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Abstract

For a reductive complex algebraic group, the associated nilpotent cone is the variety of
nilpotent elements in the corresponding Lie algebra. Understanding the nilpotent cone is
of central importance in representation theory. For example, the nilpotent cone plays a
prominent role in classifying the representations of finite groups of Lie type. More recently,
the nilpotent cone has been shown to have a close connection with the affine flag variety and
this has been exploited in the Geometric Langlands Program.

We make use of the following important fact. The nilpotent cone is invariant under the
coadjoint action of G on the dual Lie algebra and admits a canonical Poisson structure which
is compatible in a strong way with the action of G. We exploit this connection to develop a
theory of perverse sheaves on the nilpotent cone that is suitable for the G-equivariant Poisson
setting. Building on the work of Beilinson—Bernstein—Deligne and Deligne—Bezrukavnikov,
we define a new category, the equivariant Poisson derived category and endow it with a
new semiorthogonal filtration, the perverse Poisson ¢-structure. In order to construct the
perverse Poisson t-structure, we also prove an axiomatized gluing theorem for semiorthogonal
filtrations in the general setting of triangulated categories which generalizes the construction
of the perverse coherent sheaves of Deligne-Bezrukavnikov.

v



Chapter 1

Introduction

If G is a reductive complex algebraic group with Lie algebra g, we can identify the variety
N of nilpotent elements of g with a subvariety of the dual Lie algebra g* via the Killing
form. Understanding the nilpotent cone is of central importance in representation theory.
For example, the nilpotent cone plays a primary role in the Springer correspondence (see
[BM]) and in classifying the representations of finite groups of Lie type (see, for example,
[Lusl]). The nilpotent cone has a close connection with the affine flag variety and therefore
many results concerning the nilpotent cone have implications on the Geometric Langlands
Program also (see [Bez4]).

The nilpotent cone is attractive both for its importance in representation theory and
because it is a variety with particularly favorable properties. Most importantly for us, N is
invariant under the coadjoint action of G on g* and admits a canonical Poisson structure
which is compatible in a strong way with the action of G. Since the symplectic leaves of
the Poisson structure coincide with the coadjoint orbits of N, we are able to consider the
equivariant and Poisson structures simultaneously in order to develop a theory of perverse
Poisson sheaves. Building on the work of Beilinson-Bernstein-Deligne ([BBD]) and Deligne-
Bezrukavnikov ([Bezl]), we define a new category, the equivariant Poisson derived category,
and endow it with a new semiorthogonal filtration, the perverse Poisson t-structure. The
heart of this ¢-structure is what we will call the category of perverse Poisson sheaves.

In order to construct the perverse Poisson t-structure, we prove an axiomatized gluing
theorem for semiorthogonal filtrations in the general setting of triangulated categories (The-
orem 3.4) which generalizes the construction of the perverse coherent sheaves of Deligne—
Bezrukavnikov (Theorem 3.12). This novel construction of perverse coherent sheaves has
the advantage that it is analogous to the construction of classical perverse sheaves found in
[BBD]. Because of the unified approach to perverse sheaves (classical, coherent and Poisson),
we are able to find a connection between irreducible local systems, certain vector bundlesand
simple perverse Poisson sheaves in Theorem 4.49.

We now outline the organization of the thesis. We begin in Chapter 2 by reviewing the
ideas that will serve as the foundation of this work. We attempt to strike a balance between
providing a context for the current work and focusing on aspects of the general theory that
apply to our particular setting. This results in including material which some would consider
trivial and excluding material which is tangentially related but would be relevant to the
discussion. Section 1 contains introductory material on triangulated categories, which were
first described in the thesis of Verdier ([SGA 43, Catégories dérivées, Etat 0]) and are in
many ways the most natural setting to discuss homological algebra. The definitions of the
derived category of an abelian category and that of a t-structure are particularly important,
as these are central to the definition of perverse Poisson sheaves. In Sections 2 and 3, we
then review the construction and basic properties of perverse sheaves both in the classical
(constructible) setting found in [BBD] and in the setting of coherent sheaves. The latter type



were described in a preprint by Bezrukavnikov ([Bez1]), though these results were known for
some time by Deligne.

Since the presence of a G-action will be extremely important for us, we recall the definitions
of equivariant sheaves in Section 4 and show that for an affine scheme, the corresponding
equivariant module categories have enough injectives. This technical fact is important since
it is one of the main ingredients in constructing the Poisson derived sheaf functors in Chap-
ter 4. Sections 5 and 6 contain the background material on Poisson schemes and modules.
Our approach to Poisson structures is entirely algebraic in nature. We review the general-
izations of Poisson algebras to the setting of schemes developed by Kaledin ([Kal2], [Kall]),
Ginzburg-Kaledin ([GK]), and Polishchuck ([Pol]). We then discuss the appropriate notion
of a compatible G-action on a Poisson scheme, that of a Hamiltonian action. This is followed
by a review of the construction of the Poisson enveloping algebra, which was introduced by
Oh ([Oh]). In the case of an affine scheme, this will allow us to view Poisson equivariant
sheaves as ordinary equivariant modules over the Poisson enveloping algebra in much the
same way that one can view representations of a Lie algebra as modules over its universal
enveloping algebra. Finally, we introduce formally our primary object of study, the nilpotent
cone in the dual of the Lie algebra associated to a reductive algebraic group G. In particu-
lar, we show how the concepts discussed above apply in this case. We describe the natural
Poisson structure (due to Kostant—Kirillov), discuss the structure of the coordinate ring of
N, and show that the coadjoint action of G is Hamiltonian.

We then proceed to the main chapters of the thesis which contain original work. In Chapter
3, we develop a method of gluing semiorthogonal filtrations in triangulated categories. This
will serve as a first step in the direction of constructing the perverse Poisson t-structure.
Section 1 involves developing a sufficient condition for transferring a semiorthogonal filtration
across a triangulated functor. This will provide one ingredient for the main theorem in
this chapter—Theorem 3.4—which axiomatizes sufficient conditions that allow gluing of
semiorthogonal filtrations in a triangulated category. As a first application of the theorem,
in Section 3 we give a new construction of the perverse coherent t-structure by iteratively
gluing shifts of the standard ¢-structure on the orbits. This is analogous to the construction of
classical perverse sheaves in [BBD], but it was previously unknown that a similar construction
would work in the coherent setting. The main obstacle is that many of the functors used
in the classical case take values in larger categories and so are not available for use in the
bounded derived category of coherent sheaves. The gluing theorem allows us to overcome this
problem by separating the geometry from the homological algebra. By transferring a certain
amount of the complexity to the homological algebra, we are then able to use non-functorial
geometric methods to construct perverse coherent sheaves.

In the final chapter, we develop a theory of Poisson equivariant sheaves and Poisson
sheaf functors. In Section 1, we define the equivariant Poisson derived category. We prove
fundamental lemmas in Section 2 on the existence of derived Poisson sheaf functors and
determine a sufficient condition for the existence of an equivariant Poisson dualizing complex.
In Section 3, we then pass to the specific case of the nilpotent cone where we are able to
develop the theory further. For technical reasons, we also pass to a particular quotient
category of the equivariant Poisson derived category. It is in this setting that we are then
able to give a construction of the perverse Poisson t-structure and its heart, the category



of perverse Poisson sheaves. Finally, in Section 4 we build on the work of Polishchuk ([Pol])
which shows how to realize certain vector bundles as Poisson sheaves. Specifically, on a
G-orbit, every equivariant vector bundle with a flat connection arises from an equivariant
local system, and we are then able to use the framework of perverse Poisson sheaves to

gain information about the Poisson analogues of Green functions for simple perverse Poisson
sheaves.



Chapter 2

Preliminaries

In order to provide both a context for this work and a foundation upon which later chap-
ters will be based, it will be advantageous for us to review some preliminary concepts. We
will assume the basics of category theory, the representation theory of reductive complex
algebraic groups (and reductive complex Lie algebras), algebraic geometry, and homological
algebra. We refer the reader unfamiliar with these topics to [Lan], [Hum]|, [Har2], and [GM1],
respectively. In addition, we will provide references throughout the text to related works in
the literature.

We begin by discussing triangulated categories and semiorthogonal filtrations. Of partic-
ular importance is the notion of a t-structure on a triangulated category. In one sense, this
entire thesis is written to explain the construction of a single t-structure on a certain tri-
angulated category. We then proceed to a discussion of perverse sheaves, where we review
the construction of both classical (topological, constructible) perverse sheaves and perverse
coherent sheaves. As the title of the thesis suggests, our goal is to extend these ideas in a
new direction. Specifically, we would like to consider the case when we have both an equiv-
ariant structure and a Poisson structure at our disposal. Hence we review the basic theory
of equivariant sheaves and Poisson schemes. Finally, we provide background information on
the nilpotent cone, which will serve as our primary example of a Poisson variety.

2.1 Triangulated Categories

A triangulated category is an additive category that retains enough of the structure of
an abelian category to allow us to use the basics of homological algebra. Originally defined
in the thesis of Verdier (partially reprinted as Catégories dérivées, Etat 0 in [SGA 41]),
triangulated categories have provided a fertile context for research over the last half century.
A more modern treatment is [Nee|, where one can find a much more general approach than the
classical literature. We will not have use for this generality, however, since the triangulated
categories that we will be concerned with will arise in the classical way (as derived categories
of abelian categories). We begin by defining a triangulated category.

Definition 2.1. A triangulated category is an additive category D with an autoequivalence
[1] : D — D and a collection of diagrams (called distinguished triangles)

{A—B—C— All]}
such that the following axioms hold

(TR1) (a) A A0 All] is a distinguished triangle.

(b) Any triangle A — B — C' — A[l] which is isomorphic to a distinguished
triangle is distinguished.



(¢) Any morphism A — B can be completed to a distinguished triangle
A— B— C— Alll.

(TR2) The triangle A Lpsol A[1] is a distinguished triangle if and only if B %
c L All] —/, BJ1] is a distinguished triangle.

(TR3) Given a commutative square
A —— B

O

A —— B
there exists a morphism h such that the square can be completed to a morhism of
distinguished triangles

A B C —— Al
lf lg h lﬂﬂ
A B’ c’ » A'l1]

(TR4) Given a composition (gof) : A ENY;ENVo, , consider the following three distinguished
triangles (guaranteed by (TR1)(c))

f11$13—+l)—+14ﬂ]
BY% C— FE— B[]
AL oo F oA

Then there are morphisms such that D — F — E — DJ[1] is a distinguished
triangle and these four distinguished triangles fit into an octahedral diagram

X
f .
Afﬁﬂﬂﬂvmwﬁjxxi§§
iiﬁ\o///ik///jﬁ

\L\\\ / .

E

L / s



where the dashed arrows represent new morphisms, a morphism X ~~=Y means
X — Y[1], all triangles containing exactly one such a morphism are distinguished,
and all other triangles commute.

The last three axioms have common descriptions. Namely, (TR2) is the rotation axiom,
(TR3) is called square completion, and (TR4) is often referred to as the octahedral axiom. It
turns out that these axioms are not quite independent as (TR3) is a consequence of the others.
We include it both for historical reasons and because it is a useful property. Many arguments
involving distinguished triangles amount to writing down a diagram of distinguished triangles
and then using these axioms to manipulate it into a diagram of distinguished triangles having
a desired property.

Definition 2.2. If D’ is another triangulated category, a triangulated functor F : D — D’
is a functor which commutes with the respective shifts on D and D’ and takes distinguished
triangles to distinguished triangles.

These are sometimes also called ezxact functors in the literature since an exact functor
(in the sense that it takes exact sequences to exact sequences) between abelian categories
gives rise in a canonical way to a triangulated functor on their derived categories (see Defi-
nition 2.15 below). We reserve the term exact functor for a functor of abelian categories.

Definition 2.3. If A,C € D, then B is an extension of C' by A if there is a distinguished
triangle A — B — C' — A[l]. For any subcategory A of D, the extension stable subcategory

of A is the smallest strictly full subcategory of D which is stable under extensions and will
be denoted by FEp(A).

Definition 2.4. Let D be a triangulated category. A strictly full triangulated subcategory
A is called thick if it is also closed under direct summands.

The following notation is a convenient way to compactly write statements about diagrams
of distinguished triangles.

Definition 2.5. Let A, B be subcategories of D, and C a triangulated category of D. Also let
[A], [B] denote the isomorphism classes of the objects A, B € C. Then we define an operation
on isomorphism classes

[A] %¢ [B] = [C]

when there is a distinguished triangle A — C' — B — in C. It is easy to check that this is a
well defined operation on isomorphism classes. Similarly on subcategories, we define

AxeB={CeC|A— C— B — is distinguished for some A € A, B € B}.

Lemma 2.6. The operation *¢ is associative.

Proof. Tt suffices to show associativity in the case of isomorphism classes and here the con-
dition follows directly from the octahedral axiom. O]

Note that the subscript is important when one is working with several triangulated cat-
egories simultaneously. For example, if A C B C D is a chain of proper subcategories of a
triangulated category D, then in general A x5 A # A xp A.



Definition 2.7. Let A be a collection of objects A C Obj(D). For each n > 1 define strictly
full subcategories

A%:A*D"'*D.A
and then note that
Ep(A) = Ap.
n>1

When the category D is clear, we will drop it from the notation.

Definition 2.8. For any collection of objects A C Obj(D), the triangulated subcategory of D
generated by A is the smallest strictly full triangulated subcategory of D containing A. If A
is closed under shifts in both directions, then Ep(A) is the triangulated category generated

by A.

We now come to one of the primary objects that we will study.
Definition 2.9. A t-structure on a triangulated category D is a pair of strictly full subcat-
egories (D=Y D=?) such that

(i) D= c D=! and D=! Cc D=°

(i) Hom(A, B) =0 for A € D= and B € D=!

(iii) For any A € D, there exists a distinguished triangle B — A — C' — BJ[1] with B € D=’
and C' € D=1

where D=" = D=0[—n| and D=" = D=%[—n).

We call the intersection C = D= ND=Y the heart (fr. coeur) of the t-structure. Because of
its similarity in both form and meaning, the English word core is sometimes also found in
the literature.

A fundamental result of Beilinson—Bernstein—Deligne shows why ¢-structures play such an
important role in the structure of a triangulated category.

Theorem 2.10. The heart C of any t-structure on a triangulated category D is an abelian
category. Moreover, there is a cohomological §-functor tH® : D — C.

The following two definitions are of additional structures that one can place on a triangu-
lated category. These will not play an important role in our study, but several statements
that we will need concerning t-structures can be stated and proved easily also for these
structures. The basic theory of baric structures can be found in [AT].

Definition 2.11. A baric structure on a triangulated category C is a pair of collections of
thick subcategories ({C=*}, {ng})wez satisfying

(i) ¢=v c C=¥*! and C=**t C C= for all w € Z.

(i) Hom(A, B) =0 for all A € C=* and B € C=v*L.



(iii) For any object X € C, there is a distinguished triangle
A— X — B— All]
with A € CS¥ and B € C=v+,

Definition 2.12. A co-t-structure on a triangulated category C (see [Paul) is a pair of strictly
full subcategories (C=°,C=°) such that

(i) €=% and C=° are closed under direct summands
(i) C=0 c C=t and C=' c C=°
(iii) Hom(A4, B) =0 for all A € C=° and B € C=!
(iv) For any object X € C, there is a distinguished triangle
A— X — B— All]
with A € C=Y and B € C=!
where C=" = C="[n] and C=" = C="[n].

The notation for co-t-structures here is different from that in [Pau| and elsewhere ([Bon],
for example). We use the current notation (nearly that of the weight structures in [Wil])
to shorten many statements involving both t-structures and co-t-structures. This makes the
exposition cleaner, but also obscures the differences between ¢-structures and co-t-structures.
Most notably, though the definitions appear almost identical, the fact that C=" and C=" are
defined differently is significant.

Definition 2.13. A semiorthogonal filtration on a triangulated category D is a family of
pairs of strictly full subcategories ({D="}, {DS”})REZ satisfying

(i) D=" Cc D="t! and D=""! C D=".
(i) Hom(A, B) =0 for all A € D=" and B € D=""!.

Notice in particular that t-structures, co-t-structures and baric structures are semiorthog-
onal filtrations. This is a weaker, but clearly related idea to that of semiorthogonal decom-
positions, as found in [Orl]. By semiorthogonal filtration, we will always mean one of the
three structures defined above.

We now recall a theorem that allows us to take the quotient of triangulated category
by a thick subcategory. This was first proved in the thesis of Verdier, which was published
as the last chapter in SGA 41, [SGA 41]. For a more recent and expansive treatment of
the subject, we refer the reader to [Kra] or [Nee|, where the authors refer to what follows
as Verdier localization. In fact, the theory of localization in triangulated categories is a
substantial area of research that has many recent developments. We state here only a simple
version of localization that will suffice for our purposes. The following proposition, whose
proof can be found in [Nee, §2.1], shows the naturality of the definition of a thick subcategory
and provides a method for ensuring that functors descend to a quotient.



