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ABSTRACT 

 Despite the popular belief that crude oil is a mixture of hydrocarbons that floats on the 

surface of water, tar balls continue to wash up on beaches from the sea floor years after the Deep 

Water Horizon oil spill.  This is because of the rarely studied weathering effects that occur 

during deep sea spills.  While the evaporative weathering process of oil at the water’s surface has 

been studied, no currently implemented models assess the weathering effects of dissolution 

within the water column.  The evaporative effects at the sea surface and the dissolution of 

soluble components within droplets located in the water column leave a heavy fraction of oil that 

may sink.  Laboratory experiments from previous work used hydrocarbon-like chemicals to form 

binary model oils.  In contrast, experiments presented in this work use crude oil amended model 

oil (COA-MO) mixtures where the sinking of heavy fractions of crude oil does occur.  The 

evaporative weathering binary model, when applied to COA-MO mixtures, was able to predict 

the sinking times of oil droplets using physical data of the three individual components of the 

mixture (crude oil, a light volatile, and heavy non-volatile chemical).  The dissolution bonary 

model was able to predict the sinking times of COA-MO mixtures while submerged under water.  

A range of experimentally derived dissolution time constant, K, was obtained which could be 

applied to a broad spectrum of real world oils where the solubility of individual crude oil 

components varies greatly.   
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CHAPTER  1.   Introduction

1.1 Introduction 

 With the ever increasing interest in deep water drilling, methods and models must be 

developed for the tracking of oil after deep sea spills.  Deep sea spills are an inevitable reality 

that must be addressed in order to protect marine wildlife as well as industries that rely on 

healthy aquatic ecosystems.   While surface spills have many models that effectively describe 

real world scenarios, there is a major gap in the current knowledge in the transfer and fate of oil 

in deep water settings (French, D. et al. 1996).  Current models account for evaporation, 

diffusion driven entrainment, sub-surface currents, biodegradation, and other weathering effects; 

but often dissolution, as it contributes to the overall chemodynamics of the oil in the water 

column, is ignored (French, D. et al. 1996 and Thibodeaux, L. et al. 2011). With the Deep Water 

Horizon spill, oil components were found throughout the water column, from the surface to the 

sea floor (Lehr, et al. 2010, [18]).   In previous work (Stevens, C. 2014), evaporation and 

dissolution weathering were studied experimentally.  Evapo-Sink and Solute-Sink process 

concepts were modeled successful using binary or pseudo-component oil mixtures. 

 A binary component model consists of two mixtures.  One mixture contains the light 

species that are volatile and soluble while the other mixture contains the heavy species that are 

essentially non-volatile and of low solubility.  A pseudo-component is an artificially formulated 

chemical substance which represents a large number of hydrocarbons within a specific 

distillation cut temperature range.  Several such artificial formulations, typically four to eight, are 

used to characterize crude oils (French, D. et al. 1996; Fan, T et al. 2002).  A binary component 

model can then be defined based on the pseudo-components.     
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 Previous pure component model oil mixture experiments, which gave reasonable 

agreements in predicting sinking time and oil density with model equations (Stevens, C. 2014), 

will be compared with crude oil amended-model mixtures experiments in this work.  Since 

model oils were used in previous work, the characteristics of crude oils need to be cataloged both 

qualitatively and quantitatively; furthermore, assumptions need to be made and tested regarding 

the volatility and solubility of the real oil model mixtures.      

1.2 Objective 

 The objective of this work is to develop a weathering model for crude oil spills at the sea 

floor, within the water column, and on the sea surface.  Crude oils are composed of numerous 

hydrocarbons.  Each component has properties of volatility and solubility which dictate the way 

weathering processes occur.  The weathering processes of concern are the evaporation of the 

volatile hydrocarbon fraction and dissolution of the soluble hydrocarbon fraction. For certain 

crude oils, the processes may produce a heavy hydrocarbon fraction that may drift with the 

currents and slowly settle downward in the water column or rapidly sink toward the sea floor.  A 

binary component theoretical weathering model developed and verified for the processes, using 

pure chemicals with oil-like properties, will be evaluated using crude oils.  Such a model would 

provide a design tool that simulates the processes of evaporation and dissolution providing a 

means of forecasting the mass fraction produced from a crude oil spill on water or near the sea 

floor.   
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CHAPTER 2. Crude Oils and La Brea Tar  

2.1 Introduction 

 Before any evaporative or dissolution models can be applied to real world crude oil spills, 

the model must be verified by experimentation in the lab.  In this paper, three crude oils are used: 

38º API, 26.5º API, and La Brea California tar. The crude oil will be added to a known quantities 

of a volatile model oil mixture to form a new test mixture.  This mixture will be treated as a 

pseudo-component mixture composed of three substances. For example, a “dead” crude oil, a 

volatile chemical, and a nonvolatile chemical.  A “dead” oil is the term used to characterize de-

gassed oils produced in tanks, typically through a heater-treater process.  In the binary model, 

VA[m3] is the volatile component volume fraction and VB[m3] is the nonvolatile component 

volume.  This mixture of VA and VB is used to calculate the initial value of the state variable, Xo 

used in the theoretical model, where Xo is equal to VAo divided by VB, where VAo is equal to the 

initial volatile component volume.  Similar volumes are used for the soluble and insoluble 

components involved with dissolution.  Each pure or pseudo-component has its own density, 

molecular weight, vapor pressure, and water solubility.  In previous work (Stevens 2014), the 

binary mixtures were composed of two pure component chemicals with known volatile or 

nonvolatile properties as well as known soluble and insoluble properties. This work will be 

extended for use of the binary model to crude oil as a component.   

 Before performing weathering experimentation, the physical properties of the crude oil 

components must be determined.  Measurements of density and estimations of molecular weights 

are needed for modeling the behavior of the mixtures will be determined for each “dead” crude 

oil.  
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2.2 38ºAPI Oil 

 The 38ºAPI oil was obtained from Bosco Field in St. Landry, Louisiana on April 20, 

2011.  This crude oil has a hazardous rating equivalent to gasoline and has been stored in a one 

gallon gasoline container.  The sample was taken from the on-site heater-treater assembly and 

reported to have no vapor chemicals present in the sample.  

For crude oil the specific gravity can be calculated using equation 1 [6]. 

𝐴𝑃𝐼 𝑔𝑟𝑎𝑣𝑖𝑡𝑦 ° =
141.5

𝑆.𝐺.
− 131.5                                                        1) 

Where: 𝐴𝑃𝐼 𝑔𝑟𝑎𝑣𝑖𝑡𝑦 °= the reported API gravity (in this case 38°), S.G. = specific gravity of the 

oil.  Assuming the specific gravity of water is 1.00 [g/mL], the S.G. of the oil is the relative 

density of the oil, ρoil [g/mL].  To ensure the API rating of the crude oil had not changed during 

its storage time, the density of this crude oil was measured directly using an 11.5mL pycnometer; 

see Appendix A for measurement data and procedure.  Over eight trials the average density of 

the water (the experimental standard) was 1.009 ± .002 g/mL with an error of 0.2%.  The 38ºAPI 

oil was measured resulting in an average density of 0.82 ± .01 g/mL with an error of 1.7%.  This 

is near the calculated density of 0.835 g/mL from equation 1 which will be used in the model 

calculations.   

 The molecular weight of the oil was then determined by correlations based on the API of 

the crude oil. The correlation for molecular weight is given by equation 2 (Whitson, C.H. 

1983.and Riazi, M.R. et al. 1980): 

𝑀. 𝑊. =
(𝐾𝑤𝑐∗ρ𝑜𝑖𝑙

.84573)6.58848

4.5579
                                                               2)   
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Where:  M.W. = average molecular weight of the mixture [g/mol],  Kwc= Watson 

Characterization factor [unitless], ρoil= density of the oil [g/mL].  For 38ºAPI oil, the Watson 

Characterization factor (Kwc) was selected from tables as being 11.8 (Watson,et al.1933 and 

Watson,et al.1935)  This resulted in a molecular weight of 198 g/mol.   

