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ABSTRACT

Let R be a commutative ring with identity. Let M be
an R~module. Define A-rank (M) = m provided AmM ? 0 and 

1A M = 0. If no such m exists, define A-rank (M) = °°.
Similarly define (gtrank and S-rank (symmetric rank).

Chapter I investigates the behavior of the ranks
defined above relative to exact sequences.

Chapter II applies the results of Chapter I to prove,
for V a DVR, that A-rank (MCS)N) £ A-rank (M)*A-rank (N)
and A-rank (A^M) <_ ran^(M) ̂ for an  v-modules M and N.P

In Chapter III, weaker conclusions than those in 
Chapter II are obtained for R a Noetherian ring of finite 
Krull dimension.

In Chapter IV, we investigate what conditions on 
A-rank (M) follow from the condition "A-rank (A^M) = q".

iv



INTRODUCTION

Throughout, R is a commutative ring with identity and 
all R-modules are unitary. Unless otherwise indicated, 
module means R-module. M, N, A, B, and C always stand for 
modules; d, p, q, m, n, i , and k always stand for non-negative 
integers.

We will use F*3 (or Ĝ 3) to stand for one of the functors 
or Â 3; Category of R-modules and R-module homomor-

phisms --->- Category of R-modules and R-module homomorphisms.
If there is any question as to what ring we mean, we will 
use subscripts, e.g., F^, F^( .

Definition. F-rank(M) = m iff Fm (M) ^ 0 and Fm+^(M) = 0.
Notice that m is unique, if it exists, because of the canon
ical R-module homomorphism [of Proposition 0.13] of 

Fm+  ̂(M)@ F^ (M) onto F (M) . If such an m exists,
we will say that M has finite F-rank or F-rank(M) < 00.
Note also that F-rank(M) = 0 if and only if M = 0.

We will make some straight-forward observations about 
F-rank (and, in particular, A-rank).

i) If M ---»• N --- > O is exact, then F-rank(M) _>
F-rank(N) since F^(h):F^(M) --- >• F^(N) --- *■ O is also exact.

(F 3̂ is neither left nor right exact nor does it
preserve injections.)

1
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Consider the following isomorphisms: [Prop 0.15]
P® P (A ©  C) = ®  P (®P"K A 0) C) ;

k= 0  ̂ J

SP ( A © C ) ^ ©  (SP_k(A) ®  SK (C) ) ; 
k= 0

AP (A© C) = ©  (AP_k A ® A kC).
k= 0

Now suppose that F-rank(A) = a and F-rank(C) = c and
consider, for p = a + c + 1, Fp-k(A)g> Fk (C), where 0 £ k £
p. Either p-k >_a + l o r k > c  + l; therefore either
FP k (A) or Fk (C) is 0; hence, for 0 £ k < p,

F (A)(S>F (C) is 0; hence the preceeding isomorphisms
tell us that FP (A©C) = 0. Thus,

ii) F-rank(A© C) £ F-rank(A) + F-rank(C).
Suppose M is an R-module and R' is an R algebra. The

isomorphism FP (M)®r R 1 ~ i FP , (M <2̂  R 1) of Prop. 0.14 yields:
iii) F -rank(M) > F ,-rank(M R 1)K — K K
A special case of Prop 0.14 is the following isomorphism, 

where S is any multiplication closed set of R (0 <£- S) .

tF ? ( M ) ] S f s F R f s > -
Since a module N is 0, if and only if, Nq = 0 for

every maximal ideal Q, we obtain from the above isomorphism:
iv) F -rank (M) = max{F -rank©,,) IQ is a maximal ideal R Q

of R} .
Throughout this paper, we will be concerned primarily 

with A-rank, dealing with 0-rank and S-rank only in 
Chapter I.
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The main objective of the paper is to bound A-rank(APM) 
by a number that is a function of p and A-rank(M) and to 
bound A-rank(M ®  N) by a number that is a function of 
A-rank(M) and A-rank(N). Unfortunately, I have not been 
able, in general, to do this, and, although we will find 
bounds when R is a Noetherian ring of finite Krull dimension, 
the bounds depend also on the Krull dimension and are almost 
certainly excessive. When R is a discrete valuation ring 
(DVR), we obtain the "best possible bounds" via theorems 
(in Chapter I) concerning rank and exact sequences.

We will also look at the problem of bounding A-rank(M) 
by a number that is a function of A-rank(APM) and p.

Suppose now that M and N are free on m and n generators
respectively. Then APM is free on (™) generators (by 
Examples 0.12 c), implying that A-rank(M) = m; therefore 
the A-rank of a finitely generated free module is the free 
rank (the number of elements in a basis).

v) We have, for finitely generated free modules M and N, 

A-rank (M®N) = A-rank (M) • A-rank (N) (because M ®  N is free
on mn generators) and A-rank(APM) = (̂  rank(M)^ their
preceding paragraph).

vi) If R is quasi-local and M is minimally generated by
q elements, then Nakayama1s Lemma and the fact that A
commutes with ring homomorphisms enable us to reduce to the 
case of a field (over which all modules are free) to conclude 

that A-rank(M) = q. Since M finitely generated implies APM 
finitely generated for every p > 1, A-rank(APM) = (q).
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From vi) and the fact that A and tensor product 
localize well we have:

vii) If M and N are punctually finitely generated,
then A-rank(M <8 > N) £ A-rank(M)* A-rank(N) and A-rank(A^M) =
-A-rank(M).

P
Examples of non-finitely generated modules M for which

A-rank(A^M) < r&nk(M)j are eaSy to find.
P

[Consider the Z-module M = Z @  Z ©  Q/Z. A-rank(M) = 3 but 
A-rank(A2M) = 2 < (̂ ) = 3.]

It seems reasonable to ask whether or not the following 
always hold:

a) A-rank(M ®  N) £A-rank(M)* A-rank(N)
b) A-rank(A^M) < (A-rank(M)}

P
I know of no examples of modules M and N for which a) 

and b) do not hold. On the other hand, I have been unable 
to show in general that the finiteness of A-rank(M) implies 
the finiteness of A-rank(A^M) for p > 1.

(Note: For a ring R, the following statements are
equivalent:

1) For all R-modules M, A-rank(M) < «> implies that 
A-rank(A^M) < 00 for all p > 1;

2) For all R-modules M, A-rank(M) < °° implies that 
2A-rank(A M) <

3) For all R-modules M and N, A-rank(M), A-rank(N)

< 00 implies that A-rank (M ®  N) < 00.
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Proof: 1) ̂  2) obvious
2) 3) Suppose M and N have finite exterior

rank. Then, by ii), M ©  N has finite exterior rank and
2by hypothesis A (M ©  N) has finite exterior rank. But

A2 (M© N) — A2M ©  (M<&>N)©A2N. Hence M ® N  is a homo-
2morphic image of A (M© N) ; therefore by i) , A-rank(M® N) 

£ A-rank(A2 ( M© N) ) < °°.
3) 1) Suppose A-rank(M) < °°. Then, by

hypothesis and induction, A-rank(GD^M) < 00 and A-rank(A^M)
< 00 by i) since A^M is a homomorphic image of



CHAPTER 0. BACKGROUND MATERIAL

Herein are noted results necessary to the understanding 
of the body of the paper. All rings are commutative with 
identity and all modules are unitary.

Let R be a ring. Let A^, A, and B be R-modules, n, i, 
p, t, and k stand for natural numbers, afc e Afc, and r,r' € R.

Definition 0.1.
a) A function <J>:Â X ... X An --- >• B is called a

multilinear map provided that cf)(â , •••/ ra^ + r ' a| , . ..an)
rtj)(a]L, ...ai, -••an) + r ,<J)(a1, ...a^ , . . . , an) .
b) A multilinear map ̂ :X A --- >- B is called symmetric

provided that ip(air •**an) = ^^aa (i) '•••'aa(np for a 1 1  

permutations a of {l,...,n}.
c) A multilinear map 0 :X A --- >■ B is called alternating

provided that 0 (a^,...,an) = 0 whenever a^ = a^ for some

i / j-
d) A multilinear map y : X A --- ► B is called skew-

symmetric provided y(a^,...,an) = sign (a) y (a^.^ ,.. . ,a^nj)
for all permutations a of {l,...,n}.

Prop 0.2. An alternating multilinear map is skew- 
symmetric .

Proof: First suppose 0:A X A  -> B is an alternating
multilinear map. To verify the above, we need only show that

0 (a^,a2 ) "”© (a 2 *a 1 ̂ *
We have 0 (a^ + ^ 2 '  aj + a 2̂  = ® kut ^(a^ + a £ , a^ + a 2 )

6
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= 0 (a1 ,a1) + 0 (a1 ,a2) + © ( a ^ a ^  + 0 (a 2'a2>
= 6 (alfa2) + 9 ( a^a^ .
Thus 0(a^,a2) + 0(a2 ,a^) = 0, or 0(a^,a2) = -0(a2 ,a^).
By a similar argument, if Q:A X ... X A  >- B is an
alternating multilinear map, then 0 (a^, ...a^_^, a^,

**’aj-l' aj' aj+l'*"''an̂  ~ aj • ai+l'
aj_^, a^, aj+^,...,an). Therefore, interchanging two
coordinates of the tuple simply changes the sign of the
image; but interchanging two coordinates is the same as
operating on the indices with a transposition; and any
permutation a is a product of t transpositions, for some
t, the sign of cr being (-l)t. q.e.d.

Prop. 0.3. Let R be a ring. Every skew-symmetric
multilinear map is alternating ,?=> 2 is a unit in R.

Proof I <£= Suppose 2 is a unit in R. Suppose
n-factors

y:A X ... X A --- *- B is a skew-symmetric multilinear map.

y(ai, ...ai_1, a±, ai+1, ...aj_1, a±, aj+1'-*"an) =

- y U ^  • • • ai_1' ai' ai+i/ ai' aj+i' ' ' ' ' an̂

or 2y(alt ...ai_1, a±, ai+1/ ...a,.^, a^, aj+1'*’" an) = 0

But 2 is a unit in R; so y(a^/ a^ • ai+l'' ' ’ ' aj-l'
a., a..,,.--»a ) = 0 and y is alternating, l j+ 1 n

-=* Suppose that 2 is not a unit in R. Consider the map
y:R X R --- »■ R/2R given by (r,r’)---> r r y is bilinear
and y(r,r') = -y(r',r); hence y is a skew-symmetric bilinear 

map but y is not alternating because y(l,l) = i ¥ 0 .
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The construction in ( may make one think that, in 
order for y not to be alternating, 2 must annihilate the 
image of y. The following example shows that this is not 
the case.

Let R be a ring in which 2 is not a unit.
Let F be free on {e^,e2}.
Let y: F X F --- ► F <8 ) F/^t 2ex(g) e1, 2e2 ® e 2, e1 ® e 2 - e2 ®
by (f^,f2) --- >■ f^ 0  f2 be the obvious bilinear map.
This map is also skew-symmetric because it is skew-symmetric 
on the generators. However y(e^,e^) ^ 0 by the following 
argument: If y(e^,e^) = 0, then e^(g)e^ = a(2e^®e^)

+ b(2e2 <g> e2) + c(e1 <2) e2 ~e2CS e1), a, b, c e R.

