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Abstract

It is well known that the class of outerplanar graphs is minor-closed and can

be characterized by two excluded minors: K4 and K2,3. The class of graphs that

contain a vertex whose removal leaves an outerplanar graph is also minor-closed.

We provide the complete list of 57 excluded minors for this class.

v



Chapter 1

Introduction

1.1 Overview

One of the deepest and by many considered the most important works in graph

theory is the Graph Minor Theory developed by Neil Robertson and Paul Seymour,

and joined in the later stages by Robin Thomas. One of the main results of this

work is the proof of Wagner’s Conjecture [15] that finite graphs are well-quasi-

ordered under the minor relation, namely, for every infinite sequence of graphs,

at least one graph is a minor of another (where a graph is a minor of another if

the first can be obtained from a subgraph of the second by contracting edges). An

equivalent formulation of this result is the following:

Theorem 1.1. [15] Any minor-closed class of graphs can be characterized by a

finite number of excluded minors.

A minor-closed class of graphs is a class closed under the operation of taking

minors; also, a graph G is an excluded minor or an obstruction of a class C if G

is not a member of C, but every proper minor of G is; the complete (finite) list of

excluded minors of a class C is called its obstruction set and is denoted by ob(C).

This work took more than 21 years to publish in a series of 23 long papers, and it

led to entirely new concepts and a new way of looking at graph theory. At the core

of this monumental project lies a powerful theorem capturing the general structure

of graphs that do not contain a fixed minor [14]. The rough formulation of this

theorem is as follows:
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Theorem 1.2. If a minor-closed class of graphs does not contain all graphs, then

every graph in it is glued together in a tree-like fashion from graphs that can be

nearly embedded in a fixed surface.

For the precise formulation of this theorem see [5]. Recently, a number of beau-

tiful results that use this structural result have appeared (for a survey, see [10]).

One of the simplest structures satisfying the conclusion of Theorem 1.2 is that of

apex-planar graphs. A graph is apex-planar if it contains a vertex whose removal

leaves a planar graph. The class of apex-planar graphs is the motivating class

behind our research. It arises in two of the hardest and most famous conjectures

in graph theory: Hadwiger’s Conjecture and Jorgensen’s Conjecture.

First, Hadwiger’s Conjecture [8] states that graphs with no Kn-minor can be

colored with at most n − 1 colors (a coloring of a graph G = (V (G), E(G)) is an

assignment of a color to each vertex v ∈ V (G) such that no two adjacent vertices

are assigned the same color). While the statement has been shown to be true for

n 6 6 (the case n = 5 is, according to [20], equivalent to the Four Color Theorem

[12], while the case n = 6 was proved in [16]), it remains open for n > 7. To prove

Hadwiger’s Conjecture for n = 6, the authors of [16] show (without assuming the

Four Color Theorem) that every minimal counterexample to Hadwiger’s conjecture

for n = 6 is apex-planar. With this theorem in place, Hadwiger’s conjecture for

n = 6 follows immediately since, by the Four Color Theorem, apex-planar graphs

are 5-colorable, and so no counterexample exists.

Secondly, Jorgensen’s Conjecture (which implies Hadwiger’s Conjecture for n =

6) states that every 6-connected graph with no K6-minor is apex-planar. The fact

that the conjecture holds for large graphs has been shown by Thomas and Norin

(see Theorem 1.14).
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In fact, it has been a long-standing problem to find an explicit excluded-minor

characterization for the class of apex-planar graphs [1]. It must be mentioned that

even though Theorem 1.1 assures us that a given minor-closed class of graphs has

finitely many minimal excluded minors, the proof is not constructive and for most

minor-closed classes, including apex-planar graphs, we do not know how to obtain

its finite obstruction set, since there are no general techniques for doing this (for

an interesting result on the actual computability of this problem, see [2]). Besides

providing an elegant characterization of a minor-closed class C, the knowledge of

the complete list of excluded minors (the obstruction set) of C is very useful as it

allows for efficient (polynomial-time) testing for membership in C. This is due to

the following algorithmic implication of Robertson and Seymour:

Theorem 1.3. [13] For every fixed graph H, there exists an O(n3) algorithm for

deciding if a given graph of order n contains H as a minor.

