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ABSTRACT

The differential equations
u ’(t) = A(t)u(t), a £ t £ b

and
u ’(t) “ A(t)u(t) = f(t), a £ t £ b

where {A(t): a £ t £ b} is a family of unbounded linear
operators in a Banaeh space X 3 are studied under the
hypotheses that a weak evolution system exists9 or that
approximate solutions to the differential equation exist.

00Given that fA (*)}r 2. is a sequence of strongly
measurable functions from [a,b] into B(Y,X) with norm

||A (*)||y Y bounded above by an integrable function for n x y ]\
each n5 and that'{A (•)} converges strongly almost every
where to A(Oj where U ( • , •) is a proper evolution system 
generated by A (•)* un(b) represents the solution to the 
corresponding differential equation for each n, U(*,*) is 
the proper evolution system generated by A(°) with u(t) 
the solution to this differential equation, then suffi
cient conditions are developed under which converges to 
U, and sufficient conditions are also found for un(t) to 

converge to u(t) .



INTRODUCTION

This dissertation is concerned with the differential 
equations

u'(t) = A(t)u(t), a £ t <_ b, 
and u'(t) - A(t)u(t) ~ f(t), a £ t £ b.

J.R. Dorroh and R.A. Graff, in a paper entitled 
Integral equations in Banach spaces [3]s demonstrated the 
existence and uniqueness of an evolution system generated 
by a family {A(t): a £ t £ b} of unbounded operators in a 
Banach space X when a weak evolution system exists, and 
when approximate solutions to the differential equation 
exist.

In the two papers entitled Linear evolution equations 
of "hyperbolic" type [7]> and Linear evolution equations 
of "hyperbolic11 type, II [8], Tosio Kato dealt with the 
subject of evolution systems where the generating family 
{A(t)} meets other conditions: in [7] the hypothesis is
that the family (A(t)} is stable, and in [8] the hypothesis 
is weakened to quasi-stability.

In [8] Kato gave several theorems concerning conver
gence of evolution systems and convergence of solutions, 
when families of differential equations exist. Here we 
present some results similar to those of Kato, but under 
the hypotheses of Dorroh and Graff in [3]»



CHAPTER I 
PRELIMINARIES

In this chapter, the background material needed in 
this dissertation is presented. A basic familarity with 
Banach spaces and semigroups of operators is assumed. 
General references dealing with these areas are Butzer and 
Berens [1], Dunford and Schwartz [4], Hille and Phillips 
[5]» Ladas and Lakshmikantham [9], and Yosida [11].

We will employ the following notation and make the 
following assumptions throughout Chapters 1, 2, and 3- 
Let X and Y be Banach spaces, with Y densely and contin
uously included in X. We denote by B(Y,X) the set of all 
bounded linear operators from Y into X. Let a < b, and I 
denote the interval [a,b]. Let A:[a,b] -> B(Y,X) be 
strongly measurable; i.e., A(')y is a measurable function 
from [a,b] into X for each y e Y. Let A be the subset of 
I x I defined by A = {(t,s):a£s£t<b).

Several different norms are used, so for clarity they 

will be subscripted as follows: J| ' I I x norm
Banach space X, ||•||y is the norm in the Banach space Y, 

and i |•||y5x den°tes the operator norm in B(Y,X). If the 
meaning is clear from context, the subscript may be 
omitted. Li (X) consists of all measurable functions f

1



defined on [a,b] into X which are such that | is

integrable, with IMflM-^ x = /^ | | f(t)||xdt.
For f: I->X, we write | | f | | Y = ess sup ||f(t)||y .

3 tel
Also /jf(t)dt denotes the upper-integral of f, and £(t) 
denotes the derivative of f with respect to t . We say f 
is absolutely continuous on I if given e > 0 there is a 
6 > 0 such that ||f(t^) - f(t^)||x < e for every
finite collection {[t^,t^]: 1=1, 2, . . ., n; t^, t^ e 1} 
of nonoverlapping intervals with Ct^ - t^] <6. It
is sometimes necessary to denote the norm used for a 
particular property; for example, X - absolutely continu
ous will mean absolutely continuous with respect to the 
norm of the space X.