 The surface tension (σ dynes/cm) was estimated to be 30 dynes per centimeter for all 

COA-MO mixtures used.  From previous work (Stevens, C. 2014), the surface tension measured 

for pure component binary mixtures had very large errors resulting in nearly 30% differences.  

However, the value centers on 30 dynes/cm and the overall contribution of the surface tension to 

model predictions is minimal.   For this reason 30 dynes/cm with be used in modeling the 

pseudo-component binary mixtures with real oils. 

2.3 26.5ºAPI Oil 

 The 26.5ºAPI oil was also obtained from Bosco Field in St. Landry, Louisiana on April 

20, 2011.  This oil also has a hazardous rating equivalent to gasoline and has been stored in a one 

gallon gasoline container. Samples were taken from a separate on-site heater-treater assembly 

and reported to have no vapor chemicals in the sample.  Equations 1, 2, and similar correlations 

used for the 38ºAPI oil can be used to determine the physical properties of the 26.5ºAPI oil.  The 

measured average density of the 26.5ºAPI oil is 0.903±.002 g/mL with an error of 2%.  See 

Appendix A for data.  This is near 0.896 g/mL calculated from equation 1.  Using equation 2 and 

the Watson Characterization factor (Kwc) of 11.5 (Watson, et al.1933 and Watson, et al.1935), 

the calculated molecular weight of 26.5ºAPI oil was 163g/mol (Whitson, 1983.and Riazi, et al. 

1980). 
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2.4 Tar 

 The tar used in these experiments was obtained from the La Brea tar pits in Los Angeles, 

California on July 9, 2014.  The tar samples were obtained from a water runoff system during 

routine clearing maintenance of the pump system.  Measurements with the pycnometer were 

again performed to obtain the density of the tar; it yielded inconsistent results ranging from 0.85-

0.97 g/mL.  Previous observations demonstrate that the density of this tar is great enough that a 

water layer exists on the surface of tar pools.  The inconsistent density measurements with the 

pyconmeter were likely due to small air pockets trapped within the tar as it was injected into the 

pycnometer.  Therefore, to better measure the density of tar, standard displacement methods 

were employed using a 50mL volumetric flask, deionized water, a syringe, and a large bore 

needle (see Appendix A for procedure).  The measured density of tar by displacement was 1.002 

g/mL which yielded 9.75ºAPI for tar.  This La Brea tar which is a coal tar was compared to the 

coal tar analyzed in Hambly et al. 1998.  Using the data from Hambly et al. 1998, it is estimated 

the molecular weight of the La Brea tar was 312.5g/mol. 

 Table 1 shows the physical properties of vapor pressure, density, and solubility for the 

pure components and the 38ºAPI oil, 26.5º API oil, and tar used in weathering experiments.  For 

initial modeling purposes it is assumed that the crude oil components contribute to both the 

volatile and nonvolatile fraction in evaporation of the binary mixture.  In dissolution it is also 

modeled as both the soluble and insoluble fraction.  This assumption is tested against the 

experimental results.  Also, in Table 1 are the molar densities of each substance.  CA is the 

concentration of the volatile and soluble component and CB is the concentration of the 

nonvolatile and insoluble component.  The reader should notice the last two columns.  Column 8 
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list the single substances used for component A while column 9 lists the two substances used for 

component B.   

Mixture and 

Symbol   

 

Species: 

Chemical or 

Natural Oil 

Mol. 

Wt. 

[g/mol] 

Mass 

Density 

[g/mL] 

Vapor 

pressure 

@25ºC 

[atm] 

Solubility 

in water 

@25ºC 

[mg/L] 

Molar 

Density 

[mol/m3] 

Conc. CA 

[mol/m3] 

Conc. CB 

[mol/m3] 

Crude Oil+ODB 

Volatile or 

Soluble  A 

Benzene 78 .87 .132 1800 11221 11221 N/A 

Cyclohexane 84 .80 .128 55 9256 9256 N/A 

Hexane 86 .66 .202 9.5 7647 7647 N/A 

Nonvolatile or 

Insoluble  B 

*(UK= unknown) 

Tar 313 1.002 UK UK 3206 N/A 12055 

38 API 193 .84 UK UK 4325 N/A 13175 

26.5 API 163 .90 UK UK 5494 N/A 14344 

ODB 147 1.30 .002 140 8850 N/A N/A 

 

 

 

 

 

 

 

Table 1. Physical and Chemical Properties of Model and Natural Oils Used in Experiments. 
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CHAPTER 3. Evaporative Weathering 

 3.1 Introduction  

 Crude oils can be composed of thousands of different components.  These components 

can be separated into the SARA fractions of oils: saturates, aromatics, resins, and asphaltenes 

(Tianguang Fan, et al. 2002). Typically the saturates and aromatics make up a large portion of 

light hydrocarbons with high vapor pressures while the resins and asphaltenes have lower vapor 

pressures and lower solubility in water.  For a surface spill of oil on water, the dominating 

weathering process is evaporation (French, D. et al. 1996).  The lighter, higher vapor pressure 

components evaporate off the oil slick into the atmosphere leaving the heavier components 

behind (Speight, J. 1991).  Should enough volatile material evaporate off the slick, the remaining 

oil may reach a density greater than the water lose its buoyancy resulting in sinking droplets 

(Wilson et al. 1986).  In previous work (Stevens, C. 2014), binary mixtures of pure components 

were modeled and verified for the evaporative process. The binary pure-component Evapo-

Sinking model was able to predict density changes of the slick and drop times of oil droplets 

accurately.  In this study the model is extended to pseudo-component binary mixtures with three 

components where a mixture is composed of known volatile mixture of two components and an 

additional crude oil component. The crude oil component can be modeled as either contributing 

to the volatile fraction or nonvolatile fraction.   

3.2 Theoretical Model 

 The Evapo-Sink experiments simulate a sea surface slicks.  It will follow the behavior of 

sinking droplets where only one species (benzene, cyclohexane, or hexane) is treated as the 

volatile component A.   Component B consists of two substances: ODB plus the crude oil 
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species.  Therefore, the A and B mixture can be considered a pseudo-binary system.  See 

Stevens, 2014 or Appendix B for details on the basis for the Evapo-Sink Model.  The equations 

used are: 

Kt =  (𝑋𝑜 –  X (t))  + [(
𝐶𝐵

𝐶𝐴
) ln (

𝑋𝑜

X(t)
)]                                                    3) 

𝐾 =  (
𝑆

𝑉𝐵𝑜
) [(

𝑘𝐴𝛾𝐴𝑜𝑝𝐴
∗

RT𝐶𝐴
)  + (

𝑘𝑊𝜌𝑤
∗

𝑀.𝑊.𝐴𝐶𝐴
)]                                                         4)  

Where:  K=overall weathering coefficient [1/s], 𝑡=weathering time of the droplet, Xo= VAo/VBo 

(initial state variable), X(t)=VA(t)/VBo (state variable at time equal to t), C=molar density [mol/m3] 

of either A or B, S= surface area of slick [m2], kA=air side mass transfer coeffiecient [m/s], 

γAo=activity coefficient of species A, pA
*=vapor pressure [atm] of component A, R=gas constant 

[m3*atm/mol*K], T=temperature [K], kW=water side mass transfer coefficient [m/s], 

ρw
*=solubility of A in water [g/L], M.W.A=molecular weight of species A [g/mol].  Equation 3 is 

the main equation for tracking the density of the oil slick as a function of time with the state 

variable X(t).  With initial volumes of each component in the mixture, Xo as well as CA, and CB 

are known at the starting time of the experiment at t=0.   

 Equation 4 gives the dissolution time constant in terms of volatile component properties 

on the water side and air side of the slick.  Since evaporative weathering is dominated by 

evaporation on the air side of the slick (Thibodeaux, et al. 2011), we can assume the water side 

MTC is negligible, reducing Equation 4 reduces to  

     𝐾𝑒  =  (
𝐾𝐴

ℎ𝑜
) (

𝛾𝐴𝑜𝑝𝐴
∗

RT𝐶𝐴
)                                                                 5) 

 Where Ke is the evaporative rate constant [s-1], ho is equal to the slick thickness of a 

surface water spill and KA is equal to the overall mass transfer coefficient on the air side. 
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   In order to model the time, t = τ, of a droplet sinking from the surface, the value of the 

state variable of the oil droplet at the critical density is needed.  It describes the density in terms 

of the state variable at which the droplet has lost enough light, volatile material to be heavy 

enough to sink.  It is given by equation 6.  

