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ABSTRACT 

Two studies were performed to determine the effects of resistant starch (RS) on body 

weight and fat. A 2x2 factorial design was used in both studies, and results were considered 

significant when p<0.05 for both studies. The first study examined the effects of RS in a high fat 

diet (44.8% of energy) on weight, fat, peptide-YY (PYY) levels, and cecal pH in male Sprague-

Dawley rats. Rats were fed a low fat energy control diet for one week prior to diet treatment. On 

week two, rats were blocked by weight and fed one of the following diets for 12 weeks (n=10): 

low fat, energy control (LFEC); LF resistant starch (LFRS); high fat, energy control (HFEC); or 

high fat resistant starch (HFRS). RS did not lower weight or fat with either the HF or LF diets. 

RS consumption resulted in greater full and empty cecal weights, and a lower pH for the LFRS 

diet. This data indicate fermentation, even though weight and fat loss did not occur. This is 

contrary to previous reports with RS, which has been shown to decrease body fat compared to 

controls. The second study examined the effects of RS on the weight, fat, PYY levels, and 

glucagon-like peptide-1 (GLP-1) levels in female Sprague-Dawley rats. Ovariectomized (OVX) 

rats were used to represent rats prone to gaining weight, and sham rats represented normal rats. 

Rats were assigned to one of four groups (n=10): OVEC, OVRS, SHEC, or SHRS. Rats were fed 

the EC diet for 6 weeks prior to diet treatment to gain weight after surgery, and then blocked by 

weight and fat into diet treatment groups, and spent 13 weeks on treatment diets. Energy intake, 

total gastrointestinal weight, large intestine/cecum weight, and small intestine weight were all 

higher in RS fed rats relative to EC fed rats. Mesenteric, ovarian, perirenal, retroperitoneal, and 

total fat pads were lower in RS rats relative to EC rats. Although RS was not effective in 

lowering body weight or body fat in the first study, the data indicates that resistant starch may 

lower body weight and fat in postmenopausal women.
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CHAPTER 1 

INTRODUCTION 

Overweight and obesity continue to be a growing problem in the United States among 

children, adolescents, and adults and across all ethnicities. According to Ogden et al, in 2003-

2004, the prevalence of obesity among men and women were 31.1% and 33.2%, respectively. 

Data for female children and adolescents show an increase in the prevalence of overweight from 

13.8% in 1999-2000 to 16% in 2003-2004, while male children and adolescents increased from 

14% to 18.2% in the prevalence for overweight in these same years. According to the data by 

Ogden et al, approximately 30% of non-Hispanic white adults were classified as obese in 2003-

2004, as well as 45% of non-Hispanic black adults and 36.8% of Mexican Americans (Ogden et 

al., 2006). With this growing prevalence among a variety of ages, races, and genders, 

overweight, defined as a body mass index (BMI) of 25-29.9, and obesity, defined as a BMI of ≥ 

30, are major public health concerns in the United States and many other countries across the 

globe (Grudy, 2004; Ogden et al., 2006). This concern is due to its association with other life-

threatening medical conditions such as cardiovascular disease (Grudy, 2004), diabetes (Mokdad, 

2001) hypertension (Montani, Antic, Yang, & Dulloo, 2002), and a variety of cancers (Wellman 

& Freidberg, 2002). Because of these comorbidities, it is evident that prevention and treatment of 

overweight and obesity are of extreme importance.  

Obesity can be attributed to a plethora of factors, and may also be the result of a multi-

factorial environment. In the westernized society, however, overweight and obesity are often 

credited to the consumption of a high fat diet because of its relatively high energy value (Roy et 

al., 2003). Diets high in fat are generally considered more palatable and flavorable (Seidell, 
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1998), which can lead to even more consumption. Another population affected by an increase in 

body fat is postmenopausal women. Upon cessation of menstruation, the hormone estrogen is no 

longer produced and released (Danilovich et al., 2000). Estrogen has been well established as a 

factor in energy metabolism, and its absence is associated with fat accumulation (Shimizu et al., 

1997). The postmenopausal woman has 20% more body fat (Ley, Lees, & Stevenson, 1992), and 

puts her at risk for cardiovascular and diabetic complications (Lean, Han, & Seidell, 1998).  Diet 

therapy is among the possible treatment options for both of these causes of weight gain and has 

the potential to reduce body fat.  

  Of the selection of foods targeted for therapeutic use in the treatment and management of 

obesity, starches and dietary fiber have received much attention or their effects on food intake 

and weight status. Studies have reported that these foods do so by a variety of mechanisms, such 

as by promoting satiety sooner, by slowing gastric emptying (Stephen, 1991; Anderson, Smith, 

& Gustafson, 1994), by diluting energy of the diet (Topping & Clifton, 2001), and by decreasing 

the absorption of fatty acids (Van Horn, 1997). Resistant starch, in particular, may be a useful 

tool in combating obesity. Dietary resistant starches are defined as non-digestible fibers that 

resist, to varying degrees, amylase digestion in the small intestine and are fermented to short-

chain fatty acids (SCFA) by microflora in the large intestine (Higgins, 2004). Resistant starch 

has many similar effects as dietary fiber and may also help in reducing body weight and body fat, 

as well as protecting against colorectal cancer (Topping & Clifton, 2001) and reducing 

postprandial glycemia and insulinemia (Raben et al., 1994). The production of SCFAs, mainly 

acetate, propionate, and butyrate (Topping & Clifton, 2001), when resistant starch is fermented, 

reduces the pH of the gut and may have an important role in reducing body weight and fat (Silvi, 

Rumney, Cresci, & Rowland 1999).  
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The mechanism by which resistant starch may aid in weight loss is through increasing the 

gene expression and production of peptide YY (PYY) and glucagon-like peptide-1 (GLP-1) in 

the gut via the production of the SCFAs (Keenan et al., 2006a). Both of these gastrointestinal 

peptides have been shown to reduce food intake (Batterham et al., 2003; Hillebrand, de Wied, & 

Adan, 2002). If this is the means by which resistant starch reduces food intake and lowers body 

weight and fat, animals fed diets containing resistant starch will have higher circulating blood 

levels of PYY and GLP-1. Resistant starch is also known to dilute the energy density of the diet 

in the same way as fermentable fibers, although not as much as non-fermentable fibers. 

However, resistant starch as a fermentable fiber fed to animals showed increased gene 

transcription for PYY and proglucagon in cecal epithelial cells, increased large intestine gene 

transcription for PYY and proglucagon, and greater plasma levels of PYY and GLP-1 compared 

to non-fermentable fibers. Acting in the same way as a fermentable fiber, resistant starch has also 

been shown to help reduce abdominal fat in rats (Keenan et al., 2006a). For these reasons, 

resistant starch is implicated as a promising tool in the management and treatment of obesity.  

 Study 1 will determine the effects of resistant starch on rats fed high fat (HF) and low fat 

(LF) diets. Study 2 will determine the effects of resistant starch on the weight and body fat of 

bilaterally ovariectomized (OVX) rats versus sham-operated rats (SH). OVX female rats will be 

used because they are known to gain body fat due to the lack of estrogen, and are a good model 

to test the hypothesis that resistant starch reduces body fat using an endocrine model of obesity 

(Ainslie, 2001).  

OBJECTIVES 

 The objectives of Study 1 are to determine the effects of resistant starch on weight, body 

fat, and, cecal weights, and gut signaling of rats on a high fat diet. The objectives of Study 2 are 
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to determine the effects of resistant starch on the weight, body fat, and gut signaling of OVX rats 

and SH rats, and also to determine the effects of resistant starch on cecal weights as an indicator 

of fermentation. 

HYPOTHESIS 

 It is hypothesized that obesity-induced animals fed a diet containing resistant starch will 

have lower body weight, lower percentage of body fat, lower abdominal fat, greater 

fermentation, and greater plasma levels of PYY and GLP-1 than those fed a diet without resistant 

starch.  

ASSUMPTIONS 

• It is assumed that the rat model will have a digestive physiology and a habitual diet with 

a composition as close as possible to humans. 

• It is assumed that abdominal fat will correlate to total body fat.  

• It is assumed that all measurements from the studies will be taken and recorded correctly. 

• It is assumed that animal blood and tissue collections are representative of human 

subjects. 

LIMITATIONS 

• Not all of the same measurements were taken for both studies.  

• NMR was deemed not effective as a measure of total body fat.  

• Although the rat model has a similar digestive physiology to that of humans, the results 

from this study may not directly apply to humans.   
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CHAPTER 2 

REVIEW OF LITERATURE 

DIETARY FIBER 

Dietary fiber is considered a group of non-starch polysaccharides and lignins of plant 

origin (Liu et al., 2002; Ajani, Ford, & Mokdad, 2004) that are resistant to digestion by 

gastrointestinal enzymes in humans and most animals (Burton-Freeman, 2000; Brown, Rosner, 

Willett, & Sacks, 1999) with complete or partial fermentation in the large intestine, although a 

universal definition is yet to be established (Nugent, 2005). Sources of fiber often include fruits, 

vegetables, grain products, legumes, and other sources such as oat and wheat bran (Burton-

Freeman, 2000). Fiber can be divided into two groups: soluble fibers that form gels in the 

presence of water, or insoluble fibers. The soluble fibers include pectins, gums, mucilages, and 

some hemicelluloses, whereas lignins, celluloses, and the remaining hemicelluloses make up the 

insoluble fibers (Brown, Rosnar, Willett, & Sacks, 1999). However, the Institute of Medicine 

(IOM) suggests categorizing dietary fiber in another manner: by its physiochemical properties 

instead. The terms viscous and fermentable are often now used to describe fibers (Queenan et al., 

2007). Other physical properties of dietary fiber include bulk/volume, water-holding capacity, 

and adsorption/binding (Burton-Freeman, 2000), with different sources of fiber causing different 

bodily responses (Liu et al., 2002). Because of these characteristics and the resulting physiologic 

effects, this food group has gained much attention lately from both the public and scientific 

communities for its numerous health implications. It has the ability to modify physiologic 

function to benefit one’s health, and is thus considered a functional food (Food Nutrition Board, 

2001).  



6 

 

Dietary fiber has been shown to be positively associated with cardiovascular health. In a 

prospective cohort, data showed an inverse relationship between dietary fiber intake and 

cardiovascular disease (CVD) and myocardial infarction (Liu et al., 2002). Another prospective 

study showed higher consumption of fiber in the diet was correlated with lower concentrations of 

C-reactive protein, a marker of inflammation and possible predictor of cardiovascular events. 

(Ajani, Ford, & Mokdad, 2004). Soluble fiber has been shown to significantly reduce total 

cholesterol levels, as well as low density lipoprotein (LDL): high density lipoprotein ratio (HDL) 

(Jenkins et al., 2002). This data plus other scientific evidence further support the reported 

negative correlation between fiber and CVD, and the benefit of dietary fiber intake on heart 

health.  

Research looking at the relationship between consuming fiber and colon health also 

seems promising. First of all, fiber normalizes colonic function by increasing fecal weight and 

bowel frequency (Correa-Matos et al., 2003). In an international correlative study, starch intake 

was inversely related to both colon and rectal cancer (Cassidy, Bingham, & Cummings, 1994). In 

a prospective study investigating the relationship between fiber intake and diverticular disease, 

both soluble and insoluble fibers were inversely associated with risk of developing diverticular 

disease. Insoluble fiber, however, had a stronger inverse relationship (Aldoori et al., 1998). 

Doubling fiber intake in populations that consumed very little fiber correlated with up to a 40% 

decrease in colorectal cancer risk (Bingham et al., 2003). McBurney (1994) reported that 

consumption of fiber in diets for long-term is associated with several changes in the intestinal 

milieu, including a change in mass, length, villus appearance, cell proliferation rates, and 

enterocyte migration along the crypt-villus axis.  
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Diets high in dietary fiber and complex carbohydrates have also been linked to improved 

insulinemia. Because of its ability to retard gastric emptying, nutrients in meals consumed with 

fiber are absorbed relatively distally in the small intestine, which reduces the amount of gastric 

inhibitory polypeptide (GIP) released. GIP is normally secreted in the proximal small intestine, 

and is also known to induce insulin release, which can promote hyperinsulinemia (Marshall, 

Bessesen, & Hamman, 1997). The fact that it also delays gastric emptying may be beneficial 

regarding blood glucose attenuation because of a delayed release of postprandial glucose when 

consumed (Nugent, 2005; Queenan et al., 2007)), as well as lowered insulin requirements 

(Anderson et al., 1995). 

Along with the above mentioned health benefits, the role of fiber in the diet has been 

associated with a lower risk of obesity, and it may do so by multiple mechanisms. First of all, it 

has been suggested that fiber consumption induces satiety and satiation, mostly due to its bulking 

effect (Schneeman & Tietyen, 1994). Research suggests that viscous fibers may delay gastric 

emptying, causing a prolonged sensation of fullness, which would result in less consumption of 

food (Queenan et al., 2007). Secondly, fiber affects energy density by displacing energy if a 

person is consuming a specific volume of food versus a certain amount of energy, which has 

been shown in men in a study by Rolls et al (1998). It has also been suggested that dietary fiber 

disrupts fat and carbohydrate absorption by delayed gastric emptying, and the interference with 

digestive enzymes and the intestinal surface. By this method, fiber would also affect the amount 

of calories absorbed (Schneeman & Tietjen, 1994). 

The benefits of consuming dietary fiber are quite pronounced in research. In fact, the 

consequences of rodents fed diets completely lacking in fiber included atrophy of the small 

intestine and colon, with supplementation of the diet with fiber reversing these effects (Slavin, 
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Nelson, McNamara, & Cashmere, 1985; Ecknauer, Sircar, & Johnson; 1981). It seems that 

dietary fiber may be beneficial for those at risk for CVD, diabetes, or even obesity. For these 

reasons, the National Academy of Sciences recommend 38 and 25 grams of dietary fiber per day 

for men and women, respectively (Lupton, 2003).  

FERMENTABLE FIBERS AND SHORT CHAIN FATTY ACIDS 

 Carbohydrates in the colon can affect its physiology by being both physically present or 

being the substrate of fermentation (Topping & Clifton, 2001). The microflora of the gut 

primarily use carbohydrates as an energy source (Jacobasch et al., 1999). If fiber or starch 

somehow bypasses the small intestine, anaerobic fermentation of these fibers by bacteria can 

occur in the large intestine, yielding short chain fatty acids (SCFAs), hydrogen, carbon dioxide, 

and methane (MacFarlane & MacFarlane, 2003) and metabolizable energy for microbial growth 

(Topping & Clifton, 2001). Butyrate, acetate, and propionate are the main SCFAs produced, but 

others can be produced in lesser amounts (MacFarlane & MacFarlane, 2003). Colonocytes use 

SCFAs as a fuel source, supplying ~60-70% of the colonic energy needs, with butyrate being the 

preferred fuel even when glucose is available (Topping & Clifton, 2001). Often propionate is 

favored as well, with both formed into ATP for energy for colonocytes (Jacobasch et al., 1999). 

The production of SCFAs increases blood flow in the colon, lowers luminal pH, aids in the 

prevention of abnormal colonic cell population development (Topping & Clifton, 2001), 

regulates colonocytes’ gene expression, cell cycle, and apoptosis, and also exerts trophic effects 

on the epithelium of the colon (Mentschel & Claus, 2003). Fermentable fibers can also increase 

the abundance of lactic acid bacteria, which further aid in the fermentation of fibers (Russel & 

Diez-Gonzales, 1998), and the prevention of potential pathogens that are pH-sensitive, 

categorizing them as a prebiotic (Topping & Clifton, 2001). For this reason, they have been 
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added to some oral electrolyte solutions (Oli, Petschow, & Buddington, 1998). Overall, SCFAs 

improve the digestive and absorptive capabilities of the colon (Rombeau & Kripe, 1990; 

Tappenden et al., 1997). Levels of SCFAs are highest in the proximal colon, where fermentation 

is greatest, and levels decrease further down the gut as colonocytes use them, with very little 

amounts found in the distal colon. Interestingly, most colon cancers and other colonic diseases 

occur in the distal colon, suggesting the importance of SCFAs in colonic health (Topping & 

Clifton, 2001). The lowered pH of the lumen upon production of SCFAs is also thought to be 

protective against colon cancer (Young & Le Leu, 2004).  

 Research on fermentable fibers and the resulting SCFAs that are produced verify the 

benefits of maintaining the health of the colon. Fermentable fibers can be used to help recover 

from diarrhea (Buddington & Weiher, 1999). Correa-Matos et al. (2003) found that consumption 

of fermentable fibers reduced the recovery time and improved symptoms of induced S. 

typhimurium infection in neonatal piglets indicated by stool consistency and maintenance of 

physical activity. It is also believed that SCFAs may help prevent foreign bacteria from 

penetrating the small intestine and colon (Reardon & Tappenden, 1999). In dogs fed a diet with 

fermentable fibers, it was shown that their intestines were longer, had increased surface area, and 

greater mucosal mass compared with those fed a poorly fermentable fiber (Buddington, 

Buddington, & Sunvold, 1999).  

Data has also shown that fiber-induced fermentation causes the release of particular 

gastrointestinal hormones. In canines, glucagon-like peptides (GLP-) 1 and 2, and GIP, which 

aid in mucosal growth and upregulation of transport processes in the proximal colon, were all 

increased (McBurney et al., 1998). In rats fed fermentable fibers, there was an increase in 

intestinal proglucagon (the precursor to glucagon) mRNA and thus greater postprandial GLP-1 
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was released (Reimer & McBurney, 1996), although this increase in proglucagon was not seen in 

a later study by Reimer et al. (2000). However, increased concentration of proglucagon-derived 

peptides has been observed by others once fermentable fibers were fed (Gee et al., 1996; 

Massimino et al., 1998), as well as smaller oscillations in blood glucose concentrations 

(Massimino et al., 1998). GLP-1 additionally stimulates insulin secretion, inhibits glucagon 

secretion, and delays gastric emptying, all of which are beneficial in diabetic patients (Holst, 

1997). The ability of fermentable fibers to promote GLP-1 secretion makes it a target for 

treatment in diabetic patients. SCFA production is also associated with an increase in the 

gastrointestinal hormone peptide YY (PYY), which has been shown to inhibit gastric emptying 

(Cherbut, 1998) and reduce food intake (Batterham, 2003).  

 The SCFA butyrate particularly has been studied for its role in colonic health. It acts as a 

signal metabolite, stimulating cell migration and proliferation (Valezquez, Lederer, & Rombeau, 

1996). Research has also shown that butyrate has slightly different functions in neoplastic 

colonic cells than in normal epithelial cells. It affects gene expression and may induce apoptosis, 

killing off any possible damaged and potentially harmful colonocytes while inhibiting 

proliferation (Jacobasch et al., 1999; Mentschel & Claus, 2003), and has been shown to reverse 

neoplastic changes in vitro (Ferguson et al., 2000). In normal cells, apoptosis has been observed 

in the absence of butyrate (Hass et al., 1997). Segain et al (2000) has also reported that butyrate 

inhibits Nuclear Factor-kappa B (NF-κB), a key regulator in inflammatory response. Those 

suffering from inflammatory bowel disease have increased activity of NF-κB, suggesting that 

butyrate can potentially reduce the immune response. In fact, patients with ulcerative colitis and 

colon cancer have been reported to have low levels of butyrate (Chapman et al., 1994). 
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Concerning weight management, butyrate has been reported to increase gene expression of PYY 

and proglucagon and may participate in satiety (Zhou et al., 2006) 

Research also suggests that other SCFAs can be beneficial for health. Propionate has 

been shown to suppress fatty acid and cholesterol synthesis in vitro (Berggren, Nyman, & 

Lundquist, 1996) and in vivo (Chen et al., 1984), although this is not agreed by all (Queenan et 

al., 2007). Propionate is also confirmed to kill E. coli in an acidic environment (Cherrington et 

al., 1991). Acetate has been shown to decrease free fatty acid availability in humans and inhibit 

cholesterolgenesis in rats (Beynen, Buechler, & Van Der Molen, 1982), and Abrahamse et al 

(1999) reported that acetate inhibits DNA oxidative damage due to H2O2 in the rat colon. Both 

propionate and acetate have been observed to induce apoptosis like butyrate in tumorigenic cells. 

