[aζ])

∆

+ g̃1(η)
ζ

∆
,

Λ11(ζ) =
1

2ζ
[−1 +

(µ̃0 − ζ)(ζ cosh[aζ] + µ1 sinh[aζ])

∆
]

Λ12(ζ) =
e−ζa

2∆
(µ1 − ζ),

∆ = (µ̃0 + µ1)ζ cosh[aζ] + (µ̃0µ1 + ζ2) sinh[aζ].

(4.25)

Replace η by −η in equation (4.24) to get

q̃(−η, 0) = Λ11(ζ)
∂

∂x
q̂(0, iζ) + iηΛ11(ζ)q̂(0, iζ) + Λ12(ζ)

∂

∂x
q̂(0,−iζ)

+ iηΛ12(ζ)q̂(0,−iζ) + h0(−η).

(4.26)

Now insert y = a in equation (4.21), from equations (4.19), (4.7), (3.137) and

(3.138), find the values of G(a, ξ), f(ξ), ψ0(0) and ψ1(0), respectively, then insert
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these values in the resultant equation, and simplify to get the following:

q̃(η, a) = Λ21(ζ)
∂

∂x
q̂(0, iζ)− iηΛ21(ζ)q̂(0, iζ) + Λ22(ζ)

∂

∂x
q̂(0,−iζ)

− iηΛ22(ζ)q̂(0,−iζ) + h1(η), where

(4.27)

h1(η) = Λ21(ζ)ˆ̃g(η, iζ) + Λ22(ζ, η)ˆ̃g(η,−iζ) + g̃1(η)
(ζ cosh[aζ] + µ̃0 sinh[aζ])

∆

+ ρ̃0(η)
ζ

∆
,

Λ21(ζ) =
µ̃0 − ζ

2∆
, Λ22(ζ) =

e−ζa

2ζ
(ζ cosh[aζ] + µ̃0 sinh[aζ]).

(4.28)

Note that ρ̃0(η) and ∆ are given by equations (4.14) and (4.20), respectively. Now

replace η by −η in equation (4.27) to get

q̃(−η, a) = Λ21(ζ)
∂

∂x
q̂(0, iζ) + iηΛ21(ζ)q̂(0, iζ) + Λ22(ζ)

∂

∂x
q̂(0,−iζ)

+ iηΛ22(ζ)q̂(0,−iζ) + h1(−η).

(4.29)

Equations (4.24), (4.26), (4.27) and (4.29) describe the following system of four

equations for four unknowns:

q̃(η, 0)− h0(η) = Λ11(ζ)
∂

∂x
q̂(0, iζ)− iηΛ11(ζ)q̂(0, iζ) + Λ12(ζ)

∂

∂x
q̂(0,−iζ)

− iηΛ12(ζ)q̂(0,−iζ),

q̃(−η, 0)− h0(−η) = Λ11(ζ)
∂

∂x
q̂(0, iζ) + iηΛ11(ζ)q̂(0, iζ) + Λ12(ζ)

∂

∂x
q̂(0,−iζ)

+ iηΛ12(ζ)q̂(0,−iζ),

q̃(η, a)− h1(η) = Λ21(ζ)
∂

∂x
q̂(0, iζ)− iηΛ21(ζ)q̂(0, iζ) + Λ22(ζ)

∂

∂x
q̂(0,−iζ)

− iηΛ22(ζ, η)q̂(0,−iζ),

q̃(−η, a)− h1(η) = Λ21(ζ)
∂

∂x
q̂(0, iζ) + iηΛ21(ζ)q̂(0, iζ) + Λ22(ζ)

∂

∂x
q̂(0,−iζ)

+ iηΛ22(ζ)q̂(0,−iζ).

(4.30)
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Write the above system in matrix form, then solution of this system in terms of

the unknowns ∂
∂x
q̂(0, iζ), q̂(0, iζ), ∂

∂x
q̂(0,−iζ) and q̂(0,−iζ) is

∂

∂x
q̂(0, iζ) = −−(qam + qap)(ζ − µ1) + (q0m + q0p)(ζ + µ̃0) cosh[aζ]

2(cosh[aζ] + sinh[aζ])

− (q0m + q0p)(ζ + µ̃0) sinh[aζ]

2(cosh[aζ] + sinh[aζ])
,

(4.31)

q̂(0, iζ) =
i{(−qam + qap)(ζ − µ1) + (q0m − q0p)(ζ + µ̃0) cosh[aζ]}

2η(cosh[aζ] + sinh[aζ])

+
i(q0m − q0p)(ζ + µ̃0) sinh[aζ]

2η(cosh[aζ] + sinh[aζ])
,

∂

∂x
q̂(0,−iζ) =

i{(q0m + q0p)(ζ − µ̃0))− eaζ(qam + qap)(ζ + µ1)}
2η

,

q̂(0,−iζ) =
i{(−q0m + q0p)(ζ − µ̃0) + eaζ(qam − qap)(ζ + µ1)}

2η
.