    𝑋∗  =  (𝜌𝐵
∗  −  𝜌𝑐) / (𝜌𝑐  −  𝜌𝐴

∗ )                                                     6)  

Where: X*=volume fraction at critical density, ρB
*= density of non-volatile component [g/mL], 

ρA
*=density of volatile component [g/mL], and ρc=critical density [g/mL] and 

𝜌𝑐 =
6𝜎

𝑔
∗ (

𝜋

6𝑉𝐷
)

(
2

3
)

+ 𝜌𝑤                                                           7) 

Where: σ= oil-water interfacial tension [dyne/cm], g= acceleration due to gravity [cm/s2], VD= 

volume of the droplet [m3], ρw= water density.  Substituting the term X* into Equation 4 yields: 

 𝐾𝑒τ =  (𝑋𝑜 – 𝑋∗)  +  [(
𝐶𝐵

𝐶𝐴
) ln (

𝑋𝑜

𝑋∗)]                                        8) 

 Equations 5-8 are used as follows with experimental data and known parameters.  The 

Sessile drop formula, Equation 7, provides the ρc value needed to calculate the critical state 

variable X* in Equation 6.  This is the numerical value of the state variable when oil droplets 

achieve a density of the surrounding water. At this time the droplet may break off from the slick 

and sink.  This X* value is dependent upon surface tension (σ) and droplet volume (VD).  The 

value of the air side MTC, KA, is the one adjustable parameter in Equation 5.  The value of the 

slick thickness, ho, is obtained from VBo/S as given in Equation 4 or Appendix C.  Experimental 

data is fit to the model, Equation 8, to obtain time constant, K.  It can be used with Equation 5 to 

estimate the overall mass transfer coefficient, KA, for each mixture.   
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3.3 Experimental Method 

 For the evapo-sinking process, experiments were conducted with either one benzene, 

hexane, or cyclohexane as the volatile components and ODB, combined with either 38º, 

26.5ºAPI oil, or the tar as non-volatile components.  Values of vapor pressure for pure 

component chemicals listed in Table 1 were taken from Green, et al. 2008.  The volatile 

components were chosen based on previous work in our laboratory (Stevens 2014) where they 

were successfully modeled as binary mixtures which the non-volatile fraction was only ODB.  

The volume of each substance was chosen to make the initial mixture density fall within the 

0.91-0.99 g/mL range.  Although ODB is semi-volatile, its vapor pressure is much lower than the 

volatile species used and can be considered a non-volatile component (Stevens, 2014).  Mixtures 

were prepared in 100mL volumetric flasks and assumed to have ideal mixing behavior; the 

volume fractions are used to obtain the total mixture volume.  These mixtures are listed in 

Appendix C.  

 The evapo-sink test apparatus used were two 36L cylindrical jars filled with fresh water 

and placed under a laboratory fume hood with an air velocity of 80 [ft/s].  Non-detect readings 

from the anemometer placed at the water surface indicated air directly above the oil slick is not 

well circulated and near stagnant.  Between experiments the jars were cleaned of residual oil 

using toluene, allowed to dry, and refilled with fresh water.  The fresh water was allowed to sit 

overnight and reach room temperature (27 ± 1 °C or ~300K).  Initial slick thicknesses were 

determined by photographing the surface area coverage of a slick occupied by a known volume 

of oil mixtures: see experimentally details in Appendix C).  Sinking times were recorded with a 

stop watch.  The time period between the times the oil mixture was poured to the time the droplet 

fell defines τ [min], the sinking time.  A volumetric pipette was used to obtain a sample the oil 
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on the bottom of the jar.  The density of the oil was measured using a 1mL volumetric flask and 

a Mettler Toledo (AB104) balance.  A total of 54 Evapo-sink experiments were performed using 

nine different COA-MO mixtures.  The observed τ and oil droplet density were recorded for each 

experiment.  

3.4 Results 

 The following describe the observed evapo-sinking process.  At the beginning of an 

experiment, 50mL of oil mixture were poured onto the water surface to form a floating oil slick.  

As the evaporative weathering process proceeded and light volatiles were lost, the slick began to 

sag downward until the oil’s critical density was reached.  When the interfacial tension between 

the oil and water was overcome and the oil droplet broke off from the surface under the slick,  

the oil droplet settled to the bottom of the jar.  Figures 1-A,B,and C show the first oil droplet 

forming and cleaving from the surface slick. This is the expected behavior of the oil during the 

evaporative weathering process.  Table 2 contains the measured and calculated parameters for 

each experiment.  

 

Figure 1-A.  Initial 

slick of 

benzene/tar/ODB 

Figure 1-B.  Slick sags 

down after lighter volatile 

components evaporate 

Figure 1-C.  Droplet 

breaks off from slick and 

falls to bottom of jar. 
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 Volatile benzene, non-volatile tar and ODB mixtures yielded average sinking times of 

10.6 minutes with an 8% error.  Volatile cyclohexane and hexane mixtures with the same non-

volatile components yielded average sinking times of 6.5 and 6.8 minutes with 13% and 6% 

error respectively.   

 Volatile benzene, non-volatile 38API, and ODB mixtures yielded an average sinking time 

of 22 minutes with an error of 3%.  Volatile cyclohexane and hexane mixtures with the same 

nonvolatile components yielded average sinking times of 15 and 8 minutes with 7% and 9% 

error respectively. 

ROA-MO mixtures # of 

trials 

Initial Xo Initial ρ of slick 

[g/mL] 

Drop time 

[min] 

Critical ρ [g/mL] KA [m/min] 

Mass tr. coeff. 

  Measured Calculated Measured Measured Model fit 

Benzene/tar/ODB 6 2.33 0.97 10.6 ± 0.9 1.029 ± .003 .088 

cyclohexane/tar/ODB 6 1.22 0.97 6.5 ± 0.9 1.015 ± .009 .05 

hexane/tar/ODB 6 1.00 0.92 6.8 ± 0.4 1.05 ± .04 .084 

Benzene/38API/ODB 6 0.30 0.98 21.5 ± 0.6 1.016 ± .007 .043 

cyclohexane/38API /ODB 7 0.67 0.95 15 ± 1 1.04 ± .01 .062 

hexane/38API /ODB 6 0.67 0.90 8.3 ± 0.6 1.048 ± .007 .086 

Benzene/26.5API/ODB 6 0.67 0.97 13 ± 1.5 1.012 ± .007 .08 

cyclohexane/26.5API /ODB 6 0.67 0.97 8.9 ± 0.9 1.04 ± .01 .062 

hexane/26.5API /ODB 5 0.67 0.92 5.6 ± 0.4 1.042 ± .009 .08 

Table 2: Measured and Model-Estimated Parameters for Crude Oil Amended –Model Oil 

Mixtures Evaporation-Sinking Experiments. 
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 Volatile benzene, non-volatile 26.5ºAPI, and ODB mixtures yielded an average sinking 

time of 13 minutes with an error of 11%.  Volatile cyclohexane and hexane mixtures with the 

same nonvolatile components yielded average sinking times of 9 and 6 minutes with 10% and 

7% error respectively.  Model fit calculations of, KA, the overall evaporative MTC all fell within 

0.04-0.09 [m/min] and are of the same order of magnitude; see Table 2.   

 In all cases hexane, with the highest vapor pressure, had the shortest drop times.  Benzene 

had the longest drop times and a low vapor pressure.  Likewise, cyclohexane, except for the case 

where tar was present in the mixture, also had long drop times; it also has low vapor pressure.  

See Table 1 for vapor pressure values.  The value of the critical droplet density range from 1.01 

to 1.05 [g/mL] and appear independent of the density of the non-volatile oil or tar.  