The elements e^ e^, ©2 ®  e2' ei ®  e2-e2 ®  el' are 
linearly independent over R because {e^® e^, e2 <^e2, 
e1 ®  e2 ~e2 <S> ê ,̂ e2 <Z>e1} can be easily seen to 
form a basis for F ®  F; thus we see that 2a = 1, 2b = 0,
and c = 0. But 2a = 1 ^  2 is a unit in R. -* «-

Tensor Products

Definition 0.4. The Tensor Product
Let , ...An be R-modules. Then A ^ ®  ®  An =

F v v_ /K, where FA v VA is the free R-module on theAĵ X * * * XA^ A^X » • • XA^
elements of A1X...XAn and K is the submodule of F^ x XA

generated by elements of the form (a^, ..., ra^ + r 1a| ,.•■> an) 

— r (a^ i ... r a^ a^) — r  ̂̂ / • • • »  ̂ » • • • ,  ̂* r,r R;
â €- A . Let J:A^X. . . XAn --- ► A^ ®  . . . by (a^ , . . . , an) i---»■
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a,® ...®a . Notice that J is multilinear and that the
1 n

image of J generates A ^ & . . . ® A n .
The tensor product of A^, A^ has the following

universal property:
Corollary 0.4:1 Suppose that <J):Â X ...XAn  ► B

is a multilinear map. Then there exists a unique R-module
homomorphism A^ ®   >- B such that the following

diagram commutes:

J

X ... XA

Proof: [Bbki.: Prop. 1, p. 244]

Some Facts About Tensor Product:
Prop. 0.5. Tensor product is associative, i.e. (A<2? B)(S)

C ^  A ® B ®  C by (a ®  b) <&> c i a &  b &  c .
Proof: Consider the function (j>:A X B X C  ->• (A&B)

®  C by (a,b,c) i (a® b) <2> c. <j) is R-multilinear; hence
we get an R-module homomorphism $:A &  B &  C --->- (A &  B) ®  C
given by a <S> b c I >- (a ®  b) ® c.

Now we need only construct an R-module homomorphism
A
<p’ : (A <8 > B) &  C --- >- A &  B &  C where (a ®  b) (H> c i ►

.A Asa &  b ®  c. Then $ and <J>' will be inverses of each other
because their compositions are the identities. For every c€C,

let A : A X B  y A ®  B ®  C by (a,b) I *- a®b<g)c. A isc c
R-bilinear; hence we get an R-homomorphism ^  : A (59 B --- ►
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A O  B  >■ A &  B &> C. Now define <j> ' : (a,c) = Ac (a) where
a e ACg)B. 4>' is R-bilinear; hence we get an R-module
homomorphism ' : (A ®  B) ®  C --- *■ A &  B (g) C under which
(a <S> b) ®  c i *■ a <S> b <85 c.

By a similar argument, we can get a generalized 
associative law for tensor product.

Prop. 0.6. Tensor product is commutative, i.e. A & B
: B ® A b y a ® b  i ► b ®  a

Proof; Let :A X B ---■> B ®  A by (a,b)  > b &  a.
A(J) is bilinear, hence induces an R-module homomorphism (j):

A B  > B ®  A given by a ® b i ► b a. By a similar
argument, we can obtain an R-module homomorphism cj>' : B &  A
 >A ®  B such that b <g> a I >- a ® b. Thus the compositions
are the identities on generating sets, hence are the 
identities.

Prop. 0.7. If A — — > B and A 1 —  y B 1 where f and f'
are R-linear (R-module homomorphisms), then the map f X f':
A X A ! ---► B <S> B ' by f X f 1 f(a,a 1)) = f (a) 6 ) f(a') is
bilinear, hence induces uniquely an R-linear map f ®  f ':
A (g) A 1  y B &  B 1 by a ® a 1 i >- f (a) <S> f (a ') . [Bbki?
Remarks, p. 250] If A — — >- B —3— y C  y 0 is an exact

f«idD
sequence of R-modules, and D is an R-module then A ®  D --------y

g®id
B ®  D ------- y C <S> D  y 0 is exact. [Bbki . ; Prop. 5, p.
251]

Prop. 0.8. Tensor product distributes over direct sum. 
i.e., for 2 modules, ( A ®  B) &  C = (A <g> c)©(B <S> c) by (a,b)®c 

►— (a ®  c, b <S> c). [Bbki.; Prop. 7, p. 255]
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Note: If there is any question as to what ring R over 
which we are taking the tensor product, we will use sub
scripts, e.g., A ® r B.

Tensor, Symmetric, and Exterior Powers 
Definition 0.9.
(g)°A = S° (A) = A°A = R; ® 1A = S 1(A) = Â Â = A;

If p is an integer > 1, then
p-factors

a) (2TA = A ®  ... ®  A
b) SP (A) =(^>A/N1 where N^ = <^{a^® . ..®a -

a^-^j • ‘®aa ̂ j | a is a permutation of {1 , 2 , ...p}}^
c) AP (A) = ®Pa/N2 where N 2 = {{a1® . ..^a^la^ = a^

for some i ^ j
For the image of a1 g> ... ®ap in SP (A) (resp. APA) under 

the canonical homomorphism "mod N^" (resp., "mod N2") we 
write a, *...* a (resp., a, ^...^ a ).-*• ir r

Let Fp (A) be (%Pa  (resp., SP (A); resp., APA) 
p-factors

Let J: A X ... X A --->- F (A) be the canonical map (a^, . . .,
a ) I >- a, *...* a . Then J is multilinear (resp., symmet-p i p
ric multilinear; resp., alternating multilinear).

Note: When we use FP (A) to stand for one of the three
modules <&Pa , SP (A), or APA, then we will use a, *. . .* a to

ir

stand for the image of (a. ,...,a ) under J.
Also if there is any doubt as to the ring involved we 

will write FP (A).
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Prop. 0.10. The modules of Definition 0.9 have the
following universal properties:

p-factors
Suppose (j>: A X ... X A --- > B is multilinear (resp.,

symmetric multilinear; resp., alternating multilinear). 
Then there exists a unique R-module homomorphism $:FP (A) 
B commuting the following diagram:

FP (A)
3!$

p-factors 
A X  ... X A

Proof: [Bbki: Prop 1, p. 485; Prop 6 , p. 500; Prop 7,
p. 511]

The universal properties yield the following functorial 
properties:

Prop. 0.11. Suppose f:A --- > B is an R-module homo
morphism. Consider the following diagram:

p-factors 
A X  ... X A * ?P (A)

p-times

p-factors
B

3!FP (f)

1
FP (B)

p-times
JD o(f X ... X f) is multilinear (resp., symmetric multi- 
linear; resp., alternating multilinear); hence there exists 
a unique R-module homomorphism Fp (f) that makes the diagram
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commutative. [Observe that Fp (f) (a^ a^) = f C a-̂ )
*...* f(a ).]

PNote: If A — — >- B --- ► 0 is exact, then F^(A) —-— — ►
FP (B) --- »■ 0 is also exact because {b^ *...* bp|b^e B}
generates FP (B) (because the set {b^® ... ®b^} generates 
® PB) and since, f is onto, each b^ *...* b^ is the image of 
an a. *...* a F̂ *(A) .1 p

Examples 0.12
Let L be a free R-module with basis {e.,..., e }.1 n
a) For p 21 1, ®^L is free on (e. <3> . .. ® e . } where“  I t -X1 P(i^, ,. . . , ip) ranges over all sequences of length p

taking values from { 1 ,. . . , n}
Proof: This follows by induction from the fact that

tensor product distributes over direct sum and the fact that, 
for any ring R, R g l  R ®  ... ®  R is free on 1 &  . .. <8> 1.

b) For p >_ 1, SP (L) is free on {e. *...* e. } where
^l xp

i, < i_ < ... < i and i. ^ {l,...,n}1 - 2 - - P 3
Proof: Let . ../Xn] be the polynomial ring in

n-variables over R. Consider the R-multilinear map
XPL — — ► R[X. ,. . . , X ] given by (e . , .. ., e . )  ► X. *r n x1 ip
X. •. .. *X . . Since the polynomial ring is commutative, <J> is
1 2 XP ^  psymmetric and induces an R-module homomorphism <{>:S'ML) --- ►

R[X. ] given by e. *...* e. »--->- X. *X. •...•X. .X n i*i x x t x x1 P 1 2 p
Thus we have a subjective R-module homomorphism of SML) 
onto the homogeneous polynomials of degree p in R[X^, ... Xn]. 
{e. *...* e. | i . <=- { 1 , ... n) and i. < i5 < . .. 1. forms1 *i X j X ^ pI p  ~D Aa generating set for SML) and its image under 4> is a basis
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for the homogeneous polynomials of degree p in R[X^ , X ]
Thus {e. *i. * e. |i. ®{1 , ... n} and i, £ i? £ ••• £ i }-! ip D J- P
is a basis for SF (L).

c) For 1 < p £ n, Â Tj is free on 3 = ^ei^ ~ ~  e-j_ | ij <=
PT =and i, < i„ < ... < i }*if p > n. AtTi= 01 2 p ' * '

n.
{1 , ... n}

j. ^  p  ■

Proof: We first prove the statement for p = n. A“l
is generated by e^ />. ..  ̂e and we wish to see that n
e^ .̂../v en is a free generator. It suffices to show that 
there exists a homomorphism of AnL to R that takes
6  • A • • • A 1

n-factors 
of L X ... X L

en to 1. Consider the alternating multilinear map cf)

-+• R given by
*1 1 '
nl

12
n 2

. In

nn

-»■ det ( rjk) . <|>
'l' 'o' fo]0 1 00 0 t • • • / 00 • J
•• •

• 0
.0. 0 1 k y

1 . <p induces

/V n4>: A L

"fll O' O'
0 1 0

-> R such that 1 = cp 0 A 0 • • • A 2
* 0
0̂ y î y 1

<p (e^ ^ e ). q.e.d. n
Now suppose that 1 < p < n. Let E r t-\ e -

(i) u; 11 P
be a relation on the elements of 3- We wish to show that 

r^j = 0 for every (i). Fixing (i*) , let ip+]/ •••» t l̂e
values of {1 , ... n} that do not appear in i|, ...

Now consider the element X = E r (e. ~...~ e. ^
(i> (1) xi xp

e • / a . . . ~ e • t )* A l. 
p+ 1 n
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X = 0 because X is the image under the canonical homomorphism
Y~ :APL ££) An_PL ----* AnL of the element 0<3>(e.f e., ),
P,n_P V l  1n

which is 0 .

All the terms in X have repeated components and are 0
except r,-h. e., ^. . . ̂  e., A e. , e., . Therefore,

u; 1 1 1p xp+l 1n
0  ““ ^  / i|\ 6  ■ | A  • » • A  G  • J A  ®  * | A * • * A  ^  ' | "t" 6  1 •u; ip ip + 1  in - n;
z\ en and since e^ ^...^ en is a free generator for A L,

r(if) = as des -̂re<̂ #
If p > n then APL is generated by elements of the form

e. ^e. e. where i . & {1 , ... n}ei. -x........... ....  i ------ 3
1 n n+ 1  p J

In each element of this form, we have at least one repeated 
component; hence each generator is 0 and APL = 0. q.e.d.

Prop. 0.13. There exists a subjective R-module homo
morphism :FP (A) <8 > Fq (A)----► FP+q(A) given by (a,t p,q 1

*...* a ) ®  (aĵ  *...* a^) \---► a± *...* ap * aj_ *...* a^.
Proof: If ^Y exists, it is subjective because pP+q (A)-----j. p,q

is generated by elements of the form a^ *...* ap * aĵ  *... a^.
By the generalized associativity of tensor product, we 

get the homomorphism : ® PA (3>qA  > ® P+qA.It f 'dl
Suppose now that F = S (resp., A). Consider the

following diagram
(®PA) ®  (®qA) $ p+qA

ApP Apq AFP+q

FP (A)(g> Fq (A) -FIpiq— y FP+q(A) 
where A„p, A„q, and A„p+q are the canonical homomorphismsr r t
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Apk
a^ &  . . . <2> â . J >- a^ *... * a^

Since A_p (&) A_q is a surjection, we need only show thatr r
the kernel of A„p <g) A„q is contained in the kernel of A„p+qr r r
0 Y . But, by [Bbki: Prop. 6, p. 252], the kernel of® P r Cf
ApP<& Apq is the set of all elements of (®PA) (̂  (&>gA) that are 
images of [ker App Q9 (5$Fa] + [g^A&ker AF^] under the map 

(inclusion 0  id ̂ q^) + (i^0 PA &  inclusion) .
If F = S (resp., A), the above image is contained in

the kernel of A_p+q o rv . Thus the homomorphism _yFr ^ Q£» P/q F'p,q
always exists for F = ®, S, or A.