However, they do so to a lesser extent and require higher concentrations (Hague et al., 1995). 

Butyrate, propionate, and acetate have all been associated with greater colonic blood flow 

(Mortensen et al., 1991; Kvietys & Granger, 1981), enhancing tissue oxygenation and transport 

of absorbed nutrients (Topping & Clifton, 2001). 

Any fermentable fibers or starches that produce SCFAs, especially butyrate, thus may be 

targeted for improving gut health and preventing possible pathology from developing. The 

delivery of butyrate to the distal colon may be particularly important because of its susceptibility 

to diseases relative to the proximal colon (Topping & Clifton, 2001). The effect of SCFAs on 

hormone secretion, particularly GLP-1 and PYY, is of great interest regarding weight 

management.  

RESISTANT STARCH 

 Starch is the polysaccharide storage form of glucose found in plants, and is a major 

source of carbohydrates in the diet (Nugent, 2005; Sajilata, Singhal, & Kulkarni, 2006). It is 
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packaged as granules in two forms: the polymer amylose consisting of linear glucose residues 

connected by α-D-(1-4) linkages, or the branched polymer amylopectin consisting of the same 

linear α-D-(1-4) linkages plus branched α-D-(1-6) linkages. Starch is usually hydrolyzed by the 

enzymes α-amylases, glucoamylase, and sucrose-isomaltase in the small intestine (Nugent, 

2005); however, this is not the case for all starches. In 1982, Englyst and colleagues found that 

not all starch was hydrolyzed by enzymes, and this remainder was termed “resistant starch” 

(Englyst, Wiggins, & Cummings, 1982). Resistant starch, as the name implies, refers to the 

portion of starch that resists digestion into free glucose and absorption in the small intestine, 

bypassing it and reaching the large intestine where it is fermented by colonic microflora. This 

fermentation process, like dietary fiber, results in the production of SCFAs (butyrate, acetate, 

and propionate), as well as carbon dioxide, methane, hydrogen, and organic acids. However, 

unlike dietary fiber, fermentation of RS produces more butyrate and less acetate (Nugent, 2005; 

Sajilata, Singhal, & Kulkarni, 2006).  

Resistant starch (RS) is resistant to mammalian enzymes due its structure, and four types 

exist: RS1, RS2, RS3, and RS4. RS1 refers to a physically inaccessible form of starch that is 

physically protected because the intact plant structure of amyloblasts hinders enzymatic 

degradation. RS2 refers to starch in a certain granular form that is tightly packed in a radial 

pattern, limiting its accessibility to enzymes. RS3 refers to retrograded amylose formed during 

cooling of gelatinized starch, and is the most resistant form of RS by mammalian digestive 

enzymes, but still degradable by microbial fermentation. Finally, RS4 refers to the formation of 

new chemical bonds other than the α-D-(1-4) and α-D-(1-6) linkages found in starch (Jacobasch 

et al., 1999; Sajilata, Singhal, & Kulkarni, 2006), and includes starches that have been etherized, 

esterified, or cross-bonded with chemicals that reduce their digestibility (Nugent, 2005). Natural 
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food sources of RS include bananas and legumes (Sajilata, Singhal, & Kulkarni, 2006), and can 

be found in some amounts in any food containing starch (Nugent, 2005). Most humans tend to 

consume RS from cooked sources, such as cooked potatoes, breads, and pastas, and these natural 

sources are usually affected by processing and storage conditions. Commercially available 

sources of RS, on the other hand, such as Hi-maize® or CrystaLean® (Nugent, 2005), are 

unlikely to be affected by such conditions (Sajilata, Singhal, & Kulkarni, 2006). The commercial 

sources have other advantageous properties that make them useful for incorporating into food 

products, including bland in flavor, fine particle size, increasing the bowl life of breakfast 

cereals, and being a functional food component. And just as there are different forms of RS, each 

form may have a slightly different physiological response. Also the amount consumed, what else 

was consumed at the time, and the cooking conditions all may affect the physiological response 

as well (Nugent, 2005). 

In addition to these forms affecting the resistance of starch, a higher ratio of 

amylose:amylopectin also lowers the digestibility of starch, with the linear amylose chains 

forming a packed structure of cross linkages secured by hydrogen bonds upon retrogradation. 

Amylopectin can interfere with this structure formation during retrogradation (Berry, 1986). 

Repeated cycles of heating then cooling can increase the retrogradation process (Annison & 

Topping, 1994).  Cooking can also affect the RS content in food, with high moisture and 

temperature processes disturbing the crystalline structure of RS, thus lowering the content 

(Sajilata, Singhal, & Kulkarni, 2006). Another factor influencing RS is the addition of 

endogenous lipids, which can complex with amylose and possibly disrupt the formation of RS 

(Eerlingen et al., 1994). Finally, fermentation can reduce the content of RS, as is the case in the 

large intestine when it is broken down by the gut microflora.  
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Although it is a starch, RS shares similar physiologic properties and health benefits with 

soluble fiber, as well as benefits unique to its own as an insoluble component of the diet. Both 

RS and soluble fiber are slow to digest, with RS digestion usually occurring 5-7 hours after 

consumption, and result in slower, more controlled glycemic response and lowered postprandial 

insulinemia and potentially increasing satiety (Jenkins et al., 1987; Raben et al., 1994). This 

response is most likely due to the replacement of digestible starch found in other foods with the 

indigestible starch (Jenkins, 2002). RS and soluble fiber are both poorly digested in the small 

intestine, but highly fermented in the large intestine with SCFA production (Bjorck et al., 1987; 

Goni et al., 1996; Sajilata, Singhal, & Kulkarni, 2006). RS, however, is not viscous like soluble 

fiber upon arrival in the large intestine (Nugent, 2005), and has been reported to produce a larger 

proportion of butyric acid than fiber does (Akerberg et al., 1997). It is estimated that about 30-

70% of RS is metabolized in the colon with the remainder excreted (Behall & Howe, 1995).  

Data supports that RS confers several health benefits. It has been shown to be beneficial 

to the colonic milieu, including increasing crypt cell production rate, decreasing large intestinal 

cell atrophy (Sajilata, Singhal, & Kulkarni, 2006), increasing fecal weight and output, reducing 

fecal and cecal pH (Cassand et al., 1997), decreasing ammonia levels, and altering the activity of 

bacterial enzymes in a beneficial manner (Silvi et al., 1999) relative to a lack of fiber. Butyrate 

produced from fermentation of RS is an energy substrate for colonic cells and has been shown to 

inhibit malignant transformation of colonic cells in vitro (Asp & Bjorck, 1992). RS has also been 

studied as a treatment option for ulcerative colitis. In a study by Jacobasch et al (1999), rats with 

chemically induced colitis and fed RS showed earlier sign of improvement for markers of 

inflammation compared to controls. Studies show that RS affects expression of a number of 

receptors on T- and B- lymphocytes and macrophages, which are all involved in immune 
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function (Sotnikova et al., 2002), and inhibits NF-κB through butyrate production (Segain et al., 

2000). The noted impact on immune response may be of interest regarding inflammatory bowel 

disease. Because of its tendency to affect the microbial population, RS may also function as a 

prebiotic stimulating the growth of beneficial bacteria of the gut while suppressing the 

pathological ones (Young & Le Leu, 2004; Sajilata, Singhal, & Kulkarni, 2006).  

Beyond the colon, RS, like fiber, has also been linked to reduced serum cholesterol and 

triglyceride levels in animal models (Younes et al., 1995; Mathe et al., 1993) and human subjects 

(Behall, Scholfield, Yuhaniak, & Canary, 1989; Behall & Howe, 1995). Consumption of RS has 

been associated with decreased incidence of gallstones as well (Malhotra, 1968). Like dietary 

fiber, it is associated with decreased postprandial glucose and insulin responses, which would be 

of particular interest in diabetic treatment (Haralampu, 2000). 

In addition to its numerous health implications, several studies have supported the use of 

RS as a treatment option for weight management. Results from several animal studies indicate 

that consumption of RS may lead to weight loss or reduced weight gain. For example, De 

Deckere et al (1993) reported lowered fat pad weight and decrease adipocyte cell size, and this 

has been confirmed by other studies (Lerer-Metzger et al., 1996; Kabir et al., 1998a) 

Consumption of RS was associated with a decrease in GLUT-4 expression, an insulin-regulated 

protein responsible for glucose uptake (Kabir et al., 1998b). Younes et al (1995) reported a 

decrease in the activity of lipogenic enzymes 3-hydroxy-3-methylglutaryl-Co A and fatty acid 

synthase, which are involved in cholesterol synthesis and fat synthesis, respectively. Another 

study has shown that RS increases the expression of the LDL receptor in the liver of rats 

(Fukushima, 2001). Mathe et al (1993) demonstrated that RS increased bile acid secretion, which 

can also affect lipid metabolism. Recently, Keenan et al (2006a) reported that RS-fed rats had 
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lower abdominal fat relative to a control group, even though their food intake was not different 

from the control.  

There are a few possible leads as to how RS affects body weight. Most of the research 

involved in this area focuses on the anaerobic bacterial fermentation of RS into SCFA, and it is 

through these acids that RS is thought to help in limiting weight gain (Topping, Fukushima, & 

Bird, 2003). When compared to a non-fermentable fiber, RS had greater amounts of SCFAs 

produced, along with increased transcription of PYY and proglucagon, and increased plasma 

levels of PYY and GLP-1 (Keenan et al., 2006). PYY is normally released in the gut in 

proportion to the amount of calories ingested (Adrian et al., 1985) and is a gut-signaling 

hormone indicating food intake in the brain (Batterham, 2002). As stated earlier, PYY has been 

shown to reduce food intake and weight gain when infused in human subjects, and lower 

endogenous PYY levels have been observed in obese subjects (Batterham et al., 2002). Long-

term administration of PYY in murine models has demonstrated decreased weight gain 

(Batterham, 2003). GLP-1 is also released in response to food ingestion (Deacon, 2005), and acts 

as a meal termination signal and food regulation (Kreymann et al., 1987; Flint, Raben, Astrup, & 

Holst, 1998). With the increase of these two peptides, it is suggested that the RS-produced 

SCFAs are a natural and endogenous method to reduce energy intake and hopefully body weight 

(Keenan et al., 2006a).  

Although SCFA production in relation to RS fermentation is highly studied, other 

putative mechanisms may also be responsible for its role in weight management. First of all, the 

metabolizable energy value of RS has been calculated to be ~2 kcal/g, whereas digestible 

carbohydrates have an energy value of ~4 kcal/g (Livesey, 1994). This displacement of kcals by 

the addition of RS in the diet can displace the total amount of kcals consumed in a day, thus 
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resulting in a decreased overall caloric intake, just as with dietary fiber. Higgins et al (2004) 

reported that replacing 5.4% of total carbohydrates with RS in the diet could increase 

postprandial lipid oxidation. They suggest that this mechanism could help reduce fat 

accumulation in the long term. Also, foods rich in RS may cause a reduced insulin response due 

to its lowered glycemic response. Ultimately, this may make fat more accessible for energy use 

(Tapsell, 2004). It has been suggested that RS may also promote satiety, although this is still 

controversial (Nugent, 2005). These examples are supplementary ways as to how RS may work 

in the treatment of obesity and in weight management.  

Overall, research agrees that the effects of RS are advantageous to the body with much 

potential nutritional and commercial value (Asp, Amelsvoort, & Hautvast, 1996). It has a wide 

range of influence, affecting fermentation in the gut, fecal bulking and transit time, colonic 

bacterial growth, postprandial glycemia and insulinemia, and energy value of foods (Abia et al., 

1993; Annison & Topping, 1994). However, there are some concerns with consumption of RS 

regarding bloating, flatulence, belching, mild laxative effects and stomach aches when RS is 

consumed in larger amounts (~30g/day or more) (Heijnen, 1996). Other than these discomforts, 

the potential physiological benefits of RS are obviously similar to dietary fiber, although it is 

considered a starch. And it is because of these similarities that deem it worthy of being 

categorized as a component of dietary fiber to some (De Vries, 2003). Data also confers that RS 

as part of the diet can be used in weight loss and/or management. And although RS does produce 

energy through fermentation, this energy value is still less than digestion of starch in the small 

intestine (Englyst, Kingman, Hudson, & Cummings, 1996). Whether this starch’s influence on 

body weight and body fat is solely due to the production of SCFAs upon fermentation and the 

subsequent increase in PYY and GLP-1, or other mechanisms is not yet clear. More research is 
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needed to distinguish its exact manner, but for now its use in the treatment of obesity seems 

extremely promising.  

ENDOCRINE OBESITY 

 Overweight and obesity are growing problems worldwide, with numerous factors 

contributing to their cause. Increased energy intake and decreased energy output are often the 

blame for the sudden epidemic. Increased fat accumulation due to endocrine changes is a lesser 

known cause of obesity, but may also be responsible for the increased rates due to its resulting 

metabolic alterations. Particularly, the hormone estrogen has been investigated for its role in 

energy homeostasis.  

 It is well understood that the postmenopausal period is related to a striking change in 

endocrinology (Burger et al., 1995). In postmenopausal women, the ovaries lose their ability to 

function, including the production and release of estrogen (Danilovich et al., 2000). It has been 

known for some time that the decrease in estrogen production that results during menopause is 

followed by a characteristic increase in body fat (Shimizu et al., 1997; Toth, Tchernof, Sites, & 

Poehlman), with fat accumulation occurring more likely in the upper body, mainly the abdominal 

area, rather than lower (Tremollieres, Pouilles, & Ribot, 1996; Gambacciani et al., 1996) putting 

the postmenopausal woman at increased risk for developing CVD and diabetic complications 

(Lean, Han, & Seidell, 1998). In fact, postmenopausal women have 20% more body fat 

compared to premenopausal women (Ley, Lees, & Stevenson, 1992). 

 In the murine model, lack of estrogen production can modify metabolism resulting in 

obesity, skeletal abnormalities, and infertility (Danilovich et al., 2000). The ovariectomy 

procedure in rats ceases estrogen production and imitates the symptoms of menopause. This 

procedure has been shown to increase body weight by many (Kakolewski, Cox, & Valnstein,  
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1968; Ainslie et al., 2001), and was reported to do so by 22% in just 10 weeks (Kakolewski, 

Cox, & Valnstein, 1968). In one study that disrupted the follicle-stimulating hormone receptor 

(FSH-R) in mice by using a knockout model, which also terminates estrogen production, an 

increase in abdominal fat deposition, curvature in the spinal column, and a decrease in bone 

weight all occurred. Replacement of estrogen in these knockout mice reversed the adipose 

accumulation (Danilovich et al., 2000).  Mice of both sexes that have the estrogen receptor-alpha 

knocked-out display increased white adipocyte tissue (WAT) and hyperplasia (Heine et al., 

2000). Another study showed that mice deficient in aromatase, the enzyme responsible for the 

production of estrogen, developed fatty livers and had more abdominal adipose tissue. The study 

concluded that the fat accumulation was a result of a combination of reduced physical activity 

and glucose oxidation (Jones et al., 1997). Ainslie et al (2001) reported that ovariectomized rats 

were hyperphagic, had lower levels of spontaneous physical activity, and a similar resting energy 

expenditure compared to sham-operated rats, all of which resulted in weight gain. 

Ovariectomized rats treated with estradiol had similar body weights, energy intakes, and physical 

activity levels to that of sham rats.   

 Clinical studies in humans also agree that estrogen does have an effect on body weight. A 

cross-sectional study and a prospective, double blind, placebo-controlled study showed an 

increase in body mass index (BMI) and body weight, respectively, as menopause transitioned 

(Burger et al., 1995; Pepi, 1995). Bjorkelund et al (1996) also reported an increase in waist-to-

hip ratio between the pre- and postmenopausal periods in their longitudinal study. This increase 

in body weight, and particularly body fat, has been seen by many (Hunter et al., 1996; Zamboni 

et al., 1992; Kontani et al., 1994). Stevenson et al (1994) demonstrated that hormone 

replacement therapy (HRT) with estradiol in postmenopausal women prevented abdominal 
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weight gain, and Dellongeville et al (1995) described a lowering of BMI once treated with HRT. 

Another study with newly postmenopausal women found that those on HRT had no significant 

weight gain, while those on simply a calcium supplement had a significant increase in body fat 

weight, with most of the weight gain occurring in the trunk and the arms (Gambacciani et al., 

1996).  

 Not only is there clear evidence of fat accumulation with the onset of menopause, some 

believe that there is in fact a loss of fat free mass. Poehlman et al (1995) noted an average 3 kg 

loss of fat-free mass in women between their premenopausal and postmenopausal periods in a 

longitudinal study. Others suggest that there is predominantly a loss in skeletal muscle mass 

(Poehlman et al., 1993; Aloia et al., 1991). Toth et al (2000), however, did not see this similar 

loss in fat free mass. 

 Menopause and loss of estrogen production may also be associated with type 2 diabetes, 

possibly due to weight gain. Considering estrogen’s reversal effect on fat accumulation in former 

studies, research looked at its possible role in treatment of diabetes. Simply knocking out the 

estrogen receptor resulted in insulin resistance and glucose intolerance (Heine et al., 2000). In 

one study, estrogen treatment was shown to increase cell surface insulin receptor number in 

ovariectomized rats, which increased insulin binding and receptor-mediated insulin degradation 

(Krakower, Meier, & Kissebah, 1993). Geisler et al (2002) reported inhibition of both weight 

gain and hyperglycemia in a male mouse model prone to hyperglycemia when treated with 

estradiol. In postmenopausal women, estradiol treatment increased secretion of pancreatic insulin 

and decreased insulin resistance (Stevenson et al., 1994). In men unable to produce estrogen, 

insulin resistance ensued (Grumbach & Auchus, 1999).  
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 Cardiovascular complications are also a concern with the onset of menopause and the 

central body obesity that results. Stevenson et al (1994) suggest that HRT in postmenopausal 

women can reduce coronary heart disease by 50%. In another study, hyperlipidemia was shown 

to result in men with estrogen insufficiency (Grumbach & Auchus, 1999).  