 The solid lines in Figures 2-4 show the calculated density of the oil slick over time using 

theoretical model equations 5 and 8.  A single model calculation was performed for each set of 

experiments using its average KA value appearing in Table 2.  The recorded data points for each 

graph fall in line with the projected terminal time and density predicted by the model.  A single 

line traces the slick density progression with the dissolution time, [t, ρ(t)].  It represents the 

average behavior of the data points in each experiments.    
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3.5 Discussion 

  Table 3 compares the KA value of COA-MO mixtures from this work to the previous 

work of Stevens (2014).  In previous work, binary pure component mixtures of benzene/ODB, 

cyclohexane/ODB, and hexane/ODB were used.  Experimental mixtures used in this work are a 

combination of the binary pure component mixtures plus a crude oil species.    

 

Mixture KA [m/min] 

Model fit 

Mixture             

*Stevens,2014 

KA [m/min]          

Model Fit from 

*Stevens, 2014 

:Benzene/tar/ODB .088 Benzene/ODB .043 

cyclohexane/tar/ODB .05 Cyclohexane/ODB .062 

hexane/tar/ODB .084 Hexane/ODB .06 

Benzene/38API/ODB .043 Benzene/ODB .043 

cyclohexane/38API /ODB .062 Cyclohexane/ODB .062 

hexane/38API /ODB .086 Hexane/ODB .06 

Benzene/26.5API/ODB .08 Benzene/ODB .043 

cyclohexane/26.5API /ODB .062 Cyclohexane/ODB .062 

hexane/26.5API /ODB .08 Hexane/ODB .06 

 

    The KA values of this work compared to previous work of Stevens (2014) are the same 

order of magnitude and in some cases exact matches.  The KA value of this work range from 

0.043-0.088 [m/hr].  In previous work (Stevens, 2014), the KA values range from 0.043-0.062 

[m/hr]. This supports the idea that crude oil mixtures may be modeled as a binary component 

system.  However, this similarity in KA values may be attributed to the real oil components being 

“dead” oils (i.e. oils that have no volatile components).  The 38º and 26.5ºAPI oils were reported 

TABLE 3: Comparison of binary model-extracted 

evaporation MTCs KA values for model oil mixtures.  
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to be free of volatile components upon receiving the sample material; and the tar, which had 

been exposed to the atmosphere for an unknown but extremely long period.  Therefore, it could 

safely assumed to be without significant volatile components.  In this case, modeling the pseudo-

component crude oil as contributing to the non-volatile volume fraction is the logical choice.  

With this in mind, the experiments performed were similar to that of Stevens (2014) in that there 

was only one volatile component involved which drives the evaporative weathering process.  

Therefore, the similarities in the KA values for both sets of experiments can be attributed to the 

same volatile component being present and evaporating off the surface slick.  Likewise, the small 

differences in the KA values may be attributed to either experimental constraints of the apparatus 

or interactions between the non-volatile “dead” crude oil component and the hydrocarbon-like 

chemicals used exclusively by Stevens (2014).  The results presented indicate the two “dead” 

crude oils and tar behave as non-volatile constituents within the nine COA-MO mixtures used in 

the evapo-sink experiments.   

3.6 Conclusion 

 COA-MO and model oil mixtures were modeled using a volatile volume fraction and a 

non-volatile volume fraction.  Three know volatile hydrocarbons (benzene, cyclohexane, and 

hexane), one known non-volatile hydrocarbon (ortho-diclorobenzene), and three crude oils (tar, 

38API, and 26.5API) were used. The experimental results were similar specifically in the 

qualitative visual aspect of the evapo/sinking process but also in the numerical convergence of 

the measured and model-produced parameters. The theoretical model was able to predict the 

weathering effects of evaporation of surface slicks when the crude oils were treated as non-

volatile components.  The overall mass transfer coefficients were comparable to binary model oil 

overall mass transfer coefficients presented in previous work (Stevens, 2014).  This study 



 
 

18 

 

demonstrated the physico-chemical properties of crude oil mixtures within the framework of a 

binary system model.  This in turn implies that multi-component systems of crude oils, 

containing thousands of individual chemicals, may be modeled to provide an estimate of oil 

fractions produced and sinking times of droplets from an oil slick, however further work is 

needed.  Crude oils behave similarly to pure chemicals used as model oils for the 

evaporation/sinking process, provided they are part of the non-volatile component of the binary 

system. This work focused on crude oils that had no significant volatile components; whether it 

may be applied to crude oils with volatile components is an open question.   
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CHAPTER 4. Dissolution of COA-MO mixtures. 

4.1 Introduction 

 Dissolution of the solutes from within the oil droplets is an important weathering factor 

when considering deep sea spills (Thibodeaux, 2012; Federal Interagency Solutions Group, 

2010).  As oil droplets travel up the water column towards the sea surface, soluble components 

may dissolve into the surrounding water through the droplet’s outer surface area.  This causes the 

density of the oil droplet to increase, which in turn slows the velocity of the droplet moving 

towards the sea surface.  The density may then continue to increase to a point where the droplet 

becomes neutrally buoyant with the surrounding fluid.  Eventually, if the density increases 

further, the droplet will begin to sink downward in the water column and move toward the sea 

floor.  Smaller droplets of oil have a longer residence time submerged in the water column due 

the slow rise velocity with respect to droplet diameter (Welty et al., 2009). These smaller oil 

droplets are also more susceptible to dissolution weathering because the rate of solubilization 

will increase with the larger surface area to volume ratio (Thibodeaux, 2012).  For these reasons 

it is suspected that plumes of oil observed at depth after the Deep Water Horizon spill in 2010 

are due to the use of dispersants (Federal Interagency Solutions Group, 2010).  These dispersants 

minimized the interfacial tension of the oil at the spill causing oil droplets to break up into 

smaller droplets.  These droplets with small diameters, slow rise velocities, and large residence 

time were able to dissolve to a point that they remained suspended in the water column 

indefinitely (Federal Interagency Solutions Group, 2010).    

  In order to accurately track oils after a deep sea spill occurs, a model must be able to 

predict the dissolution weathering process of oil droplets within the water column.  In previous 

work (Stevens, 2014) a solute-sink model was able to predict the behavior of binary model oils 



 
 

20 

 

submerged in water.  The solute-sink model presented in the following sections will highlight 

key factors and parameters needed to predict the dissolution of model oils containing a dead 

crude oil as a component of the mixtures undergoing dissolution. 

4.2 Theoretical Model 

 The real model oils used in these experiments consist of a mixture of three substances: a 

soluble chemical, an insoluble chemical, and a crude oil. Tertiary mixtures were made 

volumetrically with VA, the soluble component which changes with respect to time, and VB, the 

insoluble volume component, which remains constant with time. Both cases assume ideal mixing 

rules. The crude oil components of tar, 38ºAPI and 26.5ºAPI oil may be modeled as either a part 

of the soluble or insoluble component of the binary mixture.  Initially, the real oil components 

are modeled as contributing to the insoluble volume.  VA plus VB may be added to yield the total 

droplet volume V(t).  The sum of VA(t=0) and VB gives the initial volume, Vo.  The state variable 

of the binary system, X(t), is defined as the ratio of the VA(t) to VB at any time “t”.  The 

concentrations of the soluble species A and the insoluble species B in the droplet are: ρA(t) = (ρA
* 

X(t))/(X(t)+1) and ρB(t) = ρB
*/(X(t)+1).  The ρA

* and ρB
* are the density of the components A and 

B respectively.  As X(t) decreases with time the concentration of A in the oil droplet will 

decrease until the point that the mixture is of the same density as water, ρw.  At this point the 

droplet will be neutrally buoyant; and should it be subject to further dissolution, the droplet will 

sink.  As the concentration of A in the submerged droplet decreases, the X(t) will decrease from 

X(t=0) = Xo to X(t=τ) = X*, where τ is the drop time and X* is the soluble to insoluble volume 

ratio of the droplet at neutral buoyancy.  Mass lost from the droplet will also decrease the 

diameter and surface area of the droplets with respect to time.  These changes can be assessed 

using the state variable X(t) as follows:  d(t) =[(X(t)+1)/(Xo+1)]1/3do and  
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A(t)=πd0
2[(X(t)+1)/(X(t)+1)]2/3, where do is the initial droplet diameter and A(t) is the surface 

area that changes with respect to time.  Stevens (2014) further develops the model (Appendix D) 

where the model equations are: 

    𝐾𝑠 ∗ 𝜏 = ∫
(𝑋(𝑡)+1)

(
1
3

)

𝑋(𝑡)
𝑑(𝑋(𝑡))                                                                   9) 

𝐾𝑠 =
6∗𝐾𝑊∗(𝑋𝑜+1)

(
1
3

)

𝐾𝑜𝑤∗𝑑𝑜
                                                                             10) 

Equation 9, when integrated for an experimental value of τ will yield Ks, the dissolution rate 

constant [hr-1] for each mixture.  Theoretically, these overall dissolution time constants, Ks, are a 

function of the overall mass transfer coefficient (KW), solute solubility (ρw
*), and the molecular 

weight (M.W.) of the solute.  The other terms including droplet diameter (do) vary little between 

experiments.  Values of KW, partitioning coefficient (Kow), and K are assumed constant. 