The following definitions and statements are taken 
from Dorroh and Graff [3].
Definition 1.1. An e - approximate solution of the 
differential equation

u ’(t) = A(t)u(t), u(a) = y e Y 
on the interval [a,b] is a bounded measurable function v
from [a,b] into Y which is X - absolutely continuous and
X - differentiable a.e. on [a,b], with v(a) = y, and

1 | v 1C-b) - A(t)v(t) | |xdt < e.
If v ’(t) = A(t)v(t) a.e. on [a,b], then v is a solution 
of the differential equation.
Definition 1.2. A weak evolution system generated by 
A(*) is a bounded function U from A into B(X,X ) such 

that U(a,a,) = I, the identity function, and such that if



a < t <_ b, then U(t,*) is a weak solution of the differen

tial equation
Q*(s) = -Q(s)A(s) 

on the interval [0,t].
Definition 1.3. A proper evolution system is a function 
U from A into B(X) which satisfies

U(t9t) = Ia U(t3s)U(s,r) = U(t,r) 
for a £ r £ s < _ t £ b .  A proper evolution system gener
ated bjr A(*) is a weak evolution system generated by A(*) 
which is also a proper evolution system. A strongly con
tinuous evolution system is one in which the function 
(t,s) U(t,s)x is jointly continuous from A into X for 
each x e X.



CHAPTER 2 
OPERATOR VOLTERRA EQUATIONS

Let a < b, and let A = {(t,s): a<s<t<b}. Let X denote
a Banach space, let K denote the collection of all strongly
continuous functions from A Into B(X) and let M denote the 
collection of all essentially bounded strongly measurable 
functions from [a,b] Into X. Then K Is a Banach space 
under the norm

||u||00=sup ||U(t,s)||x x
(t,s)eA 3

and M Is a Banach space under the norm
I IB| |̂  = ess sup | |B(t)| |x x 

te[a,b] 3
If U, V e K and B e M, then we define UBV e K by

(1) (UBV) (t,r) = U(.t,s)B(s)V(s,r)ds,
where the integral is in the strong operator topology.
See [8, Lemma 1, p. 65*1]; the integrand is strongly
measurable by [8, Lemma A4, p. 665].

The following theorem shows that the convolution
operation defined above by (1) is associative.
Theorem 2.1. UB (VDW) = (UBV) DW for U, V, W e K and

B, D e M.

Proof;
UB (VDW) = S T0 UCt ,s )B(.s )[/® V(s,r)D(r)W(r,a)dr]ds

4



5

= U(.t,s)B(.s)V(s,r)D(r)W(.r,a)dr ds
(where r < s, and r goes from a to t )

= U(.t ,s)B(.s)V(s,r)D(r )W(.r,cr)ds dr
(by Fub.ini's. Theorem [4])
= f g  [/£ U(t ,s)B(s)V(s,r)ds] D(r )W(.r ,a) dr 
= (UBV) (t,r)D(r)W(r,cr)dr
= (UBV) DW. //
If U, V e K and B e M, then we can consider the

following two Volterra integral equations
(2) W(t,r) = V(t,r) + U(t,s)B(s)W(s,r)ds and
(3) W(t,r) = V(.t,r) + W(t,s)B(.s)U(.s,r)ds
where the solution W is sought in K. These equations can 
be rewritten in terms of the convolution product we have 
just defined as
(2') W = V + UBW and

(3') W = V + WBU.
It is convenient to define, for U e K and B e M, the

linear operator (UB) and (BU) from K into K by
(4) {UB>W = UBW, {BU)W = WBU.

Thus (2) and (3) can also be rewritten as 
(2") W = V + {UB)W and
(3") W = V + {b u )w .

The solutions to these equations can then be found 
using standard techniques, as shown in Theorem 2.2. First 

we need the following lemma.



Lemma 2.2.1. Let U, V e K and B e M. Then for each n,

l|{UB}nV | L <  iy ||D||» ll|B|||^x ||V||„.

Also ||{BU}nV||„ < iy |jU||£ ll|B|||"jX I|V||„.

Proof: Let 3 be an integrable function dominating ||B(*)||
on [a,b].

I|{UB)V||„ = | 1 U(t, s)B(s)V(s,r)ds| |OT

£ I IUI L I |V| L  4  6(s)ds.
(1) | | {UB}nv| |„ < 1 |U| |2 I I V| |„ I  ■■■ !  BCs,)..-B(s n)ds

r<s-, < • • - <s <t — 1— — n—
(2) / ••• / 3(s,) • • *3(s )ds, • • *ds = ^  [/£ 3(s)ds]n .