Therefore, to test whether a given graph belongs to C, one simply checks whether

it contains any of the excluded minors of C as a minor. Since the obstruction set

of C is finite, the number of such checks is a constant (that depends only on C).

Because finding the complete explicit list of excluded minors for the class of

apex-planar graphs has been well known to be very hard, we have tried to find

an excluded-minor characterization of a very similar class, namely that of apex-

outerplanar graphs, in hopes that it will shed light on the original problem. A graph

is apex-outerplanar if it contains a vertex whose removal leaves an outerplanar

graph; and an outerplanar graph is one with no K4- or K2,3-minor.

Our general technique was to narrow down the possible structure of an excluded

minor for this class. After quickly finding an initial set of excluded minors, which

included K5 and the octahedron, we were able to conclude that the connectivity
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of the remaining excluded minors must be 2 or 3 using the following theorem of

Halin and Jung [7]: if δ(G) > 4, then G contains K5 or the octahedron as a minor.

The farther we got in the proof, the more the structure of the excluded minors

tightened. Eventually, after a long struggle, we generated the proof of the complete

list of 57 excluded minors. Our list has been confirmed by Galen E. Turner [19], who

computed this list with the aid of computers, but without proof of its completeness.

Three of the graphs on our list are simply disjoint copies of K4’s and K2,3’s; four

of them are 3-connected: K5, K3,3, the cube, and the octahedron (Platonic solids);

and the remaining fifty have connectivity 2, twenty of which, unsurprisingly, turn

out to be triangular arrangements of K4’s and K2,3. It is exactly the analogous

arrangements of K5’s and K3,3’s that are excluded minors for the original class of

apex-planar graphs, thus at least, giving us a lower bound on the number of such

graphs, and shedding some light on the original open problem.

Our problem also falls within a more general framework. Let C be a minor-

closed class of graphs, and let C∗ be the class of graphs that contain a vertex

whose removal leaves a graph in C. Hence, clearly C ⊆ C∗, and it is easy to check

that C∗ is also minor-closed (see Observation 1.12). Consider the following problem:

given a minor-closed class C and ob(C), find ob(C∗). Adler, et. al [2] showed that

this problem is computable. That is, they show that there exists an algorithm that

given ob(C) computes ob(C∗). However, their result is purely existential, it does

not yield an explicit algorithm.

In this dissertation, we find the explicit list ob(O∗) given ob(O) = {K4, K2,3}.

Our result is the first one in literature of this kind, in the sense that ob(C∗) has

not been found for any other non-trivial class C.
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1.2 Preliminaries

We begin by introducing some standard graph theoretical terminology that will be

use throughout the dissertation. For a more complete treatment please refer to [3],

[4], or [22].

A graph G is an ordered pair (V (G), E(G)) consisting of a finite set V (G) of

vertices and a finite multiset E(G) of edges, disjoint from V (G), whose elements

are unordered pairs of (not necessarily distinct) elements of V (G). If u, v ∈ V (G)

and e = {u, v} ∈ E(G) then u and v are called the endpoints of the edge e, and

e denoted simply as uv. An edge is said to be incident with each of its endpoints

and vice versa. If uv ∈ E(G), then vertices u and v are said to be adjacent, or

neighbors. Two edges are said to be adjacent if they have a common endpoint. An

edge with identical endpoints is called a loop, and two edges incident with the same

pair of distinct endpoints are called parallel edges. A graph is simple if it has no

loops nor parallel edges. To avoid confusion, we refer to graphs with possible loops

and parallel edges as multigraphs. A simplification of a multigraph G is the simple

graph obtained from G by deleting (see definition below) all loops and parallel

edges. All of the graphs considered in this dissertation are assumed to be simple

(see Section 1.5 for the reason why).

