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Abstract

In this dissertation the transience of the random walk 
associated with the Gaussian probability density function on 
the Heisenberg group is analyzed and compared with that of 
a corresponding random walk on the Lie algebra of the 
Heisenberg group. Asymptotic results are obtained that 
yield a quantitative reflection of the effect of the non- 
commutative nature of the group multiplication law on the 
behavior of the Gaussian random walk.



Introduction

Let G be a locally compact group and let y be a proba­
bility measure on G. y generates a random walk on G with 
the crucial property that the number of times that the walk 
can be expected to visit a Borel subset A of G is £y (A)
where the summation runs over all positive integers m, and 
*my denotes the m-fold convolution power of y. It is known

_ _ Atyi[1] that either Ey (A) is finite for every compact set A 
or else is infinite for every open set A. In the former 
case the random walk determined by y is said to be transient 
and to "wander to In the latter case the walk is said
to be recurrent.

For convenience we now restrict our discussion to the 
case in which G is a 1-connected nilpotent Lie group. Such 
groups are diffeomorphic to Rn for some n. If the group 
actually is Rn then it is a classical theorem (see e.g.£2 ]) 
that for n>3 every random walk on G generated by a measure 
that is supported by no proper closed subgroup of G is 
transient. A special case of a theorem proved by Guivarc'h 
and Keane [3 ] is that this result is also true for 1-con­
nected nilpotent Lie groups of dimension greater than two.

Let G be a 1-connected nilpotent Lie group, let L 
denote its Lie algebra, and let exp denote the exponential 
map from L to G. exp is a global diffeomorphism that carries 
Euclidean measure on L to Haar measure on G [*♦]. Thus exp



carries absolutely continuous probability measures on G to
absolutely continuous probability measures on L. If y is a
probability distribution on G and if A is a neighborhood of
the origin in L consider the two infinite series ,
I f <t>*m°exp(l)dl and I f  *oexp*m(l) dl, the former series 

A A
being associated with the expected number of visits of a 
random walk on G to a neighborhood of the origin and the 
latter series being similarly associated with a random walk 
on the abelian group structure of L. Both series are con­
vergent, but one might expect that, since in order to return 
to the origin in the non-abelian case one must retrace oners 
steps in the correct order, the first series should converge 
more rapidly than the second. In this paper we address this 
question in a particular case— that in which 4»oexp is the 
Gaussian distribution and G is the Heisenberg group.

Our main results are theorems 4.1 and 4.5. The former 
theorem shows that, as in the abelian case, the behavior of 
the series in question depends only on the behavior of the 
convolution powers of the density function evaluated at the 
origin. The latter theorem shows that, asymptotically, the

Am  Lratio of <|> oexpC0 ,0 ,0 ) to <(>oexp (0 ,0 ,0 ) behaves like m . 
Roughly, this means that the ratio of the probability of 
returning to the origin at the m step on the Heisenberg 
group to the probability of returning to the origin at the 
mth step on R^ behaves like We thus have a quantita­
tive reflection of the effect of the non-commutative group



multiplication on the difficulty of returning to the origin. 
One of the main tools in the analysis of random walks

is that it carries convolution to pointwise multiplication. 
In the interesting but relatively simple case in which the 
distribution function <p is a Schwartz function one can then 
apply the Plancherel theorem (inversion theorem) to analyze

case in which G is a 1-connected nilpotent Lie group that 
the representation-theoretic Fourier transform and inversion 
theorem would prove to be similarly useful. This has not, 
thus far, been the case. In the non-abelian setting the 
inversion theorem takes the form, for 4> a Schwartz function,

where G is the set of unitary-equivalence classes of irre­
ducible unitary representations of G, dir is a (known) pos­
itive measure and

not, unless tt is one-dimensional. Therefore the non-abelian 
Fourier transform is not multiplicative.

Since we have been unable to utilize the non-abelian 
Fourier transform, our analysis of the problem at hand

on Rn is the Fourier transform. Its value in this situation

One might thus expect that in the

f5j

G

ir(g)<t>(g) dg
G

While the map <(>i—►tt̂  is multiplicative, the trace function is

• «V I 1



prodeeds by real-variable methods. The proofs are compu­
tational, using classical theorems. One property of the

i

Gaussian density that makes our calculations manageable is 
that it is its own (abelian) Fourier transform. This fact 
is crucial to the proof of lemma 2.5.

viii



Chapter I

Preliminaries

In this section we list for convenience certain nota­
tions and conventions that will be used in the sequel, in­
dicate the means by which convolutions on the Lie group can 
be lifted to the Lie algebra, and consider briefly the 
abelian version of our random walk.

N 3 will denote the Heisenberg group. This group can be 
thought of as the group of 3x3 unipotent matrices, or alter-

qnately as R with multiplication given by
(x,y,z)(x’»y1 ,z') = (x+x',y+y',z+z1 +xy').

The Lie algebra of N3 is with bracket operation given by 
[(x,y,z) , (xr ,y1 ,z') 1  = ( 0  , 0 ,xy1 -yx1).

