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Abstract

In this dissertation the transience of the random walk
associated with the Gaussian probability density function on
the Heisenberg group is analyzed and compared with that of
a corresponding random walk on the Lie algebra of the
Heisenberg group. Asymptotic results are obtained that
yield a quantitative reflection of the effect of the non-
commutative nature of the group multiplication law on the

behavior of the BGaussian random walk.



Introduction

Let G be a locally compact group and let M be a proba-
bility measure on G. M generates a random walk on G with
the crucial property that the number of times that the walk
can be expected to visit a Borel subset A of G is Zu*m(A)
where the summation runs over all positive integers m, and
u*m denotes the m~fold convolution power of u. It is known
[1] that either Eu*m(A) is finite for every compact set A
or else is infinite for every open set A. In the former
case the random walk determined by u is said to be transient
and to "wander to ®." 1In the latter case the walk is said
to be recurrent.

For convenience we now restrict our discussion to the
case in which G is a l-connected nilpotent Lie group. Such
groups are diffeomorphic to R for some n. If the group
actually is R" then it is a classical theorem (see e.g.c2])
that for n>3 every random walk on G generated by a measure
that is supported by no proper closed subgroup of G is
transient. A special case of a theorem proved by Guivarc'h
and Keane [ 3] is that this result is also true for l-con-
nected nilpotent Lie groups of dimension greater than two.

Let G be a l-connected nilpotent Lie group, let L
denote its Lie algebra, and let exp denote the exponential
map from L to G. exp is a global diffeomorphism that carries
Euclidean measure on L to Haar measure on G [u]. Thus exp

v



carries absolutely continuous probability measures on G to
absolutely continuous probability measures on L. If u is a
probability distribution on G and if A is a neighborhood of
the origin in L consider the two infinite series
ZjA¢*moexp(1)dl and ZfA¢oexp*m(1) dl, the former series
being associated with the expected number of visits of a
random walk on G to a neighborhood of the origin and the
latter series being similarly associated with a random walk
on the abelian group structure of L. Both series are con-
vergent, but one might expect that, since in order to return
to the origin in the non-abelian case one must retrace one's
steps in the correct order, the first series should converge
more rapidly than the second. In this paper we address this
question in a particular case--that in which ¢eexp is the
Gaussian distribution and G is the Heisenberg group.

Our main results are theorems 4.1 and 4.5. The former
theorem shows that, as in the abelian case, the behavior of
the series in question depends only on the behavior of the
convolution powers of the density function evaluated at the
origin. The latter theorem shows that, asymptotically, the
ratio of ¢*moexp(0,0,0) to ¢oexp*m(0,0,0) behaves like m™,
Roughly, this means that the ratio of the probability of

returning to the origin at the mth

step on the Heisenberg
group to the probability of returning to the origin at the
mth step on R3 behaves like m'k. We thus have a quantita-

tive reflection of the effect of the non-commutative group

vi



multiplication on the difficulty of returning to the origin.
One of the main tools in the analysis of random walks
on R® is the Fourier transform. Its value in this situation
is that it carries convolution to pointwise multiplication.
In the interesting but relatively simple case in which the
distribution function ¢ is a Schwartz function one can then
apply the Plancherel theorem (inversion theorem) to analyze
the series EIA¢*m(x) dx . One might thus expect that in the
case in which G is a l-connected nilpotent Lie group that
the representation-theoretic Fourier transform and inversion
theorem would prove to be similarly useful. This has not,
thus far, been the case. In the.non-abelian setting the

inversion theorem takes the form, for ¢ a Schwartz function,
[s]

$¢1) = f& $Cm) an

~
where G is the set of unitary-equivalence classes of irre-
ducible unitary representations of G, dr is a (known) pos-

itive measure and’

#(m) = trace Ty = trace J m(g)e(g) dg .
G

While the map ¢+—+m, is multiplicative, the trace function is

¢

not, unless m is one~dimensional. Therefore the non-abelian
Fourier transform is not multiplicative.
Since we have been unable to utilize the non-abelian

Fourier transform, our analysis of the problem at hand

vii



prodeeds by real-variable methods. The proofs are compu-
tational, using classical theorems. One property of the
Gaussian density that makes our calculaéions manageable is
that it is its own (abelian) Fourier transform. This fact

is crucial to the proof of lemma 2.5.

viii



Chapter I

Preliminaries

In this section we list for convenience certain nota-
tions and conventions that will be used in the sequel, in-
dicate the means by which convolutions on the Lie group can
be lifted to the Lie algebra, and consider briefly the
abelian version of our random walk.

N3 will denote the Heisenberg group. This group can be
thought of as the group of 3x3 unipotent matrices, or alter-
nately as R3 with multiplication given by

(x,v,2)(x'",y",2"') = (x+x',yty',z+tz'+xy').
The Lie algebra of N3 is R3 with bracket operation given by
[ (x,y,2) , (x',y',2")] = (0,0,xy'-yx').

