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ABSTRACT 

Coastal wetlands, long recognized to be among the most productive ecosystems on the 

planet, are being lost at a disturbingly high rate in coastal Louisiana due to both eustatic sea-level 

rise and land subsidence. A number of approaches have been proposed for reducing wetland loss 

and restoring deteriorated wetlands, among which the addition of sediment to increase marsh 

surface elevation is promising. However, little is known about how the added sediment affects 

the biogeochemistry of marsh sediment. The objective of this study was to determine the effects 

of sediment slurry addition on sulfur, iron, and manganese biogeochemistry in a subsiding 

Spartina patens dominated marsh in coastal Louisiana. The study site was located inside the Paul 

J. Rainey Wildlife Sanctuary in Vermillion Parish, Louisiana where low, medium, or high levels 

of sediment slurry were added to each study plot in July of 2008.  Sediment and porewater 

samples were collected from the control (i.e. no sediment addition), low, medium, and high 

sediment treatment plots approximately on a seasonal basis from February 2009 to June 2011.  

Laboratory incubation of sediment using the radioisotope 
35

S technique showed that there was no 

significant difference (p=0.2201) among the treatments in the rate of sulfate reduction 3 years 

after sediment slurry addition. However, significant increases (p=0.0007) in average 

concentrations of sulfate in sediment and decreases (p<0.0001) in sulfide in porewater with 

sediment addition over the 3 years’ measurements indicate that there likely was a decrease in 

sulfate reduction rate with increasing sediment addition during the preceding 3 years. 

Concentrations of sediment and porewater iron and manganese significantly increased when 

sediment addition increased, which was primarily attributed to the high levels of these two 

elements in the added sediment. The increased iron and manganese concentrations could, in part, 

explain the lower level of sulfide observed in the sediment-treated plots over the 3 year study. 
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Additionally, average pH and redox increased significantly with sediment addition (p<0.0001 

and p=0.0084, respectively). More samplings are needed to better understand the long-term 

impacts of sediment slurry addition on the rate of sulfate reduction in marsh sediment.  
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1. INTRODUCTION 

Coastal wetlands, long recognized to be among the most productive ecosystems on the 

planet, are being lost at a disturbingly high rate in coastal Louisiana (Mitsch and Gosselink, 

2007; Barras, J.A., 2003). Anthropogenic disruption of natural flooding regimes necessary for 

healthy marsh sustainability and growth are the major force behind this destruction (Day et al., 

1995). Sediment addition in order to increase elevation is a useful technique to combat the 

subsidence of marshes and resulting formation of open water (DNR, 2000; Stagg and 

Mendelssohn, 2010). Sulfate reducing bacteria are considered a principle component of the 

carbon cycle in salt marshes because of their ability to utilize many different low molecular 

weight carbon substrates. A number of studies have found sulfate reduction to be the dominant 

source of organic matter mineralization in salt marshes (Howarth and Teal, 1979; Howes et al., 

1984; Howarth and Merkel, 1984; King, G.M., 1988; Hines et al., 1989). The main product of 

sulfate reduction is hydrogen sulfide, a phytotoxin that has been linked to diminished vigor in 

wetland macrophytes (Mendelssohn and McKee, 1988; Koch et al., 1989). This toxicity can be 

mediated by reactive minerals such as iron in the sediment that bind sulfide to form insoluble 

compounds (King et al., 1982). Additionally, microbial reduction of manganese(IV) and iron(III) 

can play a role in the carbon cycle of moderately reduced sediments. 

 The goal of this research project is to determine how the rate of sulfate reduction and 

resulting sulfide concentrations in a brackish marsh would be affected by the addition of 

sediment slurry to the marsh surface as part of a larger effort to determine the viability of this 

method in restoring a rapidly subsiding coastal marsh to higher elevation relative to sea level. 

Previous research has shown that sediment addition can play a positive role in the health of 
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degraded marshes (Stagg, C.L., 2009; Mendelssohn and Kuhn, 2003). Our hypothesis was that 

the rate of sulfate reduction would decrease as relative elevation increased owing to increased 

aeration of the sediment due to decreased time under flooded conditions. This decrease in sulfate 

reduction would correspond to a decrease in toxic hydrogen sulfide. In order to achieve this 

increase in elevation, sediment from a nearby oil-well access canal was pumped atop a number 

of sections of marsh to various depths. A comprehensive seasonal analysis of the recovery of the 

marsh was begun after a period of acclimation. This study focused on microbial sulfate 

reduction, hydrogen sulfide, and sediment physical-chemical characteristics.  
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2. LITERATURE REVIEW 

2.1 LOUISIANA COASTAL WETLANDS 

Coastal marshes have long been recognized as some of the most productive ecosystems 

in the world (Dawes, C.J., 1998; Mitsch and Gosselink, 2007). In Louisiana, home to 41% of the 

wetlands in the continental United States, these wetlands play important roles as habitat for 

juvenile fish and crustaceans, nesting grounds for migratory bird species, and cultural treasures 

(Turner and Gosselink, 1975).  Built over many millennia, the health of Louisiana wetlands has 

deteriorated rapidly over the past century because of anthropogenic interference of the natural 

hydrology and eustatic sea-level rise (Day et al., 1995). The result of this interference has been 

the loss of wetlands at rates of greater than 125 km
2
 yr

-1
 from 1955-1978 and 77 km

2
 yr

-1
 from 

1978-2000 (Baumann and Turner, 1990; Barras, J.A., 2003). An additional 1745 km
2
 of the 

coastal zone is projected to be lost to erosion, subsidence, and eustatic sea level rise by 2050 

(Barras, J.A., 2003). 

2.2 LOUISIANA WETLAND LOSS 

Much of the loss and degradation of Louisiana’s wetlands can be attributed to the 

disruption of the annual overland flooding of the Mississippi River and the loss of sediment and 

nutrients that this flooding provided (Mendelssohn et al., 1983, Turner et al., 1988). 

Impoundment of wetlands has been shown to decrease the rate of sediment accretion when 

compared to natural systems (Bryant and Chabreck, 1998; Cahoon, D.R., 1994). Dams and 

levees built along the Mississippi River and its tributaries are the main cause of this disruption. 

Most of these impoundment structures were built in the early 20
th

 century to enhance the 

livability and prosperity of the regions adjacent to the river in the aftermath of the Great 
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Mississippi Flood of 1927. To the detriment of wetland systems, dams also collect and store 

sediments as they fall out of suspension when the river current slows in reservoirs. Further 

exacerbating this problem at a local level are containment structures such as levees and spoil 

banks that limit overland flooding by rivers and canals (Turner, R.E., 1997; Swenson and Turner, 

1987).  

