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space-time manifold. This mathematical theory, therefore, appears 
appropriate for future investigations of the nature of symmetry in 
biological evolution formulated at the level of molecular genetics.
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CHAPTER II 

BIOLOGICAL FOUNDATIONS

II



INTRODUCTION

The purpose of this Chapter is to introduce the current theory 
of molecular genetics. We do not claim any completeness of exposition. 
Indeed, our sole intent is to sketch that part of the theory for which 
we will later provide a mathematical interpretation. The interested 
reader will find more details concerning specific biological systems 
in References 1-3.

1. DNA STRUCTURE

DNA (deoxyribonucleic acid) serves as the repository of infor­
mation which controls the genetic variability of an organism. This 
information is encoded in the linear arrangement of the nucleic 

acid bases (T = thymine, A = adenine, C = cytosine, G = guanine) 
along the polymer chain. To understand the nature of this linear 
arrangement, we must consider the molecular structure of DNA.

The total DNA molecule (ds-DNA) is a double-stranded moiety 
which exists as a right-handed helix. The two polynucleotide 
strands are wound about the same axis and are held together by 
hydrogen-bonding between the nucleic acid bases on opposite strands:
A associates with T via two hydrogen-bonds, while G associates with 
C via three hydrogen bonds. The two polynucleotide chains, however, 
have opposite polarity with respect to one another.

The polarity designations (5',3') of a single-stranded DNA 

(ss-DNA) molecule are based on the substituent positions on the 
deoxyribose unit of the DNA polymer (see Figure 1)• The 5 * 
position refers to the hydroxy-substituted carbon external to the



Figure 1. A segment of single-stranded DNA with 5',3' positions 
indicated.
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deoxyribose ring, while the 3' position refers to the hydroxy- 
substituted carbon internal to the ring. Adjacent deoxyribose 
units in the ss-DNA molecule are bonded together via a phosphodi- 
ester linkage, with the binding occurring at the 5* position on one 
unit and at the 3* position on the other. If we now consider the 
entire ss-DNA molecule, one end of the molecule terminates in a 
deoxyribose unit which is bonded to the rest of the molecule at the 
3' position, while the other end terminates in a unit bonded to the 
rest of the molecule at the 5' position. These are termed the 5' 
and 3' ends of the molecule, respectively. In the ds-DNA molecule, 
however, association occurs such that one strand has the opposite 
polarity of the other if we view the molecule, left-to-right say, 
along the length of the chain. In other words, at the left end of 
the polymer one strand has a 3' terminus while the other has a 5' 
terminus; at the right end the former strand has a 5' terminus 
while the latter has a 3' terminus. These distinctions are criti­
cally important for transcription and translation (cf.§11.3 and §11.4).

Since the base pairing between opposite strands is specific 
(A pairs with T, G pairs with C), the two strands are said to be 
complementary to one another and to possess opposite sense (which 

is simply another term for opposite polarity).

2. DNA REPLICATION

Cellular biosynthesis of DNA (replication) occurs during cell 
duplication (reproduction) and serves to maintain the genetic 
integrity of the cell line. During replication, the ds-DNA molecule 
serves as a template for the synthesis of two replica molecules



16

which are identical to the parent DNA. Replication is a complex 
enzymic reaction which is not yet well-understood from a chemical 
standpoint. In conceptual terms, however, the over-all process may 
be described as follows.

During replication, the ds-DNA molecule unwinds to expose the 
two complementary single DNA chains. Each of these chains serves 
as a template for the synthesis of a new complementary strand, the 
synthesis proceeding from the 3* to the 5' end of the single­
stranded template. These two new complementary strands, each 
associated with one of the old complementary strands, form the 
two replica DNA molecules. This synthesis has been termed semi­
conservative, since the parent DNA is entirely contained in the 
product DNA's: one of the parent strands is in one replica molecule,
while the other parent strand is in the other replica molecule.

It is important to note that it is at the level of DNA replica­
tion that genetic mutation is presumed to operate. The occurrence 
of mutations is simply a reflection of the fact that replication 
is not entirely faithful. Three basic types of mistake can occur:

 Substitutions: this occurs when a mismatch in base-pairing
happens during the formation of the new complementary strands. The 
end result is the substitution of one base-pair at a particular 
point in the molecule for another.