 The means by which estrogen plays a role in energy homeostasis may work via various 

hormones. In the rat model, ovariectomy was shown to decrease mRNA levels and serum 

concentrations of leptin (Shimizu et al., 1997), which signals to the brain decreased fat mass and 

results in a hyperphagic state as well as decreased energy expenditure (Mantzoros, 1999). Once 

again, estradiol treatment reversed these effects (Shimizu et al., 1997). Ainslie et al (2001), 

however, did not find decreased secretion of leptin in ovariectomized rats, and Pelleymounter et 

al (1999) also reported no alteration in leptin levels with either ovariectomy or estradiol 

treatment. Besides leptin, lack of estrogen in the ovariectomized rat model has been shown to 

increase hypothalamic neuropeptide Y (NPY) mRNA expression, which stimulates food intake 

and may have a role in excess fat accumulation as well (Shimizu et al., 1996; Ainslie et al., 

1999).  

 Considerable evidence has shown that estrogen indeed plays a role in energy metabolism, 

and disruption of estrogen synthesis has been shown to result in fat accumulation. Data reports 

that this weight gain can be blunted or even reversed if estrogen is once again provided, 

suggesting that it is the deficiency of estrogen that is responsible for the weight gain during the 

postmenopausal period.  

HIGH FAT DIETS 

 Much attention regarding the amount of fat in the diet has been received lately in relation 

to weight gain and the prevalence of obesity. High fat diets are often to blame for inducing 
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obesity. Fat has a higher energy density relative to the other macronutrients, and is considered 

more palatable, which can easily lead people to consume more. Overall, this combination can 

lead to a greater energy intake relative to output (Seidell, 1998; Willet, 1998). A “westernized” 

diet that is highly processed, high in fat, cholesterol, refined sugar, and alcohol, and low in fruits 

and vegetables has been adopted in the United States and most Western  countries (Cordain et 

al., 2005). Although dietary fat cannot be the sole responsibility of the obesity epidemic, it is a 

major concern in today’s unbalanced diet. And although the body has regulatory systems that 

attempt to maintain body weight, Woods et al (2003) explain, “that when individuals are 

exposed, on a chronic basis, to a higher mean level of dietary fat, the otherwise incredibly robust 

negative feedback system that regulates body fat decreases. More fat is stored and the individual 

moves along the scale toward obesity.” Reducing fat intake is a difficult task, especially since fat 

is often used in foods for its palatability and ability to increase shelf life.  

 Weight gain and fat accumulation are the most common associations with diets high in 

fat, but there are certainly other adverse health effects that are linked to high fat diets. 

Epidemiologic studies have shown that diets high in total and saturated fat have been associated 

with fasting hyperinsulinemia (Maron, Fair, & Haskell, 1991; Parker et al., 1993; Mayer, 

Newman, Quesenberry, & Selby, 1993) and have been shown to cause insulin resistance in rats 

(Storlein et al., 1986). As explained earlier, diets high in dietary fiber control insulin release by 

reducing the amount of secreted GIP, and RS is likely to have the same effects to counter this 

with high fat diets.  

 Epidemiologic data support the relationship between higher fat consumption and weight 

gain. The observation of migrants who have adopted the western diet and the concomitant weight 

gain and disease states that are not normally seen in their native countries has further elucidated 
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the consequences of this eating pattern. The prevalence of obesity was reported to be three times 

as high in Japanese men living in California relative to their Japan-inhabited counterparts (Kato 

et al., 1973). The Pima Indians are another prime example of the deleterious effects of a 

westernized diet that is cheap, palatable, and high in fat (Schrauwen & Westerterp, 2000). Those 

that still live in Mexico maintain their traditional eating habits and lifestyle, while those living in 

Arizona are exposed to the convenience of more processed foods high in refined sugars and fat, 

and less physically-active occupations. The latter group now has a high prevalence of obesity 

and type 2 diabetes from their exposure to this environment (Esparza et al., 2000). In a 

longitudinal analysis, Klesges et al (1992) reported that women with higher fat intake were 

related to higher weight gain.  

Animal models and clinical trials have associated higher fat diets with weight gain and fat 

accumulation. When rats were given free access to a high fat diet, they became obese compared 

to those on a diet with the same composition except for less fat (Woods et al., 2003). In a study 

by Lissner et al (1987), women fed a high fat diet (45-50%) gained weight relative to a medium 

fat diet (30-35%), and those fed a low fat diet (15-20%) experienced weight loss. In another 

study by Jeffery et al (1995) comparing fat restriction with energy restriction, results concluded 

that a low fat diet had similar weight loss but better compliance among subjects. Higher fat 

intake and weight gain or increased adiposity has been supported by others as well (Tremblay, 

Plourde, Despres, & Bouchard, 1989; Tucker & Kano, 1992). 

 The relationship between high fat diets and the prevalence of obesity has been observed 

for quite some time. The extreme conversion into an industrialized society has not permitted our 

genetics to adjust to all it entails, including lifestyle and eating habits (Cordain et al., 2005). In 

addition to obesity, high fat diets are related to an assortment of other co-morbidities including 
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heart disease and type 2 diabetes. The amount of fat alone is not only important to a healthy 

lifestyle, but the type of fat should also be considered, with more effort in consuming sources of 

unsaturated fatty acids and less intake of saturated and trans fats (Willet, 1998; Cordain et al., 

2005). It is imperative to find ways to treat overweight and obesity in an effective method that 

tailors to the needs and lifestyle of people today.  
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CHAPTER 3 

METHODS 

EXPERIMENTAL DESIGN 

 For both studies, a 2x2 factorial design was used to examine the effects of resistant starch 

on the body weight, body fat, food intake , peptide-YY (PYY) levels, and glucagon-like peptide-

1 (GLP-1) levels in rats. 

Study 1. The effects of resistant starch were compared in rats fed a high fat diet (44.8% 

of energy, 22% fat w/w) to those fed a low fat diet (17% of energy, 7% fat w/w). Half of the rats 

fed the high fat diet (HF) were assigned to a diet high in resistant starch (RS), and half were 

assigned to an energy control diet (EC). Half of the rats fed the low fat diet were assigned to a 

diet high in resistant starch, and half were assigned to an energy control diet (Table 3.1).  

Study 2.  An endocrine model of obesity, ovariectomy, was used to test the effects of 

resistant starch. To control for the effects of surgery a sham surgery arm of the 2 X 2 factorial 

was used. Half of the ovariectomized and sham rats were assigned to a diet high in RS, and half 

were assigned to an EC diet (Table 3.2).  

 

 

Table 3.1 2x2 Factorial Design, Study 1 (n=40) 

 FAT 

STARCH HF Diet LF Diet 

EC Diet 10 10 

RS Diet 10 10 
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Table 3.2 2x2 Factorial Design, Study 2 (n=40) 

 SURGERY 

STARCH OVX Rats SH Rats 

EC Diet 10 10 

RS Diet 10 10 

 
 
ANIMALS  
 
 For both studies, rats were maintained on a 12:12 hour light/dark cycle that was 

illuminated at 7AM. Water and powdered diet were available ad libitum during the experiment. 

All of the diets were a modification of the American Institute of Nutrition-93 Growing diet 

(AIN-93G) for growing rats. 

 Study 1. Forty, 7 week old male Sprague-Dawley rats were used.  

Study 2. Forty female Sprague-Dawley rats were used. Twenty of the rats underwent 

surgery to remove the ovaries, and 20 underwent a sham operation to equate the physiological 

stress that results from ovariectomy surgery. The surgery was performed on the rats at 10 weeks 

age by the supplier, Harlan (Indianapolis, IN).  

HOUSING 

 All animals were housed in stainless steel cages with wire mesh bottoms to 

account for food spillage, and with wire mesh fronts in order to view the animals. The powdered 

diet was placed in glass food jars by the experimenter, and secured by a wire spring that attached 

to the wire mesh front of the cage. Water was available via a water nozzle at the back of the cage 

that released water when it is pushed on. Cardboard sheets were set under each animal’s cage to 

capture any food spillage for later measurement. 
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PROCEDURES 

 Study 1. 

 Diet Preparation. To prepare each diet, macronutrients (without fat) were measured and 

combined in a large mixing bowl. The macronutrients were mixed for 10 minutes. 

Micronutrients were then measured, combined in a small mixing bowl with food coloring if 

necessary, and mixed for 10 minutes. One scoop of the macro mix was then added to the micro 

mix in the small mixing bowl, and mixed for 10 minutes. Then this micro mix was added to the 

large mixing bowl and mixed for 10 minutes to evenly distribute the ingredients. Oil or oil/solid 

fat was then measured and added to the mix, and mixed for 30 minutes. The diet was stored in 

labeled containers in refrigerators and freezers. The label included diet type, date of preparation, 

and researcher’s name. Ten kilogram batches were made at a time. 

 The rats were randomly assigned to a low fat control diet, low fat resistant starch diet, 

high fat control diet, or high fat resistant starch diet. Resistant starch was used in the form of Hi-

Maize® cornstarch (National Starch, Bridgewater, NJ). The compositions of the diets are listed 

in Table 3.3. The energy breakdown of the diets is listed in 3.4. 

Table 3.3. Diet Composition Table for LFEC, LFRS, HFEC, HFRS to make a 10 kg Batch 

INGREDIENTS LFEC LFRS HFEC HFRS 

Macro Mix     

Amioca (g) 5347 1500 3847 - 

Hi-Maize (g) -  4807 -  4807 

Sucrose (g) 500 500 500 500 

Casein (g) 2000 2000 2000 2000 

(Table Continued) 
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Cellulose (g) 960 - 960 - 

Micro Mix     

Mineral Mix (g) 350 350 350 350 

Vitamin Mix (g) 100 100 100 100 

Choline Chloride (g) 13 13 13 13 

L – Cystine (g) 30 30 30 30 

Oil Mix     

Vegetable Oil (g) 700 700 1000 1000 

Lard (g)   1200 1200 

BHT (g) 0.140 0.140 0.140 0.140 

TOTAL 10000 g 10000g 10000g 10000g 

 

Table 3.4. Caloric Composition of the LFEC, LFRS, HFEC, and HFRS diets as % (g/100g) 

 Nutrient LFEC LFRS HFEC HFRS 

Protein 21 21 21 21 

Total Carbohydrates 61.9 61.9 61.9 61.9 

Fat 17.1 17.1 44.8 44.8 

Kcal/g of Food 3.5 3.5 4.2 4.2 

 

Week 1: Acclimation Period. All animals were fed a low fat control diet for one week to 

become acclimated to the powdered diet and environment. The weight of the animal, the weight 

of the empty food jar, the weight of the full food jar, and the food spillage were measured three 
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times a week (Monday, Wednesday, and Friday) for each animal. After measurements were 

taken for empty food jar weights, the food jars were refilled and full jar weight was recorded.  

 Week 2: Group Assignment. After the acclimation period, the animals’ weights were 

used to determine group assignment. The animals’ weights were put into ascending order and 

then ordered into four blocks of 10 replicates. The animals were assigned to one of four 

treatment groups by choosing one from each block at a time.  The result was that the average 

weight for each group was within one-tenth of a gram of one another.  

Weeks 2 through 14: Treatment. Throughout the experiment, the animals’ weights, the 

empty food jar weights, the full food jar weights, and the food spillage were measured every 

Monday, Wednesday, and Friday beginning between 12PM-2PM. Empty food jars consisted of 

the leftover food in the food jar. Full food jar consisted of the weight of the food jar once it was 

refilled with the powdered diet. Every Monday, food jars were switched for clean food jars, and 

any leftover diet in the food jar was thrown out for fresh diet. Throughout the experimental 

period, animals were switched to new cages every two weeks for sanitary reasons. The animals 

were fed on their assigned diets for 12 weeks.  Body fat of the animals was measured using the 

nuclear magnetic resonance (NMR) method at the beginning, middle and end of the treatment 

period.  

Week 15: Sacrifice. The animals were sacrificed via decapitation. Due to the large 

number of animals, the sacrifice took place over 2 days between days, spaced 2 days apart. 

Tissues that were collected included blood samples, brain, scrapings of the top cellular layer of 

the cecum, cecal content samples, peri-renal fat, epididymal fat, and retroperitoneal fat. 

Measurements that were taken included the entire gastrointestinal tract weight with contents, full 

cecum weight, empty cecum weight, peri-renal fat weight, epididymal fat weight, and 



30 

 

retroperitoneal fat weight. The ceca were gently rinsed with a saline solution to remove any 

contents before empty ceca weights were taken. Cecal contents were stored in the freezer. Brains 

were frozen on dry ice, blood was kept cold on ice before plasma separated by centrifugation and 

stored in the freezer, and cecal scrapings were stored in foil and frozen in liquid nitrogen during 

the sacrifice until the tissues could be stored in the freezer.  

Cecal contents were used to analyze pH.  

Study 2. 

 Diet Preparation. The same diet preparation procedure used in Study 1 was also used in 

Study 2. 

 The rats were randomly assigned to either the energy control diet or resistant starch diet 

from the ovariectomized or sham surgery groups. The compositions of the diets are listed in 

Table 3.5. The energy breakdown of the diets is listed in Table 3.6. 

Table 3.5. Diet Composition Table for EC and RS diet to make a 10 kg Batch 

INGREDIENTS EC RS 

Macro Mix   

Amioca (g) 4245 - 

Hi-Maize (g) -  5307  

Sucrose (g) 1000 1000 

Casein (g) 2000 2000 

Cellulose (g) 1562 500 

Micro Mix   

Mineral Mix (g) 350 350 

(Table Continued) 
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Vitamin Mix (g) 100 100 

Choline Chloride (g) 13 13 

L – Cystine (g) 30 30 

Oil Mix   

Vegetable Oil (g) 700 700 

BHT (g) 0.140 0.140 

TOTAL 10000g 10000g 

 

 

Table 3.6. Caloric Composition of the EC and RS diets as % (g/100g) 

  EC RS 

Nutrient %(g/100g) %(g/100g) 

Protein 21 21 

Total Carbohydrates 61.9 61.9 

Fat 17.1 17.1 

Kcal/g of Food 3.3 3.3 

 

Weeks 1 through 6: Acclimation Period. All animals were fed a control diet for four 

weeks to become acclimated to the powdered diet and environment. The weight of the animal, 

the weight of the empty food jar, the weight of the full food jar, and the food spillage were 

measured three times a week (Monday, Wednesday, and Friday) for each animal. After 
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measurements were taken for empty food jar weights, the food jars were refilled and full jar 

weight was recorded.  

Week 7: Group Assignment. After the acclimation period, the animals’ weights were 

used to determine group assignment. The animals’ weights were put into ascending order within 

ovariectomized and sham surgery groups.  The weights were then ordered into two blocks of 10 

replicates per surgery type. The animals were assigned to one of four treatment groups by 

choosing one from each block at a time.  The result was that the average weight for each of the 

two ovariectomized groups was within one-tenth of a gram of one another; and the same for the 

two sham groups.  

Week 7 through 19: Treatment. Throughout the experiment, the animals’ weights, the 

empty food jar weights, the full food jar weights, and the food spillage were measured every 

Monday, Wednesday, and Friday beginning between 10AM-12PM. Empty food jars consisted of 

the leftover food in the food jar. Full food jar consisted of the weight of the food jar once it was 

refilled with the powdered diet. Every Friday, food jars were switched for clean food jars, and 

any leftover diet in the food jar was thrown out for fresh diet. Throughout the experimental 

period, animals were switched to new cages every two weeks for sanitary reasons. The animals 

were fed on their assigned diets for 12 weeks.  

Body fat of the animals was measured using the NMR method at the beginning, middle 

and end of the treatment period.  

Week 19: Sacrifice. The animals were sacrificed via decapitation. Due to the large 

number of animals, the sacrifice took place on two consecutive days. Tissues that were collected 

include blood samples, brain, cecal scrapings, cecal samples, peri-renal fat, epididymal fat, and 

retroperitoneal fat. Measurements that were taken included entire gastrointestinal tract weight, 
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small intestine weight, full cecum weight, empty cecum weight, perirenal fat weight, ovarian fat 

weight, mesentaeric fat weight, and retroperitoneal fat weight. The ceca were gently rinsed with 

a saline solution to remove any cecal contents before empty ceca weights were taken. Cecal 

contents were stored in the freezer. Brains were frozen on dry ice, blood was kept cold on ice 

before plasma separated by centrifugation and stored in the freezer, and cecal scrapings were 

stored in foil and frozen in liquid nitrogen during the sacrifice until the tissues could be stored in 

the freezer. 

 For analysis of tissues, the animals’ brains were removed from the freezer to isolate the 

arcuate nucleus of the hypothalamus and extract the total RNA from the arcuate.  Then the the 

mRNA expression for proopiomelanocortin in the arcuate nucleus of the hypothalamus was 

determined releative to the housekeeping gene cyclophilin. The cecal scrapings were used to 

analyze the mRNA expressions for PYY and GLP-1. 

CONSTRUCTS AND VARIABLES 

 Weight of Rats. Animals were measured in a bucket on a balance that was tared to zero 

before the animal was put in. The weight was measured in grams, and rounded to the nearest 

gram.  

 PYY Levels and GLP-1 Levels. Total peptide YY (PYY), total glucagon-like-peptide-1 

(GLP-1), and active GLP-1 were assayed with radioimmunoassay kits from Millipore (St. 

Charles, MO).  

 Amount of Food Consumption. Food consumption was calculated by subtracting the 

empty food jar weight and food spillage weight of the current day’s measurement from the full 

food jar weight of the previous day’s measurement. Empty food jar weights were measured on a 

balance, and measured in grams rounded to the nearest gram. The food jars were then refilled 
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with the appropriate diet. Full food jar weights were measured on the balance in grams, rounding 

to the nearest gram. Food spillage was accounted for by removing any feces from the cardboard 

sheet, and weighing the leftover food spillage. The spillage was measured in a weigh boat that 

was tared to zero before the food was put in. Total food consumed for each rat was measured 

every Monday, Wednesday, and Friday.  

 Cecal Content pH.  The pH of the cecal contents was determined by homogenizing 

thawed cecal contents in distilled water (0.5 g wet sample to 5 ml water), and the pH was 

measured using a combination electrode. The samples were acidified with 1 ml of a 25 % (w/w) 

solution of meta-phosphoric acid that contained 2g/l of 2-ethyl-butyric acid as an internal 

standard for the short chain fatty acid contents. Solids in the homogenized samples were 

separated by centrifugation. Short chain fatty acids in the effluent were analyzed using gas-liquid 

chromatography.  

 Body Fat. Total body fat was determined using the NMR method. One at a time, each 

animal was inserted into Bruker’s minispec Lean/Fat Analyzer for measurement. Each animal 

was measured twice, and the average of the two body fat percentages was used. NMR 

measurement was taken three times during each study: once before treatment started, once six 

weeks after treatment began, and once before sacrifice. Upon sacrifice, abdominal fat pad 

weights were also collected and measured.  