„  >  _  > >  _  y  4.  “  - t  n  11 • ir<sn< • • • <s <t — 1— — n—
This equation may be "seen geometrically" as follows. 

The region of integration in the first integral is an n- 
dimensional pyramid. The n-dimensional box [rst]n is com
posed of the n-factorial pyramids obtained by permuting the 

s^’s; e.g. {r £ s^ £ s^ £ s^ £ • • • 1 sn £ t}. Clearly
the integrals over these pyramids are equal, and the

t nintegral over the box is [/ 3(s)ds] .
Since (1) and (2) are true for any integrable function 

dominating ||B(*)|IX we have

||{UB}nV||„ < jy |IU|I" ll|B|||";X ||V|L-

The second inequality in the lemma follows by the same 
argument. //



Theorem 2.,2. The solutions, of (_2)_ and (.3). are 
W = {UB.}nV, W = s”_q fB-U}nV, respectively, where both

of the series converge in operator norm.
Proof: W = V + {UB}W

V = II - {UB}]W
W = II - {UB}]-1V is the solution of (2).

Similarly, W = II - {B.U}]~̂ "V is the solution of (3)- We
can formally write Neumann expansions

II - {UB};]"1 = {UB.}n,
II - {BU}3_1 = S“=0 {BU}n,

Prom the lemma we have

||tUB}nV | £ i- I|U||" |||B|||" x ||VjL, 
n ! *

and ||{BU}nV||w < i- ||U||" |||B|||" x ||V|
n ! ’

Therefore {UB} and {BU} are bounded operators and.

| |{UB}n | |, | |{BU}n | | < i- I |U| 12 I I IB| | |̂  x -
n ! 5

Then,

sn=0 I l{UB}n| I ’ En=0 I l{BU}n| I < e ' *°°* 1 >

so both series converge in operator norm. //

We now prove in Theorem 2.3 that under certain cond
itions, equations (2) and (3) will have the same solutions. 
Theorem 2.3- If U, V, P e K, B e M, and UBP = PBV, then
the equations W = P + UBW; W = P + WBV have the same

solution.
Proof: Since the solutions to the above equations can be
written [I - {UB}]_1P and [I - {BV}]-1P respectively, we



need to show that these are. equal- This, can be. seen as 

follows:
[I -  {UB}]_1P = P + {UB}P + {UB}2P + ♦••

= P + PBV + UB(PBV) + •••
= P + PBV + (UBP)BV + •••
= P + PBV + (PBV)BV + •••
= P + {BV}P + {BV}2P + ••.
= [I - {BV}]"1P. //

In particular, the equations W = U + UBW, W = U + WBU
have the same solution for any U e K and B e M.

Recall that an element U of K is a proper evolution
system if

U(t,s)U(s,r) = U(t,r) 
for (t,s), (_s,r). e A, and U(t,t) = I for t e [a,b].

If, in the equation W = U + WBU, U is an evolution
system, then the solution W = [I - {BU}3~^U is also an 
evolution system, as shown in the following theorem, which 

is essentially contained in Theorem 2.12 of [3].
Theorem 2.4. If U is an evolution system, and B e M, then
[I - {BU}]""^U is an evolution system; thus, II - {UB}] ^U
is also an evolution system.

Proof: Let W = [I - {BU}]"1U, then W = U + WBU. It is
obvious that W(t,t) = I for t e [a,b]. Let x e [a,b], and 

define Z on A by
W(t,r) if x<r<t<b 

Z(t,r) =-\;W(t,x)W(x,r) if a£r<x£t<b 
W(.t,r) if a<r£t<x.



Then Z is strongly continuous from A to B . ' Q ( W e  want to

show that Z = U + ZB.U. This will imply that Z = W, which
will imply- that W(t,x)>J(x,r) = W(.t,r)’ for a<r£x£t<b. Since 
x was arbitrary, this will prove that W is an evolution 
system. If a£r<t<x, or x<r«t<b, then it is clear that 
Z(t,r) = [U + ZBU]Ct,r).
If a£r£x<t£b, then

W (t, x )_ = U ( t, t ). + W(t,s)B(s)U(.s,x)ds,
W(r,r) = U(x,rl + W(x , s )B(.s ]U(.s,r )ds ,

W(t,x)W(x,r) = U(t,r) + W(t,s)B(s)U(s,r)ds
+ W( t,x )W(.x, s )B( s )U(s ,r )ds

= U( t ,r).. + Z (t , s )B( s) U(s , r ) ds .
Thus we have Z = U + ZBU, which completes the proof. //



CHAPTER 3 
CONVERGENCE THEOREMS

The theorems which follow extend theorems III, IV,
Va, VI, and Via in Kato’s paper Linear evolution equations 
of hyperbolic type, II [8] to the situation where the 
differential equation has e - approximate solutions for 
every e > 0, instead of under the assumption of quasi
stability.