(4.32)

Note that q0p, q0m, qap, qam are:

q0p = q̃(η, 0)− h0(η), q0m = q̃(−η, 0)− h0(−η), (4.33)

qap = q̃(η, a)− h1(η), qam = q̃(−η, a)− h1(−η). (4.34)

Now application of the operator Ly to the boundary condition along the side S2

of the semi-infinite strip Ω, defined by equation (4.4), and use of definition 3.1.2

gives the following result:

− ∂

∂x
q̂(0, iζ) + µ2q̂(0, iζ) = ĝ2(iζ). (4.35)

Replace ζ by −ζ to get

− ∂

∂x
q̂(0,−iζ) + µ2q̂(0,−iζ) = ĝ2(−iζ). (4.36)

From equations labeled by (4.31) and (4.32), use the values of ∂
∂x
q̂(0,±iζ) and

q̂(0,±iζ) in equations (4.35) and (4.36) to get the following system of two equa-

tions:

a11q̃(η, 0) + a12q̃(η, a) = b11q̃(−η, 0) + b12q̃(−η, a) + a11h0(η)− b11h0(−η)

+ a12h1(η)− b12h1(−η) + ĝ2(iζ),

(4.37)
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a21q̃(η, 0) + a22q̃(η, a) = b21q̃(−η, 0) + b22q̃(−η, a) + a21h0(η)− b21h0(−η)

+ a22h1(η)− b22h1(−η) + ĝ2(−iζ).

(4.38)

Note that a11, a12, a21, a22, b11, b12, b21 and b22 are given by replacing µ0 with µ̃0

in equations labeleled by (3.167) and (3.168). Write the system of two equations

(4.37) and (4.38) in matrix form to get

A

 q̃(η, 0)

q̃(η, a)

 = B

 q̃(−η, 0)

q̃(−η, a)

+ A

 h0(η)

h1(η)

−B
 h0(−η)

h1(−η)


+

 ĝ2(iζ)

ĝ2(−iζ)

 , where

A =

 a11 a12

a21 a22

 , B =

 b11 b12

b21 b22

 .

(4.39)

Now multiply equation (4.39) from left side by A−1 to get q̃(η, 0)

q̃(η, a)

 = G(η)

 q̃(−η, 0)

q̃(−η, a)

+

 h0(η)

h1(η)

−G(η)

 h0(−η)

h1(−η)



+ A−1

 ĝ2(iζ)

ĝ2(−iζ)

 , where η ∈ R.

(4.40)

Equation (4.40) can be expressed by

φ+(η) = G(η)φ−(η) + F (η), η ∈ R, where (4.41)

φ+(η) =

 φ1+(η) = q̃(η, 0)

φ2+(η) = q̃(η, a)

 , φ−(η) =

 φ1−(η) = q̃(−η, 0)

φ2−(η) = q̃(−η, a)

 , (4.42)

F (η) =

 h0(η)

h1(η)

−G(η)

 h0(−η)

h1(−η)

+ A−1

 ĝ2(iζ)

ĝ2(−iζ)

 , (4.43)
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A−1 =
1

∆(η − iµ2)

 eaζη(ζ + µ1)ĝ2(iζ) ηe−aζ(ζ − µ1)ĝ2(−iζ)

η(ζ − µ̃0)ĝ2(iζ) η(ζ + µ̃0)ĝ2(−iζ)

 , (4.44)

G(η) = A−1B =

 −η+iµ2

η−iµ2
0

0 −η+iµ2

η−iµ2

 . (4.45)

∆ is given from equation (4.20). Hence equation (4.43) can be expressed as

F (η) =

 h0(η)

h1(η)

−
 −η+iµ2

η−iµ2
0

0 −η+iµ2

η−iµ2


 h0(−η)

h1(−η)


+

1

∆(η − iµ2)

 eaζη(ζ + µ1)ĝ2(iζ) ηe−aζ(ζ − µ1)ĝ2(−iζ)

η(ζ − µ̃0)ĝ2(iζ) η(ζ + µ̃0)ĝ2(−iζ)


 ĝ2(iζ)

ĝ2(−iζ)

 .
(4.46)

Equation (4.46) shows that the components of F (η) are

F1(η) = h0(η) +
η + iµ2

η − iµ2

h0(−η) +
η

∆(η − iµ2)
[eaζ(ζ + µ1)ĝ2(iζ)

+ (ζ − µ1)e−aζ ĝ2(−iζ)],

F2(η) = h1(η) +
η + iµ2

η − iµ2

h1(−η) +
η

∆(η − iµ2)
[(ζ − µ̃0)ĝ2(iζ)

+ (ζ + µ̃0)ĝ2(−iζ)].

(4.47)

Insert the value of G(η) from equation (4.45) in equation (4.41) to obtain the

following two scalar RHPs:

φ+
j (η) = −η + iµ2

η − iµ2

φ−j (η) + Fj(η), η ∈ R, j = 1, 2, (4.48)

φ±1 (η) = q̃(±η, 0), φ±2 (η) = q̃(±η, a). (4.49)

Note that φ+
1 (η) and φ+

2 (η) are analytic functions in the upper half η-complex

plane, where as φ−1 (η), and φ−2 (η) are analytic functions in the lower half η-complex

plane. These functions satisfy the following symmetry conditions

φ+
j (η) = φ−j (−η) ∀ η ∈ C+, φ−j (η) = φ+

j (−η) ∀ η ∈ C−. (4.50)
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Due to this symmetry property, the scalar RHP defined by equation (3.171) is

called a symmetric order two vector RHP. Now consider

φ(η) =
hj(−η)

η − iµ2

+
hj(η)

η + iµ2

, j = 1, 2,

φ(−η) =
hj(η)

−η − iµ2

+
hj(−η)

−η + iµ2

,

φ(−η) = −(
hj(−η)

η − iµ2

+
hj(η)

η + iµ2

) = −φ(η).