Levees and spoil banks are present and affect lands adjacent to the Mississippi River as 

well as coastal wetlands. In many parts of south Louisiana oil-well access canals have been dug 

through coastal wetlands so that oil drilling and extraction equipment can be positioned to reach 

subsurface crude oil pockets. The spoil left from the dredging of these canals is typically piled 

alongside the newly created canal. These spoil banks block the natural hydrologic cycle that 

regularly inundates marshes, providing sediment and nutrients (Baumann and Turner, 1990; 

Swenson and Turner, 1987). A consequence of the removal of the natural flooding, and its 

associated sediment deposition, is that these wetlands can no longer maintain the proper 

elevation relative to sea-level. Also of consequence to the hydrologic cycle are levees built along 

waterways specifically for the purpose of limiting overland flooding during natural high water 

events.  

 Another detrimental cause of marsh instability is subsidence. Sediments will naturally 

subside over time through organic matter decomposition and compaction if not replenished. 

Wetlands naturally compensate for this through organic matter buildup owing to the extremely 

high primary productivity along with deposition of sediment during flooding events. Subsidence 

can also be enhanced by human-influenced activities such as withdrawal from subsurface 

aquifers as well as oil and gas extraction. These activities, in addition to eustatic sea-level rise, 

can greatly affect the relative sea-level rise rate affecting a particular coastal marsh.  For these 
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reasons, relative sea-level rise on the Louisiana coast can be much greater than the current 1.7 ± 

0.3 mm yr
-1

 rate of worldwide eustatic sea-level rise (Church and White, 2006).  

The minerals associated with natural sediment deposition also play a role in stimulating 

organic matter production. Both organic matter and mineral matter are necessary for the 

development of a healthy wetland soil (Nyman et al., 1990). Extended periods of inundation 

caused by decreasing elevation relative to sea-level decrease wetland plant productivity by 

decreasing oxygen availability, thus causing stress (Reed and Cahoon, 1992). Prolonged 

submergence and the resulting anoxic conditions can also lead to a buildup of toxic compounds 

such as hydrogen sulfide, the major product of sulfate reducing microorganisms, in the sediment 

that can affect plant vigor by limiting ATP production through suppression of both anaerobic and 

aerobic metabolic pathways (Mendelssohn and McKee, 1988; Koch et al., 1990).  

2.3 WETLAND RESTORATION 

Many methods to help coastal wetlands maintain elevation in the face of sea-level rise 

and subsidence have been suggested in the decades since the problem was first recognized. 

Removal of spoil banks into the canals from which they were taken is a way to restore a more 

natural grade to a disturbed wetland so that overbank flooding can effectively deposit sediment. 

This is accomplished by using heavy equipment stationed on either water or land to pull 

vegetation and sediment into the existing canal from which it was originally taken. Great care 

must be taken to ensure damage to the wetland or workers because of the nature of the large 

equipment used (Neill and Turner, 1987; Baustian et al., 2009).  

In locations where spoil bank removal is not feasible, natural flooding has been restored 

using crevasses cut into levees and pipeline diversions built through levees. A crevasse is simply 
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a break or channel in a levee through which natural waters can flow. The rate of flow diminishes 

as the water moves into the large, flat receiving body and sediment drops out. This accretion aids 

in maintaining sediment elevation in the face of subsidence (Boyer et al., 1997). Long term 

deposition of sediment at the mouth of the crevasse decreases the effectiveness of this technique 

over time. Also, sedimentation on the river side of these structures necessitates regular dredging 

to safely handle ship traffic. This method of restoration has been used regularly by the U.S. Fish 

and Wildlife Service at the Delta National Wildlife Refuge (Bohannon, J., 2008).  

Diversion structures provide a controllable method of introducing river waters into 

confined or flow-restricted wetlands. These structures enable the operator to control the rate of 

flow from the source body to the receiving body through the use of gates and pumps. An 

example of this is the Davis Pond Freshwater Diversion Structure. This structure is operated by 

the U.S. Army Corp of Engineers for the stated purpose of imitating annual flooding in order to 

restore the historic freshwater flow that provided nutrients and sediment to the Barataria Bay 

basin (DNR, 2002). 

Another substitute for the natural supply of sediment is to mechanically pump dredged 

material onto the marsh surface. There are a number of techniques that can be used to apply this 

sediment. One technique involves the deposition of a thin layer of sediment dredged from the 

bottom of a water body and sprayed onto the adjacent wetland from what may be a considerable 

distance (Cahoon and Cowan, 1988; Ford et al., 1999). Another method, the one used in this 

study, involves the use of sediment slurry. This slurry is a solution with a water-to-sediment ratio 

high enough to allow the slurry to spread easily and without additional assistance to increase 

elevation and bulk density. Sediment slurry has the advantages of being able to spread sediment 

over a large area while obtaining sediments from nearby bodies of water (DNR, 2000).  This 
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method has been shown to decrease sulfide concentrations and the duration of inundation while 

increasing bulk density, sediment nutrient concentrations, aboveground biomass, plant density 

and cover, and redox potential (Stagg and Mendelssohn, 2010; Schrift et al., 2008; Mendelssohn 

and Kuhn, 2003; Slocum et al., 2005). 

2.4 SULFUR CYCLE 

 Sulfur is a ubiquitous element required for all known life on Earth. Accounting for 

roughly 1% percent of the dry mass of all organisms, it is a major constituent in a number of 

amino acids (Howarth, R.W., 1984). Estimations of the global pool of sulfur in the oceans 

generally agree at 1.3 x 10
21

 g dissolved as sulfate (Li, Y., 1972; Schidlowski et al., 1977; 

Bottrell and Newton, 2006). Other major sulfur reservoirs include ancient evaporite deposits in 

the form of sulfate and marine clastic deposits of sulfide (Bottrell and Newton, 2006).  

The range of oxidation states available to sulfur, from +6 to -2, mean that it is available in 

many different forms that can be useful to biota of all kinds (Figure 1). Most important among 

these oxidation states as far as biogeochemical cycling is concerned are the most reduced form 

(S
2-

), elemental form (S
0
), and fully oxidized form (S

6+
). The change in oxidation states is useful 

to microorganisms that use theses atoms as electron donors or acceptors. There are four stable 

isotopes of sulfur (
32

S, 
33

S, 
34

S, and 
36

S) and one man-made radioactive isotope (
35

S). This 

radioactive form is useful in determining rates of reduction by bacteria in the laboratory and in 

situ (Reddy and Delaune, 2008).  

 Sulfate (SO4
2-

) is a commonly available form of inorganic oxidized sulfur that is supplied 

to salt and brackish marshes through the ebb and flow of tidal seawater. Marine systems can 

contain sulfate at concentrations up to 28mM, while freshwater systems may have concentrations 
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below 2mM (Reddy and Delaune, 2008). Microbial sulfate reduction may occur through two 

different pathways, either assimilatory or dissimilatory. Simply, assimilative reduction involves 

the reduction of sulfate for incorporation into biosynthetic processes within the cell (proteins, 

amino acids, etc.), while dissimilative reduction involves the use of sulfate as an electron 

acceptor with the product, sulfide, being released as waste. The dissimilatory pathway is 

discussed in more detail in the next section on sulfate reducing bacteria. 