STATISTICAL ANALYSIS 

 Data were analyzed using the Statistical Analysis System (SAS) statistical software 

package version 9.1. A 2x2 factorial was performed for all measurements. Results were 

considered statistically significant if p<0.05.  
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CHAPTER 4 
 

RESULTS 
STUDY 1 

Cumulative food intake was higher for LF rats relative to HF rats (LFEC, 593; LFRS, 

612; HFEC, 499; HFRS, 482 ± 14.85 grams, p<0.0001) (Fig. 4.1), but energy intake remained 

the same among all treatment groups (LFEC, 2077; LFRS, 2142; HFEC, 2085; HFRS, 2017 ± 

56.3 kJ) (Table 4.1). HF rats did have an increase in body weight compared to LF rats (LFEC, 

366; LFRS, 383; HFEC, 397; HFRS, 402 ± 7.84 grams, p<0.0027) (Table 2). Disemboweled 

body weight was higher in the HF rats (LFEC, 351; LFRS, 357; HFEC, 383; HFRS, 387 ± 6.05 

grams) compared to LF rats (p<0.0001) (Table 2). Full cecum (p<0.0001) and empty cecum 

weights (p<0.0001) were higher in RS rats compared to EC rats, and higher in LF rats compared 

to HF rats (Table 4.1), with LFRS rats having significantly higher full and empty cecum weights 

relative to the other groups. This resulted in a significant fat x diet interaction. Epididymal fat 

(p<0.0001), abdominal fat (p<0.0001), perirenal fat (p<0.0003), and the total fat (LFEC, 8.33; 

LFRS, 8.34; HFEC, 11.43; HFRS, 12.59 ± 0.66 grams, p<0.0001) were also higher in the HF rats 

compared to the LF rats (Table 4.1). Plasma PYY was higher in RS rats compared to EC rats 

(LFEC, 132.6; LFRS, 302.4; HFEC, 118.2; HFRS, 141.7 ± 15.3) (Fig 4.2). RS rats had a lower 

cecal contents pH value compared to the EC rats (p<0.0001), and LF rats had a lower pH than 

HF rats (p<0.0001). This resulted in a significant fat x diet interaction, with LFRS rats having the 

lowest pH of cecal contents (LFEC, 8.41; LFRS, 6.67; HFEC 8.23; HFRS, 8.32 ± 0.08) (Fig 4.3).  

STUDY 2  

In the pre-treatment period, OVX rats consumed more energy (OVX, 2447; SH, 2122 ± 

32.14 kJ, p<0.0001) and more food than sham rats (OVX, 748; SH, 649 ± 9.82 grams, p<0.0001) 
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Fig 4.1. Average daily food intake for HF/LF study 

 

Table 4.1. Measurements from HF/LF study according to Fat (low fat [LF] and high fat 
[HF]) and Diet (energy control [EC] and resistant starch [RS]) as the independent variables 

Dependent Variable LFEC LFRS HFEC HFRS SEM Fat Starch Interaction 

Beginning BW (g) 248 248 248 248 3 NS NS NS 

Final BW (g) 366 383 397 402 8 0.0027 NS NS 

Disemboweled BW (g) 351 357 383 387 6 0.0001 NS NS 

Full Cecum Weight (g) 3 13.9 2.9 3.5 0.3 0.0001 0.0001 0.0001 

Empty Cecum Weight (g) 0.6 2 0.6 0.8 0.05 0.0001 0.0001 0.0001 

Epididymal Fat (g) 4.3 4.4 6.1 6.3 0.3 0.0001 NS NS 

Abdominal Fat (g) 2.7 2.8 3.7 4.4 0.3 0.0001 NS NS 

Perirenal Fat (g) 1.3 1.2 1.6 1.9 0.1 0.0003 NS NS 

Total Fat Pads (g) 8.3 8.3 11.4 12.6 0.7 0.0001 NS NS 

Energy Intake (kcal) 2077 2142 2085 2017 56.3 NS NS NS 
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Fig 4.2. Plasma PYY concentration for HF/LF study 

 

 

Fig 4.3. pH of cecal contents for HF/LF study 
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32.14 kJ, p<0.0001) and more food than sham rats (OVX, 748; SH, 649 ± 9.82 grams, p<0.0001) 

(Table 3). Body weight change during the pre-treatment period was significantly greater for 

OVX rats than sham rats (OVX, 112; SH, 44 ± 2.29 grams, p<0.0001) (Table 4.2). During the 

treatment period, energy intake was higher in RS rats compared to EC rats (p<0.0029) (OVEC, 

4640; OVRS, 4856; SHEC, 4473; SHRS, 4857 ± 93.83) (Table 4.3). Food intake was also higher 

in RS rats compared to EC rats (p<0.0029) (OVEC, 1419; OVRS, 1485; SHEC, 1368; SHRS, 

1485 ± 28.7) (Fig 4.4). Body weight was higher only in OVX rats relative to sham rats 

(p<0.0001) (OVEC, 349; OVRS, 342; SHEC, 284; SHRS, 282 ± 5.6), and so was disemboweled 

body weight (p<0.0001). But disemboweled body weight was also higher in EC rats compared to 

RS rats (p<0.06) (OVEC, 332; OVRS, 320; SHEC, 268; SHRS, 260 ± 5.2) (Table 4.3). Full total 

gastrointestinal weight (p<0.0001), full cecum weight (p<0.0001), and full small intestine weight 

(p<0.0.0349) were higher in RS rats relative to EC rats (Table 4.3). Mesenteric fat (p<0.0016), 

ovarian fat (p<0.0405), perirenal fat (p<0.0208), retroperitoneal fat (p<0.0112) (Table 4.3), and 

the total fat pad weights (p<0.0065) (Fig 5) were all lower in the RS rats relative to EC rats. 

Plasma PYY levels were higher in the sham group fed RS (OVEC, 42.4; OVRS, 34; SHEC, 

34.7; SHRS, 53.3 ± 3.2). OVX rats fed RS, however, had lower total PYY levels (Fig 4.6). This 

resulted in a significant diet x surgery interaction.  Diet had no effect on plasma GLP-1 levels 

(OVEC, 5.8; OVRS, 4.9; SHEC, 6.2; SHRS, 5.7 ± 0.5) (Fig 4.7).  
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Table 4.2. Measurements according to surgery (ovariectomy [OVX] and sham [SH]) after 6 
week recovery period and before diet treatments 

Dependent Variable OVX SH SEM Surgery 

Beginning BW (g) 208 197 1.8 0.0001 

BW after 6 Weeks (g) 346 283 3.9 0.0001 

Fat (g) 54.3 39.8 0.7 0.0001 

Fat/BW (%) 16.8 16.3 0.2 NS 

Energy Intake (kcal) 1452 1427 23 NS 

Weight Gain (g) 116 46 2.3 0.0001 

Energy efficiency (g/kcal) 8.0 3.3 0.2 0.0001 

 

 

Fig 4.4. Cumulative food intake for OVX/SH study 
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Table 4.3. Measurements for 13 week study with Diet (energy control [EC] and resistant starch 
[RS]) and surgery (ovariectomy [OVX] and sham [SH]) as the independent variables 

Dependent  Variable ECOV RSOV ECSH RSSH SEM Diet Surgery Interaction 

Beginning BW (g) 322 326 245 242 4 NS 0.0001 NS 

Beginning Fat (g) 54.3 54.4 39.8 39.7 1 NS 0.0001 NS 

Beginning Fat/BW (%) 16.8 16.7 16.3 16.4 0.3 NS NS NS 

Disemboweled BW (g) 332 320 268 260 5 0.06 0.0001 NS 

Full GI Tract (g) 17.3 22.3 16.0 20.3 0.9 0.001 0.08 NS 

Full Small Intestine (g) 9.8 10.2 9.4 10.7 0.4 0.04 NS NS 

Full Large Intestine (g) 7.5 12.2 6.2 9.6 0.7 0.0001 0.006 NS 

Mesenteric Fat (g) 3.1 2.5 2.8 2 0.2 0.0016 0.03 NS 

Ovarian Fat (g) 5.1 4.2 4.5 3.4 0.4 0.04 NS NS 

Perirenal Fat (g) 1.9 1.4 1.4 1.1 0.2 0.2 0.02 NS 

Retroperitineal Fat (g) 2.2 1.7 1.3 1.1 0.1 0.01 0.0001 NS 

Total Fat Pads(g) 12.3 9.9 10 7.6 0.8 0.007 0.009 NS 

Energy Intake (kcal) 4640 4856 4473 4856 94 0.003 NS NS 
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Fig 4.5. Total abdominal fat pad weights for OVX/SH study 

 

 

 

Fig 4.6. Plasma PYY concentration for OVX/SH study 
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Fig 4.7. Plasma GLP-1 concentration for OVX/SH study 
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CHAPTER 5 

DISCUSSION 

 Dietary resistant starch is a fermentable fiber that resists digestion in the gut. As a 

component of the diet, its indigestible quality results in dilution of the metabolizable energy of 

the diet, fecal bulking comparable to non-fermentable fiber, and fermentation in the colon to 

SCFAs with a subsequent increase in PYY and GLP-1 expression in the gut (Nugent, 2005; 

Keenan et al., 2006; Zhou et al., 2006). Energy dilution has been considered a treatment 

possibility for obesity if a person consumes a certain volume of food as opposed to a certain 

amount of energy (Rolls et al., 1998; Willet, 1998), thus displacing extra calories with 

indigestible matter (Howarth, Saltzman, & Roberts, 2001). The gut neuropeptides PYY and 

GLP-1 have both been reported to decrease food intake (Batterham et al., 2002; Batterham et al., 

2003; Strader & Woods, 2005). It is through these mechanisms that RS is proposed to aid in 

reduction of body fat and weight gain.  RS has been reported to reduce fat pad weight (De 

Deckere et al., 1993; Lerer-Metzger et al., 1996; Kabir et al., 1998a) and lower abdominal fat 

(Keenan et al., 2006a). 

 In the first study we examined the effects of RS in a high fat diet on weight, body fat, 

fermentation, and gut signaling. In the second study we examined the effects of RS in an 

ovariectomized rat model of obesity on weight, body fat, fermentation, and gut signaling. RS has 

been previously demonstrated to decrease body weight and adipose tissue (De Deckere et al., 

2003, Keenan et al., 2006a) and increase gene expression of PYY and proglucagon, the gene that 

encodes GLP-1 (Zhou et al., 2006).  

 In the first study, we found that rats fed the HF diet ad libitum did have an increase in 

body weight over the treatment period. RS, however, did not reduce body weight or body fat in 
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either the HF or LF rats. Disemboweled body weight was higher in HF rats relative to LF rats. 

Cumulative food intake was also higher for LF rats compared to HF rats to compensate for the 

decreased energy density due to the lowered amount of fat in the diet. Energy intake remained 

the same for all treatment groups. Epididymal, abdominal, perirenal, and total fat pads were 

higher in HF rats compared to LF rats. However, RS was not effective in reducing body fat. This 

is not consistent with the study performed by Keenan et al (2006a) when fed a LF diet.  

Both full and empty cecum weights were, however, higher in RS rats compared to EC 

rats. The presence of RS in the diet also lowered the pH of cecal contents in the LF diet, resulting 

in a significant diet x surgery interaction. These results are consistent with previous studies 

regarding the effects of RS on fermentation (Nugent, 2005; Keenan et al., 2006a), although RS 

was not effective in lowering pH in the HF group. Plasma PYY levels were also found to be 

higher in the RS rats, which has been attributed to the fermentation of RS in the colon (Keenan et 

al., 2006a; Zhou et al., 2006). 

 In the second study, both OVX and sham rats were put on a control diet for six weeks to 

allow OVX rats to gain weight. During this pre-treatment period, OVX consumed more energy 

and food, and gained more weight than sham rats. After six weeks, the rats were put on their 

respective diet treatments. During the treatment period, both energy and food intake were higher 

in RS rats compared to EC rats. By the end of the study, body weight was still higher in OVX 

rats relative to sham rats. RS rats did have lower disemboweled body weights compared to EC 

rats, although this only approached statistical significance (p<0.06). However, mesenteric, 

ovarian, perirenal, retroperitineal, and total fat pads were all lower in RS rats compared to EC 

rats. Small intestine weight, cecum weight, and total gastrointestinal weight were all higher in 

RS rats relative to EC rats. Lowered disemboweled body weight, lowered fat pads, and greater 
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intestinal weights in RS rats were also seen in a previous study by Keenan et al (2006a). This 

once again reinforces the fact that RS increases fermentation and lowers body fat in the 

endocrine obese model and those fed a low-fat diet.  

 Unlike the previous study, plasma PYY levels were only increased in sham rats fed RS 

and not OVX rats fed RS. The presence of RS also had no effect on GLP-1. Both Zhou et al and 

Keenan et al reported an increase in GLP-1 and PYY levels, and increased proglucagon and 

PYY gene expression, attributing these gut peptides as to at least one mechanism of body fat 

reduction.  

 Both studies performed here were to examine the effects of RS on obese models. The rats 

in the first study were fed a high fat diet to model a more “westernized diet” to induce obesity, 

and the rats in the second study were ovariectomized to induce obesity. RS was not effective in 

lowering either weight or body fat in the high fat diet or low fat diet. The effect of RS on a high 

fat diet (44.8% of energy, 22% fat w/w) has not been tested before, but RS has been shown to 

reduce body fat in a low fat diet (17.1% of energy, 7% fat w/w). We did not observe this even in 

our low fat diet. A possibility for its ineffectiveness on the low fat diet in this study may be 

attributed to the lowered amount of sucrose in the diet. In the study by Keenan et al (2006a) and 

another by Shen et al (2008), 100g of sucrose/kg of diet was used, whereas only 50g of 

sucrose/kg of diet was used in this study. This lowered amount may have affected the palatability 

of the low fat diet, which is already low in fat, and rats may not have consumed enough RS to be 

effective.  We compared body weight, disemboweled body weight, and body fat between our rats 

and Shen’s rats to evaluate how the difference in the amount of sugar effected these 

measurements. Our rats and Shen’s rats were ordered from the same company, were the age and 

type of rat, and arrived on the same day.  Upon comparison, Shen’s rats had a greater body 
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weight and disemboweled body weight for both the energy control and resistant starch diets 

(Figures 5.1 and 5.2). Body fat was also higher in Shen’s rats relative to our rats (Figure 5.3). 

Both our low fat diet and Shen’s diet had the same amount of fat, but Shen’s diet was prepared 

with 100g sucrose and fed for only 65 days whereas ours was prepared with 50g of sucrose and 

fed for 85 days. The combination of a low fat diet and a lowered amount of sugar may have 

compromised food consumption, which ultimately could have affected RS consumption and 

effectiveness or possible fat gain by EC rats. 

In this study, we also noted that full and empty cecum weights were significantly lower in 

the high fat diet than the low fat diet, and pH was significantly higher in the high fat diet 

compared to the low fat diet. These results indicate that fermentation was eliminated with the 

high fat diet. Dietary fat has previously been reported to reduce fermentation of fiber in 

 

 

Fig 5.1. Body weight comparison of rats from Shen’s low fat diet with 100g of sucrose and our 
low fat diet with 50g of sucrose 
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Fig 5.2. Disemeboweled body weight comparison of rats from Shen’s low fat diet with 100g of 
sucrose and our low fat diet with 50g of sucrose 

 

 

 

Fig 5.3. Total fat comparison of rats from Shen’s low fat diet with 100g of sucrose and our low 
fat diet with 50g of sucrose 
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ruminants (Macleod & Buchanan Smith, 1972; Devendra & Lewis, 1974; Kowalczyk et al., 

1977). If fat can affect fiber fermentation, then the high fat diet used in this study may also be 

blunting the fermentation of RS. Endogenous lipids have also been shown to complex with the 

amylose chains in RS, which can disrupt RS formation (Eerlingen et al., 1994). If RS is not 

formed, it is most likely being digested just as a starch, fermentation is not allowed to take place, 

and the subsequent physiological effects of RS are being hindered.  

 In the second study, food and energy intake were higher in the RS rats compared to EC 

rats. Interestingly though, EC rats still had a greater disemboweled body weight. This effect 

appears to be driven by increased energy expenditure because energy intake was lower in EC 

rats. In an unpublished study by Zhou et al (2008), mice fed an RS diet also had a higher 

cumulative food intake and lower body fat, and with a reported lower respiratory exchange ratio 

(RER). This method of measuring respiratory gases is an indication of fat burning. The lower 

RER in RS mice compared to controls indicates greater fat burning. Higgins et al (2004) also 

reported that replacement of 5.4% of total carbohydrate with RS significantly lowered the 

respiratory quotient (RQ, a measurement of respiratory gases at the cellular level), and increased 

fat oxidation. This moderate level of RS fed in humans also indicates greater fat burning. This 

data suggests that in our studies RS does not decrease food intake, but its role is to increase fat 

burning, which appears to promote its ability to reduce body weight and body fat.  

 Also in the second experiment, lowered disemboweled body weights, lowered fat pads, 

and greater intestinal weights were all observed in the RS rats relative to EC rats, even though 

there was no difference observed in GLP-1 between the diet treatments, and PYY appeared to be 

effective only in sham rats fed RS. As stated before, it has been previously reported by Keenan et 
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al and Zhou et al that increased gene and protein levels of PYY and GLP-1 are associated with 

consumption of RS. The fact that these two gut hormones were not associated with RS 

consumption, but larger intestinal weights and reduced body fat were both still seen with RS 

consumption suggests that RS may work through other hormones or another mechanism beyond 

gut signaling. Previous work has presented gene array data demonstrating vast differences in 

expression of the cecal cell genome in rats (Keenan et al., 2006a; Keenan et al., 2006b). Other 

factors possibly involved include other gut hormones, neural, and immune factors.  

 In conclusion, the data from the current study suggests that RS is ineffective in reducing 

body weight and body fat in rats when fed concomitantly with a high fat and low fat diet. These 

results are contrary to previous reports of the association between RS consumption and reduced 

body fat and body weight. It is possible that the high fat diet may blunt the effects of RS 

fermentation. However, RS consumption did indicate that fermentation took place in rats fed the 

low fat diet, although weight gain was too low in rats fed the low fat, RS diet due to due 

decreased sucrose levels. In our second study, adding resistant starch to the diets of OVX rats 

was effective in reducing accretion of abdominal body fat, even though the data did not support 

it was done through gut signaling with PYY and GLP-1 as previously demonstrated. The 

mechanism for this remains to be determined. However, this suggests that dietary resistant starch 

may improve health by reducing body fat in postmenopausal women. Further research 

investigating other possible means by which dietary resistant starch is effective in reducing body 

weight and body fat is warranted. 



50 

 

LITERATURE CITED 

Abia R, Buchanan CJ, Saura-Calixto F, & Eastwood MA.  Structural changes during the 

retrogradation of legume starches modify the in vitro fermentation.  Journal of Agriculture and 

Food Chemistry.  1993; 41:1856-63. 

Ainslie DA, Morris MJ, Wittert G, et al.  Estrogen deficiency causes central leptin insensitivity 
and increased hypothalamic neuropeptide Y.  International Journal of Obesity.  2001; 25:1680-
88.  

Akerberg AKE, Liligeberg HGM, Granfeldt YE, Drews AW, & Bjorck ME.  An in vitro method, 
based on chewing, to predict resistant starch content in foods allows parallel determination of 
potentially available starch and dietary fiber.  Journal of Nutrition.  1998; 128:651-60.  

Anderson JW, Smith BM, Gustafson NJ.  Health benefits and practical aspects of high-fiber 
diets. Am J Clin Nutr. 1994;59 (suppl):1242S-1247S. 

Anderson JW, O’Neal DS, Riddell-Mason S, Floore TL, et al.  Postprandial serum glucose, 
insulin, and lipoprotein responses to high- and low-fiber diets.  Metabolsim- Clinical and 
Experimental.  1995; 44:848-54.  