(4.51)

Equation (4.51) indicates that φ(η) is an odd function in the variable η. Also note

that η
(η2+µ2

2)∆
[(ζ−µ1)e−aζ ĝ2(−iζ) + eaζ(ζ+µ1)ĝ2(iζ)] and η

(η2+µ2
2)∆

[(ζ− µ̃0)ĝ2(iζ) +

(ζ + µ̃0)ĝ2(−iζ)] are odd functions in η. Hence equations labeled by (4.47) imply

that fj(η) =
Fj(η)

η+iµ2
, j = 1, 2 are odd functions in η. Using the procedure on pages

130, 131 and 132, following are proved.

1. The Cauchy type integral of fj satisfies∫ ∞
−∞

fj(τ)

τ − η
dτ = O(

1

η2
), as η →∞, j = 1, 2. (4.52)

2.

φ+
j (η) = (η + iµ2)ψ+

j (η) = O(
1

η
) as η →∞, j = 1, 2, (4.53)

φ−j (η) = −(η − iµ2)ψ−j (η) = O(
1

η
) as η →∞. (4.54)

Note that ψj(z) is the Cauchy type integral

ψj(z) =
1

2πi

∫ ∞
−∞

1

τ − z
fj(τ)dτ, ∀z ∈ C \ R j = 1, 2. (4.55)

3. φ−j (−η) = φ+
j (η), ∀η ∈ C+, φ+

j (−η) = φ−j (η), ∀η ∈ C−, these are

the symmetry conditions for the order two vector RHP defined by equation

(4.41).
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4.1.1 Solution of the BVP of the Helmholtz equation in a

semi-infinite strip Ω subject to higher order boundary

conditions, along the side S2 of semi-infinite strip: q(0, y)

Case study

Example 4.1.1. For the BVP defined by equations (4.1), (4.2), (4.4) and (4.3),

let g0(x) = g1(x) = 0, g2(y) = A (constant ), g(x, y) = 0. In this case equations

(4.25) and (4.28) after simplification become

h0(η) =
C0(ζ cosh[aζ] + µ1 sinh[aζ])

(η2 − k2
0)∆

, h1(η) =
C0ζ

(η2 − k2
0)∆

. (4.56)

From equation (4.56) use values of h0(η) and h1(η) in equations labeled by (4.47),

and simplify to get

F1(η) =
2Aη(η2 − k2

0)(ζ sinh[aζ] + 2µ1 sinh2[aζ
2

]) + 2ηC0(ζ cosh[aζ] + µ1 sinh[aζ])ζ

(η2 − k2
0)(η − iµ2)∆ζ

,

(4.57)

F2(η) =
2Aη(ζ sinh[aζ](η2 − k2

0) + 2µ0 sinh2[aζ
2

]) + 2ζ2ηC0

(η − iµ2)(η2 − k2
0)ζ∆

, (4.58)

∆ =
(µ0 + (η2 − k2

0)µ1)ζ cosh[aζ] + (µ0µ1 + (η2 − k2
0)ζ2) sinh[aζ]

η2 − k2
0

. (4.59)

To find solution along the side S2 of semi-infinite strip Ω, use the expression given

by equation (3.211)

q(0, y) =
1

2πi

∫
Γ

q̂(0, iζ)eζydζ, Γ = (−i∞, i∞), where (4.60)
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q̂(0, iζ) is given by equation (4.31).

q̂(0, iζ) =
−i(ζ + µ̃0) cosh[aζ](h0(−η)− h0(η) + q̃(η, 0)− q̃(−η, 0))

2η(cosh[aζ] + sinh[aζ])
−

i(ζ + µ̃0) sinh[aζ](h0(−η)− h0(η) + q̃(η, 0)− q̃(−η, 0))

2η(cosh[aζ] + sinh[aζ])
+

i(ζ − µ1)(h1(−η) + h1(η) + q̃(η, a)− q̃(−η, a))

2η(cosh[aζ] + sinh[aζ])
.

(4.61)

Since h0(−η)−h0(η)
2η

= h1(−η)−h1(η)
2η

= 0, equation 4.61 simplifies to

q̂(0, iζ) = i(ζ − µ1)
(q̃(η, a)− q̃(−η, a))e−aζ

2η
− i(ζ + µ̃0)

(q̃(η, 0)− q̃(−η, 0))

2η
.