Throughout this chapter, assume that the differential 
equation

u ’(t) = A(t)u(t) 
has approximate solutions, where A(0 is a strongly measur
able function from [a,b] into B(Y,X), and let U(*,«) be a 
strongly continuous proper evolution system generated by 
A(•). For conditions under which such evolution systems 

exist, see [33-

Let {An (*)}n=l be a seHuence of strongly measurable 
functions from [a,b] into B(Y,X) and {“^^=1 a uniformly 
integrable sequence of integrable nonnegative functions on 

[a,b] such that an dominates [ | An ( *) 1 | Y x f>or each n *
Also assume that if y e Y, then {An(*)y} converges a.e. on 
[a,b] to A(•)y, and that a is an integrable nonnegative 

function on [a,b] which dominates |]A (*)|}y Por each 
n, let U (*,•) be a proper evolution system generated by

10
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A ( •)» where | |U (t,s) | |Y Is. uniformly hounded for n n a
(t,s) e A and n=l, 2, 3S ••••

It was shown by Dorroh and Graff in Theorem 2.15 of
[3] that this Implies that

(1) 11m ||U (t,s)x - U(t,s)x||x = 0n->-oo
for each x e X and s e [a,b], uniformly for s <_ t <_ b .

Now consider the nonhomogeneous equation
(2) u'(t) - A (t) u (t) = f (t), u(a) = <f>
The "mild solution" of (2) can be formally written

u(t) = U(t,a)<j> + U(t jS )f (s)ds .
o.

In general, u need not be a solution of (2) in the strict 
sense. Also we have the equations

- An(t)un (t) = fn (t), un (a) = <f>n 
with formal solutions

u (t) = U (t,a)<j> + U (t,s)f(s)ds.II II n ct ii
The following theorem gives an estimate of the difference 
between un(t) and u(t).
Theorem 3*1. Let <J>, <j> e X and f, fR e L1 (X) . Then

||un (t) - u(t)||„jX < K [ | U n - *llx + I I I fn - fillip] +
M 1|Un - U| 1̂  x, where K and M depend only on the norms of
U , d>, and f. n
Proof: un(t) - u(t) = un(t,a)<f>n - U(t,a)<|>

+ [U (t,s)f (s) - U(t,s)f(s)]ds a, n n
= U (t,a)U - <f>) + U(t,s)[f(s) - f (s) ]dsII II & II II

+ [U (t,s) - U(t,s) ](J) + [U (t,s) - U(t,s)]f(s)ds, n d n
s° I |un - u| L jX < | |un | L )X[| l*n - *1 lx + 11 |fn - f| I l1>x]

+ I l un -  u l L , x t l l * l  l x * I I l f l



Let K - | |Un | L jX3 and M = | |<fr| lx + I ll̂ l I If x* then the 
result follows. //

Now we present some conditions under which un(t) will 
converge to u(t).
Theorem 3.2. If in addition $ -*■ <j) in X and f„ f in-------------- n n
L, (X) then u u in X .1 n
Proof: Prom Theorem 3-1 we have

|lun(t) - u (t ) 1 | x < llun I L 5x*-l^n " ^ X  + l ^ fn " llsX-̂
+ | |[Un(t,s) - U(t,s)]<|>| |x 
+ /£ ||Un(t,s)f(s) - U(t,s)f(s)||xds.

By hypothesis, | | <j>n - <f> | | x ■> 0 and | | | f n - f | | l1#x + 0.
Also ||[Un (t,s) - U( t, s) ]<J> j | x 0 by (1) above. Since 
U (t,s) is uniformly bounded, we have that Un(t,s)f(s) 
forms a uniformly integrable family of functions and so, 
by a generalization of Lebesque's theorem, Un (t,s)f(s) 
converges to U(t,s)f(s) in norm (see [10] p. 17, 18) .