 
Figure 1: Simple diagram of the sulfur cycle showing major forms of S and methods of 

transformation (Tang, 2009) 

Reduced sulfur is involved in many important sulfur compounds. Two commonly found 

biological forms are the amino acids methionine and cysteine. In cysteine, the S
2-

 is part of a 

thiol group, whereas in the methionine it is part of a thioether (Carey, F.A., 2008). As a 

constituent of humic acids, reduced sulfur compounds have been shown to represent up to 51% 

of the total sulfur content of wetland sediment (Ferdelman et al., 1991). In soil and sediment 
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systems where sulfide is produced, the stable product will depend on the pH of the media. Below 

pH 6 sulfides will mainly be available as H2S, between ca. pH 6 and pH 10 HS
-
 is the 

predominant form, and above pH 10 S
2-

 predominates (Reddy and Delaune, 2008). Sulfide is 

also utilized by colorless sulfur bacteria, autotrophic sulfur bacteria, and heterotrophic bacteria as 

an electron donor (Madigan et al., 2008; Reddy and Delaune, 2008). Elemental sulfur (S
0
) is also 

utilized by a number of microorganisms (Madigan et al., 2009). Sulfur disproportionation is a 

process by which a microorganism utilizes sulfur molecules as both electron acceptors and 

donors, oxidizing and reducing the same molecules.  

2.5 SULFATE REDUCING BACTERIA 

 Sulfate reducing bacteria (SRB) are those prokaryotes that are capable of utilizing sulfate 

(SO4
2-

) as their terminal electron acceptor in energy metabolism. Consequently, these bacteria 

are considered obligate anaerobes. Ideally SRB prefer reducing conditions below -100mV for 

optimal growth (Connell and Patrick, 1968; Reddy and Delaune, 2008). The different species of 

SRB have been classified into distinct groups based on analysis of rRNA sequences. These 

groups are the Gram-negative mesophilic SRB, the Gram-positive spore forming SRB, the 

thermophilic bacterial SRB, and the thermophilic archaeal SRB (Castro et al., 2000). Using both 

geological and biological data, SRB are theorized to have evolved ca. 3.4 billion years ago. This 

figure is based on a comparison of the time frame of the accumulation of certain biologically 

produced minerals in the geologic record and branching patterns of the evolution of 16S small 

sub-unit rRNA of a large number of bacteria, archaea, and eukaryotes (Canfield and Raiswell, 

1999). The early evolution of the anoxic respiration is in line with current theories of the 

evolution of life from anaerobic respiration to aerobic respiration. 
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 Sulfate reduction occurs in the cytoplasm and periplasm of the SRB. Transportation of 

sulfate (SO4
2-

) across the cytoplasmic membrane occurs via an ion gradient with different species 

using different ions (Cypionka, H., 1987; Warthmann and Cypionka, 1990). Once in the 

cytoplasm, sulfate is activated by ATP sulfurylase to make the molecule more easily reducible 

(Peck, H.D., 1959). The products of the activation of sulfate are adenosine-5’-phosphosulfate 

(APS) and orthophosphate (Pi). The transformation of pyrophosphate, an intermediary in the 

hydrolytic formation of orthophosphate (Pi), by the action of the enzyme pyrophosphatase makes 

the product side of the reaction more energetically favorable (Wilson and Bandurski, 1958; 

Fauque et al., 1991). The reaction proceeds as follows:  

 SO4
2-

 + ATP + 2H
+
 + H2O → APS + 2Pi 

APS is then utilized as an electron acceptor in its conversion to sulfite (SO3
2-

) and adenosine 

monophosphate (AMP).  

 APS + 2e
-
 → SO3

2- 
+ AMP 

APS reduction is catalyzed by the enzyme APS reductase, a nonheme iron-sulfur flavoprotein 

(Bramlett and Peck, 1975; Stille and Trüper, 1984; Fritz, G., 1999). Finally, sulfite (or bisulfite) 

is catalyzed to sulfide (S
2-

) by dissimilatory sulfite reductase according to the following equation 

where the sulfide product actually produced is pH dependent as mentioned earlier:  

  SO3
2- 

+ 6e
-
 + 8H

+
 → H2S + 6H2O 

This process involves a number of metallic cofactors, a reduced porphyrin, a siroheme, and an 

iron-sulfur compound to transfer electrons from the donor to the substrate (Murphy and Siegel, 

1973; Murphy et al., 1974).  
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The gene responsible for encoding dissimilatory sulfite reductase is known as dsrAB. Its 

amplification is the most common method for detection of SRB using polymerase chain reaction 

(PCR)-based methods (Karkhoffschweizer et al., 1995; Stahl et al., 1998). This gene has been 

sequenced in a number of quite different SRB species including Desulfovibrio vulgaris, 

Archaeglobus fulgidus, and Chromatium vinosum and found to be homologous among them all 

(Dahl et al., 1993; Hipp et al., 1997; Karkhoffschweizer et al., 1995). The relative and absolute 

abundance of this gene is quantifiable using real-time PCR. 

A number of SRB are able to utilize compounds other than sulfate as their terminal 

electron acceptor. Two common electron acceptors utilized are sulfite (SO3
2-

) and thiosulfate 

(S203
2-

). These are intermediate species in the reduction of sulfate so their utilization is easily 

understood (Postgate, J.R., 1984; Widdel and Pfennig, 1982). Dimethylsulfoxide (C2H6OS) 

utilization has been demonstrated in a number of species in the genera Desulfovibrio and 

Desulfuromusa resulting in the dimethylsulfide (C2H6S) as the product (Liesack and Finster, 

1994; Jonkers et al., 1996). Nitrate (NO3
-
) is also available to SRB as an electron acceptor under 

certain conditions (Liesack and Finster, 1994; Widdel and Pfennig, 1982). The presence of at 

least 0.75 mM sulfide had a complete inhibitory effect on the reduction of nitrate in the 

laboratory. Interestingly, the product of nitrate (via nitrite) reduction is ammonia (NH
3-

) as 

opposed to bimolecular nitrogen (N2; Moura et al., 1997). Iron(III) is another possible electron 

acceptor that can be utilized by certain Desulfovibrio species (Lovley et al., 1993; Bale et al., 

1997). Uranium(VI) can be reduced by Desulfovibrio vulgaris (Lovley et al., 1993). Most 

surprisingly, bimolecular oxygen (O2) has been shown to be an electron acceptor in certain 

Desulfovibrio sp. when hydrogen was the donor, though no growth was observed (Dilling and 

Cypionka, 1990; Dannenberg et al., 1992). Other researchers have shown that O2 concentrations 
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above 1 µM and 15 µM stopped growth in a number of different SRB strains (Johnson et al., 

1997; Marschall et al., 1993).  