(4.62)

It is proved on page 138 that q̃(η,0)−q̃(−η,0)
2η

and q̃(η,a)−q̃(−η,a)
2η

are analytic functions

of ζ except at a finite number of poles in the η-complex plane. Hence these are

meromorphic functions w.r.t. ζ. So, equation (4.61) indicates that q̂(0, iζ) is a

meromorphic function of ζ. Note that we can continue analytically q̃(−η, 0) and

q̃(−η, a) in the plane Im(η) > 0 by using boundary condition of the RHP defined by

equation (4.48), and is given as φ+
j (η) = −η+iµ2

η−iµ2
φ−j (η)+Fj(η), η ∈ R, j = 0, 1.

Express the above equation in component form, and simplify to get

q̃(−η, 0) = −η − iµ2

η + iµ2

[q̃(η, 0)− F1(η)], (4.63)

q̃(−η, a) = −η − iµ2

η + iµ2

[q̃(η, a)− F2(η)]. (4.64)
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Hence, equations (4.60), (4.62), (4.63) and (4.64) give the following result.

q(0, y) =
1

2π

∫
Γ

[
−(ζ + µ̃0)

η + iµ2

q̃(η, 0) +
ζ − µ1

η + iµ2

e−aζ q̃(η, a)+

(η − iµ2)

(η + iµ2)
(ζ + µ̃0)

F1(η)

2η
− e−aζ(ζ − µ1)

η − iµ2

η + iµ2

F2(η)

2η
]eζydζ

(4.65)

Using values of F1(η) and F2(η) from equations (4.57) and (4.58), consider follow-

ing expressions

− (ζ + µ̃0)

η + iµ2

q̃(η, 0) +
η − iµ2

η + iµ2

(ζ + µ̃0)
F1(η)

2η
=

(ζ + µ̃0)

η + iµ2

[−q̃(η, 0)+

A(η2 − k2
0)(ζ sinh[aζ] + 2µ1 sinh2[aζ

2
]) + C0(ζ cosh[aζ] + µ1 sinh[aζ])ζ

∆ζ(η2 − k2
0)

],

e−aζ(ζ − µ1)

η + iµ2

q̃(η, a)− e−aζ(ζ − µ1)
η − iµ2

η + iµ2

F2(η)

2η
=

(ζ − µ1)

η + iµ2

e−aζ [q̃(η, a)−

A(ζ(η2 − k2
0) sinh[aζ] + 2µ0 sinh2[aζ

2
]) + C0ζ

2

∆(η2 − k2
0)ζ

].

(4.66)

Use expressions labeled by (4.66) in equation (4.65), and simplify to get

q(0, y) = I1(y) + I2(y), where (4.67)

I1(y) =
1

2π

∫
Γ

(ζ + µ̃0)

η + iµ2

eζy[−q̃(η, 0) +
1

∆(η2 − k2
0)ζ
{A(η2 − k2

0)×

(ζ sinh[aζ] + 2µ1 sinh2[
aζ

2
]) + C0(ζ cosh[aζ] + µ1 sinh[aζ])ζ}]dζ,

(4.68)

I2(y) =
1

2π

∫
Γ

(ζ − µ1)

η + iµ2

e(y−a)ζ [q̃(η, a)− 1

∆(η2 − k2
0)ζ
{A(ζ(η2 − k2

0) sinh[aζ]+

2µ0 sinh2[
aζ

2
] + C0ζ

2}]dζ.

(4.69)
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To evaluate the integrals I1(y) and I2(y), we need the zeroes of

∆ = (µ̃0 + µ1)ζ cosh[aζ] + (µ̃0µ1 + ζ2) sinh[aζ], µ̃0 =
µ0

η2 − k2
0

. (4.70)

Now, use the procedure on pages 140, 142 and 144 to get

I1(y) =
1

2π

∫
Γ

(ζ + µ̃0)eζy

∆(η + iµ2)(η2 − k2
0)ζ

[A(η2 − k2
0)(ζ sinh[aζ] + 2µ1 sinh2[

aζ

2
])+

C0(ζ cosh[aζ] + µ1 sinh[aζ])ζ]dζ,

(4.71)

I1(y) = − 1

2π
(−πi)[

∞∑
n=1

[Residue|
ζ=ζ+

n ,η=iζ̂+
n =iζ̂n

+Residue|
ζ=ζ−n ,η=iζ̂−n =iζ̂n

]g(ζ, η)),

g(ζ, η) =
(ζ + µ̃0)eζy

∆(η + iµ2)(η2 − k2
0)ζ

[A(η2 − k2
0)(ζ sinh[aζ] + 2µ1 sinh2[

aζ

2
])+

C0(ζ cosh[aζ] + µ1 sinh[aζ])ζ].