Thus ||un (t) - u(t)[|x + 0. //
For the rest of the chapter, assume further that the 

following version of Kato's condition (ii,,t) of [8] is 
satisfied.
(ii'»’ i ) There is a family {S(t): a £ t £ b) of isomor

phisms of Y onto X, a strongly measurable function B(t) 

from [a,b] into B(X) with |JB(*)|IX x upper-integrable 
(i.e., bounded above by an integrable function), and a 

strongly measurable function S from [a,b] into B(Y,X) with 

| | S ( • ) | | y x uPPer-integra.ble such that S is a strong 
indefinite integral of S, and such that if y e Y, then
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S(.t)A(.t )S(.t )“1y = A(t ),y + BC.tly
a.e. on [a,b].

Then it was shown in Theorem 2.13 of [3] that 
U(t,s) e B(Y) for each (t,s) c A and U(*,*)y is jointly
continuous from A Into Y for each y e Y.

The next theorem presents some properties of S(*) and 

S(')"1 which are needed for Theorem 3*^»
Theorem 3.3» S(*) and S(*)-1 are continuous (in fact,

absolutely continuous) with | |S(•)I I Y x and 1!S ( * )~11 1x y

bounded.

Proof: We have ||S(*)||y x upper-integrable on I (i.e.,
bounded above by B(t), which is integrable) and S equal
to an indefinite strong integral of S. Then

| | S(t) - S(s) | | y^x < -/"g | | S(r) | | YjXdr < /jj 3(r)dr 
which approaches zero as |t - s| ->0. Thus S(*) is contin
uous from [a,b] -* B(Y,X) and [a,b] compact implies ||S(*)|| 
is bounded. Since S(*) is continuous, we have S(*)  ̂
continuous with ||S(*)_1||X Y bounded.

Suppose ||S(,)"^|| £ M. Prom above we have 
i |S(t.) - S (s .) 1 I < ftj e(r-)dr, so Z| |S(t.) - S(s.) | | <

J J S j  J J

S B(r)dr which approaches zero as E(t. - s.) ap-
J J J

proaches zero. Then S| |S(t.)—"L— S(s.)  ̂| |
J J

< Z| i S(tj)_11 | | |S(Sj) - S(tj) | | | | S(Sj)_11 |
< M2 E| |S(s .) - S(t,) | |

J J

which also approaches zero as E(t. - s.) approaches zero.
J J

Thus S(’) and S(*)_1 are absolutely continuous in 

operator norm. //
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Now, define C from .[a,bj into B(JXl by 
C(t) = SCt)S(t)~1 . Then C is strongly measurable with 

||C(*)||X x upper-integrable. Define W from A into B(X) 
by means of the Volterra-type integral equation

W(t,r)x = U(t,r)x + W(t,s)[B(s) + C(s)]U(s,r)xds

(see [2] pp. 475-477, [8] pp. 652,653). Then, we have 
U(t,s)S(s)"1 = S(t)"1W(t,s),([3], pp. 31,32).

Let us also suppose that (ii^,,,) is satisfied by all 
the A^, uniformly in n. We will use the obvious notation 

Sn* Bn* '̂n3 un (t,s), wn(t,s), etc. The space Y is assumed 
to be common to all An .
Theorem 3.4. In addition to the above assumptions, suppose 

that

(i) Bn (t) + cn '̂b) B(t) + c(t) strongly In B(X) for a.e. 
t e l

(ii) lim /||B (t) + C (t)||dt = 0 
K -  {||Bn+C^||>K} n
(i.e., the collection of functions {Bn(t) + cn(t)} 

is uniformly integrable)
(iii) sn (t) ^ S(t) strongly In B(Y,X) uniformly in t e I. 
Then, U (t,s) + U(t,s) strongly in B(Y), uniformly in
(t ,s ) e A .
Proof: Write U(t,s) in the form S(t) ^W(t,s)S(s) and

also Un(t,s) as Sn (t)-1Wn(t,s) Sn(s). Then,

||Un(t,s)y - U(t,s)y|
= ||Sn(t)"1Wn (t,s)Sn(s)y - S(t)_1W(t,s)S(s)y||y 

£ I|Sn(t)_1Wn(t,s)Sn(s)y - (t)_1Wn(t,s)S(s)y||Y
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+ | |Sn(.t)“1¥n (.t,s)S(s)y - Sn(.t)“1W(.t,s)S(.s)yj |Y

+ | |Sn(t)_1W(t,s)S(.s)y - S(t)"1W(.t,s)S(.s)y| |y

£ i |Sn (t)~1 | lx # Y l |Wn(t,s) | lXj>xl |Sn Cs)y - S ( s ) y | | x

+ I lsn(t)'"1 1 lXjYl |Wn(t,s)S(s)y - W(t,s)S(s)y| |x

+ ||Sn (t)“1¥(t5s)S(s)y - S(t)"1W(t,s)S(s)y||y .