We have, by induction, a subjective homomorphism
® nFP (A) — -̂HFnP(A) given by (a1]L *...* alp) <g) ... ®  (anl
*...* a ) i ► a., *...* a (which is an isomorphismnp 1 1  np
if F = ®  ) .

Corollary 0.13.1. Suppose p is odd or R has character
istic 2. Then there exists a unique subjective homomorphism 
y' that makes the following diagram commutative.

& n (APA) -*-*• AnpA

APA^n

x
/

/

An ( APA)

// S*s
' Y

/
/

/

Proof: If it exists, the homomorphism y will be unique
and a surjection because both ^pAAn and y are surjections.

Since ^PAAn is surjective, y" exists, if and only if
ker(AP A ) ^ ker(Y). For simplicity, we will first deal *1 a n
with the case n = 2 and then generalize.



17

Suppose n = 2. The kernel of yyPAA2 is generated by
elements of the form X (S) X where X e APA. Let X = 
k
Z a., /..-a a-in * Then y(X®X) = 

i=l p
E a . , /\ • • • a ci » â  a . a-* ̂  . . . a a . , .l<i<i'<k 1 1 xp i'l x p

Rewrite Y(X(>p X) as follows: 
k
E a ... a  ... A a . a. , A ... a j , + E [(a..A...A

i=i 1 1  ^  1 1  i<i<i’<k il
aip ^ ai'l ai'p>+ <ai'lA -  ^ V V  " . A a . p)]

The elements a. , A ... A a. A  a . . a  . . . A a . are 0xl ip il ip
2rjby definition of A PA.

If p is odd, then a.,-A...Aa.. a  a . , a . . . a a . =^ x11 i'p il ip

-a.. A ... Aa. a a.n /\ ... Aa.. because the indices (i. 1, ... il ip i'l x'p
ip, i'l,..., i'p) can be obtained from the indices (i'l, ...
i'p, i ,..., ip) by the permutation a = (i'l,il) (i'2 ,i2) ...
(i'p,ip) which is an odd permutation because p is odd; thus

y (X <S) X) = 0.
If p is even, but R has characteristic 2, then we have 

a.,,a ... a  a., a  a ... a  ...Aa. = a . , a  .. . a  a . a  a .,.a  a.,i' 1 i'p il ip xl xp i' 1 i* p
(here a would be even) = -a..a . . . a a . a a.,, a  ... a  a .,il ip l 1 l
(since R has characteristic 2 ) and y(X<S* X) = 0 . q.e.d.

For the general case, the kernel of is generated
by elements of the form Y . .. CE) X ® .  . . (pY .$)... <K>X® ... ( &  Y _0i j n *"
where X is as above and the Y^'s are "basic wedges" 
in APA (i.e. of the form a^ a ... a a^) . A similar argument 
shows that any element of the above form is in the kernel
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of y .
Note a) Let n, p > 1. y is almost never an isomorphism 

unless both An (A^A) and An^A are both 0. For example, if
L is free on k generators, then An (A^L) is free on 'fk.PJn
generators and An *̂L is free on (ĵ ) generators. Assume 
y exists. Since y is surjective, y:An (A^L) >- A ^ L  is an
isomorphism, if and only if,

b) Let R be any ring of characteristic other than 2

fk
iPjn = (np).

and let L be the free R-module on {e^, e2 ' e3, e4>. Then

a 2l is free on {e^ A  e2, e^ A  e3 , e^ a e4' e2 A  e3 ' e2 A  e4'
e 3 /'n 4, e4> and A L is free on e^ a  e2 A  e3 A e4'

Claim: The homomorphism A^L ----y 4A L does not
2 2factor through A A L.

Proof of Claim: Under the homomorphism A^L  -»•
2 2A A L, the element (e^ a  e2 + e3 A  e^) ®  (e^ A e2 + e3 A  e4 ^

4goes to 0; however, the image of this element m  A L is 
(el A e2 A e3 A  e4) + (e3 a  e4 a  A  = 2e1 a e2 a  e 3 A  e4

j- 0 . q.e.d.
Proposition 0.14. Chance of Rings. Let R' be an 

R-algebra. Let stand for ̂ p, S^, or Â *. Then there 
is an R'-module isomorphism!

F^(A)(g)R R' — ?— >- FRl (A ® r R 1) given by (a;L*...* ap)®r *
i------ ► r' • (ax (g) l)*(a2 ®l) *...* (a 1 ) .

Proof: [Bbki: Prop. 5, p. 489; Prop. 7, p. 502; Prop. 8 ,
p. 514.]

Notice the following two special cases of Proposition

0.14:
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1) If I is an ideal of R, then FP (A))
F^jtA/IA) by a± *... * ap >----► a± *...* ap

2) If S is a multiplicative system of R (0 ^ S), thena * * ̂  ^m • • • U  1 Cl *1 • • • d

tFR (a»]s %  frs < V  2 1 — - 1 ' r 1 i2

Proposition 0.15. We have the following isomorphisms:
a) ® P (A1 © A 2) -2 -. (̂ ( A X®  ...®Aa )

by (an ,a12)® ... ®(apl,ap2) i ► <alx ®  • • • ® a p)l * U>
Pwhere (A) = (A,, . .. A ) ranges over all sequences ofP

length p whose range is {1 ,2 }.

b) SP ( A©B) 4-2- ©  fsP“k (A) (g> Sk (B))
k= 0

by (a1 ,0 ) *...* (ap_k /°) * (0 / b ̂  *. . . * (0 ,bk) •<--- 1

(0 , . . . , 0 , (ax *. . .* ap_k)$)(h1 *• • •* bk) ' 0 r • • • # 0 )
c) AP (A® B) «— =- (|> (AP_k A <& AkB )

k= 0
by (a^, 0) A ... A(ap_k,0) a (0/b1 )A... M 0 , b k) ■«--- 1

(0,0 ,..., 0,(a^ A ... A ap_k)® A • • • Abk) ' 0 ' * ‘
Proof: a) This isomorphism is a direct consequence of

the fact that tensor product distributes over direct sum. 
[Bbki: Prop. 7, p. 255.]

b) [Bbki: Corollary to Prop. 9, p. 505]
c) [Bbki: Corollary to Prop. 10, p. 517]
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Purity

JZ „
Definition 0.16. Suppose E:0  »■ A --- ► B -2— ► c --- >• O

is exact. Then we say that E is a pure exact sequence or f 
embeds A as a pure submodule of B provided that one of the 
following equivalent conditions holds:

f@idD
a) For any R-module D the sequence 0 --- >- A (3* D ------- >-

g<8id
B ®  D ------- >- C (&) D --- »■ 0 is exact .

f rllxl + ••• + y m xn = * (al>
b) Suppose (I 1 1  * is any system of

I • • • •
1 r ..x., + ...+ r x = f (a ) v ml 1 mn n m

finitely many linear equations having a solution in XB. Thenn
1

has a solution in X A , (r..£R, a .e a ).n 1J x
m

c) Any homomorphism <j>: C 1  > C, where C' is finitely
presented, factors through B; i.e., there exists a homomorphism
A  A
cp:C’  B such that g<j) = <p •
a < \ b [Cohn: Theorem 2.4, p. 384]
b ̂  s. c [Fieldhouse: Prop. 7.2, p. 9]

We have, by c) , that, if 0 --- »- A  >■ B  »■ C --- ► 0
is pure exact and C is finitely presented, then the sequence 
splits. Also notice that a split exact sequence is pure 
exact.

f ClProposition 0.17. Suppose that 0 --- >• A  ► B —2— >- C

 >■ O is pure exact and 4>: C * --- ► C. Then there exists a
commutative diagram:

rllXl +‘

r x +. ml 1

.+ r. x In n

,+ r x mn n
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0 -2-U c

idA

A -> B  2— > C

where the top sequence is also pure exact, (B' being the
C'
I <p

pullback of B -2— >- c
Proof: The existence of the commutative diagram is

well known [Mitchell: Prop. 13.1, p. 15.]. f 1 is a pure 
embedding because $of' = foid^, where id^ and f are pure 
embeddings, implying that $of', hence f', is a pure 
embedding.

Direct Limits
Proposition 0.18. (Direct limits preserve exact
sequences) . Let (A , y^) , (B , , (C , <)>“)
be three directed systems of R-modules and (fa) and (ĝ )
two directed systems of R-homomorphisms such that the 

f g
sequences A — -— > B — -— > C are exact for all a- ^ a a a
Then writing f = lira ; f and g = lim ; g^, the sequences
lim A  > a lim B  ► a lim C is exact.  »- a

Proof: [Bbki; Prop. 3, p. 287]
An immediate corollary to Prop. 0.18 is 
Prop. 0.19. Let (M.̂ , y^) and (Na, <J>g) be directed 

systems of R-modules and let (ĥ ) be a directed system of 
R-homomorphisms. (i.e., For 6 >_ a, the following diagram 
commutes:
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M_ a
a a a

<Pa

M, -* N,

Let h = lim. h .
 * a

Then the exact sequence 0 --- ► ker h inclusxon— >.xim^ Ma
lim N-> "a

sequences 0 --- >- ker h
* cok h --- »• 0 is the limit of the

inclusion
a

la
a a

cok h --- >- 0 where,Y£ > a, the map from ker h to ker h 0 isa c a B
induced by restriction and the map from cok h^ to cok h^ is 
the homomorphism induced on cokernels.

Proposition 0.20. (Tensor products commute with direct
ot ctlimits) . Suppose (Ma, y^) and (Na, <|>̂ ) are directed systems

Otof R-modules. Then the directed system (Ma &  N^, y^ <g> cf)̂)
has as its limit lim . lim N where, for each a, » a --- =» a
the canonical map of M„ N_. into lim. M_. (& lim . N_ is

ot c t  ?  ot ---------------/  ot

y <g> 4> •
Proof: [Bbki: Prop. 7, p. 290]
Proposition 0.21. The direct limit of pure exact

sequences is pure exact.
Proof; Suppose A — — »■ B —2— ► c is the direct limit of

f g
the pure exact sequences 0 --- >- A ----— >- B ----— >- C --- >■ 0,a a a
Let D be any R-module. If we can show that 0 -* A ®  D
f<SidD g&idD ■> 0 is exact, we will be

done by Definition 0.16. But since 0 --- > a a

-a 0 is pure exact, 0

9 0p idD
-  Aa ®  D

af <®id a D
B a
a

- Ba ®  D
•v Ca®  D ■+ 0 is exact, again by Definition 0.16.
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Since, by 0.20, tensor products commute with direct
f®id g®idn

limits, A <S> D ------- ► B ®  D ------- ► C ®  D is the limit
f ®id_

of the exact sequences 0 — A D — ------ *■ B (S> D
g ®idD a f«da

—  ----- ► Ca <S> D  >- 0; hence 0 --- ► A <S> D --------- B ®  D
g®idD
-------- ► C (3 D  y 0 is exact since, by Prop. 0.18, the
direct limit of exact sequences is exact. q.e.d.

Proposition 0.22. Let FP be one of (g>P , SP, or Ap .
Then FP commutes with direct limits in the following 
obvious way: If M = lim ̂ (Ma ' Ya)/ then FP (M) = lim ̂
(FP (Ma) , FP (Ya) ) .

