Louisiana State University

LSU Scholarly Repository
LSU Historical Dissertations and Theses Graduate School

1979

Convergence Theorems for Linear Evolution Equations.

Mary Jorgensen Anderson
Louisiana State University and Agricultural & Mechanical College

Follow this and additional works at: https://repository.lsu.edu/gradschool_disstheses

Recommended Citation

Anderson, Mary Jorgensen, "Convergence Theorems for Linear Evolution Equations." (1979). LSU
Historical Dissertations and Theses. 3373.
https://repository.Isu.edu/gradschool_disstheses/3373

This Dissertation is brought to you for free and open access by the Graduate School at LSU Scholarly Repository. It
has been accepted for inclusion in LSU Historical Dissertations and Theses by an authorized administrator of LSU
Scholarly Repository. For more information, please contact gradetd@Isu.edu.


https://repository.lsu.edu/
https://repository.lsu.edu/gradschool_disstheses
https://repository.lsu.edu/gradschool
https://repository.lsu.edu/gradschool_disstheses?utm_source=repository.lsu.edu%2Fgradschool_disstheses%2F3373&utm_medium=PDF&utm_campaign=PDFCoverPages
https://repository.lsu.edu/gradschool_disstheses/3373?utm_source=repository.lsu.edu%2Fgradschool_disstheses%2F3373&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:gradetd@lsu.edu

INFORMATION TO USERS

This was produced from a copy of a document sent to us for microfilming. While the
most advanced technological means to photograph and reproduce this document
have been used, the quality is heavily dependent upon the quality of the material
submitted.

The following explanation of techniques is provided to help you understand
markings or notations which may appear on this reproduction.

1.

The sign or ‘“‘target” for pagesapparently lacking from the document
photographed is “Missing Page(s)”. If it was possible to obtain the missing
page(s) or section, they are spliced into the film along with adjacent pages.
This may have necessitated cutting through an image and duplicating
adjacent pages to assure you of complete continuity.

. When an image on the film is obliterated with a round black mark it is an

indication that the film inspector noticed either biurred copy because of
movement during exposure, or duplicate copy. Unless we meant to delete
copyrighted materials that should not have been filmed, you will find a
good image of the page in the adjacent frame.

. When a map, drawing or chart, etc., is part of the material being photo-

graphed the photographer has followed a definite method in “‘sectioning”
the material. It is customary to begin filming at the upper left hand corner
of a large sheet and to continue from left to right in equal sections with
small overlaps. If necessary, sectioning is continued again—beginning
below the first row and continuing on until complete.

. For any illustrations that carmot be reproduced satisfactorily by

xerography, photographic printz can be purchased at additional cost and
tipped into your xerographic copy. Requests can be made to our
Dissertations Customer Services Department.

. Some pages in any document may have indistinct print. In all cases we

have filmed the best available copy.

University
Microfilims
International

300 N. ZEEB ROAD, ANN ARBOR, M| 48106
18 BEDFORD ROW, LONDON WC1R 4EJ, ENGLAND



1927505

ANDERSN N, Maly JiGE (55
CONVERBENCE THEURESS FUR LINFAR EvOLUTTUN
EQUATINGS,

A

]
]

THE Lanlsiaca STA50 USIVERSITY ani
AGRICUL Thean /M D Y LEALTC AL Cf‘.‘)l_ap C’.vi.'i"),p 1a79

Universi
Micrdfilms
International 300 N. ZEEB ROAD. ANN ARBOR, MI 48106



CONVERGENCE THEOREMS FOR LINEAR EVOLUTION EQUATIONS

A Dissertation

Submitted to the Graduate Faculty of the
Louisiana State University and
Agricultural and Mechanical College
in partial fulfillment of the
requirements for the degree of
Doctor of Philosophy

in

The Department of Mathematics

by
Mary Jorgensen Anderson
.S., Louisiana State University, 1965
S., Louisiana State University, 1968
August, 1979



ACKNOWLEDGEMENT

This dissertation was prepared under the direction of
Dr. J.R. Dorroh. The author wishes to express'her appreci-
ation for the invaluable aid and assistance rendered by
Dr. Dorroh in the preparation of this dissertation. She
also wishes to express her appreciation to her husband,
Dr. E.H. Anderson, without whose help it would never have

been written.