 Electron donors utilized by SRB are restricted to low molecular weight compounds. An 

important donor is bimolecular hydrogen (H2). A number of genera including Desulfovibrio, 

Desulfobulbus, Desulfobacter, and Thermodesulfobacterium have demonstrated growth using H2 

as the sole electron donor via a hydrogenase pathway (Fauque et al., 1991; Kremer and Hansen, 

1988; Schauder et al., 1986, and Fauque et al., 1992). When H2 is utilized as an electron donor, 

acetate and carbon dioxide are used as carbon sources for growth (Rafus et al., 2006). Other 

electron donors that are either completely or incompletely oxidized to CO2 include formate 

(Fauque et al., 1991), propionate (Kremer and Hansen, 1988), butyrate (Widdel and Pfenning, 

1981), lactate (Ogata et al., 1981), ethanol and acetaldehyde (Postgate, J.R., 1984), fructose 

(Klemps et al., 1985; Ollivier et al., 1988), glycolate (Friedrich et al., 1996; Friedrich and 

Schink, 1995), certain dicarboxylic acids (Postgate, J.R., 1984), amino acids (Coleman, G.S., 

1960; Zellner et al., 1989), certain aromatic hydrocarbons (Edwards et al., 1992; Lovely and 

Lonergan, 1990), and certain polar aromatic compounds (Bak and Widdel, 1986) 

 The first SRB to have its genome completely sequenced was Desulfovibrio vulgaris 

Hildenborough (Heidelberg et al., 2004).  Though 22 other SRB have since been sequenced, this 

organism remains a model organism in the study of adaptations necessary for growth in the many 

environments where SRB are found (Zhou et al., 2011). Recent studies have given important 

insights into D. vulgaris Hildenborough’s use of different electron donors and the metabolic 

pathways necessary for such use at the genomic level. One such study elucidated the 

transcriptional changes in the microorganism while H2 was the sole electron donor and sulfate 

the receptor compared to carbon molecules as the donor utilizing sulfate (Louro et al., 2008). A 
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change in the transcription of >500 genes was observed using whole-genome microarray 

technology. This illustrates that plasticity that could be available to many of the SRB due to the 

wide variety of environments they occupy. Another study identified osmotic and nitrate stress 

response mechanisms as important factors in the growth inhibition of D. vulgaris under high 

nitrate levels (Zhou et al., 2010).   

2.6 Iron and Manganese Biogeochemistry 

 Iron and manganese play important roles in microbial metabolism and in mitigating 

sulfide toxicity in wetlands. The major oxidation states of iron in wetlands are in the oxidized 

Fe(III) form and the reduced Fe(II) form. Similarly, manganese is abundant in 2 major oxidation 

states in wetlands, oxidized Mn(IV) and reduced Mn(II). A major biotic adaptation that utilizes 

the availability of these different oxidation states is the microbial reduction of these metals. 

Dissimilatory reduction of Fe(III) and Mn(IV) have been recognized as major anaerobic 

pathways, in some places they have been shown to dominate over sulfate reduction (Canfield et 

al., 1993; Myers and Nelson, 1988; Thamdrup et al., 2000). The reduced products of these 

reactions are water soluble compounds that are measureable by ion chromatography of filtered 

water. The ideal redox potential range for the microbial reduction of Fe(III) is between 0 and 

+100 mV while the ideal range for microbial Mn(IV) reduction is between +200 and +300 

(Reddy and Delaune, 2008). Abiotic reduction is possible for these atoms in the presence of 

hydrogen sulfide where Mn(IV) and Fe(III) are reduced to form insoluble sulfide complexes. 

This pathway is important in mitigating potential sulfide toxicity in reduced environments where 

sulfate is also present.  
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3. MATERIALS AND METHODS 

3.1 STUDY SITE 

The study site for this particular project is located inside Paul J. Rainey Wildlife 

Sanctuary in Vermillion Parish, Louisiana. This 105 km
2
 wildlife refuge is owned by the 

National Audubon Society and has been under its management since 1924 (Kemp, P., 2010). It is 

bordered by the Vermillion Bay to the east, Freshwater Bayou Canal to the west and north, and 

the Gulf of Mexico the south. The area was utilized for many decades to facilitate oil and gas 

extraction; it was still in use for this purpose as late as 1999 (Snyder and Shaw, 1995; 

DeGregorio, J., 2010).  Still present and a significant part of the modern landscape of the 

sanctuary are the access canals and spoil banks associated with these decades of use.  

Boardwalks were constructed around sections of Spartina patens dominated marsh within 

the National Audubon Society’s Paul J. Rainey Sanctuary (Figure 2; 29°41'34.45"N, 

92°13'42.95"W) on the south central coast of Louisiana, USA in July of 2008. These sections of 

marsh were subdivided by water permeable membrane into 3m by 4m plots in order to ensure 

confinement of sediment. The boardwalks provided easy access with minimal disturbance to the 

vegetation and underlying sediment. A Piranha PS-135-E mini-dredge positioned on a flat boat 

was used to extract and pump sediment slurry from the bottom of a nearby oil-well access canal 

level (Piranha Pumps & Dredges, Albuquerque, NM). A pipeline was used to transfer the 

sediment slurry from the boat onto each plot to achieve different sediment depths and, 

consequently, relative height above sea. A valve-controlled distribution manifold was used to 

control the distribution of the sediment slurry into the plots.  
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Figure 2: Study site at Rainey Wildlife Sanctuary. Labels in white indicate plot locations 

and types. The sediment source canal is at the top of the image. (Image: Google Earth, 

Mountain View, CA). 

Hurricane Gustav passed very close to the study site during its progression north just 

weeks after the completion of sediment slurry application. For results dealing with the 

comparison of treatments, certain plots were grouped into high, medium, low, and control 

categories that reflect their post-hurricane relative elevations. These plots were at a NAVD88 

determined elevation of 36±3 cm prior to sediment addition.  The low elevation group (n=2) 

contains plots that received 0-10 cm while the medium elevation group (n=3) contains plots 

receiving 10-15 cm of sediment. The high elevation group (n=4) contains plots to which 15-20 

cm of sediment were added. The control plots (n=3) did not have any sediment addition (Figure 

3). 
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Figure 3: Thickness of sediment addition (with standard error) in each treatment as 

recorded on Feb. 5, 2009.  

3.2 SAMPLE COLLECTION 

Sediment samples were collected in February 2009, May 2009, August 2009, December 

2009, March 2010, July 2010, October 2010, and June 2011 at the Rainey Sanctuary. Duplicate 

sediment samples were extracted from the top 15cm of sediment in each plot using a russian peat 

corer and transferred to sterile plastic with all efforts made to exclude any headspace. Sediment 

porewater for analysis was collected from 10-20 cm deep using the syringe sipper method during 

May 2009, December 2009, and July 2010 samplings (McKee et al., 1988). Porewater was 

extracted by centrifugation of a 15 cm deep whole sediment core stored under a nitrogen 

headspace for the June 2011 sampling. In the field, samples were stored in a cooled ice chest 

until return to the LSU Dept. of Environmental Science where they were transferred to storage at 

4°C.  
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3.3 MICROBIAL COUNTING BY FLUORESCENT MICROSCOPY 

Microbial counting was carried on sediments collected in February 2009 out using a 

method developed by Hobbie et al. (1977) and modified by Kepner and Pratt (1994). One gram 

of sediment was combined with 10% formalin solution to fix bacteria. Just prior to counting, this 

sediment solution was further diluted in filtered deionized water, vortexed for 30 seconds, and 

sonicated for 10 minutes to disperse the sediment and break bonds between mineral or organic 

matter and the microbes. A 1:2000 dilution of sediment stained with Acridine Orange was 

filtered onto a non-fluorescing 0.22 µm pore size Nucleopore filter (Whatman PLC, Kent, UK). 