Proof: F o r @ P , we use induction and the fact that
tensor product commutes with direct limits (Prop. 0.20); 
for Sp, [Bbki: Prop. 8 , p. 503]; for Ap , [Bbki : Prop. 9, 
p. 515].

Proposition 0.23. Every module is the direct limit of 
a family of finitely presented modules.

Proof: [Lazard: Appendice, p. 125]
f CfProposition 0.24. Suppose E: 0 --- >- A---- y B —2— y c --- ►

0 is exact. Suppose lim (C , <|>a) = C. Let Ea:Q --- ► Af ------> a a
ct ga th >• B  y C  ► 0 be the a—  pullback sequencea a

relative to 4>a :C  •+ C. Then {E } is a directed familyct ot
of exact sequences and E = lim v {E„,}.1 —   y 0t

Proof: Suppose B > a. Use the pullback property of
Q  CtBg relative to g and $ to define uniquely $^:Ba ----> B^

such that the following diagram is commutative with exact 

rows :
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O  v a — — -v b ~ga C --- ► Oa a

O

$a a

-V A -> B, -*■ c.

-a— , c

The above diagram induces a commutative diagram!

lim fa lim g
-> lim B ----- y a

$

a

C o

(Since {4>a:B  B} has the property that for 3 > aa
$a = we have a homomorphism $ induced from lim . B_p ot
to B.) $ must be an isomorphism by the "5 Lemma".



CHAPTER I. RANK AND EXACT SEQUENCES

Let F be one of S, or A; Let G be one of (&, S, or A.
The aim of this chapter is to prove the following two 
theorems:

f. g.i iTheorem 1. Suppose, for 1 <_ 1 £ n, A^  y ---- ►
C^  y 0 is an exact sequence. Then G-rank (B-^® ... ® B n)
£ G-rank ((A^GD C^)® ... ®(An ©  cn0  • each f^ is a pure
embedding, then G-rank (B^®. . Bn) = G-rank ((A-^© Ĉ )(S)--. 

<B>- • • <X>(An ©  Cn))
f CTTheorem _2. Suppose A --- ► B — — > C --- >■ 0 is exact.

Then G-rank (FP (B)) £ G-rank (f p (A©C)). If f is a pure 
embedding, then G-rank (f p (B)) = G-rank (FP (A©C)).

We begin by considering the kernel of the homomorphism
Fp (g) :FP (B)  y FP (C) .

f Cl f *Suppose A  y B — 2— y C  y 0 is exact and A  y

B —2 y C  y 0 is exact; then, by [Bbki: Prop. 6 , p. 252]
(f®id , ) + (idJBf) ~ ,

(AO B')© (3® A') --------------- ------ ► B ®  B' g -g - > C ®> C'
 y 0 is exact.

Applying this p-1 times, we have: If A — — y B —2— y C
 * 0 is exact, then 0  y ker<®P g n— -us^.°-— v ® pb
— --- ► ® p C —  — y 0 is exact where ker & Pg = < {b^® .. . g> b^ |
all b^ € B, some bj<£:F(A)}>.

Now notice that F = S or A, we have the following
commutative diagram of exact sequences, where Tg and Tc
are the canonical homomorphisms:

25
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&Pg restr.
ker T ---- >■ ker T_,

13 L ,

incl. incl.
T U T, p incl. ®  g rtjsPn-> ker® g -► &  B — — —  ---------- >■ C?r C

Tn restricted 
13 ’B

> ker Fp (g) inc1-'-^ FP (B) F (9} ->FP {C)I I
0

0

From the fact that g is onto and by the way FP (X) is 
defined for X an R-module and F either S or A, we get that
the map ® pg restricted: ker TB -*■ ker T^ is onto. A
diagram chase will now yield the fact that T„ restricted:

13

k e r ® Pg --- ► ker FP (g) is onto.
Summarizing, we have:

f CTLemma 1.1. Suppose A --- > B -2— >- c --- ► 0 is exact.
Then ker FP (g) = *. . . * |b^ <£• B, some b^ €- f (A) } 7
If F = S or A, ker FP (g) = ^{f(a) * b- *...* b | as A;z P
b 2 ,..., bp e B}>

Proposition 1.2a. Let F be S or A . Suppose A — — »- B 
—2— ► c --- »- 0 is exact. Then there exist exact sequences
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ipn
eQ: FP (A)  — -*• FP (B)  ► NQ --- »■ 0

-1FP (A)& C --> Nq ----- *• N1  ► 0

• -1 Vek : FP (A) <S)FK (C) — £— ► Nk - 1  --- ► Nk ---+ 0

e ’ : A ®  FP <C) P- --> N ~ ► FP (C)  ► 0.p—1 p~^

If, in addition, f is a pure embedding, then for, 0 <_

k £ p-1 / ^  is a pure embedding.
Proof: We first show the existence of the exact

sequences ek for 0 £ k < p-1 .
Let i|j = 0Q = Fp (f) :FP (A) -- *■ FP (B) . For 1 < k < p-1,

let 0. :Fp_k(A) <g> Fk (B) --► FP (B) be the canonicalic
homomorphism induced by f and idg (i.e. (a^ *...* ap_]c)®
(b1 *...* b k ) l ► f(ax) *...* f(a k) * b x *...* bk ,
where a^ e- a , bj e B) . For 0 _< k £ p-1/ let Nk = cok 0k>
Note that N , = cok 0 , = FP (B)/im (A® Fp _ 1  (B) ) = FP (C)

X X

by Lemma 1.1.

For 1 £ k £ p-1, consider the following commutative 
diagram where the homomorphisms between the modules are 
the canonical homomorphisms induced by f and idfi:

® p-k+lA®(g>k-lB  A ^ pp-k+l(A) (g?pk-l(B)

DF,k k- 1

FP k (A) (g) Fk (B) FP (B)
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(We obtain n by composition of the following chain of 
canonical homomorphisms:

® P'k+l A ® ® k-1 B --- ► A (£> (A® ® 1*-1 B)

<&P~k idA ®  (f ®  ® k _ 1  id0)
*■ ® P k A (£> (B <g> k- 1 B)

-*®P"k A (g)®kB --- »■ FP k (A) $> Fk (B) )

The diagram Dp k induces a commutative diagram Dp k 
with exact rows and columns obtained by tacking on cokernels 
as follows:

<g)P k+1A (S>. ® k”1B —  ► FP k+1 (A)«Fk 1 (B)  ►

n

DF,k

£k :FP“k (A)(3? Fk (C)

k- 1

FP k (A)<g)Fk (B)   ► FP (B)

Nk- 1

0  ► 0

- Nk —  °

Define i|̂k to be the homomorphism induced on cokernels as 
shown. (That is cok Qk_^ and is cok 0^ follows by

D ™ lc _____ Vdefinition; that F (A) F (C) is canonically cok n follows 

from Lemma 1.1 and the fact that tensor product is right 

exact.)
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Thus we have shown the existence of the exact 
sequences for 0 £ k £ p-1 .

Now we will show that, if f is a pure embedding, then, 
for 0 £ k £ p-1, ^k is a pure embedding. We will begin 
with a lemma about split exact sequences.

Lemma 1. 2a. 1. If E: 0 --- >- A _̂> B p? _>> C --- »- 0
7f 6

splits, then, for 0 k <_ p-1 , ^k is a split embedding. 
Proof; k = 0. Let n be a left-hand splitting map

For E; then ipQ = FP (f) :FP (A) --- ► FP (B) splits by FP (tt).
Suppose k is fixed, 1 <_ k £ p-1. Let 6 be a fixed 

right-hand splitting map for E. Write B = f(A) 5(C),
the direct sum being internal. Identifying A with f(A) 
and C with 6 (C), we notice that the projection homomorphism 
rk of FP (B) onto Fp ^(A)(g) F^(C) obtained from the iso
morphism FP (B) = FP (A)(J> . . . <©[ (FP_k(A) <S> Fk (C) ]($> ...©FP (C)
(Proposition 0.15) has the following two properties: 

i) rk [im ek_1] = 0

ii) rk (f(a1) *...* f(a k) * S(c±) *...* 6 (ck)') =
(a1 *...* ap_k) <g> (Cĵ  *...* ck), where ai e a ,
c . e C.D

i) tells us that rk factors through cok 9k_-̂  = Nk_^
/\uniquely; let Tk be the homomorphism induced by Tk from

Nk- 1 to FP~k ^ ) ®  Fk(c>*
Consider, for ai e- A, c . e C, Tk o ^  ((a1 *...* ap_k)

<2>(c1 *...* ck)) = Tk (f(ax) *...* f(ap_k) * *...* bR)

where b^ B and g(b^) = c^, g(b2  ̂ ~ c2 '**•' 9(bk) = ck*
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Since g(bj) = for 1 <_ j £ k and 6 is a splitting homo
morphism for g, then bp = f (a£) + 6 (c^ , b 2 = f(a2) + 6 (c2)
, ..., bk = f(a£) + <$(ck) where a\ G  A. Therefore, f(a^)

f(a k) * b± bR =[f(a1) *...* f(a k) * 6 (c1)
*...* 6 (ck)] + X where X & im 9^.^• BY i)r T(X) = 0, and 
rk Cf(a;L) *...* f(ap_k) * b1 bk) = Tk (£(ai)

f(ap-k} * 6 (cl) **••* 6 (ck}) = (al ***** ap-k)® (cl *■*•* ck}
by ii) . We have just shown that r'k ° ^ k (( a 1 *•••* ap_k)
®  (c^ ck)) = (ap ap„k) &  (c  ̂ *...* ck)• Since
elements of the form (a^ *...* ap_k) ®  (c^ *...* ck) 
generate FP_k(A)<S) Fk (C), Tkoifjk = idpP-k(A)(g>Fk / as 
desired. q.e.d.

f CTNow suppose that E:0 --- >- A  y B —^— y C  y 0 is
Ctpure exact. Let (Ca, <J>g) be a directed family of finitely

presented modules whose direct limit is C. (Existence of
such a family is given by Prop. 0.23.) For each a, let 

f 9Ea:0  y A — -— y B — -— y C  y 0 be the (right) pullbacka a , a 3<P
sequence relative to C — -— y C. Ea splits since C is ^ a c a
finitely presented and the pullback of a pure exact 
sequence is pure exact [Remark following Prop. 0.16 and 
Prop. 0.17].

\pQ = Fp (f) is the direct limit of (Fp (fa) ) since Fp
commutes with direct limit (by Prop. 0.22) . Each F M f  )P.
splits by Lemma 1.2a.l; hence is pure exact since it is the 

direct limit of split embeddings (Prop. 0.21).
For 1 <_ k £ p-1, consider the commutative diagram, k 

fixed:
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<s> a

DaF,k

FP“k+l(A)(g) Fk 1 (B )a

a

FP k (A) (2>Fk (B )a
a,

ak- 1

->• FP (B ) a

where, as before, the homomorphisms between the modules
are the canonical homomorphisms induced by fn and idB .a

06Since E is the direct limit of {E } [Prop. 0.24] and since
a

(g) and Fn commute with direct limit, then Dp ^ is the limit

° f f D F , k >

Let Dp ^ be, as before, the induced commutative diagram
with exact rows and columns obtained by tacking on cokernels

>ctto DF,k*

(g)P“k+1A(g>®k"1Ba

na

FP k (A) ® F k (Ba)

FP k (A)<S)Fk (Ca)

a

a.

a,

-> FP k+1 (A)(g) Fk 1 (Ba)

ak- 1

FP (B ) a

ak- 1

-*■ 0  »■ 0

- N —  0 
k

ot,

06Then, by Prop. 0.19, Dp ^ is the direct limit of {Dp ^};
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in particular, e^:FP ^(A)(S> F^(C) — —— >■ N]c_^  y  y 0
is the direct limit of {£.a :FP ^(A)(^)Fk (C ) ----- »- Not otĵ ^

a  ct >■ N --- ► 0}; but each e, splits since E splits
ak

(by Lemma 1.2a.1); hence is the direct limit of a family 
of split (hence pure) exact sequences; hence, by Prop. 0.21, 

is a pure exact (i.e. is a pure embedding) . q.e.d.
f CTLet A  y B —2— ► c  y 0 be exact. Looking at

Proposition 1.2a, we notice that for F = S or A, FP (A©C) 
is isomorphic (by Prop. 0.15) to the direct sum of the left- 
hand terms of the sequences and the right hand term,
FP (C) , of ep_i* If FP ( A © C )  = 0, then all its direct 
summands are 0, yielding FP (B) ^  Ng = ^  Np_ 2 ~
FP (C) = 0.