If G is any l-connected nilpotent Lie group with Lie
algebra L then exp is a global diffeomorphism and there is a
map C-H:L*G, called the Campbell-Hausdorff map [ 4] such that
for 1,1'el

C-H(1,1') = exp'l(exp 1 exp L') = 1+1'+%[21,1']+...
where ... denotes higher order bracket terms. Since the
group being considered is nilpotent the series terminates,
and for Ny all of the higher order bracket terms vanish.

Recall that exp carries Euclidean measure dl on the Lie
algebra to Haar measure dg on G. Let feLl(6) and let

- -1
l;=exp “gi. Then



*m -1, o¥m=-1
£ (gy) IG f(g gl ) f (g,) dg,

f

-1 -1

jL...fL feexp(C-H(1,,-1,)...feexp(C-H(1 ’_1m

-2

foexp(lm_l) dl;...d1  ,

Thus if one knows C-H explicitly one can carry out all of
the integrations necessary to compute convolutions on the
group by lifting to the algebra.
We note that for the Lie algebra of Nj
C-H((x,v,2),{x',y',2')) = (x+x',y+y',z4+z'+k(xy'-yx')) .
For notational convenience we introduce here certain
conventions that will remain in force throughout the re-
mainder of the paper:
1. All measures on Euclidean space are taken to be
Lebesgue measure normalized by multiplication by

(21)~%" yhere n is the dimension of the space in

question.
2. TFor any n, E(Xjy,...,%)) = e—ilxy+. . +x,)
- 2 2
3. For any n, G(xl""’xn) = e %(x1+...+xn)_

e-%(x1+...+xn).

4, For any n, F(xl,...,xn)

5. Sums taken over an empty indexing set are taken to

be 0.

6. Products taken over an empty indexing set aite taken

to be 1.



6. ¢:N3+R is the function defined by
poexp(x,v,z) = G(x,y,z).
We call the random walk on N3 associated with the,
measure ¢dg the Gaussian random walk on Nj.
We conclude this section by considering briefly the
abelian Gaussian random walk, that is, the random walk on
R? associated with the measure G(x,y,2z)dxdydz. It is easily

computed, either by direct computation or by utilizing the

fact that é:G, that
6"M(x,y,2z) = m~3/2a(m~ 1/ 2x,m1/2y ,m~1/25),

It follows that, denoting the sphere centered at the origin

of radius k>0 by Bk’ for every m and for all (x,y,z)eBk
*
e"™(0,0,0) > 6™™(x,y,2) > 6(k)I6"™(0,0,0).
Thus for fixed k>0,
*m *m

[ 6 ™x,y,2z) dxdydz = 0(G "(0,0,0))

By
and

%
6"™(0,0,0) = 0(f  &"™x,y,z) dxdydz) .
k

The question of the transience and rate of "wandering to «"
of this random walk are thus seen to depend only on the

behavior of G*m(0,0,0) as mrwo,



Chapter II1

Evaluation of ¢ Meexp”

Our goal in this section is the evaluation of ¢*moexp“.
To do this we define a particular sequence of polynomials,
prove some preparatory results concerning their algebraic
interrelationships, and then proceed with the evaluation of
¢*moexp“ by means of a rather long and involved calculation.
The major results of this section are proposition 2.2 and

theorem 2.6 and its corollaries.

DEFINITION 2.1 For m=0,1,... define PmeR(Y) recursively by

PO(Y) = Pl(Y) = 1
and for m>1
2.1 P_ . (Y)/P_(y) = P_(¥)/P__ (Y)

- ~1,m52 2
¥ (16P ., (YIP_(¥)) (igo P, (y))

+ Ysz_l(y)/(qu(Y))

It is not clear a priori that the above definition
actually makes sense since the possibility that P =0 for
some m has not been ruled out. In the next proposition we

show that not only does the above definition make sense, but

'



also that Pm is a polynomial with Pm(y)il for all real y.

PROPOSITION 2.2 For m=0,1,... P .€R[Y], P, .(0)=1, and
2. m=1
2.2 P 1Y) = P (y) + % igo P, (Y)

PROOF

We proceed by induction on m, the case m=0 being
trivial. Assuming the proposition to be true for non-
negative integers <m, definition 2.1 makes sense and we

then have by 2.1
P o(y) = (P y)Le2, (v - LT B2 + X2P2y)
m+2 Y = PR lY m+1'Y s.ZUiY y mY
1=
Applying the inductive hypothesis we see that

- 2 m-=1
ey e () + E T Py(yn?

P (v)
i=0

m+2

1

I_( g
‘go

2
ps(yN? + Lo pleny ]

2 2 m=1
-1 2 .
(v~ [ p20y) + Xp_(v) I P (¥) ]

2 m-1

2 m
P_(y) + { Piy) + & ) Pi(y)
i=0

2 m
P erCY) #+ igo P (v)

Thus 2.2 holds with m+l in place of m. We conclude from 2.2
and the inductive hypothesis that Pp,,eR[Y] and that
P +2(0) = Pm+1(0) =1 .

This completes the proof of the proposition.