Annison G, & Topping DL.  Nutritional role of resistant starch: Chemical structure and 
physiological function.  Annual Review of Nutrition.  1994; 14:297-320. 

Asp NG, Van Amelsvoort JMM, & Hautvast JGA.  Nutritional implications of resistant starch.  
Nutrition Research Reviews.  1996; 9:1-31.  

Batterham RL, Cowley MA, Small CJ, Herzog H, et al.  Gut hormone PYY3-36 physiologically 
inhibits food intake.  Nature.  2002; 418:650-54. 

Batterham RL, Cohen MA, Ellis SM, Le Roux CW, et al.  Inhibition of food intake in obese 
subjects by PYY3-36.  New England Journal of Medicine.  2003; 349:941-8. 

Behall KM, Scholfield DJ, Yuhaniak I, Canary J.  Diets containing high amylose vs amylopectin 
starch: effects on metabolic variables in human subjects.  American Journal of Clinical 
Nutrition.  1989; 49:337-344. 

Behall KM, & Howe JC.  Effect of long-term consumption of amylose vs amylopectin starch on 
metabolic variables  in human subjects.  American Journal of Clinical Nutrition.  1995; 61:334-
40. 



51 

 

Berggren AM, Nyman MGL, & Lundquist I.  Influence of orally and rectally administered 
propionate on cholesterol and glucose metabolism in obese rats.  British Journal of Nutrition.  
1996; 76:287-94.  

Berry CS.  Resistant starch: Formation and measurement of starch that survives exhaustive 
digestions with amyolytic enzymes during the determination of dietary fibre.  Journal of Cereal 
Science.  1986; 4:301-14. 

Beynen AC, Buechler K, & Van Der Molen AJ.  The effects of lactate and acetate on fatty acid 
and cholesterol biosynthesis by isolated rat hepatocytes.  International Journal of Biochemistry.  
1982; 14:165-9.  

Bingham SA, Day NE, Luben R, et al.  Dietary fibre in food and protection against colorectal 
cancer in the European Prospective Investigation into Cancer and Nutrition (EPIC): an 
observational study.  Lancet.  2003; 362(9388):1000.  

Bjorck I, Nyman M, Siljestrom M, Asp N-G, Eggum BO.  Formation of enzyme resistant starch 
during autoclaving of wheat starch: studies in vitro and in vivo.  Journal of Cereal Science.  
1987; 6:159-72. 

Bjorkelund C, Lissner L, Andresson S, Lapidus L, & Bengtsson C.  Reproductive history  in 
relation to relative weight and fat distribution.  International Journal of Obesity.  1996; 20:213-
219. 

Buddington RK, Buddington KK, & Sunvold GD.  The influence of fermentable fiber on the 
small intestine of the dog: intestinal dimensions and transport of glucose and proline.  American 
Journal of Veterinary Research.  1999; 60:354-58. 

Burger HG, Dudley EC, Hopper JL, Shelley JM, et al.  The Endocrinology of the menopausal 
transition: a cross-sectional study of a population-based sample.  Journal of Clinical 
Endocrinology and Metabolism  1995; 80(12):3527-45.  

Burton-Freeman B.  Dietary fiber and energy regulation.  Journal of Nutrition.  2000; 130:272S-
275S.  

Cassand P, Maziere S, Champ M, et al.  Effects of resistant starch-and vitamin A-supplemented 
diets on the promotion of precursor lesions of colon cancer in rats.  Nutrition and Cancer.  1997; 
27:53-9. 

Chapman MAS, Grahn MF, Boyle MA, Hutton M, et al.  Butyrate oxidation is impaired in the 
colonic mucosa of sufferers of quiescent ulcerative colitis.  Gut.  1995; 35:73-76. 



52 

 

Cherbut C, Ferrier L, Roze C, Anini Y, et al.  Short chain fatty acids modify colonic motility 
through nerves and polypeptide YY release in the rat.  American Journal of Physiology- 
Gastrointestinal and Liver Physiology.  1998; 275(6):1425-22. 

Chen WJL, Anderson JW,  & Jennings D.  Proprionate may mediate the hypocholesterolemic 
effects of certain soluble plant fibers in cholesterol fed rats.  Proceedings for the Society of 
Experimental Biology and Medicine.  1984; 175:215-18.  

Cherrington CA, Hinton M, Pearson GR, & Chopra I.  Short-chain organic acids at pH 5.0 kill 
Escherichia coli and Salmonella spp without causing membrane perturbation.  Journal of 
Applied Bacteriology.  1991; 70:161-65. 

Cordain L, Boyd Eaton S, Sebastian A, Mann N, et al.  Origins and evolution of the western diet: 
health implications for the 21st century.  American Journal of Clinical Nutrition.  2005; 81:341-
54. 

Correa-Matos NJ, Donovan SM, Isaacson RE, et al.  Fermentable fiber reduces recovery time 
and improves intestinal function in piglets following Salmonella typhimurium infection.  Journal 
of Nutrition.  2003; 133:1845-52.  

Danilovich N, Babu PS, Xing W, et  al.  Estrogen deficiency, obesity, and skeletal abnormalities 
in follicle-stimulating hormone receptor knockout (FORKO) female mice.  Endocrinology.  
2000; 141(11):4295-4308.  

De Deckere EAM, Kloots WJ, & van Amelsvoort JMM.  Resistant starch decreases serum total  
cholesterol and triglycerol concentrations in rats.  Journal of Nutrition.  1993; 123:2142-51. 

Deacon CF.  What do we know about the secretion and degradation of incretin hormones?  
Regulatory Peptides.  2005; 128:117-24. 

Dellongeville J, Marecaux N, Isorex D, Zylberg G, et al.  Multiple coronary heart disease risk 
factors are associated with menopause and influenced by substitutive hormonal therapy in a 
cohort of French women.  Atherosclerosis.  1995; 118:123-33. 

Devendra C, & Lewis D.  The interaction between dietary lipids and fibre in sheep.  Animal 
Production.  1974; 19:67-76. 

Ecknauer R, Sircar B, & Johnson LR.  Effect of dietary bulk on small intestinal morphology and 
cell renewal  in the rat.  Gastroenterology.  1981; 81:781-86. 

Eerlingen RC, Cillen G, & Delcour JA.  Enzyme-resistant starch. IV. Effect of endogenous lipids 
and added sodium dodecyl sulfate on formation of resistant starch.  Cereal Chemistry.  1994; 
71:170-77. 



53 

 

Englyst HN, Wiggins HS, & Cummings JH.  Determination of the non-starch polysaccharides in 
plant foods by gas-liquid chromatography of constituent sugars as alditol acetates.  Analyst.  
1982; 107:307-318. 

Englyst HN, Kingman SM, Hudson GJ, & Cummings JH.  Measurement of resistant starch in 
vitro and in vivo.  British Journal of Nutrition.  1996; 75:749-55.  

Esparza J, Fox C, Harper IT, Bennett PH, et al.  Daily energy expenditure in Mexican and USA 
Pima Indians: low physical activity as a possible cause of obesity.  International Journal of 
Obesity.  2000; 24:55-59. 

Ferguson LR, Tasman-Jones C, Englyst H, & Harris PJ.  Comparative effects of three resistant 
starch preparations on transit time and short-chain fatty acid production in rats.  Nutrition and 
Cancer.  2000; 36(2):23-37.  

Flint A, Raben A, Astrup A, & Holst JJ.  Glucagon-like peptide 1 promotes satiety and 
suppresses energy intake in humans.  Journal of Clinical Investigation.  1998; 101:515-20. 

Food Nutrition Board, Institute of Medicine.  Dietary reference intakes: Proposed definition of 
dietary fiber.   National Academy Press.  2001; Washington DC.   

Fukushima M, Ohashi T, Kojima M, et al.  Low density lipoprotein receptor mRNA in rat liver 
is affected by resistant starch of beans.  Lipids.  2001; 36:129-34.  

Gambacciani M, Ciaponi M, Cappagli B, Piaggesi L, et al.  Body weight, body fat distribution, 
and hormonal replacement therapy in early postmenopausal women.  Journal of Clinical 
Endocrinology and Metabolism.  1996; 82(2):414-17. 

Gee JM, Lee-Finglas W, Wortley JW, & Johnson IT.  Fermentable carbohydrates elevate plasma 
enteroglucagon but high viscosity is also necessary to stimulate small bowel mucosal cell 
proliferation in rats.  Journal of Nutrition.  1996; 126:373-79. 

Geisler JG, Zawalich W, Zawalich K, et al.  Estrogen can prevent or reverse obesity and diabetes 
in mice expressing human islet amyloid polypeptide.  Diabetes.  2002; 51:2158-69.  

Goni I, Garcia-Diz L, Manas E, Saura-Calixto F.  Analysis of resistant starch: a method for foods 
and food products.  Food Chemistry.  1996; 56(4):445-49. 

Grumbach MM & Auchus RJ.  Estrogen: consequences and implications of human mutations in 
synthesis and action.  Journal of Clinical Endocrinology and Metabolism.  1999; 84:4677-694.  

Grundy SM.  Obesity, Metabolic Syndrome, and Cardiovascular Disease.  JCEM.  
2004;89(6):2595-2600. 



54 

 

Hague A, Elder DJ, Hicks DJ, & Paraskeva C.  Apoptosis in colorectal tumor cells: induction by 
the short chain fatty acids butyrate, propionate and acetate and by the bile salt deoxycholate.  
International Journal of Cancer.  1995; 60:400-406. 

Haralampu SG.  Resistant starch- a review of the physical properties and biological impact of 
RS3.  Carbohydrate Polymers.  2000; 41:285-92. 

Hass R, Busche R, Luciano L, Reale E, & Engelhardt WV.  Lack of butyrate is associated with 
induction of Bax and subsequent apoptosis in the proximal colon of guinea pig.  
Gastroenterology.  1997; 112:875-81. 

Heijnen ML, van Amelsvoort JM, & Westrate JA.  Interaction between physical structure and 
amylose:amylopectin ratio of foods on postprandial glucose and insulin responses in healthy 
subjects.  Journal of Clinical Nutrition.  1995; 49:446-57. 

Heine PA, Taylor JA, Iwamoto GA, et al.  Increased adipose tissue in male and female estrogen 
receptor-alpha knockout mice.  Proceedings of the National Academy of Science USA.  2000; 
97:12729-734. 

Higgins JA.  Resistant starch: metabolic effects and potential health benefits. Journal of AOAC 
International.  2004; 87:761-8. 

Higgins JA, Higbee DR, Donahoo WT, Brown IL, et al.  Resistant starch consumption promotes 
lipid oxidation.  Nutrition and Metabolism.  2004; 1:8. 

Hillebrand JG, de Wied D, Adan RH.  Neuropeptides, food intake, and body weight regulation: a 
hypothalamic focus.  Peptides.  2002;2283-2306. 

Holst JJ.  Enteroglucagon.  Annual Review of Physiology.  1997; 59:257-71. 

Howarth NC, Saltzman E, Roberts SB.  Dietary fiber and weight regulation.  Nutrition Reviews.  
2001; 59:129-39. 

Hunter GR, Kekes-Szabo T, Treuth MS, Williams MJ, et al.  Intra-abdominal adipose tissue , 
physical activity and cardiovascular disease risk in pre- and post-menopausal women.  
International Journal of Obesity.  1996; 20:860-865.  

Jacobasch G, Schmiedl D, Kruschewski M, & Schmehl K.  Dietary resistant starch and chronic 
inflammatory bowel diseases.  International Journal of Colorectal Disease.  1999; 14:201-211. 

Jeffery RW, Hellerstedt WL, French SA, & Baxter JE.  A randomized trial of counseling for fat 
restriction versus calorie restriction in the treatment of obesity.  International Journal of Obesity.  
1995; 19:132-7. 



55 

 

Jenkins DJA, Jenkins AL, Wolever TMS, Collier GR, et al.  Starchy foods and fiber: reduced 
rate of digestion and improved carbohydrate metabolism.  Scandinavian Journal of 
Gastroenterology.  1987; 22(129):132-41.  

Jenkins DJ, Kendal CW, Augustin LS, et al.  High-complex carbohydrate or lente carbohydrate 
foods? American Journal of Medicine.  2002; 113:30S-37S.  

Jones ME, Thorburn AW, Britt KL, et al.  Aromatase-deificient (ArKO) mice have a phenotype 
of increased adiposity.  Proceedings of the National Academy of Sciences USA.  2000; 97:12735-
740. 

Kabir M, Rizkalla SW, Champ M, Luo J, et al.  Dietary amylose-amylopectin starch content 
affects glucose and lipid metabolism in adipocytes of normal and diabetic rats.  Journal of 
NutritionI.  1998a; 128:35-43.  

Kabir M, Rizkalla SW, Quignard-Boulange A, et al.  A high glycemic index starch diet  affects 
lipid storage-related enzymes in normal and to lesser extent in diabetic rats.  Journal of 
Nutrition.  1998b; 128:35-43.  

Kato H, Tillotson J, Nichaman MZ, Rhoads GG, & Hamilton HB.  Epidemiologic studies of 
coronary heart disease and stroke in Japanese men living in Japan, Hawaii and California.  
American Journal of Epidemiology.  1973; 97:372-85. 

Keenan MJ, Zhou J, McCutcheon KL, Raggio AM, et al.  Effects of resistant starch, a non-
digestible fermentable fiber, on reducing body fat.  Obesity.  2006a; 14(9):1523-34. 

Keenan MJ, Zhou J, Raggio AM, McCutcheon KL, et al.  Preliminary microarray analysis of 
genes from cecal cells of resistant starch fed rats.  Obesity.  2006b; 14 Suppl:A206. 

Klesges RC, Klesges LM, Haddock CK, & Eck LH.  A longitudinal analysis of the impact of 
dietary intake and physical activity on weight change in adults.  American Journal of Clinical 
Nutrition.  1992; 55:818-22. 

Kakolewksi JW, Cox VC, Valnstein ES.  Sex differences in body weight change following 
gonadectomy in rats.  Psychological Reports.  1968; 22:547-54. 

Kontani K, Tokunaga K, Fugioka S, Kobatke T, et al.  Sexual dimorphism of age-related 
changes in whole-body fat distribution in the obese.  International Journal of Obesity.  1994; 
18:207-12.   

Kowalczyk  J, Orskov ER, Robinson JJ,  Stewart CS.  Effect of fat supplementation on voluntary 
food intake and rumen metabolism in sheep.  British Journal of Nutrition.  1977; 37:251-57. 



56 

 

Krakower GR, Meier DA, Kissebah AH.  Female sex hormones, perinatal, and peripubertal 
androgenization on hepatocyte insulin dynamics in rats.  American Journal of Physiology, 
Endocrinology, and Metabolism.  1993; 264:E342-E347. 

Kreymann B, Williams G, Ghatei MA, & Bloom SR.  Glucagon-like peptide-1 7-36: a 
physiological incretin in man.  Lancet.  1987:2:1300-04. 

Kvietys PR & Granger DN.  Effect of volatile fatty acids on blood flow and oxygen uptake by 
the dog colon.  Gastroenterology.  1981; 80:962-69. 

Lean ME, Han TS, Seidell JC.  Impairment of health and quality of life in people with large 
waist circumferences.  Lancet.  1998; 351:853-6.  

Ley CJ, Lees B, Stevenson JC.  Sex- and menopause-associated changes in body fat distribution.  
American Journal of Clinical Nutrition.  1992; 55:950-4.  

Lissner L, Levitsky DA, Strupp BJ, Kalkwarf JH, & Roe DA.  Dietary fat and the regulation of 
energy intake in human subjects.  American Journal of Clinical Nutrition.  1987; 46:886-92. 

Liu S, Buring JE, Sesso HD, et al.  A prospective study of dietary fiber intake and risk of 
cardiovascular disease among women.  Journal of the American College of Cardiology.  2002; 
39(1):49-56.  

Livesey G.  Energy value of resistant starch.  Proceedings of the Concluding Plenary Meeting of 
EURESTA.  1994; 56-62.  

Lupton JR.  Dietary fiber and coronary disease: Does the evidence support an association.  
Current Atherosclerosis Reports.  2003; 5:500-505.  

MacFarlane S & MacFarlane GT.  Regulation of short-chain fatty acid production.  Proceedings 
of the Nutrition Society.  2003; 62(1):67-72.  

Macleod GK, Buchanan-Smith JG.  Digestibility of hydrogenated tallow, saturated fatty acids 
and soybean oil-supplemented diets by sheep.  Journal of Animal Science.  1972; 35:890-95. 

Mantzoros, CS.  The role of leptin in human obesity and disease: a review of current evidence.  
Annals of Internal Medicine.  1999; 130:671-80.  

Marlett JA, Hosig KB, Vollendorf NW, Shinnick FL, et al.  Mechanism of serum cholesterol by 
oat bran.  Hepatology.  1994; 20:1450-57. 

Maron DJ, Fair JM, & Haskell WL.  Saturated fat intake and insulin resistance in men with 
coronary artery disease.  Circulation.  1991; 84:2020-27.  



57 

 

Marshall JA, Bessesen DH, & Hamman RF.  High saturated fat and low starch and fibre are 
associated with hyperinsulinemia in a non-diabetic population: The San Luis Valley Diabetes 
Study.  Diabetologia.  1997; 40:430-438. 

Massimino SP, McBurney MI, Field CJ, Thomson ABR, et al.  Fermentable dietary fiber 
increases GLP-1 secretion and improves glucose homeostasis despite increased intestinal glucose 
transport capacity in healthy dogs.  Journal of Nutrition.  1998; 128:1786-93. 

Mathe D,  Riottot M, Rostaqui N, et al.  Effect of amylomaize starch on plasma lipoproteins of 
lean and obese zucker rats.  Journal of Clinical Biochemistry and Nutrition.  1993; 14:17-21.  

Mayer EJ, Newman B, Quesenberry CP, & Selby JV.  Usual  dietary fat intake and insulin 
concentrations in healthy women twins.  Diabetes Care.  1993; 16:1459-69. 

McBurney MI.  The gut: central organ in nutrient requirements and metabolism.  Canadian 
Journal of Physiology and Pharmacology.  1994; 72:260-65. 

McBurney MI, Massimino SP, Field CJ, Sunvold GD,  Hayek MG.  Modulation of intestinal 
function and glucose homeostasis in dogs by the ingestion of fermentable fiber.  Recent 
Advances in Canine and Feline Nutrition,  (Reinhart GA, & Carey DP, eds).  1998; pp.113-122. 
Orange Frazer Press, Wilmington, Ohio. 

Mentschel J & Claus R.  Increased butyrate formation in the pig colon by feeding raw potato 
starch leads to a reduction of colonocytes apoptosis and a shift to the stem cell compartment.  
Metabolism.  2003; 52(11):1400-5.  

Mokdad AH.  Prevalence of Obesity, Diabetes, and Obesity-Related Health Risk Factors, 2001.  
JAMA.  2003;289:76-9. 
 
Montani, JP, Antic V, Yang Z, Dulloo A.  Pathways from obesity to hypertension: from the 
perspective of a vicious triangle.  Int JObesity.  2002;26:S28-S38. 
 
Mortensen FV, Hessov I, Birke H, Korsgaad N, & Nielsen H.  Microcirculatory and trophic 
effects of short chain fatty acids in the human rectum after Hartmann’s procedure.  British 
Journal of Surgery.  1991; 78:1208-11. 