Proposition 2.14. Let D be a triangulated category and A a thick subcategory. Then there
is a triangulated category D/A and a universal functor Q : D — D/ A with the property that
any triangulated functor F : D — D' such that F(A) ~ 0 for all A € A factors through D/ A
as F'=F' oQ, where F' : D/ A — D' is triangulated.

One of the primary uses for triangulated categories (and the historical reason for their
invention) is that of the derived category of an abelian category. Since the focus of our study
will be on certain derived categories, we give the necessary background information here.

Definition 2.15. Let A be an abelian category and Kom(.A) the category of cochain com-
plexes of objects of A with morphisms the cochain maps. Define the derived category of
A, denoted D(A) to be the category obtained from Kom(A) by localizing at the quasi-
isomorphisms (this is equivalent to taking the quotient of Kom(.A) by the subcategory of
complexes quasi-isomorphic to the 0 complex). Then D(A) is a triangulated category where
[1] is given by shifting the degrees of the cochain complex and the distinguished triangles
come from taking mapping cones of morphisms. For details on this construction see [GM1].

It is difficult to overstate the importance of derived categories and the impact that they
have had on representation theory over the last half century.

Definition 2.16. Let A be an abelian category and D(A) its derived category. Given any
complex A®

62'73 . 62'72 . 51'71 . 51’ . 6i+1 . 5i+2
B = N L At AT 2 pi 2

of objects of A, we can form the i*" cohomology object
H'(A®) =kerd"/im 6",
Now define two strictly full subcategories of D(.A) by

D=0 — fA* € D | H*(A®) = 0 for all k > 0}
p=20 — fA* € D | H*(A®) = 0 for all k < 0}.

This defines a t-structure on D(A), which we will call the standard t-structure.

The following is a nontrivial theorem is due to Verdier and will be used extensively in
constructing the categories of perverse sheaves below.

Theorem 2.17. The heart of the standard t-structure is isomorphic to A.

Remark 2.18. Let A be an abelian category and D(A) its derived category. We can think
of giving a t-structure on D(A) as a mechanism for constructing an abelian category by
taking the heart of the ¢t-structure. By Theorem 2.17, we see that we can recover the original
abelian category A in this manner. As we will see in the case of perverse sheaves below, the
heart of a non-standard ¢-structure can be highly nontrivial and worthy of investigation in
its own right.



2.2 Classical Perverse Sheaves

Perverse sheaves have had a profound impact on mathematics since their discovery in the
early 1980’s. The description that we will give is almost purely algebraic, but this idea has
far reaching implications in many fields. For instance, a recent result of Mirkovi¢ and Vilonen
([MV]) is the geometric Satake equivalence, which says that the category of perverse sheaves
on the affine Grassmannian associated to a reductive algebraic group is equivalent to the
category of representations of the Langlands dual group. Perverse sheaves also appear as
one ingredient in a construction by Borho and MacPherson of the Springer correspondence
(see [BM]). This correspondence assigns irreducible local systems on nilpotent orbits to
representations of the Weyl group and is central to understanding the representation theory
of finite groups of Lie type. In a similar vein, Lusztig and others have used perverse sheaves
to study quiver varieties, for example, to get canonical bases in the quantized enveloping
algebras associated to a quiver (see [Lus2]).

In this section, we briefly review the construction of perverse sheaves found in [BBD] and
state their basic properties. We will work in the setting of sheaves of complex vector spaces
on a complex variety for clarity, though the construction is valid and important in positive
characteristic. The category of perverse sheaves on a variety X is related to the category of
sheaves (of vector spaces) on X, and in many ways is easier to work with. For example, the
category of perverse sheaves is artinian (every object has finite length). For basic definitions
about sheaves and sheaf functors, see [KS1] or [Dim|. An English alternative to [BBD] for
much of this material is [GM1].

Let X be a complex algebraic variety and suppose we are given a finite stratification of X
by locally closed strata

X=XuXoU---UX,,

such that the closure of each stratum is a union of strata and each stratum is a complex
manifold. For example, we could take the Whitney stratification (see [Whi]). For technical
reasons, let us assume for the remainder of this section that the stratification is a Whitney
stratification.

Definition 2.19. A sheaf F on X is called constructible (relative to the given stratification)
if the restriction F|x, is a locally constant sheaf on X; for 1 <i < n.

Theorem 2.20. Leti: Z — X be a closed subvariety with open complement 7 : U — X.
Let Db(X),Db(U), Db(Z) denote the bounded derived categories of sheaves of complex vector
spaces with constructible cohomology sheaves on X, U and Z, respectively. Then we have the
following diagram of functors

where

10



o (i), (i, ), (574 4x), and (ji, j71) are adjoint pairs such that the natural morphisms

iV F — F =i, F
i F = F = i F

are all 1somorphisms.
o j*i, =0.
e there exist canonical morphisms i,i~*F — jij " F[1] and j.j~'F — i.i' F[1] such that

G5 F = F — i ' F — 5157 F[1]
i i'F = F = juj ' F — i, F[1]

are distinguished triangles in D5(X).

Theorem 2.21. Let (D3°,D3°) and (D5°,D5") be t-structures on DY(Z) and DY(U), re-
spectively. Then there is a unique t-structure (D=°,D=°) on DY(X) such that

D=0 ={F e D)X)|j 'FeD;’ and i 'F € D3"}
D" = {FeDiX)|j'FeD; and i'F € D7}

In fact, the theorem proved in [BBD] is much more general than this. Any three triangu-
lated categories and six functors satisfying the conditions of Theorem 2.20 comprise a set of
gluing data, allowing us to glue t-structures as in Theorem 2.21.

Inductively, Theorem 2.21 enables us to choose arbitrary t-structures on (the derived
category of sheaves on) the strata of a stratified complex variety and obtain a unique ¢-
structure on the entire variety. We now want to choose a particular t-structure for each
stratum that is relatively simple to work with and apply the theorem to get a highly nontrivial
t-structure on the variety.

Definition 2.22. Let S be the set of strata of X. A perversity in its most basic form is
just a function p : S — Z. We say that a perversity is monotone if whenever a stratum S is
contained in the closure of another stratum 7', we have p(T') < p(S).

The dual perversity is the function p : & — Z given by p(S) = —dimg S — p(5). A
perversity is comonotone if the dual perversity is monotone. The notions of strictly monotone
and strictly comonotone are defined similarly, replacing the inequality with a strict inequality.

The most common perversity by far is the following. It was originally considered by
Goresky and MacPherson in [GM2] and [GM3].

Definition 2.23. Define a perversity called the middle perversity by setting
1.
p(S) = ~3 dimg S.

From the definitions, we see that this perversity is strictly monotone and comonotone; in
fact, p = p.
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We will assume for the remainder of this section that we are working with the middle
perversity. For the general setting, simply replace any references to the dimension of a stratum
with the value of the perversity on the stratum.

Definition 2.24. For each stratum ig : S < X in S, define the perverse t-structure on
D4(S) to be

p'D§0 — stdpgo[p(s)]

ngo — stde§0[p(S)]

Using Theorem 2.21, we then obtain a t-structure on D2(X) given by

PPV = {F € DYX) | ig'F € D5’ for all S € S}

P20 — {]—" c D?(X) | z'!s]-" € pDEO for all S € S} )
We call this the perverse t-structure and objects in its heart M(X) = PD=0NPD=Y are called
perverse sheaves.

Notice that perverse sheaves on a single stratum are particularly easy to describe. Since
the perverse t-structure on a stratum S is a shift of the standard t-structure and objects in
the heart of the standard t-structure are just constructible sheaves, we see that a perverse
sheaf on S must be a local system £ concentrated in degree — dimg(5).

Definition 2.25. Let Hom be the sheaf-Hom (internal Hom) functor. A dualizing complex
for a scheme X is an object wyx € DY(X) such that there is a natural isomorphism

F — Hom(Hom(F,wx),wx)

for any F € Db(X). We call the autoequivalence D : F +— Hom(F,wx) a dualizing functor.

Definition 2.26. Let f : X — {pt} be the map sending X to a point. For any complex
variety, the object wx = f'C is a dualizing complex for X. We call the associated functor I
the Verdier dual.

Lemma 2.27. We have D (PD=°) = D=’ and so Verdier duality takes perverse sheaves to
perverse sheaves.

Theorem 2.28. For any stratum S, there is a fully faithful functor
IC(S, =) : M(S) - M(X).
Moreover, every simple object of M(X) is of the form IC(S, L[p(S)]) for some stratum S

and some irreducible local system L.

Corollary 2.29. The cohomology sheaves of a simple perverse sheaf are supported on the
closure of a single stratum.

Although in general M (X) is not a semisimple category (every object is not a direct sum of
simple objects), it is always artinian. Therefore, if we understand the simple perverse sheaves
we can use finite composition series to inductively study the category as a whole. Hence it is
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an extremely important problem to understand the structure of the simple perverse sheaves.
One way of studying a simple perverse sheaf F = IC(S, L[p(S)]) € M(X) is by studying
the restrictions of the cohomology sheaves of F to strata contained in the closure of S.
When the variety in question is the nilpotent cone of a reductive algebraic group stratified
by G-orbits (in which case the category of perverse sheaves is actually semisimple), Shoji and
Lusztig developed an algorithm to compute these restrictions (see [Lusl]). Thus, for a partic-
ular irreducible local system on an orbit C' and a particular orbit C’ in the closure of C', we
have a complete description of the restrictions of the cohomology sheaves of IC(C, L[p(C)]).
There have been few results, however, that give general information about the restrictions
of simple perverse sheaves to orbits. This is often considered to be a very difficult problem.

2.3 Perverse Coherent Sheaves

In this section we review the theory of perverse coherent sheaves first worked out by
Deligne and communicated by Bezrukavnikov ([Bezl1]). We include the results that are needed
either to restate the construction of the perverse coherent t-structure and (for convenience
of the reader) those that we will need to adapt to the Poisson setting later. This work is
the starting point for many of the ideas that are included in this thesis. In particular, the
results in Section 3.2 stemmed from an attempt to unravel the argument of the construction
of the perverse coherent t-structure. Although relatively recent, perverse coherent sheaves
have already proved useful. For example, they were used in [Bez2| to prove a conjecture of
Lusztig and Vogan involving a bijection between dominant weights and pairs consisting of
a nilpotent orbit and an irreducible representation of the centralizer of an element of that
orbit. Bezrukavnikov again made use of perverse coherent sheaves in [Bez3] studying the
cohomology of tilting modules over quantum groups.

We will use the following notation which, while different from that used in [Bezl], is
consistent with the notation used in Chapters 2 and 3. Let X be a Noetherian scheme over a
base scheme S and G an affine group scheme of finite type over S which is flat and Gorenstein.
We denote by Co(X) (resp. Qg (X)) the category of coherent (resp. quasicoherent) sheaves of
Ox-modules on X. We denote the bounded derived category of equivariant coherent sheaves
on X by D%(X). We will use Y for the underlying topological space of a scheme Y.

The primary difficulty in working with coherent sheaves rather than sheaves of vector
spaces is that one does not have the six functors which comprise the gluing data. Indeed,
the coherent functors 7* and i' do not take values in the subcategory of the derived category
consisting of bounded complexes, the functor j, does not in general preserve coherence, and
the functor j takes values in the category of pro-coherent sheaves (see [Dell]). To work
around the problem of boundedness, we can work in the category of unbounded (on one
side) quasicoherent sheaves and then use the following proposition when needed.

Lemma 2.30. The categories D%(X) and D (X) are equivalent to the respective subcate-
gories of D"(Qa(X)) and D~ (Qa(X)) consisting of complexes with coherent cohomology.

Unfortunately, for an open inclusion j : U — X, the functor j* = ;! is not full, but
nearly so. This will be enough for our purposes.
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Lemma 2.31. Let j : U — X be an open G-invariant subscheme.

(a) For any morphism f : F — G in Db(U), there exist objects F and G in D%(X) and a
morphism f : F — G such that f|ly ~ f.

(b) If F,G € D(X) such that f : Fly =~ G|v, then there exists H € D%(X) and morphisms
g:G — Hand h : F — H so that restricting to U gives a commuting diagram of

1somorphisms
fl
Flu . Glu -
hlU\; A
H|v

Lemma 2.32. Leti: Z — X be a closed subscheme

(a) For any F € Dg(X) and G € DL(X) we have an isomorphism

Hom(F,i.i'G) =~ lim Hom(F iz iyG)

Z/

where i* is the topological functor, i', is the coherent inverse image with supports and
the limit is over all closed subschemes with underlying topological space Z.

(b) If the cohomology sheaves of F € D% (X) are supported topologically on Z, then there
exists a closed subscheme i’ . Z' — X with underlying topological space Z and a sheaf

F' € D%(Z') such that F ~ i, F'.

Let p be a perversity that is monotone and comonotone (see Definition 2.22) with respect
to the stratification of X by G-orbits. For = a point of X (possibly nonclosed), define p(z) =
p(C) where C'is the orbit containing . We can now define the perverse coherent t-structure.

Theorem 2.33. The subcategories

DP=0 = [F € DL(X) | it € D) (O,-mod) for allz € X }
DP20 — {F € DY(X) | it € D> (O,-mod) for all z € X}

define a t-structure on D*(Cq(X)).

Definition 2.34. We call objects in the heart of this ¢-structure perverse coherent sheaves
and denote the category of perverse coherent sheaves by M., (X).

Theorem 2.35. If p is strictly monotone and comonotone, then for each locally closed orbit
C' there is a fully faithful functor ZC(C, —) : M ¢ (C) = M6 (X). Every simple perverse
coherent sheaf on X is of the form IC(C,E[p(C)]) for some orbit C and some irreducible
equivariant vector bundle £ on C.

We can use the ZC functors then to show the following useful corollary. This shows one
sense in which the category of perverse coherent sheaves is better behaved than the corre-
sponding category of coherent sheaves.
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Corollary 2.36. The category M ¢ (X) is artinian.

One of the differences between perverse sheaves and perverse coherent sheaves is that
one defines the middle perversity in the coherent setting using the complex (algebraic) di-
mension. A consequence of this is that the middle perversity is only strictly monotone and
comonotone if orbits have even dimension and dimensions of adjacent orbits differ by at least
two. Thankfully, as we will see below, these conditions are satisfied for the nilpotent cone.

Similarly to the classical case, it is of primary importance to understand the simple perverse
coherent sheaves. The situation is not nearly as clear in this case however and very little is
know in general. The main goal of the thesis is to make progress toward understanding certain
simple perverse coherent sheaves on the nilpotent cone of a reductive complex algebraic group
by utilizing a Poisson structure that is compatible with the equivariant structure.

2.4 Equivariant Module Categories

In Chapter 4 we will construct the equivariant Poisson derived category. In order to extend
functors defined on the abelian category of Poisson sheaves, we will need to know that we
have enough acyclic objects for those functors. Since injective objects are always acyclic for
any left exact functor, it will be advantageous for us to see that we indeed have enough
injectives. We will need the following classical result of Grothendieck.

Theorem 2.37. If C is an abelian category satisfying
(i) C is cocomplete, i.e. C is closed under arbitrary coproducts (direct sums)

(ii) given an object X and a totally ordered family of subobjects X; — X, for any other
subobject Y — X we have

(ZX) Ny =) (X;nY)

(i1i) C has a generator, i.e. an object U such that for any monomorphism that is not an
epimorphism f : X — Y, there is a morphism U — Y which does not factor through
X,

then C has enough injectives.
Proof. See [Gro, Theorem 1.10.1]. O

Corollary 2.38. Let A be an associative C-algebra with 1. Then A-mod (the category of left
A-modules) has enough injectives.

Note that (i77) in Theorem 2.37 could be replaced by the a priori weaker condition requiring
only a set of generators {U; | i € I} since in a cocomplete category these are equivalent
notions (the coproduct of such a set is itself a generator). An abelian category satisfying
(1) and (i7) is said to satisfy AB5. An abelian category satisfying all three conditions is
sometimes called a Grothendieck (abelian) category.
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Definition 2.39. Let X be a locally ringed space and G a group acting on X. Then if
a: G x X — X denotes the action map, p: G x X — X is the projection onto the second
factor, f: G x G x X — G x X forgets the first term, and s is the map sending x — (e, x),
we have a diagram

mxidx a
GxGxX ! GxX X.
idgxa p

A G-equivariant sheaf of modules on X is a sheaf of modules F on X along with an isomor-
phism ¥ : ¢*F = p*F such that

f"Wo(idg x a)*¥ = (m x idyx )"V
s = ld]:

Remark 2.40. If X = Spec A is an affine scheme over a C and G = Spec R is a complex
algebraic group acting linearly on X, a G-equivariant quasicoherent sheaf F on X is the
same as an A-module M with a compatible G-action. Diagrammatically, on coordinate rings
we maps

idr®a T
AR
ROR®A~——— R®A—— A

The maps « and 7 give R ® A two different (right) A-module structures. A G-equivariant
A-module is an A-module M along with an isomorphism

U:(RocA)y @4 M = (RRc A)og @4 M

such that conditions analogous to the sheaf version hold. One can characterize an equivariant
structure on M by saying that there is an action such that the module structure morphism
A® M — M is a G-equivariant map in the sense that g.(b.m) = (g.b).(g.m) for any g € G,
be A, and m € M.