The following corollary follows trivially from defini-
tion 2.1 (for the case m=0) and from proposition 2.2 and

induction (for m>1).

COROLLARY 2.3 Tor m=0,1,... PmeR[Yzluj with non-negative
coefficients and constant coefficient 1. In particular, for
every m and every real vy,

2.3 Pm(Y) > 1,
The next lemma will be used in the proof of lemma 2.5.
LEMMA 2.4 TFor m=0,1,...

m-1 m=1
-1 2 -1 2
2.4 (Pm(Y)) E Pi(Y)-Y (4Pm(Y)P (v)) (igo Pi(Y))

+
i=0 me 1

m=1
(v)) ligo P, (V)

=(P_4q

PROOF
We apply lemma 2.2 and calculate.

-q Wl 2 -1,mzl 2
(Pm(Y)) igo Pi(Y)“‘Y (HPm(Y)Pm+1(Y)) (_Z Pi(Y))

i=0

(P_(YIP (YD) [Pm"lw)igo P.(y) - ¥ izo P, (y

-1 m=1 2 m=1 2
(P, (Y)P_ 1(Y)) [?mcy)igo Pity) + X (I Pi(¥)

2 m-1 2
- % (igo Pi(Y))]

"

_1.m-1
¢ INCOP RIS MY
i=0



LEMMA 2,5 Fix me{1,2,...}. Let k be an integer with O0<k<m.

Then

2.5 ¢*m°exp (a,B,Y) = J E[ ) (o - XL 7Y vy Ix,,
j= 2320 "1 J

R?(m-k) 3 0 =
m-k-1 j=1
(g + ¥ pd )y.]
jgo 2 150 173
k-1 -
-y F[P ()P (y))~ 1k
3=0 k+1 k 3
2 3z1
+ B ThHey + 3T xp)
k=1 ]
(1;0 Pl(Y))xj
m-k-1 -1 2
L F|Pyyq (I (P (YD) F
' 2 j=1
- -1 -
(Pk(y)) (ay % 120 y,)

kil (v))
( P, (y yl
120 1 ]

-1, %3t 2, o2
Flee, (y)™ T P a? + 8%)
120

+ my{]

-1 m-k-1
(Py (¥)) X dxidys

PROOF

We proceed by induction on k. Consider first the case

¢*moexph(a,8,y) = I E(axosByo,Yzo) ¢*moexp(x0,y0,z0)

R3
dxodyodz0



m=2
: [Rsm ECax;,8yq,vzq) it G(X; = Xj4q9Y5 = Yiaqo

- + = -
Zi T Zien YUY XY eq))
a( m-1
xm—l’ymrl’zm-l) igo dx.dy,dz; .

Making several changes of variable the above integral

becomes
J s
Lan E|ox):8y>v(z* 5 igo(xiyi+1 - xi+1yi)ﬂ

m=2
Tg GCX1 = X341V = Vip1935 = Zian) SCpq5Yp q52p 1)

m=1

Integrating with respect to dzO"'dzm-l the integral becomes,

noting that a=G and G(x,y,z)=6(x)G(y)G(z),

m=2
IRZm [ oxq,8y0.% Lo Kivie - xi+1Yi)]G(Xm-1)

m=2 m-?2
(Mo S0xi = %341) Glyp ) [T Gly; = y341) GG/ Y)

m-
iEO dx;dy;

Again making several changes of variable we rewrite the
integral as
m=1 j-1 m=1 3
E[ (a« - X )% (g + L
[Rzm jZU 2 1; Y1'¥%3s jgo 21

m=1 m=1 2 2 m=1
1° rx®) ™ FiyH) Fmy?) TR dxidy; .
350 FO%9) 5 T3 Y j=g YA

This proves the lemma in the case k=0.



Next, for O0<k<m,

m-k-1 j=1 m-k-1 j=1
E[ (o - X V)X (B + L % )y-]
]RZ(m-k) L 7 18y Y% jgo 7 4Ly ¥V

320
m-k-1 ~1,2 .1 2 3z
b r[ Pran NPy hed + (R ey + LT xg)
k-1
I Pl(Y))x-]
-k-1 - y2 izl
mj’;‘o F[ 1D BNy - ()7 ey - Loy

CF R
P .
Zo 1Y yl]
k=1
[(P (v))~L( z P (Y))(a2 + B2) + my](Pk(Y))-l

m-]ﬁ— 1 d
illg ¥y

SEE NEXT PAGE
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_ f E[m-k-2 ¢ y j=1 ; m=k=2 ) j=1
g2 (m-k) jgo * T2 120 Y17%5> jZo Y % 120 xl)yil
m-k-2 2 j-1
=12 -1
3T F[Pk+1(y)(Pk(y)) x§ + (P (y)) 7 (By + % 120 x,)
T Py
P »
m-k-2 j=1
-1,2 _ -1 2
jEO F[ k+1(Y)(P (v))~ J (P (v))"*(ay - % 150 yl)
k=1
( ZU P]_('Y))Yj]
1,551 2
F fP (y))™~( Z P (Y))(a + 82) + my
i v mrk-2 N Y m-k-2
E fu - % lzo y )% q0CB * { 1§o IR AN 1]
B -1 2 -1 2 m-k=2
FPreaa OB ™ g+ (Rayn™hey + L0 %)
k=1
2 m-k-2
1,2 “legy - X
F[ )1V BNy T g = (PL(Y)) T (ay - 3 150 yl)
k=1 '
L plcvnym_k_l]
( -1 m—%-l
P (YD) iz iy