The filters were rinsed with filtered deionized water to remove excess dye and mounted on glass 

microscope slides. Forty images per plot were taken at the LSU Department of Biological 

Science’s Socolofsky Microscopy Center using a Leica DM RXA2 upright microscope that is 

equipped with a SensiCam QE 12-bit, cooled CCD camera (Leica Microsystems, Inc, Buffalo 

Grove, NY). A no-neighbors deconvolution algorithm was run on each image using Slidebook 

4.0 software in order to remove out of focus objects from the image (Intelligent Imaging Inc., 

Denver, CO). Red and green points were counted on each image with red representing RNA-

bound fluorophore and green representing DNA-bound fluorophore. 

3.4 SULFATE REDUCTION RATE 

The potential rate of bacterial sulfate reduction (SRR) was determined in sediment 

collected in June 2011 using the method developed by Ulrich et al. (1997) as modified by 

Babenzein et al. (2000) for quantifying reduced inorganic sulfur compounds.  In a properly 

functioning Coy anaerobic chamber (Coy Laboratory Products, Inc, Grass Lake, MI), duplicate 

cores were combined and homogenized. One gram of homogenized sediment, 4 ml of 0.45 µm 
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filtered, autoclaved water collected from the study marsh, and a small test tube containing 2.5 ml 

of 10% zinc acetate (ZnAc) was placed in autoclaved, brown boston round bottles in duplicate 

for each plot. Each bottle was then capped with an air-tight septum and cap. The bottles were 

removed from the anaerobic chamber and 1 µCurie of Na
35

SO4 dissolved in 1 ml of filtered 

deionized water was added through the septum to the sediment slurry.  

The reaction bottles were then incubated for 4 hours in a darkened rotary shaker (ca. 100 

rpm) at room temperature. After incubation, 8 ml of anoxic 6 M HCl and 8 ml of 1 M Cr(II)Cl in 

0.5 M HCl was then added to the bottle. The bottles were incubated in a darkened rotary cabinet 

operating at ca. 100 rpm for 24 hours at room temperature in order to extract reduced inorganic 

sulfur products.  The ZnAc acted as a trap for the acid-volatile sulfide (AVS) and chromium-

reducible sulfide (CRS) fractions, which precipitated as ZnS. Immediately afterwards the test 

tubes were removed from the bottles. A 1 ml aliquot from each test tube and bottle was then 

mixed with 9 ml of UltimaGold AB in scintillation vials (PerkinElmer, Waltham, MA). The 

CPM data was collected using a PerkinElmer Tri-Carb 3110TR Liquid Scintillation Counter 

(PerkinElmer, Waltham, MA). Results were calculated such that they are based on the dry 

weight of the sediment analyzed. 

Seasonal measurements were made of the rate of sulfate reduction from February 2009 to 

March 2010 but these data are not included because of a flaw in the procedure used that 

invalidated the data. The sulfide volatilization agents, 6 M HCl and 1 M Cr(II)Cl, were added at 

the same time as the radioisotope 
35

SO4. This error did not allow the sulfate to be properly cycled 

through the microbial sulfate reduction process necessary to measure the product, H2
35

S, 

produced.  This explains why the measured rates were so low. It was obvious in the ZnAc traps 

that sulfides were being volatilized and precipitating as they were supposed to but the liquid 
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scintillation values did not reflect any significant amount of volatilization of the radioisotope. 

This experience taught me a valuable lesson in properly understanding and undertaking 

procedures and protocols in experimentation. 

3.5 PHYSICAL-CHEMICAL DATA 

 For sulfate determination, 1 g of wet sediment was added to a 15 ml centrifuge tube along 

with 10 ml of deionized water. This solution was centrifuged at ca. 3000 g for 15 minutes. The 

supernatant was extracted, filtered through 0.45 µm syringe filters, and stored at 4°C prior to 

analysis. Sulfate levels were determined at the LSU Ag Center’s Central Analytical Instruments 

Research Laboratory using a Dionex ICS 2000 Ion Chromatograph as per EPA method 300.0 

(Dionex, Sunnyvale, CA; Pfaff, 1993). Sulfate concentrations were determined in the months of 

February, May, August, and December of 2009 as well as March 2010 and June 2011. 

 Redox potential measurements were made in situ. Three bright platinum electrodes and a 

calomel reference electrode were inserted into the sediment of each plot to a depth of 15 cm and 

allowed to equilibrate for at least 30 minutes prior to reading the potential using a digital pH 

meter. The readings for each plot were averaged and corrected for the reference electrode value.  

Bulk density, sediment iron, and sediment manganese were determined from sediment 

samples taken from the top 15 cm of each plot. Bulk density was determined according to 

Method 3B6 of the USDA Soil Survey Laboratory Methods Manual (National Soil Survey 

Center, 1996). DTPA-extractable iron and manganese were measured by the LSU AgCenter’s 

Soil Testing and Plant Analysis Lab using an inductively-coupled plasma spectrophotometer 

(Leggett and Argyle, 1983; Spectro Analytical Instruments, Germany). 
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Porewater for sulfide analysis was mixed 1:1 by volume with an antioxidant buffer and 

stored on ice for transport back to LSU. In the lab, an Orion sulfide selective probe was used to 

determine total soluble sulfides (Thermo-Fisher Scientific, Waltham, MA; American Public 

Health Association et al., 2005). Porewater iron and manganese concentrations were determined 

using an inductively-coupled plasma spectrometer after 0.45µm filtration and acidification to <2 

pH (Spectro Analytical Instruments, Germany; Lindsay and Norvell, 1978). Dissolved organic 

carbon was determined using a Shimadzu TOC-V CSH/CSN after filtration using 0.45 µm nylon 

filters and acidification (Shimadzu Corp., Kyoto, Japan). Porewater measurements are only 

included for May 2009, December 2009, July 2010, and June 2011 as these were the only 

months that porewater from the 0-15 cm depth was accessible. 

3.6 STATISTICAL ANALYSIS 

 The data analysis for this paper was generated using SAS software, Version 9.2 of the 

SAS System for Windows (SAS Institute Inc., Cary, NC). Proc Mixed was used to test ANOVA 

relationships and Proc Reg was used to test regression analyses. PDMIX800 was used to convert 

pdiffs data from Proc Mixed into letter groups for differences with a p-value of <0.05 (Saxton, 

A.M., 1998). The Tukey-Kramer adjustment was used in ANOVA tests as well. Normality of 

residuals was tested using Stem-Leaf plots, Normal Probabilities plots, and the Shapiro-Wilk test 

in Proc Univariate. Normality was achieved in through the use of log transformation when 

necessary. To test for outliers, DFFIT, DFBETA, rStudent, and Hat Diagonal values were 

analyzed within Proc Reg.  