i3



TABLE OF CONTENTS

CHAPTER
ACKNOWLEDGEMENT........ e et resrnresareas e e
ABSTRACT . i sttt tiieesennoannonncanasaanaas
INTRODUCTION. ¢ v v evauvovuosoanvossnnsssoaseneas
1 PRELIMINARIES........ s e e eencorenn o n e ene
2 OPERATOR VOLTERRA EQUATIONS.......oveevennans
3 CONVERGENCE THEOREMS . .+ . cveeverevsvsoeoonecns
BIBLIOGRAPHY ittt ittt ctnoneonencsnoansnnss
VI A . i iiaceetceenaacnnn ‘e erretrasen oo

iit



ABSTRACT

The differentlal equations

u'(t) = A(t)u(t), a <t <b
and

ut(t) - At u(t) = £(t), a < t < b

¢

where {A(t); a <t < Db} 1s a family of unbounded linear
operators in a Banach space X, are studied under the
hypotheses that a weak evolution system exists, or that
approximate solutions to the differenﬁial equation exlst.
Given that {An(°)}:=l is a sequence of strongly
measurable functions from [a,b] into B(Y,X) wilith norm
|lAn<')|lY,X bounded above by an integrable function for
each n, and that {An(-)} converges strongly almost every-
where to A(*), where Un(-,-) is a proper evolution system
generated by An(v), un(t) represents the solution to the
corresponding differential equation for each n, U(:,-) is
the proper evolution system generated by A(°) with u(t)
the solution to this differential equation, then suffi-
clent conditions are developed under which Un converges to
U, and sufficient conditions are also found for un(t) to

converge to u(t).

iv



INTRODUCTIOQON

This dissertation 1is concerned with the differential
equations
u'(t) = A(t)u(t), a <t < b,
and u'(t) - A(t)u(t) = £(t), a < t < b.
J.R. Dorroh and R.A. Graff, in a paper entitled

Integral equatlons in Banach spaces [3], demonstrated the

existence and unilqueness of an evolutlon system generated
by a family {A(t): a < t < b} of unbounded operators in a
Banach space X when a weak evolution system exists, and
when approximate solutions to the differential equation
exist.

In the two papers entitled Linear evolution equations

of "hyperbolic” type [7], and Linear evolution equations

of "hyperbolic'" type, II [8], Tosio Kato dealt with the

subject of evolution systems where the generating family
{A(t)} meets other conditions: 1n [7] the hypothesis is
that the family {A(t)} is stable, and in [8] the hypothesis
is weakened to quasi-stabilility.

In [8] Kato gave several theorems concerning conver-
gence of evolution systems and convergence of solutions,
when families of differential equations exist. Here we
present some results similar to those of Kato, but under

the hypotheses of Dorroh and Graff in [3].

v



CHAPTER I
PRELIMINARIES

In this chapter, the background material needed in
this dissertation is presented. A basic familarity with
Banach spaces and semigroups of operators is assumed.
General references dealing with these areas are Butzer and
Berens [1], Dunford and Schwartz [4], Hille and Phillips
[5], Ladas and Lakshmikantham [9], and Yosida [11].

We will employ the following notation and make the
following assumptions throughout Chapters 1, 2, and 3.
Let X and Y be Banach spaces, with Y densely and contin-
uously included in X. We denote by B(Y,X) the set of all
bounded linear operators from Y into X. Let a < b, and I
denote the interval [a,b]l. Let A:[a,b] =+ B(Y,X) be

strongly measurable; i.e., A(°)y 1s a measurable function

from [a,b] into X for each y € Y. Let A be the subset of
I x I defined by A = {(t,s):a<s<t<b}.

Several different norms are used, so for clarity they

will be subscripted as follows: |[[-]|]|y is the norm in the
Banach space X, ||-||y 1s the norm in the Banach space Y,
and il'lly,x denotes the operator norm in B(Y,X). If the

meaning is clear from context, the subscript may be

omitted. Lj (X) consists of all measurable functions f



defined on [a,b] into X which are such that [|f(t)[[y 1s
. b
integrable, with |||f|||1’x = S e [ ]yat.
For f: I+X, we write ||f]]| = ess sup ||f(£)]]-
- @, X tel X
Also fIf(t)dt denotes the upper-integral of f, and f£(t)
denotes the derivative of f with respect to t. We say f

is absolutely continuous on I if given € > 0 there 1is a

n
8§ > 0 such that Ij_,

finite collection {[ti,ti]: i=1, 2, ..., nj by, t; e I}

]
[1£(t) = £(t) ||y < e for every
of nonoverlapping intervals with Z?=1J[ti - t;] < 6. It
1s sometimes necessary to denote the norm used for a

particular property; for example, X - absolutely continu-

ous will mean absolutely continuous with respect to the
norm of the space X.