We extend the notion of an equivariant module to the setting of a noncommutative ring
A by taking the characterization in this remark as a definition.

Lemma 2.41. Let A be an associative C-algebra with 1. Then A-mod® (the category of

G-equivariant left A-modules) has enough injectives.

Proof. We adapt an argument from [Bezl]. Let M be an A-module and consider the A-
module
Av(M) = (R®c A)r ®a M),

where (—), indicates the pullback of modules along the map . Then Av(M) is a G-
equivariant A-module and Av : A-mod — A-mod¢ is right adjoint to the forgetful functor
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F : A-mod® — A-mod. Since Av is an exact functor and the map M — Av(M) is injective,
the lemma follows from Corollary 2.38 above. m

Notice that we did not require that the algebra A in the previous proposition to be
commutative. If we only cared about the commutative situation, then we would have stated
the argument of Bezrukavnikov verbatim and retained the scheme language since this is
much easier to write down. In fact, as we will see below, one reasonable approach to perverse
Poisson sheaves would be to rework all of [Bez1] using noncommutative geometry. The author
does not know if this is possible, but it might provide a more sophisticated theory.

2.5 Poisson Schemes and Modules

We begin by laying out the general definitions of Poisson rings, algebras, schemes, modules,
and related concepts that will be used extensively in what follows. We will not have much
use for the detail that is provided in the definitions and rather rely on the properties outlined
below when working with Poisson schemes and sheaves. Let X be a scheme of finite type
over C. Some of what follows can be done over more general fields, but restricting to the
complex case is sufficient for us. The material in this section comes from [Kal2], [Kall], and

[Pol].

Definition 2.42. A ring A is a Poisson ring if it is equipped with a bilinear product { , }
(the Poisson bracket) satisfying

(i) {a,a} =0 for all a € A.
(i) {a,{b,c}} + {b,{c,a}} + {c,{a,b}} =0 for all a,b,c € A.
(i) {a,bc} = {a,b}c+ b{a,c} for all a,b,c € A.

That is, { , } is a Lie bracket which satisfies the Leibnitz identity in each variable. In
particular, an associative algebra over a field k is a Poisson algebra if it is also endowed with
a Poisson bracket.

An ideal I C A is a Poisson ideal if in addition {i,a} € [ for all i € [ and a € A.

It is straightforward to pass from the previous definition to a scheme version. The level of
detail provided here is certainly more than we will use, but it is instructive to see.

Definition 2.43. The scheme X is a Poisson scheme if the structure sheaf Oy is equipped
with a Poisson bracket. Explicitly, this means that in the category of Ox-modules there is a
morphism

{, }:0x®cO0x — Ox
satisfying

i. (Skew-symmetry) If 1 : Ox®@Ox — Ox®0Oy is the morphism which exchanges factors,
then in Hom(Ox ® Ox, Ox)
{ ) } - _{ ) } ot
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ii. (Jacobi identity) If 0 : Ox ® Ox ® Ox — Ox ® Ox ® Ox is the morphism which
cyclically permutes the factors, then in Hom(Ox ® Ox ® Ox, Ox)

{,}oida{, }+{, }oid®{, }oo+{, }oid®{, }oooo=0

iii. (Leibniz identity) If p: Ox ® Ox — Ox is the multiplication morphism and ¢ is as in
(i), then in Hom(Ox ® Ox ® Ox, Ox)

{, }old@pu=po{, }®id+po{, }®idoid®.

where the tensor product is over C in all cases. Let f : X — Y be a morphism between
two Poisson schemes. Then f.Ox is naturally a sheaf of Poisson rings on Y. We say that
f is a morphism of Poisson schemes if the corresponding morphism of structures sheaves
f*: Oy — f.Ox respects the Poisson structures.

We point out a nearly trivial, but vital fact. Let j : U — X be an open subscheme of a
Poisson scheme X. Then since Oy is just the restriction of Ox to U, we see that Oy inherits
a Poisson structure also. Thus any open subscheme of a Poisson scheme is Poisson.

Definition 2.44. If there exists a nonzero local section f of Ox such that the morphism
{f,=}:O0x(U) = Ox(U) is identically zero, we say that the Poisson structure is degenerate.
A Poisson structure which is nondegenerate is called symplectic.

Since a Poisson bracket gives a derivation when one variable is fixed, there is an intimate
link between the Poisson structure and both the cotangent and tangent bundles of the scheme

X. In order to state this, we recall the definitions of the cotangent bundle and the tangent
bundle.

Definition 2.45. We define the cotangent space of X at a point x to be

Qalc = mx/m?c:
where m, is the is the maximal ideal of the local ring O,. Thus 2. is a vector space over the
residue field k(z) = O, /m,.

Definition 2.46. If x4 is the multiplication morphism from Definition 2.43, then we call
the Ox-module Q% = ker u/(ker p)? the sheaf of Kdhler differentials. We denote by d the
morphism Ox — QL given locally by the formula fr—(1® f — f® 1) + (ker u)?. This
is the cotangent bundle.

Lemma 2.47. For any point x of X, the stalk of QY at x is QL.

Definition 2.48. Define the tangent space of X at a point z to be the vector space dual to
the cotangent space, i.e.

TxX = Homk(m)(ﬂi, /{Z(l‘))

From Definition 2.48, it is straightforward to see that we have the following description of
the tangent bundle.
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Lemma 2.49. We have
TX == DS’T’(O)(, O)()

Lemma 2.50. Let H : QY — Tx be an Ox-linear homomorphism. Then { , } : Ox®@0Ox —
Ox defined locally by {f,g} = H(df)(g) gives a Poisson structure on X.

We call such an H the Hamiltonian of the Poisson bracket.

Remark 2.51. If X is a Poisson scheme, then any local section f of Ox defines a local
derivation {f, —} on the structure sheaf. Thus we get a morphism of sheaves Ox — Tx.
Vector fields (local sections of the tangent bundle) in the image of this morphism are called
Hamiltonian vector fields.

We now recall the basic definitions and facts that we will need below concerning the
interaction between a group action and a Poisson structure. We assume that G is an reductive
complex algebraic group acting on X with finitely many orbits. We denote the Lie algebra of
G by g. We refer the reader to [CG, Chapter 1], [Pol, Section 1], [Vai, Section 7.3] and [Kal2,
Section 1] for more details on Hamiltonian actions. There is certainly much more that one
could say here, but the facts that we will need rely only on the definition of a Hamiltonian
action.

Definition 2.52. The action of G on X is a Poisson action if G acts by Poisson auto-
morphisms. That is, for a fixed ¢ € G the map sending = + ¢.x induces an isomorphism
Ox — Ox which preserves the Poisson bracket.

Definition 2.53. A Poisson action of G on X induces an action of g on X by derivations in
Ox. We say that the action of G is Hamiltonian if the associated morphism g — Ty factors
through the morphism Oy — Tx described in Remark 2.51.

A primary example of a Hamiltonian action (and the one which is the central example in
this thesis) is the coadjoint action on the nilpotent cone.

Definition 2.54. We define a Poisson module over X to be an quasicoherent O x-module F
which is also equipped with Poisson bracket. Again, very explicitly, this means that in the
category of quasicoherent Ox-modules, there is a morphism { , } : Ox ® F — F such that

i. (Jacobi-like identity) If ¢ : Ox ® Ox — Ox ® Ox is the morphism which exchanges
factors, then in Hom(Ox ® Ox & F, F)

{7 }Oid®{7 }:{7 }Oid®{7 }OL+{7 }o{, }®id'

ii. (Compatibility with multiplication) If 1 : Ox ® Ox — Ox is the multiplication mor-
phism and ¢ : Ox ® F — F is the module action morphism, then in Hom(Ox ® Ox ®
F,F)

{,}oid®o=0¢o{, }@id+¢oid®{, }ou
{,}ouw®id=goid®{, } +poid®{, }our
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Define Qpy;i(X) to be the category whose objects are quasicoherent Ox-modules with a
Poisson bracket and whose morphisms are those Ox-module morphisms which respect the
Poisson structure. Le., if 7, G € Cpyi(X), then f : F — G is a Poisson morphism if

{,}oid@f=fo{, } (%)

Remark 2.55. Unlike [Kall], we do not require that Poisson modules (also called Poisson
sheaves in the sequel) be coherent sheaves on X, but rather quasicoherent, since this is the
proper setting for this work. We will restrict to complexes with coherent cohomology when
we pass to the derived category below. The well known benefit of considering quasicoherent
sheaves as opposed to all Ox-modules is that for an affine scheme X = Spec A, we have an
equivalence Q(X) ~ A-mod (for example, see [Har2, Proposition 5.4]).

Definition 2.56. A closed subscheme k : Y < X of X is a Poisson subscheme if the
corresponding ideal sheaf Zy is a Poisson submodule of Ox and Y is equipped with the
induced Poisson structure. A locally closed subscheme is then Poisson if it is the intersection
of a Poisson closed subscheme and an open subscheme.

2.6 Poisson Enveloping Algebras

Analogously to the case of Lie algebras, Oh ([Oh]) has shown that it is possible to construct
a universal associative algebra over any Poisson algebra which encodes the Poisson structure
in the multiplication of the algebra. This allows us to identify modules over the Poisson
algebra with ordinary modules over the enveloping algebra. Therefore, as long as we are
willing to sacrifice finite generation, we can work in the Poisson enveloping algebra and
translate the results back to the Poisson algebra.

Definition 2.57. Let A be a Poisson algebra over a base field k and U an associative k-
algebra. We consider U as a Lie algebra with the usual commutator bracket. Then U is a
Poisson enveloping algebra if it satisfies the following universal property. There is a k-algebra
homomorphism f: A — U and a k-Lie algebra homomorphism g : A — U such that

f({a,b}) = g(a)f(b) = f(b)g(a)
glab) = f(a)g(b) + f(b)g(a),

and for any other associative k-algebra VW and homomorphisms h, ¢ : A — W satisfying (x)
there exists a unique k-algebra homomorphism ~ : & — W such that the diagrams

(%)

u u
N N
N N
f \\’y g \\’y
N N
N N
N\ N
A——W A—F—W

commute.
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Theorem 2.58. For any Poisson algebra A, there exists a unique universal Poisson en-
veloping algebra Upyi(A).

Proof. For convenience and later reference, we reproduce the construction from [Oh] here.
Fix a basis {z; | i € I} for A and let V' be an isomorphic vector space with basis {y; | i € I}
and isomorphism ¢ : A — V sending x; — y;. Consider the k-tensor algebra 7 (A @ V)
which has as a subalgebra the k-tensor algebra 7 (A). Let ¢ : T(A) — A be the algebra
homomorphism defined by z; — z;. Now let J be the ideal in 7 (A & V') generated by ker ¢
and elements in 7(A @ V) of the form

® yi ®Y; —y; @y — o({ws, 7;})
° Yy @ —x; @Y — {w;,;}
o X Y; —+ Z; X Yi — gp(xl:v])

Then define Upyi(A) = T(A @ V)/J. The homomorphisms f and ¢ that we need are just
the maps defined by f(x;) = z; + J and g(z;) = y; + J. The construction of J ensures that
these maps satisfy the required conditions. The proof that Upy;(A) does in fact satisfy the
universal property is straightforward and we refer the reader to [Oh] for details. As usual,
uniqueness follows. O

Theorem 2.59. For any Poisson algebra A, there is an isomorphism of categories A-
modpy; >~ Upei(A)-mod.

Proof. For a Poisson A-module M, there are maps «, 5 : A — Endg (M) satisfying (*) above.
By the universal property for Upy;(A), we then get a k-algebra homomorphism p : Upei(A) —
Endy (M) which gives M a (left) Upyi(A)-module structure.

On the other hand, it is easy to check that a.m = f(a).m and {b,m} = g(b).m give any
Upoi(A)-module M a Poisson A-module structure. O

Corollary 2.60. Let G be a reductive complex algebraic group which acts on A by Poisson
automorphisms. Then there is a corresponding G-action on Upyi(A) and an equivalence of
categories A-mod G,; =~ Upei(A)-mod®.

Proof. Using the notation from the construction of Up.i(A), define a G-action on Upy(A)
by letting g.(x @ y + J) = g.x ® g.y + J, where the G-action on V is induced via ¢ by
the G-action on A. So by definition, ¢ is equivariant. This is well defined (G takes J to J)
since G acts by Poisson automorphisms. The equivalence of categories then follows from the
theorem. [

Next, we want to be able to realize Up,;(A) as a free module over the Poisson algebra A. We
can find a theorem of this type in the literature already (JOPS, Theorem 3.8]), but checking
that this theorem applies (as stated) to the Poisson algebras that we will be concerned with
(e.g. the coordinate ring of the nilpotent cone described in Section 2.7) involves introducing
additional concepts which we would not otherwise need. In fact, the theorem in loc. cit.
applies only to Poisson algebras which can be realized as a quotient of a polynomial ring
with Poisson structure induced from one on the polynomial ring where the ideal defining the
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quotient satisfies a condition relating to Grobner—Shirshov bases. In some circumstances (for
example, if one needs a particular basis for computation), it might be necessary to restrict
to this setting. For our purposes, however, it suffices to see that a C-basis exists for any
Poisson enveloping algebra which makes it obvious that Up.i(A) is a free Poisson A-module.
Fortunately, this is a straightforward corollary of the PBW theorem for Lie algebras.

Theorem 2.61. (Poicaré-Birkhoff-Witt) Let L be a complex Lie algebra with ordered basis
{z;|i€I}. ThenU(L) = T(L)/J has a C-basis consisting of monomials ;, - - x;,, where
J is a certain ideal and n,i; € N for all j and i1 < --- <4, and z;, ---x;, is the image of
Tiy @ -+ @z, in the quotient.

n

Proof. See, for instance, [Hum, §17]. ]

Corollary 2.62. Let A be a Poisson algebra. Then the morphism f : A — Upui(A) is
mjective.

Proof. Let f,g: A — Upyi(A) be the universal maps from Definition 2.57. We follow [OPS,
Proposition 2.2] in showing that f is injective. Define u,d : A — Endc(A) by

p(a)(b) = ab
8(a)(b) = {a, b}.

Then

u({a,b})(e) = {a,bye = {a.be} — b{a,c} = 8(a) o p(b)(c) — u(b) o 8(a)(¢)
5(ab)(c) = {ab, c} = afb,c} +ba,c} = p(a) 0 S(B)(c) + u(b) o 5(a)(c).

Thus the universal property of Upui(A) gives an algebra homomorphism
v : Upoi(A) — Endc(A)

such that yo f = u. Then if @ € A and f(a) = 0, we must also have u(a) : A — A the zero
map. Clearly this only happens when a = 0. m

Corollary 2.63. The Poisson enveloping algebra Upyi(A) is free as an A-module.

Proof. Recall that Upyi(A) = T(A @ V)/J and that a basis for the tensor algebra is the set
of all finite length words in X = {x; | i € I} U{y; | 7 € I}. We know from basic linear
algebra then, that we can find a subset of the set of words in X that form a basis for Upu;(A).
Moreover, the fact that elements of the form

yi © 1 — x5 @y — {zi, 25}
and ker are in J ensure that we can choose this basis to consist of elements of the form

{z:yj, - - - yj,. }- Now since A acts on the left by multiplication, we see that Upei(A) is indeed
free. ]
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2.7 The Nilpotent Cone

The origin of this work is in studying the geometry of the nilpotent cone associated to a
reductive complex algebraic group. The nilpotent variety is an object of central importance
in representation theory. The classification of representations of finite groups of Lie type
reduces to the calculation of stalks of certain simple perverse sheaves on the nilpotent cone
(references for the work of Lusztig on character sheaves can be found in [Lusl]). The nilpotent
cone is also related to the geometric Langlands program, through work of Bezrukavnikov et.
al. (see [Bez4]). In this section we give the definition of the nilpotent cone and state the basic
properties which will form the foundation of the work later.

We begin by recalling a few of the basic definitions from the theory of complex algebraic
groups and Lie algebras. Let G be a reductive complex algebraic group. Recall that we can
identify the Lie algebra g of G with the tangent space to G at the identity. We denote the
(vector space) dual of the Lie algebra by g*.