If G is any 1-connected nilpotent Lie group with Lie 
algebra L then exp is a global diffeomorphism and there is a 
map C-H:L->-G, called the Campbell-Hausdorff map [4] such that 
for 1,1'eL

C-H(l,l') = exp-^<exp 1 exp I1) = l+l1+ h [l,l'] +... 
where ... denotes higher order bracket terms. Since the 
group being considered is nilpotent the series terminates, 
and for N 3 all of the higher order bracket terms vanish.

Recall that exp carries Euclidean measure dl on the Lie 
algebra to Haar measure dg on G. Let feL^G) and let 
l£=exp-1 ĝ . Then



2

° fCgOsi1 )-” f(Em-2gm3l)fCsm-l) dgl"-dgm-l

= foexpCC-HCln,-1.)...foexp(C-H( 1  0»-l ,))1L J L 0 1 m- 2 m-1
foexp(l -) dl,...dl n m—l i. m—l

Thus if one knows C-H explicitly one can carry out all of 
the integrations necessary to compute convolutions on the 
group by lifting to the algebra.

We note that for the Lie algebra of N3  

C-H((x,y,z),(x',y',z*)) = (x+x1 ,y+y'Jz+z,+^(xy'-yx')) .
For notational convenience we introduce here certain 

conventions that will remain in force throughout the re­
mainder of the paper:

1. All measures on Euclidean space are taken to be 
Lebesgue measure normalized by multiplication by 
(2ir)-lsn where n is the dimension of the space in 
question.

2. For any n, E(x1 ,...,xn) = e"l(xl+*‘'+xn) .

3. For any n, G(x^,...,xn) = e-i£̂ xl+ * * * +xn^ '

4. For any n, F(x^,...,xn) = e ^ xl+‘*’+xn^

5. Sums taken over an empty indexing set are taken to
be 0 .

6 . Products taken over an empty indexing set are taken 
to be 1 .



6 . <|>:Ng-*-R is the function defined by
<t>oexp(x,y,z) - G(x,y,z).

We call the random walk on associated with the, 
measure <f>dg the Gaussian random walk on N3 .

We conclude this section by considering briefly the 
abelian Gaussian random walk, that is, the random walk on 
R associated with the measure G(x,y,z)dxdydz. It is easily 
computed, either by direct computation or by utilizing the 
fact that G=G, that

G*m(x,y,z) = m“3 /f2 GCm"1/,2x ,m“1/,2y ,m_1 ^2 z) .

It follows that, denoting the sphere centered at the origin 
of radius k>0 by B^, for every m and for all (x,y,z)sB^

G*m(0,0,0) > G*m(x,y,z) > G(k)G*m(0,0,0).

Thus for fixed k>0,

/ G*m(x,y,z) dxdydz = 0(G*m(0,0,0))
Bk

and

G*m(0,0,0) = 0(/ G*mCx,y,z) dxdydz) .
Bk

The question of the transience and rate of "wandering to «" 
of this random walk are thus seen to depend only on the 
behavior of G*m(0,0,0) as m*00.



Chapter XI 

AEvaluation of <f> m«expA

AOur goal in this section is the evaluation of <f> moexp/'. 
To do this we define a particular sequence of polynomials, 
prove some preparatory results concerning their algebraic 
interrelationships, and then proceed with the evaluation of 
4) moexp/s by means of a rather long and involved calculation. 
The major results of this section are proposition 2.2 and 
theorem 2 . 6  and its corollaries.

DEFINITION 2.1 For m=0,l,... define PmeR(Y) recursively by

p0 <Y> = p!<Y> = 1  

and for m>l

2.1 P ...<y>/p (y) = P Cy)/P .Cy) m+ 1  m m m- 1

t m- 2  o
- Y  C16P t(y)P <Y>> < I P.Cy))m-1  m . n ii=0
+ Y2P„ -(Y)/(4Pm (Y)) • m- 1  m

It is not clear a priori that the above definition 
actually makes sense since the possibility that Pm=0 for 
some m has not been ruled out. In the next proposition we 
show that not only does the above definition make sense, but



also that Pm is a polynomial with Pm(Y)^l for all real y. 

PROPOSITION 2.2 For m=0 ,1,. . . Pm+1 eR[>]> Pm+l(0):!l’ and

v 2 ,m- 1
2 . 2  P (y) = P (y) + fr .1 P.(Y)m+ 1  m 4 iSQ i

PROOF
We proceed by induction on m, the case m=0 being 

trivial. Assuming the proposition to be true for non­
negative integers <m, definition 2 . 1  makes sense and we 
then have by 2 . 1

* CP.CrU-^pintT) - Pi(r))2 + l  p*(y»
° 1 = 0 H

Applying the inductive hypothesis we see that
r 2 m— 1

= tP^Y ) ) ’ 1  [(Pm(Y> + * J 0 Pi<Y> > 2

- Tl! pi( Y ) ) 2  + ? r  p™ (Y)]16 i= 0

■ ‘V v ))-1 [ d ^ 2)P2<Y) * J2p.<t> pi (̂ ]

V 2 m ; 1 Y 2 W= Pm<Y> + I  J Q ?i<Y) * $  J o Pi(Y)

■ + £  J Q Pi(Y>

Thus 2.2 holds with m+1 in place of m. We conclude from 2.2
and the inductive hypothesis that Pm+2 eRCY] and that

P iO(0) = P A1 (0) =1 . m+ 2 m+ 1

This completes the proof of the proposition.