The following definitions and statements are taken
from Dorroh and Graff [3].

Definition 1.1. An € - approximate solution of the

differential equation

u'(t) = A(t)u(t), ula) =y e ¥
on the interval [a,b] is a bounded measurable function v
from [a,b] into Y which is X -~ absolutely continuous and
X - differentiable a.e. on [a,b], with v(a) = y, and

12 1 vr(s) = AGE)v(t) [ [4at < e.
If v'(t) = A(t)v(t) a.e. on [a,b], then v is a solution
of the differential equation.

Definition 1.2. A weak evolution system generated by

%%
A(+) is a bounded function U from A into B(X,X ) such

that U(a,a,) = I, the identity function, and such that if



a <t < b, then U(t,*) is a weak solution of the differen-
tial equation

Q'(s) = -Q(s)A(s)
on the interval [0,t].

Definition 1.3. A proper evolutlon system is a function

U from A into B(X) which satisfies
U(t,t) = I, U(t,s)U(s,r) = U(t,r)

for a <r <s <t <b. A proper evolution system gener-

ated by A(+) 1is a weak evolution system generated by A(-)

which is also a proper evolution system. A strongly con-

tinuous evolution system is one in which the function
(tys) = U(t,s)x is jointly continuous from A into X for

each x ¢ X.



CHAPTER 2

OPERATOR VOLTERRA EQUATIONS

Let a < b, and let A = {(t,s): a<s<t<b}. Let X denote
a Banach space, let XK denote the collection of all strongly
continuous functions from A into B(X) and let M denote the
collection of all essentially bounded strongly measurable
functions from [a,b] into X. Then K is a Banach space
under the norm

LJull, = sup [{u(t,s) ]|
®© t,s)el ’ X,X

and M is a Banach space under the norm

|IBl], = ess sup  ||B(t)]]
tefa,bl X,X

If U, Ve K and B € M, then we define UBV € K by
(1) (UBV)(t,r) = S5 U(t,s)B(s)V(s,r)ds,
where the integral is in the strong operator topology.
See [8, Lemma 1, p. 654]; the integrand is strongly
measurable by [8, Lemma Al4, p. 665].

The following theorem shows that the convolution
operation defined above by (1) is associative.

Theorem 2.1. UB (VDW) = (UBV) DW for U, V, W € K and

B, D e M.
Proof:

UB (VDW) = f; Ucr,s)B(s)[fg V(s,r)D(r)W(r,o)drlds



= [2 IS U(t,8)B(s)V(s,r)D(r)W(r,a)dr ds
(where r < s, and r goes from o to T)

= f; I; U(t,s)B(s)V(s,r)D(r)W(r,o)ds ar
(by Fubini's Theorem [47)

= /o [/7 U(7,8)B(s)V(s,r)ds] D(r)W(r,o)dr

g

= f; (UBV) (t,r)D(r)W(r,o)dr

(uBV) DW. //

If U, Ve K and B € M, then we can consider the

following two Volterra integral equations

(2) W(t,r) = V(t,r) + f; U(t,s)B(s)W(s,r)ds and

(3) W(t,r) = V(t,0) + S5 W(t,s)B(s)U(s,r)ds
where the solution W is sought in K. These equations can
be rewritten in terms of the convolution product we have

Jjust defined as

VvV + UBW and

(2') W
(3') W

It is convenient to define, for U € K and B ¢ M, the

vV + WBU.

-

linear operator {UB} and {BU} from K into K by
(4) {uUBlw = UBW, {BU}W = WBU.

Thus (2) and (3) can also be rewritten as
(2") W =7V + {UBlw and
(3") W

The solutions to these equations can then be found

v + {BUMW.

using standard techniqgues, as shown in Theorem 2.2. First

we need the following lemma.