We have just shown:
Corollary 1.3a. Let F be either S or A. Let A, B, and

C be R-modules. If there exists an exact sequence A — — ► B
—2— y c  ► 0, then F-rank (B) _< F-rank ( A ©  C) .

Looking again at Proposition 1.2a, suppose that 0  ► A
— — y B — — »■ C  >■ 0 is pure exact and that FP (B) = 0. Then
0 = Nq = =...= Np_ 2 = F^(c) because homomorphic images of
the 0 module are the 0 module. For 0 £ k _< p-1, the left- 
hand term of is also 0 since ^  is a (pure) embedding.
But now FP ( A ©  C) = 0  because it is the direct sum of 
terms all of which are 0. Along with Corollary 1.3a, this 

argument has proved:
Corollary 1.4a. Let F be either S or A. Let A, B, and

C be R-modules. If there exists a pure exact sequence
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0 --- ► A — — >- B —2— >- C --- ► 0, then F-rank (B) = F-rank
(A ©  C) .

We now establish, directly, a result for <8)-rank 
analogous to Corollary 1.3a.

Corollary 1.3b. Suppose A, B, and C are R-modules
f CTand there exists an exact sequence A  B —2— > c --- *■ 0.

Then <S)-rank (B) <_ ®-rank {A ©  C) .
Proof: It suffices to show that, whenever (5$P(A ©  C) =

0, then (^B = 0. Suppose (A ®  C) = 0 and b.® ... ® b P
is a fundamental tensor in^^B. since ® PC = 0, b.« ...gb ^x p
ker and we can, by Lemma 1.1, write b.. <£>... ® b  as ai P
sum of fundamental tensors of the form b ' C5> ... ®bJ . ®  f(a!)1 l-l v i
(g)b|+i ® .. . ®bp, b£ e B, a^ e A. But A &  & p ^C is also 0;
thus we have, from Lemma 1.1 and the fact that tensor 
product is right exact, that bĵ  &  . . . (3)b|_^ &  f(a|)<&
b|+^ &  ...®bp can be written as a sum of fundamental 
tensors of the form b£g> . .. ® bj _ 1 f (a? ) ®  bj'+ 1 <8 ..

b£_i <2>f(a£) ®  b£+  ̂ @. ..^>bp , where either j or k = i

and bjl e- B, aj , a£ <=- A. Continuing in this manner, we
obtain b.® . . . <2 >b as a sum of fundamental tensors of theP
form f(a,)® . ..<£)f(a ) which are all 0 since ®^A = 0 ;P
therefore b.® . . . ®b = 0 , implying ®Pb = 0 . q.e.d.■** P

Next we prove a proposition somewhat similar to 
Proposition 1.2a;

f aProposition 1. 2b. Suppose 0 --- ► A---- >- B —2— ► c ----*■ 0
is pure exact. Then, for 0 _< k £ p-1/ there exist pure
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embeddings ip̂  as follows:

® PA —

® P_1A <2> C — <g>PB/K.
• u

® P“kA®(X)kC ---— --- >18PB/Kk_1

A (S>®P-1C ------- ►gpB/K _P Z

where c C. . . c. Kp_ 2 are certain submodules of CX̂ B.

Proof: Define = ®0 = Define, for 1 £ k £ p-1/
0k : ®   ► (g^B to be the canonical homomorphism
induced by f and idg [i.e. 0 ((a-^® . . . ® ap_^) &  (b^ <£). . . ®b^)) 

= f(a^)® . . . <&£ (ap_k) ®  ®  . . . ®  b^]. For 0 £ t £ p-2,
define K as the submodule of ® PB generated by fundamental 
tensors of the form b^® . . . ®bp where at least p- 1  of the 
b .'s are in f(A).l

For 1 £ k £ p-1, consider the following commutative 
diagram where 4^  is induced by 0^:
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D®,k

o-k k eko(® P k i d , ®  inc.)
® P A ®  (ker® g) —  --------- ---------

id ®  inclusion

(gfkA ®  ® kB

$f"kidA ®  ® kg
(gf^A ®  ® kC

e,

Kk- 1  

inclusion

-> (%Pb

® PB/Kk _ 1

(The left hand column is exact since tensor product is
right exact; the right hand column is defined to be exact.

D"■Jc ]cAny element of (g)F a &(ker <£) g) can be written as a sum of 
fundamental tensors of the form (a1®  .. . ®  a^_k) (g) (b^® ...<£) 
bf_i <2) f(a)® b^+  ̂®  .. . (3bk) . The image of a fundamental 
tensor of this form in ® PB under 0 .̂° (®P k id̂ cg) inclusion)

is of the form f (â ) ®  . . . <®f (ap_k^ ®  • • ®^i-i ®  ^
<$) bf+i <£> ...<S»bk which is in Kk_^ since at least p-k+ 1 of 
the entries are in f(A); hence the top horizontal homo
morphism exists. Let be the homomorphism induced on the
cokernels of the vertical homomorphisms.)

f gLemma 1.2b.l. If E:0 --- A — — »■ B ■ •>> C  > 0--------------- K - ^

splits then is a split embedding for 0 £ k £ p-1 .
Proof: (The proof is analogous to the proof of
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Lemma 1. 2a. 1) k = 0. Let tt be a left hand splitting 
homomorphism for E. Then = ®^f splits b y ® p -rr.

Let k be fixed, 1 £ k <_ p-1. Let 5 be a fixed right- 
hand splitting map for E. Write B = f(A) 6 (C), the direct
sum being internal. Identifying A with f(A) and C with 6 (C), 
we note that the projection homomorphism of onto

kA <&) ® ^ C  has the following two properties:

*> rk (Kk-i» =  0
ii) rk (f (a1) ® . . . <®f (ap_k) ®  6 (c1) <& . . . ® 6  (ck)) =

(a1®  . . . <& ap_k) ®  (cx®  . .. ® c k) where a.̂ £ a,
c . e C.D

i) tells us that I\ factors through ®  PB/K, , ; let ̂  bek k- 1 k
the homomorphism induced by Tk from (gPB/Kj^ onto ( g P ^ A ® ® ^  

If we could show, for a^ e A, Cj 6  c, ((a^® ...(E)
ap_k) ®  (cx® . . . ®ck)) = ( a ^  . . . <2>ap_k) <2> (^  cg> . . . ®ck) ,
then rk°ipk would be 1 (*(gP“kA<jp since elements of the form
(a^® ... ®  ap_k) ® (p± ®  ... 0  ĉ ) generate (gP kA & ® kC.

fk°^k 0 ai® • • • ® ap-k* ®  ĉi ®  • • • ® ck0  = rkCf (aî  ®  ... <s 
f(a _iJ ®  b, ®  ...®  b,) where, for 1 < j < k, b . ^ B  and g(b.)

p  Js. _L k  —  —- ]  3

= cj. Since 6 is a splitting homomorphism for g, b^ =
f(a^) + 6 (ĉ ) bk = f(ak) + where a( €■ A.
Therefore f(a1)® . . . <g> f (ap_k) ®  bx <2> . ..<S)bk = /f(a1)&) . . .®

f (ap_k)® 6 (ci)^ • • *<&6 (ck)] + x where X £ Kk_i* Byi) rk (x)
= 0; therefore, rk (f (a^) ®  . . . & f (ap_k) <3> b^ <2D . . . ® b ^
= rk (f (ax) ®  . . . ® f  (ap_k) ®  6 (c^ ®  -- © 6  (ck)) = (a1 (g> ...(g)

ap_k) ®  (cx®  ...<Sck) by ii) . Therefore r̂ .°̂ k ("(a^® . . .© 
ap_k) ®  (cx®  ...®ck)) = (a . . .<3> ap_k) &  (Cĵ  ®  . ..<g>ck)
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, /\and T-oiJ;, = id , . . q.e.d.k '•'k ®p-kA g, ^jkc
OtLet (C ,(p0) be a family of finitely-presented modules

a P £
whose direct limit is C. For each a, let Ea:0 --- ► A — -— ►

9r_ -> C --- > 0 be the pullback sequence of E:0 --- ► A
A01<|L . ^ r*a

B a
a a

-V C -*■ 0 relative to Ca C. Each E splits
because f is a pure embedding and is finitely presented,

For k = 0, ipQ= f :gPA --- ► ®Pb is a pure embedding
(by Prop. 0.21) since it is the direct limit of split
embeddings ®pf :^Paa ~ a

For 1 < k < p-1, k fixed, consider the commutative
diagram

D.a®ik

® p“kA <S> ker

(g)p-kA ®  ® kBa
a,

® p_ki<aA ® ® kga

® p kA ® ® kco ai

0

I
K
ak-l 

inclusion

g^B a

r̂sr B /K a ak- 1

where, 6 is the canonical homomorphism induced by f
Ct, ™k

and idn , K is the submodule of ®  B generated by
Jl5 Ct, >, Uta k- 1

fundamental tensors of the form b-^O ...® b^ where
b. B and at least p-k+1 of the b.'s are in l a i
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f (A) , and, as before, ip is the homomorphism induced
k

on cokernels. (The same argument that showed the existence
of D . shows the existence of D̂ , , .)®, k up, k

Since tensor product commutes with direct limits and 
all homomorphisms are canonical, ^ is the direct limit of 
the family In particular ip̂  is the direct limit of
the family (ip ) ; hence ip, is a pure embedding (by Prop.Ci-, JC ■■■k
0 .2 1 ) since each ip is a split (hence pure) embedding

ak
(by Lemma 1.2b.1). q.e.d.

In the presence of Prop. 1.2b, suppose 0  >- A — — ►
B —2— v c --- ► 0 is pure exact and <8pB = 0. Then ® PC = 0
because ® Pg is subjective. Since ® PB is 0, so a re@PB/Kg,
..., ® PB/Kp _ 2 all 0. Since for 0 £ k £ p-1, ^  is a pure 
embedding, hence an embedding, $Pa, ^A <2> C, ..., A ®

p , ,
are all 0. B ut®P (A©C) = (P) [®P A ®  ®  C] = 0.

k= 0
Hence, ®-rank ( A ©  C) £(g)-rank (B) . Recalling Corollary 
1 .3b., we have shown:

Corollary 1.4b. Suppose A, B, and C are R-modules;
suppose there exists a pure exact sequence 0 --- *■ A  *■ B
 v c  y 0. Then®-rank (B) = ®-rank (A(J)C).
Combining Corollaries 1.3a, 1.3b, 1.4a and 1.4b, we obtain:

Corollary 1.5. Let G be one of S, A, or®; let A, B,
and C be R-modules. If there exists an exact sequence A --- *■

B  C --- ► 0, then G-rank (B) £ G-rank (A ©  C) . If there
exists a pure exact sequence 0 --- >- A  > B  y C  ► 0,
then G-rank (B) = G-rank (A ©  C).
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Immediately, we have:
Lemma 1.6. Direct Sum Replacement Lemma. Let G be

_ Vi Vi *one of (5 ?, S or A. Suppose M --- >- M' ---- >- M"  ► 0 is
exact and N is any R-module. Then G-rank (N ©M') £ G-rank 
(N ©  M ®  M"). If h is a pure embedding, then G-rank
(N$ M') = G-rank (N ©  M ©  M") .

idM©h n GF) h 'Proof: N ©  M ---  >- N ©  M ' ■ - > M"  >- 0 is
exact. Hence, by Corollary 1.5, G-rank (N (±9 M 1) < G-rank
((N ©  M) 0  M"). If h is a pure embedding, so is idN ©  h
and, again by Corollary 1.5, = s holds.