 For ANOVA tests, treatment groups were created based on the pretreatment elevation 

and thickness of sediment added to each plot. These plots were at a NAVD88 determined 
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elevation of 36±3 cm prior to sediment addition.  The low elevation group (n=2) contains plots 

that received 0-10 cm while the medium elevation group (n=3) contains plots receiving 10-15 cm 

of sediment. The high elevation group (n=4) contains plots to which 15-20 cm of sediment were 

added. The control plots (n=3) did not have any sediment addition (Figure 3). These 12 plots do 

not encompass the full extent of the study, only those that fit in the defined criteria (See appendix 

for full list of plots). For the regression analysis of SRR and DOC, all plots were used except for 

one that violated tests for significant outliers (n=22).  



22 
 

4. RESULTS 

Sulfate reduction rates (SRR) ranged from 44.3 mmol m
-2

 day
-1

 in the High treatment to 

82.0 mmol m
-2

 day
-1

 in the Medium treatment (see Appendix 1 for all SRR data). Statistical 

analysis of SRR by one-way ANOVA did not reveal a significant treatment effect three years 

after sediment addition (p=0.2201; n=12). The mean rate by treatment was higher on average in 

Medium plots compared to other treatments but the standard error is too high to declare it 

significant (Figure 4). A one-way ANOVA did not reveal a significant treatment effect in SRR 

when all plots, not only plots that fit into the defined treatment criteria, were included (p=0.7910; 

n=23).  

 
Figure 4: Mean rate of sulfate reduction (mmol m

-2
 day

-1
) by treatment in June 2011. 

Vertical bars indicate standard error. Letter groupings as determined by the PDMIX800 

macro in the Mixed Procedure with Tukey-Kramer adjustment. Groups with the different 

letters are significant with an alpha of 0.05. 

 A significant treatment effect was found between the time-averaged, mean sulfate 

concentrations measured during February, May, August, and December of 2009 as well as March 

2010 and June 2011 sampling trips (p=0.0007; Figure 5 Left). The High and Medium treatments 
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were not significantly different from one another and were both significantly higher than the 

Control treatment. The Low treatment mean was intermediate and was not significantly different 

compared to any other treatments.  

  

Figure 5: (Left) Mean, time-averaged sulfate (SO4
2-

) concentration (nmol cm
-3

 dry 

sediment), standard error (S.E.), and letter group. Sampling occurred in February, May, 

August, and December of 2009 as well as March 2010 and June 2011. (Right) Mean, time-

averaged porewater sulfide concentration (mM), standard error (S.E.), and letter group. 

Red column sampling occurred in May 2009, December 2009, July 2010, and June 2011.  

Letter groupings as determined by the PDMIX800 macro in the Mixed Procedure with 

Tukey-Kramer adjustment. Groups with the different letters are significant with an alpha 

of 0.05. (*) denotes non-normal distribution. 

 A significant treatment effect was found between time-averaged, mean sulfide 

concentrations (p<0.0001; Figure 5 Right). Normality could not be achieved for High and Low 

treatments in a One-Way ANOVA examining the sulfide porewater concentrations measured 

during May 2009, December 2009, July 2010, and June 2011 sampling trips, though a number of 

transformations were attempted (W=0.836 and W=0.898, respectively). The highest levels were 

found in the lowest elevation control plots and concentrations decreased as the amount of 

sediment increased. For the June 2011 sampling, which correlates in time with the measured 
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SRR,  there was no significant difference in sulfide concentrations by treatment in agreement 

with the lack of difference found in SRR (Figure 5 Right; p=0.4484).  

   
Figure 6: (Left) Porewater pH in June 2011 (blue) and all months sampled (red; quarterly 

2009-2011). (Right) Sediment redox potential (mV) in June 2011 (blue) and all months 

sampled (red; quarterly 2009-2011). Vertical bars represent standard error. Letter 

groupings as determined by the PDMIX800 macro in the Mixed Procedure with Tukey-

Kramer adjustment. Groups with the different letters are significant with an alpha of 0.05. 

(*) denotes non-normal distribution. 

These trends in mean, time-averaged sulfate and sulfide concentrations could indicate 

that, contrary to the single estimate of sulfate reduction measured in June 2011, sulfate reduction 

was higher in the Control treatment relative to the Medium and High treatments in the preceding 

years after sediment addition. Sulfate input to all plots is identical as its source is the overland 

flow of water. A difference in porewater concentration indicates that it is being utilized by 

sulfate reducing bacteria in anaerobic respiration. The product of this respiratory pathway, 

hydrogen sulfide, shows a corresponding increase in concentration in lower elevation plots 

where sulfate is being utilized at a higher rate. 
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Reduction-oxidation potential averaged over all sampling periods was significantly 

higher in the High treatment plots (258 mV) compared to the Control plots (172 mV; Figure 6 

Right; p=0.0084). This is much higher than the range needed by sulfate reducing bacteria but is 

in the range of manganese reduction. Porewater pH followed the same trend with higher pH 

found in Medium (5.9) and High (6.2) plots compared to the Control plots (5.3; Figure 6 Left; 

p<0.0001). Eh and pH measured in June 2011 did not differ significantly though in three 

treatments normality could not be achieved.  

 

Figure 7: Simple linear regression of sulfate reduction rate (SRR) and dissolved organic 

carbon (DOC). 

Dissolved organic carbon measured in porewater collected in June 2011 ranged from 19-

192 mg-C L
-1

. A positive correlation was found between the rates of sulfate reduction and 

dissolved organic carbon (p=0.0413, r
2
=0.1920; Figure 7). Dissolved organic carbon in the form 
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of low molecular weight compounds such as acetate, ethanol, formate, and fructose are the main 

sources of carbon for anaerobic microbes so its correlation with increase activity is expected.   

 

Figure 8: (Left) Mean, time-averaged porewater concentrations (µM) with standard error 

of iron and manganese by treatment. (Right) Mean, time-averaged sediment concentrations 

(nmol cm
-3

) with standard error of iron and manganese by treatment.  Letter groupings as 

determined by the PDMIX800 macro in the Mixed Procedure with Tukey-Kramer 

adjustment. Groups with the different letters are significant with an alpha of 0.05. 

A significant treatment effect was observed in sediment and porewater fractions of 

manganese (p<0.0001) Significant variation was found in porewater and sediment fractions of 

iron as well (p<0.0001 and p=0.0091, respectively). For both elements in both phases, the 

concentrations in the Control plots was always significantly lower than in the Medium and High 

plots (Figure 8). Analysis of the sediment Fe and Mn levels in canal sediments prior to 

application to the marsh showed that Fe was present at 3.2±0.2 nmol g
-1

 while Mn was present at 

0.6±0.08 nmol g
-1

. Bulk density increased significantly with increasing sediment slurry addition 

(p<0.0001; Figure 9). All treatments were significantly different from each other with value 

ranging from 0.10 for the control to 0.46 for the high treatment. 
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Figure 9: Mean, time-averaged bulk density (g cm
-3

) by treatment and standard error 

(S.E.). Letter groupings as determined by the PDMIX800 macro in the Mixed Procedure 

with Tukey-Kramer adjustment. Groups with the different letters are significant with an 

alpha of 0.05. 