 Deletions: the loss of a specific base-pair from a partic­
ular point in the molecule.

 Insertions: the addition of a specific base-pair at a
particular point in the molecule.
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Deletions and insertions are collectively known as phase-shift 
(or frame-shift) mutations at the level of translation (vide infra).

These mutations of the genetic material have a direct bearing 
on the total evolutionary progress of an organism. Indeed, the 
mathematical representation of evolution will concern us extensively 

in a later part of this work (cf. Chapters V and VI).

3. DNA TRANSCRIPTION

The end result of a message encoded in a DNA molecule is the 
formation of a specific protein. In fact, that segment of DNA 
which contains the information necessary to completely specify one 

protein is the molecular equivalent of a gene. DNA does not act 
directly in protein synthesis, however. A specific type of RNA 
(ribonucleic acid) is first synthesized from DNA, and this molecule 
then acts as the template in the actual protein synthesis (trans­
lation) . This RNA is termed messenger-RNA (m-RNA). The molecular 
structure of RNA differs from that of DNA in the following three 
ways:

 The sugar moiety of RNA is ribose. Ribose differs from
deoxyribose in being hydroxylated at the 2' position on the ring.

 The DNA base T = thymine is replaced in RNA by U = uracil.
 RNA is (usually) single-stranded, whereas DNA is (usually)

double-stranded.
Transcription is the synthesis of an m-RNA from the DNA tem­

plate. This process serves merely to transfer the genetic informa­
tion contained in DNA to the m-RNA molecule. There are two impor-
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tant points to note about transcription:
 Only one of the two complementary DNA strands may serve

as the template for a specific m-RNA.
 Synthesis proceeds from the 3' end to the 5* end of the

DNA template.

Even though replication and transcription differ in their 
actual chemical mechanisms, they are conceptually very similar. 
During transcription, the ds-DNA unwinds, freeing the single DNA 
chains so that one may serve as the template. Synthesis then pro­
ceeds from the 3’ to the 5’ end of the selected template, and 
during the synthesis, the RNA base U pairs with the DNA base A.
The m-RNA molecule, of course, grows from the 5' to the 3' end. 
After synthesis is complete, the newly formed m-RNA is released 
from the DNA template, which then resumes the right-handed helical 
form.

4. m-RNA TRANSLATION

The biosynthesis of protein from an m-RNA template is termed 
translation. During protein synthesis, the m-RNA base sequence is 
translated into the amino acid sequence of a nascent protein via 
the genetic code (see Table 1). Each triplet (or codon) of RNA 
bases codes for the introduction of one amino acid into the growing 
polypeptide chain. Thus, the linear arrangement of codons along 
the m-RNA template (which ultimately derives from the base sequence 

in the controlling DNA molecule) determines the linear arrangement 

and type of amino acids in the protein product.



TABLE 1

THE GENETIC CODE1

}uuu uuc
UUA\ 
UUG *

Phe
Leu

Ser
UAU-\ 
UAC J 
UAAv 
UAG J

Tyr
TC

UGU
UGC
UGA
UGG

) Cys
TC
Trp

Leu Pro >CAU 
CAC 
CAA \ 
CAG J

His

Gin
Arg

AUU
AUC
AUA
AUG
} lie

Met
Thr )AAU 

AAC 
AAA A 
AAG J

Asn
Lys

}AGU 
AGC 
AGA \ 
AGG J

Ser
Arg

Val Ala
GAU 
GAC 
GAA \ 
GAG/

} Asp
Glu

GGU'v 
GGC I
GGA
GGG

> Gly
)

Each codon is written in the 5* to 3' direction from left to right.
The amino acid (or terminator codon) to which each codon corresponds 
is written to the right of the codon. Standard abbreviations for the 
amino acids are used (see Table 2). TC (terminator codon) symbolizes 
the operator which acts to interrupt the process of protein synthesis.