The action of G on itself by conjugation differentiates to an action of G on g, the adjoint
action. We can then take the dual (contragredient) of this representation to get an action of
G on g*, the coadjoint action. If we differentiate the map G — Aut(g) (resp. G — Aut(g*)),
we also get an action of g on itself (resp. on g*), which we will also call the adjoint (resp.
coadjoint) action. The adjoint action of g has a simple description; it is given by the Lie
bracket

ad.(y) = [z, 9],

where x,y € g. The coadjoint action of g then is just the dual Lie representation. Thus we
have

ad, (f)(y) = —f([x,¥]),

where x,y € g and f € g*. We define a symmetric bilinear form on g called the Killing form
by
k(z,y) = tr(ad,ad,),

the traceform of the adjoint representation. A Lie algebra is semisimple if and only if the
Killing form is nondegenerate. In this case, we can identify g and g* via the Killing form in
the usual way. Recall that a reductive Lie algebra g can be written g = s @ 3, where s is a
semisimple Lie algebra and j is the center of g.

Definition 2.64. We say that an element of g is nilpotent if it corresponds to a nilpotent
endomorphism in every representation of g. The nilpotent cone N C g is the set of all
nilpotent elements in g.

Remark 2.65. Restricting the Killing form to the semisimple part of g allows us to realize
N as a subalgebra of g*. Since N is G-invariant under the adjoint action of G on g, we see
that A is G-invariant under the coadjoint action of G' when we consider N C g*. Moreover,
G acts with finitely many orbits (see, for example, [CG, Proposition 3.2.9]).

Definition 2.66. We recall the Kostant—Kirillov Poisson structure on g* (for additional
details, see [BBT, §14.2]). Since g* is a vector space, the differential da of any regular
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function v on g* is linear. That is, da € (g*)" ~ g. Given two functions «, 5 € C[g*], define

{a, B}(f) = f(lde, dB]).

It follows from the properties of differentials that this is a Poisson bracket.

One consequence of the PBW theorem (Theorem 2.61 above) is that Clg*] ~ S(g), where
S(g) is the symmetric algebra of g. The following is a fundamental theorem which tells us a
great deal about the structure of the nilpotent cone. The result is due to Kostant and two
proofs can be found in [CG, Section 3.2].

Theorem 2.67. An element x € g* is in N if and only if every G-invariant polynomial in
S(g) of strictly positive degree vanishes at x.

This theorem implies that A is a closed affine subvariety of g*, with coordinate ring

where [ is the ideal generated by G-invariant polynomials of strictly positive degree. Combin-
ing this with the definition of the Kostant—Kirilov bracket gives us the following proposition,
which will be essential to our study of the nilpotent cone.

Proposition 2.68. For any reductive complex algebraic group G with Lie algebra g, we have
g C Op such that the Poisson bracket on Oy is induced by the Lie bracket on g.

Proof. From [Dix, Lemma 8.1.1], we see that the ideal I corresponding to A/ in S(g) = C[g*]
can be generated by G-invariant polynomials of degree at least 2. Thus the natural embedding
g — S(g) gives g C Oyr. The definition of the Kostant—Kirillov Poisson bracket guarantees
that it is induced by the Lie bracket on g (extending by bilinearity and the Liebnitz rule). O

Lemma 2.69. The algebra C[N] is generated as an algebra by a basis for the Lie algebra g.
Proof. Any basis for g generates S(g) as an algebra, of which C[N] is a quotient. m

Recall that a symplectic structure is a nondegenerate Poisson structure. It is well known
that given a Poisson variety X, there is a stratification of X by maximally symplectic sub-
varieties which are called symplectic leaves.

Proposition 2.70. The stratification of N by coadjoint orbits coincides with the stratifica-
tion of N by the symplectic leaves of the Poisson structure.

Proof. This follows from the fact that the kernel of the Kostant—Kirillov bracket is precisely
the set of functions which are constant on the coadjoint orbits. See the discussion in [BBT,
Section 14.2]. O

In particular, this tells us that each G-orbit is a smooth complex variety with even (com-
plex) dimension since any symplectic variety must have even dimension. Therefore, as we
mentioned in Section 2.3, the middle perversity is strictly monotone and comonotone on the
nilpotent cone.
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Lemma 2.71. The coadjoint action of G on N is a Hamiltonian action.

Proof. The coadjoint action of G differentiates to the coadjoint action of g, which can be
given in terms of the Lie bracket on g. The lemma follows then from Proposition 2.68. [J

Remark 2.72. In fact, Lemma 2.69 shows that more is true in this case. Not only do we

get a factorization
d*
g - Ty
\ % }
On

we can say something more about the map g — O,. Namely, that it is an injective Lie
homomorphism whose image generates Oy as an algebra. This property will be key in
Chapter 4 below in relating the equivariant and Poisson structures on the nilpotent cone.
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Chapter 3

Gluing Semiorthogonal Filtrations

The work contained in this chapter grew out of an attempt to extract sufficient conditions
from the proof of the construction of the perverse coherent t-structure ([Bezl, Theorem 1]
that would allow us to glue together t-structures defined on G-orbits. We have accomplished
that goal in Theorem 3.4 and are then able to recover the construction of the perverse
coherent t-structure by gluing (Theorem 3.12). There are several advantages to the approach
that we have taken. As mentioned above, this allows for a unified approach to perverse
coherent sheaves and classical perverse sheaves. We also have been able to show that given
a t-structure defined on the derived category of coherent sheaves on a closed subscheme,
we can extend this ¢-structure to each of the formal neighborhoods of the closed subscheme
and to the limit of these formal neighborhoods in the derived category of coherent sheaves
on the entire scheme. In this chapter, a semiorthogonal filtration will always mean either a
t-structure, a co-t-structure, or a baric structure.

3.1 Semiorthogonal Filtrations and Triangulated
Functors

In this section, we prove a proposition giving sufficient conditions for transferring a
semiorthogonal filtration across a functor. The situation that we have in mind is that where
the functor is the pushforward of coherent sheaves along the inclusion of a closed subscheme.
It is convenient to fix a triangulated category D.

Definition 3.1. Let A be a triangulated category and suppose that we have a triangulated
functor F' : A — D. Let F(A) be the essential image of F' and A the triangulated subcategory
of D generated by F(A).

If (A=Y A29) is a (co-)t-structure on A we can define strictly full subcategories of A

jgo _ U Avn,SO
n>0

jzo _ U jn,ZO
n>0

where

ﬂn,go _ \F(ASO) *p XD F(ASO)J

-~
n terms

/T”’ZO = F(AZO) *p - kp F(.AZO) .

Vv
n terms
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We say that F' respects a t-structure (A=Y, A=) on A if for all A € A" and B € A=° the
natural map

Hom (A, B) — Homp(F(A), F(B))

induced by F'is surjective.
Slightly less restrictively, the functor F' respects a baric structure ({Agw} , {Agw}) on A if
for each w € Z we have

Homp(F(A), F(B)) =0if A€ AS* and B € A=V
Similarly, the functor F respects a co-t-structure (A=°, A=%) on A if
Homp(F(A), F(B)) =0if A€ A<° and B € A",
as well as the additional requirement that A0 and AZ9 are closed under direct summands.

We are now able to give the main proposition in this section.

Proposition 3.2. Let F' : A — D be a triangulated functor which respects the (co-)t-
structure (A=Y, A=%) on A. Then the subcategories (A=?, A=°) define a (co-)t-structure on
A. Moreover, (A=Y, A=°) is the unique (co-)t-structure with

(i) F(AS") = A<0N F(A)
(i) F(AZ%) = A2°N F(A).

Proof. Most of the arguments here are identical for ¢-structures and co-t-structures; the small
variations are identified as they occur. The proof is by induction on n.
If Aec A%*<% and B € A%*>!, then we have two distinguished triangles

A —-A-5 A -
B —-B—> B —

with A’ A” € F(A=), B, B” € F(A='). Then applying Homp, we get the following diagram
which has exact rows and columns:

e ——> HOIHD(A//, B/) e HomD(A//’ B) —_ HOIHD(A//, B”) N
-+ — Homp(A, B') — Homp(A, B) — Homp(A, B") — - - -

.- HHOm’D(AG B/) *>HOH1’D(A/, B) HHomD(AZ B”) s
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Since F' respects the (co-)t-structure, we see that
Homp(A”, B") = Homp(A”, B") = Homp(A’, B') = Homp(A', B") = 0.

Hence the groups Homp(A, B') and Homp(A, B”) (among others) are also zero, which in
turn implies the desired Homp(A, B) = 0.

For the inclusions, the argument is basically the same in each case. As an example, we
show that for a t-structure, A>=% C A*>=!. Suppose B € A*=0 = F(A=0) xp F(A="). Then
there is a distinguished triangle

A—-B—-C—

with 4,C € F(A="). Thus A[1],C[1] € F(AS™!) C F(A="), and so we get a distinguished
triangle
All] = B[1] — C[1] —,

which shows that B € A2=<1.

For general n > 2, the inclusion argument can be repeated mutatis mutandis using the
induction hypothesis. We get an analogous Hom diagram and the Hom vanishing result this
time follows from the induction hypothesis and the fact that (F'(A))"! is a full subcategory.

To prove the existence of the necessary distinguished triangles, it is convenient to use the
* notation from definition 2.5 (the symbol x in this proof will always mean *p). In this
notation, we need to see that (F(A))" € A<0 5 Am21,

Toward this end, we need two facts:

(i) F(A) C F(A=) x F(A=Y)
(i) F(AZY) % F(ASY) € F(AS0) % F(AZY).

We can prove (i) in a straightforward and simple way. If B € F(A), then B ~ F(B’),
for some B’ € A. Then we can find a distinuished triangle A” — B’ — ¢’ — A’[1] with
A" € A=Y and ' € A=!. The image of this distinguished triangle under F shows that
B e F(A=Y) x F(A=1).

For (ii), we need a slightly more involved argument. Let B € F(A=!) x F(A=%) with
distinguished triangle

A B y C —— A[l].

We can assume that A = F(A’) for some A’ € A=! and C = F(C") for some C" € A=". Then
we have A’[1] € A2 and, in the case of a t-structure, u = F'(v) for some v € Hom(C’, A'[1])
since F' respects the t-structure. Thus F'(cone(v)) ~ cone(u) and so cone(u) € F(A). Then
the diagram

C —— A[l] —— cone(u) — C[1]

| |

C —— All] —— B[1] —— C[1],

shows that B[1] is isomorphic to cone(u) and so

B ~ cone(u)[—1] ~ F(cone(v))[—1] ~ F(cone(v)[—1]) € F(A).
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Thus using (i), we see that B € F(A=?) x F(A='). In the case of a co-t-structure, we can be
more precise. Since A'[1] € A=!, we see that u is just the 0 morphism and so B is actually
isomorphic to the direct sum A & C. Thus the triangle showing that B € F(A=%) x F(A=!)
is just

C—B—A—C[l].

Now that we have (i) and (ii), we can see that

(F(A)" = F(A) *--- % F(A)

J/

-~

n terms
C (F(AS?) x F(AZY) % - % (F(AS) * F(A=Y)
n ;;irs
CFAS % % F(AS)) 5« F(A=Y) % - % F(A=Y)
n ‘;:ms n Eeﬁms
— En,go * JZ(le
as desired.
The properties that must be verified to see that the unions
A0 — U A=0
n>0
AZ0 — U A20
n>0

define a (co-)t-structure can now be checked by working in A" for appropriate choices of n.
AZ

In order to prove uniqueness, suppose that (.,21\30, =Y) is another (co-)t-structure on A

with
F(ASY) = AN F(A)
F(AZ%) = 42N F(A).

We show by induction that for any n > 0, we have the equalities

A=0 = J=0n A
Am20 = 4200 A,
This is just a restatement of the above for n = 1. Suppose n > 1. If A € .Z"’SO, then there

is a distinguished triangle
Al A= A" — A1

with A’ € AL<0 = F(A=%) and A” € A" <0, Using the induction hypothesis, we have
A A" € AS?. So for any B € ASJ, we get an exact sequence

--+— Hom(A”, B) — Hom(A, B) — Hom(A', B) — - - - |
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which shows that Hom(A, B) = 0. Hence A € A% On the other hand, if A € A0 N A,
then for any B € A™=Z! write
B'— B — B" — B'[1]

with B’ € A42! = F(A2') and B” € A"~ By induction, B’, B” € A=! and so the exact
sequence
- — Hom(A, B') — Hom(A, B) — Hom(A, B") — -+,

shows that Hom(A, B) = 0. Now (A™<°, 4"2%) does not necessarily form a (co-)t-structure
on A" (in fact, Ar may not even be triangulated), but nonetheless we still have the fact that
Hom(A, B) = 0 for all B € A™2! implies that A € A™<C. This follows from the truncation
distinguished triangle in the case of t-structures and from the fact that A0 ig closed under
direct summands in the case of co-t-structures. Now taking the union over all n > 0 gives
the desired equality between the (co-)t-structures. O

Proposition 3.3. Let F' : A — D be a triangulated functor which respects the baric structure

({A=“}, {A="}) oy on A. Then the pairs of strictly full subcategories ({JZS“’}, {jﬁu}) .
we

define a baric structure on A, where

A = | J A= = | F(AS) sp - xp F(AS)
n>1 n>1 (n terms)

jzw _ U jn,zw _ U Ja A>w xp F(A>w>
n>1 n>1 n terms

Moreover, this is the unique baric structure having the property that for all w we have
(i) F(AS") = ASv N F(A)
(i) F(AZ) = AZ* N F(A).

Proof. The proofs of the axioms for a baric structure are completely analogous to the previous
proposition. All that remains is to show that each of these subcategories is thick. That is,
we need to see that for each w € Z, the subcategories A=Y and A=Y are closed under shifts
(in both directions) cones, and direct summands. Closure under shifts follows directly from

rotation. Let A & B be a morphism between two objects of A™<® (resp. > w). Then by
associativity of x and rotation, cone(f) is in A*™<* (resp. > w) and hence in A< (resp.
> w). Closure under direct summands follows from the orthogonality of ASv and AZwH in
the same way that it does for t-structures. Uniqueness of the baric structure is also proved
nearly identically to the statement for ¢-structures. O]

Note that Propositions 3.2 and 3.3 justify the terminology of definition 3.1. Using this ter-
minology, the propositions show that if a triangulated functor respects some semiorthogonal
filtration, then we get a corresponding filtration on the triangulated category generated by
the essential image of the functor.
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3.2 Gluing Semiorthogonal Filtrations

In this section, we abstract the proof of the main theorem in [Bezl| to the more general
setting of triangulated categories. The basic idea of the proof is based on the proof of [Bezl,
Theorem 1], but the abstraction allows for applications to other settings and also elucidates
previously unrecognized facets. The primary impact of our work is that we have separated
the geometry from the homological algebra. On a technical note, even though truncation is
not functorial when we have a co-t-structure, we will use the notation of truncation functors
to simplify the exposition. The (non)functoriality of truncation will not play a role in the
proof of this theorem.

Theorem 3.4. Let D, Dy and Dy be triangulated categories and suppose that we have
(co-)t-structures (D3°, D3°) on Dy and (D5°, D;°) on Dy. Furthermore, suppose that

(G1) There is a triangulated functor i, : Dy — D and an essentially surjective triangulated
functor j* : D — Dy.

— <0 >0 ~
(G2) There is a (co-)t-structure (Dz~ ,Dyz ) on Dy (the triangulated category generated
by the essential image of i.) such that

0

i (D5") € Dy
i (D3°) c Dy -

(G3) (i) For every A € D (and any choice of 7%)j*A) there is an object A~ € D and a
morphism A~ — A such that

(a) j*A~ ~ TSUOj*A.
(b) Homp(A~,B) =0 for all B € 73;21.

(ii) For every A € D (and any choice of Tglj*A) there is an object At € D and a
morphism A 2> At such that

(a) T4 j*A ~ j* AT
(b) Homp(B,AT) =0 for all B € 'B;SO.
(G4) If A I B in D with J*f =0, then f factors through an object of Dy.
(G5) Dy ={AeD|jA=0}.
Then the strictly full subcategories of D
<0 » <0 ~—>1
D>"={AeD|j*Ae Dy, Homp(A,B) =0 for all Be Dy }
D= ={BeD|j*B e D’ Homp(A,B) =0 for all A € @Sil}

give a (co-)t-structure on D. Moreover, this is the unique (co-)t-structure with
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(i) i.(D3°) = D= Ni.(Dy) and i.(D;") = DZ° N i (D)
(i) j*(D=°) ¢ DF° and j*(D>°) C D;°.

Proof. Denote the truncation associated to the (co-)t-structure on D, by T?\Z/ , Where e is
< n or > n for some integer n. The inclusion axiom for a (co-)t-structure follows from the
fact that the translation functor commutes with 4, and j*.

Let A € D=0 and B € D='. If f € Hom(A, B), then from the definitions we see that
Jj*f =0, and so by (G4) we get a commutative diagram

f

AE/h

A B

with £/ € 13; Using [BBD, Proposition 1.1.9], we see that the morphisms g and h extend to
morphisms of distinguished triangles

A 4 .4 0 A[l]
; 5
. | ; ,
¢ E - F - T0¢E — 122 E[1]
: 5
: L :
0 - B - - B -0

where each square commutes. From this it is clear that f = 0.