From Theorem 3.3 we have | | Sr (t) 1 | x Y is bounded. Using 
a Volterra-type estimate as in Chapter 2, we have 

I I ̂ n (t»s) | | x x bounded. Then since Sn (t) ■> S(t) strongly 
in B(Y,X)S uniformly in t, we have

I | S n (-t)_ 1 i lX j > Y | | W n ( t , s )  I lx ,xl lS n C s ) y  ~  S ^ s ) y ! Ix  ^  0 

uniformly in s. Since Sn(t) -* S(t) strongly in B(Y,X), 
Sn (t)_1 -> S(t)"1 strongly in B(X,Y), so
| |Sn (t)_1W(t9s)S(s)y - S(t)“1W(t,s)S(s)y||y -»■ 0 uniformly 

in t .
Thus it is sufficient to show that

I IW (t,s)x - W(t,s)x||Y -*• 0 uniformly in (t,s) e A. n a
We have

W(t,r)x = U(t,r)x + W(t,s)[B(s) + C(s)]U(s,r)xds,

Wn(t,r)x = Un(t,r)x + Wn(t,s)[Bn(s) + Cn(s)]U(s,r)xds,

so W (t,r)x - W(t,r)x = Un(t,r)x - U(t,r)x

+ /£ Wn (t,s)[Bn (s) + Cn(s)][Un(s,r)x - U(s,r)x]ds

+ Wn (t,s) {[Bn(s) + Cn (s)]U(.s,r)x -
[B(s) + C(s)]U(s,r)x} ds
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+ CWn (.t,s) - W(t,s)][B(.s) + C(s)]U(.s,r)xds.

Let vn(t,r)x = Un(.t,r)x - U(t,r)x

+ wn ^t»s^ Bn(5) + Cn(s)][Un (s9r)x - U(s,r)x]ds

+ ^r wn t̂,s  ̂ ^ Bn Cs) + Cn(s)]U(s,r)x -
[B(s) + C(s)]U(s,r)x} ds;

thenj I|Vn(t,r)x||x £ ||Un (t,r)x - U(t,r)x||x

+ I |Wn (t,s)| |Un(-,-)x - U(-,-)x| l^j,/l H Bn(s) +
cn ( s ) I!xds

+ II V tjS)|1^^ /p||[Bn(s) + Cn(s)]U(s,r)x -
[B(s) + C(s)]U(s,r)x||xds.

Since -> U strongly in X, uniformly in (t,s) e A,
Un ■> U strongly in °°,X norm, and Bn (s) + Cn(s) ^  B(s) + C(s)
strongly, with B (s) + C (s) uniformly integrable, so byn n
the generalized Lebesque theorem [10] Bn(s) + Cn(s)
B(s) + C(s) in Ln norm, we then have ||V (t,r)x||v + 0 asx n a
n °°, for every x e X.

Thus we have W (t,r)x - ¥(t,r)x written as 

Wn(t,r)x - W(t,r)x = Vn (t,r)x
+ [Wn(t,s) - W(t,s)][B(s> + C(s)]U(s,r)xds.

Let Z (t,r)x = Wn(t,r)x - W(t,r)x, and D(s) = B(s) + C(s). 

Note |||D| | \ ± = f x |[D(*)|lx#xdt.
Then, Z (t,r)x = V (t,r)x + Zn(t,s)D(s)U(s,r)xds 

or Vn(t,r)x = Zn(t,r)x - Zn(t,s)D(s)U(s,r)xds
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Vn (t,r)x = [I - {DU}]Zn(.t,r)x 

Zn(t,r)x = [I {DUJl’^ C t . r J x  

where [I - {DU}]”1 = 2j"q {DU}^.

So ||Zn(t,r)x||x < l|VnCt,r)x||x[Ej;0 ||{DU}J ||„].