A striking feature of the genetic code is that while there are
34 * 6 4  possible codons, there are only 20 amino acids. Thus, more
than one codon specifies the same amino acid. This phenonmenon is 
termed the degeneracy of the genetic code (see Table 2). The 
symmetry characteristics of the genetic code, as exhibited by 
degeneracy, are of intrinsic interest, and this subject is devel­
oped extensively in the Appendix.

Protein synthesis proceeds in the 5* -»• 3' direction along the 
m-RNA template. Thus, the sense of a codon must be interpreted from 
the 5' to the 3* end of the m-RNA molecule. The actual reading of 
the message template occurs within a ribosomal complex which serves, 
among other things, to set the phase of the message. At the ribo­
somal level, each codon is recognized by a specific t-RNA (transfer- 
RNA) which transports the amino acid coded for by a particular codon 
to the site of protein synthesis. This recognition process involves 
a base-pairing between the codon and the t-RNA anti-codon. For 
example, if UAG is the codon in question, then CUA is the t-RNA 
anti-codon.

Synthesis is initiated at the AUG codon which, when acting as 
the initiator, codes for the introduction of N-formylmethionine.

The ribosome then shifts one triplet down the m-RNA molecule in the 
3' direction, and the amino acid which is coded for by the new codon 

is brought into position by the appropriate t-RNA. A peptide bond 
is formed between N-formylmethionine and the new amino acid. The 

ribosome then shifts down one triplet again. This process is 
continued until one of the three codons UAA, UAG or UGA is reached.
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TABLE 2

DEGENERACY OF THE GENETIC CODE

Amino Acid Order of Degeneracy

Ser (Serine) 6
Arg (Arginine) 6
Leu (Leucine) 6
Ala (Alanine) 4
Val (Valine) 4
Pro (Proline) 4
Gly (Glycine) 4
Thr (Threonine) 4
lie (Isoleucine) 3
TC (Terminator Codon) 3
Phe (Phenylalanine) 2
Tyr (Tyrosine) 2
Cys (Cysteine) 2
His (Histidine) 2
Gin (Glutamine) 2
Lys (Lysine) 2
Glu (Glutamic Acid) 2
Asp (Aspartic Acid) 2
Asn (Asparagine) 2
Trp (Tryptophan) 1
Met (Methionine) 1



These codons, the terminator codons (TC), act to interrupt the 
synthesis. The end result is a specific protein having an N-formyl­
methionine residue at the amino end of the protein. This first 
residue is usually removed during later modifications which transform 
the newly formed protein into a "mature" protein.

The initiator codon-ribosome complex serves to partition the 
m-RNA base sequence into codons: that is, this complex formation
determines the phase (reading frame) of translation. Phase-shift 
mutations (DNA deletions and insertions) act by modifying the read­
ing frame. Consider the partial m-RNA sequence

5'-(AAA)(CCU)(CGC)A-3'

which codes for

-Lys-Pro-Arg-

Deletion of the third base, counting from the 5' end, results in 
the sequence

5'-(AAC)(CUC)(GCA)-3'

which codes for

-Asn-Leu-Ala-

Thus, deletion mutations can radically change the protein structure 

by altering the reading frame. Insertion mutations act in a similar 
manner. If equal numbers of deletions and insertions occur, however, 
then the phase remains unaltered posterior (in the 3' direction) to



the last deletion or Insertion.

5. SUMMARY

The molecular-genetic system serves a two-fold purpose:
 It transmits Information from one generation to the next

(DNA replication).
 It expresses this information within one generation (tran­

scription and translation).

Each of the processes (§11.2-511.4) is composed of complex en­

zymic reactions which are neither well-understood nor even well-charac­
terized. The basic conceptual nature of information storage and 
retrieval, however, appears to be quite secure. It is this con­
ceptual system with which we shall be concerned in later chapters.
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INTRODUCTION

We now provide a very brief exposition of certain mathematical 
concepts which will be useful in Chapter IV. Axiomatic systems are 
introduced primarily without obvious motivation, and no proofs are 
given. However, references to standard textbooks are included for 
the interested reader. A survey of most of the material presented 
in this chapter will be found in Reference 1. We defer any discus­
sion of Riemannian Geometry until Chapter V.