Lemma 2.2.1. Let U, Ve K and B ¢ M. Then for each n,

[1uBY™ |, < &7 LU BT 4 LIV,
atso | [BUY™WI |, < = UIID [HBIT 4 11V,

Proof: Let B be an integrable function dominating |[B(:)]]

on [a,b].
|1{UB}V[ |, = |1/2 U(t,5)B(s)V(s,r)as] ],
< Hull, Vi, 78 8(s)as.
(1) {uB}"v < 11Ul |B v [ o++« [ B(s;)---B(s, )ds,--ds .
N . < 1HUll, 1] ll?isli'--isnitl s )ds; ,

(2) S +++ £ B(sy)ee+B(s )dsy---ds_ = i [S0 B(s)as1™.
risq.<e--<5 <t

This equation may be "seen geometrically" as follows.
The region of integration in the first integral is an n-
dimensional pyramid. The n-dimensional box [r,t]n is com-
posed of the n-factorial pyramids obtained by permuting the
sy's; e.g. {r < S, £ 8) S 85 <+t 28, < t}. Clearly
the integrals over these pyramids are equal, and the
integral over the box is [f; B(s)ds]™.

Since (1) and (2) are true for any integrable function

dominating I[B(-)llX x> we have
3
1
1eoB3™rl 1, < L 1OlI2 HHBIID 4 V1.

The second inequality in the lemma follows by the same

argument. //



Theorem 2.2. The solutions of (2) and (3) are

W = Z:=O (B}, W = 2: {BUI™V, respectively, where both

=0

of the series converge In operator norm.

Proof: W=V + {UBIW
V=1[I - {UB}]W
W=1II - {UB}]—IV is the solution of (2).

Similarly, W = [T - {BU}]™'V is the solution of (3). We
can formally write Neumann expansions
. 4=1 _ <
[T - {UB}] = En=0
[T - {BU}1~?!

(o o]

{uB}",
) n
o (BUI.

]

From the lemma we have

[ HuBY™v ], < == OIS BT ¢ LV
ne.

and | |{BU}"V||_

A

1 n | n ;
— U B v .

Therefore {UB} and {BU} are bounded operators and
n n 1 n n
|1{uB= |, |HBUY'|] < " Lol e HIBHI -
Then,

Z:=O | [{uB}"| |, Z:=o |1 {BUI" || < ellU||w|||B|||13X

so both series converge in operator norm. //
We now prove in Theorem 2.3 that under certain cond-
itions, equations (2) and (3) will have the same solutions.

Theorem 2.3. <f U, V, P e K, B e M, and UBP = PBV, then

the equations W = P + UBW; W = P + WBV have the same
solution.
Proof: Since the solutions to the above equations can be

written [I - {UB}]—lP and [I - {BV}]_lP respectively, we



need to show that these are equal. This can be seen as
follows:

[T - {UB}]™YP = P + {UB}P + [UB}ZP + -.

= P + PBV + UB(PBV) +
= P + PBV + (UBP)BV +
= P + PBV + (PBV)BV + ---
= P + {BVIP + {BV}ZP +
= [1 - {BViT7te. s/
In particular, the equations W= U + UBW, W = U + WBU
have the same solution for any U € K and B ¢ M.

Recall that an element U of K is a proper evolution

system if
U(t,s)U(s,r) = U(t,r)

for (t,s), (s,r) € A, and U(t,t) = I for t € [a,b].

If, in the equation W = U + WBU, U is an evolutilon
system, then the solution W = [T - {BU}]—lU is also an
evolution system, as shown in the following theorem, which
is essentially contained in Theorem 2.12 of [3].

Theorem 2.4. If U is an evolution system, and B ¢ M, then

[T - {BU}]_lU is an evolution system; thus, [I - {UB}]_lU
is also an evolution system.
Proof: Let W = [I - {BU}1 U, then W = U + WBU. It is
obvious that W(t,t) = I for t ¢ [a,b]. Let T ¢ [a,b], and
define Z on A by

IW(t,r) 1f T<r<t<b

W(t,T)W(Tt,r) if asr<r<t<b

Z(t,r) =
1W(t,r) if a<r<t<rt.



Then Z 1s strongly continuous from A to B(X). We want to
show that Z = U + ZBU. This will imply that Z = W, which
will imply that W(t,T)W(T,r) = W(t,r) for a<r<t<t<b. Since
T was arbitrary, this will prove that W is an evolution
system. If a<r<t<t, or t<r<t<b, then it is clear that
Z(t,r) = [U + ZBUJ(t,r).

If a<r<t<t<b, then

U(t,T) + S° W(t,s)B(s)U(s,1)ds,

W(t,T)

W(t,r)

U(t,r) + f; W(t,s)B(s)U(s,r)ds,

t

W(t,t)W(t,r) = U(t,r) + fT W(t,s)B(s)U(s,r)ds

+ f; W(t,T)W(t,s)B(s)U(s,r)ds.

U(t,r) + f§ 7(t,s)B(s)U(s,r)ds.