Lemma 1.7. Tensor Product Replacement Lemma. Let G
Vi Vi *be any one of S, or A. Suppose M  >■ M'  ► M"  >-

0 is exact and N is any R-module. Then G-rank (N ®  M 1) £
G-rank (n ®  (M ©  M")') . If h is a pure embedding, then
G-rank (N &  M 1) = G-rank (n ®  (M © M" i) .

id ® h h '
Proof : N ®  M    ► N (g) M ' ---  ► N ®  M "  > 0

is also exact; hence, by Corollary 1.5, G-rank (N ®  M') £
G-rank ( (N <8? M) ©  (N <2> M " )) but (N ®  M) ©  (N ®  M ") =
N ®  ( M ©  M") . If h is a pure embedding, then idN CEP h is a
pure embedding, and again by Corollary 1.5, = s holds.

Theorem 1 now follows from Lemma 1.7 by iteration.
Theorem 1. Let G be one of (S), S, or A. Suppose, for

f . g.i 11 £ 1 £ n, ---- >- ---- >■ C ^  >■ 0 is an exact sequence.
Then G-rank (B^& . . . (£> Bn) £ G-rank ((A^ ©  C^) (g) . . . &(&n ©  cn^  *
If each f. is a pure embedding, then = s holds.

1 f . g.1 1Proof: The exactness of A. ---- ► B.  v C.  * 0 for----- 1 1 1

1 £ i £ n and Lemma 1.7 imply:
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G-rank (B.^ . . . <g> Bn) < G-rank ((A^ ©  C^) <$£> B2 <g) . . . ®  B )
< G-rank (̂ (Â  ©  C.^ <S> (A2 <J> C2 )<g>

B 3®  ... ® B nO

< G-rank ((Ax©  C1 )<S> - - - ®<An ©  CnO
If each is a pure embedding, then Lemma 1.7 says

that we can replace by " = " in each step above, q.e.d.
Theorem 2. Let F be one of S, or A; let G be one

of &, S, or A. Suppose A — — >- B -2— >- c --- ► 0 is exact.
Then G-rank (FP (B)) £ G-rank (f p (A© C)) . If f is a pure 
embedding, then = s holds.

Proof: F =8). This case is simply a special case of
Theorem 1.

F = S or A. We write the exact sequences of Proposition 
1.2a for FP (B):

$
eQ :FP (A)  2— * FP (B) --- ► NQ  ► 0
e1 :FP (A) ®  C  =— y NQ  s-  ► 0

ek :FP_k(A)® Fk (C)   ̂—  > Nk _ 1 --- ► NR  ► 0

e , :A ®  FP_1 (C) — P-~- -* N ,  ► FP (C) --- ► 0.p x p z

Then G-rank (FP (B) ) £ G-rank (FP (A)© NQ) by Cor. 1.5
< G-rank (fp (A) ©  [Fp-1 (A) ®  C] ©  by

Lemma 1 .6
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< G-rank (FP (A)@ ... © [F2 (A)®FP"2 (C) ] &  N )P *
by Lemma 1 .6

< G-rank (fP (A){£)... ©  [A® FP _ 1  (C) ] © F P (C))
by Lemma 1 .6

But FP (A)@? . . . ©[FP-k(A)(g> Fk (C) ] ©  . . . ©FP (C) S  FP (A© C)
If, in addition, f is a pure embedding, then, for 

0 < k £ p-1, is a pure embedding by Prop. 1.2a. 
Corollary 1.5 and Lemma 1.6 now enable us to replace 
by "=" at each step. q.e.d.



CHAPTER II. APPLICATIONS OF THEOREMS 1 AND 2

Definition. Suppose that M is an R-module having exterior
rank m. If there exists a family ^ ^ ^ = 0  submodules of
M such that 0 = Cn C C ,  C . . . C . C  = M and, for 1 < i < m,0 — 1 — — m — —
A-rank (CL/C^_^) = then we will call M an exteriorly 
solvable module or say that M admits an exterior composition

series {Ci}Jl=0-
Note: Theorem 2_ gives us the fact that A-rank (C^ =

i, Vi 30 £ i £ m; hence each submodule C^, 1 £ i £ m, is 
exteriorly solvable.

[Verification of Note. Clearly if A-rank C^ = i, then 
the exterior composition series for M contains an exterior 
composition series for C^; therefore, we need only see that 
A-rank (Ĉ ) = i.

Claim. A-rank (C.) < i.------ l —

Proof by induction. Clearly A-rank(CQ) = 0. For i £ 1,
suppose A-rank £ i-1. We have an exact sequence
0 --- >■ C. , --- *■ C.  > C./C. .  * 0 where C./C. . hasl-l l l l-l i' l-l
A-rank 1. Thus by Theorem 2, A-rank (Ĉ ) £ A-rank +
A-rank (C./C. ,) < i-1+1 = i.i l-l —

Claim. A- rank (Ĉ ) £ i. Proof by reverse induction.
By definition A-rank (C ) = m. For i £ m-1, suppose A-rank
C. , . > i+1. Consider 0 --- ► C.  »- C.  »■ C. ,,/C. -----0l+l —  l l+l l+l l
A-rank (C.,.) < A-rank (C.) + A-rank (C.,,/C.) by Theorem 2. l+l — l l+l l 2

We have i+1 £ A-rank (Ĉ ) + 1 or A-rank (Ĉ ) £ i as 
desired.]

42
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Obviously, finitely-generated free modules are 
exteriorly solvable; therefore, by Nakayama's lemma, 
finitely generated modules over a quasi-local ring are 
exteriorly solvable. One might ask what conditions must 
be put on a ring R to guarantee that all modules having 
finite exterior rank are exteriorly solvable. The following 
example shows that even finitely-generated projectives over 
a non-local Noetherian ring need not be exteriorly solvable.

Example; Suppose R is a Noetherian domain having the 
following properties: [Samuel; Props. 9 and 10, p. 164-165.]

a) Finitely generated rank 1 projectives are free.
b) There exists a finitely generated rank 2 projective P 

that is not free. Then P is not exteriorly solvable.
Verification: By contradiction. Suppose 0 C C  P is an

exterior composition series for P. Consider the exact sequence
of finitely generated modules 0 --- »-  ► P  > P/C^  >- 0.
Let Q be any maximal ideal of R. 0  y C]_q  y R q  ©  Rq ---»-
( P / C ,  y 0 is exact where C, and (P/C,)_ have exterior-L y J-q J- Q
rank 1; hence both C. and (P/C.)n are principal. C.

Q y
then is a finitely generated torsion free module (over a 
domain) that is locally principal; hence C-̂  is projective; 
hence C^ is free by a). Tensoring with the quotient field 
of R^ we see that P/C^ cannot be a torsion module; but P/C^ 
is locally principal, hence locally free; hence P/C^ is 
projective. Again by a), P/C^ is free. Thus we have
0 --- >- R  ► P  y R  ► 0 is exact, implying P — R 6E>R*
contradicting b).
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We will prove that, if M is an exteriorly solvable 
R-module, then A-rank (M®N) £ A-rank (M) • A-rank (N) (where
N is any R-module) and A-rank (Â *M) £ (A-rank (M) ̂ y  p :> i.

P
We pause for a lemma.
Lemma 2.1. If A-rank (A) = 1 and A-rank (B) < °° then 

A-rank (A<S) B) £ A-rank (B) .
__ . -I

Proof. Let n = A-rank (B). Since A B = 0, elements
of the form (a. ®  b,)®. . . <£>(a . <g)b .) ®  . . . ®(a .®b.)(g). . .(SXa , -&>b̂  . ) x x  x x  x n+x n+x

1 2generate (g) A®B. Since A A = 0 we can replace this element by 
a linear combination of elements of the form ( a ^  b^)® . . . ®(a^® b^)

(5>. . . ®(a! <3»b.)® . .. &(a , , ®b ,,) . But any element of thei i n+x n+x
last form is in the kernel of the map (3)n+  ̂(A® B) -->-An+^(A®B)

given by ( a ^ b ^ ©  . . . (an+]®bn+x) 1---* (aj ®  A(a 2 ® b 2)
n + 2A* • • A (a ̂  b )̂ ; hence A A ®  B = 0. q.e.d.

Proposition 2.2. If M is an exteriorly solvable 
R-module and N is an R-module, then A-rank (M<S>N) £
A-rank (M)•A-rank (N) .

Proof: If A-rank N = °°, then there is nothing to prove;
therefore suppose A-rank (N)< °°. We will induct on m =
A-rank (M) . If m = 0, then M = 0 and M ® N  =0. If m = 1,
the proof is just Lemma 2.1. If m > 1 consider the exact

» _ inclusion /r, „sequence 0 --- »■ Cm_^  *■ M  >-  * 0

(obtained from an exterior composition series,{C^}) where
C is exteriorly solvable of exterior rank m-1 m- 1

by the Note. We have Cm_^®N  y M(®N --- *■ M/Cm_-̂(8)N  *■ 0
is exact. Thus by Theorem 2, A-rank (M@N) £
A-rank [ (Cm _1®) N)©  (M/Cm_1®  N)] £ (m-1)A-rank (N) + A-rank (N)
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by Observation ii) of the Introduction and induction on m.
But (m-1)A-rank(N) + A-rank(N) = m-A-rank(N)

= A-rank(M)•A-rank(N). q.e.d.
Proposition 2.3. If M is an exteriorly solvable

R-module, then, for every p _> 2, A-rank (APM) £ ^A-rank (M)^^
P

Proof: Again we will induct on m = A-rank (M). If
m = 0, then M = 0 and APM =0. If m = 1, then APM = 0 and
we are done. Suppose now that ra > 1. Consider the exact
sequence (obtained from an exterior composition series, {C^}
for M) 0 -- > C , — fe.c~*~us^on— >- m --- ► M/C , --- *■ 0 wherem- 1 m — 1

Cm_^ has exterior rank m - 1 and is also exteriorly solvable.
We have,

A-rank(APM) < A-rank(AP [(C ,) ©  (M/C -i) ]) by Theorem 2— m- 1 m-l   —
= A-rank(h?C -,(£?( AP ^C .<E> M/C .)) by Prop.m - 1 m - 1 m - 1 '  —

0.15

< A-rank (APC ,) + A-rank (AP_1C J M / C  ,)— m- 1 m- 1 m- 1

by Observation ii) of the Introduction

< (m "*■) + (m by induction and Lemma 2.1.— P p- 1  J ---------
But (m + (m ]■) = (m) and we are done. q.e.d.p p- 1 p
The following result is due to L. Fuchs:
Theorem (Fuchs: Theorem 32.3, p. 137). Suppose V is a 

discrete valuation ring (DVR) having quotient field Q and 
suppose that M is a V-module. Then there exists a pure
exact sequence 0 --- >- K — — > M --- >- D --- >■ 0 where K is a
direct sum of cyclic V-modules and D is a direct sum of 
copies of Q and Q/V. We say that <J> embeds K as a basic 
submodule of M.
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Theorem 2_ tells us that A-rank (M) = A-rank (K@D) and
A-rank (A^M) = A-rank (A^(K©D)). Theorem 1 (or Lemma 1.7)
tells us that A-rank (M&N) = A-rank ("(K@D)®n).