(4.72)

Equation (4.72) can be written as

I1(y) =
i

2

∞∑
n=1

Rn1 , where (4.73)

Rn1 = [Residue|
ζ=ζ+

n ,η=iζ̂+
n =iζ̂n

+Residue|
ζ=ζ−n ,η=iζ̂−n =iζ̂n

]g(ζ, η). (4.74)

181



To find Rn1 , we need the residue of g(η, ζ) at the simple poles ζ+
n and ζ−n , for that

purpose, let

g1(η, ζ) =
(ζ + µ̃0)eζy

(η + iµ2)(η2 − k2
0)ζ

[A(η2 − k2
0)(ζ sinh[aζ] + 2µ1 sinh2[

aζ

2
])+

C0(ζ cosh[aζ] + µ1 sinh[aζ])ζ], µ̃0 =
µ0

η2 − k2
0

,

(4.75)

g2(ζ) = ∆ = (µ̃0 + µ1)ζ cosh[aζ] + (µ̃0µ1 + ζ2) sinh[aζ]. (4.76)

We evaluate g1(η, ζ) and d
dζ
g2(ζ) at the simple poles ζ+

n = iλn and ζ−n = −iλn,

then we get

Residue|
ζ=ζ+

n =iλn,η=iζ̂+
n =iζ̂n

g(η, ζ) =
g1(η, ζ)|

ζ=ζ+
n =iλn,η=iζ̂+

n =iζ̂n
dg2

dζ
(ζ)|ζ=ζ+

n =iλn

= eiyλn
(−ik2

0λn − iζ̂2
nλn + µ0)

∆n

[C0λ
2
n cos[aλn]

− 2A(k2
0 + ζ̂n

2
)µ1 sin2[

aλn
2

]− λn(A(k2
0 + ζ̂n

2
)− C0µ1) sin[aλn]],

Residue|
ζ=ζ−n =−iλn,η=iζ̂−n =iζ̂n

g(η, ζ) =
g1(η, ζ)|

ζ=ζ−n =−iλn,η=iζ̂−n =iζ̂n
dg2

dζ
(ζ)|ζ=ζ−n =−iλn

= e−iyλn
(ik2

0λn + iζ̂2
nλn + µ0)

∆n

[−C0λ
2
n cos[aλn]

+ 2A(k2
0 + ζ̂n

2
)µ1 sin2[

aλn
2

] + λn(A(k2
0 + ζ̂n

2
)− C0µ1) sin[aλn]],

∆n = 2λ2
nµ0(ζ̂n + µ2)(λn cosh[aλn] + µ1 sin[aλn]).

(4.77)
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Now equations labeled by (4.74) and (4.77) give

Rn1 =
e−iyλn [i(1 + e2iyλn)k2

0λn + i(1 + e2iyλn)ζ̂2
nλn + µ0(1− e2iyλn)]

∆n

×

[−C0λ
2
n cos[aλn] + 2A(k2

0 + ζ̂n
2
)µ1 sin2[

aλn
2

] + λn(A(k2
0 + ζ̂n

2
)− C0µ1) sin[aλn]].

(4.78)

Use the value of Rn1 from equation (4.78) in equation (4.73) to get

I1(y) =
∞∑
n=1

−e−iyλn [(1 + e2iyλn)k2
0λn + (1 + e2iyλn)ζ̂2

nλn + iµ0(−1 + e2iyλn)]

2∆n

×

[−C0λ
2
n cos[aλn] + 2A(k2

0 + ζ̂2
n)µ1 sin2[

aλn
2

] + λn(A(k2
0 + ζ̂2

n)− C0µ1) sin[aλn]].

(4.79)

To evaluate I2(y), use the procedure on pages 146, 147, 149 and 150 to get

I2(y) = − 1

2π

∫
Γ

[
(ζ − µ1)e(y−a)ζ

∆(η + iµ2)(η2 − k2
0)ζ
{A(ζ(η2 − k2

0) sinh[aζ]+

2µ0 sinh2[
aζ

2
] + C0ζ

2}]dζ,

(4.80)

I2(y) = − 1

2π
(−πi)

∞∑
n=1

[Residue|
ζ=ζ+

n ,η=iζ̂+
n =iζ̂n

+Residue|
ζ=ζ−n ,η=iζ̂−n =iζ̂n

]h(ζ, η),

h(ζ, η) =
(ζ − µ1)e(y−a)ζ

∆(η + iµ2)(η2 − k2
0)ζ
{A(ζ(η2 − k2

0) sinh[aζ]+

2µ0 sinh2[
aζ

2
] + C0ζ

2}.

(4.81)
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We find that

I2(y) =
∞∑
n=1

ei(a−y)λn(k2
0 + ζ̂2

n)[(1 + e2i(−a+y)λn)λn + i(−1 + e2i(−a+y)λn)µ1]

2∆n

[C0λ
2
n

+ Aµ0(1− cos[aλn])− A(k2
0 + ζ̂n

2
)λn sin[aλn])].

(4.82)

q(0, y) =
∞∑
n=1

−e−iyλn [(1 + e2iyλn)k2
0λn + (1 + e2iyλn)ζ̂2

nλn + iµ0(−1 + e2iyλn)]

2∆n

d1n

+
ei(a−y)λndn[(1 + e2i(−a+y)λn)λn + i(−1 + e2i(−a+y)λn)µ1]

2∆n

d2n.

(4.83)

Note that

d1n = −C0λ
2
n cos[aλn] + 2Adnµ1 sin2[

aλn
2

] + λn(Adn − C0µ1) sin[aλn], (4.84)

d2n = [C0λ
2
n + Aµ0(1− cos[aλn])− Adnλn sin[aλn])], (4.85)

∆n = 2λ2
nµ0(ζ̂n + µ2)(λn cos[aλn] + µ1 sin[aλn]), dn = k2

0 + ζ̂n
2
. (4.86)

4.1.2 Solution of the BVP of the Helmholtz equation in a

semi-infinite strip Ω subject to higher order boundary

conditions, along the sides S0 and S1 of semi-infinite strip, and

inside the semi-infinite strip: q(x, 0), q(x, a) and q(x, y)

Equation (3.203) gives solution q(x, 0)

q(x, 0) =
1

2π

∫ ∞
−∞

F1(η)e−iηxdη. (4.87)
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F1(η) is given by equation (4.57), and note that F1(η) can be written as F1(η, ζ).