If G1 and G2 are two graphs, then G1|G2 denotes the disjoint union of G1 and G2,

that is, a graph H such that V (H) = V (G1)∪V (G2) and E(H) = E(G1)∪E(G2),

where both set unions are disjoint.

Let v ∈ V (G), then the set of neighbors of v in G is called the neighborhood of

v and is denoted as NG(v), or simply as N(v) if the context is understood. Also,

the number of edges of G incident with v is the degree of v in G, and denoted as

degG(v), or simply as deg(v). This is equal to |N(v)| by our assumption that G is

simple. The number δ(G) := min{degG(v)|v ∈ V (G)} is called the minimum degree
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of G, and the number ∆(G) := max{degG(v)|v ∈ V (G)} is called the maximum

degree of G.

Two graphs G = (V (G), E(G)) and H = (V (H), E(H)) are isomorphic, denoted

as G ∼= H , if there exists a bijection φ : V (G) → V (H) with uv ∈ E(G) if and only

if φ(u)φ(v) ∈ E(H). A subgraph of a graph G is a graph H such that V (H) ⊆ V (G)

and E(H) ⊆ E(G). In this case, we say that G contains H , and write H ⊆ G. H

is a proper subgraph of G if H ⊆ G and H 6= G. If H ⊆ G and V (H) = V (G),

then H is said to be a spanning subgraph of G. If H ⊆ G and H contains all the

edges of G whose endpoints belong to V (H), then H is an induced subgraph of G,

and if S = V (H), then we write H = G[S] and say that H is the subgraph of G

induced by S.

Alternatively, we may think of a subgraph H ⊆ G as being obtained from G

by deleting edges and/or vertices (and all of their incident edges). The subgraph

of G obtained by deleting edge e will be denoted by G\e. Similarly, if F ⊆ E(G)

then G\F denotes the subgraph of G obtained by deleting all the edges of F ; if

v ∈ V (G) then G−v denotes the subgraph of G obtained by deleting vertex v and

all of its incident edges, and if W ⊆ V (G) then G−W denotes the subgraph of G

obtained by deleting all of the vertices in W and all of their incident edges. Note

that G[W ] = G−W , where W is the complement of W in V (G).

A complete graph or clique is a simple graph in which every pair of vertices is

adjacent. A clique on n vertices is denoted by Kn. A graph G is bipartite if V (G) is

the union of two disjoint sets X and Y such that each edge of G has one endpoint

in X and the other in Y . If, furthermore, every vertex in X is adjacent to every

vertex in Y , then G is called a complete bipartite graph, and if m := |X|, and

n := |Y |, then G is denoted by Km,n.
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A path is a graph P = (V (P ), E(P )) with V (P ) = {v1, v2, . . . , vk+1} where

k > 0, and E(P ) = {v1v2, v2v3, . . . , vkvk+1}. The length of P is k, and P is also

denoted by Pk. If u := v1 and v := vk+1, then P is called a uv-path. The set

{v2, v3, . . . , vk} is called the interior of P and is denoted by int(P ). Two paths

P and Q are said to be internally disjoint if their interiors are disjoint. Simi-

larly, a cycle is a graph C = (V (C), E(C)) with V (C) = {v1, v2, . . . , vk} k > 3,

and E(C) = {v1v2, v2v3, . . . , vk−1vk, vkv1}. The length of C is k, and C is also de-

noted by Ck. An edge e /∈ E(C) with both endpoints in V (C) is called a chord

of C. Let C = u1, u2, . . . un, u1 be a cycle with vertices listed in the clockwise or-

der around C. We denote by C[ui, uj] the set {ui, ui+1, . . . , uj} if i 6 j, or the

set {ui, ui+1, . . . , un, u1, . . . , uj} if i > j. Similarly, C[ui, uj) := C[ui, uj] − {uj},

C(ui, uj] := C[ui, uj] − {ui}, and C(ui, uj) := C[ui, uj] − {ui, uj}. Also, if P =

u1, u2, . . . un is a path, then we define P [ui, uj], P [ui, uj), P (ui, uj], and P (ui, uj)

analogously, and by int(P ) we denote P (u1, un).