The following corollary follows trivially from defini­
tion 2 . 1  (for the case m=0 ) and from proposition 2 . 2  and 
induction (for m>l).

COROLLARY 2.3 For m=0,l,... PmeR[Y2 M] with non-negative 
coefficients and constant coefficient 1. In particular, for 
every m and every real y,
2.3 P (y) > 1.m —

The next lemma will be used in the proof of lemma 2.5.

LEMMA 2.4- For m=0,l,..,
_ m— 1 * i Hi* 1 a

2.4 CPTn(y))-1 I P.(y) - y2(4Pin(y)P .1(y))"1( J  P.(y))2
i- 0  i 0

PROOF
We apply lemma 2.2 and calculate.

, 0 1 - 1 0 i m- 1 9(P (y) ) ” 1 I P* (y) —  y (UP (y)P J_.(y))‘1( £ P.(y) ) 2m i= 0  m m+± i_o



LEMMA 2,5 Fix me{1,2,,,,}, Let k be an integer with 0<k<m. 
Then

jl t rm-k-1 „ j-1
2.5 <J> ©exp (a , 3 ,y) = E I (a - } I

JR2(m-k) L j-o 1=0 3
ni-k-i _ v j- 1

j
-K-l v 1-1 1
t (3 x^y.l

j =0 1 1 = 0 1 3J

k-l fn f i=0 L
(Ph-Cy))"^^ + V x.,) 
K Z 1=0 x

k-l "I
(J o  pi(Y))xd

" I q 1 F[ W T)<V Y>>_lyj
,2 j- 1

m-k-1 [ , , . > , , - 1 2n F P (y)(p (y>) *j = 0 L k+1 k j
- 1  v2 j- 1

- (P (Y))_1CctY - X" X  y )
K 2 1=0 x 

k-l n
c I p, (Y>>yJ 1=0 3J

[ k- 1
CP. CY>>“1C I ?1(y))(a2 + 32)
■ K  1 = 0  1

+ m y 2J
_ -i m-k-1(Pk(Y)> ,n d x ^ d y ^

PROOF
We proceed by induction on k. Consider first the case

k=0 .

<j>*moexpA(a,3,Y) = I ECax0 ,3y0 ,Yz0) <j)*moexp(x0 ,yQ ,zQ)
dx0 dy0 dz0

R3



Making several changes of variable the above integral 
becomes

JR3m E[“V By0’Y(V  I 3o‘Vi« “ Xi+lyi)}]
m- 2,no G(x. - xi+1,yi - yitl,zi - zi+1> G(xm.1,ym.1>zm_1)

iSodXidyidZi ‘

Integrating with respect to dZg...dzm_^ the integral becomes,
A

noting that G=G and G(x,y,z)=G(x)G(y)G(z) ,

I 2 m E[axO»Byo 4  CxiVi+ 1  " xi + iyi>]' G<*m-1 >R 1=0
V  G(Xl - xi+1) GCym_^) “5* G(y± - yi+1) GlJm y)

m- 1.no dxidyi .

Again making several changes of variable we rewrite the 
integral as

/■ rm- 1  /j - 1  m- 1  v j- 1  1

fR2» E[jio(° ' i J o  yi)xV  ilo (B + * J o  *i)yl]

?iij F(x?) F(yl) F(my2) dx£dyj .j = 0  J j = 0 J 1=0

This proves the lemma in the case k=0.



Next, for 0£k<m,
f m-k- 1  j- 1  m-k- 1  j- 1

N E \ I <a " i  I y i )xi* .1 (3 + i  I yR2(m-k) L j-o 2 1=0 1 3=0 2 1=0

ol r [pM i(r ) ( V ^ r l x i + C P ^ y n - ^ B Y  ♦ ?  *
k-l i. 'Jo Pl<Y»*jJ 

.2 j=l
1  F[pk+i'-'K p k'Y>)' M  - < v * ))_1(o* - 1 2 :j 0  *

k- 1 1

I P1 CY)>yJ 1=0 1 3j
[

k-l “1

(P^y))"3̂  ]> P ^ r J X o 2 + 6 2) + my2] (P^y ) ) - 1

J 0
k-l
C

m-k- 1

ilo

SEE NEXT PAGE



t fm-k-2 j-1 m-k-2 j-1 -i
~ \ ne , n E I (ct " i I I (Mi l x̂y.JR2(m-k) L j=0 2 x^o 1 ] ’ ji0 ?  i=0 1 jJ
m—k— 2 I" t o  i v 2 ] - 1

jio P [IW * )(Pk (* ,) M  + (V * »  (6Y + 2 J 0 Xl)
k-l *i
‘l£o Pl<Y>>xj] 