Completing the square in the arguments of the last two F's

in the integrand above the integral becomes
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I m-k=2 y 352 mek=2 y 33t
22 (m=k) E[ I o= I oydx, Lo 8+g 1 xl)’J

3=0 1=0 3=0 1=0
m-k-2 2 j=1
~1.2 -1
17 B OB I + ) Leey +-'32£ e
m-k-2 2 j=1
-1,2 -1 Y
jgo F[ k+l(Y)(P (vy)) ys - (P (v " Hlay - > 120 v,)
k-1
(120 Pl(Y))Yﬂ
F[(P (y))‘lckil P_(y))(a? + 8%) +m72]
k 1=0 1
v m-k-2 y m-k-2
- +
E[(“ ? 1Ly Y1 %ak-1C Y3 2 x1)3’m--1<-1-_|
| ~k=2
-1 -1 yz ™
[k+1(Y)(P (v)) {x el + (2Pk+1(Y)) (By + 5 120 x)
kfl 2]
1o Pl(Y)}
-1 -1 12 m=k=-2
F[k+1(Y)(P (vy)) {y kel T (2 k+1('r)) (ay - 5 120 Yl)
SR )}ﬂ
P
189 1Y
k-1 m=)=2
_ 2 ; 2
r[cupkmpkﬂm) I P, (y)4{-8%y? - 8y° Lo
’ ~k=-2 m=-k-2 y m-k-2 9
_ oy " 2 2.2 3 _x ]
m ( E xl) a’ys + ay E yl : ¢ 120 yl) }
(p, (y))~1 "Et ax a
k(Y jzp XY

Translating x and Y mek=1 appropriately and performing

m~k-1
some algebraic manipulations we rewrite the integral as



[ o -
RZ(m—k) j=0 2 1=p ] i

m-k-2 -1 -1
jE F|{P (Y)(P (v~ -« (16P (Y)P. (y))

k+1l k+1

k=1
( z P, (Y))z}x

2 5=1 X
# (P Gy By + X T %)
k 2 429 14
2
- y2(uB (IR, (v epy + X

i P, (v)

$.1 -
2

1§ xl)(lzo Py (YD) }xﬁ

m-k-2 -1 -1

jE F {Pk+1(Y)(P (v))"* - vy (16P (YIP (YD)

k=1
(I, P10r2713
2
- (p () oy - X 32 yl) z P, (y)

- w2
Y (qu(Y)P

- 2 J =
e (Y ey - X Loy z P (y)) }y]

y -1 k=1
P[{Pk(y)) IR -y 2(4p,_(1IP, ,,

(y))~ ( Z ‘Pl(Y)}
1=0

(a2 + 82) + myz]

m-k-2 1
E[(a - %- 120 yl){xm_k_l - (ZPk+1(C¥.))
ey + X2 T e )ﬂ
By + X P_(y
2 129 1l1z0 1
m-k-2 -1
E[(B *L L k)W b (2P ()
RES IR )4
(ay - 5 120 yq) E P, (y
1,2 2
[ (@ (0 2B nee (Y2 1]
-1 . m—%-l dx:dy.s
(P, (Y)) (I, dxidyy
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Noting that

m=k=2 2 Mek=2
(8 + x )lay - )
% 120 1 % 120 Y1
m-k=2 5 M=k=2
- -I x -
(o 2 1§o yl)(BY + 3 1£0 xl) 0

and making the substitutions

v s [ )1V Py (Y))_JJH » V5 [ RRR LAY (Y))-l]k Ym=k-1

m—k-l

the above integral becomes upon applying lemma 2.4 and then

integrating with respect to dudv,

m=-lg-2 j=1 m-k-2 je1
- X
IRZ(m'k'l) E[ o Tk M L, € L xl)yi]
m%"2 Blte, L (y) (P (y))"Y - yH(16B, (yIP, | (y))72
jgo k41 Y7 Y -y )Y IP e Y
i Y))z}x

-1
+ LR, (Y))'l(BY + 17 x.) z P (y)}x,]
2 120 1920 1 3

-1 _ -1
F[{Pk+1(v)(Pk(Y)) - ¥ (18P (YIP (YD)

kol 2
( Z P (¥)) }y

2 §=1 ]

- (P, ()7 Yay - % z yl) z P () )y,

| 1T Pty a2 + 82) + 2]

F ( k+1(Y) Z Py a’ + B my
-1 m-k=2 2

F.?k(y)(Pk+1(y)) (g + % 120 x,) ]

B _1 - 1 m-k-2 2]
FLPkty)(Pk+1(y)) (a : 120 yl)

-1 m=-k-2

(Pk+1(y)) igo dxidyi.