4.3 Experimental Method 

 Nine mixtures containing the soluble chemicals (benzene, toluene, and 1-clorobutane), 

insoluble chemicals (ODB and 1-cloronaphthalene), and crude oils (tar, 38ºAPI, and 26.5ºAPI 

oil) were used.  These were chosen based on their properties listed in Table 4. The crude oils are 

“dead” oils and have insignificant vapor pressure.  UK means unknown value, but is assumed 

insignificant.  The mixtures were made by combining the components on a volume basis 

producing a droplet with density between 0.97 and 0.99 g/mL.  The volume fractions for each 

mixture appear in Table 5.  Initial densities were designed to be near 1.00g/mL to ensure the loss 

of a small quantity of A would achieve a neutral droplet density quickly with a short dissolution 

time τ.  The initial volume fractions of each component in the mixture, the initial state variable 
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Xo, and the density and diameter of the droplet can be calculated for each mixture. The data is 

reported in Table 6.  

  

 

  

 

 

 

 

 

 

 

 

   Component 
V.P. 

[atm] 

Solubility 

[mg/L] 

M.W. 

[g/mol] 

denisity 

[g/mL] 

 

benzene 0.142 1800 78.11 0.876 

toluene 0.043 470 92.14 0.864 

1-clorobutane 0.135 370 92.57 0.89 

 ----------------------- --------- ----------------- ------------- -------------- 

 

ODB 0.002 156 147.01 1.301 

1-cloronaphthalene 0.00004 17 162.62 1.194 

tar UK UK 312.5 1.002 

38 API UK UK 193 0.835 

26.5API UK UK 163 0.896 

  Component and Volume percentage 

Mixture:  benzene toluene 1-cloroB ODB 1-cloroN tar 26.5API 38API 

Benzene/ODB/Tar  50% 0 0 13% 0 37% 0 0 

Tolene/1-cloroN/Tar  0 40% 0 0 18% 42% 0 0 

1-cloroB/1-cloroN/Tar  0 0 55% 0 25% 20% 0 0 

Benzene/ODB/26.5API  35% 0 0 25% 0 0 40% 0 

Tolene/1-cloroN/26.5APIAPI  0 40% 0 0 37% 0 23% 0 

1-cloroB/1-cloroN/26.5APIAPI  0 0 40% 0 34% 0 26% 0 

Benzene/ODB/38API  40% 0 0 30% 0 0 0 30% 

Tolene/1-cloroN/38API  0 29% 0 0 41% 0 0 30% 

1-cloroB/1-cloroN/38API  0 0 32% 0 38% 0 0 30% 

TABLE 4: Physical Properties of Components for Dissolution Weathering TABLE 4: Physical Properties of Components for Dissolution Weathering TABLE 4: Physical Properties of Components for Dissolution Weathering 

TABLE 5: Volume Percentage of Individual Components of COA-MO Mixtures 



 
 

23 

 

 

 

 

 

 

 

 

The experiments were conducted in 45L tanks filled with 

fresh water. The water was allowed to reach room 

temperature overnight after cleaning.  An apparatus 

composed of a metal frame that retained an inverted petri 

dish and a glass cone to catch falling droplets (see Figure 5)  

was used to keep the oil droplet submerged under water and 

off the surface during the experiment.  Droplets of volume 

10mL-20mL were injected using a 20mL polyethylene 

syringe and tubing under the petri dish.  An Aqueon 

Circulation Pump 500 (500gal/hr) was placed on the bottom 

left-hand side of each tank and secured with Velcro to 

ensure that similar circulation patterns occurred in all tanks. A video camera was set up to record 

the times, τ, at which the sinking droplets occurred.  After the droplets fell, the volumes were 

Tar 
XO 

ρ0 

[g/mL] 

Vo 

[mL] 

do 

[cm] 

benzene/ODB/tar 1.00 0.978 20 3.37 

toluene/1-cloronaphthalene/tar 0.67 0.981 10 2.67 

1-clorobutane/1-cloronaphthalene/tar 1.22 0.988 15 3.06 

38API     

benzene/ODB/38API 0.67 0.991 15 3.06 

toluene/1-cloronaphthalene/38API 0.41 0.991 15 3.06 

1-clorobutane/1-cloronaphthalene/38API 0.47 0.989 15 3.06 

26.5API     

benzene/ODB/26.5API 0.54 0.990 15 3.06 

toluene/1-cloronaphthalene/26.5API 0.67 0.993 15 3.06 

1-clorobutane/1-cloronaphthalene/26.5API 0.67 0.995 15 3.06 

TABLE 6: Initial conditions of COA-MO mixtures 

Figure 5: Apparatus for Dissolution 

Experiments 
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obtained and samples were retrieved from the glass cone and density measurement were taken 

using a 1mL volumetric flask and a Mettler Toledo (AB104) balance.   

4.4 Results 

 Droplets produced from the nine COA-MO 

mixtures fell at dissolution times varying from 23 to 151 

hours.  A droplet sinking event is captured and appears in 

Figure 6.  From the experimental time, τ, for falling 

droplets, the overall dissolution time constant, Ks, was 

calculated using the model Equation 9.  Key measured and 

calculated results in the model appear for each individual 

mixture were the crude oil was modeled as insoluble in 

Table 7. 

 

 Xo X* 
ρo 

[g/mL] 
time 
[hrs] 

Ks 

[1/hr]  
Tar       

benzene/ODB/tar 1 0.64 0.978 56± 9 0.0096  

toluene/1-cloronaphthalene/tar 0.67 0.44 0.986 151 ± 17 0.0032  

1-clorobutane/1-cloronaphthalene/tar 1.22 0.99 0.988 77 ± 4 0.0034  
38API       

benzene/ODB/38API 0.67 0.55 0.991 24 ± 2 0.0095  

toluene/1-cloronaphthalene/38API 0.41 0.31 0.991 94 ± 17 0.0029  

1-clorobutane/1-cloronaphthalene/38API 0.47 0.32 0.989 73 ± 4 0.0057  
26.5API       

benzene/ODB/26.5API 0.54 0.41 0.990 41 ± 5 0.0075  

toluene/1-cloronaphthalene/26.5API 0.67 0.59 0.993 30 ± 3 0.0049  

1-clorobutane/1-cloronaphthalene/26.5API 0.67 0.59 0.995 23 ± 6 0.0064  
 

Figure 6:  Psuedo-component 

crude oil droplet about to sink into 

cone shaped vessel due to 

dissolution 

TABLE 7: Dissolution Data with the Crude Oil as Insoluble Component in the Model Mixture.  
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Being “dead” crude oil it is reasonable to assume this material is in fact a legitimate insoluble 

component in the mixture.  It is treated so in the model and the dissolution time constant, Ks, is 

obtained for each experiment. The results appear in Table 7.  However, there is no 

experimentally measurable evidence to demonstrate it is non-soluble.  Mathematically it may 

also be modeled as a soluble material and be included as a part of component A even though it 

likely has zero vapor pressure.  This has been done and the parameter, Ks, was obtained for each 

mixture where the crude oil was modeled as a soluble component.  Calculated results were also 

generated using the same experimental data but assuming the crude oil was a soluble component 

in the model equation. They appear in table 8.  