1. SETS2

Underlying all of our investigations will be the concept of a 

set. We shall understand a set to be formed by the bringing together 
of distinct objects to form a conceptual "whole". These distinct 

objects will be termed elements.
The fundamental property of a set is inclusion: that is, whether

or not a given element is a member of a given set. Let A be a set
and x an element which may or may not be contained in A. Nota-

tionally, we have x £ A (read: x is contained in A) in the first
case and x ^ A (read: x is not contained in A) in the second. The
elements of a set are usually enclosed within curly braces {} in 
order to indicate set-theoretic inclusion.

We denote a (proper or improper) subset B of the set A by

B c A (read: B is a subset of A) or, equivalently, A 3  B. This is
to be interpreted in the following manner:

B c A if and only if x € B (read: implies that) x € A

for all x € B.



If B cr A and A c b , then B ■ A: that is, the sets B and A are 
identical.

For convenience, we postulate the existence of a set which 
contains no elements, the empty or null set, denoted <j>. Given this 
notation, we may develop a calculus for sets.

If two sets A and B have no elements in common, then they are 
said to be disjoint, in symbols A ° B. This is succinctly emphasized 
in terms of the intersection, a binary operation on sets to be de­
fined below.

Let A and B be two (not necessarily disjoint) sets. The union 
of A and B is the set A U B, such that x € A U B if and only if
x € A and/or x € B. The intersection of A and B is the set A D B,

such that x ( A ̂  B if and only if x ( A and x € B. In case A o B,
then A fl B = <j>. The (proper) difference of the sets A and B is
defined only when B c a . In this case, the difference of A and B 
is the set A-B, such that x € A-B if and only if x € A and x ^ B.
The difference is often termed the relative complement of B in A.

Countable (finite or infinite) generalizations of the above 
operations are obvious and will not be discussed.

An abstract set is totally determined by its cardinality. For 
a finite set (a set with a finite number of elements), the cardinality 
is simply the number of elements in the set. Such a cardinal num­
ber is termed a finite cardinal number. The existence of infinite 
sets (sets with an infinite number of elements), however, leads to 

the concept of transfinite cardinal numbers. We shall introduce

these only by example and refer the interested reader to standard
2 3 works. *
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Consider the set of natural numbers N = {1,2,3,***}. This is 
the prototype countable infinite set and its cardinality is the first 
transfinlte cardinal number, Nq . The only other infinite set with 
which we shall be concerned is the uncountable infinite set having 
the transfinlte cardinal number The set of real numbers, ft, is
a representation of this abstract set.

We define the sum of cardinal numbers as the cardinal number 
of a union of disjoint sets. The product of cardinal numbers is de­
fined in terms of the Cartesian product of sets as follows. Let A and 
B be sets with cardinal numbers p and q, respectively. Then A x B 
denotes the Cartesian product set which consists of all ordered 

2-tuples of the elements of A and B; the first member of each 2-tuple 
comes from A and the second from B. The cardinality of A x B is 
p • q. For example, let A = {a^a^, B = {bj.b^, then

A x B — {(3jjbj), (a^*b2) , (a2*bj), (32^ 2)}

and the cardinality of A x B is 2 * 2 = 4 .  The countable extension 
is obvious and will not be formally presented.

2. MAPPINGS

A mapping is a rule which assigns to each element (pre-image) 
of its domain set A a distinct element (image) of its range set B, 
in symbols f:A -»■ B.

If every image has only one pre-image, then f is said to be 

one-one or injective. If every element of B has at least one pre­
image, then f is said to be onto or surjective. A mapping which is



both one-one and onto is a bijective napping, or more familiarly, a 
one-one correspondence.

3. GROUPS

ADefinition;
A group is a set G and a binary combination rule (group product) 

which associates to every ordered pair (a,b) € G x G an element 
ab € G such that the following axioms are satisfied.