Performing some algebraic manipulations and applying 2.1

the integral becomes, finally

m-k-2 j=1 m-k-2 j=1
E[ ) (¢ =L 77 yIx. )) (g +XL 77 x )y.]
IR2(m—k—1) j=0 2 129 1°73° 3=0 2 12p 1773
m-k-2 -1 2 -1 12 i=1
jgo F[Pk+2(Y)(Pk+1(Y)) xj + (Pk+1(y)) (By + 5 150 xl)
( P_(v))x.
120 1Y XJ]
m-k- 2 2 j=1

-1 2
F[Pk+2(v)(Pk+1(Y)) v? - (e,

-1 X
+1(y)) Cay 5 lZO yl)
( 5 )
P L]
120 1 <Y )yj]
k
-1 2 2 2
F[}Pk+1(y)) (150 Pl(Y))(a + B%) + my ]

m-k-2

-1
(P, (YD) 7 axay,

This provides the inductive step and completes the proof of

the lemma.

The case k=m of lemma 2.5 is important. We state this

special case as a theorem.
THEOREM 2.6 For m = 1,2,...
| *m ~ -1 ~1,mzd
2.6 ¢ “eexp (a,B,y) = (Pply)) F[}Pm(y)) (lzoPl(y))

(a? + B2) + my2]

14



1’2,".

COROLLARY 2.7 For m
2.7 ¢*m°exp(x,y,z) = f 3 E[—(Pm(c))%xa,-(Pm(c)%yb,-zc]
R
msl 2 2 2
F[lzo Py(c)(a‘ + b%) + me ]dadbdc

and in particular,

* mel 2, .2 2
2.8 ¢ Moexp(0,0,0) IRa F 120 P,(c)(a® + b“) + mc®|dadbdec.

PROOF

We apply the Fourier inversion theorem to the Schwartz

function ¢*meepr to conclude from theorem 2.6 that

(Pm(Y))_lE(-xa,-yB,-zY)

¢*moexp(x,y,z) = I 3

R
m=1
F[(Pm(y))'l L, PrCe® + 8% 4 myz]

dadBfdy .
Making the substitutions a=(Pm(y))'¥a, b=(Pm(Y))-%B, Gy

we obtain 2.7.
As an immediate consequence of 2.7 we have
COROLLARY 2.8 For m=1,2,...

] ¢™Meexp || = ¢*Moexp(0,0,0) .

15



Chapter III

Some Polynomials

In the last section we saw that the behavior of the
function ¢*mqexp is intimately related to the behavior of
certain polynomials in one variable. In this section we
study the polynomials P of the previous section and also
other polynomials derived from them in some detail. The

notation of the previous section remains in force.

PROPOSITION 3.1 For m=1,2,...
2 =
1) PmeR[Y /4]and P_(0)=1.
2) Letting x=72/h and viewing Pm as a polynomial
in %, degree P = [m/2]). ; Moreover, if
. = m/ 2]

then a; is a positive integer for i = 1,...,[m/2].

i
If m is even, then am/2=1.
PROOF

1) is a restatement of corollary 2.3.

To prove 2) we proceed by induction on m, the cases
m=0,1 being trivial. Suppose inductively that m>1 and that
the proposition has been proved for 0,...,m. We consider
two cases.

Case 1. m odd.
We let x=72/u and replace 72/4 by x everywhere that

yz/u appears in the expressions for the polynomials Pi(y).

16



Then by proposition 2.2 and a slight abuse of notation
m=-1
Pm+1(x) m(x) X iZO Pi(x)

By the inductive hypothesis,

m-1

deg Pm(x) =5 deg P (x)

m=-1

and for i<m-2
m-3
deg P,(x) < 5

with each of the polynomials Pi(x), i=0,...,m having pos-
itive integer coefficients. We thus see that there are pos-

itive integers al,...,am_l, bl,...,bm_a so that

-z 2
m=2 m;l
P (x) + x J Pi(x) =1+ ajx *...+ ap_1x
i=0 _—
2
and
m-1 m+l
%P (x) = x+Db x2 + + b X LN X 2
m-1 - 1 tee m-3
2

where we have used the inductive hypothesis to conclude that
the leading coefficient of Pm_l(x) is 1. From 3.1 and the

above expressions we see that P_, ,(x) is a polynomial of

m+l _ [m+1
2

leading coefficient 1.

degree

] with positive integer coefficients and

Case 2. m even.
Proceeding as in case 1 we have that
1

m—
Pm+1(x) z Pm(x) + X iéo Pi(x)

17
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where deg P_(x) = B = [Eil] and deg P,(x) < m-2 for
& "m 2 2 &8 Fit* 25

i=0,...,m=1. The proposition in this case now follows
immediately.

This completes the proof of the proposition.
DEFINITION 3.2 For m,k=0,1,... define ar x by
2

- 2
3.2 Pm(y) = a + am’l(y /4) +..,

m,0

(m/2]

+ (v2/u)

am,[m/2]

and set a, ,=0 for k>[m/2].