 

Figure 10: Fluorescent microscope image of Rainey wetland sediment without fluorescent 

dye added. 
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Fluorescent microscopy results were deemed invalid and are not included in this work. 

Analysis of a sediment sample that had not been treated with acridine orange dye revealed that 

the sediment contained silica content sufficient to cause auto-fluorescence (Fig. 10; Brown, M., 

Personal Communication). High dilutions and physical disruption were utilized to attempt to 

dislodge microbes from particulate matter but in the end, that was not the problem to overcome. 

Silicates, presumably washed in with tidal flux, fluoresce in the same wavelengths as intercalated 

Acridine Orange. This background fluorescence makes microbial counting through the use of 

acridine orange invalid because the fluorescence of particulate matter cannot be distinguished 

from that of the DNA- and RNA-bound intercalating dye.   
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5. DISCUSSION 

 The rates of sulfate reduction measured in the present study are within the range found in 

other manuscripts. However, overall the rates measured in this study were lower than the rates 

measured in Spartina patens dominated marshes by Delaune et al. (2002) and Hines et al. (1989) 

in Louisiana and New Hampshire coastal wetlands, respectively (Table 1). To our knowledge, 

this was the first study to determine the rate of sulfate reduction in a coastal wetland after 

addition of sediment slurry. An article by Kostka et al. (2002) indirectly studied elevation 

dependant SRR with their analysis of a mudflat, levee, and middle marsh. It lacked specific 

mention of the range of elevation in relation to the rates of reduction measured and instead 

focused on spatial variability and vegetation density. A number of research articles have 

demonstrated differences in SRR among stands of different wetland plant species or subspecies 

(King, G.M., 1982; Gribsholt, B., 2002; Hines et al., 1999). 

 Being that these rate measurements were made 34 months after sediment slurry 

application, we assume that the plots had normalized from a disturbed state affected by the 

sediment addition. Therefore, sulfate reduction rates measured in these plots can be viewed as a 

proxy for potential near-term effects of sediment slurry addition on other wetlands. The results 

indicate that there is no significant change in the rate of sulfate reduction after 34 months across 

different sediment treatments that increased the elevation of a subsiding coastal wetland. This 

lack of a significant change in SRR with sediment addition does not tell us the effect on the rate 

of bacterial carbon metabolism as a whole though because we do not yet know enough about the 

change in bacterial community structure across the sediment treatments.  
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Table 1: Sulfate reduction rates from selected articles focusing on coastal wetlands 

Dominant Plant Sulfate Reduction Rate 

(mmol m
-2

 d
-1

) 

Depth 

(cm) 

Source 

S. alterniflora (tall) Avg: 40 0-10 King, G.M., 1982 

S. alterniflora (short) Avg: 25.7 0-10  

S. patens High: 380; Low: 10 0-20 Hines et al., 1989 

S. alterniflora High: 1000; Low: 15 0-20  

S. alterniflora (Tall) High: 50; Low: 2 0-10 King, G.M., 1988 

S. alterniflora (Short) High: 94; Low: 4 0-10  

S. patens High: 280; Low: 10  Delaune et al., 2002 

S. alterniflora High: 200; Low: 55 0-50 Kostka et al., 2002 

S. anglica (mesocosm) High: 35; Low: 31 0-50 Gribsholt and 

Kristensen, 2002 

N. diversicolor (mesocosm) High: 24; Low: 22   

S. anglica High: 160; Low: 10 0-18 Gribsholt and 

Kristensen, 2003 

S. alterniflora (non-flooded) Avg: 85.5 0-15 Shin et al., 2000 

S. alterniflora (flooded) Avg: 93.1   

J. roemerianus High: 117; Low: 15.2 0-20 Miley and Kiene, 

2004 

S. patens High: 112.4; Low: 12.3 0-15 Present study 

 Factors affecting the rate of sulfate reduction in a wetland include availability of electron 

acceptors and donors, proper pH, and reducing conditions sufficient to allow the reduction of 

sulfate to proceed favorably. Electron acceptors could be limiting at this site. The sulfate 

concentration in the above ground water flowing through the marsh was measured at 5.3 mM 

while porewater concentrations were found to be from 0.2 – 1.2 mM. Levels of sulfate in 

freshwater systems tend to be below 2 mM and up to 28 mM in seawater. The low sulfate 

concentrations found are likely due to the limited hydrologic exchange capability of the marsh 

due to impoundment as well as exceptional drought conditions (Appendix 2).  Additionally, 
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oxidized iron, an alternate electron acceptor for dissimilatory sulfate reducers, is available in the 

sediment at levels ranging from 196-2596 nmol cm
-3

. This could be a method of respiration 

utilized by SRB that would not produce toxic sulfides as a byproduct. 

Though organic carbon is abundant in wetlands, the forms necessary for utilization by 

sulfate reducers may not necessarily be abundant.  A weak correlation was found between rates 

of sulfate reduction and dissolved organic carbon in porewater samples (Figure 7). The measured 

DOC concentrations are within the range commonly found in wetlands but still might be a 

limiting factor because no information is known of the structural characteristics of the available 

carbon. The use of root exudates such as acetate, ethanol, and malate as major carbon sources for 

SRB growth has been suggested by a number of authors but only tested in association with 

Spartina alterniflora (Hines et al., 1989; Whiting et al., 1986). One source of these organic 

exudates could be from root leakage while growing (Rovira, A.D., 1969; Weston et al., 2003).  

Another source of these exudates has been demonstrated in studies by Mendelssohn et al. (1981) 

and Mendelssohn and McKee (1987) showing that S. alterniflora can produce low molecular 

weight compounds such as ethanol and malate that may diffuse into the surrounding porewater 

when under anaerobic stress. 

The pH was below the optimal circumneutral range for SRB in all treatments. This factor 

could have an effect on the rate of sulfate reduction (Connell and Patrick, 1968). On the other 

hand, the measured redox potential of the plots was higher than optimal for sulfate reduction in 

all treatments (Figure 6). Additionally, during the June sampling there was no significant 

difference in redox potential between treatments (p=0.2907). A likely cause of this occurrence 

could be the exceptional drought conditions this part of Louisiana experienced for a month prior 

to sampling (Appendix 2). The ideal range for sulfate reducing bacteria is at Eh values of -100 or 
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less (Connell and Patrick, 1968). Generally, this may indicate that there were fewer micro-sites 

with highly reducing conditions in which the SRB could colonize and have access to electron 

donors and acceptors. A lack of precision is inherent in the measurement of Eh in comparison to 

microbial communities because there is such a difference in scale caused by the microscopic 

nature of microbial communities but it can still be useful as a broad spectrum tool. The redox 

potential tells us that in general the sediment is slightly reducing instead of highly reducing, the 

optimal condition for sulfate reduction. Redox probes were allowed to equilibrate in sediment for 

at least 30 minutes prior to measurement so it is possible that there was not enough time for 

equilibration but care was taken to check for drift when readings were made. 