GA1. For every a,b,c € G, a(be) = (ab)c.
GA2. There exists e € G such that ae = ea = a for all a € G. 
GA3. For every a € G, there exists a * € G such that aa * =

-1a a = e.
GA1 ensures that the formation of the group product (group multi­
plication) is associative. GA2 postulates the existence of an 
identity element which is readily seen to be unique. GA3 postulates 
the existence of an inverse for every element of G, and these in­
verses are also readily seen to be unique.

In general, group multiplication is not commutative. In the 
event that it is, the group is said to be abelian. For an abelian 
group, the combination rule is usually denoted as + and the identity 
as 0. For non-abelian groups, we shall use • (normally suppressed) 
to denote group multiplication and 1 to symbolize the identity ele­
ment.

Four groups with which we shall be concerned in this work are 
the additive group of real numbers, the multiplicative group of 

real numbers, the additive group of integers modulo n, where n is



a natural number, and the multiplicative group of integers modulo 
p, where p is prime. We shall assume that the reader is familiar 
with the first two groups, and consequently, we discuss only the 
last two in detail.
(1) Additive group of Integers modulo n

We define congruence of two integers, a and b, modulo the 
natural number n by a = b + kn, where k is an integer. This is 
shortened simply to a = b mod n. The equivalence class (or congruence 
class) of a modulo n is given by

where Z is the set of Integers. Simply put, [a]n is the set which 
contains all of the integers which are congruent to a modulo n.

It is easy to see that every a € Z is congruent modulo n to 
one of the numbers 0,1,2,•••,n-l. Now consider the set

Under addition modulo n, Zn is an additive abelian group of order n.
The sum on Z is defined by n J

The identity element is [0]n > and the inverse of an element [a]n is 
defined by

[a^= {x € z|x = a mod n} 3.1

...3.2

[a]„ + Cb]„ - Ca+b]n ...3.3

-[a] = [-a] = [n-a]Jn n J ...3.4

(li) Multiplicative group of integers modulo p
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We define multiplication on Zp by

Ca]pCb]p = [ab]p ...3.5

Hence, tl]p may obviously serve as the multiplicative identity. In 
addition, since p is prime,^ every element has an inverse, ex­
cluding [0jp. Thus, the set

Zn E {tl] »L2] ,•*•,[?-!] } ...3.6P P P P

forms a group under multiplication modulo p. Furthermore, this 
group may be shown to be cyclic.

4. FIELDS

Definition;
A field is a set 3 which satisfies the following axioms.
FA1. 3 is an additive abelian group (with the identity de­

noted 0).
FA2. 7* = 3 - {0} is a multiplicative abelian group (with the 

identity denoted 1).
FA3. Multiplication is distributive over addition: that is, 

for every a,b,c € 3,

a(b+c) = ab + ac and (b+c)a =* ba + ca

We note that 0»a = a*0 = 0 for all a £ 3.

It is easy to show that Zp, where p is prime, forms a field.

Since the groups involved are finite, this field is finite.



5. VECTOR SPACES6

Definition;
A vector space over the field 9 is an additive abelian group 

V for which there is defined a binary rule, termed scalar multipli­
cation, such that for every c 6 3 (a scalar) and a € V (a vector) 
there exists the product cot € V, satisfying the following axioms. 

VSA1. c(da) = (cd)a for every c,d € 3 and a £ V.
VSA2. (c+d)a = cct + da for every c,d € 3 and a € V.
VSA3. c(a+$) = ca + eg for every c € 3 and a,B £ V.

Definition:

A finite set of elements of V, {a^,^, • • • »®n}» is linearly 
dependent over 3 if there exist scalars ci»c2»***»cn ^ not all 
zero, such that

c.a. + c0a0 + ••• + c a = 0  i~ i n~n

If the only relation which exists is the trivial one (that is,

c^ * 0, i = 1,2, •••,n) then the set of vectors * * * »2nJ 1®
termed linearly independent over 3.
Definition;

Let V be a vector space over the field 3. S c  V is a spanning 
set for V if for every a £ V, a may be written as a linear combina­
tion 7 c.0., where c. € 3 and a. € S. If S is finite, then V is a “ i~i* i ~i *
finite-dimensional vector space.