Thus we have Z = U + ZBU, which completes the proof. //



CHAPTER 3
CONVERGENCE THEOREMS

The theorems which follow extend theorems III, IV,

Va, VI, and VIa in Kato's paper Linear evolution equations

of hyperbolic type, II [8] to the situation where the

differential equation has € - approximate solutions for
every € > 0, instead of under the assumption of quasi-
stability.

Throughout this chapter, assume that the differential
equation

ut(t) = A(L)u(e)
has approximate solutions, where A(:) is a strongly measur-
able function from [a,b] into B(Y,X), and let U(-,-) be a
strongly continuous proper evolution system generated by
A(+). For conditions under which such evolution systems
exist, see [3].

Let {An(')}:=l be a sequence of strongly measurable
functions from [a,b] into B(Y,X) and {un};=l a uniformly
integrable sequence of integrable nonnegative functions on
[a,b] such that o dominates [lAn(')IlY,X for each n.

Also assume that if y € Y, then {An(')y} converges a.e. on
(a,b] to A(*)y, and that o is an integrable nonnegative
function on [a,b] which dominates |]A(-)||Y,X. For each

n, let Un(',') be a proper evolution system generated by

10



A£_(+), where ||U _(t,s)]||y ~ 1s uniformly hounded for
n n X,A -
(t,s) € A and n=1, 2, 3,
It was shown by Dorroh and Graff in Theorem 2.15 of
[3] that this implies that
(1) lim ||U, (t,8)x = U(t,s)x[[y = 0O
1-*00
for each x € X and s ¢ [a,b], uniformly for s < t < Db.
Now consider the nonhomogeneous equation
(2) u'(t) - A(t)u(t) = £(t), u(a) = ¢
The "mild solution' of (2) can be formally written
u(t) = U(t,a)d + fg U(t,s)f(s)ds.
In general, u need not be a solution of (2) in the strict
sense. Alsoc we have the equations
1 - = =
up(6) - A (Bu (8) = £ (t), u,(a) = ¢,
with formal solutions
- t o
un(t) = Un(t,a)¢n + fa Un(t,S)L(S)dS.
The following theorem gives an estimate of the difference
between un(t) and u(t).
Theorem 3.1. Let ¢, ¢n e Xand £, f e Ly (X). Then
[Tug(8) = (e [l < KOIo, = olly + 115, = 2111 {1+

M{|U, - Ull, y» where K and M depend only on the norms of
3

U, ¢, and f.
Proof: un(t) - u(t) = Un(t,a)¢n - U(t,a)d
+ IY LU _(t,8)f_(s) - U(t,s)f(s)]ds

U_(t,2) (¢, ~ ¢) + ST U_(t,8)[f, (s) - £(s)]ds
+ [U (t,8) - U(t,s)]¢ + fg [U (t,s) - U(t,s)]f(s)ds,

so [luy = wll g < HU o gE1To, = 611y + 1116, = 1115 4]

+ oy = Ul yUHTellyx + THENH -

11
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Let K = ||Un|{w,x, and M = [|¢[[X + |[If|||1’x, then the
result follows. //
Now we present some conditions under which un(t) will

converge to u(t).

Theorem 3.2. If in addition ¢n »+ ¢ in X and fn - f in
Ll(X) then u, > u in X.
Proof: From Theorem 3.1 we have
ug(e) = ey < 01y xCley = olly + [H1E, = 21115 o]
+ 1 (tss) = UCt,s)T8] ]y
+ I U (6,8)8(s) - UCt,5)£(s) | |yas.
By hypothesis, ||¢, - ¢|]y > 0 and |||f - fllll,X -+ 0.
Also ll[Un(t,s) - U(t,s)]¢l]x -~ 0 by (1) above. Since
Un(t,s) is uniformly bounded, we have that Un(t,s)f(s)
forms a uniformly integrable family of functions and so,
by a generalization of Lebesque's theorem, Un(t,s)f(s)
converges to U(t,s)f(s) in L, norm (see [10] p. 17, 18).

Thus Ilun(t) - u(t)l[X > 0. //

For the rest of the chapter, assume further that the
following version of Kato's condition (ii''') of [8] is
satisfied.