Then by Theorem 2.1 we have

I|Zn(t,r)x||x < ||Vn(t,r)x||x [Ej!0 j t  I I|D|Il{ I|U|l£]

= ||Vn(t,r)x||x tID 1Ilil|Uj

which approaches zero as n ->

Thus, | |Un (t,s)y - U(t,s)y| |Y -»■ 0. //
Recall that we have the following mild solutions to 

the nonhomogeneous differential equations: 
u(t) = U(t,a)<f> + U(t,s)f(s)dsa.

and

u (t) = U (t,a)<J> + Z1 U (t,s)f (s)ds,n n 9 Yn a n 9 n
and we also have U(t,s)S(s)-1 = S(t)-1W(t,s) which we will 
use in the form S(t)U(t,s) = W(t,s)S(s). Also, of course, 
the analogous relationships Sn(t)Un (t,s) = Wn(t,s)Sn (s) 
hold.

The following theorem gives an estimate of the dif

ference between ^n(t) and u(t), this time in Y norm.



Theorem 3.5. Let 4>n, <j> e Y and fn , f e 00., Then 

I lun - u||„)S. < k {||(.s - sn )u||ol(X + | Icwn - W S ( 0 H l L jX

+ I I I ( Wn -  WiSf I I l 1>x}

+  M { i l S J L , Y > X  I l U n  -  * U X +  I I lf n  ~  ^  I M l

+ 11 (Sn c.0 ) -  s c o m l  lx + I I I  C.sn -  s ) f  1111( J

where K and M depend only on the norms of and ¥n< 
Proof;

Sn (t)un (t) = V ^ V ^ ^ n  + Sn (.t}UnCt,s)fn(.s)ds 
= Wn(t,0)Sn(0)*n + /q WnCt,s)Sn(s)fn(s)ds.

Also, S(t)u(t) = W(.t,0)S(0)<|> + /q ¥(.t ,s)S(s)f (,s)ds.

So, (Sn(.t)un (t) - S(t)u(t))

= Wn (.t,0)Sn (0)4,n + /q ¥n (t,s)Sn(.s)fn(.s)ds

+ Wn(t,0)Sn(0)4> + /q Wn(t,s)Sn(s)f(s.)ds

- Wn(t,O)Sn(O)0 - /q Wn(t,s)Sn(s)f(s)ds 

+ W (t,0)S(0)<|, + /q Wn(t,s)S(.s)f(s)ds

- Wn(t,0)S(0)(j) - /q Wn(t,s)S(s)f(.s)ds

- W(t,0)S(0)tJ) - /q ¥(t ,s)S(s)f (s)ds .

Then, ||Sn (t)un(t) - S(t)u(t)||x <

I lWn l l SrJ l » , Y , x l  l+n " '•’I ̂ Y

+ ll»JL,X,xlls„IL.Y,X H l fn ‘ fHll,J
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+ * lW n l l»,X,xl lSn (0)<j) - S C Q ) * | | X

+ I IWn * L , X#XII f0 tsn (s)f(s) - S(s)f(s)]ds||x 

+ | |Wn (.t'aO)SCO)«j) - W(t50)S(0)<J)| |x 

+ II /q [Wn(t,s)S(s)f( s )  - W(t,s)S(s)f(s)]ds||x .

We have un(.t) - u(t) = Sn(t)-1Sn (t) (un(t) - u(t))s 

so | |un (t) - u(t) | | ^ y < I IS"1 1 L aXjYl lsn(-t)(un(t) - u(t))| | 

1 I Is”1 ! L jXay[l |S(t)u(t) - Sn(t)u(t)||x

the result follows. //
Now we present some conditions under which un(t) will 

converge to u(t) in Y norm.

+ l|Sn (t)un (t) - S(t)u(t)|lx

[lies - sn )u||„jX + I I(Wn-W)S(0)*| I 

+ I I I(Wn-W)Sf| I I1>xj

I I  I I oo Y . V * fl I SV1 I I  00 V Y ^ l l 4>„ " < H I y

+ i I (s(0) - s(o))<j>| |Y + 11 |(S - S)f| I I

Then with K = j|S"X||
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Theorem 3-6. If, in addition, <f> •> d> in Y and f + f in-------- —  a a y n
L^(Y), then + u in Y.
Proof: We have S' converging strongly to S, so
||S(t)u(t) - S (t)u(.t) | | v approaches zero as nrl A

Also we have, from Theorem 3*5,
I |Sn(t)un (t) - S(t)u(t) | |x < | |Wn | L >XjXl iSn (0)4> - S(0)<j)| |x

+ I i Snll~,Y,X[ll^n ~ ^  *Y + ^  Ifn " I^1,Y]

+ | |Wn(.t,0).S(0)<j) - W(t,0)S(0)<|>| |x

+ llWn^°°,X,X ' t  I lsn Cs)f(s) - S(.s)f(s) | |xds 

+ /q | |Wn(t,s)S(.s)f ( s )  - W(t,s)S(.s)f (s) | |xds .