Equation (4.57) shows that F1(η, ζ) = F1(η,−ζ). So, F1(η) = F1(η, ζ) is an even

function w.r.t. ζ. We know that η is related to the multi-valued function ζ through

the relation ζ =
√
η2 − k2. Since F1(η) = F1(η, ζ) is an even function w.r.t ζ, so,

it cancels out effect of the branch cut on values of F1(η) = F1(η, ζ) in the η-complex

plane, so, that F1(η) = F1(η, ζ) is continuous through the cut in η-complex plane.

Hence F1(η) is a meromorphic function of η in η-complex plane. To evaluate the

integral given by equation (4.87), we follow the procedure on pages 153 and 154, to

get

q(x, 0) = −i
∞∑
n=1

Residue S(η, ζ)|ζ=−iλn,η=−iζ̂n , where (4.88)

S(η, ζ) =
[p(ζ sinh[aζ] + 2µ1 sinh2[aζ

2
]) + 2ηC0(ζ cosh[aζ] + µ1 sinh[aζ])ζ]e−iηx

∆(η2 − k2
0)(η − iµ2)ζ

,

p = 2Aη(η2 − k2
0).

To find ResidueS(η, ζ)|ζ=−iλn,η=−iζ̂n, let

S1(η, ζ) =
[p(ζ sinh[aζ] + 2µ1 sinh2[aζ

2
]) + 2ηC0(ζ cosh[aζ] + µ1 sinh[aζ])ζ]e−iηx

(η − k0)(η − iµ2)ζ

S2(ζ) = ∆(η + k0) =
(µ0 + µ1(η2 − k2

0))ζ cosh[aζ] + (µ0µ1 + ζ2(η2 − k2
0)) sinh[aζ]

η − k0

.

Now ResidueS(η, ζ)|ζ=−iλn,η=−iζ̂n is found as follows.
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ResidueS(η, ζ)|ζ=−iλn,η=−iζ̂n =
S1(η, ζ)|ζ=−iλn,η=−iζ̂n

dS2

dη
|ζ=−iλn,η=−iζ̂n

ResidueS(η, ζ)|ζ=−iλn,η=−iζ̂n =
2ie−xζ̂np1n

(ζ̂n + µ2)∆0n

(4.89)

From equation (4.89) use value of ResidueS(η, ζ)|ζ=−iλn,η=−iζ̂n in equation (4.88),

and simplify to get

q(x, 0) =
∞∑
n=1

2e−xζ̂np1n

(ζ̂n + µ2)∆0n

(4.90)

p1n = −C0λ
2
n cos[aλn] + 2Adnµ1 sin2[

aλn
2

] + λn(Adn − C0µ1) sin[aλn], where

∆0n = (µ0 − dnµ1 + a(dnλ
2
n + µ0µ1)) cos[aλn]+

λn(−aµ0 + (2 + aµ1)dn) sin[aλn], dn = ζ̂2
n + k2

0.

Note that to find the solution q(x, 0) we need zeroes of S2 = ∆(η + k0). Simple

poles of the integrand F1(η)e−iηx are ζ = −iλn, and correspondingly we have η =

−iζ̂n = −i
√
λ2
n − k2. To find the solution q(x, a) along third side of semi-infinite

strip Ω, equation (3.210) gives

q(x, a) =
1

2π

∫ ∞
−∞

F2(η)e−iηxdη. (4.91)

F2(η) is given by equation (4.58), and note that F2(η) can be written as F2(η, ζ).

Equation (4.58) shows that F2(η, ζ) = F2(η,−ζ). So, F2(η) = F2(η, ζ) is an even
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function w.r.t. ζ. We know that η is related to the multi-valued function ζ through

the relation ζ =
√
η2 − k2. Since F2(η) = F2(η, ζ) is an even function w.r.t ζ, so,

it cancels out effect of the branch cut on values of F2(η) = F2(η, ζ) in the η-complex

plane. So, F2(η) = F2(η, ζ) is continuous through the cut in η-complex plane. Hence

F2(η) is a meromorphic function of η in η-complex plane. To evaluate the integral

given by equation (4.91), we follow the above procedure used to evaluate q(x, 0), to

get

q(x, a) = −i
∞∑
n=1

Residue H(η, ζ)|ζ=−iλn,η=−iζ̂n , where (4.92)

H(η, ζ) =
[2Aη(ζ sinh[aζ](η2 − k2

0) + 2µ0 sinh2[aζ
2

]) + 2ζ2ηC0]e−iηx

(η − iµ2)(η2 − k2
0)ζ∆

, (4.93)

∆ =
(µ0 + (η2 − k2

0)µ1)ζ cosh[aζ] + (µ0µ1 + (η2 − k2
0)ζ2) sinh[aζ]

η2 − k2
0

. (4.94)

To find ResidueH(η, ζ)|ζ=−iλn,η=−iζ̂n, let

H1(η, ζ) =
[2Aη(ζ sinh[aζ](η2 − k2

0) + 2µ0 sinh2[aζ
2

]) + 2ζ2ηC0]e−iηx

(η − iµ2)(η − k0)ζ
, (4.95)

H2(ζ) = ∆(η + k0)

H2(ζ) =
(µ0 + µ1(η2 − k2

0))ζ cosh[aζ] + (µ0µ1 + ζ2(η2 − k2
0)) sinh[aζ]

η − k0

.