(i1'''') There is a family {S(t): a < t < b} of isomor-
phisms of Y onto X, a strongly measurable function B(t)
from [a,b] into B(X) with l]B(-)lIX,X upper-integrable
(i.e., bounded above by an integrable function), and a
strongly measurable function S from [a,b] into B(Y,X) with
||é(')|lY,X upper-integrable such that S is a strong

indefinite integral of S, and such that if y e Y, then



S(EACEIS(E) "ty = ACt)y + B(t)y
a.e. on [a,b].
Then it was shown in Theorem 2.13 of [3] that
U(t,s) € B(Y) for each {t,s) ¢ A and U(-,*)y is jointly
continuous from A into Y for each y e Y.
The next theorem presents some properties of S(°*) and
S(+)™! which are needed for Theorem 3.4,

Theorem 3.3. S(+) and S(-)"l are continuous (in fact,

absolutely continuous) with ||S(-)||Y x and IIS(')—1||X v
3 3

bounded.

Proof: We have ||é(-)||Y’X upper-integrable on I (i.e.,
bounded above by B(t), which is integrable) and S equal
to an indefinite strong integral of S. Then

| |s(t) - S(S)IIY,X < }g ||é(r)||Y’Xdr < fg g(r)dr
which approaches zero as |t - s| - 0. Thus S(+) is contin-
uous from [a,b] - B(Y,X) and [a,b] compact implies ||S(-)]]
is bounded. Since S(*) is continuous, we have S(-)-1
continuous with ||S(')ml||X’Y bounded.

Suppose IIS(')_1|| < M. From above we have
[Is¢s5) = ssp ] < fgg 8(rjar, so I|Is(ty) - S(s ] <
X f:q B(r)dr which approaches zero as Z(tj - sj) ap-
proaghes zero. Then ZI[S(tj)_l- S(Sj)_lll

Q -1 o -1
ElIsCe) T 11SGs;) = ste ] 11sGs 7|

| A

< ¥° ]Is(s;) - 8(t)]]
which also approaches zero as Z(tj - Sj) approaches zero.
Thus S(*) and S(')-1 are absolutely continuous in

operator norm. //

13
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Now, define C from la,b] into B(X) by
c(t) = é(t)S(t)ﬁl. Then C is strongly measurable with
lIC(')lIX,X upper-integrable. Define W from A into B(X)
by means of the Volterra-type integral equation

W(t,r)x = U(t,r)x + S5 W(t,s)[B(s) + C(s)IU(s,r)xds
(see [2] pp. 475-477, [8] pp. 652,653). Then, we have
UCt,5)S(s)™h = S(6)7MW(t,s),([31, pp. 31,32).

Let us also suppose that (ii'''') is satisfied by all
the An’ uniformly in n. We will use the obvious notation
S B

C Un(t,s), wn(t,s), etc. The space Y 1s assumed

n’® n’> n’

to be common to all An.

Theorem 3.4. In addition to the above assumptions, suppose

that
(1) Bn(t) + Cn(t) - B(t) + C(t) strongly in B(X) for a.e.
te I

(11) 1im J1IB () + C_(t)||dat = 0O
K+ (| |B+Cp|[>K} ©

(i.e., the collection of functions {Bn(t) + Cn(t)}

is uniformly integrable)
(111) Sn(t) + S(t) strongly in B(Y,X) uniformly in t € I.
Then, Un(t,s) + U(t,s) strongly in B(Y), uniformly in
(t,s) € A.
Proof: Write U(t,s) in the form S(t) 1W(t,s)S(s) and
also Un(t,s) as Sn(t)—lwn(t,s) Sn(s). Then,
U, (t,8)y - UCt,s)ylly =

= s ()" _(t,8)8 (s)y - S(£) 7MW (t,8)8(s)ylly

I A

[18,,(8) 7 (5,8)S (s)y = S_(£)71W (5,8)8(s)ylly
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+ |18 _(8)7HW_(£,5)8(s)y = S_(£) MW (t,5)8(s)y] |y

+ | [s, (6)7W(t,8)5(s)y - S(6) 7 (t,8)8(s)y ]y

|A

18,62 Iy gl (eu8) Ty gl 18, ()y = S(e)ylly

-+

18,007 Ty ol W, (£,8)8(s)y = W(t,s)8(s)y] Iy
+ []Sn(t)'lw(t,S)S(S)y - S(6) M (t,8)8(s)y] ]y

From Theorem 3.3 we have ||Sn(t)—l|IX,Y 1s bounded. Using
a Volterra-type estimate as 1n Chapter 2, we have
llwn(t’s)IIX,X bounded. Then since 5 _(t) -+ S(t) strongly
in B(Y,X), uniformly in t, we have
IS, T g gl W (e [y ¢l 18,08y = s(s)y] Iy » 0
uniformly in s. Since Sn(t) + S(t) strongly in B(Y,X),
Sn(t',)"1 > s(t)"1 strongly in B(X,Y), so
115, (6) "t (t,s)S(s)y - S(t)™MW(t,5)8(s)y] |y * 0 uniformly
in t.