Our immediate goal is to obtain a formula for ar in
3

terms of m and k.

LEMMA 3.3 For m=0,1,... and k=1,2,...

m=2 .
303 am,k = .Z (m—l-l)ai,k_l
i=0
PROOF
Since
Y m=2
Pm(Y) = P 1(Y) + 'ZO P, (y)
i=
for m>1 and PO(Y)=1, we see that
m-2
= + a.
®m.k - %m-1,k iEO i,k-1

We fix k>1 and proceed by induction on m. TFor m=0 the
lemma is trivial. Assuming inductively that 3.3 holds for

m,
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m=1
ntl,k - Zmyk Eo 23 k-1
m-2 . m=1
= igo (m-l-l)ai’k_1 + igo 3y k-1
m~= 2
= fpe1,k-1 Y igo (m-1)a; k-1
m=1 .
= iZO (m-ida; 4 4

This completes the proof of the lemma.

At this point we recall the classical fact (see e.g.

[6]) that for a non-negative integer p

kp+1 . ].<.P
ptl 2

3.4 1P+ 2P s L0+ P =

. pfl By, [ P ] P+l
n=2 n n-1

where the numbers Bn are the Bernoulli numbers which occur

as the coefficients of the power series expansion

B_z" , |z|<2m .

0 nn

Z

e?-1 n

-1 8

3.4 is actually a strongér statement than we need. We shall
use only the fact that the left side of 3.4 is given by a

polynomial in k of degree p+l.

LEMMA 3.4 For m,k=0,1,..., ap x<Sx(m) where Sy is a
polynomial of degree 2k.
PROOF

We note that a_ ,=0 for all m and proceed by induction

m,0



on k. Assume inductively that the lemma is true for k.
Using 3.3,

me=2
am,k+1 = ) (m-i-1)ag Jk

i=0

(m-1) "T0 si(i) - T 18y(1)
i o o (1
ML gk TR T Ly MOk

where S; is a polynomial of degree 2k. Applying 3.4 to the
summation of the various powers of i occurring in the

polynomials Sk(i) and iSk(i) we see that a is given by

m,k+1
the difference of two polynomials in m of degree 2k+2. Thus

there is a polynomial Sk+1 of degree at most 2k+2 such that

am,k+1 = Sk+1(m) .

D,k+1= '=a2k+1,k+1=0 we see that Sk+1 must in fact

be of degree 2k+2. This completes the inductive step and

Since a

thereby the proof of the lemma.

We are now in a position to determine an explicit

formula for am,k'

PROPOSITION 3.5 For m,k=0,1,...

3.5 1 ZRgl oy
» = . "l
m,k T T2yr izo "

PROOF
By lemma 3.4, for k>1,
an k- Sk(m)
where S, is a polynomial of degree 2k and

5, (0) = .. = S (2k=1) = 0 .

20



Thus for k>1,

am .k ° c.m(m-1)...{m~-(2k-1))
for some constant c. By proposition 3.1
1 = a2k’k = C'2k(2k-1).-.(1) = C(2k)! Y

Thus c=1/(2k)! . This proves the proposition for k>1. For

k=0, Sy =1 and the proposition is trivially true.

If we consider the integral of 2.7 which yields
¢*moexp(x,y,z) we see that we need to determine not only the

polynomials Pl(Y) but also certain sums of these polynomials.

DEFINITION 3.6 For m=0,1,... define polynomials Pm by
m=1
3.8 J Pr(y) = m + T,(y)
1=0 .
We note that IR(0)=0 and that if Ty is viewed as an

element in R[y2/4] then deg Pm=[(m-l)/2] for m>1, and Ty=0.

DEFINITION 3.7 For m,k=0,1,... define Tm.k by
3

ey

2
3.7 Pm(y) = Tm’o + Tm’l(% ) + L.+ Tm’[2§l]

and set t _=0 for k>[(m-1)/2]. Note that T, =0 for all m.
13 ms

m,

PROPOSITION 3.8 For m=0,1l,... and k=1,2,...

3.8 = 21 2K (i)
‘ Tmyk = (2k+1)1 iz0 U
PROOF

From 3.6 and 3.7 we see that for k>1,

21



m=1
Tm’k = igo ai’k 9 m=0 ,1,.--
Thus Tm’k=0 for m=0,...,2k. Since by proposition 3.4 a4 x
is given by a polynomial in i of degree 2k we have by

equation 3.4 that T

m.k is given by a polynomial in m of
H

degree 2k+1l., Thus
Tm,k = C'm(m—l).-.(m-zk)
for some constant c¢. Since 12k+1,k=a2k,k=1 we have that
1 = ¢+ (2k+2)(2K)... (1) = c-(2k+1)!