Nugent AP.  Health properties of resistant starch.  Nutrition Bulletin.  2005; 30:27-54. 

Ogden CL, Carroll MD, Curtin LR, McDowell MA, et al.  Prevalence of Overweight and 
Obesity in the United States, 2003-2004.  JAMA.  2006;295:1549-1555.  
 
Oli MW, Petschow BW, & Buddington RK.  Evaluation of fructooligosaccharide 
supplementation of oral electrolyte solutions for treatment of diarrhea. Recovery of the intestinal 
bacteria.  Digestive Diseases Sciences.  1998; 43:138-47. 



58 

 

Parker DR, Weiss ST, Troisi R, Cassano PA, et al.  Relationship of dietary saturated fatty acids 
and body habitus to serum insulin concentrations: the Normative Aging Study.  American 
Journal of Clinical Nutrition.  1993; 58:128-36.  

Pelleymounter MA, Cullen MJ, Baker MB, et al.  Effects of the obese gene product on body 
weight regulation in ob/ob mice.  Science. 1995; 269:540-46.  

Poehlman ET, Toth MJ, & Gardner AW.  Changes in energy balance and body composition at 
menopause: a controlled longitudinal study.  Annals of Internal Medicine.  1995; 123:673-5. 

Queenan KM, Stewart ML, Smith KN, Thomas W, et al.  Concentrated oat β-glucan, a 
fermentable fiber, lowers serum cholesterol in hypercholesterolemic adults in a randomized 
controlled trial.  Nutrition Journal.  2007; 6:6. 

Raben A, Tagliabue A, Christensen NJ, Madsen J, et al.  Resistant starch: the effect on 
postprandial glycemia, hormonal response and satiety.  American Journal of Clinical Nutrition.  
1994; 60:544-51.  

Reardon K, & Tappenden KA.  Enhancement of intestinal adaptation with short-chain fatty acid 
supplemented total parenteral nutrition in neonatal piglets.   Journal of the Federation of 
American Societies for Experimental Biology.  1999; 13:A217. 

Reimer RA, & McBurney MI.  Dietary fiber modulates intestinal proglucagon messenger 
ribonucleic acid and postprandial secretion of glucogon-like peptide-1 and insulin in rats.  
Endocrinology.  1996; 137:3948-56.  

Reimer RA, Thomson , Rajotte RV, Basu TK, et al.  Proglucagon messenger ribonucleic acid 
and intestinal glucose uptake are modulated by fermentable fiber and food intake in diabetic rats.  
Nutrition Research.  2000; 20(6):851-64.  

Rolls BJ, Castellanos VH, Halford JC, Kilara A, et al.  Volume of food consumed affects satiety 
in men.  American Journal of Clinical Nutrition.  1998; 67:1170-77.  

Rombeau JL, & Kripe SA.  Metabolic and intestinal effects of short-chain fatty acids, and dietary 
fiber.  Journal of Parenteral and Enteral Nutrition.  1990; 14:181S-185S. 

Roy HJ, Keenan MJ, Zablah-Pimentel E, Hegsted M, et al.  Adult female rats defend 
“appropriate energy intake after adaptation to dietary energy.  Obesity Research.  2003; 11:1214-
1222. 

Russel JB, & Diez-Gonzales F.  The effects of fermentation acids on bacterial growth.  Advanced 
Microbial Physiology.  1998; 39:205-34. 



59 

 

Schneeman BO, & Tietjen J.  Dietary fiber. In: Modern Nutrition in Health and Disease, 8th ed.  
(Shills ME, Olson JA, & Shike M, eds).  1994; pp. 89-100.  Lea and Febiger, Philadelphia, PA.  

Schrauwen P, & Westerterp KR.  The role of high-fat diets and physical activity in the regulation 
of body weight.  British Journal of Nutrition.  2000; 84:417-427. 

Segain JP, Raingeard de la Bletiere D, Bourreille A, et al.  Butyrate inhibits inflammatory 
responses through NFkappaB inhibition: implications for Crohn’s disease.  Gut.  2000; 
47(3):397-403. 

Seidell JC.  Dietary fat and obesity: an epidemiologic perspective.  American Journal of Clinical 
Nutrition.  1998; 67 (suppl):546S-50S. 

Shen L, Keenan MJ, Martin RJ, Tulley RT, et al.  Dietary resistant starch increases hypothalamic 
POMC expression in rats.  Obesity.  2008. Doi:10.1038/oby.2008.483. 

Shimizu H, Ohtani K, Kato Y, et al.  estrogen increases hypothalamic neuropeptide Y (NPY) 
mRNA expression in ovariectomized obese rat.  Neuroscience Letters.  1996; 204:81-84.  

Shimizu H, Shimomura Y, Nakanishi Y, et al.  Estrogen increases in vivo leptin production in 
rats and human subjects.  Journal of Endocrinology.  1997; 154:285-292.  

Silvi S, Rumney CJ, Cresci I, et al.  Resistant starch modifies gut microflora and microbial 
metabolism in human flora-associated rats inoculated with faeces from Italian and UK donors.  
Journal of Applied Microbiology.  1999; 86:521-30. 

Slavin JL, Nelson NL, McNamara EA, & Cashmere K.  Bowel function of healthy men 
consuming liquid diets with and without dietary fiber.  Journal of Parenteral and Enteral 
Nutrition.  1985; 9:317-21. 

Sotnikova EV, Martynova EA, Gorbacheva EV, et al.  Resistant starches and immune system.  
Voprosy Pitaniia.  2002; 71(5):34-8.  

Stephen A.  Starch and dietary fiber: their physiological and epidemiological interrelationships.  
Cancer J Physiol.  1991;69:116-120. 
 
Stevenson JC, Crook D, Godsland IF, et al.  Hormone replacement therapy and the 
cardiovascular system. Nonlipid effects.  Drugs.  1994; 47:35-41. 

Storlein LH, James DE, Burleigh KM, Chisholm DJ, & Kraegen EW.  Fat feeding causes 
widespread in vivo insulin resistance, decrease energy expenditure, and obesity in rats.  
American Journal of Physiology.  1987; 251:E576-E583. 



60 

 

Strader AD, & Woods SC.  Gastrointestinal hormones and food intake.  Gastroenterology.  2005; 
128:175-91. 

Tappenden KA, Thomson ABR, Wild GE, & McBurney MI.  Short-chain fatty acids-
supplemented total parenteral nutrition enhanced functional adaptation to intestinal resection in 
rats.  Gastroenterology.  1997; 112:792-802.  

Tapsell LC.  Diet and metabolic syndrome: where does resistant starch fit in?  Journal of the 
Association of Analytical Chemists International.  2004; 87(3):756-60.  

Topping DL & Clifton PM.  Short-chain fatty acids and human colonic function: roles of 
resistant starch and nonstarch polysaccharides.  Physiological Reviews.  2001; 81(3): 1031-64. 

Topping DL, Fukushima M, & Bird AR.  Resistant starch as a prebiotic and symbiotic: state of 
the art.  Proceedings of the Nutrition Society.  2003; 62:171-6. 

Toth MJ, Tchernof A, Sites CK, & Poehlman ET.  Effect of menopausal status on body 
composition and abdominal fat distribution.  International Journal of Obesity.  2000; 24:226-31.  

Tremblay A, Plourde G, Despres J-P, & Bouchard C.  Impact of dietary fat content and fat 
oxidation on energy intake in humans.  American Journal of Clinical Nutrition.  1989; 49:799-
805. 

Tremollieres FA, Pouilles JM, Ribot CA.  Relative influence of age and menopause on total and 
regional body composition changes in postmenopausal women.  American Journal of Obstetrics 
& Gynecology.  1996; 175:1594-1600. 

Tucker LA, & Kano MJ.  Dietary fat and body fat: a multivariate study of 205 adult females.  
American Journal of Clinical Nutrition.  1992; 56:61-22. 

Valezquez OC, Lederer HM, & Rombeau JL.  Butyrate and the colonocytes, implications for 
neoplasia.  Digestive Diseases Sciences.  1996; 41:727-39.  

Van Horn L.  Fibers, lipids, and coronary heart disease.  Circulation.  1997;95:2701-4. 
 
Wellman NS, Freidberg B.  Causes and consequences of adult obesity: health, social, and 
economical impacts in the United States.  Asia Pac J Clin Nutr.  2002;11:S705-9. 

Willet WC.  Dietary fat and obesity: an unconvincing relation.  American Journal of Clinical 
Nutrition.  1998; 68:1149-50. 

The Writing Group for the Pepi Trial.  Effects of estrogen and estrogen/progestin regimens on 
heart disease risk factors in postmenopausal women. The postmenopausal estrogen/progestin 
interventions (PEPI) trial.  Journal of American Medical Association.  1995; 273:199-208. 



61 

 

Woods SC, Seeley RJ, Rushing PA, D’Alessio D, Tso P.  A controlled high-fat diet induces an 
obese syndrome in rats.  Journal of Nutrition.  2003; 133:1081-87.  

Younes H, Levrat MA, Demige C, et al.  Resistant starch is more effective than cholestyramine 
as a lipid-lowering agent in the rat.  Lipids.  1995; 30:847-53.  

Younge GP & Le Leu RK.  Resistant starch and colorectal neoplasia.  Journal of the Association 
of Official Analytical Chemists International.  2004; 87(3):775-86.  

Zamboni M, Armellini F, Milani MP, DeMarchi M, et al.  Body fat distribution in pre- and post-
menopausal women: metabolic and anthropometric variables and their inter-relationships.  
International Journal of Obesity.  1992; 16:495-504.  

Zhou J, Hegsted M, McCutcheon KL, Keenan MJ, et al.  Peptide YY and proglucagon mRNA 
expression patterns and regulation in the gut.  Obesity.  2006; 14:683-89. 

Zhou J, Keenan M, Raggio A, Shen L, et al.  Dietary resistant starch increased energy 
expenditure and improved glucose tolerance in C57BL/6J mice.  2008. In Press.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 



62 

 

APPENDIX A: 

STUDY PROTOCOL 

PENNINGTON BIOMEDICAL RESEARCH 
CENTER 

INSTITUTIONAL ANIMAL CARE AND USE COMMITTEE 
 

 

GUIDELINES FOR SUBMISSION OF NEW PROTOCOL FORMS AND EXISTING PROTOCOL 
AMENDMENTS FOR IACUC REVIEW  

 

 

NEW PROTOCOL 
A new protocol form must be filled out and submitted to the IACUC: 

 

1) to receive approval to begin experiments/procedures using laboratory animals; 

 

2) if there are changes in major operative procedures in previously approved protocol (the protocol is not 

assigned a new number); or 

 

3) if there are changes in species in a previously approved protocol (the protocol is not assigned a new 

number). 

 

 
PROTOCOL RENEWAL 

As required by the Public Health Service Policy all protocols must be reviewed by the IACUC every three years. The 

term renewal refers to IACUC action on a previously approved, but EXPIRING protocol.  A new protocol form must 

be submitted for a renewal at least every three years.  Once renewed and approved by the IACUC, the protocol is 

assigned a new number. 
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PROTOCOL AMENDMENTS 
A protocol may be amended if the original intent of the protocol does not change.  A new protocol form is 

generally not necessary; instead, simply submit a letter to the IACUC, citing the protocol number and title, and 

outlining the change(s) requested.  For questions concerning protocol amendments contact the IACUC chairman 

or attending veterinarian.  Examples of changes that may be made by a protocol amendment include: 

 

1) addition of personnel to a protocol;  

2) changes in drugs or drug dosages; 

3)   changes in animal numbers; 

4)   changes in group designations; or 

5)   changes in time length of experiments. 
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INSTRUCTIONS FOR USING ANIMAL CARE AND USE PROTOCOL FORM: 

 

1. The most recent version of the IACUC Animal Care and Use Protocol form is available 

on PINE under IACUC.  

 

2. Retrieve the form and save the file in another location on your computer or network 

space:  In the toolbar, select [File] and select [Save as…] . Give the file any name you 

prefer. 

 

3. Gray boxes are shown for inserting responses to the questions. Text may be inserted 

by placing the cursor at the return and typing or pasting text.  Color has been used to 

highlight especially important areas. The form will print in black if the usual LaserJet 

printer is used. 

 

4. The IACUC encourages the use of tables, flow diagrams etc. for some responses.  

However, Word® Forms does not allow these functions.  Tables and diagrams may be 

created and attached to the protocol where appropriate. 

 

5. After completing the form, you may want to remove excess hard returns between 

sections in order to limit the finished protocol form to a minimum number of pages.  

 

6. Should you encounter any problems while using this form, please contact Nancy 

Pease at ext.  3-2577. 

 

7. Submission instructions: Form must be typed.  (Use additional sheets if necessary and 

attach to this form).  SUBMIT ORIGINAL to the IACUC Administrator‘s Office, Rm. 

B1022. 

 

8. Delete the first two pages of instructions prior to saving your final version. 

 
Pennington Biomedical Research Center 
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PROTOCOL FOR ANIMAL CARE AND USE    
 

SECTION 1: Investigators 
 

Principal Investigator 

Roy J. Martin 

Office Phone: 

578-2284 

Home Phone: 

766-2684 

Email Address 

martinrj@pbrc.edu 

Co-Investigator: 

Jun Zhou 

Office Phone: 

763-2531 

Home Phone: 

924-6308 

Email Address 

zhouj@pbrc.edu 

 

SECTION 2. Project Title:  

 

The role of PYY and GLP-1 in energy balance with resistant starch fed animals 

 

SECTION 3.  Funding Source:  Is this protocol associated with a grant or contract?  

  Yes        No    

Funding agency: 
NIH 

Grant or contract 
title: 

Dietary Resistant Starch: The role of PYY and GLP-1 in energy 
balance  

  Pending         Funded 
 
SECTION 4.  Investigator’s Statement regarding the assurance for the Humane Care 

and Use 
 of Vertebrate Animals. 
By signing this form, I agree to abide by Pennington Biomedical Research Center’s Policy for 
the Care and Use of Animals.  This project will be in accordance with the NIH “Guide for the 
Care and Use of Laboratory Animals” (except as explained in the accompanying protocol), and 
the PBRC Animal Welfare Assurance on file with the U.S. Public Health Service. I further assure 
the Committee that: 
1) I will abide by all federal, state, and local laws and regulations governing the use of 

animals in teaching and research. 
2) The investigators and technicians are or will be adequately trained to perform the 

research techniques required in these studies. 
3) I will use the fewest number of animals required to produce the appropriate statistical 

power for this study. 
4) The research proposed herein is not unnecessarily duplicative of previously reported 
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research. 
5) For those completing Section 14.2 and 14.3:  I have reviewed the pertinent scientific 

literature and the sources and/or databases as noted in Section 14, and have found 
no valid alternative to any procedures described herein which may cause more than 
momentary pain or distress, whether it is relieved or not. 

Roy Martin 
Professor  

Type Name of Principal Investigator  Title/Rank Date 

  

Principal Investigator Signature  

Jun Zhou Post-Doc  

Type Name of Co-Investigator Title/Rank Date 

  

 Co-Principal Investigator Signature  

Animal housing and veterinary care must be coordinated with Comparative Biology. 

  

Signature of Comparative Biology Representative (required) 

 

SECTION 5. Animal Species: 
 

Species:    Mouse     Rat           Other Strain: C57BL/6J  

Sex:          Male       Female     Either      
Both Weight (or age for rodents): six weeks old 

Source:     Commercial Vendor     PBRC Breeding Colony       Collaborator   

 

Species:    Mouse     Rat           Other Strain: Sprague Dawley 

Sex:          Male       Female     Either      
Both Weight (or age for rodents): eight weeks old  

Source:     Commercial Vendor     PBRC Breeding Colony       Collaborator   
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Species: Mice  Rats  Other 

Number of animals needed:       

Year 1: →200  340       

Year 2: →580             

Year 3: →                 

TOTAL: →780  340       

Maximum # needed at one time: 200  100       

 
SECTION 6. Abstract Plan of Research/Teaching:  In the space below, using non-
technical       terms provide a brief (1 – 2 paragraphs) layman’s description of the 
project.  Include the aim of the study and how this study may benefit human or animal 
health or advance scientific understanding of biological processes. 
 

 
Resistant starch is a dietary carbohydrate that resists digestion in the small intestine 
and is fermented in the large intestine. Our preliminary studies showed that feeding 
resistant starch significantly altered energy balance and decreased body fat in rodents.  
Additionally, resistant starch fed rodents had higher gene expressions for peptide YY 
(PYY) and proglucagon (a precursor of glucagon-like peptide-1, GLP-1) in the gut, and 
higher serum levels of PYY and GLP-1.  PYY and GLP-1 are satiety peptides secreted 
from the gut.  Administration of either PYY or GLP-1 reduces food intake.  Thus, we 
hypothesize that the decreased body fat is due to increased PYY and/or GLP-1 
(PYY/GLP-1) in resistant starch fed animals.  The hypothesis will be tested in three 
specific aims. First, we will block PYY/GLP-1 action to determine if PYY and GLP-1 are 
required for resistant starch to decrease body fat.  This will be achieved by using 
PYY/GLP-1 receptor antagonists or by using the PYY/GLP-1 receptors knock out mice.  
Second, we will investigate if PYY/GLP-1 decrease body fat via visceral nerves or the 
brain. The peripheral sites of action for PYY/GLP-1 will be tested by destroying visceral 
afferent neurons to block signals to the brain.  Finally, we will test if resistant starch 
decreases body fat in robust obese animal models.  A diet-induced obesity model and a 
genetic obese model will be used to see if resistant starch can prevent obesity.  These 
experiments will reveal that PYY and GLP-1 are part of the mechanism of resistant 
starch on reducing body fat.  Thus, a simple dietary intervention can increase levels of 
these peptides and reduce body fat naturally without surgery or pharmaceutical means.  
This dietary approach is potentially of great therapeutic importance in the prevention of 
human obesity.  
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SECTION 7.  Special Husbandry Requirements:  Do your animals have special 
needs to be addressed by Comparative Biology?   
 

  Yes  No 

 
If yes, please complete each section that is different from the standard of care for rodents. The 
standard of care is: plastic shoebox, corn cob bedding, rodent chow, ≅21-22°C room 
temperature, ≅55% humidity, and tap water. 
TEMPERATURE 
RANGE:   21-22°C room 

temperature   
HUMIDITY:  

 55 (%) 
LIGHT CYCLE (hours light/hours dark) 

12/12 

CAGING 

Type: 1) Shoe boxes 
for breeding mice 

Size:  

single /multi Filter tops required?   Y      N 

BEDDING/LITTER 

Type: corncob and 

nesting material 

Autoclaved?  

  Y    N Changes/week:  3 

CAGING 

Type: 2) appropriate 

SS hanging wire cages 

for  experimental mice 

and rats Size: Single Filter tops required?   Y      N 

BEDDING/LITTER 

Type: pan liners and 

weigh backs 

Autoclaved?  

  Y    N 

Changes/week:  1 

By investigator only* 

WATER 
Sterile:  Y    

 N 
De-ionized:  Y  
N 

Acidified:  Y    
 N 

Tap:  Y     
N 

Other:  

* weigh backs will be changed 3 to 7 times per week by investigator 

when measuring spillage. Pan liners will be changed 1 time per week 

by investigator 

DIET 

Special Feeding Requirements: 

 Investigator will mix custom diets (see table below) and feed 
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experimental animals  

3-7 times per week. 