Thus it is sufficient to show that
W, (t,8)x - W(t,s)xllX + 0 uniformly in (t,s) € A.

We have

W(t,r)x = Ut,r)x + S W(t,s)[B(s) + C(s)U(s,r)xds,
W_(t,r)x = U (t,r)x + /P _(t,8)[B_(s) + C_(s)1U(s,r)xds,
S0 Wn(t,r)x - W(t,r)x = Un(t,r)x - U(t,r)x

+ fﬁ wn(t,s)[Bn(s) + Cn(s)][Un(s,r)x - U(s,r)x]ds

+ LW (t,8) {[B_ (s) + C,(s)U(s,r)x -
[B(s) + C(s)]U(s,r)x} ds



+ 77 W (t,8) - W(t,s)I[B(s) + C(s)IU(s,r)xds.
Let Vn(t,r)x = Un(t,r)x - U(t,r)x
+ fﬁ W_(t,8)[B_(s) + C_(s)I[U (s,r)x - U(s,r)x]ds

+ S5 W (,8) {[B_(s) + C_(s)]U(s,m)x -

[B(s) + C(s)]JU(s,r)x} ds;
then, ||V (t,e)x[|y < [|U (t,r)x - Ut,r)x| [y

o ees) T, g U Cosdx - U(-,')XIIW’J?IIIBn(s) +
Cn(s)llxds]

+ W (6,8) [, ¢ SolIIBL () + € (s)1U(s,r)x -

[B(s) + C(s)JU(s,r)XIIde.

Since Un + U strongly in X, uniformly in (t,s) € A,
Un + U strongly in «,X norm, and Bn(s) + Cn(s) + B(s) + C(s)
strongly, with Bn(s) + Cn(s) uniformly integrable, so by
the generalized Lebesque theorem [10] Bn(s) + Cn(s) >

B(s) + C(s) in L, norm, we then have ||Vn(t,r')x||X + 0 as

1

n »- o, for every x e X.

Thus we have wn(t,r)x - W(t,r)x written as

wn(t,r)x - W(t,r)x Vn(t,r)x

W(t,s)J[B(s) + C(s)]U(s,r)xds.

t
+ fr [wn(t,s)
Let Zn(t,r)x = Wn(t,r)x - W(t,r)x, and D(s) = B(s) + C(s).
Note |11DI11y = Jp [1DC-) |1y ydt.

t
Then, Zn(t,r)x = Vn(t,r)x + fr Zn(t,s)D(s)U(s,r)xds

or Vn(t,r)x = Zn(t,r)x - f; Zn(t,s)D(s)U(s,r)xds

16



Vn(t,r)x = [I {DU}]Zn(t,r)x

[T

Z_(t,r)x '{DU}]'lvn(t,r)x

0 .

J
Zyo0 (DUM.

where [I - {DU}]"1
so |1z, (eae)xl Iy < [V Ce,mdxl 4Lz 20 [1ourd ], 1.
Then by Theorem 2.1 we have

12, Coomxl 1y < TV Ceumxl Iy L2520 7 1HIDIT 11Ul

]

|1V, (6,)x | [y DI Tul,

which approaches zero as n - o,

Thus, ||U (t,s)y - U(t,s)yl|y » 0. //

Recall that we have the following mild solutions to
the nonhomogeneous differential equations:

u(t) = U(t,a)¢ + /7 U(t,s)f(s)ds
and

u, (6) = U (t,a)6 + ST U _(t,8)F (s)ds,
and we also have U(t,s)S(s)"l = S(t)_lW(t,s) which we will
use in the form S(t)U(t,s) = W(t,s)S(s). Also, of course,
the analogous relationships Sn(t)Un(t,s) = Wn(t,s)Sn(s)
hold.

The following theorem gives an estimate of the d4dif-

ference between un(t) and u(t), this time in Y norm.

17
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Theorem 3.5. Let ¢ , ¢ € Yand £, f ¢ LlLX). Then

g = ully g < k{11 = spull, g+ 1100, - s8], 4

T, - wsell]; )

e nflIS 1y x [Hlog = 611y + 1112, = 2111 ]
+ 108,000 = s@)elly + [116s, - 911l
where K and M depend only on the norms of S;l and Wn.