mjlo2 F( w Y)(pk(Y,)'ly! - < V Y” "1<OY - f  Jlj yi>
k-l -i
(J o  pi(Y))yiJ

[
k-l 1

CPk CY))"1C I P ^ y J X o 2 + e2) + m y 2J

r m-k-2 m-k-2 "I
E (a - X £ y )x ,(6 + X  7 x_ )yL 2 x=o 1 m-k-1 2 xto 1 m-k-1 J

F E W Y><Pk<Y> > ' V k - l  + <Pk<Y>>_1 <6 Y + f  *!>

< j 0 Pl(Y))xni-k-l]
[ _ 2 m-k-2

V i (Y)(pk (Y))' V k - i  - (pk (Y))' < OY - i  J 0 V

(ila Pl(Y))y>"-k;- 1]
m-k-1

(pk(Y)) i20 dxidyi-

Completing the square in the arguments of the last two F's 
in the integrand above the integral becomes
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t rm-k-2 j-1 m-k-2 j-1 “t
J 0 ( vi E ^ Ca " 2“ £ yi)xj ’ ^ (B + 2  ̂ Xl)yiJR2Cm-k) L j = o 2 1=0 1 : j =0 2 1=0 1 ^

m-k-2 r •, o j-1
j

3
k-l(

k-l‘Jo
m-k- 2  .. m-k- 2

Jlo F[pk+i(Y)(pk(l,)rlx! + <Vy))‘1(6y + * %  xx)
k-l -j
C I P1 (Y))xJ
1=0 > JJ

m- k - 2  f 1 9  -i Y 2Jo FLPk+l(Y)(PkCY)) yj - <VY>) (“Y - f J„ yi>
k- l  1
ilo pi<Y))yoj

[ k - l  1
(P, (y))"1C I P (y))(a2 + 82) +my2

k  i?o 1 J
m-k-2 m-k-2

(a _ X I y ) x  . C 3 + X J x)y
2 !=o 1 m - k - 1  2 i=o 1 m-k-lj

n v 2 m-k-2
p, - (Y)(p (y))*’ {x + (2P (y ))“1(6y + X  E x ). k + 1  k  m - k - 1  k + 1  1=0 1

J o  P1CY>)2]
[ 2 m-k-2

Pk + l ( Y K P k ( Y ) r  {ym- k - l  - (2Pk + l ( Y ) r  (“Y - i  J o  y l>
k - l  91

J o  PfCy>) J
r i k “ l ^ ^ a q m-k-2

F [(4PJc(y)Pk+1(y))"1(iEo P1(y )) {-0ZY - 0Y I ^
4 m- k - 2  2 2 2 3 m “£ “ 2 Y 4 m-k-2- 1 (  I X > - a2y2 + ay3 i y - J < I y > J4 1 = 0  1  1  = 0 1  4 1  = 0 1 J4 1=0 1

(pk(Y) ) _ 1  ilo dxdy*
_ ̂ m-k- 1

Translating x , _ and y , . appropriately and performingTil— 1C— X
some algebraic manipulations we rewrite the integral as



iia
** 

nay
r

F[{Pk+l(Y)(Pk CY)rl ' Y4 Cl6 Pk (Y)Pk+1 Cy) ) _ 1

k rX 9 9( I P_ ( y ) ) }x?1=0 1 :
i v 2 j- 1  k-l

+ {(P Cy))"1 (0Y + 1  I x J  I P^Cy)
2 1=0 1=0

- Y2 ^ P k (Y)Pk + 1 (Y>)“1 (eY + J2 *,)( 1 P1 (y))2 >x

„ 02 F [tPk+l (Y)(Pk ( Y > r l  - v',Cl6Pk <Y)Pk t l (Y))-1
k-l „ 0

< I p,Cy)) >y? i=o x i
- v 2 j- 1  k-l

- {(p. (y ))“1(oy - J I y-.) I Pt Cy )k 2 1=0 1 1=0 1

- Y 2(‘tPt (Y)Pk + 1 CY))'1 (c.Y - X2 ’j1 y )( j P1 (Y ))2 }yX X+l Z 1 = 0  -1 1 = 0

p[{Pk(Y) ) _ 1  P^y) - y 2(-tPk (Y )Pk + 1 (Y ))'1 ( J ^  Pj/y)}

(a^ + B2) + n*Y2l

[
m-k-2 t

Ca - x J o y i H ^ - k - l  - (2Pk+1(a))
2 m-k-2 k-l 1

C&Y + \  I x  ̂ £ P Cy)>2 1=0 1 1=0 1 J
f m-k-2 i

T B + i J o  Xl ){ym-k-l + <2 Pk+l(V>>'
2 m-k-2 k-l j<oy'2 J o yx5J 0 Pl<Y>>J

, [Pk « (v>(Pk <ir>)‘lx!.k.i-pk+ 1(lf)(pk <T)>‘ :i7i.k.i>]
m-k- 1



13

Noting that
v m-k-2 v2 m-k-2(8 + \  I x K a y  - \  \ y )2 1=0 1 2 1=0 1

m-k-2 2 m-k-2
- <« - ? I y ^ CSY + *  I X ) = 02 1 = 0 2 1=0 1

and making the substitutions

u * [Vi<T)(pk!r)rl]Vk-i’ v s [Pkn(’,)<Pk(Y))'1]V-i
the above integral becomes upon applying lemma 2.4 and then 
integrating with respect to dudv,
t fm-k-2 _ j-1 m-k-2 ^ j-1 *1

k* X o oC I p1(y))2}x?
1=0 3

+ + i 2 p.Cy))x ]K+1 2 1=0 1 1=0 1
"jlo* f [{!W y > < V y » ' 1 - Y ^ l ^ y ^ C y ) ) ' 1

k— 1 o o( I  P (y)> }y?1=0 1 3
- f<Pk+1<Y))'1<c.y - $ 2 2io y-^J* P1(Y))yj]