Now we show that D = D=V %« D=1 Let A € D. Then (G3) gives an object A~ € D and a
morphism f : A~ — A. Since j*A~ € Dy, the statement of (G3)(i)(b) says that A~ € D=0
Moreover, we can complete the morphism A~ — A to get a distinguished triangle in D

AT — A— A — A7[1]
which restricts to the truncation distinguished triangle
JFAT — A — 7 A — AT
in Dy. Hence j*A’ € D',
On the other hand, (G3) gives an object A" € D and an isomorphism 77, j*A" ~ j* A"
Together with (G3)(ii)(b), this implies that A"t € D=!. The axiom (G3) also gives a mor-
phism A" — A", and so we can define A” = cone(A” — A")[—1] and get a distinguished

triangle in D
A" — A — AT — A'[1]
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which restricts to the truncation distinguished triangle
A" — A — 7 A — R A1)
Since j*A’ € D', we see that j*A” ~ 0 and then (G5) tells us that A” € D. Now define

ar = (5 )
and

e = (B,

Then the facts that A’ € D=0 and A"T € D=! follow directly from (G5) and the Hom
vanishing property of a (co-)t-structure. Thus, as desired, we get

Ac[AT]*[A"]* [A"] % [AT] € D=V« D=V 5« D=1 « D!
c D"« D",

Now it remains to see that for a co-t-structure, the subcategories D= and D=’ are closed
under direct summands. This is equivalent to seeing that the Hom vanishing characterizes

these subcategories. Suppose A € D with Hom(A, B) = 0 for all B € D=!. Then @21 C

D=1t so Hom(A,ﬁ;Zl) = 0. Now we need to see that j*A € D;°. Since j* is essentially
surjective, it suffices to show that Hom(j*A, j*C) = 0 for all C' € D with j*C € Dgl. Take
such a C and find CT as in (G3) with j*C*T ~ j*C. Thus CT € D!, so Hom(A,CT) =0
and since j* is full, we see that Hom(j*A, j*C') = Hom(j*A, 7*C*) = 0. The argument for
D=9 is completely analogous.

The uniqueness statement follows directly from the definitions and the uniqueness of the
induced (co-)t-structure on Dy. O

Note that the assumption that j* is essentially surjective is only used to prove that the
two halves of the co-t-structure are closed under direct summands. In order to construct
a minimal extension functor in the next section, however, we will need to assume that j*
is essentially surjective. Hence in the case of t-structures this can be omitted. Also, the
statement in (G3) necessitating the existence of A~ and A% for each choice of truncation
may also be omitted in the case of t-structures since all such choices are isomorphic here.
Without much additional work, we can see that a similar gluing theorem also holds for baric
structures. We follow the notation in [AT] and use B<,, f>q for the baric truncation functors.

Theorem 3.5. Let D, D, and Dy be triangulated categories and suppose that we have baric
structures ({D5"}, {DZ"“ Vwez on Dz and ({D5"}, {D5" Vwez on Dy. Furthermore, suppose
that

(G1) There is a triangulated functor i, : Dy — D and a full triangulated functor j* : D —
Dy.
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(G2) There is a baric structure ({DNZSw}, {DNZZM}> on Dy such that for all w € Z

w

i.(D5") € D
i. (D3*) c Dy "

(G3) (i) For every A € D and every w € Z there is an object A, € D and a morphism
A, — A such that

(a) j* Ay = B2,5"A.
(b) Homp(A,, B) =0 for all B € @Zwﬂ.
(ii) For every A € D there is an object A} € D and a morphism A — A7,
(a) j*AY ~ ng+1j*f4~
(b) Homp(B,AT) =0 for all B€ Dy .

(G4) If A Iy B in D with j*f =0, then f factors through an object ofDNZ.
(G5) Dy ={AeD|jA=0}.
Then the strictly full subcategories of D

Déw_ A s <w - —~ >w+1
={AeD|jAe D" Homp(A,B) =0 for all B € Dy }

D% = {BeD|j*B e D", Homp(A,B) =0 for all Ac D, " '}

give a baric structure on D. Moreover, this is the unique baric structure such that for every
w € Z we have

(i) i.(D;") = D=* Ni.(Dy) and i.(D3") = D>* Ni(Dy)
(i) 7*(D=*) C D" and j*(D>") C DG".

Proof. As in Proposition 3.3 above, the axioms for a baric structure are satisfied by nearly
identical arguments to those in the theorem. What remains to be checked is thickness. Closure

under shifts and direct summands follow in the obvious way from the axioms, and so we only
need to see that D= and D=" are closed under cones. If A, B € D= and f € Hom(A4, B),
then the distinguished triangle

AL B cone(f) — A[l]
yields the exact sequence

.-+ — Hom(A[1],C') — Hom(cone(f),C) — Hom(B,C)--- —

—~ >w+1
for any C' € D, . Since D= is closed under shifts, we see the first and last terms here
are 0. Thus cone(f) € D=" also. The proof that D=* is closed under cones is similar. O

34



3.3 A Minimal Extension Functor

In this section, we show that with a slightly stronger hypothesis, we are able to find a
fully faithful functor from the heart of the t-structure on Dy to the heart of the t-structure
on D obtained by gluing. This generalizes the construction of the ZC (or minimal extension)
functor discussed in [Bezl]|. Again in this case, the abstraction is the key that removes any
mystery from the construction of the ZC functor. Suppose we are in the setup of the previous
section in the case of ¢-structures but that we have replaced (G3) with the stronger condition

(G3') (i) For every A € D there is an object A~ € D and a morphism A~ — A such that
(a) j*A- ~ 7L A
—~ >0
(b) Homp(A~,B) =0 for all B€ D, .
(ii) For every A € D there is an object AT € D and a morphism A — A*
(a) j*AT ~ 7Y j*A.
(b) Homp(B, A*) =0 for all Be Dy .
Then we can use (@3—1’@2—1) or (@Sl,@ZI) in addition to (@SO,@ZO) in the

gluing theorem to get two new t-structures (“D=° ~D=Y) and (TD=° *D=Y) in addition
to (D=, D=0). Denote the associated truncation functors by 7,~ and 7,7, respectively. Let

¢ =D"N D> while C; =D,  ND,  and Cy = D® N DY
Definition 3.6. Define a full subcategory of D

Cy = DN +D0,

Notice that é; C C and in particular, j*é; C Cy.

In order to get a fully faithful functor from the heart of the t-structure on Dy to the
heart of the t-structure on Dy, we also need to make an additional assumption about the
functor j* which is immediately implied by Lemma 2.31 in the case of coherent sheaves. The
additional assumption can be summarized by replacing (G1) with the stronger condition

(G1’) There is a triangulated functor i, : Dz — D and a triangulated functor j* : D — Dy

such that for any two objects A, B € Cy with a morphism f : j*A — j*B, there exist
objects A and B in Cy and diagrams of morphisms

~ f ~ ~ J

A B J*A *B
g h |—>j* 7*(9) J*(h)
A B J*A J*B

where j*(g) and j*(h) are isomorphisms.
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Proposition 3.7. The functor j*|élv] : CA(; — Cy is an equivalence of categories.

Proof. First, let us see that j*|é; is essentially surjective. Let A € Cy and A an object of D
such that j*g ~ A. Define a B
A= TS_O’T;OA.
Clearly A € D=, From the distinguished triangle
(1575 A) 1] = A — A —,

we see that A € Cp if D22 ¢ D2 since for any t-structure, each half is closed under
extensions. This is obvious, however, when one writes down the definitions. The fact that
j*A ~ A follows by applying j* to all of the appropriate diagrams in the gluing theorem and
following the isomorphisms. .

Now we need to see that j*|c~U is full. First, suppose that A, B € Cy with a morphism
f:j5*A— j*B.Let A, B, gand h be as in (G1’). Then since j*(g) and j*(h) are isomorphisms,
the kernel an cokernel of g and A must be in @ But DNZ N CNU = {0} and so g and h are
isomorphisms. Thus the composition h o fo g ':A— Bissent to f by j*.

It only remains to see that j*|5; is faithful. Solet A, B € Cy and f : A — B with j*f = 0.
Then f factors through an object of 13;, and we get a diagram

f

NS

E

A

B

Applying 72,73, to this diagram gives

A f

B

N
E

where E is also in 13; But 13; ﬂa; = {0}, so we see that f = 0. O
Definition 3.8. We define ZC : Cy — é; C C to be the inverse equivalence of j*\é;.

Proposition 3.9. Every simple object of C is either isomorphic to a simple object ofé; or

to a simple object of Cy.

Proof. Let A € C be simple with A not in the essential image of ZC. Then either there is
— >0

a nonzero morphism in Hom(A, B) for some B € Dy , or there is a nonzero morphsim in

—~ <0
Hom(B, A) for some B € Dz . In the first case, let f': A — B be such a morphism. Since
T<o is adjoint to the inclusion, f’ corresponds to some nonzero morphism f: A — 7<oB in
the abelian category C. Taking the cone of f gives a distinguished triangle

AL T<oB — cone(f) — A[l], (%)
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which yields the exact sequence
0 — H 'cone(f) = A — 7<¢B — H cone(f) — 0

after taking t-cohomology. Since A is simple, we must have H 'cone(f) = 0, and so we see
that H%one(f) ~ cone(f). In particular, cone(f) € C. From (x) we see that j*cone(f) ~
j*A[1], but j*cone(f) € Cy while j*A[1] € Cy[1]. Hence cone(f) € Cz and so also A € Cy.
The other case is completely analogous. O

3.4 Equivariant Coherent Sheaves on a Noetherian
Scheme

The motivating case for the previous two sections (as the notation suggests) is when D
is the bounded derived category of equivariant coherent sheaves on a reasonable scheme X.
Specifically, let X be a scheme of finite type over a noetherian base scheme S and G an affine
group scheme of finite type over S acting on X. We restrict to the case where the morphism
fa : G — S is flat of finite type and Gorenstein and G acts on X with finitely many orbits.
We will write the structure sheaf of X as Ox. In what follows, a subscheme will always mean
a G-invariant subscheme unless otherwise stated. Denote the G-equivariant coherent sheaves
on X by Cq(X) and the bounded derived category of equivariant coherent sheaves on X
by D%(X) or usually just Dx or D when X is understood. If k : Y — X is a subscheme
of X, then Dy is shorthand for D%(Y). The bounded derived category of G-equivariant
quasicoherent sheaves will be denoted D%(Qx) or just D(Q) if the other information is
obvious. If i : Z < X is a subscheme of X, we will denote the underlying topological space
of Z by Z. We say that F € Dy is set-theoretically supported on the topological space Y of
a subscheme k : Y — X if its cohomology sheaves are supported on Y. We will use 75* for
the truncation functor associated to the standard t-structure.

We wish to show now that we can in fact recover the perverse t-structure of Deligne given
in Theorem 2.33 by applying the gluing theorem repeatedly. Let X /G be the set of G-orbits
in X (assumed to be finite) and Z9°" the set of generic points for any subscheme Z. Let
p : X/G — 7Z be a monotone perversity. That is, for every G-orbit C' contained in the
closure of another G-orbit C’, we have

p(C") < p(C).
Moreover, suppose that p is comonotone: the dual perversity defined by p(C) = —dim C' —

p(C) is also monotone.

Lemma 3.10. Ifi : Z — X is a reduced closed subscheme and i’ : Z' — X any closed
subscheme with underlying topological space Z, then i, Dy C (i.Dz)} for large enough n.

Proof. Let Z be the ideal sheaf corresponding to the closed subscheme Z, and let Z™ be
the closed subscheme corresponding to the ideal sheaf 7. We will start by showing that
Dy C Dyn. To see this, let F € Dy be represented by the bounded complex G*® of objects in
Ce(Z') and let J be the ideal sheaf corresponding to Z’. Then we can translate the desired
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statement into a statement about modules. It is enough to show that any G' € Cq(Z') is
also in Cg(Z™) for some n. This is the same as saying that there exists an n such that
7" C J, which follows from looking at the primary decompositions of Z and J over any
open subscheme. Thus if i" : Z" < X is the closed inclusion, then i’ Dz C i?Dyn.

Now, to see that i!Dyzn C (i.Dz)%, take F € i Dyn represented by the bounded complex
H* of objects in Cg(Z™). Then each H' corresponds to an Oy /Z"-module, and we have the
exact sequence

0= I '"H' - H' = H'JT""H' — 0.
Then since ! : C(Z") — Cq(X) is fully faithful and i factors through ", when we pass
back to the derived category, we see that F € (i,Dz)% and so i,Dy C (i,Dyz)} as desired.

In fact, Obj((i.Dz)%) = Obj(ilDyn): if F € (iDz)%, then we have a distinguished triangle

G—F—=H—

with G € (i*DZ)%_l and H € i,Dy. If G'*, F'*,H'* are bounded complexes representing these
objects, then H" is an Ox/Z-module and by induction G" is an Ox/Z" '-module. This
implies then that F" is an Ox/Z"-module, as desired. It should be noted, however, that the
subcategory i"Dyn is not necessarily full, whereas the subcategory (i.Dz)} was defined as a
full subcategory of Dy. m

Lemma 3.11. With the assumptions in the introduction, the scheme X admits a dualizing
complex.

Proof. See [Bezl, Proposition 1]. O
Theorem 3.12. For each G-orbit ic : C — X, suppose D%(Cc) is given the t-structure

Dgo _ std<p(C)

Dgo _ stdp=p(C)

Then the t-structure (PD=0,PD=%) on D% (Cx) obtained by iteratively gluing the respective
t-structures on the G-orbits according to Theorem 3.4 above coincides with the perverse t-
structure (DP=Y DP=0) of Deligne.

Proof. We use induction on the number of orbits. If there is only one orbit, then we can use
[Bezl, Lemma 2(a)] to see that the ¢-structures trivially coincide.

In the general situation, choose an open orbit j : U < X (possible since we are assuming
that G acts with finitely many orbits) and let i : Z < X be its closed complement in X with
the reduced subscheme structure. We assume that the t-structure on D has been built up by
iteratively gluing the t-structures on the orbits contained in Z. We want to apply the gluing
theorem once more, so we need to see that the hypotheses are satisfied and then verify that
the t-structures indeed coincide. For the latter, it will be enough to check that PD<0 = Dr-<0
since the other halves can be characterized as the right orthogonal complement to these.

The exact functors i, : C; — Cx (direct image) and j* : Cx — Cy (coherent inverse image)
extend to triangulated functors of the respective derived categories in the usual way and so
satisfy axiom (G1).
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We show the existence of an induced t-structure on 13; required in (G2) by applying
the gluing theorem within the induction argument. If Z is a single orbit, this follows from
Proposition 3.2 since there 7, is fully faithful. Otherwise, let h : S < Z be an orbit which is
open in Z with closed complement k : Y — Z. Also define ¢ : V' — X be the complement of
Y in X. For clarity, we summarize this information in the following diagram (with additional

maps identified)

//\

We may assume by inductlon that any closed subscheme iz : Z' < X with fewer orbits
than Z satisfies (G2) with respect to its inclusion in X. That is, if Z” has fewer orbits than
Z., there is a t-structure on Dz C Dy containing iz, (D3’) and iz, (DZ’). The base case
is clear: if there is only one orbit in a given closed subscheme, this statement follows from
Proposition 3.2 since the pushforward from any orbit is fully faithful on the heart of the
standard ¢-structure. s

Therefore, since Y is a closed subscheme with fewer orbits, we get a t-structure on Dy C
Dx. Similarly, S is a closed subscheme of V' and has fewer orbits than Z, so we get a
t-structure on Dg C Dy. Now m factors through ¢ and so we get an inclusion

l;:lf)\;ﬂ—)ﬁ;CDX

Also, €*|@; has essential image in 13; since any sheaf supported topologically on the inter-
section of Z and V must be supported topologically on S. So we have

Dy
N
Dy Ds

satisfying (G1). Now (G2) is easy in this case since k is just the inclusion of a full subcategory.
For (G3), fix F € Dz. We will use 77 for the truncation functor associated to the t-structure

on DS It is easy to see by following the proof of Proposition 3.2 that this is just a shift of
the standard ¢-structure on Dg by p(S). To define F* and F~, consider ¢ : V — X, the
closure of V in X. Let

e
Ft =D L.IDF.
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Then since ¢* = E*Z*Z! and T%t;( ) is the same as 7'*_<90 on ﬁg, we have
C*F~ ~ T;t;(s)f*}" ~ T‘goﬁ*}_.

—~ >1
Now suppose G € Dy . Then G is supported on some closed subscheme 7' : Y' < X with
the same topological space as Y, say G ~ i’ G’ and so

Hom(F~,G) ~ Hom(Li*F~,G").

Since Li™ is right t-exact with respect to the standard t-structure, we see that any bounded
truncation of Li*F~ is in Sthy/SP ) The monotonicity of the perversity then guarantees
—~ <0
that St4Dy, =" ) < Dy~ . The morphism F~ — F is just the one induced from the counit of
p— — -
the adjunction (¢,, ). For F* we have the dual statements. Since ¢* = ¢*(,¢ and ]Dritg(s) =
CFt =5 F.
The Hom vanishing statement for 7+ follows by duality and the morphism F — F7 is the
p——
one induced by the dual of the counit of the adjunction (¢, ¢).