We are now ready to prove the following:
Proposition 2.4. Suppose V is a DVR and M and N are

V-modules. Then A-rank (M&N) <_ A-rank (M) • A-rank (N)
and A-rank (A^M) £ ran^(M)j p :> 2.P

Proof: If A-rank (M) = °°, there is nothing to prove,
so suppose A-rank (M) <

Let 0 --- >- K — —̂ v M  y D ---->■ 0 be exact where <p
embeds K as a basic submodule of M and A-rank (M) <
The comments following Fuch's theorem along with Propositions
2 . 2 and 2 .3 will yield a proof providing that we can show
K © D  to be exteriorly solvable.

Verification that K ©  D is exteriorly solvable if
A-rank (M) < °°. A-rank (M) < 00 and A-rank (M) = A-rank (K© D)
together imply that A-rank (K®D) < °°. But we see that
A-rank (K@D)< °° if and only if the number of cyclic direct
summands in K is finite and the number of direct summands
of Q in D is finite. Write

f t q
K ©  D = ( © V ) 0 ( ©  T, ) ©  ( ©  £> )(£) (@Q/V) where f, t, and q 

a=l a b=l D c=l 6

are integers >0, 6 is some cardinal number, V = V for — a

1 < a < f, T^ is a cyclic torsion module for 1 _< b £ t, and 
Qc = Q for 1 <_ c <_ q.

We consider three cases to write an exterior composition 

series {CL} for K©D:
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Case 1. (K©D is free) t = q = 6 = 0. Then
A-rank (K©D) = f. Let Cq = 0 and, for 1 <_ i £ f, let 

i

Case 2. t = q = 0, 5 >0. Then A-rank (K©D) = f + 1.
i

Let Cn = 0 and, for 1 < i < f, let C. = ©  V . Let Cfxl =- u —  —  i i d  r + 1r a=l
® V  ©(©Q/V) (=K©D).
a=l <5

Case 3̂. Now suppose max {t,q} >_ 1. Let r = max {t,q}. 
Then A-rank (K@ D) = f + r. If t > q, define Qg+  ̂= Qg+ 2 

=...= Q = 0. If t < q, define Tfc+1 = Tt + 2  =•••= Tr = 0.
Let Cn = 0 and for 1 < i < f let C. = ®  V . For f < i <u — — i   i af i-f a *~1 i-f
f+r, let C± = ( ©  Va) 0 ( ^  Q/V)© ( @  Tb) ©( ©  Qc) .

a=l b=l o—l
Thus we have shown that K © D  is exteriorly solvable.

q.e.d.
Since A localizes well, Prop. 2.4 holds with the 

hypothesis "V is a DVR" replaced by the hypothesis "for 
every maximal ideal Q of V, is either a field of a DVR". 
Further slight generalizations are immediate but they seem 
pointless.



CHAPTER III. NOETHERIAN RINGS OF FINITE KRULL DIMENSION

Let R be a Noetherian ring of finite Krull dimension d; 
let M and N be R-modules. We will:

a) bound A-rank (M®N) by a number that is a function 
of A-rank (M), A-rank (N), and d;

b) bound A-rank (A^M) by a number that is a function
of A-rank (M), p, and d; and

c) bound A-rank (M) by a number that is a function
of A-rank (A^M), p, and d.

Unfortunately, the bounds obtained in a) and b) are 
probably excessive; and, for p odd, Chapter IV gives, for 
an arbitrary ring R, a bound for A-rank (M), depending only 
on A-rank (A^M) and p, that is usually better than the 
bound obtained in c).

Chapter III is independent of the other chapters, the
techniques being similar to techniques found in [Wiegand].

We begin with a trivial lemma:
Lemma. Suppose A and B are R-modules and B = Ann(a)B

for every a <£ A. Then A ®  B = 0.R
Proof: Consider a <5D b Q A&B. b = Er.b. where each

i 1 1
r. Ann(a) . a ® b  = a®£r.b^ = E(r.a®b.) = Z(0®b.) = 0.

i i i
Since elements of the form a ® b  generate A®B, A ® B  is 0.
q.e.d.

Proposition 3.1. Suppose R is a Noetherian ring of 
finite Krull dimension £ d. Suppose M and N are R-modules

48
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with A-rank (M) £ m and A-rank (N) £ n. Then A-rank (M$)N)
£ (d+1 ) (mn+1 ) - 1 .

Proof; By induction on d. Suppose d = 0. We must 
mn+ 1

show that A (M® N) =0. We have, for any prime P,
R R

mn+ 1 mn+ 1 mn+ 1
[Ar lp = ARp (Mg>N)p = Aj^ (Mp® R Np) where

A- -rank(MJ < m and A_, -rank (N ) < n. Since a module isKp c Kp P
0 if, and only if, it localizes to 0 at every maximal ideal,
we have reduced to the case in which R is local of Krull
dimension 0 .

Therefore, suppose that R, Q is local of Krull dimension
0 and A-rank (M) £ m and A -rank (N) £ n .(Notice that Q is

R
nilpotent.) Then AR^,Q-rank (M/QM) £ m and AR^-rank (N/QN)
£ n. Since R/Q is a field, M/QM and N/QN are free and 
A R/Q-rank (M/QM N/QN) £ mn. Therefore AjJ/q1 (M/QM (2^qN/Qn)

= 0. But M/QM ® R/Q N/QN fr M t^MMfiyj) so that

mn+ 1 mn+ 1 /
Arz/m/Qm <2 £ q  n/qn) =Tar/q [<m®rn)/q(m <%n)]  ̂ ^

mn+ 1 / mn+ 1 mn+ 1 / mn+ 1
Ar (M ® rN)/qAr Tm ® rN); hence AR (M<59r N)/q Ar (M ® rN)

= 0. But Q is nilpotent; hence A™ n + 1  (mOD^N) = 0, as desired.K K
Suppose now that we have proved the proposition for rings 

of Krull dim.£ d-1, d £ 1. Let R be a Noetherian ring of 
Krull dimension £ d. As in the case d = 0, we may assume 
that R is local with maximal ideal Q.
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mn+ 1 mn+ 1
We first notice that A (M®_N) =Q(A_ (m®_N)) since

K  K  K  K

A ™ +1 (M<^Ny £ ( A ™ +1 (M®RN)) (prop_=0_14) A ^ ^ M / Q M  <^/q N/QN)

= 0 (because R/Q is a field). Note also, by the inductive

d(mn+1 )
hypothesis, that for any non-maximal prime P, [A_ M0_.Nl

R  R  p

d(mn+l) _ d(mn+l)
= 0 since [A M ®  N] —  A (M 0  N ),

R R P (Prop. 0.14) RP P RP P

R has Krull dimension < d-1, A„ -rank (Mt-,) < m, andr  —  R p  r  —

A0 -rank (N_) < n.
P d(mn+1 )

Let x € A„ M <SL N. Since x localizes to 0 at every
K  K

non-maximal prime P, Ann(x) ^  P for every non-maximal prime
P. Hence Q = /Ann(xj and some power of Q, say Q^, is
contained in Ann(x).

mn+ 1  mn+ 1  mn+ 1
But Ar (M ® r N) = Q Ar (M (2>r N) so that Ar (M ® r N)

, mn+ 1 mn+ 1  mn+ 1
= Q Ar (Mg^ N) , implying: AR (M <S>R N) = Ann(x) (AR M (S>pN)

since Q C Ann(x).
Since the above is true for every x e ^d(mn+l) ^  g. n )

K  K

we have [Ad(mn+1) (M N) ] <g> [A™n+1(M N) ] = 0 by the
K  K  K  K  K

Lemma; but, by Prop. 0.13, AR̂ +^  ̂ mn+^ M ® RN is a homomorphic 

image of [A<̂(inn+1) (m ^N)] ® r [ARn+  ̂(M®rN)] and is therefore 0. 

q.e.d.
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Proposition 3.2. Suppose R is a Noetherian ring of
finite Krull dimension £ d. Suppose M is an R-module
having exterior rank £ m. Then A-rank (APM) £ (d+1) ((m)+l^

Proof: The proof is analogous to the proof of
Proposition 3.1.

Suppose d = 0. Since A localizes well (Prop. 0.14)
we may assume R is local with maximal ideal Q (where Q is0+1nilpotent). Then A v M/QM = 0 since A -rank(M/QM) <

R/Q R/Q
A -rank(M) (Observation iii) of Introduction) < m and R/QK — , —    — ■— 1 -- —
is a field.0+1 _ o+i / o+iBut A P M/QM —  A ^ M.fQh. M; and, since

R/Q (Prop. 0.14>) R

0+10+1 ,Q is nilpotent, the fact that A ^ M^)A p M = 0 implies
R

(p) +1that A ^ M = 0.
R

Suppose now that the proposition has been shown for Krull
dim. £ d-1. Suppose R is Noetherian of Krull dimension £
d and AR-rank(M) £ m. Since A localizes well (Prop. 0.14),
we may assume that R is local with maximal ideal Q. Since

(m) +1R/Q is a field and An /(~-rank(M/QM) < m, we have A P M/QM = 0
/ R/Q0+1 / 0+1 0+1 0+1or,by Prop. 0.14, A 1 M / Q A p M = 0, or A ^ M = QA p M.

R /  R R R
For every non-maximal prime P, we have, by induction, 

d( 0 +1 )
A p M = 0 since A -rank(M ) < A -rank(M) < m and Krull
Rd P P p - R

d( 0 +l)
dimension R < d-1. By Proposition 0.14, [A p M]p is

R
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d((™)+l)
also 0. Let x 6  A p M. Since x localizes to zero atR
every non-maximal prime P, (/Ann (x) = Q. Thus, for some k,

k 0 + 1 0 + 1Q cAnn(x). Therefore A M = Ann(x)A~ M for every—  K K

d((”J)+l) d((“)+l) (m)+l
x e A D ^ M, and by the Lemma, A0 p M ®  a ^ M = 0K   K R R

(d+1 ) ((™)+l)
implying, via Prop. 0.13, that AR ^ M = 0. q.e.d.

Proposition 3.3. Suppose R is a Noetherian ring of 
Krull dimension £ d. Suppose A-rank (A^M) £ q and that
(*") £ q. Then A-rank (M) £ (d+1) (t+1) - 1.
ir

Proof: The proof is analogous to the proofs of Props,
3.1 and 3.2.

Suppose d = 0. Since A localizes well (Prop. 0.14), 
we may assume R is local with prime ideal Q (which is 
nilpotent).

Since R/Q is a field, AR^,Q-rank (Ar^q M/QM) £ q, and
(~) > <Zr then Â tl: M/QM =0. (We have here the case of aP - R/Q
free R/Q-module M/QM.)

But A p M / Q M  =  A^+1 M/QA^+1M; thus
R/Q (Prop. 0.14) R R

Ar+^M/£)Ar+^M = 0, and, since Q is nilpotent, AR+^M = 0.
Now suppose the proposition has been proved for all

rings having Krull dimension £ d-1. Suppose R has Krull
dimension £ d. Again, since A localizes well, we may
assume R is local with maximal ideal Q.

Since R/Q is a field, A-rank (Ar^q M/QM) £ q, and 
t  t~i" X( ) £ q, we have M/QM = 0, or in the presence of
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Prop. 0.14, A^+1M = QA^+1M.  -----

Let P be any non-maximal prime ideal of R. Then 
[A^t+1 ^M]p = Ap^t+1 ^Mp by Proposition 0.14

= 0 by induction since Krull dimension Rp £ d-1,
A-rank (Mp) £ q and (̂ ) £ q.