 Breeder mice will be provided breeder chow by DCB. 

IF USING WIRE BOTTOM CAGES, PLEASE JUSTIFY: 

We will measure food intake in our animals. Hanging wire cages are required so that we can accurately 
account for food spillage. As experiment period could last as long as 12 weeks, a PVC tube will be placed 
in each mouse cage to reduce the stress caused by wire cage.  Breeder pairs will be multi-housed in 
shoeboxes. Prior to due date, males will be removed and either place with an available female or single 
housed in shoe boxes. Females will be singled housed with neonates until weaned. Weanlings will remain 
in shoe boxes until placed in experiments.  

OTHER SPECIAL NEEDS: 

Table 1. Experimental Diet Composition 

Ingredient 
Control 
(g/kg) 30% RS(g/kg) 

High Fat Control 
(g/kg) 

High Fat 27% RS 
(g/kg) 

Casein 200.0 200.0 200.0 200.0 

Sucrose  100.0  100.0  50.0  50.0 

Cornstarch - Amioca® 

 (100% amylopectin) 424.5  384.5  

Cornstarch - Hi-Maize® (high 
amylose)  530.7  480.7 

Cellulose fiber 156.2   50.0 96.2    

Soybean oil  70.0   70.0 100.0 100.0 

Vegetable shortening   120.0 120.0 

Mineral Mix (AIN-93G)  35.0   35.0  35.0   35.0 

Vitamin Mix (AIN-93)  10.0   10.0  10.0   10.0 

Choline Chloride    1.3     1.3    1.3     1.3 

L-Cystine    3.0     3.0    3.0     3.0 

Total  (3.27 kcal/g)  (3.27 kcal/g)  (4.2 kcal/g)  (4.2 kcal/g) 

Protein  22.2% kcal 22.2% kcal 17.2% kcal 17.2% kcal 
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Carbohydrates 59.7% kcal 59.7% kcal 38.1.7% kcal 38.1% kcal 

Fat 18.1% kcal 18.1% kcal 44.8% kcal 44.8% kcal 

SECTION 8.  Hazardous Materials:  Will zoonotic/recombinant agents or hazardous 
chemical agents be PRESENT IN THE ANIMAL ROOM?      

 YES        NO 

If “yes” complete the appropriate section(s) below. 

8.1 Zoonotic/Recombinant Agents:  If zoonotic (infectious to humans) or 
recombinant agents will be used, this protocol request must be submitted to the 
LSU Institutional Biological Recombinant DNA Safety (IBRDS) Committee for 
approval PRIOR TO CONSIDERATION by the IACUC.  Submit copy of the 
IBRDS approval letter to the IACUC Administrator with the animal protocol. 

 

List 
Agent(s):         

 

IBRDS Approval Date:       PBRC Safety Officer:       

 

8.2 Hazardous Chemicals: If hazardous chemical are to be used in the animal 
room, submit the proposal with Appendix A completed, to the Biosafety 
Committee for prior approval.  SOPs for some commonly used materials are 
available on PINE. 

 

List 
Chemical(s):         

 

Biosafety Committee Approval Date:        

 

8.3 Radioisotopes:  Use of radioisotopes is not allowed in Comparative Biology. 
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Will radioisotopes be used in 
animals?     YES        NO 

List Radioisotopes:       

Are you certified by the Radiation Safety 
Committee?       YES        NO 

Where (Room #’s) will radioisotopes be used in animal 
experiments?       

Is this a terminal experiment?  YES        NO 

  

If you have any questions regarding approval of the use of zoonotic/recombinant 
agents, hazardous chemicals, or radioisotopes see the PBRC Safety Office @ 
3-2667. 

 

SECTION 9. Type of Project: (check the appropriate box) 

 TYPE A - Pain or distress will not be induced; animals will only be used for 
injections, collections, or procedures causing nothing more than minor 
discomfort; or will be humanely euthanized prior to induction of pain or distress. 

 TYPE B - Pain or distress will be relieved by appropriate therapy. 

 TYPE C - Drug intervention for pain or distress would interfere with the protocol.  
Specific scientific justification MUST be provided below for Type C protocols.  

Justification for Type C protocol:   
none 

 

 
SECTION 10.  Summary of Procedures:  Answer each of the following.  If a section is 
not applicable, indicate so by “N/A”.  Your target audience is a faculty member from a 
discipline unrelated to yours.   
 
10.1. Rationale: Explain your rationale for animal use.  Briefly explain why should this 

study be done and what hypothesis/es will be tested? 
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Resistant starch has been used as a dietary carbohydrate in humans.  However, the 

effects of reducing body fat by resistant starch are equivocal due to the complexity of 

human dietary studies.  Using rodents to study the effects of resistant starch will allow 

control of the genetic verities, daily activity and dietary components.  Using knock out 

mice could allow us to study the mechanism of resistant starch on reducing body fat.  

The results of our study will provide the important mechanistic information on how 

resistant starch reduces body fat.  More specifically, if resistant starch reduce body fat 

through increase in secretion of PYY and GLP-1 in the gut. 

 
10.2. Species Selection: How and/or why you selected the animal species indicated? 

 
 
 
 

10.3. Experimental Design:  Provide a concise description of the proposed use of animals.   
This description should allow the IACUC to understand the experimental course of each 
group of animals from its entry into, until the endpoint of the experiment.  A flow chart 
(timeline/sequence), diagram, and/or a table (see note below) indicating animal numbers 
and group assignments are STRONGLY recommended to help the IACUC understand 
what is proposed.  Include experimental procedures and any physical, chemical, or 
biological agents (name, dose, volume, route, and frequency) that may be 
administered.  Details of specific nonsurgical and surgical procedures should be provided 
in Sections 10.5 and 10.6 respectively.  Form Note:  Due to the difficulty of inserting 
tables and flow charts/diagrams directly into the form consider creating these in Word 
and attaching them to the end of protocol. 
. 
Animal number and timeline for proposed studies is listed below. 
 
Experiment                Animal number                                Year                             Length 
Expt. 1.                      140 SD rats                                          1                                 10 days 
Expt. 2                       100 SD rats                                          1                              Six weeks 
Expt. 3                       100 SD rats                                          1                              Six weeks 
Expt. 4                        80 mice                                               2                               12 weeks 
Expt. 5                       100 mice                                              1                               12 weeks 
Breeding mice  
for Expt. 6                  100 mice                                              1                                                
Breeding mice  
for Expt. 7                  100 mice                                              2                                                
Expt. 6                        200 mice                                              2                                12 
weeks 
Expt. 7                        200 mice                                              2                                12 
weeks 
 

Mice and rats are selected because these animals are commonly used for mechanistic studies on 
body weight regulation and energy balance. 
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Experiment 1.  Determine the timing of sample collection. 
       We will feed two groups of SD male rats with either control or resistant starch diet 
for ten days.  At the end of Day 10, the rats will be killed by decapitation at 0, 2, 4, 8, 12, 
16, and 20 hours after the beginning of the dark cycle (ten rats for each time points for 
each group).  The blood, brain and tissues from the gut will be collected from each rat.  
PYY/GLP-1 expression levels in the blood and gut will be measured for each rat.   
 
Experiment 2.  Will injecting both Y2R and GLP-1R antagonists simultaneously in 
rats block the action of both PYY and GLP-1? 
        BIIE0246 is a well-established PYY receptor antagonist and des-His1 Glu9-
exendin-4 is a GLP-1R antagonist.  Both antagonists have been used safely in mice and 
rats at the dosage described below for PYY and GLP-1 functional studies. (1-7)  
Protocol:  One hundred male SD rats will be divided into four weight matched groups: 

(1) saline, (2) BIIE0246 (2.0ug/g body weight, dissolved in 10% DMSO of 
saline i.p.), (3) des-His1 Glu9-exendin-4 (0.23ug/g body weight, dissolved in 
saline, i.p.) and (4) BIIE0246 plus des-His1 Glu9-exendin-4. The injection 
dosages and route will be the same as group (2) and (3).  The injection volume 
for all groups will be 0.2ml/100g body weight and the injection frequency will 
be once per day.  Each injection group will be subdivided into resistant starch 
fed group and control diet fed group (12 rats for each sub-group).  Food intake 
and body weight for each rat will be measured three times per week.  At the 
Week 5 after the first injection, all rats will be subjected to measured body fat 
by NMR. The experiment will be terminated six weeks after the start of 
injections.  All rats will be killed by decapitation and their blood, gut, fat 
depots will be collected.  

 
Experiment 3.  Test if PYY & GLP-1 decrease body fat via visceral nerves or the 
brain. 
       Visceral afferent nerves from the gastrointestinal tract carry important signals to the 
brain to control energy balance and body fat.  Thus, we will treat rats with capsaicin to 
destroy visceral afferent neuron and determine if the effects of resistant starch can be 
abolished.  Capsaicin has been used traditionally in study the involvement of visceral 
sensory neurons (1, 8-10).   
Protocol:  One hundred male SD rats, weighing 150-180g, will be fed the control diet a 

week before sub-grouped into capsaicin or vehicle treatment.  Capsaicin-treatment 
consists of 3 injections of progressively increasing doses over a period of 3 days, 
each under gaseous anesthesia. Rats will be anesthetized with isoflurane and 
doses of 12.5, 30, and 75 mg/kg of capsaicin will be injected ip. The first and 
second injections typically result in temporary respiratory arrest, but breathing 
will restart spontaneously or with the help of gentle chest massage. The entire 
procedure is carried out under deep Isoflurane anesthesia. Ten minutes after 
resumption of spontaneous breathing, anesthesia is discontinued and animals 
allowed to recover. At the highest dose on the third day, there is usually no 
respiratory arrest. Capsaicin will be dissolved in 10% ethanol/10% Tween 80 and 
sterile saline, and delivered at 0.6 ml/100g for the highest dose. For control 
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treatment, only the vehicle is injected.  Two days after the last capsaicin or 
vehicle treatment, a CCK feeding suppression test will be conducted to confirm 
that capsaicin-sensitive visceral afferents have been destroyed by capsaicin 
treatment.  One day after the last CCK feeding suppression test, both vehicle 
treated and capsaicin treated rats will be stratified by weight and assigned to 
either the control diet, or the resistant starch diet for a six-week study.  Body 
weight and food intake will be measured three times per week.  Four days before 
the end of the study, gut transit time will be measured.  At the end of the study, 
the all rats will be killed by decapitation.  The blood, fat depots, gut and brain will 
be collected. 

   CCK feeding suppression test to confirm destroying capsaicin sensitive visceral 
afferents  
                 CCK suppresses food intake via visceral afferents.  Thus, administration of 

exogenous CCK will decrease food intake in control rats but not in capsaicin 
treated rats.  All rats will be fasted overnight.  In the morning, CCK-8 (6ug/kg 
body weight, dissolved in saline) or saline will be injected (i.p. 0.2ml/100g body 
weight) into rats 30 minutes before feeding. One-hour food intake will be 
measured for all rats.  Half the rats of each treatment group (capsaicin or vehicle) 
will receive CCK first and the other half will receive saline first, with tests 3 days 
apart. Saline treatment will be used to measure normal food intake after an 
overnight fast. CCK treatment should not decrease food intake in capsaicin treated 
rats but should decrease more than 50% food intake in control rats. It there are 
problems with CCK feeding suppression test, a sucrose solutions test will be used 
as an alternative to confirm the destroying capsaicin sensitive visceral afferents.  

   A sucrose solution test to confirm the destroying capsaicin sensitive visceral 
afferents(9) 
                   Three days before the first exposure to sucrose, all rats will be offered daily 

the 10% sucrose solution and allowed to lick for 10 seconds (<0.2ml).  The 
purpose of this training is to eliminate any neophobia toward the new food and 
source but without allowing significant ingestion and its metabolic consequences.  
By the fourth day, all rats immediately approached the spout and stared drinking.  
The 10% test sucrose solution will be given in the morning between 8:30 and 
11:00am in the bottle attached to the cage front.  Intake levels for each rats will be 
measured at 30 minutes and 60 minutes after offering the test sucrose solution. 
Capsaicin treated rats should over consumption sucrose solution when compared 
with controls.   

   Measurement of gut transit time(11, 12): 
                  Each rat will be fed a bolus (2.5 g) of the appropriate experimental diet mixed 

with glass beads (10 mg; diameter range 150-170um) at midnight. The rats will be 
fasted (with free access to water) for 12 h before feeding the boli and all the boli 
should be eaten completely. One hour later, rats will be given free access to food 
again. Six hours after feeding the boli, fecal samples will be collected in glass 
scintillation vials every 2 h up to 30 h after feeding and then every 6 h up to 48 h 
after feeding. The gut transit time will be measured by counting the rate of glass 
beads in the fecal sample.  
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Experiment 4:  Determine if resistant starch decreases body fat in a genetically obese mice 
model 
       Intracerebroventricular injection of PYY or GLP-1 have decreased food intake in 
lean and obese mice and their action is additive.  Therefore we will determine if the 
increased plasma levels of both PYY and GLP-1 in resistant starch fed mice are sufficient 
to reduce body fat in ob/ob mice. 
Protocol:  Forty ob/ob (B6.V-Lepob/J) mice and forty of their lean (Lepob heterozygote) 

littermates will be obtained from Jackson Lab and fed the resistant starch or 
control diet for 12 weeks. Body weight and food intake will be measured three 
times per week.  Body fat will be measured at the week 0, 6, 11, when diet 
treatment starts.  At the end of 12 weeks, all mice will be decapitated and blood, 
fat depots will be collected. 

 
Experiment 5: Test if resistant starch decreases body fat in a diet induced obesity 
mice model 
        C57BL/6J mice is susceptible to long-term high fat induced obesity.  Furthermore, it 
has been shown that injections of PYY and GLP-1 reduce food intake in this model of 
obesity. 
Protocol: one hundred male C57BL/6J mice will be divided into four groups and fed one 

of following four diets. 1) Control diet, 2) resistant starch diet, 3) high fat control 
diet , and 4) high fat resistant starch diet for 12 weeks. Body weight and food 
intake will be measured three times per week.  Body fat will be measured at the 
week 0, 6, 11, when diet treatment starts.  At the end of 12 weeks, all mice will be 
decapitated and blood, fat depots will be collected. 

 
Experiment 6: and 7 will determine if PYY/GLP-1 receptors are required for resistant 
starch to decrease body fat.  We will use Y2R knock out mice and GLP-1R knock out 
mice to test our hypothesis.  GLP-1R knock out mice are currently available in PBRC 
comparative biology facility and we have obtained the permission to breed them from Dr. 
Drucker.  The Y2R knock out mice will be obtained from Dr. Herbert Herzog.  As Y2R 
knock out and GLP-1R knock out mice are homozygoteous, all progeny will be used to 
replenish the breeding colony or the experiments. .  However, we will genotyping retired 
breeding mice to confirm the correct genotype.  We will also breeding C57Bl/6J mice at 
the same condition and use these mice as inbreed control for the experiment 6: and 7. 
Breeding strategy. 

Initial breeding will be set up with one male for 3 females in shoebox cages. 

Once pregnancy is evident, female mice will be are single housed in shoe box cages with 

corncob bedding and nesting material until pups are weaned at 21 days. Male and 

female progeny mice will be used to replenish the breeding colony. We expect 6 to 10 

mice per litter, thus allowing for 2 breedings of Generation I to produce a minimum of 

18 females and 6 males. The synchronized timed breeding of these progeny should 

produce adequate numbers of each type for experiments 6 and 7.  If enough Generation 

III progeny are not produced for experiments 6 and 7, then a second breeding of 

Generation II will be initiated. Both male and female mice will be used in these 
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experiments to limit the time needed achieve adequate numbers for all experiments.  A 

small number of the unneeded weanlings will be genotyped to determine if cross 

breeding to produce Y2R
-/- 

/ GLP-1R
-/- 

double knockout mice is possible.  Any correct 

genotyped mice will be held for cross breeding. A separate protocol would be written 

for this. 

  

Figure:  Breeding strategy for each breeding set: 

 

 

 

 

 

 

 

 

 

Generation      I:    Initial breeding group 3 females / one male 

Generation    IIa:   First breeding -groups set up with all progeny  

                      IIb:   Second breeding -groups set up with all progeny  

Generation    III:    breeding from IIa and IIb progeny timed to coincide  

 

Number of animals: 200 

100 C57Bl/6J controls: 2 breeding sets (to produce 300 male or female for Expt. 

6, 7) 

50 Y2R
-/- 

knock out: 1 breeding set  (to produce 150 male or female for Expt. 6 ) 

Male

Female

Timed breeding for experiments 6 and 7

Male

Female

Timed breeding for experiments 6 and 7
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50 GLP-1R
-/-

 knock out: 1 breeding set (to produce 150 male or female for Expt 7) 

  
 Retired breeders and extra weanlings will be used to determine optimum dosages 
and for genotyping 
 
 
 
 
 
 
 
Experiment 6  Will injecting the GLP-1R antagonist into Y2R null mice block the 
action of both GLP-1 and 
PYY? 
 
Protocol: Y2R null mice and 
their wild type littermates 
will be obtained from Dr. 
Herbert Herzog.  Forty Y2R 
null mice and forty wild 
type littermates (6-week old 
males and females) will 
have free access to the 
control diet and water for a 
week. Body weight and food 
intake will be measured 
daily.  At the end of one 
week of baseline measurements, the mice in each genotype group will be divided into 
two subgroups:  Saline-injected and GLP-1R antagonist-injected (des-His1 Glu9-
exendin-4, 2.33ug/0.1ml/10g body weight, dissolved in saline).  The injection (i.p.) will 
be performed daily.  Each injection group will be further subdivided into two subgroups:  
one subgroup will be fed the resistant starch diet and the other group will remain on the 
control diet.  Body weight and food intake will be measured three times per week and 
body fat will be measured every ten days.  The experiment will end one week after the 
body fat becomes significantly lower in the saline-injected wild type mice fed resistant 
starch as compared with the same genotype mice but fed the control diet.  This 
significantly lower body fat in resistant starch fed mice will occurred within 12 weeks 
from our previous experiment results.  At the end of study, all mice will be killed by 
decapitation and their blood, brain, fat depots, and gut will be collected. 
 
Experiment 7:  Will injecting 
the Y2R antagonist into the 
GLP-1R null mice block the 
action of both PYY and GLP-1? 