To show that the next axiom is satisfied, suppose we have a morphism F EN g in 73; with
¢*f = 0. Consider the distinguished triangle in D} (Qx)

m.m'G = G — (LG — m,m'G[1],

which gives an exact sequence

(a—>ao1)
)

.-+ — Hom(F, m,m'G Hom(F,G) — Hom({* F, 0°G) — - - - .

Since ¢*f = 0, we see that f factors through m,m'G and we get the diagram

~

m.m'G

Now if F* and G* are chain complexes representing F and m*TTNL!Q’, respectively and ¢ is
a chain map representing the morphism g, then the image of F* under g is a bounded
subcomplex of G* consisting of coherent sheaves. Viewing this image in the derived category
gives an object of Dy which satisfies (G4).

The axiom (G5) is satisfied since Lemmas 2.32 and 3.10 show that the objects of Dy are
precisely the objects in Dx which are set-theoretically supported on Y.

Thus we can apply the gluing theorem and get a ¢-structure on Dy satisfying (G2).

For (G3)—(G5), we use an identical argument as above for these axioms with U in the
place of V and Z in the place of Y. Fix F € Dx. We will use 7¥ for the truncation functor
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associated to the {-structure given in the statement of the theorem on U. To define F© and
F~, consider 7: U — X, the closure of U in X. Let

Fo= 7—<p(U j*jf
Fr ]D)T<p(U 7.7DF.

std

Then since j* = j*7,7 and T () 18 the same as TSUO on U, we have

*J—_' NTstd *FNT<OJ*J—_-

—~>1
Now suppose G € D . Then G is supported on some closed subscheme ¢’ : Z' < X with
the same topological space as Z, say G ~ ,.G" and so

Hom(F~,G) ~ Hom(Li"F~,G").

Since Li"™ is right t-exact with respect to the standard t-structure, we see that any bounded
truncation of Li"*F~ 1s in 44D, ") The monotonicity of the perversity then guarantees

that s4D, <pU) l/?v . The morphism F~ — F is just the one induced from the counlt of
the adjunction (7,,7). For F+ we have the dual statements. Since j* = j*7,7 and D7* <p(U) =

Tit;( yDon U,

GEFT ~ Tglj*f.
The Hom vanishing statement for 7+ follows by duality and the morphism F — F* is the
one induced by the dual of the counit of the adjunction (3,,7').

To show that the next axiom is satisfied, suppose we have a morphism F ER G in Dx with
J*f = 0. Consider the distinguished triangle in D (Qx)

'G5 G — 4,J°G — i,4'G[1],

which gives an exact sequence

(o)
) ——

- — Hom(F,i,i'G) —— Hom(F,G) — Hom(j*F, j*G) —

Since j*f = 0, we see that f factors through i,i'G and we get the diagram

F—> g
~NOA
i.i'G

Now if F* and G* are chain complexes representing J and i+1'G, respectively and § is a chain
map representing the morphism g, then the image of F* under g is a bounded subcomplex
of G* consisting of coherent sheaves. Viewing this image in the derived category gives an
object of Dy which satisfies (G4).
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The axiom (Gb5) is satisfied since the two lemmas above show that the objects of Dy are
precisely the objects in Dx which are set-theoretically supported on Z.

So we can apply the gluing theorem to see that (PD=C,PD=Y) is in fact a t-structure
D% (Cx). As mentioned at the beginning of this proof, to see that the t-structures coincide it
suffices to check that PD=Y = DP=0 Now the proposition follows from the fact that for any
subscheme i : Z — X and any generic point z € Z9°", we have that the top cohomology of
i*i*F and it F are equal and occur in the same degree, e.g. see [Bezl, Lemma 2(a)].

O

The t-structure obtained by gluing the respective t-structures on the orbits does not depend
on the choice of open oribt in the proof of the proposition. This fact follows not only from the
uniqueness of the perverse t-structure as defined by Deligne (see Theorem 2.33, where it is
defined by conditions of sheaves which are defined on all of X'), but also from the uniqueness
in the gluing theorem.
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Chapter 4

Perverse Poisson Sheaves

We begin this chapter by defining the Poisson derived category. We will not be interested
in studying the Poisson derived category itself, however, but rather the analogous derived
category when we also have a G-equivariant structure. Thus, the first section will be devoted
to defining the equivariant Poisson derived category and developing the necessary theory that
will allow us to construct the accompanying derived functors in Section 2. We will then leave
the general setting and restrict to the case of the nilpotent cone associated to a reductive
complex algebraic group. In this setting we will be able to use the machinery developed
in the previous sections and the gluing theorem for triangulated categories proved above
to develop a theory of perverse Poisson sheaves. Finally, using the framework of perverse
Poisson sheaves, we are able to state a theorem on the Poisson analogues to Green functions.

Let us fix the following terminology. Let X be a noetherian Poisson scheme over C. We
will use G for a reductive complex algebraic group which has a Hamiltonian action on X
and we assume that X has finitely many G-orbits. The fact that the G-action is Hamiltonian
guarantees that G-orbits (and hence any G-invariant subscheme) are Poisson subschemes.
Unless otherwise noted, we will only consider G-invariant Poisson subschemes. We refer the
reader to Section 2.5 for the basic theory of Poisson sheaves (Poisson Ox-modules) and
Hamiltonian group actions.

4.1 The Equivariant Poisson Derived Category

We will denote the category of coherent Poisson sheaves on X by Cpei(X) which is a full
subcategory of the cateogry of quasicoherent Poisson sheaves Qpyi(X). Each of these is an
abelian category since there are naturally induced Poisson structures on kernels, cokernels,
etc. and the composition of Poisson morphisms is again Poisson.

Definition 4.1. Let D(Qpoi(X)) be the derived category of quasicoherent Poisson Ox-
modules. We will call Dpi(X) = Deon(Qpoi(X)) the Poisson derived category of X, i.e. the
full subcategory of D(Qp.i(X)) whose objects are complexes with coherent cohomology. We

will denote the bounded above, bounded below, and bounded Poisson derived categories by
Dlgoi(X)’ D;oi(X)v and le)’oi(X>v respeCtiVGIY-

Lemma 4.2. The categories Dpoi(X), Dpy;(X), D (X), and Db, (X) are triangulated.

Proof. Since Dpy;i(X) is obviously closed under shifts, we only need to use the fact that the
cone of a morphism between objects with coherent cohomology has coherent cohomology
itself. This is not difficult to show directly, and can also be seen by forgetting the Poisson
structure and then using the same statement which is already known in D(Q(X)). From the
definition of cone (see, for instance, [GM1, §111.3.2]), we see that the cone of a bounded
(below, above, or both) complex is again bounded. O
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Remark 4.3. Let Px be the abelian category of Poisson sheaves on X, i.e. the category
of coherent Poisson Ox-modules. Then D(Px) C Dpy(X) and so we can embed Py —
DPoi(X)-

We will now add in the G-equivariant structure. Note that the category Cp,c(X) (resp.
Qpoic (X)) of G-equivariant coherent (resp. quasicoherent) Poisson sheaves is an abelian
category since the equivariant structure is compatible with the Poisson structure (the action
of G is Hamiltonian). The following proposition will be vital for defining derived functors
below.

Proposition 4.4. For any Poisson scheme X, the category Qpyc(X) has enough injectives.

Proof. We make use of Godement sheaves (see [GK, Appendix A.6]). Let X be the disjoint
union of all (scheme-theoretic) points of X and v : X — X the natural map. Then God =
YY" 1 Qpoic (X) = Qpic(X) can be given by

God(F)(U) = [ -

zelU

Then God(F) has a natural Poisson structure given coordinate-wise in the product and an
equivariant structure induced from the equivariant structure on F by restricting to stalks.
Hence the functor God takes values in the category Cp,c(X) as claimed above. Moreover,
for any F € Qp.;c(X), there is a canonical embedding F — God(F) which locally sends a
section over U to its images in the stalks of F.

Now let Z, be an injective object in the module category over the local ring O, such that
there is an embedding F, — Z, for all z. We can choose Z, to be an equivariant Poisson
module following Corollary 2.60 and Lemma 2.41. Then if Z = [, Z,, we have an embedding
v*F < T in Qpc(X). Since 7, is left exact and takes injectives to injectives, we then get
an embedding God(F) < ~.Z. Combining this with the canonical embedding F — God(F)
gives F as a subobject of an injective. O]

Proposition 4.5. Let X be an affine Poisson scheme. For any locally closed Poisson sub-
scheme Y — X, the category Qpyc(Y) has enough locally free objects.

Proof. First we show that there are enough free objects in Qp ;o(X). Suppose that X =
Spec A and consider an equivariant Poisson A-module M as an equivariant Up,;(A)-module.
Let {m; | i € I} be a set of generators of M as an A-module, and E a G-stable complex
vector space containing the m;. Consider Upy;(A) ® E, which we make into a free Upy;(A)-
module by letting Upqi(A) act on the first factor. The module Upyi(A) ® E can also be given
the usual G-equivariant structure (G acts on both terms in the tensor). Moreover, the map
Upoi(A) ® E — M sending a ® x — a.x is surjective and equivariant. Viewing Upyi(A) @ E
as a Poisson A-module now, the fact that Upyi(A) is free as an A-module (Corollary 2.63)
shows that Upyi(A) ® E is still free over A.

Now if ¢ : Z — X is a closed subscheme, then we could repeat the above with A/I for
some Poisson ideal I in A. For an open subscheme j : U < X, the restriction j* takes locally
free objects to locally free objects and is exact. Since j* is essentially surjective, we then have
enough locally free objects in Qp,;c(U). Combining these (any locally closed subscheme of
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a noetherian scheme can be realized as an open subscheme of a closed subscheme), we see
that for any locally closed subscheme Y, the category Qp.c(Y) has enough locally free
objects. O]

Definition 4.6. Denote the G-equivariant Poisson derived category by
Dpyic (X) = Deon(Lpoic (X))

That is, D, o(X) is the full subcategory of the derived category of the category of G-
equivariant quasicoherent Poisson sheaves whose objects have coherent cohomology. We also
have the full subcategories D} . where * stands for —, +,b, i.e. bounded above, bounded
below, and bounded, as above.

Lemma 4.7. The categories Dy, .« (X), D, (X)7D;oiG(X)7 and DY, (X) are triangulated.

» T Ppoi¢

Proof. As above, the only thing that requires justification is that the subcategory D, _«(X)
is closed under taking cones. Thus forgetting both the Poisson and equivariant structures
allows us to use the analogous statement in D(Q(X)) to see that the cone of a morphism
of objects with coherent cohomology must have coherent cohomology. As in Lemma 4.2, the
bounded versions are closed under shifts and cones as well. O]

Remark 4.8. We have the following commutative diagram of forgetful functors

poic (X)

Poi€

D
D (X) Dpei(X)

Dr(X)
Here Dg(X) = D(Cs(X)) which is studied, for instance, in [Bezl]. The category D(X) =
D(C(X)) is the derived category of coherent sheaves, and x stands for b or — (in these
cases it is known that the full subcategory of the derived category of quasicoherent sheaves

consisting of complexes with coherent cohomology is equivalent to the derived category of
coherent sheaves, see Lemma 2.30).

4.2 Poisson Sheaf Functors

The Poisson equivariant derived category described in the previous section is morally
the category that we would like to work in. This category is more subtle, however, than if
we forget the Poisson structure. In the non-Poisson setting, we were able to construct the
perverse coherent t-structure by shifting the standard ¢-strucutre on orbits. This was possible
because we could induce a t-structure on the subcategory of the derived category consisting
of those complexes supported topologically on a closed subscheme from the shifted standard
t-structure on the reduced subscheme. As the following example shows, this is not the case
for Poisson sheaves.
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Example 4.9. Let A/ be the nilpotent cone in sl,. It is straightforward to show that A can
be realized as

N = Spec A,

where A = C [%xz, —xy, —%yz]. We can endow N with a Poisson structure by specifying

that
1, 2
{—xy, 2:1: } =z
1, 2
{—$Z/a—29 }—y

1 1
{51’2, —53/2} = -1y,

and extending by linearity and the Liebnitz rule to the whole algebra A. This Poisson struc-
ture is simply the structure induced by considering A C C[z,y] with Poisson bracket given
by {z,y} = 1. From the description given above, we see at once that %xQ, —xy, —%yz form
an sly triple and so we recover a copy of sly inside the coordinate algebra A.

Consider the ideal I = (2%, xy,y*)A. This is a Poisson ideal of A and Z = SpecA/I is the
Poisson subscheme of N corresponding to the zero ideal in A with the reduced subscheme
structure. In this case, the module category Oz-modp,; is just equivalent to the category
Oz-mod because every Poisson module must have trivial Poisson structure.

Other subscheme structures on the point do yield nonzero Poisson modules however. For
instance, the module

M, = (2™, 2" Yy, .. oyt yM A ("2 2"y, oy Ty A

has a nontrivial Poisson module structure over A/(z" "2, 2™y, ... xy™* y"*2)A. The prob-
lem is that the module M, is supported as a coherent sheaf on the reduced point, but not
as a Poisson scheme. We can certainly give ¢*M,, a natural Poisson structure, but this is not
the correct notion. An easy calculation shows that ¢* and ¢, are not adjoint functors in the
Poisson setting. Thus the structure of the subcategory of Poisson modules supported topo-
logically on the point is not induced by the structure of the subcategory of Poisson modules
supported on the reduced subscheme.

What we will do then, is to form a certain quotient category that will allow us to use the
gluing mechanism as before to build a ¢-structure which we will call the reduced perverse
poisson t-structure. This is somewhat unsatisfactory in that we would like to have a t-
structure on the entire Poisson derived category, but this seems to be significantly more
involved and does not impact our initial goal of describing the stalks of coherent sheaves which
happen to come from local systems (vector bundles with a flat connection). As mentioned
briefly above, another way of approaching this subject would be to generalize the idea of the
Poisson enveloping algebra to schemes and adapt [Bezl| to the non-commutative setting. A
reasonable statement to desire in such a theory is that the perverse coherent sheaves on some
“universal Poisson scheme” correspond to what morally should be perverse Poisson sheaves
on the original scheme. We do not know if such a statement is possible.
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The basis for the quotient category that we will focus on will be the behavior of functors
between appropriate triangulated categories. Toward this end, let i : Z — X be the inclusion
of a closed subscheme and j : U — X the open complement. Two of the functors that we
will need are immediately available. These are the direct image 7, and the inverse image
j*. Because these functors are exact on the abelian category, they extend to the (bounded)
derived category in the usual way (one can apply them to a complex “term-wise”). We will
now define the other three functors (i'Pei,i*Pi, and j,) on the abelian category and then
use our work from the previous section to construct their derived versions. The modifiers
on these functors indicate that we must adapt the definition of the functors to the Poisson
setting as is explained in the following definition. Most of the work in this section is adapting
either classical results about functors of sheaves of Ox-modules or results from [Bezl]. We
stress, however, that the Poisson functors defined below are actually different functors from
the coherent versions and require a new treatment.

Definition 4.10. Let X be a Poisson scheme. It is straightforward to generalize Definiti-
ion 2.57 to the setting of sheaves. That is, we say that U is a universal Poisson sheaf for X if
U is a sheaf of associative C-algebras (which we make into Lie algebras via the commutator
bracket) and there are morphisms f,g : Ox — U such that f is a morphism of sheaves
of C-algebras and ¢ is a morphism of sheaves of complex Lie algebras satisfying the local
equations

f({a,b}) = g(a)f(b) — f(b)g(a)
g(ab) = f(a)g(b) + f(b)g(a),
such that for any other sheaf of associative C-algebras W and morphisms h,¢ : A — W

satisfying the same equations, there exists a unique morphism of sheaves of C-algebras ~ :
Ux — VW such that the diagrams

u u
N N
N N
f \\7 p \\'y
N N
N N
NN N\
A—F—W A—F—W

commute.

Proposition 4.11. For any Poisson scheme X, there is a unique universal Poisson sheaf.

Proof. The construction is simply a sheaf version of Theorem 2.58. It wlll be necessary to
have two copies of the structure sheaf which we can distinguish, so let Rx also denote
the structure sheaf of X with the identity morphism ¢ : Ox — Rx (we will denote the
isomorphism in the other direction by ¢™1). Let T(Ox & Rx) be the tensor algebra sheaf.
That is

T(Ox ®Rx) =P Ox @Rx) @@ (Ox & Rx).

n>0 e
= n pairs
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Then 7 (Ox) is a subsheaf of T(Ox &R x) and we have a canonical morphism ¢ : 7(Ox) —
Ox. We also have morphisms

B:0Ox®Ox — Ox
n:0O0x ®0O0x — Ox
tor 1 Ox ® Rx = Ox ® Rx
oor:Ox ® Rx = Rx ® Ox,

where B is the Poisson bracket, p is multiplication in the structure sheaf, ¢ is the identity
morphism, and ¢ exchanges the two factors (we also have the other variations of the ¢ and
o). Let J be the ideal sheaf generated by the ideal sheaves

e keri

eim(ipr —orr —poBop '@y ' 1 Rx®Rx — T(Ox ®Ryx))

e im(irp —opo— Bop ' ®ido, : Rx ® Ox — T(Ox ® Rx))

e im(lor +ooroP®@p ' —popuoidp, ®p ' : Ox ®Rx — T(Ox ® Rx)).