 

 In both Tables 7 and 8, the state variable, X, is seen to decrease from the initial value, Xo, 

to X*. This indicates that dissolution of the soluble fraction has occurred, at which point droplet 

density exceeds that of water.   

 XO X* 

ρo 

[g/mL] 

Time 

[hrs] 

Ks 

[1/hr]  

Tar       

benzene/ODB/tar 6.69 4.27 0.978 56± 9 0.0145  

toluene/1-cloronaphthalene/tar 4.56 2.96 0.981 151 ± 17 0.0047  

1-clorobutane/1-cloronaphthalene/tar 3.00 2.42 0.988 77 ± 4 0.0043  

38API       

benzene/ODB/38API 2.33 2.12 0.991 24 ± 2 0.0058  

toluene/1-cloronaphthalene/38API 1.44 1.29 0.991 94 ± 17 0.0016  

1-clorobutane/1-cloronaphthalene/38API 1.63 1.42 0.989 73 ± 4 0.0026  

26.5API       

benzene/ODB/26.5API 3.00 2.65 0.990 41 ± 5 0.0047  

toluene/1-cloronaphthalene/26.5API 1.70 1.56 0.993 30 ± 3 0.0039  

1-clorobutane/1-cloronaphthalene/26.5API 1.94 1.80 0.995 23 ± 6 0.0046  

TABLE 8: Dissolution Data with the Crude Oil as Soluble Component in the Model Mixture.  
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 Table 9 show the values of Ks for mixtures containing the individual pure component 

soluble species in the COA-MO mixture as well as the Ks value for the combined soluble 

components.  These numerical values of Ks differ somewhat as the crude oil component is 

modeled as contributing to either the soluble or insoluble fraction. 

 

Soluble 

Component  Crude as SOLUBLE Crude as INSOLUBLE 

  Ks [1/hr] COV Ks [1/hr] COV 

Benzene  0.008 ± 0.004 53% 0.009 ± 0.001 11% 

Toluene  0.003 ± 0.001 40% 0.004 ± 0.001 25% 

1-clorobutane 0.004 ± 0.001 24% 0.005 ± 0.001 25% 

Overall:  0.005 ± 0.004 67% 0.006 ± 0.002 41% 

 

4.5 Discussion 

 For mixtures containing benzene, the coefficient of variance (COV) of Ks is smaller when 

the dissolution is modeled with the crude oil component contributing to the insoluble fraction.  

However, toluene has a smaller COV when the crude oil is modeled as contributing to the 

insoluble fraction.  Mixtures containing 1-clorobutane have nearly identical COV values when 

the crude oil is modeled as contributing to either the soluble or insoluble fraction.  Overall, when 

the solute values are combined, the crude oil modeled as contributing to the insoluble fraction 

has a lower COV.  In summary, there is no clear outcome as to whether the crude oil should be 

modeled as contributing to the soluble or insoluble fraction in the mixture.  The truth likely lies 

somewhere in between.   

TABLE 9: Dissolution Time Constant, Ks, Data with the Crude Oil as Soluble or Insoluble.  
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 Tables 7, 8, and 9 have large deviations and COVs associated with the overall average of 

the dissolution time constant, Ks.  This is largely due to the difference in solubility of the 

hydrocarbon components of benzene, toluene, and 1-clorobutane, and to a lesser extent the crude 

oils.  Benzene has a much greater solubility (illustrated in table 6) than the other two soluble 

hydrocarbons.  In fact, the solubility of the soluble hydrocarbons is inversely proportional to the 

partitioning coefficients used, as indicated in Equation 10.  The solubility of benzene, toluene, 

y = -1.2123x + 1.2557
R² = 0.9967

y = -1.3463x + 1.9241
R² = 0.9974

y = -1.4102x + 2.2583
R² = 0.9975
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Figure 7: Crude Oil as Insoluble

TAR 26.5API 38API Linear (TAR) Linear (26.5API) Linear (38API)

y = -1.3267x + 2.2343
R² = 0.965

y = -1.4685x + 2.8386
R² = 0.9972

y = -1.4609x + 2.748
R² = 0.9981
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Figure 8: Crude Oil as Soluble
TAR 26.5API 38API Linear (TAR) Linear (26.5API) Linear (38API)

Figures 7 and 8. ln(K) vs. ln(Kow) 
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and 1-clorobutane are inversely proportional to the oil-to-water partitioning coefficient, Kow.  

Values for the hydrocarbons are 135, 490, and 355 [m3/m3] respectively (Sangster, 1989).   

Figures 7 and 8 graph the logarithmic relationship between the ln(Ks) and ln(Kow); this procedure 

is consistent with their theoretical functionality on Equation 10 and is appropriate for the crude 

oil modeled as either an insoluble or a soluble component of the mixture. Both figures show an 

increase in the value Ks with decreasing value of Kow as suggested by the theory.  In all cases, the  

slope of the linear fit for the data is nearly identical.  However, the values of Ks overlap 

regardless of whether the crude oil is modeled as a soluble or insoluble fraction.  

  Taking the larger deviations of Ks from table 9 (K=0.005 ± 0.004) gives a working 

approximation for a range of Ks where large differences in solubility between components occur.   

 While it has been demonstrated that the COA-MO mixtures can be modeled as having the 

crude oil component as either soluble or insoluble, each mixture is more accurately described 

using one model. Some of these mixtures are more easily modeled as though the crude oil 

component is soluble and some more easily modeled as though the crude oil component is 

insoluble. For this reason it is useful to compare the results of this work’s experiments to 

previous work (Stevens, 2014), where binary model oils with the same hydrocarbon components 

used in the COA-MO mixtures were also used.  Using the overall mass transfer coefficient, KW; 

and the partition coefficient, Kow; the initial state variable, Xo; and droplet diameter, do, from 

Stevens (2014); Equation 10 can be used to calculate the dissolution time constants, Ks, for this 

previous work.  The binary pure component mixtures used by Stevens (2014) were: 
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benzene/ODB, 1-clorobutane/1-cloronapthalene, and toluene/1-cloronapthalene.  These mixtures                         

had dissolution time constants, K, of 0.014, 0.003, and 0.002 respectively.  The values of the 

dissolution time constants, Ks, from this work and Stevens (2014) work can be plotted one to one  

against each other.  Figures 9 and 10 shows the one to one correspondence of the Ks values 

where the crude oil is modeled as insoluble and soluble component respectively.  In the cases 

where the data points fall on or near the diagonal center line, the experimental Ks values are in 
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agreement and the presence of the crude oil is inconsequencal.  In some cases it is clear that 

certain data points fall away from the center line.  This indicates the crude oil component has an 

effect on the dissolution weathering process.  In some cases the crude oil component appears to 

be modeled more accurately as an insoluble component as in the case of benzene containing 

mixtures.  Overall, the three mixtures containing benzene are closer to the center line when the 

crude oil is modeled as insoluble.  This could largely be due to the fact that benzene has a high 

solubility in comparison to other components in the mixture and therefore is the main driving 

force in the mass transfer of material out of the submerged droplet.  By comparing the Ks values 

for each COA-MO mixture to the corresponding Ks value for the pure component binary mixture 

form previous work, the contribution of the crude oil to mass transfer can be estimated.  If the K 

value of the COA-MO mixtures is close to the K value of the binary model oil mixtures, the 

COA-MO mixture is better modeled as having the crude oil component partitioned in the 

insoluble volume fraction. For example the mixture of toluene/1-cloronapthalene/38ºAPI from 

this work has Ks values of 0.0029 for crude oil as insoluble and 0.0016 for crude oil as soluble 

(see tables 7 and 8).  The binary model oil from previous work of toluene/1-cloronapthalene has 

a Ks value of 0.002.  In this case the COA-MO mixture of toluene/1-cloronapthalene/38ºAPI, this 

mixture should be modeled with the crude oil component as soluble.   