Proof:

S, (t)u_(t) = S_(£)U_(£,0)9 + f§ S_(£)U (t,5)f, (s)ds

W_(£,0)S_(0)g + 1w (t,8)8 (s)f (s)ds.
Also, S(t)u(t) = W(t,0)S(0)¢ + sg W(t,s)S(s)f(s)ds.

So, (Sn(t)un(t) - S(t)u(t))

W (6,008 (0)¢, + [§ W (t,5)S, (s)f, (s)ds

+

W_(£,0)8_(0)¢ + S§ W _(t,5)S (s)f(s)ds

W_(,0)8_(0)¢ = fg W_(t,5)S (s)f(s)ds

-+

wn(t,O)S(0)¢ + fg Wn(t,s)S(s)f(s)ds

W_(£,08(0)¢ - fg W (t,s)S(s)f(s)ds

W(5,0)8(0)¢ — S5 W(t,s)S(s)f(s)ds.

Then, IISn(t)un(t) - s(tul(e) |}y <
RIS ERT TR

# gl 1Sl ey gl T E = €11y
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+ ||wn|lw,x,x|[sn(0>¢ - 8(0)¢] |y
Iy @l 1 7g [8,(8)8(s) = S(s)£(s)las] [y
+ W, (£,0)8(0)¢ - W(t,0)8(0)9] ]y
+ || JE W (6,5)8(s)f(s) - W(t,s)S(s)E(s)1ds] .
We have u_(t) - u(t) = 8_(£)7's_(t)(u () - u(t)),

SO llun(t) - u(t)llm’Y < lls;1|lm,x,yllsn(t)(un(t) - u(t)) ||

| A

"Sglllm,x,y[llS(t)u(t) - 8 (hule) |1y

+ [ISn(t)un(t) - s(t)u(t)llg]

| A

IIs;lllm,X,Y{ll(s = spull, y + 1 -ns)el], x

F T nsel ] o

+ llsglllw,xsyllwnllm,X,Y{]Isnllm,Y’X[|I¢n - ¢l1y]
ISy gLl E = 2111y
+HwMM—smnMu+len-mﬂHL4.

s _ -1 _ jrae~l
Then with K = [[S_ "w,x,y and M = [[S_ "m,x,yllwn"m,x,x

the result follows. //

Now we present some conditions under which un(t) will

converge to u(t) in Y norm.



Theorem 3.6. If, in addition, ¢, * ¢ in Y and £ f in

Ll(Y), then u_ > u in Y.

Proof: We have Sn converging strongly to S, so

l1s(t)u(t) - S’n(t)_u(_t)llX approaches zero as n =+ «,
Also we have, from Theorem 3.5,

||sn(t)un(t) - s(t)u(t)||X < llwh‘]m,x,xllsn(°)¢ - S(O)¢||X
1 g 1800y xClToy, = 811y + 111g, = 21115 ¢l
+ |[wn(t,o)s(o)¢ - w(t,O)S(O)¢||X
+ W, gox 75 118,()1(s) = S(e)r(s) [Iyas
+ 15 W (£,8)8(s)f(s) = W(t,8)S(s)f(s)|]yds.

Since Wn + W strongly in X (shown in Theorem 3.4) the first
three terms in the above expression approach zero as n + «,
Then Sn(s)x converges to S(s)x for every s € I, so

sup ||S_(s)x - S(s)x|| » 0 and
sel n

sup ||S_(s)x]||< sup ||S(s)x|| + ¢ for every € >0. We have
sel n sel

sup ||S(s)|| < M, which implies
sel

|1s,(s)f(s) - S(s)f(s)|| < am||£(s)]].
Thus, by Lebesque's dominated convergence theorem ([4],p.151)
I8, (s)f(s) - S(s)f(s)||ds approaches zero as n > =.
Since llwn(t,s)ll is also bounded, the same argument
gives f||wn(t,s)S(s)f(s) - W(t,s)S(s)f(s)||ds approaches

Zero as n > «,



Thus ||sn('_-t),un('_t)_ - 8(tlu(t)|| » ¢ as n » «», Hence,
[ Ju, (6) = u(t)]ly = IIS‘nCt)."lHX,Y s, CE)Cu, (£) - ult)) ||y
< 1S ™ gy HISEuce) = 5, elued | |y
s (e (81 = sCeduled ||y

which approaches zeroc as n =+ «, //
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