Let x e Ap^t+^M. Since x localizes to 0 at every 
non-maximal prime P, ^Ann(x) = Q and, for some k, Qk c.

Ann(x) . Therefore, we have, for any x€r A ^ t+"^M, A^+^M =R R R

Ann(x) A^^M implying, by the Lemma, that A ^ t+^  M ®  = 0.
K    K  K  K

Hence is 0 because it is a homomorphic image of

Ap(t+1 )M ® RAp+1M ( = 0 ). q.e.d.
In Propositions 3.1, 3.2, and 3.3 we can replace the 

hypothesis "R is a Noetherian ring of Krull dimension £ d" 
with slightly weaker hypotheses (for example, "R has Krull 
dimension £ d and R^ is Noetherian for every maximal ideal 
Q") and the same or similar proofs will go through. However, 
to generalize significantly the results obtained in these 
propositions would require a different approach.



CHAPTER IV. A LOOK AT A QUESTION OF H. FLANDERS

Suppose R is a ring, p > 1, and M is an R-module such 
that A-rank (A^M) = q. What can we say about A-rank (M)?

Corollary 0.13.1 tells us that if p is odd or if R 
has characteristic 2 , then the canonical homomorphism of 

APM onto A PM factors through A^+  ̂A^M; thus, if
A^+  ̂A^M = 0, then =0. We have just shown:

Proposition 4.1. Suppose p is odd or R has charac
teristic 2. Suppose A-rank (APM) = q. Then A-rank (M) £
(q+1 ) p - 1 .

I do not know whether or not Proposition 4.1 holds for 
p even and R of characteristic ? 2. In fact, I cannot in 
general prove that, if A-rank (aPm)< °°, then A-rank (M) < °°. 
(The last statement is true for Noetherian rings of finite 
Krull dimension by Proposition 3.3.)

We will show, however, that the bound of Proposition 4.1 
is as good as can be hoped for, showing that the answer to 
the following question of H. Flanders [Flanders: p. 359] is 
"No" :

If A-rank (A^M) £ q, is A-rank (M) £ p + q - 1 ?
Example: [Wiegand: Sections 2 and 3]. Let p, q be

given q _> 1, p > 1. We construct a ring R and R-modules 

M (q+i)p_i having the following two properties
i) IYL® IVL = 0 for every 1 £ i £ (q+l)p-l 

ii) ® M ( q + 1 ) p . 1 ? o.
Let M = M 1ffi...®M(q+1)p_ :u

54
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Then A-rank (A^M) = q and A-rank (M) = (q+l)p-l.
Proof: Suppose that we have constructed R, M^, and

M as above.
Proposition 0.15 and induction yield the following 

isomorphism:
* At (A1©  . . . © A )  = 0  (AklA,<X>. . ,®AknA )( k x k n ) 1 n

where (k^ ,.. . , kn> ranges over all sequences of non-negative 
integers of length n, the sum of whose terms is t. We make 
use of * to see:

(q+l)p-l
A M — M. <2> . . . ® M , , . x . 7* 01 (q+1) P - 1

by i) and ii) , and A ^ +^ ^ M  = 0 by i) . Therefore A-rank (M) = 
(q+1 )p - 1 .

What is A-rank (A^M)? A^(A^M) 7* 0 because M, (S) . .. (2)M ,■*“ P
V l ® - " ® M2P ..... M (g-1 ) p + 1 ®  * * * ®^qp are direct
summands of A^M and, therefore,

(Mx®  ... OMp) ©(Mp+1®...®M2p)®...(g»(M(q_1)p+1®  ...®Mgp)
is a direct summand of A^(A^M). (And M.® ... ® M  7* 0 by ii).)
However, A^+^(A^M) = 0 because it is a homomorphic image of

«SPm ) =  (5ĵ +^  which is 0 by i) . Therefore A-rank(A^M) = q.
To complete the proof, we need only construct, for any

given n >1, a ring R and R-modules ,..., Mn having the
following two properties:

i) ML = 0 for 1 £ i £ n
ii) M 1® M 2® . . . ® M  ? 0 .
Construction: Let R = fe[X. ,..., X 1 where k is a field.------------------------- 1 1 ' nJ
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k kFor 1 < i < n define M. = lim (R/(X.), 4> • ) where,
1 k«N ' 1 1k'___

for k < k ’, <j> k :R/(Xk) --- ► R/(Xk ') by I \---► X^'"k .
k ' 1 1

Verification of Property i). By Proposition 0.20 ,
M.. (£> M.. — lim (R/(Xk) ®  R/(Xk) , <f>. k OD <J> • k )• Identifyinq 
1 1 k<*N 1 1 k ' 1 k '

R/ (Xk) (8> R/ (Xk) with R/(Xk) (via 1 ® I  »---► 1) the homomorphism

<}>.k®cj).k :R/(Xk) (g) R/(X^)  ► R/(X^')® R/(Xk ') is identified
k ' k ' 1 1 1

with \p.k :R/(Xk)  ► R/(xk ') where ip.k (!) = X^(k'“k).
1k 1 1 1 1k ' 1

Let k be given and choose k 1 such that k' > k and
2 (k' -k) > k'. Then i|̂.k =0; thus 0 = lim . <R/(X?), ip,k ) =

xk • ITir* 1 k •

M. ®  M . .l l
Verification of Property ii). By Proposition 0.20,

M ®  . . . ® M  =  lim (R/(Xk )® . . . ® R / ( X k ) , <f> k ®  . . . (g) A k ) . 
1 n keN 1 n 1k ' nk 1

Identifying R/(Xk ) ® ...®R/(Xk ) with R/(Xk Xk ) ,

<J>,k . . . ®<j) k is identified with ^ , : R/(Xk ,... Xk)  *k 1 nk 1 k i n
_ //vk' vk' , ,k /7. vk'-k vk'-k vk '-kR/(X1 , . . . Xn ) where 1̂ , ( 1 ) = X.̂  ’ X 2 * *** n '

so that M, ®  lim (R/(X? , . . . Xk), ) .
1 n keN x n k

1 — k 1 — 1 k * — 1 k ' — 1Consider, for any k' >1, ip, , (1) = X. • X0 • ...*XK. ±. A n

lc1 k ' k 1 -1 lc1 -1e R/(X1 , . . . X ) . To say that X± •...•X* = 0 in

R/(Xk ,... Xk ) would be to say that Xk -̂...*Xk (Xk /•••/Xk )R
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which cannot happen by a trivial degree argument. [Every
k 1 k 'monomial in the ideal (X, ..... X )R has degree at least k'1 ' n

in at least one of the variables.] Thus, in lim
k€N ’

(R/(X^ , ... ^ 0, implying that 0 ^

lim R/(X* , . . . , X*J) = M,® . . . ® M  . q.e.d. k€N n l n
In Observation vii) of the Introduction, we saw that, 

if M is punctually finitely generated, then A-rank (A^M) =
( rank(M)^ [Gardner], R. Gardner showed that thefr
hypothesis "M is punctually finitely generated" can be 
replaced by the weaker hypothesis "A^M is punctually finitely 
generated":

Proposition (Gardner). Suppose that A^M is punctually 
finitely generated. Then A-rank (A^M) = raak(M)^

lr

Proof; First we need a lemma.
Lemma (Gardner). If A^M is finitely-generated, then, 

for k >_ 1 , A^+^M is finitely generated.
Proof; It suffices to show that A^+^M is finitely 

generated.

Let Gp "̂̂ 11 a • • • ̂  *̂lp t * * * f "̂ tl a • • • a } be a 
finite generating set of "fundamental wedges" for A^M.

Let S ^^11* ^12****^tl***"*^tp^'*
Claim: Gp+i ~  ̂  ̂ a 9enerating set

for Ap+1M. (Clearly, since S is finite, Gp+  ̂ finite.) 
Proof of Claim: Let z, .̂../s z ,, be a "fundamental----- —    1 p+ 1

wedge" in A^+^M. Because of the canonical homomorphism of 

A^M®M onto AP+1M we can write  ̂  ̂ZpA zp+i as a H near
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combination of fundamental wedges of the form
x., x.  ̂z where x.n „ . . . ̂ x. e- G . Eachii ip p+X xl xp p
fundamental wedge of the form x...  ̂  ̂ x.  ̂z canxl xp P+l
then be written as a linear combination of fundamental
wedges of the form x.1 /Nx.,,^x . 10 x., where ̂ x l x ' l x '2 x'p
x.,-, x., <£ G (because of the canonical homomorphismX X  x p p
of M ®  A^M onto A^+^M). But fundamental wedges of the form
x^ a i a • • • a Xi i p ar e xn ^p^ ̂ • q.e.d.

For the sake of completeness, note that the Lemma holds 
(via the same proof) with A replaced with either ®  or S.

Suppose that we have shown the proposition for quasi
local rings. Recall that A localizes well, implying that
A-rank (M) = max{A„ -rank (Mn)|Q is a maximal ideal of R}

Q
and A-rank (APM) = max{A -rank (A^ M ) |Q is a maximal R kq k q g

ideal of R}. Thus: A-rank (A^M) =K K
max {A_. -rank (A^ M ) |Q is a maximal ideal of R}

RQ Q Q
but, by the quasi-local case,

A -rank(M_)
D OA„ -rank (At, M„) = ( ) ; therefore

Q RQ Q P

max{AD -rank (A^ M_.)|Q is a maximal ideal of R} =
rq rq q
Ar -rank(Mg)

max{ ( ) |Q is a maximal ideal of R}.P
But x I >- (x) is a non-decreasing function on theP

natural numbers so that
A -rank(Mn)Rq W

max{ ( ) IQ is a maximal ideal of R}
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max{Ap -rank(M~)|Q is a maximal ideal of R}
= < * 0  0  P )

AR-rank(M)
= ( p ) since A -rank(M) = max{An -rank(M_)|Q is a

R RQ Q

maximal ideal of R}
Therefore, we may assume that R is quasi-local with

maximal ideal Q and that ARM is finitely generated.
Case 1. If A^M = 0, then A-rank (M) < p and  —

,A=rank(M). n . , ,,p..v( R ) = 0 = A-rank (A„M).P K

Case 2_. Suppose Â *M / 0. Then, for 1 £ k £ p,
3cAR/,q M/QM / 0 by the following argument:

For 1 £ k £ p, AR/,q M/QM = 0 implies that M/QM = 0

which implies by Prop. 0.14 that A^M/QA?M = 0 which implies■ 1 ■ 1   K  K

(by Nakayama's Lemma, since A^M is finitely generated) that
AgM = 0 ; -*■K

Claim: ARM = 0 &  AR^Q M/QM = 0.
Proof: >̂) Tensor A^M with R/Q and apply Prop. 0.14.R
<= ) Suppose Ar/q M/QM = 0. Then by the preceeding

paragraph t > p. But then, by the Lemma. ARM is finitely
t ££ t tgenerated and 0 = Ar^q M/QM ARM/QARM and, by Nakayama's

Lemma, ARM = 0.
The claim shows: AR-rank(M) = AR^-rank (M/QM) .
Since A^M is finitely generated and R is quasi-local,I\

A„-rank(APM) = (by observation vi of Introduction) the K K.---------------------------- 1------- ~
number of elements in a minimal generating set for ARM =
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(by Nakayama's Lemma) the number of elements in a basis 
for ARM/QARM as an R/Q vector space = AR^Q-rank(ARM/QARM)

A -rank (A^/n(M/QM)).
(Prop. 0.14) R/Q K/u

Since M/QM is a free R/Q-module, we have (by Observa

tion v) of Introduction) AR^Q-rank(A^QM/QM) =

A , -rank(M/QM)
( p ). Substituting equals for equals, we obtain

AR-rank(M)
A-rank(A^M) = ( p ). q.e.d.K K
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