A graph G is connected if for each pair of distinct vertices u, v ∈ V (G), G

contains a uv-path. If G is not connected, then we say that it is disconnected. A

connected graph that contains no cycles is called a tree. A vertex of degree 1 in

a tree T is called a leaf of T . A maximal connected subgraph of G is called a

component of G. Let u and v be non-adjacent vertices of G. A uv-vertex cut is a

set S ⊆ V (G)−{u, v} such that u and v belong to different components of G−S.

In this case we say that S separates u and v. A vertex cut separating some pair of

non-adjacent vertices is simply called a vertex cut of G, and one with k elements is

called a k-vertex cut, or simply a k-cut. The only element in a 1-vertex cut is called

a cut vertex. G is said to be k-connected if |V (G)| > k + 1 and every vertex cut

has at least k vertices. The connectivity of G, denoted by κ(G), is the maximum

k such that G is k-connected (if G is not a clique, this is equal to the minimum
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size of a vertex cut). By convention, κ(G) = 0 if and only if G is disconnected or

G = K1, and κ(Kn) = n− 1 for all n > 1.

The following theorem is a classical result of Menger from 1927, which can be

found in [3].

Theorem 1.4 (Menger’s Theorem). Let G be a graph and u and v two non-

adjacent vertices of G. Then the maximum number of pairwise internally disjoint

uv-paths is equal to the minimum size of a uv-vertex cut.

The following definition has been adopted from [3]. Let H be a proper subgraph

of a connected graph G. The set E(G)\E(H) may be partitioned into classes as

follows.

• For each component F of G− V (H), there is a class consisting of the edges of

F together with the edges joining F to H .

• Each remaining edge e (that is, one which has both enpoints in V (H)) defines

a singleton class {e}.

The subgraphs of G induced by these classes are the bridges of H , or H-bridges.

It follows immediately from the definition that bridges of H can intersect only in

vertices of H , and that any two vertices of a bridge of H are connected by a path

in the bridge that is internally disjoint from H . For a bridge B of H , the elements

of V (B) ∩ V (H) are called the feet of B, and for a set W ⊆ V (H), we say that

the feet attach to W if V (B) ∩ V (H) ⊆ W . The remaining vertices of B are its

internal vertices. A bridge is trivial if it has no internal vertices (that is, if it is of

the second type). In a connected graph, every bridge has at least one foot; and in

a 2-connected graph, every bridge has at least two feet.

A block of a connected graph G is a maximal 2-connected subgraph of G, or

a K2-subgraph of G, one of whose vertices has degree 1 in G, or both of whose
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vertices are cut vertices in G. We note that two distinct blocks in G share at most

one vertex since otherwise their union would be 2-connected. The block tree of G

is a tree T whose vertex set is the disjoint union of the set of blocks of G and the

set of cut vertices of G. The only edges in T are those that join cut vertices of G

to blocks that contain them. The fact that the block tree of a connected graph is

indeed a tree is non-trivial, but is an easy consequence of the definition and can

be found in [4].

A planar embedding of a graph G is a drawing of G in the plane where the vertices

are represented by points, the edges by simple curves joining the endpoints, and the

edges intersect only at their endpoints. Graph G is said to be planar or embeddable

in the plane if it has a planar embedding. A plane graph is a particular planar

embedding of a planar graph. The faces of a plane graph are the maximal regions

(open sets) of the plane that are disjoint from the embedding. Each plane graph

has exactly one unbounded face, called the outer face or the infinite face. The

boundary of a face f is the boundary of the open set f in the usual topological

sense. A face is said to be incident with the vertices and edges in its boundary.