Definition:
Let V be a vector space. B c  V is a basis for V if B is a 

minimal spanning set for V.



We state without proof the following three propositions.
1. A basis for a vector space is a linearly independent set.
2. Let B be a basis for V over 3. Then every a € V may be 

expressed uniquely as a linear combination of elements of B with 
coefficients in 3.

3. All bases for a vector space have the same cardinality. 
Further, the cardinality of a basis for a vector space is equal to 
the dimension of the space.

6. INNER-PRODUCT SPACES

Definition;̂

An inner-product is a scalar-valued function defined on a 
vector space V over a field 3, such that the following axioms are 
satisfied.

IPA1. (a,3) =» (§,ct) for every a,§ £ V.
IPA2. (aa+bB,y) * a(a,y) + b(g,y) for every a,$,y £ V and 

a,b 6 3.
IPA3. (a,a) ^ 0 for all a € V; (a,a) = 0 if and only if 

“ = Q* (positive-definiteness)
Definition;

An inner-product space is a vector space with an inner-product 
defined on the space.
Definition;

Let V be an inner-product space. For all a £ V, the norm of a 

is the positive square-root of (a,a) ; that is, ||« || = (“»“)**•
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7. METRIC SPACES8

Definition:
A metric space is a set M with a scalar-valued function D(a,b), 

the distance function, defined for every a,b € M, such that the 
following axioms are satisfied.

MSA1. D(a,a) - 0 for all a € M.
MSA2. D(a,b) > 0 for every a,b € M, a / b.
MSA3. D(a,b) = D(b,a) for every a,b € M.

MSA4. D(a,c) £ D(a,b) + D(b,c) for every a,b,c £ M. (triangle

inequality)
We note that an inner-product space V has a natural distance 

function (metric): namely,

D(a,3) = || <*-§ ||, for every a,3 € V ...3.7
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INTRODUCTION

We wish to represent the conceptual nature of molecular genetics 
as a mathematics. Initial considerations lead to a realization of 
DNA, RNA and protein molecules as vectors in separate finite-dimen­
sional vector spaces. It is then possible to treat transcription 
and translation as linear operators on certain of these spaces.

Two distinct vector space formulations, different only in 
field structure, are developed. The use of a continuous field, 
specifically the real field, allows one to construct a familiar 
Euclidean space. However, this space is inadequate to describe the 
precise linear arrangement of information units (codons or amino 
acids) in a molecule. To overcome this difficulty, a space over a 
finite field is created but, in this second formulation, a certain 

richness of mathematics is sacrificed. The resolution of this 
dilemma will be the concern of Chapters V and VI. Before beginning 
the vector space constructions, however, we must first define the 
fundamental biological sets and the genetic code mapping.*

The set of four RNA bases is denoted 8 = {U,A,C,G}. Thus, the 
collection of 64 codons, denoted C, is prescribed by the Cartesian 
product

C = B x B x B ...4.1

At the level of DNA, the base triplets which ultimately give rise 

to the RNA codons may be prescribed in like manner:

C* = B' x B' x B' ...4.2



where B' = {T,A,C,G} is the set of DNA bases; and where C1 is the 
collection of DNA codons. Finally, the set of 20 amino acids and 
the operator TC (terminator codon; cf. §11.4) will be symbolized 
by 0.

The genetic code mapping (cf. Chapter II, Table 1) is operative 
during m-RNA translation and maps the set C onto the set CL We 
term this the /-mapping, and in symbols we have

Consider the 64-dimensional vector space over the field of real 
numbers, ft. We choose C' as a basis for this space, which we de­
note Dj. Let an inner-product be defined on D^. Since C* is a 

linearly-independent set (cf. §111.5), it follows that we may choose

a .. .4.3
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2it to be orthogonal. Further, let the elements of C' be normalized.
Thus,

4.4

where ^ C' f°r “ 1»2,*#*,64; and where 6 ^  is the Kronecker
delta:

...4.5

3Equation (4.4) fixes the structure of D^ as Euclidean.

Since O' spans Dj (cf. §111.5), we have for every c 6 Dj