Thus ¢=1/(2k+1)! and the proof of the proposition is com-

plete.
COROLLARY 3.9 For c#0

3.9 lim % Pm(m'%c) = o,

Mmoo

PROOF

Applying 3.7 and 3.8 we have

1

[(m-1)/2] 2k
-3g 1 m(m-1)...(m=-2k), ¢
E Pm(m C) -

m k21 (2k+1)! PITES

[(m-2372) L me1).. . (mo20) (9_]2}‘
K21 (2k+1)1 m<*1 A2

For fixed ¢ and k each of the terms in the above sum tend to

» individually as m*~. This proves the corollary.
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Chapter IV

Asymptotic Behavior of the Random Walk

The notation of the previous sections remains in force.

In corollary 2.7 we saw that

¢"Meexp(x,y,2) [Rs E[-(P,(c))%xa,- (P () ¥yb ,-zc]
msl 2, .2 2
F[IIO P1(c)(a”® + b°) + me ] dadbde .

Alternately,

¢*moexp(x,y,z) [Ra E[}(Pm(c))kxa,-(Pm(c))%yb,—zc]
F[(m + T (e))(a? + b2) + mc?]dadbde.

Making a change of variables this last integral becomes
m=372 [R3 E[f(Pm(m'%c))%m‘%xa,-(Pm(m'%c))%m'%yb,-m'gzc]

F[mltm + ry(m¥c))(a? + b?) + c?]  dadbde

Again making a change of variables we have that

_35 ;5
¢*m m_3/2 [ . E[—r Pplm ®ec) ) xa,
R

cexp(x z) =
pi¥sY> \m + Fm(m;%c)l

r Pm(m_%c) .~ -y
- - yb, -m zc]
(m + T (m =)

m

G(a,b,c) dadbde.
m + Tp(m™%c)

23
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We integrate with respect to dadb to conclude that

4.1 ¢"Meexp(x,y,z) = m 3’2 IR L T, E(~-m~%zc)
m + T (m™2c)
Pm(m'%c)
F 2 4 2)]
[m + Fm(m'gc) (x Y
G(c) de
and in particular,
4,2 ¢*moexp(0,0,0) = m=3/2 I m G(e) de

Rm+ Ip(m %c)

In the next theorem we utilize 4.1 and 4.2 to show that,
as in the abelian case, the rate at which the Gaussian
random walk on N; "wanders to «" is determined by the

%
behavior of ¢ Teexp(0,0,0) as m+w,

THEOREM 4.1 For k>0 let B ={(x,y,z): (x? + y2 + 22)%<k}.
Then for (x,y,z)eBy,

% * *

¢ Meexp(0,0,0) > ¢ Meexp(x,y,z) > G(k)¢ Teexp(0,0,0) .

Hence,

J ¢*moexp(x,y,z) dxdydz = 0(¢*meexp(0,0,0))
B
k

and

%
¢*moexp(0,0,0) = O[I ¢ Teexp(x,y,z) dxdydz)

By
PROOF
The first inequality was established in corollary 2.8.

To prove the second equality we consider the expressions in
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4.1 and 4.2 and make some rather crude estimates. Now,

applying 2.2 and 3.6

Pm(m'kc) = Pm_l(m'gc) + %% Tzz Pl(m'%c)
= Pm_l(m'%c) + %;(Pm_l(m'%c) + m-1) .
Thus ,
Em(m-%c) B Pm_lfm'kc) EE m~1 + T'y_q(m~%c)

m + Pm(m"%c) m+ T (mf%c) 4m m + Pm(m'%c)

~» 3

<1+ &

3l

Hence, for (x,y,z)eB,

*m m
m + Pm(m;¥c)

$ Meexp(x,y,z) > m™ /2 IR E(-m™%zc) G(c)

2
F[(l + ﬁa)ch + yz)] de

> w3/ 2px? + y2)] z G(c) de
Rm+ I (m 2c)

> 6Ck) ¢ Moexp(0,0,0).

In the above calculation we implicitly used the fact that
since all of the real-valued functions, when viewed as
functions of ¢, are even, only Re(E(-m-%zc)) affects the

integral. This completes the proof of the theorem.



DEFINITION 4.2 For m=1l,2,... set

(¢oexp*m(0,0,0))_1¢*moexp(0,0,0)

|
1]

m3/2¢*moexp(0,0,0)

1
G(e) de
IR 1+ m_lrm(m—kc)

From the integral defining I we see immediately that
In<1l. Thus we see that not only is the non-abelian walk
transient but also that it "wanders to «" at least as rapid-
ly as does the abelian walk. In fact the non-abelian walk
"wanders to =" more rapidly than does the abelian walk as
one sees by applying corollary 3.9 and the dominated con-
vergence theorem to conclude that Im+0 as m*, It is now
natural to inquire about the rate at which I tends to O.
This question will be answered rather precisely in theorem

4.4,

LEMMA 4.3 TFfor a>0, ceR

. k 1
4.3 1 (me)}” —m—m— =

the limit being uniform on compact subsets of R.