1.3 Graph Minors

To contract an edge e = uv ∈ E(G) is to delete the edge e and identify its endpoints

u and v. We denote the resulting graph by G/e. Because we are only considering

simple graphs, we implicitly assume that such an operation is immediately followed

by the deletion of a parallel edge, if necessary. More precisely, G/e is the simple

graph obtained by deleting vertices u and v, and adding a new vertex w whose

neighborhood is the set (NG(u) ∪ NG(u)) − {u, v}. Similarly, if F ⊆ E(G) then

G/F denotes the graph obtained by contracting the edges of F one by one in any

order (the result is independent of the order).
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Given graphs H and G, H is a minor of G, denoted by H 6m G, or G >m H ,

if H can be obtained from a subgraph of G by contracting edges. Equivalently,

H 6m G if H can be obtained from G by any sequence of the following operations:

deleting vertices, deleting edges, and contracting edges. Also, a useful alternative

definition of a minor is the following.

Definition 1.5. Let G be a graph, and consider a partition (V0, V1, . . . , Vk) of V

such that G[Vi] is connected for i = 1, . . . , k. Let H be the graph obtained from G

by deleting V0 and contracting each induced subgraph G[Vi] to a single vertex. Then

any spanning subgraph F of H is said to be a minor of G.

Let G be a graph, and e = uv ∈ E(G). To subdivide the edge e is to delete e, add

a new vertex w, and two new edges uw and wv. Any graph obtained from a graph

G by a sequence of edge subdivisions is called a subdivision of G, or G-subdivision.

Clearly, if G contains an H-subdivision (in literature H is called a topological

minor of G), then G >m H . The converse also holds if ∆(H) 6 3 as shown in

Lemma 1.6.

Lemma 1.6. If H 6m G and ∆(H) 6 3, then G contains an H-subdivision.

Proof. Let H 6m G. Then, G has a vertex partition (V0, V1, . . . , Vk) as in Definition

1.5, and we may assume that H is a spanning subgraph of H ′, where H ′ is the

graph obtained from G by deleting V0 and shrinking each induced subgraph G[Vi]

to a single vertex vi. Then, since each vi ∈ V (H) is obtained by shrinking the

corresponding connected subgraph G[Vi] for some i, we may assume, without loss

of generality, that each G[Vi] is a tree. Furthermore, since ∆(H) 6 3, we have

that at most three edges go out of each tree G[Vi]. Now, we may further assume

that each G[Vi] only has at most three leaves, namely the leaves that are incident

with the edges going out of G[Vi]. Hence, we may assume that each G[Vi] is just
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a subdivision of K1,ℓ, where ℓ ∈ {1, 2, 3}. Hence, in the shrinking of each G[Vi] to

produce a vertex of H , the only contractions performed are unsubdivisions. Hence

G contains an H-subdivision.

A class C of graphs is minor-closed if for every G ∈ C all the minors of G are also

in C. A minor-closed class is proper if it is not the class of all graphs. Some examples

of proper minor-closed classes are: planar graphs, outerplanar graphs (see Section

1.5), series-parallel graphs (see [4]), graphs embeddable in a fixed surface (see

[11]), linklessly embeddable graphs (see [17]), and graphs of tree-width bounded

by a fixed constant (see [4]).

To see, for instance, that the class of planar graphs is minor-closed, it is sufficient

to verify that for any planar graph, all of its single-edge deletions and all of its

single-edge contractions are planar. So let Π be a planar embedding of a planar

graph G, and let e = uv ∈ E(G). Clearly, by deleting the simple curve representing

edge e from Π, we obtain a planar embedding Π′ of G\e. Similarly, we can identify

the points representing vertices u and v by sliding them along the simple curve

representing e in such a way that no edges intersect (except at the endpoints), thus

obtaining a planar embedding Π′′ of G/e.