F f(P_ il(Y))"1(ky1 Pn(y)Xci2 + B2) + my2]L *+1 1=0 1 -I
[ i m-k-2
Pk (Y)CPktl(Y))-1(B ♦ *  J q V  J
[ n „ m-k-2 ol
V * )aW Y”  c“ - *  J o  V J

(P^lty))-1 m' X 2 dx^y. .
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Performing some algebraic manipulations and applying 2.1 
the integral becomes, finally

This provides the inductive step and completes the proof of 
the lemma.

The case k=m of lemma 2.5 is important. We state this 
special case as a theorem.

THEOREM 2.6 For m = 1,2,...

m-k- 2II dx. dy
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COROLLARY 2.7 Form = 1,2,...

2.7 <f>*m°exp(x,y ,z) = J 3 E^-(Pm(c) )3sxa,-(Pm(c)Jsyb ,-zc J
R

P^(c)(a^ + b^) + mc^jdadbdc

and in particular,

2 . 8  4>*moexp( 0 , 0 ,0 ) = J^ 3 F̂  ][ P^CcHa^ + b^) + mc^Jdadbdc.

PROOF
We apply the Fourier inversion theorem to the Schwartz 

function <f> m«exp to conclude from theorem 2 . 6  that

«exp(x,y,z) = f q (P (y))“^E(-xa,-y6 ,-zy) j in

F^(Pm ( Y ) ) " 1 P ^ y J f a 2 + 8 2 ) + m y 2J

dctdBdy .
Making the substitutions a=(Pm(y) )-j£ct, b= (Pm(y) )-lsB , c=y 
we obtain 2.7.

As an immediate consequence of 2.7 we have

COROLLARY 2.8 For m=1,2,...

|| 4>*moexp | \ „ = <J>*moexp(0 ,0 ,0 ) .



Chapter III

Some Polynomials

In the last section we saw that the behavior of the 
function <j> oexp is intimately related to the behavior of 
certain polynomials in one variable. In this section we 
study the polynomials Pm of the previous section and also 
other polynomials derived from them in some detail. The 
notation of the previous section remains in force.

PROPOSITION 3.1 Form=1,2,...
1) P eR[Y2 /4land P (0) = 1.m u J m
2) Letting x=y2/U and viewing Pm as a polynomial 

in x, degree Pm = [m/2]. ; Moreover, if

V x) ' 1 + alx + + a [m/2]xtm/2j
then a^ is a positive integer for i = l,...,[m/2 ]. 
If m is even, then am/2 =1*

PROOF
1) is a restatement of corollary 2.3.
To prove 2) we proceed by induction on m, the cases 

m=0,l being trivial. Suppose inductively that m>_l and that 
the proposition has been proved for 0,...,m. We consider 
two cases.
Case 1. m odd.

We let x=y2/4 and replace y^/1* by x everywhere that
AY /** appears in the expressions for the polynomials P^ty).

16
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Then by proposition 2.2 and a slight abuse of notation
m- 1

3.1 P _(x) = P Cx) + x I P.(x) .m+ 1  m i=Q i

By the inductive hypothesis,

deg P(x> = = deg Pm ..(x)m 2 m- 1

and for i<m- 2

deg P^(x) <

with each of the polynomials P^(x), i=0,...,m having pos­
itive integer coefficients. We thus see that there are pos­
itive integers a , . . . b ,...»bm _ 3  so that

1  T “ 1  ~
_  m- 1m- 2  - T -P-Cx) + x I P.(x) = 1 + a-iX + ...+ am_ix cill » A J. Ax= 0  2

and
m- 1  m+ 1

xPm_^(x) = x + b^x^ +...+ bm_gx  ̂ + x ^
~ T ~

where we have used the inductive hypothesis to conclude that 
the leading coefficient of Pm_^(x) is 1. From 3.1 and the 
above expressions we see that is a polynomial of
degree with positive integer coefficients and
leading coefficient 1 .
Case 2. m even.

Proceeding as in case 1 we have that
m- 1

P Cx) = P (x) + x £ P.Cx) m+ 1  m i
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where deg P (x) = — = ("SLtil and deg P.(x) < 2̂ -̂ for m 2 l_ 2 J 3. - 2

i=0,...,m-l. The proposition in this case now follows 
immediately.

This completes the proof of the proposition.

DEFINITION 3.2 For m,k=0,l,... define am bym,Jc J

3.2 P Cy) = am n + am -Cy2/^ +...m in ̂ u m j l
/ 2 /, , Cm/2 ]

+ am,[m/2] Y A)

and set a . = 0  for k>[m/2l.m,k *- J

Our immediate goal is to obtain a formula for a„ . in 
0  m,k

terms of m and k.