 Table 10 shows the final analysis of the nine COA-MO mixtures used in this experiment 

with initial conditions, droplet sink times, and overall dissolution time constants.  If the Ks values 

of the crude oil mixtures when compared to the Ks of the model oil mixtures were similar, the 

data from Table 7.  Otherwise data from Table 8 was used. COA-MO mixtures containing the 

crude oil component of tar were more accurately modeled with the tar as an insoluble 

component.  Based on the physical properties of tar, this is not surprising.  Tar has been long 
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known to be composed of heavy insoluble materials.  COA-MO mixtures containing benzene 

were also more accurately modeled as having the crude oil as an insoluble component because of 

the high solubility of benzene.   While it is possible that the 26.5ºAPI and 38ºAPI oils had some 

soluble fraction, when compared to benzene the crude oils are at least an order of magnitude less 

soluble.  COA-MO mixtures containing toluene or 1-cloronapthalene with either 26.5ºAPI or 

38ºAPI crude oil yielded Ks values suggesting the crude oil component contributed to dissolution 

weathering.   

 

 Xo X* ρo Time K 

Tar      

benzene/ODB/tar 1.00 0.64 0.978 56± 9 0.0096 

toluene/1-cloronaphthalene/tar 0.67 0.44 0.981 151 ± 17 0.0032 

1-clorobutane/1-cloronaphthalene/tar 1.22 0.99 0.989 77 ± 4 0.0034 

38API      

benzene/ODB/38API 0.67 0.55 0.991 24 ± 2 0.0095 

toluene/1-cloronaphthalene/38API 1.44 0.31 0.991 94 ± 17 0.0029 

1-clorobutane/1-cloronaphthalene/38API 1.63 0.32 0.989 73 ± 4 0.0057 

26.5API      

benzene/ODB/26.5API 0.54 0.41 0.990 41 ± 5 0.0075 

toluene/1-cloronaphthalene/26.5API 1.70 0.59 0.993 30 ± 3 0.0049 

1-clorobutane/1-cloronaphthalene/26.5API 1.94 0.59 0.995 23 ± 6 0.0064 

 

4.6 Conclusion 

 The dissolution model presented in this study predicted the behavior of the binary 

pseudo-component chemical systems where real oil mixtures were used.  In some cases the real 

oil was more accurately modeled as contributing to the soluble volume fraction and in others as 

contributing to the insoluble volume fraction.  When benzene was part of the mixture, its high 

solubility was the major contributor to mass transfer.  Conducting experiments using highly 

TABLE 10:  Experimental data of COA-MO mixtures  
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soluble benzene and low soluble toluene and 1-clorobutane with crude oils of unknown solubility 

yielded a range of dissolution constants, Ks [1/s], which could be applied to real oil spills.  A 

time frame can be established with these Ks values for an oil spill of known or estimated soluble 

volume fraction.  However, further experiments with freshly drilled crude oil with both volatile 

and soluble components would highlight the capabilities and limitations of this model. 

CONCLUSIONS 

 The weathering of chemical-amended crude oils was simulated in the laboratory to study 

the processes by which negatively buoyant droplets may sink to the bottom of the sea bed from 

spills on the surface and at depth.  Experiments with two crude oils and a tar, as components of 

the mixtures, were performed so as to more realistically represent oils spilled on water.   

 Previous studies were done using “oil-like” mixtures made of pure chemicals. These 

“model-oil” mixtures were used in both evaporative and dissolution weathering experiments. 

Based on these model-oil studies, the mechanisms that produced sinking oil droplets were 

observed, numerous data sets were collected, and a theoretical mathematical model was applied. 

The resulting model concept assumes an oil mixture can be divided into two pseudo-component 

fractions. Based on the physicochemical properties of the hydrocarbons in natural mineral oils, 

these complex mixtures can be divide nicely into a volatile/soluble volume fraction (A) and a 

non-volatile/insoluble fraction (B). The so-called “binary model” was developed and used 

successfully with the model-oil experimental results. Having a single adjustable parameter, one 

for evaporation and another for dissolution, the binary model captured the qualitative behavior 

aspects of the oil sinking process due to weathering. The object of this study was to test the 

performance of the binary model under laboratory experimental weathering conditions using 

crude oils and tar.   
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 In the present study nearly identical weathering experiments were done using crude oils 

and a tar as 10% to 42% of the volume of the spilled-material. In all cases, the observed 

qualitative behavior patterns of the evapo/sinking and the solute/sinking processes, were 

identical. In comparing the numerical magnitude of the individual weathering process kinetic 

parameters, the resulting values with crude oil amended model-oils vs. the pure component 

model-oils were very similar, statistically. The numerical range of the weathering time-periods, 

both evaporation and dissolution, for producing negatively buoyant droplets were similar as well.  

Similar and often time identical measured thermodynamic and kinetic parameters resulted from 

laboratory experiments for the evaporation and dissolution weathering processes designed to 

simulate surface and sub-surface spills.  Based on these outcomes it appears that the crude oils 

and tar perform both chemically and physically just as the model-chemicals. The theoretical 

binary component model was simultaneously verified by the overall investigation.  It is a 

mathematically simple, mass balance derived construction which contains the essential 

mechanistic features so as to correctly mimic the transport and thermodynamics across both the 

oil-atmosphere and oil-water interfaces, a necessity for real world oil spills.   

 Apparently, the oil-like materials used in the present experiments contained very small 

quantities of the soluble and volatile light constituents normally found in mineral oils. Being so, 

they were placed in the insoluble/non-volatile B-category of the binary model. This placement in 

the binary model resulted in a more consistent range of kinetic parameters than being placed in 

the soluble A-category for evaporation weathering. However, additional testing using natural 

mineral oils containing significant soluble and volatile components is needed.  

   The binary pseudo-component approximation both as a concept and in practical 

application remains problematic at this time.  It worked fairly well in this study because the oils 
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were selected and the chemicals used were known to have the correct physicochemical 

properties; it was clear at the start to which pseudo-component group they belong.  In the case of 

natural mineral oils there is no laboratory testing procedure to use for assigning and quantifying 

the volatile/soluble and non-volatile/insoluble fractions.  In addition the algorithmic procedure of 

combining individual chemical species from a complex mixture to produce a characteristic and 

representative vapor pressure or solubility assigned to the binary component, is lacking.  In 

addition the assignment must be consistent with component density assignment so as to 

realistically capture oil-in-water buoyancy behavior.  Although there is a clear need for such 

models in the field of oil spills, much proof-of-concept work remains to be done so as to hone 

the accuracy of their predictions.    
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APPENDIX A 

Density measurements of 38 and 26.5 API Oil and Tar 

11.5mL Pycnometer methods: 

1. The empty pycnometer is weighed 

2. The pycnometer is filled with water and weighed. 

3. The pycnometer is emptied and filled with oil and weighed 

4. Subtract the result of step 1 from step 3 and divide by 11.5mL 

5. Repeat steps 1-4 for various oils 

 

Density data: 

OIL API pyco pyco+H20 pyco+oil H20 den. Calc. OIL den. Calc.API Calc.

38 51.2046 62.8042 60.8997 1.00866087 0.84305217 0.834808

38 51.2055 62.7989 60.775 1.008121739 0.83213043 0.834808

38 51.0877 62.6549 60.3794 1.005843478 0.80797391 0.834808

38 51.2064 62.7832 60.5586 1.006678261 0.81323478 0.834808

26.5 51.082 62.7168 61.4915 1.011721739 0.90517391 0.89557

26.5 51.0867 62.7228 61.4854 1.011834783 0.90423478 0.89557

26.5 51.0871 62.7372 61.467 1.013052174 0.9026 0.89557

26.5 51.2122 62.8179 61.5562 1.009191304 0.89947826 0.89557

average stdev percent error

average 38 API0.824098 0.014158 1.717979

average stdev percent error

average 26.5 API0.902872 0.002165 0.002398  

 

Displacement method: TAR 

1. Clean and dry (in oven) a 50mL volumetric flask and weigh 

2. Fill flask with 30mL of deionized water and weigh  

3. Inject ~10mL of tar with a syringe and large bore needle and weigh 
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4. Fill volumetric flask to level with deionized water. 

a. (Calculations assume density of deionized water is 1 g/mL. 