Though these formulas are completely opaque, they are simply the sheaf versions of the
generators of the ideal J in Theorem 2.58. Define

Ux =T(Ox ®Rx)/J.

The proof that this satisfies the universal property is completely analogous to the Poisson
enveloping algebra case. [

Proposition 4.12. We have an equivalence of categories Ox-modp ;¢ ~ Ux-modg.

Proof. As before, the morphisms f, g from Definition 4.10 make any U x-module into a Pois-
son Ox-module. Conversely, the module structure morphisms ensure that for any Poisson
Ox-module F there is a morphism Uy — Hom(F,F) making F into a Uy-module. O

Definition 4.13. Let f : Y — X be a morphism of Poisson schemes. Define the Poisson
inverse image functor to be the functor f**ei : Qp .o (X) — Qp,c(Y) given by

[P F = [TV @ gy Uy,

where f~! denotes the topological inverse image functor.

Remark 4.14. We will only need this idea is the case where k£ : Y < X is the inclusion
of a locally closed Poisson subscheme of X. In the case of a closed or open subscheme, we
are able to give an explicit description of this functor. Clearly for an open subscheme, the
Poisson inverse image is just the ordinary restriction. Now if 2 : Z — X is the embedding of
a closed G-invariant Poisson subscheme with ideal sheaf Z, then i*P* : Qp .c(X) — Qp.ic(Z)
can be realized as the functor

i F = F/({T, F} + TF).
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In particular, this shows that for any locally closed subscheme, the Poisson inverse image
takes coherent sheaves to coherent sheaves since this is clearly true for closed and open
subschemes, while any locally closed subscheme (of a noetherian scheme) can be realized as
an open subscheme of its closure.

Definition 4.15. Dually, let k£ : Y — X again be a locally closed subscheme. We define the
Poisson inverse image with supports to be the functor k'™ : Qp ¢ (X) — Qp.e(Y) given by
k'!POi.F = HOmk—luX (Z/{Z, kilf).

Remark 4.16. Similarly to the Poisson inverse image, if i : Z < X is a closed subscheme,
then we can describe i'P as a subsheaf of the usual inverse image with supports. Let j : U <
X be the open complement of Z. If F € Qp,,¢(X) and V is an open G-invariant subscheme
of Z, then U UV is an open subscheme of X and we have

PP F(V)={sc F(VUU) | fs=0,{f, sy =0forall feZ(VUU)}.
Lemma 4.17.
(a) The functor i, : Cpyc(Z) — Cpyic(X) is exact.
(b) The functor j. : Qpyc(U) = Qpue(X) is left exact.

Proof. Since these functors are defined exactly as in the coherent setting, the statements
about exactness and the behavior on (quasi)coherent sheaves can be obtained by forget-
ting the Poisson structure. The claim that ¢, and j, take equivariant Poisson modules to
equivariant Poisson modules is clear from the definitions of the functors. n

Lemma 4.18.
(a) The functor i*ti is left adjoint to the direct image i, and hence right exact.
(b) The functor i is right adjoint to the direct image i, and hence left ezact.

Proof. The adjunctions can be obtained in the same way as the non-Poisson setting using
Remarks 4.14 and 4.16. The key here is that we are restricting to only morphisms which
respect the Poisson structures. L]

Definition 4.19. Let F and G be equivariant quasicoherent Poisson sheaves on X. Define
a new sheaf Hom(F,G) by setting Hom(F,G)(U) = Homg(x)(F|v, G|v). Then Hom(F,G)
is naturally a G-equivariant sheaf and can be made into a Poisson sheaf where locally the
Poisson bracket is given by the formula

{a, fiv(z) ={pvv(a), fv(2)} — fv({pvv(a),x}),

for a € Ox(U), f € Hom(F,G)(U), and x € F(V) (here pyy : I'(Ox,U) — I'(Ox,V) is
the restriction of sections and fy : F(V) — G(V) is the induced map on sections). Then
Hom is a bifunctor and commutes with the forgetful functors (forgetting either the Poisson
structure, the equivariant structure, or both).
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As we would expect, we can also define a tensor product of two Poisson sheaves which has
a natural Poisson structure.

Definition 4.20. Let F and G be equivariant quasicoherent Poisson sheaves on X. Define
a sheaf F ® G to be the sheafification of the presheaf U — F(U) ® G(U). This is naturally
a G-equivariant sheaf and we can give it a Poisson structure with local bracket

{a.f@g}={a, f}®g+ f®{ag}
Lemma 4.21. For quasicoherent equivariant Poisson sheaves F,G and H, we have
Hom(F @ G, H) ~ Hom(F,Hom(G,H)).
Proof. This can be shown in the standard way. For instance, see [KS1, Proposition 2.2.9]. [

Remark 4.22. Let X be a Poisson scheme, and k£ : Y < X a locally closed subscheme.
Then Proposition 4.4 ensures that we are able to construct the derived functors

RE™: D} o (X) = DY (Q(Y))
Rk, : D} (Y) = D} _o(Q(X)).

In fact, if we have another Poisson scheme X', we can construct the derived direct image
Rf.: D} o(X) = Dy o(Q(X')) for any Poisson morphism f : X — X'. The fact that the
target category for Ri'Poi is DgoiG(Q(Y)), for example, indicates that this functor might not
preserve coherent cohomology (the author does not know if this is true in general). This
is a consequence of the fact that we only have quasicoherent resolutions and not coherent
resolutions, even if the sheaf we start with is in fact coherent. Later in the specific case of
the nilpotent cone, we will be able to overcome this issue with Proposition 4.38.

If X is a locally closed Poisson subscheme of an affine Poisson scheme, we also can use
Proposition 4.5 to construct the derived functors

Lk : D o(X) — Dy o(Q(Y))

© T Poi€
RHom : (D (X)) x D¥ 4(X) = D ,(X)
L
& D} () x (Do (XD = D),

where we compute RHom in the first variable and ®" in either variable with locally free
sheaves. Because of this, RHom and ®" also commute with the forgetful functors (forgetting
the Poisson structure, the equivariant structure, or both) since locally free resolutions may
be used in these categories as well to compute RHom and ®", while For takes locally
free sheaves to locally free sheaves. In particular, this shows that these functors preserve
boundedness of complexes and coherence in cohomology since these are known in the non-
Poisson, nonequivariant setting.

In order to make full use of the Poisson inverse image functors, we will need to see that
the derived versions of these functors work well with composition. This amounts to seeing
that the functors preserve the appropriate acyclic objects.
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Lemma 4.23. Let X be an affine Poisson scheme and i : Z — X a closed subscheme. If
k:Y < Z is a closed subscheme of Z, then

(a,) R(Z O k)!POi = RZ'!POi o) Rk!POi.
(b) L(i o /{:)*Poi — [j*Poi o [ J*Poi

Proof. The functor i'P» has an exact left adjoint i, which in turn is right adjoint to i*Pe.
Hence i'P preserves injectives and i*P preserves locally free objects. O]

Definition 4.24. A dualizing complez for a Poisson scheme X is an object wx € Dy, (X)
such that there is an isomorphism

F — RHom(F, RHom(F,wx))

for all 7 € D, c(X). We call D : F — RHom(F,wx) a duality functor.

Lemma 4.25. If X is an affine Poisson scheme, then for an object wx € Dy, (X), the
following are equivalent

(a) wx € Dy o(X) is a dualizing complex.
(b) For:D, .c(X) — Dg(X) takes wx to a dualizing complex.
(c) For: D, (X)— D(X) takes wx to a dualizing complex.

Proof. This argument for this proof comes from [Bez1l, Lemma 4]. The implications (a) = (b)
and (b) = (c) follow from [Harl, Proposition V.2.1], which tells us that wx is a dualizing
complex if the natural transformation Ox — RHom(RHom(Ox,wx),wx) is an isomor-
phism (Ox denotes the structure sheaf). Since Oy is certainly in D, .o(X) and hence in
the image of (either) For, we see that For(wy) is a dualizing complex if wyx is a dualizing
complex. Since RHom commutes with (each) For, the converse implications follow from the
fact that (each) For reflects isomorphisms. O

Lemma 4.26. Any affine Gorenstein Poisson scheme admits an equivariant Poisson dual-
12ing complew.

Proof. For a Gorenstein scheme, the structure sheaf is a dualizing complex. Since the struc-
ture sheaf is obviously equivariant and Poisson, this lemma follows from Lemma 4.25.  [J

Lemma 4.27. Let X be an affine Poisson scheme admitting a dualizing complex. For any
Fe ,DllgoiG (X) we have Ri'™ F ~ DLi*PiDF.

Proof. It follows immediately from the definitions that for any F € Qp ;c(X) we have

i, F ~ Homy, (i.Uz, F)
i ~ F @y, iy,

Since both sides of these formulas can be computed by injective and locally free resolutions
of F, respectively, we see that this is also true for the derived versions of these functors (for
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bounded complexes). Using this and the adjoint pair (®*, RHom), a simple computation
shows that
i, Ri'"™ RHomo, (F,wx) =~ i,RHome, (Li'™F,i'wy).

Now we can take the topological restriction to Z which is an exact functor (not the coherent
or Poisson pullback) to get the statement to get Ri'PoD ~ DLi*P, which is equivalent to
the claim. For the basic facts about adjunctions and RHom over different sheaves of rings,
see [KS2, §18.2]. O

Definition 4.28. Let X be a Poisson scheme. Define a strictly full subcategory of D, ¢ (X)
Sx =|J{F €Dy | j*F ~0and i F ~ 0},

where the union is over all pairs consisting of a reduced closed (G-invariant) subschemes
1 : Z — X along with its complementary open subscheme j : U < X. Since we are
assuming that G acts with finitely many orbits, this is a finite union.

Lemma 4.29. The subcategory Sx is thick (see Definition 2.4).

Proof. Suppose F — G — H — F[1] is a distinguished triangle in D, . Fix a particular
reduced closed subscheme and open complement. Since j* and i*Pe are triangulated functors,
if any two of F,G, and H are in Sx, then the third is also. Thus Sy is a triangulated
subcategory. Clearly, Sx is also strictly full. Now suppose F & G € Sx. Then we have a
distinguished triangle

FoFag—G 35— 7l

Applying j* and i*P to this triangle shows that j*G[—1] 2 J*F and i*PeiG[—1] 2% F are
isomorphisms. Thus F and G are also in Sy. Since the union of thick subcategories is again
thick, we have proved the lemma. O

Definition 4.30. Define the reduced equivariant Poisson derived category as
redlDPoiG (X) = Dpya(X)/Sx-

Proposition 4.31. Let X be an affine Poisson scheme admitting a dualizing complex. For
any locally closed subscheme k : Z — X, the functors Rk,, Lk**, Rk'P, RHom, and D

descend to functors on the quotients.

Proof. Let F € Sx. Then there is a reduced closed subscheme i : 7 — X with open
complement 7 : U — X such that j*F = 0 and L¢*™F = 0. If Y C U, then clearly
Lk*Pei F ~ 0. Otherwise let Y/ = ZNY with the reduced subscheme structure and embedding
7Y — X. Since Li"”*Pe factors through Li*Pei, we see that Li*FiF ~ 0. Now we can also
factor i’ = k o/, where £ : Y’ — Y is the embedding of a reduced closed subscheme. Since
Li"*Pei = [f*Poi o [k*Poi we see that

LO*Pet (LE*Per) ~ 0,

which shows that Lk**F € Sy and hence is isomorphic to 0 in *D,_(Y"). The functor
Rk, can be shown to take Sy to Sy in a similar way.
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Consider Hom(F,G), where F is a sheaf (not a complex of sheaves) such that i*PeiF = 0
for some reduced closed subscheme i : Z — X and F is supported topologically on Z.
Suppose that F ~ i/ F' where ¢’ : Z' < is a nonreduced closed subscheme with topological
space Z. Then

i Homo, (F,G) ~ i Homo,, (F',i"G),

Now we already know that i*Pt 7" = 0 from above, and this means that 7' = (ZF' +{Z, F'}.
Then the definition of the Poisson structure on Hom(F',i"G) given above shows that in
PP Hom(F',i"G), all morphisms are Poisson. Now we can use the Poisson adjunctions to
see that

i*POiHomOZ, (f/’ Z/'g) ~ HOmpOI (f/’ 'l/' )’

which is isomorphic to Hompe(i*7 F',i"G). Since we have shown already that "7 F is 0 in
redDP()iG(Z "), we see that Hom descends to the quotient also. The derived version also holds
since we can take an injective resolution of G in either situation.

Applying Lemma 4.27, we see that Rk also descends as long as Lk*P F ~ ( if and only
if Lk*PiDF ~ 0, which follows from the fact that RHom descends to the quotient. n

4.3 Perverse Poisson t-structure

Now we leave the general setting and specialize to the situation that provided the mo-
tivation for this work. Let GG be a reductive algebraic group over C with Lie algebra g.
Then G acts on g* with the coadjoint action and this restricts to an action on the nilpotent
cone N with finitely many orbits. The nilpotent cone, its Poisson structure and other basic
properties are reviewed in Section 2.7. In this setting we are able to say a good deal more
than in the case of a general Poisson scheme. For example, the functors i*P* and i have
better properties and we are able to extend several of the basic lemmas from [Bezl]| to this
setting. The primary reason for this is that the G-action on N and the Poisson structure
are intricately linked in a stronger way than requiring that the G-action to be Hamiltonian.
As outlined above and used many times below, the Poisson structure on N is induced from
the Lie bracket on g while the G-action gives a g-action on A. This connection has the
important consequence that G-equivariant subsheaves of a Poisson sheaf are automatically
Poisson. Thus any statement depending only on finding suitable G-equivariant subsheaves
extends to this setting. A Hamiltonian group action is roughly an action whose correspond-
ing infinitesimal action factors through the Poisson structure. The theory that follows can be
extended to any Poisson scheme admitting a dualizing complex where the Poisson structure
is determined by this factorization (see Remark 2.72).

Lemma 4.32. Let F be an equivariant quasicoherent Poisson sheaf on N'. If F' < F is an
equivariant subsheaf of F, then F' is also a Poisson sheaf.

Proof. Differentiating the action of G on N, we get an action of g on N and a corresponding
action of g on F. Since F’ is G-equivariant, we also have that F’ is g-equivariant. Since the
Poisson structure is induced by the Lie bracket of g (see Lemma 2.69), we see that F is
closed under the Poisson bracket. O]
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Lemma 4.33. We have an equivalence of categories

(a) *'Dy 0 (N) = "Dy o (C(N)).

Poi€

(b) ™Dy e W) 2= ™Dy o (C(N)).

Poi

Proof. Since G-equivariant subsheaves are Poisson, this follows directly from [Bez1, Corollary
1]. O

Lemma 4.34. If Y s a locally closed subscheme of N, then there are enough locally free
objects Cpc(Y).

Proof. Tt is enough to prove this lemma for A itself since an open restriction takes locally
free objects to locally free objects and the same argument works for any closed subscheme as
it does for V. For any equivariant Poisson module M over Oy, choose a finite dimensional
G-stable subspace E of M which generates M as in Proposition 4.5. Then we can make
On ®c E an equivariant Poisson module by letting Oxr act on the first term, G act on both
terms and defining a Poisson bracket by

{a,b@m} ={a,b} @ m +b® {a,m}.

We can easily check that this is a Poisson bracket, with the key fact that £ being G-stable
guarantees that E is also closed under the Poisson bracket on M. To see this, notice that £
is also g-stable where the action of g on M is the action corresponding to the action of G.
Since the Lie bracket on g induces the Poisson structure on Oy (see Proposition 2.68 and
Lemma 2.69), we also see that E is Poisson closed.

The map Oy ® E — M sending a ® m +— a.m is surjective since F generates M as a
module. Since this is also equivariant and Poisson, we have shown the lemma. O

Remark 4.35. The only issue with the extending Lemma 4.34 in the general setting is that
the finite dimensional G-stable subspace which generates the module might not be Poisson
closed. If we are able to find such a subspace of any module which is closed under the Poisson
bracket, then the proof given would go through.

Lemma 4.36. There is an equivariant Poisson dualizing complex for N

Proof. Tt is well known that N is Gorenstein (see for example [BK, Theorem 5.3.2]), so this
follows immediately from Lemma 4.26. O

Lemma 4.37. For any F and G in "D}, (N) we have
Homp o (F,G) = Homp ;o (DG, DF).