LEMMA 3.3 For m=0,l,... and k=l,2,...
m-2

3 - 3 = I c”,-i-1 )ai,k-i

PROOF
Since

v 2 m- 2
p (y) = p ,(y) + ^ I p * Cy)m 1 m- 1  ' it0 1  '

for m>l and Pg(y)=l, we see that
m- 2

am,k " am-l,k + ai,k-l

We fix k^l and proceed by induction on m. For m=0 the 
lemma is trivial. Assuming inductively that 3.3 holds for 
m,
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m- 1
* —  «   ̂m+l,k m,3 3 + ,-?n ai»k-li= 0

m- 2  m- 1
= 7 (m-i-l)a. . - + y a. , ,
i=0 1>k-1 1=0 1»k"1

m- 2

= am-l,k-l + J fl (m-i)ai,k-l 
m- 1= I (m-i)a. k ,
1 = 0  i,k-l

This completes the proof of the lemma.

At this point we recall the classical fact (see e.g. 
[6 ]) that for a non-negative integer p

. p+ 1  ,p
3.4 lp + 2P + . .. + kp =  ---  + -p+ 1  2

Pt1 B

where the numbers Bn are the Bernoulli numbers which occur 
as the coefficients of the power series expansion

-f—  = I B zn , | z | <2ir .
e - 1  n = 0  n

3.4 is actually a stronger statement than we need. We shall 
use only the fact that the left side of 3.4 is given by a 
polynomial in k of degree p+1 .

LEMMA 3.4 For m,k=0,l,..., am,k”®k^m  ̂where is a 
polynomial of degree 2 k.
PROOF

We note that a r, = 0 for all m and proceed by induction m , u
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on k. Assume inductively that the lemma is true for k.
Using 3.3,

m- 2

am,k+l = . 1 (m-i-l)ai>k x= 0

m- 2  m- 2
= (m-1) I Sk(i) - I iSkCi)i= 0  K i= 0  K

where Sk is a polynomial of degree 2k. Applying 3.4 to the 
summation of the various powers of i occurring in the 
polynomials S. (i) and iS.(i) we see that a , . is given byK JC Jll jK*-L
the difference of two polynomials in m of degree 2k+2. Thus 
there is a polynomial of degree at most 2 k+ 2  such that

a i ,« — S. , _ Cm) .m,k+l k+ 1

Since a„ , =...=a„, _ , . =0 we see that ’ S, must in fact
0 ,k+l 2 k+l,k+l k+ 1

be of degree 2k+2. This completes the inductive step and 
thereby the proof of the lemma.

We are now in a position to determine an explicit
formula for am , .m,k

PROPOSITION 3.5 For m,k=0,1,...

1  2 k- 13.5 am i =  ■ .n (m-i)(2 k)! 1 = 0

PROOF
By lemma 3.4, for k>l,

a , = S. (m) m,k k
where S^ is a polynomial of degree 2 k and

Sk(0) = ... = Sk(2k-1) = 0 .
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Thus for k>l,
am,k " •••(m-(2 k-l))

for some constant c. By proposition 3.1

1  = a2 k,k ” c'2*<2k“1>-••(1> = c(2 k)! .

Thus c=l/C2k)! . This proves the proposition for k>l. For 
k=0, Sk = l and the proposition is trivially true.

If we consider the integral of 2.7 which yields 
(f>*moexp(x,y, z) we see that we need to determine not only the 
polynomials also certain sums of these polynomials.

DEFINITION 3.6 For m=0,l,... define polynomials Fm by
m- 1

3 .6  I P lCy)  = m + rm(y )1=0
We note that rm C0)=0 and that if rm is viewed as an 

element in Rty2/1*] then deg rm= [(m-1 )/2~] for m>l» and Tg = 0 .

DEFINITION 3.7 For m,k=0,l,... define x k by

and set x =0 for k>£(m-l)/2l. Note that xm q = 0 ^or m*M !>• *

V 23.7 r (y) = x „ + x C-f ) + ... + X m m , 0 m,l *+ m,

m,k

PROPOSITION 3.8 For m=0,l and k=1 , 2

3. 8 1  2& 
Tm,k = (2 k+l)! i^OII Cm-i)

PROOF
From 3.6 and 3.7 we see that for k>l
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m- 1

Tm,k = . 1 ai,k » m = 0 >1 ».••1=0

Thus t v=0 for m=0,...,2k. Since by proposition 3.4 a. ,m j k ijK
is given by a polynomial in i of degree 2 k we have by 
equation 3.4 that rm ^ is given by a polynomial in m of 
degree 2k+l. Thus

Tm,k = c*m(m-l)...Cm-2 k)

for some constant c. Since ^2 ^+^ fc=a2k k=  ̂we ^ave

1  = c*(2 k+l)(2 k)...Cl) = c*(2 k+l)! .

Thus c=l/(2k+l)! and the proof of the proposition is com­
plete.

COROLLARY 3.9 For c*0

3.9 lim i rm(m_J5c) = 00 .m-»-oo m

PROOF
Applying 3.7 and 3. 8  we have

1  _ 1 mCm-1 ). .. (m-2k). c2k
^ rm(m cJ = * (2 k+l) ! ^

_ [<m-l)/2 ] mCm.p . . . (m- 2 k) fc] 2k 
k=l C2 k+l)! mk + 1  2̂'

For fixed c and k each of the terms in the above sum tend to 
«> individually as mt°°. This proves the corollary.