5. Divide mass of tar (measured) by the volume of tar injected (calculated) 

 

Density data: TAR  (Bolded and green highlighted values chosen after excess water was cleared 

away from neck of flask.) 

mass in flask total mass volume of watervolume left density of tar Tar API

49.76852608 91.4457265 41.125634 8.66037233 0.997981583 10.28618

49.8309448 91.4991448 41.188053 8.59795361 1.005226648 9.264275

49.82854408 91.4967441 41.185652 8.60035433 1.004946047 9.303579

49.80113586 91.4693359 41.158244 8.62776255 1.001753588 9.752302  
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APPENDIX B 

Evapo-Sink Model  

The Evapo-Sink model is model consisting of a binary mixture of Component A and 

Component B. Component A consists of volatile chemicals with a density ρA
*[g/m3] less than the 

density of water ρw; and Component B consists of non-volatile chemicals with a density 

ρB
*[g/m3] greater than water.  Pure component molar densities are defined ideally as CA 

[mol/m3]= ρA/M.WA and CB [mol/m3]= ρB/M.WB for components A and B.  Initial components 

are combined volumetrically and ideally to yield an initial total volume, Vo=VAo+VB, of a 

“spill”.  The mass and volume of component A decrease with respect to time; however, the mass 

and volume of B remain constant.  The state variable X(t) is defined as the ratio of the volumes 

of components A and B with respect to time: X(t)=VA(t)/VB.  This ratio decreases with time as 

the light volatile component A chemicals evaporate off the surface slick in the air.  In laboratory 

settings the slick thickness h [m] changes with respect to time though the surface area of the slick 

is modeled as remaining constant.  A surface slick may lose component A through mass transport 

by either evaporation into the air or dissolution in water below.  The evaporative flux, NAE 

[g/s*m
2], and the dissolution flux, NAS [g/s*m

3], of A are quantified by their respective mass 

transport rate equations, NAE(t) = KA (ρ*AAir − ρAAir(t) and NAS(t) = Kw (ρ*Aw − ρAw(t)).  KA and 

Kw are the overall air-side and overall water-side MTCs.   ρ*AAir [g/m3] is the concentration of A 

in air in equilibrium with A in the oil, ρAAir(t)  is the concentration of A in the atmosphere,  ρ*Aw 

is  the concentration of A in water in equilibrium with A in the oil, and ρAw(t)  is the 

concentration of A in the water under the slick.  The loss of component A by evaporation and 

dissolution is equal to the mass rate of change of A within the slick volume which is equal to the 

surface area times the slick height yielding: −SkA[ρ*AAir − ρAAir(t)] − Skw [ρ*Aw − ρAw(t)] = 
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d[Sh(t)ρA(t)]/dt.  The background concentration of A in the air and water is considered to be 

negligible, the MTCs constant, and the limits of integration as being X(t) = X0 at t=0 to X(t) = X.  

This integration yields equations 3 and 4 in this work (Stevens,2014). 
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APPENDIX C 

Slick Thickness 

Since the oil slicks did not cover the entire 

surface of the 30L jar used in the Evap-Sink 

experiments, slick thickness could not be 

carried out by direct measurement.  A 

procedure was implimented to calculate the 

slick thickness from photographs of the slicks 

themselves. 

 

1. Photograph the slick at initial 

conditions X(t=0) at a known volume 50mL 

being sure to capture the total surface. 

2. Measure the surface area of the total 

surface.  For this cylindrical jar, Area=πr2 (r=6.125 inches). Area=128.6 in2.  

3. Print the photograph and cut out the total area of the surface then weigh the paper.  

4. Cut out the oil slick portion of the photograph and weigh the paper. 

5. The percent area of the slick is the result of step 4 divided by step 3. 

6. Use ho=
𝑇𝑜𝑡𝑎𝑙 𝑣𝑜𝑙𝑢𝑚𝑒

𝑎𝑟𝑒𝑎 𝑜𝑓 𝑠𝑙𝑖𝑐𝑘
 to find the slick thickness adjusting for units when necessary 

 

 

 

 

23% benzene, 30% ODB, 47%38API oil 

mixture at initial conditions X(t=0) 

forming a slick on a fresh water 

surface  
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Slick Thickness results: 

composition area % ho [mm]

.5hex+.3ODB+.2tar 0.498798 1.318307

.7B+.2ODB+.1tar 0.533192 1.233267

.55cyclo+.3ODB+.15tar 0.739357 0.889379

.23B+.3ODB+.47API(38) 0.560606 1.172961

.4hex+.3ODB+.3API(38) 0.597464 1.1006

.4cyclohex+.3ODB+.3API(38) 0.843736 0.779353

.4B+.4ODB+.2API(26.5) 0.73848 0.890435

.4hex+.3ODB+.3API(26.5) 0.941582 0.698366

.4cyclohex+.3ODB+.3API(26.5) 0.825741 0.796337  
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APPENDIX D 

Dissolution Model   

“A model oil droplet consists of two components, soluble component A and insoluble 

component B.  Mixtures are assumed to form ideal solutions with additive properties, such that 

VA and VB give total volume, V0.  The pure component density of A, ρA*, is less than the 

receiving water and is assumed to be constant for the pressure and temperature range.  

Solubilization commences upon placement of the oil in water and the mass of A, MA(t), can be 

expressed through its volume decrease by MA(t) = ρA* VA(t) while VB remains constant so that 

MB = ρB* VB0.  As previously defined in the EVAPO-SINK model, the state variable is the 

volume ratio of the soluble to the insoluble component, X(t) = VA(t)/VB0.  The concentration of 

A in the droplet is given by ρA(t) = (ρA* X(t))/(X(t) + 1), and for B, ρB(t) = ρB*/(X(t) +1). As 

dissolution commences with time, the concentration of A decreases and the density of the drop 

will approach that of water, ρw.  As mass is lost from the droplet, the diameter, surface area, and 

volume of the drop will decrease.  For a single sphere, V(t) = πd(t)3/6 and A(t) = πd(t)2. In terms 

of the state variable the droplet diameter is d(t) = [(X(t) +1)/(X0 + 1)]1/3d0.  With the initial drop 

density obtained from d0 = (6V0/π)1/3 with surface area is A(t) = πd0
2[(X(t) +1)/(X0 + 1)]2/3.  At 

this juncture all the time varying parameters are expressed in terms of the state variable.  The 

flux of the soluble fraction during dissolution from the oil-phase to the water-phase, NA(t) 

[g/m2s], equals Kw(ρ*
AW (t) - ρAW), where Kw [m/s] is the overall water-side mass transport 

coefficient, ρ*
AW (t) is the solute concentration in water in equilibrium with the oil and ρAW is the 

remote solute concentration in water. For estimates of KW the two-resistance theory is required. 

It includes the oil-side transport as well as the water-side transport coefficient. 
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The linear equilibrium assumption (LEA) is used with an oil-to-water partition coefficient, 

K*
Oil/W, for quantifying the solute equilibrium at the interface and between the bulk phases. As 

used here it is ρ*
AW (t) ≡ ρA(t)/K*

Oil/W  = ρ*AX(t)/(X(t)+1)K*
Oil/W.  The mass transfer coefficient, 

Kw, is assumed constant and correlations are available in the literature for its estimation.  K*
Oil/W 

for the soluble component is also assumed constant.  A mass balance on the soluble component 

is performed and used for developing the binary dissolution model. It is extended to project the 

dissolution time-period necessary for droplets to achieve negative density. In combination the 

final product is termed the solute-sinking model or “SOLUTE-SINK”.  All droplets of same size 

behave alike. A mass balance on the soluble fraction for an oil droplet of diameter d0 [m] has the 

rate of dissolution [g/s] from the droplet equal the mass rate of change of A within:                      

-A(t)KW(ρ*
AW (t)- ρAW) = d(mA(t))/dt.  Assuming the background soluble concentration in water, 

ρAW, is zero and substituting the appropriate state variable relationships developed above for the 

time-varying terms: -πd0
2[(X(t)+1)/(X0+1)]2/3 KW[((ρA*)/(K*

Oil/W))((X(t))/(X(t)+1))-0] = 

d/(dt)[ρA
*X(t)V BO].”  (Steven, 2014) This simplifies to equations 9 and 10 in this work.     
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