Mean, time-averaged hydrogen sulfide levels in the control plots were very close to the 

>1.0 mM concentrations that have been shown to inhibit plant growth (Figure 5; Koch et al., 

1989). Single measurements of sulfide levels in control plots were very high, 2.0 and 2.6 mM, 

during one sampling. However, the decrease in sulfide levels as sediment addition increases is a 

good indicator that plant growth will be less restricted by the stress caused by sulfides on the 

physiological processes necessary for nutrient uptake. The increased concentrations of iron and 

manganese in treated plots could have provided a method of remediation through the formation 

of insoluble Fe-S and Mn-S compounds should higher sulfide levels occur. 

As a proxy for direct measurement of the rate of sulfate reduction, the significant 

differences in sulfide levels across the treatments during the 34 months it was measured indicate 

that there could have been a difference in the rate of sulfate reduction. Further evidence for this 

theory comes from the finding that sulfate concentrations followed a corresponding pattern. 

Sulfate concentrations declined significantly in the control treatment compared to the medium 

and high treatments indicating that it was being reduced more rapidly as all plots have identical 
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mechanisms of replenishment. Continued measurement of the SRR and sulfide will help 

elucidate the longer-term affects that sediment slurry addition had on the marsh. 

Biogeochemical cycling of manganese and iron may be occurring as well given the 

significant differences in the concentrations of these metals found between treatments. A 

confounding factor in this assessment is that DTPA-extractable levels of both Fe(III) and Mn(IV) 

in oxidized form follow the same trend as mobile fractions. One would expect that extractable 

levels would have the opposite trend as the dissolved fraction because the oxidized fraction 

should be depleted as it is reduced while the reduced fraction increased in concentration. One 

explanation for the significant increases in iron and manganese concentrations of both sediment 

and porewater with increasing sediment addition may be the higher levels of these two elements 

present in the added sediment (3.2±0.2 nmol g
-1

 for Fe and 0.6±0.08 nmol g
-1

 for Mn). Sulfide 

concentrations are highest in the control plots and decrease with increased elevation which 

corresponds with the opposite trend in sediment Fe and Mn. This could indicate that sulfide is 

forming insoluble, reduced molecules such as FeS and MnS. A number of studies have found 

that sulfide – Fe(III) interaction is the major source of Fe(III) reduction (Jacobson, M.E., 1994; 

Kostka and Luther, 1995).  
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6. CONCLUSIONS 

The sulfate reduction experiment conducted 34 months after sediment slurry addition 

does not support my hypothesis that sediment addition decreases the rate of sulfate reduction. On 

the other hand, it does appear from the sulfate and sulfide data collected that in the time period 

leading up to the near-term SRR measurement that sulfate reduction rates may have been lower 

in the medium and high sediment treatments. Although the decrease in sulfide concentrations 

could be due to the increased concentration of iron that binds with sulfides, decreased sulfate 

concentrations support the idea that a change in the rate of sulfate reduction occurred. 

Additionally, the drought conditions that occurred in the spring and summer of 2011 may have 

masked the treatment effect on the rate of sulfate reduction measured in June 2011. Regardless of 

the mechanism, the decrease in sulfide concentration is a good indication that plants will be less 

stressed in the sediment amended marsh. More continuous measurements of the rate of sulfate 

reduction along with the sulfide concentration would help elucidate the long-term effects of the 

sediment addition. 

Future work on microbial counting in wetland sediment may benefit from the use of the 

disintegration method studied by J. Boenigk (2004) that relies on hydrofluoric acid to dissolve 

certain mineral compounds in the sediment while leaving bacteria intact for counting. A method 

of visually performing counts of microbes is still an important technique in modern 

microbiology. As we expand our repertoire of modern microbial techniques from PCR-based 

methods to genomics, we still rely on tried and true methods such as culturing and microscopy to 

fill in the gaps and provide quality assurance that the more detached computer controlled 

methods are focusing on the organisms of interest. 
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 Analysis of anaerobic respiration pathways that occur at higher redox potentials (iron and 

manganese reduction) may be more useful at this and similar sites considering the redox 

potentials recorded as well as a result of the additional iron and manganese introduced to the site 

by the sediment itself. The methods for determining these rates are simple and effective. The 

standard tests performed on the sediment and soluble manganese and iron fractions are one such 

method of easily determining whether or not this is occurring. Reduction rates can be determined 

with simple incubation experiments to determine the change in these fractions over time in a 

controlled environment. 

A better understanding of the dissolved organic carbon forms and concentrations 

available in the sediment may help in understanding the spatial variability found in this study. 

The growing library of information relating stress responses of sulfate reducing bacteria provides 

a good background of the particular organic compounds to be looked for in the field. A 

greenhouse study focusing on the utilization of various dissolved organic carbon compounds by 

microbes as well as those secreted by macrophytes would also be valuable. This work, with the 

aid of functional genomics tools, could help provide more insight into the microbial responses 

related to global climate change. This could be performed with water-level manipulated 

greenhouse experiments.  
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APPENDIX 1: Sulfate Reduction Rates by Plot 

Plot Replicate Sulfate 

Reduction Rate 

(mmol m
-2

 day
-1

) 

Mean Sulfate 

Reduction Rate by 

Plot (mmol m
-2

 day
-1

) 

Treatment 

Group 

1C 1 110.1 84.7  

1C 2 59.3   

1H 1 34.6 33.6 High 

1H 2 32.5  High 

1L 1 80.0 76.1  

1L 2 72.1   

1M 1 77.7 56.8 High 

1M 2 36.0  High 

2H 1 23.0 46.7  

2H 2 70.3   

2L 1 126.0 112.4 Medium 

2L 2 98.8  Medium 

2M 1 106.7 100.2  

2M 2 93.6   

3C 1 1.5 17.0 Low 

3C 2 32.6  Low 

3H 1 29.5 21.4  

3H 2 13.2   

3L 1 15.2 24.4  

3L 2 33.6   

3M 1 67.5 75.3 Medium 

3M 2 83.0  Medium 

4C 1 10.9 13.0  

4C 2 15.2   

4H 1 28.2 39.6 High 

4H 2 50.9  High 

4L 1 4.2 12.3  

4L 2 20.3   

4M 1 36.5 47.3 High 

4M 2 58.1  High 

5C 1 84.2 73.3 Low 

5C 2 62.4  Low 
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5H 1 79.0 58.2 Medium 

5H 2 37.5  Medium 

5L 1 37.6 38.8  

5L 2 39.9   

5M 1 76.3 78.5  

5M 2 80.8   

R1 1 75.1 69.4 Control 

R1 2 63.8  Control 

R2 1 47.3 58.9 Control 

R2 2 70.5  Control 

R3 1 14.7 33.5 Control 

R3 2 52.2  Control 

R4 1 6.6 40.5  

R4 2 74.3   
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APPENDIX 2: Louisiana drought conditions 2 days prior to June 2011 sampling 
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