PROOF
o« oo k
7 ,(mc)k ———l‘—‘l < ImCIK‘ 1
k=[am]+1 (2k+1) ! 7 k=Tam)+1 (am}™ (k+1)!
0 k 1
= (lel/a) =
k=%MJ+1‘ 'CI : (k+1) 1 5

the latter series tending uniformly to 0 on compacta as m+w.
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THEOREM 4.4
a) lim mpIm = 0 for p<k
Mmoo

b)Y 0 < 1im inf m!5Im < lim sup m;iIm <
m-oe m-»oo

c) 1lim mPIm = o for p>k.
m-+»oo

PROOF

Although a) and c¢) follow immediately from b) we shall
prove them independently since little extra work is involved
in doing so and the proofs are instructive.

Since Ty, and G are even funetions,

L P
mpIm = 2[ ? % G(c) de .
01+ m "Ty(m =e)

Since Fm is a monotone increasing function we have that

m'k mP

T G(e) de

4.y mPI, > J T

1] i1+ m Pm(m c)

> G(LMPTE(1 + m™ir (m~1y)72

1

Now, combining 3.7 with 3.8 and setting y=m — we have

1

-1y [(m—%)/2] (m-1)...(m-2k) 1

r (m =
m k=1 (2k+1) 1 4k g2k

m“

[(m—l)/2] 1
k=1 (2Kk+1)1 uK

<

This shows that'm'lrm(m'l) remains bounded as m+*»., Applying
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this result to 4.4 we see that

4.5 lim inf m%Iy > 0
m-+o
and
4.6 %ig mPIm = = for p>k.

On the other hand,
m—%

I (1 + m'lrm(m'¥c))'1mPG(c) de < mP™*
0

and thus

m=%
4.7 lim J (1 + m~Ir_(m %)) " lmPG(c) de = 0  for p<k

mo 0 m
and
m—%

4.8 1lim sup J (1 + m'lrm(m"%c))"lm%G(c) de < 1.

Mmoo 0} -

To complete the proof of the theorem we must consider

the behavior of
] i (1 + m'lrm(m'gc))'lG(c) de .
m
Consider the map

c= 1 + m_ll"m(m';ic)

= 1 +

[m-13/2] o9y, (mo2io) [gEJk
k31 (2k+1)1! 4m .



For m>2

4.9 1 + m-Ir (m%e)

v

1 +[m§u] (m-1)...(m-2k) 93 k
k=1 (2k+1) ¢

v

. +[m/ul Cem) 2K [Ei]k

k=1 (2k+1)! {im

(m/u] 1 ek
k=0 (2k+1)! [15 ]

from whence we see that for all p and all c#0

1im m’P-m'lrm(m'%c) = o,
m->-e

the limit being uniform away from 0. Thus for all p,

o

4.10 1im I mP¢1 + m~Ir (m~%ec))~! a(e) de = 0.
mee Jq It

We next consider the behavior of the integral

1
f -3, mP(1 + m'll‘m(m"';ic))'1 G(c) dc .

m
Define
4,11 £(r) E _r< R
' °1Z ko (axe1y: * TET

By 4.9 and lemma 4.3 we conclude that for KO fixed, 0<Ko<1,

and for m sufficiently large
.12 1+ m-Ir_(m™%e) > K f(me?/16) , cef0,1] .

Now, for r>0

00 2k+1
- /v
4,13 F(p) = p % e
(r) =r kZO (2k+1) 1

We also have that



©  k
4, 14 T = 7 /2
k=0 X!

2k+2 o 2k+1

E.@__+ZL_.
k=0 (2k+2)! k=0 (2k+1)!
- 2k+1  _ _2k+l

1+ /7 A ) L —
k=0 (2k+2)! k=0 (2k+1)!

Combining 4.13 and 4.14 we conclude that for r>0

oo 2k+1

_ 54
/rer) = kgo (2k+1) !
o /?2k+1

k=0 (2k+2)!

r"";i(e‘/F - 1 - /?f(r))

from whence
f(r) > (r + /;)'1(e/; - 1)

Thus for ce[m‘k,l]

_k)

———m———— ] N | co——

16 16 4 - €

b 15 f[mc2] 5 [mc2 . 1@5]_1 e/ﬁc/u (1 .

Setting K = K (1 - e~®) we have by 4.12 and 4.15 that

2 -1
4,16 1+ m'lrm(m'kc) > K[%%— + f%&] e/EC/u

for ce[m";i,.l] and m sufficiently large. Thus for large m
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1
I i (1 + m_lrm(mf%c))'l G(c) dc
m

1 2
-1 me vYme -Yme/u
< K Im-;ﬁ [16 + —_14' ) e dc

+ x) e~Xeum™™ dx

-1 I/ﬁ/# 2
1/u4

o]

K_lllm_!ﬁ IO (x2 + x) e ® dx .

A

Since the last integral above is finite we conclude that

1

4.17 1lim sup vm (1 +m I‘m(m";";c))-1 G(c) de < =

1
m->co [m-%

and for p<k

l
4.18 Lim n® [, 1+ n i)™ ate) de = 0.
m->co m %

Finally, 4.6 proves c), 4.7, 4.10 and 4. 18 together prove a),

and 4.5, 4.8, 4.10 and 4.17 together prove b).
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