Proof. Using the symmetry of the tensor product and Lemma 4.21, it is straightforward to
see that
Homp ;o (F,DG) ~ Homp, (G, DF)

and replacing G with DG then gives the statement of the lemma. O]
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Proposition 4.38. Ifi: Z — N is any closed subscheme, the functors Li*F and Ri'P* take
bounded complezes of quasicoherent sheaves with coherent cohomology to (possibly unbounded)
complezes of quasicoherent sheaves with coherent cohomology.

Proof. By duality, it is enough to show this for Li*Pei. Since F € redDII’DoiG (N), we can assume
that F is actually a coherent complex and take a resolution P*® of F by locally free coherent
Poisson sheaves. Since quotients of coherent sheaves are clearly coherent, Li*Pei takes P*® to
a (possibly unbounded) coherent complex of Poisson sheaves on Z. ]

Lemma 4.39. Leti: Z < N be a closed subscheme. Then on the bounded derived category
redpb (N, we have

Poi€
(a) Ri'PoD ~ D Li*Poi,
(b) Li*PoiD ~ DR;'Per,

Proof. In the general setting (Lemma 4.27), we proved (a), and now (b) follows from Propo-
sition 4.38. O

Lemma 4.40. Let X be an affine Poisson scheme and i : Z — X a closed Poisson sub-
scheme. If i is the topological functor of sections supported on Z, we have an isomorphism

limg Hompo;c (F,i,i'™G) ~ Hompa(F,i,i'G).
Z/

Proof. This follows from the same argument as in [Bezl, Lemma 3(a)], replacing “equivari-
ant” everywhere by “equivariant Poisson,” which we may do following Lemma 4.32. O

Definition 4.41. If C is a G-orbit and p is a given perversity, then define a t-structure
("D (C), "Dy (C)) on Dy, 6(C)

Poi®

PDE0(C) =D (O)[p(O)]

"DV (C) = D50 (O)[p(O)],

Poi¢ Poi¢
where (D50 (C),*9D.0,(C)) is the standard t-structure on ™D, (C).

Theorem 4.42. There is a unique t-structure (pr)(?iG (N),PDZ°L(N)) on ©dph o (N) such

Poi®
that for every locally closed orbit k : C' — N we have

Lk (ppgc()]ic (N)) C pDIi?iG (©)
Lk ("DVo(N)) C Dol (C).

Proof. We want to apply the gluing theorem in a similar manner as we showed the construc-
tion of perverse coherent sheaves. This proof is nearly identical to the proof of Theorem 3.12,
but it is necessary to restate the proof since certain arguments are different in the Poisson
case. We induct on the number of orbits. There are always at least two orbits since the
principal orbit is smooth, open and dense, while the point 0 is always a singular point. The
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proof in the case when there are precisely two orbits (for example, G = SLs(C)) is exactly
the same as what follows, though some statements could be dramatically simplified.

In the general situation, choose an open orbit j : U < N (say the principal orbit) and let
i : Z < N beits closed complement in A with the reduced subscheme structure. We assume
that the t-structure on redDgoiG (N) has been built up by iteratively gluing the ¢-structures
on the orbits contained in Z. We want to apply the gluing theorem once more, so we need to
see that the hypotheses are satisfied. For convenience of notation, we will denote redDgoiG (N)
by D, "D}, +(Z) by Dz and *D?, . (U) by Dy.

The functors i, : Dy — D and j* : D — Dy satisfy axiom (G1) for the same reasons as in
the non-Poisson situation. .

We show the existence of an induced t-structure on Dy required in (G2) by applying
the gluing theorem within the induction argument. If Z is a single orbit, this follows from
Proposition 3.2 since i, is fully faithful in this case. Otherwise, let h : S < Z be an orbit
which is open in Z with closed complement k : Y — Z. Also define ¢ : V. — N be the
complement of Y in N. For clarity, we summarize this information in the following diagram
(with additional maps identified)

We may assume by induction that any closed subscheme iz : Z' < N with fewer orbits
than Z satisfies (G2) with respect to its inclusion in N. That is, if Z’ has fewer orbits than
Z, there is a t-structure on 521/ C Dy containing z'Z/*(D;O ) and izf*(Df,O ). The base case
is clear: if there is only one orbit in a given closed subscheme, this statement follows from
Proposition 3.2 since the pushforward from any orbit is fully faithful on the heart of the
standard t-structure. .

Therefore, since Y is a closed subscheme with fewer orbits, we get a t-structure on Dy C
Dy Similarly, S is a closed subscheme of V' and has fewer orbits than Z, so we get a
t-structure on Dg C Dy . Now m factors through ¢ and so we get an inclusion

/;I:'ZS;/‘%'Z/)VZC'DN.
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Also, 0* D, has essential image in l/?\:g since any sheaf supported topologically on the inter-
section of Z and V must be supported topologically on S. So we have

Dy
N
Dy Ds

satisfying (G1). Now (G2) is easy in this case since k is just the inclusion of a full subcategory.
For (G3), fix F € Dz. We will use 72 for the truncation functor associated to the t-structure

on Dg. It is easy to see by following the proof of Proposition 3.2 that this is just a shift of
the standard ¢-structure on Dg by p(S). To define F* and F~, consider ¢ : V — N, the
closure of V in N. Let

— S - = oi
.F = Tgt;,i(s)g*g " .F
F+ = DTE%(S)Z*Z!POiD‘F.

i oi . ~
Then since £* = ¢*(,£" and Tit]f(s) is the same as 72, on Dg, we have
C'F~ ~ T;t;i(s)ﬁ*.? ~ Tgof*]:.

—~ >1
Now suppose G € Dy . Then G is supported on some closed subscheme 7’ : Y/ < N with
the same topological space as Y, say G ~ .G’ and so

Hom(F~,G) ~ Hom(Li"™F~,G").

Since Li*Pei i right t-exact with respect to the standard ¢-structure, we see that any bounded
truncation of Li"*Pei F~ is in "Dy, =P(9) The monotonicity of the perversity then guarantees
that Sthy/Sp ) - 13;;0. The morphism F~ — F is just the one induced from the counit
of the adjunction (Z*,Z!Pm). For F* we have the dual statements. Since ¢* = £°7,7™ and

—~

D7<5s) = m35s)D on Ds,
CFt =S F.
The Hom vanishing statement for 7+ follows by duality and the morphism F — F7 is the
— =5
one induced by the dual of the counit of the adjunction (£,, ¢ ).

To show that the next axiom is satisfied, suppose we have a morphism F ER G in @ with
¢*f = 0. Consider the distinguished triangle in DE(Qy)

m.m'G = G — (LG — m,m'G[1],

which gives an exact sequence

o)

-« — Hom(F, m,m'G) ( Hom(F,G) — Hom(¢*F, 0*G) — - - -
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Since ¢*f = 0, we see that f factors through m,m'G and we get the diagram

~

m.,m'G

Now if F* and G* are chain complexes representing F and m*TTNL!Q’, respectively and ¢ is
a chain map representing the morphism g, then the image of F* under g is a bounded
subcomplex of G* consisting of coherent sheaves. Viewing this image in the derived category
gives an object of Dy which satisfies (G4).

The axiom (Gb) says that if £*F = 0, then F is in the triangulated category generated by
the essential image of m*relef’,oiG(Z ). We know that this is true in the non-Poisson setting,
and the definition of redef’,oiG (N) guarantees that this is also true for Poisson sheaves. Let
Zy be the ideal sheaf corresponding to the subscheme Y. We know that we can find a sheaf
F' and a closed subscheme ' : Y' — N with i, F" ~ F. Moreover, the proof that we can
choose Y’ so that the ideal sheaf Zy, = 7 goes through in the Poisson setting. To see that
this implies (G5), we still need to see that any sheaf supported on Y is in the triangulated
category generated by 7,"'DY . (Y). This amounts to recognizing that in *4D? . (N), we
have that Zy F = 0 implies that {Zy, F} = 0. Thus we can apply the gluing theorem and
get a t-structure on Dy satisfying (G2).

Once again, we prove (G3)—(G5) with an identical argument replacing V' with U and Y
with Z. For (G3), fix F € D. We will use 77 for the truncation functor associated to the
perverse t-structure on U (the shift of the standard ¢-structure by p(U)). To define F* and
F~, consider 7: U — N, the closure of U in . Let

F~ =180 Ry F
f+ = DT?S(U)j*Rj!POiD.F.

; K gk, 'Poi 3 std ; U
Then since 7* = 7*7,Rj" is exact and TZpw) 18 the same as 72y on U, we have

JF T~ T;t;lw)j*}" ~ Tgoj*./—".

—~>1
Now suppose G € D . Then G is supported on some closed subscheme 7' : Z/ — N with
the same topological space as Z, say G ~ i'G’ and so

Hom(F~,G) ~ Hom(Li"™F~,G").

Since Li™*Pei is right t-exact with respect to the standard ¢-structure, we see that any bounded
truncation of Lg"Pei F—
that s*4D,, <p(U) C DNZSO. The morphism F~ — F is just the one induced from the counit of
the adjunction (Z,, Z!P‘)i).

For F* we have the dual statements. Since j* = j*7,L7"° and DT?TS(U) = T;t;(U)]D on U,

is in 4D, <P¥) The monotonicity of the perversity then guarantees

GEFT ~ Tglj*f.
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Just as before, the Hom vanishing statement for F* follows by duality. This proves that
(G3) is satisfied.

To show that the next axiom is satisfied, suppose we have a morphism F ER g in
DY o(N) with j*f = 0. Consider the distinguished triangle in D} (Q(N))
'G5 G — j.j*G — i,i'G[1],
which gives an exact sequence

(a—>avor)

.- = Hom(F, i,i'G) Hom(F,G) — Hom(j*F,j°G) — --- .

Since j*f = 0, we see that f factors through i,i'G and we get the diagram
f
g

ii'G

f’

Now if F* and G* are chain complexes representing J and i,i'G, respectively and g is a chain
map representing the morphism g, then the image of F* under g is a bounded subcomplex
of G* consisting of Poisson equivariant coherent sheaves. Viewing this image in the derived
category gives an object of D, which satisfies (G4).

The axiom (Gb) says that if j*F = 0, then F is in the triangulated category generated by
the essential image of i*redDgoiG(Z ). We know that this is true in the non-Poisson setting,
and the definition of redejoiG (N) essentially guarantees that this is also true for Poisson
sheaves. Let Z, be the ideal sheaf corresponding to the subscheme Z. We know that we can
find a sheaf 7’ and a closed subscheme ¢’ : Z' — N with ¢, F" ~ F. Moreover, the proof that
we can choose Z’ so that the ideal sheaf 75 = Z7 goes through in the Poisson setting. As
before, to see that this implies (G5), we only need to recognize that in redDgoiG (N), a sheaf
supported on Z' as a coherent sheaf is also supported on Z’ as a Poisson sheaf.

So we can apply the gluing theorem to get a t-structure (PD50¢(N),”Dioc(N)) on
relef’)mG (N). The uniqueness in the statement of the theorem follows immediately from

the uniqueness in Theorem 3.4.
m

Remark 4.43. Definition 4.41 makes sense for both the bounded and unbounded categories.
We can summarize Theorem 4.42 as follows. We start with a shift (given by the perversity) of
the standard t-structure on the bounded derived category of each orbit. We then iteratively
build up a t-structure on all of N by adding on additional orbits one at a time using the gluing
theorem. The uniqueness statement then says that the t-structure that we obtain restricts
(using Poisson restrictions) to the (possibly unbounded) shift of the standard ¢-structure
that we started with.

Definition 4.44. We call the t-structure (leffiG (N), pD;fiG (V) on ™IDE . (N) which was
constructed in theorem 4.42 the reduced perverse Poisson t-structure and objects in its heart
Mpgie(N) will be called reduced perverse Poisson sheaves. Note that this ¢t-structure depends

on the choice of perversity p.
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4.4 Simple Perverse Poisson Sheaves

Since all of the coadjoint orbits on the nilpotent cone have even dimension, we can fix p to
be the middle perversity. Recall (Definition 2.23) that the middle perversity is defined to be
p: N /G — Z sending an orbit C' > % dim C'. Clearly this perversity is both strictly monotone
and strictly comonotone. Let (pl)lfgig N ),pD}Z)(?iG () be the associated t-structure defined
in the previous section and denote its heart by Mp .a(N).

Proposition 4.45. For each orbit C there is a fully faithful functor IC(C, —) : Mpyc(C) —
Mopgic (N) and every simple object in Mp;c(N) is of the form ZC(C, F), where F is a simple

equivariant Poisson sheaf on C'.
Proof. This follows immediately from Proposition 3.9. [

As in the case for coherent sheaves, we have shown that simple perverse Poisson sheaves are
all supported on the closure of a single orbit. In fact, we are able to give another description
of simple perverse Poisson sheaves that will allow us to make a connection both with perverse
coherent sheaves and with classical perverse sheaves. In order to discuss this further, we need
the following definition which can be found, for example, in [Del2].

Definition 4.46. Let X be a scheme of finite type over C and £ a vector bundle over X. A
connection for € is an C-linear morphism V : & — Q% ® € which locally satisfies the Leibnitz
rule. We say that a connection for & is flat if the image of V is in the kernel of the natural
map Q% ® &.

Recall that given any local system, 7.e. a locally constant sheaf of complex vector spaces,
we can tensor with the structure sheaf to obtain a vector bundle. In fact, the following lemma
shows that more is true.

Lemma 4.47. On a G-orbit C, the categories of equivariant vector bundles with a flat
connection and coherent sheaves of the form Oc ® L for some equivariant local system L are
equivalent.

Proof. Since C'is smooth, this is a classical result. For example, see [Del2]. n
Now we can state the connection between local systems, coherent sheaves and Poisson

sheaves.

Lemma 4.48. On a G-orbit, the category of equivariant vector bundles with a flat connection

and the category of coherent equivariant Poisson sheaves are equivalent.

Proof. Let C be a coadjoint orbit in N. The transitivity of the G-action guarantees that any
coherent sheaf on C' is locally free and hence a vector bundle. It is then straightforward to
see that the definition of a flat connection above is equivalent to giving a Poisson module
structure. See [Pol] for more details. O
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Theorem 4.49. Let F be an equivariant vector bundle with a flat connection on an orbit C
of N /G and C" another orbit contained in the closure of C'. Then

Z';P/OiHi (IC(O, .7:)) = OC/ & L
i H (IC(C, F)) = Ocr @ L

where L' and L" are equivariant local systems on C'.

Proof. From the proof of Proposition 3.7, we see that ZC(C, F) is supported on the closure of
C. The Poisson theory that we have developed then ensures that taking the Poisson inverse
image (resp. Poisson inverse image with supports) of a cohomology sheaf to any orbit C’
in the closure of C' yields an equivariant Poisson sheaf on C’, i.e. by Lemma 4.47 a vector
bundle arising from a local system. O]

Example 4.50. Consider the nilpotent cone N/ C sl5. Then N consists of two orbits,
the principal open orbit Cp, and the closed point {0}. It is well known that there are two
irreducible local systems on the principal orbit (this follows from the fact that the equivariant
fundamental group in this case is Z/2Z). Let £ be the nontrivial irreducible local system.
The corresponding simple perverse sheaf IC(Cpyin, £) (here we mean in the sense of classical
perverse sheaves discussed in Section 2.2) is supported on the principal orbit. That is, the
topological pullback functors iy and i, applied to H'IC (Cprin, L) are zero.

If we now take the coherent sheaf 7 = O, ® L, we get a different result when considering
the coherent pullbacks of the simple perverse coherent sheaf ZC(Cpyin, F). Here the coherent
pullbacks i* and 7' of the cohomology sheaves are not zero. However, we can also consider F
as an irreducible Poisson sheaf, and if we look at the Poisson pullbacks of the corresponding
simple perverse Poisson sheaf, we see that i*PZC(Cpyin, F) and i'Poi IC (Cprin, F) are zero. So
in this case, the result from the setting of classical (constructible) perverse sheaves coincides
with that from the setting of Poisson sheaves.

Remark 4.51. In general, we can not even begin to expect a correspondence as in the pre-
vious example. Indeed, in the classical setting one finds nonzero cohomology in degrees up to
twice the algebraic dimension, while perverse Poisson sheaves can have nonzero cohomology
only up to the algebraic dimension of the variety. This example does give us some slight
indication that the connection between local systems and Perverse Poisson sheaves might
give some additional information about the various restrictions of simple perverse sheaves to
orbits.

Now that the basic framework for perverse Poisson sheaves is in place, Theorem 4.49 leads
immediately to interesting questions. For example, we would like to be able to say precisely
which local systems £’ and L£” can occur, and determine more exactly the relationship
between the Poisson pullbacks of the cohomology sheaves and the coherent counterparts. In
addition, we would also like to be able to identify other varieties which would support this
theory. As mentioned above, the nilpotent cone has a very close relationship between the
G-action and the Poisson structure which greatly reduces the complexity.
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