Chapter IV 

Asymptotic Behavior of the Random Walk

The notation of the previous sections remains in force, 
In corollary 2.7 we saw that

<J>*m«exp(x,y ,z) = f 3 E[-(PmCc) )?5xa,-(Pm(c) J^yb ,-zc]
* R
fK  PxCc)Ca2 + b2) + mc2J dadbdc ,

Alternately,

<})*moexp(x,y ,z) = | 3 E [-(PmCc) ),gxa,-(PmCc) )?5yb ,-zc]
R
F^Cm + rmCc))(a2 + b2) + mc2 ]dadbdc,

Making a change of variables this last integral becomes

m-3/2 f  ̂E [-(Pm(m“3sc) )?sm"J5xa»-(Pm(m“Jsc) )?sm“Jsyb j-m'^zc]
R

F[m"1(m + rjnCm“Jsc)) (a2 + b2) + c2] dadbdc

Again making a change of variables we have that

, *m , v -3/2 f rX ( Pmfm-i5c5<f> °exp(x,y,z) = m E - ------ -VT xa»
J p 3 L Im + r„Cm *c)} m

- h  \ h‘n l \ *r Pm (m ^c) -1*1- -ie— I yb, -m ^zc
[m + rm(m J

m G(a,b,c) dadbdc

23
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We integrate with respect to dadb to conclude that

4.1 <t>*m «exp(x,y,z) = m"3^2 [ -21--------- c—  EC-nT^zc)
R m + rm(m“^c)

f  P m C m ^ c )  9 9 IF ---2----- j—  (x2 + y 2)Lm + rm (m_J5c) J Jm’
G(c) dc

and in particular,

4.2 <f>*moexp(0,0,0) = m" 3 / 2  f ---- 21  —  GCc) dc
m + rm (m c)

In the next theorem we utilize 4.1 and 4.2 to show that, 
as in the abelian case, the rate at which the Gaussian 
random walk on Nj ’’wanders to is determined by the

Ainbehavior of <f> ©exp(0 ,0 ,0 ) as m-*-°°.

THEOREM 4.1 For k>0 let Bk={(x,y,z): Cx2 + y 2 + z2) ^ } .  
Then for Cx,y,z)eB^.,

<f>*m°exp(0 ,0 ,0) <()*moexp(x,y ,z) >_ G(k) <J>*m©exp(0 ,0 ,0) . 
Hence,

f <f)*moexp(x,y ,z) dxdydz = 0 (<Jt*m©exp( 0 , 0 ,0 )) 
i n.Bk

and

4>*m©exp( 0  , 0 ,0 ) = 0  <j)*ra*exp(x,y ,z) dxdydzj
k

PROOF
The first inequality was established in corollary 2.8. 

To prove the second equality we consider the expressions in
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4.1 and 4.2 and make some rather crude estimates. Now, 
applying 2.2 and 3.6

, , 2 m“2 .
V ™ o) = pm-l<m c> + J„ pi<”>'^>

= pm-l("l'JSo) + ^<rm-lCm"l5°) + •
Thus ,

P^nT^c) _ Pm-i (m~^c) c^ m-1 + rm_T (m~^c)
m + T (nf^c) m + T CnT^c) 4m m + T (nT^c)m m  m

< 1 + °2 < 1 + Tm *

Hence, for (x,y,z)sB^

<f>*moexp(x,y,z) > m“3^2 [ -----m —  EC-nT^zc) G(c)JR m + Tm(m c)

F [(1 + 5S) ( x 2  + y2)] dc

> m“3^2F(x2 + y2)f ----- —--—  G(c) dc
R m + T (m“^c) m

*m> G(k)<f> “oexpCO ,0,0).

In the above calculation we implicitly used the fact that 
since all of the real-valued functions, when viewed as 
functions of c, are even, only Re(E(-m zc)) affects the 
integral. This completes the proof of the theorem.



DEFINITION 4.2 For 1 =1 ,2 ,... set

Im = ( 4>oexp*mC0 ,0 ,0 ) )-1 <f>*m«exp( 0  >0 ,0 )

= m 3 <̂f>*m<>exp( 0  , 0 ,0 )

= f ------ 1  -T-—  G(c) dc .
JR 1 + m" r (iiT^c) m

From the integral defining Im we see immediately that 
Im<l. Thus we see that not only is the non-abelian walk 
transient but also that it "wanders to «*” at least as rapid 
ly as does the abelian walk. In fact the non-abelian walk 
"wanders to more rapidly than does the abelian walk as 
one sees by applying corollary 3.9 and the dominated con­
vergence theorem to conclude that as m-*-«>. It is now
natural to inquire about the rate at which Im tends to 0 . 
This question will be answered rather precisely in theorem 
4. 4.