Since W^ W strongly in X (shown in Theorem 3*4) the first
three terms in the above expression approach zero as n

Then Sn (s)x converges to S(s)x for every s e I, so

sup | | S (s)x - S (s) x | | -*■ 0 and 
sel n
sup | |S (s)x | | <_ sup | | S (s) x | | + e for every e >0. We have 
sel n sel
sup | |S(s) | | <_ M, which implies 
sel

||Sn(s)f(s) - S(s)f(s)|| < 2M||f(s)||.
Thus, by Lebesque’s dominated convergence theorem ([4],p.151) 
/||S (s)f(s) - S(s)f(s)||ds approaches zero as n 00.

Since ||W (t,s)|| is also bounded, the same argument 
gives /||W (t,s)S(s)f(s) - W(t,s)S(s)f(s)||ds approaches 

zero as n
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Thus I |Sn(:tlun (t). - sot >uGUI I -*•' & as n -> Hence, 

l |u n (,t) -  u C t l l l y  < I ISnC.tr1 ! Ix>r | | S n CtKun Ctl - u C t ) ) | | x 

< I !snctl_11 |X>Y | |S C t )u ( t )  -  s n ct lu(. t ) |  |x 
+ ||sn C U u n ( U  -  sCt)u(t) | |x

which approaches zero as n ■+ ®°. / /



BIBLIOGRAPHY

1. P.L. Butzer and H. Berens, Semi-Groups of Operators 

and Approximation, Berlin: Springer-Verlag, 1967.
2. J.R. Dorroh, "A simplified proof of a theorem of 

Kato on linear evolution equations," Journal of the 
Mathematical Society of Japan, 27 (1975), 474-478.

3. J.R. Dorroh and R.A. Graff, "Integral equations in 
Banach spaces," Journal of Integral Equations, to 
appear.

4. N. Dunford and J.T. Schwartz, Linear Operators, Part
I: General Theory, New York: Interscience Publishers,
1958.

5. E. Hille and R.S. Phillips, Functional Analysis and
Semi-Groups, Providence: American Mathematical

Society, 1957-
6. T. Kato, "Integration of the equation of evolution in 

a Banach space," Journal of the Mathematical Society 

of Japan, 5 (1953), 208-234.
7. T. Kato, "Linear evolution equations of 'hyperbolic’ 

type," Journal of the Faculty of Science, University 
of Tokyo, Section I, 17 (1970), 241-258.

8. T. Kato, "Linear evolution equations of ’hyperbolic’ 
type, II," Journal of the Mathematical Society of 

Japan, 25 (1973), 648-666.



23

9. G.E. Ladas and V. Lakshmikantham, Differential

Equations in Abstract Spaces, New York: Academic
Press, 1972.

10. P.A. Meyer, Probability and Potentials, Waltham: 
Blaisdell Publishing Company, 1966.

11. K. Yosida, Functional Analysis, Third Edition, Berlin: 

Springer-Verlag, 1971.



VITA

Mary Jorgensen Anderson was born on October 31 s 1937s in 
Winchester, Texas. She attended the public schools of 
Texas and Louisiana, and graduated from Baton Rouge High 
School in May, 1955. She received the degree of Bachelor 
of Science in Mathematics from Louisiana State University 
in May, 1965* She entered The Graduate School of Louisi
ana State University in September, 1965s and was granted 
the degree of Master of Science in Mathematics from that 
institution in August, 1968. Presently, she is a candi
date for the degree of Doctor of Philosophy in Mathematics 
at Louisiana State University.

24



EXAMINATION AND THESIS REPORT

Candidate: Mary Jorgensen Anderson

Major Field: Mathematics

Title of Thesis: Convergence Theorems for Linear Evolution Equations

Approved:

Major Professor and Chairman

Dean of the Graduated/School

EXAMINING COMMITTEE:

r s .  l  W u j l ,

Date of Examination:

July 16, 1979


	Convergence Theorems for Linear Evolution Equations.
	Recommended Citation

	00001.tif