Resistant starch diet

Control diet

Resistant starch diet

Control diet

Resistant starch diet

Control diet

Resistant starch diet

Control diet

Saline

Saline

GLP-R antagonist

100 Y2R null

100 C57Bl/6J

GLP-R antagonist

Experiment 6

Resistant starch diet

Control diet

Resistant starch diet

Control diet

Resistant starch diet

Control diet

Resistant starch diet

Control diet

Resistant starch diet

Control diet

Resistant starch diet

Control diet

Resistant starch diet

Control diet

Resistant starch diet

Control diet

Saline

Saline

GLP-R antagonist

100 Y2R null

100 C57Bl/6J

GLP-R antagonist

Experiment 6

 

Resistant starch diet

Control diet

Resistant starch diet

Control diet

Resistant starch diet

Control diet

Resistant starch diet

Control diet

Saline

Saline

Y2R antagonist

Y2R antagonist

100 GLP-1R null

100 C57Bl/6J

Experiment 7

Resistant starch diet

Control diet

Resistant starch diet

Control diet

Resistant starch diet

Control diet

Resistant starch diet

Control diet

Resistant starch diet

Control diet

Resistant starch diet

Control diet

Resistant starch diet

Control diet

Resistant starch diet

Control diet

Saline

Saline

Y2R antagonist

Y2R antagonist

100 GLP-1R null

100 C57Bl/6J

Experiment 7
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Protocol: The same protocol will be used as in experiment 6, except we will use forty 
GLP-1R null mice and forty wild type littermates (6-week old males and females), and 
the antagonist for Y2R (BIIE0246, 20ug/0.1ml/10g body weight, dissolved in 10% 
DMSO of saline, i.p.) will be injected into these mice.  The GLP-1R knockout mice and 
their wild type littermates will be obtained from Dr. J. Drucker.   

 

10.4. Justification of Animal Numbers: Justify the method used to determine the 
number of animals used for the experiments described in Section 10.3.  This 
could include statistical power analysis, numbers necessary as a continual 
source of tissue harvest for ongoing work, prior experience with similar 
experiments or a limited number for pilot or feasibility studies.  Numbers 
described here should coincide with Sections 5 and 10.3. 
The number of animals used in each experiment is based on a power analysis and on the 
investigator’s experience. The standard deviation of the different measurements 
determines the number of animals to be used in the above experiments and the standard 
deviation varies with different measurements. To provide adequate tissue and blood 
samples for measurements of food intake, blood hormone, and gut peptide/brain 
neuropeptide gene expression, 10-25 rats and 20 to 25 mice are required. Additionally, 
the number of animals needed may be reduced as adequate information from preliminary 
experiments and breeding numbers are achieved. 

 
10.5. Non-Surgical Procedures:  List and describe each non-surgical procedure to 

which any animal or group of animals may be subjected.  Indicate, where 
appropriate, analgesic, anesthetic, and/or tranquilizing agents that will be used to 
minimize discomfort and pain.   
1. Food intake and body weight measurements: During the defined experimental 

periods within the study protocol, food intakes and body weight will be measured either 

daily or every 2-3 days.  Food and tap water will be provided ad libitum. Food cups with 

experimental diets (table 1) will be prepared and provided by investigator. We 

anticipate very little stress under these situations. 

 

2. Over night fasting: For CCK feeding suppression and gut transit time, the rats will be 

fasted overnight. Food cups will be removed at the start of the dark cycle and returned 

on the following morning and water will be available at all times. 

 

3. Measurement of gut transit time: Each rat will be placed in a metabolism cage with 

free access to water and fasted for 12 hours before feeding a bolus (2.5 g) of the 

appropriate experimental diet mixed with glass beads (10 mg; diameter range 150-
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170um). After one hour and rats will be given free access to food again and will remain 

in the metabolism cages for 48 h after feeding for collection of fecal samples. The size of 

the glass beads should not interfere with digestion or cause stress. The rats will be 

returned to their normal cages after the procedure. 

 

4. Intraperitoneal injection: 

Y2R/GLP-1R antagonists, saline, and CCK will be intraperitoneally injected into animals.  

The injection will be carried by an experienced investigator to reduce the transitional 

discomfort of each animal. 

 

5. Visceral afferent lesion by capsaicin injections: The neurotoxin capsaicin will be i.p. 

injected to rats in experiment 3 to lesion their visceral afferent. The entire procedure is 

carried out under deep Isoflurane anesthesia (induction concentration of 4 -5% 

isoflurane with 20% oxygen and a 1 L/min flow rate, maintenance concentration of 2% 

isoflurane).  The capsaicin will be injected consecutively for three days with increased 

dosages as described in Experiment 3.  The first and second injections typically result in 

temporary respiratory arrest, but breathing will restart spontaneously or with the help 

of gentle chest massage. Ten minutes after resumption of spontaneous breathing, 

anesthesia is discontinued and animal is allowed to recover. 

 

6. Body fat measurement by NMR: We observed difference in body weight for resistant 

starch fed and control fed groups in mice studies.  Body fat will be measured by NMR 

for all animals before the end of experiments.  The mice will be handled daily before 

this measurement to reduce stress effects during this procedure. We anticipate little 

stress effects under such situation. 

 

7. Breeding, Weaning and genotyping: One male and 3 females will be initially obtained 

for each of the three homozygote mouse models (Y2R
 -/-

, GLP-1R
 -/-

, and C57Bl/6 
+/+

 

control). We anticipate 2 breedings for the initial females and 1 second generation 

intercross breeding to produce the number of animals required for preliminary testing 

and experiments. Breeding animals will be placed in shoe box cages with corncob 

bedding and nesting material in each cage. One male will be placed with up to three 
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females per shoe box.  Once a female is visibly pregnant, she will be single housed until 

after all pups are weaned. Pups will be weaned at 21 days. Male and females will 

separated and multi-housed in shoeboxes until reaching maturity (six weeks of age). At 

that time they will either be placed in shoeboxes for intercross breeding, or placed in 

stainless steel cages for experimental procedures.  The initial breeding mice will be ear-

punched for identification and tail-clipped for genotyping.  For tail tip collection for 

genotyping, the mouse is restrained briefly and 2-3 mm of the distal tip of the tail is 

rapidly excised with a sterile scalpel blade or sharp scissors.  Before the mouse is 

returned to the cage, the end of tail is touched to a silver nitrate cauterizing stick to 

minimize bleeding and dipped in bupivicaine/lidocaine mixture as a local anesthetic.  

 

 
10.6. Surgical Procedures:   

Does this protocol contain survival surgical procedures?   

 YES (Complete 10.6.a-h)  NO 

Does this protocol contain non-survival surgical procedures? 

 YES (Complete 10.6.a-f)  NO 
 

Does this protocol contain multiple major survival surgeries to occur on an 
individual animal? 

 YES (Must provide scientific justification 
below.)  NO 

 
  

Justification for multiple major surgical procedures:  

 10.6.a  Surgical description:  Describe in detail each surgical procedure.  
Include surgical prep of animal, aseptic techniques, surgical approach, wound 
closure and suture removal plan. 
      

 
 10.6.b.  Location:  Where will surgeries be performed?  

      
 
 10.6.c. Personnel:  List all personnel involved in the appropriate row below. 

 Name 
Lab 

Phone 
Home 
Phone Email 

Surgery                         
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Anesthesia                         
                         
                         
Post-op care                         
                         
                         

 
 10.6.d.  Anesthesia: Complete for each anesthetic drug used. 

Drug Dose Freq 
Route of 

Administration 
Isoflurane 4-5% 1ml/min Inhalation 
    
                        

 
10.6.e.  Anesthetic monitoring:  Check method(s) used for anesthetic 
monitoring. 

  Palpebral reflex   Toe pinch withdrawal 

 Other       
 

Frequency of 
monitoring: 

Procedure last about 10 minutes, we will constant monitoring 
animals for 30 minutes after procedure started. 

 
10.6.f.  Paralytic agents:  Will paralytics be used?   
  Yes    If “yes” complete table below.   No  

Agent Dose Method of Monitoring 

                  

                  

                  

                  
 
 10.6.g.  Postoperative care:  Describe postoperative monitoring and care 
provided.  

First 
24 hours:       

 

Second 
24 hours:       

 

Thereafter:       
 

10.6.h.  Postoperative analgesia: Investigators should assume that procedures 
that cause pain in humans also cause pain in animals.  Please complete table 
below for analgesics. 
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Drug Dose 
Route of 

Administration Freq/Duration 

bupivicaine/lidocaine mixture once At site of tail clip Locally 

    

    
 
10.7 Euthanasia:  What method or agent will be used to euthanize the animals?  

Include dosage and route of administration.  Also include a secondary method of 
euthanasia to ensure death.  Methods of euthanasia that are not considered 
“acceptable” by the latest version of the AVMA Panel on Euthanasia require 
scientific justification. 

Method: 

CO2 for retired breeders and incorrect genotyped weanlings. Decapitation 

for experimental mice and rats in order to collect brain samples for 

measurement of neuropeptides NPY and AGRP as well as their gene 

transcription.  Anesthesia interferes with these brain neuropeptides 

measurements.  

 

 
Drug:       
 
Route of 
administration:       
 
Secondary method:       
 
Who will perform 
euthanasia? Jun Zhou, Kathleen L McCutcheon 
 
Justification for use of “conditionally acceptable” methods of euthanasia: 
Animals will be euthanized at the end of the experiments by rapid decapitation. Due to 

the nature of the biochemical measurements to be performed, euthanasia of some 

animals must be carried out by decapitation without anesthesia. Stress and anesthesia 

interferes with the brain neuropeptides measurements of neuropeptides NPY and AGRP 

as well as their gene transcription.  Individuals who have had previous training and 

experience with the procedure will carry out decapitation in order to minimize stress.  
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SECTION 11.  Procedure Checklist:  Check “Yes” or “No” to each of the following 
questions. The information you provide in this section is very important in highlighting 
specific points of your study that are important considerations for the IACUC in their 
review process.  

 

11.1.    Restraint:  Will animals be restrained?  (Restraint refers to immobilization or 
other restrictions to normal movement beyond momentary holding for injections, 
etc.) 

  YES      NO 

 

If “yes” how? 

Body fat will be measured by NMR without anesthesia 

For tail tip collection for genotyping, the mouse is restrained briefly and 

2-3 mm of the distal tip of the tail is rapidly excised with a sterile scalpel 

blade or sharp scissors 

 

How long? Less than 1 minute 

 

Describe monitoring during restraint 
period. Respiratory rate 

 

Who is responsible? Jun Zhou, Kathleen McCutcheon 

 

11.2. Animal Transport:  Will it be necessary to take live animals outside of 
Comparative Biology?  If animals are removed from Comparative Biology they 
cannot return. 

   

 YES    NO 

If “yes”, justify and answer questions below.   
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Justification:       

 

List rooms where animals will be 
taken:       

 

How long will they be kept in laboratory? Animals cannot be held outside of 
Comparative     

Biology for greater than 12 hours without IACUC 
approval.       

List procedures performed on 
animals:       

 

 

11.3. Food and water restriction:  Will food and/or water be withheld? (Please refer 
to the IACUC Policy Statement on food and water restriction posted on PINE 
under IACUC) 

 

 YES      NO 

 

If “yes” for how 
long? 

Overnight – up to 12 hours 

 

11.4. Blood collection:  Will blood be collected?* 
 

 YES      NO 

 

If “yes”:   

How often? Once , at the end of experiment after decapitation  

What is the maximum number of collections on a given 
animal?   1 
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What is the maximum volume per collection? All  

What collection technique will be used? Truck blood 

Who will perform collection? 

Jun Zhou and  

Kathleen L 

McCutcheon 

 

* Guidelines for blood collection.  The single blood collection limit is 10% of the 
animal’s estimated blood volume (6ml/100g bw), which for a mouse is 60 µl/10g 
of body weight and for a rat is 600 µl/100g of body weight.   The repeat blood-
sampling limit is the volume equal to 1.5% of the animal’s body weight per 2 
weeks.  Collections exceeding these limits require scientific justification. 

 

11.5. Animal Breeding:  Will breeding of animals be part of this protocol? 
 

 YES      NO 

 

 

If “yes”: 

What breeding scheme (pairs, trios, harem) will be 
used? Pair, trio and harem 

Who will be responsible for breeding 
animals?  Jun Zhou and  Kathleen L McCutcheon 

 

Who will be responsible for maintaining records and reporting use of animals 
generated 

in breeding colony to Comparative Biology 
office? 

Kathleen L McCutcheon and Jun 

Zhou 

 

What will the disposition of excess offspring or animals of incorrect genotype? 
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Culled – CO2 if necessary. Excess mice will be used to determine dosage for 

experiments      

 

 

11.6. Genotyping:  Will collection of tail tips or other tissue be required for 
genotyping? 

 

 YES      NO 

 

If “yes” describe technique and what anesthetics/analgesics will be used. 

Mice will be restrained briefly and 2-3 mm of the distal tip of the tail is rapidly excised 

with a sterile scalpel blade or sharp scissors. Before the mouse is returned to the cage, 

the end of tail is touched to a silver nitrate cauterizing stick to minimize bleeding and 

dipped in bupivicaine/lidocaine mixture as a local anesthetic.      

 

11.7. Identification:  Will individual animals be identified?  
 

 YES      NO 

 

If “yes” how? (e.g. ear punch, ear tag, tattoos) 

Breeder mice will be ear punched for identification. Weanlings will be ear punched at 

weaning before genotyping 

 

 

11.8. Adverse effects:  Do you anticipate any adverse effects of the experimental 
procedures on the animals? 

 

 YES      NO 

 

If “yes”, list the possible effects (e.g., pain, discomfort, % weight loss, maximum 
tumor size, fever, minimum packed cell volume, etc) and how they will be 
monitored and addressed. 
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• Minimum weight loss due to overnight fasting. 

• Prolonged housing in stainless steel cage, a PVC tube will be provided for resting 

surface and animals will be monitored when they are weighted. 

• Transit pain due to tail tips and intraperitoneal injection 

• Temporary respiratory arrest due to capsaicin injection. The breathing will 

restart spontaneously or with the help of gentle chest massage. The entire 

procedure is carried out under deep Isoflurane anesthesia. Ten minutes after 

resumption of spontaneous breathing, anesthesia is discontinued and animals 

are allowed to recover. 
   

11.9. Death as an endpoint:  Is death an endpoint in your experimental procedure?  
Note: Death as an endpoint refers to experiments in which animals die as a direct 
result of the experimental manipulation, not due to euthanasia at the end of a 
study, e.g. acute toxicity testing, assessment of virulence of pathogens, 
neutralization tests for toxins. 

 YES      NO 

 

If “yes” provide scientific justification. 

      

 

11.10. Emergency treatments:  Are there emergency treatments by the Comparative 
Biology veterinary staff that would not be allowed? 

 

 YES      NO 

 

If “yes”, list treatments not allowed.  

Contact investigators. Antibiotics, stress, and some medications will interfere with 

experiments 

 

11.11. Antibody production:  Will animals be used for antibody production? 
 

 YES      NO 
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If “yes”, list adjuvants to be used.   

      

 

For use of Complete Freund’s Adjuvant provide scientific justification.   

      

 

11.12. Exotic species:  Are you using wild or exotic species for which permits are 
necessary? 

 

          YES      NO 

  

ATTACH COPY of permits.  (Permits are required for protocol approval.) 

 

SECTION 12. Animal Management: 
 

Check all applicable below: 

CARE OF SICK ANIMALS DISPOSAL OF DEAD ANIMALS 

 Call Investigator 

 Clinician to Treat 

 Euthanasia 

 Call Investigator 

 Necropsy 

 Disposal 

List any special requirements for disposal?        

 

SECTION 13.  Disposition of Animals:  (What will be done with animals at the 
conclusion of the project? Check appropriate boxes.) 

 

 Animals will be euthanized. 
 Animals may or will be TRANSFERRED to another IACUC-approved protocol(s).   
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Protocol Number:       

 Appropriate transfer forms must be completed and submitted to the Comparative Biology Office 

when animals are transferred.   

  

SECTION 14.  Narrative Statements:  Federal regulations mandate that you provide a 
written narrative statement regarding whether the experiments described are 
unnecessarily duplicative, and whether you have considered alternatives for those 
procedures causing pain and distress.   
 
14.1. Provide a narrative statement in the box below indicating that the proposed 

experiments do not unnecessarily duplicate previous experiments.  In this 
statement, include sources used to make such a determination (e.g., Databases, 
workshops, expertise in the field, etc). 
After search electronic database, we confirm that the proposed studies are novel and will 
not unnecessarily duplicate previous experiments. 

 
If your source is an electronic database(s), complete the following boxes. 

Date Search Completed:  04-01-2006 

Database(s) Searched:  Medline 

Keywords:  Resistant starch, PYY, GLP-1, knock out, receptor  

Years covered in search:  1966-present 

 

For Type B or C protocols answer 14.2 and 14.3 if you indicated Type B or C in Section 
8. 

 
14.2. Provide a narrative statement, in the box below, indicating whether or not you 

have considered alternatives to procedures producing more than momentary or 
slight pain or distress.  Indicate what those alternatives were and why they are 
not appropriate. 
We have considered alternative procedures, but none that are appropriate for test our 
hypothesis. 

 
14.3 List the sources used to make the determination in 14.2.  If your source is an 

electronic database complete the boxes below. 
 

Sources: Electronic database 
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Date Search Completed:  04-01-2006 

Database(s) Searched:  Medline 

Keywords:  Resistant starch, PYY, GLP-1, knock out, receptor 

Years covered in 
search:  1966-present 

 

SECTION 15.  Investigator Training: In accordance with IACUC policy, all personnel 

conducting animal-based research must attend a Comparative Biology/IACUC Orientation 

Course.  The principle investigator is responsible for training for skills specific to their research 

project.  Indicate individual responsible for this training below. 

List all persons involved in animal care and use for this study below. 
 

Name 

Training and 
Experience? 

If no, who will do 
training? 

Jun Zhou  Y  N       

Kathleen L McCutcheon 
 Y  N       

Anne Raggio  Y  N       

 

NOTE:  All personnel must complete Comparative Biology’s training course in order to 
have access to Comparative Biology. 
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APPENDIX B: 

ABBREVIATIONS  

AIN-93G  American Institute of Nutrition- 93 Growing diet 

BMI   Body mass index 

CVD   Cardiovascular disease 

EC   Energy control 

GIP   Gastric inhibitory peptide 

GLP-1   Glucagon-like peptide-1 

HDL   High-density lipoprotein 

HF   High fat 

HRT   Hormone replacement therapy 

IOM   Institute of Medicine 

LDL   Low-density lipoprotein 

LF   Low fat 

NF- κB  Nuclear factor-kappa B 

NMR   Nuclear magnetic resonance  

NPY   Neuropeptide Y 

OVX (OV)  Ovariectomized 

PYY   Peptide YY 

RER   Respiratory exchange ratio 

RS   Resistant starch 
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RQ   Respiratory quotient 

SCFA   Short-chain fatty acid 

SH   Sham operation 

WAT   White adipose tissue 
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APPENDIX C: 

DEFINITIONS 

Body Mass Index (BMI)  mass (kg)/height2 (m2) 

Cecum the beginning part of the large intestine that receives waste 
material from the small intestine 

Glucagon-like Peptide-1 (GLP-1) gastrointestinal peptide and hormone that acts in inhibiting 
food intake 

Obesity     having a BMI of ≥30 

Overweight    having a BMI of 25-29.9 

Peptide YY (PYY) gastrointestinal peptide and hormone known for its 
anorectic properties 

Respiratory Exchange Ratio (RER) ratio between CO2/%O2 used to indicate which fuel is 
being oxidized for energy production in the body 

Resistant starch (RS) a type of starch that is resistant to the effects of digestive 
enzymes and is not digested in the small intestine, but 
fermented by microflora in the large intestine 

Respiratory Quotient (RQ) an indicator of which fuel (carbohydrate or fat) is being 
metabolized to supply the body with energy at the cellular 
level 

Short-Chain Fatty Acids (SCFA) end-product produced by fermentation of resistant starch in the 
large intestine  
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