LEMMA 4.3 For a>0, ceR
00

4.3 lim I (mc)k----=+—  = 0,
n H *00 k=[am] + l C 2 k+l)

the limit being uniform on compact subsets of R.
PROOF

7 I(mc)k 1  I < 7 1me Ik 1

k=[am] + 1  (2 k+l)! k=[am}+l ^am) (k+1 )!

k=[am]+l . (k+1 )! s
the latter series tending uniformly to 0 on compacta as m-*«>
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THEOREM 4.4

a) lim
m+°°

b ) o A
c) lim

h h -°°

m

m — mm->°°

m ^ *m-»-oo

PROOF
Although a) and c) follow immediately from b) we shall 

prove them independently since little extra work is involved 
in doing so and the proofs are instructive.

Since rm and G are even functions,

mpIm = 2 H  ----- ----- r—  GCc) do .
J 0 1  + m“ rmCm'^c)

Since T is a monotone increasing function we have that m

rnT̂  mP
4.4 mPl™ > I  r --r—  GCc) dc

T (m~^c)m
mP l n > r  — j.

J0 1 + m  ■

> G C D m P ’^Cl + m"1rm (m"1))"1 .

Now, combining 3.7 with 3.8 and setting we have

_-l« ,..-U . Cm-1) . . . Cm-2k) 1m rm (m ) = I ------------- ---- —
k=l (2 k+l)! 4* m

[Cm-l)/2 ] !
< I —------- r .k=l (2k+l)! 4K

1 1This shows that m rm(m ) remains bounded as m-*-*». Applying



this result to 4. if we see that

and

lim inf m̂ Ijn > 0

i f . 6 lim = 00 for p>3g.m -v<»

On the other hand,
m-Jg
f (1 + m“ T̂ CirT̂ c) J^mPGCc) dc < mp-3s
) n m

and thus

,7 lim f Cl + nr^I^Cnr^c) ̂ ^m^GCc) dc = 0 for p<*s m-*-00 J o
- h

and

U. 8 lim sup f (1 + m“1rmCm”lsc) )“1m̂ sGCc) dc < 1.nn-oo j 0 m —

To complete the proof of the theorem we must consider 
the behavior of

[ , (1 + nT^TCnT^c)J-^GCc) dc .
im-h m

Consider the map

1 + nr1r(nr,sc) m
[ C m-1) / 2] / . \ / av. \

k-1 (2k+l) ! ifm
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For m>2

4.9 1 + m"1r (nf^c) > 1 crc-iUv:.:.(.m-2k>
k=l (2k+l)!

'c2'
4m

[m/4l /i,m\2k r«2%k> i +L 7 ^ < W  „ M
k=l. (2k*D! lUmJ

X (m£-|k 
k=0 (2k+l)! 116

from whence we see that for all p and all c^O

lim m“P*m“^riT,(m“i£c) = °°, m-̂ oo m

the limit being uniform away from 0. Thus for all p,

4.10 lim I mp(l + m”^r (m-5sc) )“•*■ G(c) dc = 0.m*+-a> J m

We next consider the behavior of the integral 

J1 mp(l + m"1rm(m“1sc) GCc) dc ,
m

Define
00 VrK

fCr) = Jo T i t u T  • reR •

By 4.9 and lemma 4.3 we conclude that for KQ fixed, 0<Ko<l, 
and for m sufficiently large

4.12 1 + m“1rm(m"lsc) > KQf(mc2/16) , ce[0,l] .

Now, for r>0
, co _2k+l

“•I3 f‘r> = r_% . L  7$T.k=0 (2k+l)! 

We also have that
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k=0
2k+2 2k+l

- i * i  £ -------  I ̂ ----k=0 C 2k+2)! k =0 C 2k+l)!
2k+l m 2k+lOO y<— CO ■_

= i + /? y  ----  + I ^ ----
k=0 C2k+2)! k=0 C2k+l)!

Combining 4.13 and 4,14 we conclude that for r>0
a> _2k+l /r^ f ( r )  = y Xi------

k-0 (2k+l)!

oo _2k+l
> l J®—k=0 (2k+2)! 

r ^ f e ^  - 1 - »^rf(r))

from whence

f(r) > (r + /?)~1 (e*^ - 1) 

Thus for ce[m-3s,l]

u u  f fmc 1 „ flH£_ + ^£.1" 0 ^nc/4 f4.15 f lirJ “  [l6 + 4 J 6 (1 - e ) .

Setting K = KQ C1 - e” *̂) we have by 4.12 and 4.15 that

4.16 1 + m " 1rm (m“Jsc) > 1 e ^ c / u

for celnf^,!] and m sufficiently large. Thus for large m
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. Cl + m”^rjn(m”Jsc) )” "*■ GCc) dc

< K ’ 1 f1 j, fssi + J S 2) e-i^Hc/t dc
I16 4 J

_ K-1 ft̂ n/4 (x2 + xj e”x,4m-Js dx 
J 1/4

.go
< K-14m-?s J (x2 + x) e-x dx .

Since the last integral above is finite we conclude that

11 _ 1 _ 14.17 lim sup f m I , (1 + m r Cm c)) GCc) dc < 00

and for p<*g

4.18 lim mp f Cl + nf^Cnf^c)5"1 GCc) dc = 0.
* m”

Finally, 4.6 proves c), 4.7, 4.10 and 4.18 together prove a), 
and 4.5, 4.8, 4.10 and 4.17 together prove b).
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