(4.96)
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Now ResidueH(η, ζ)|ζ=−iλn,η=−iζ̂n is found as follows.

ResidueH(η, ζ)|ζ=−iλn,η=−iζ̂n =
H1(η, ζ)|ζ=−iλn,η=−iζ̂n

dH2

dη
|ζ=−iλn,η=−iζ̂n

ResidueH(η, ζ)|ζ=−iλn,η=−iζ̂n =
2ie−xζ̂np2n

(ζ̂n + µ2)∆0n

(4.97)

From equation (4.97) use value of ResidueH(η, ζ)|ζ=−iλn,η=−iζ̂n in equation (4.92),

and simplify to get

q(x, a) =
∞∑
n=1

2e−xζ̂np2n

(ζ̂n + µ2)∆0n

,

p2n = −C0λ
2
n − Aµ0(1− cos[aλn]) + Adnλn sin[aλn],

∆0n = (µ0 − dnµ1 + a(dnλ
2
n + µ0µ1)) cos[aλn]+

λn(−aµ0 + (2 + aµ1)dn) sin[aλn], dn = ζ̂2
n + k2

0.

(4.98)

In chapter 3 we have verified that in the particular case g0(x) = 0, g1(x) = 0,

g2(y) = A (constant), and g(x, y) = 0, using new method the series representation

for the solution q(x, y) can be obtained by multiplying the nth term of the series

representation of the solution q(0, y) by e−ζ̂nx. From equation (4.83), the nth term

of series representation of q(0, y) is

an = [
−e−iyλn [(1 + e2iyλn)k2

0λn + (1 + e2iyλn)ζ̂2
nλn + iµ0(−1 + e2iyλn)]

2∆n

d1n

+
ei(a−y)λndn[(1 + e2i(−a+y)λn)λn + i(−1 + e2i(−a+y)λn)µ1]

2∆n

d2n],

(4.99)

where d1n, d2n, dn and ∆n are given by equations (4.84), (4.85) and (4.86). Hence

the formula to find the solution q(x, y) of given BVP of the Helmholtz equation in
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a semi-infinite strip Ω subject to higher order boundary conditions is

q(x, y) =
∞∑
n=1

[
−e−(xζ̂n+iyλn)[(1 + e2iyλn)k2

0λn + (1 + e2iyλn)ζ̂2
nλn + iµ0(−1 + e2iyλn)]

2∆n

× d1n +
e−(xζ̂n+i(y−a)λn)dn[(1 + e2i(−a+y)λn)λn + i(−1 + e2i(−a+y)λn)µ1]

2∆n

d2n].

(4.100)

4.1.3 Determination of the unknown constant C0

To find the unknown constant C0 use the Laplace transformed boundary condition

along the side S0, given by

(− d

dy
+ µ̃0)q̃(η, 0) = ρ̃0(η), (4.101)

µ̃0 =
µ0

η2 − k2
0

, ρ̃0(η) =
g̃0(η) + C0

η2 − k2
0

. (4.102)

For the given case study, g0(x) = g1(x) = 0, g(x, y) = 0, g2(y) = A(constant),

equation (4.102) gives µ̃0 = µ0

η2−k2
0

and ρ̃0(η) = C0

η2−k2
0
. Apply the inverse Laplace

transform to equation (4.101) to get

− d

dy
q(x, 0) = − 1

2π

∫ ∞
−∞

µ0

η2 − k2
0

q̃(η, 0)e−iηxdη +
1

k0

sinh[k0x]. (4.103)

Apply limx→0+ to equation (4.103), and simplify to get∫ ∞
−∞

q̃(η, 0)

η2 − k2
0

dη = 0. (4.104)

Since q̃(η, 0) = φ+
1 (η) (solution of RHP (4.48)), so equation (4.104) becomes∫ ∞

−∞

φ+
1 (η)

η2 − k2
0

dη = 0. (4.105)

To evaluate the integral given by equation (4.105) we construct the closed contour

Γ = [−R,R] ∪ C+
R , where C+

R is a semi circle in the upper half η-complex plane,

and [−R,R] is a line segment. Using Cauchy’s residue theorem we get∫ R

−R

φ+
1 (η)

η2 − k2
0

dη +

∫
C+
R

φ+
1 (η)

η2 − k2
0

dη = Residue|η=k0

φ+
1 (η)

η2 − k2
0∫ R

−R

φ+
1 (η)

η2 − k2
0

dη +

∫
C+
R

φ+
1 (η)

η2 − k2
0

dη =
φ+

1 (k0)

2k0

.

(4.106)
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Since the integrand
φ+

1 (η)

η2−k2
0

= O( 1
η3 ) as η →∞, so, limR→∞

∫
C+
R

φ+
1 (η)

η2−k2
0
dη = 0. Apply

limR→∞ to equation (4.106), use the previous result, and the value of integral

defined by equation (4.105), to get φ+
1 (k0) = 0. Use this result in equation (4.53)

to get

ψ1(k0) = 0. (4.107)

Substitute z = k0 in equation (4.55) to get

ψ1(k0) =
1

2πi

∫ ∞
−∞

1

τ − k0

f1(τ)dτ, k0 ∈ C \ R. (4.108)

Use the value of ψ1(k0) in equation (4.108), and simplify to get∫ ∞
−∞

f1(τ)

τ − k0

dτ = 0. (4.109)

Using equation (4.57) we find

f1(η) =
F1(η)

η + iµ2

=
2Aη(ζ sinh[aζ] + 2µ1 sinh2[aζ

2
])

(η2 + µ2
2)∆ζ

+

2ηC0(ζ cosh[aζ] + µ1 sinh[aζ])

(η2 − k2
0)(η2 + µ2

2)∆
.

(4.110)

Equation (4.59) gives the following expression for ∆

∆ =
(µ0 + (η2 − k2

0)µ1)ζ cosh[aζ] + (µ0µ1 + (η2 − k2
0)ζ2) sinh[aζ]

η2 − k2
0

. (4.111)

To find the unknown constant C0 we need to solve equation (4.109), for that

purpose zeroes of ∆ are found by solving transcendental equation (4.111). Use the

value of f1(τ) from equation (4.110) in equation (4.109) to get

C0 = −I1

I2

, I1 =

∫ ∞
−∞

Aτ(ζ sinh[aζ] + 2µ1 sinh2[aζ
2

])

(τ − k0)(τ 2 + µ2
2)∆ζ

dτ, (4.112)

I2 =

∫ ∞
−∞

τ(ζ cosh[aζ] + µ1 sinh[aζ])

(τ − k0)(τ 2 − k2
0)(τ 2 + µ2

2)∆
dτ. (4.113)

To find the value of integral I1, we construct the closed contour Γ = [R,−R]∪C−R ,

where [R,−R] is the line segment, and C−R is the semi circle in the lower half
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η-complex plane. Apply Cauchy’s residue theorem to the integrand in the closed

contour Γ to get∫ −R
R

H(τ)dτ +

∫
C−R

H(τ)dτ = 2πi
∞∑
n=1

Residue|ζ=−iλn,τ=−iζ̂nH(τ). (4.114)

Note that H(τ) =
Aτ(ζ sinh[aζ]+2µ1 sinh2[aζ

2
])

(τ−k0)(τ2+µ2
2)∆ζ

= O( 1
τ4 ), as τ →∞. Hence,

limR→∞
∫
C−R

H(τ)dτ = 0. Now apply limR→∞, to equation (4.114), to get

I1 =

∫ ∞
−∞

H(τ)dτ = −2πi
∞∑
n=0

Residue|ζ=−iλn,τ=−iζ̂nH(τ). (4.115)

To find Residue|ζ=−iλn,τ=−iζ̂nH(τ), let

H1(τ) =
Aτ(ζ sinh[aζ] + 2µ1 sinh2[aζ

2
])

(τ − k0)(τ 2 + µ2
2)ζ

, ζ =
√
τ 2 − k2, (4.116)

H2(τ) = ∆ =
(µ0 + (τ 2 − k2

0)µ1)ζ cosh[aζ] + (µ0µ1 + (τ 2 − k2
0)ζ2) sinh[aζ]

τ 2 − k2
0

,

(4.117)

dn = ζ̂2
n + k2

0. (4.118)

We calculate

Residue|ζ=−iλn,τ=−iζ̂nH(τ) =
A(k0 − iζ̂n)[2µ1 sin2[aλn

2
] + λn sin[aλn]]

(ζ̂2
n − µ2

2)∆0n

, (4.119)

∆0n = [µ0 − dnµ1 + a(λ2
ndn + µ0µ1)] cos[aλn] + λn[−aµ0 + (2 + aµ1)dn] sin[aλn].

(4.120)

Now equation (4.115) becomes

I1 =
∞∑
n=1

−2πA(ik0 + ζ̂n)[2µ1 sin2[aλn
2

] + λn sin[aλn]]

(ζ̂2
n − µ2

2)∆0n

, (4.121)

where ∆0n is given by equation (4.120). Now using the above procedure to find the

integral I2, we get

I2 =
∞∑
n=1

2πλn[λn cos[aλn] + µ1 sin[aλn]]

(−ik0 + ζ̂n)(ζ̂2
n − µ2

2)∆0n

, (4.122)
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where ∆0n is given by equation (4.120). To find the unknown constant C0, substi-

tute the values of I1 and I2 in equation (4.112). Insert the value of C0 in equation

(4.100), that gives solution of the given BVP of the Helmholtz equation in the

semi-infinite strip Ω subject to higher order boundary conditions.
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