For a minor-closed class C, we let ob(C) denote its set of excluded minors, that

is, minor-minimal graphs not in C (that is, graphs that are not in C, but whose

every proper minor is in C). We call ob(C) the obstruction set of C. It is clear that

a graph G belongs to C if and only if it has no minor in ob(C). Therefore the

set ob(C) characterizes the class C. Such a characterization is called the excluded-

minor characterization of C. The following is a landmark result of Robertson and

Seymour [15].
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Theorem 1.7 (Graph Minor Theorem). For any minor-closed class C, ob(C) is

finite.

Unfortunately, the proof of the above theorem is non-constructive, and hence

gives no method of finding ob(C). In fact, a fully constructive proof is impossible.

Fellows and Langston [6] proved that there is no algorithm to compute the ob-

struction set of an arbitrary minor-closed class C, represented as a Turing machine

that enumerates the elements of C. More precisely,

Theorem 1.8. The following problem is undecidable:

Given: Turing machine deciding a minor-closed class C

Problem: Compute ob(C).

The importance of knowing ob(C) explicitly is that it allows for polynomial-time

membership testing according to the following result of Robertson and Seymour

[13].

Theorem 1.9. For any fixed graph H, there is an algorithm to determine whether

a given n-vertex graph has H as a minor in O(n3)-time.

Corollary 1.10. For any minor-closed class C, there is an algorithm to determine

whether a given n-vertex graph G belongs to C in O(n3)-time.

The only drawback of the above theorem is that it is non-constructive. Its proof

does not yield an explicit description of the algorithm, only knowledge of its ex-

istence. Moreover, the constant hidden in the O(n3) running-time is an enormous

function of the number of vertices of H .

1.4 Related Results

A graph G is apex-planar if there exists v ∈ V (G) such that G − v is planar.

Let P and P∗ denote the classes of planar and apex-planar graphs, respectively.
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The following is Wagner’s reformulation of Kuratowski’s famous characterization

of planar graphs. For a proof, see [4].

Theorem 1.11. ob(P) = {K5, K3,3}.

Let C be a minor-closed class of graphs, and let C∗ be the class of graphs that

contain a vertex whose removal leaves a graph in C. Hence, clearly C ⊆ C∗, and it

is easy to check that C∗ is also minor-closed.

Observation 1.12. C∗ is minor-closed.

Proof. Let G ∈ C∗, and let e ∈ E(G). It is sufficient to show that both G\e and

G/e belong to C∗. Let v ∈ V (G) be such that G−v ∈ C. If e ∈ E(G−v), then since

C is minor-closed, it follows that v is still apex in G\e and in G/e. Otherwise, e is

incident with v in G. Let x be the other endpoint of e. Then (G\e)−v = G−v ∈ C,

and (G/e)−v = (G−v)−x ∈ C. Hence, in both cases both G\e and G/e ∈ C∗.

Consider the following problem: given a minor-closed class C and ob(C), find

ob(C∗). Adler, et. al [2] showed that this problem is computable. That is, they

show that there exists an algorithm that given ob(C) computes ob(C∗). However,

their result is purely existential, it does not yield an explicit algorithm.

Let O and O∗ denote the classes of outerplanar and apex-outerplanar graphs,

respectively (see next section for definitions). In this dissertation, we find the ex-

plicit list ob(O∗) given ob(O) = {K4, K2,3} (see next section). Our result is the

first one in literature of this kind, in the sense that ob(C∗) has not been found for

any other class C.

A related result was done by Wargo [21] for α-outerplanar multigraphs, in which

he characterizes the class in terms of 13 excluded minors. An α-outerplanar multi-

graph is a multigraph G which is not outerplanar such that, for some edge α, both

multigraphs G\α and G/α are outerplanar. It is easy to check that the class of
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α-outerplanar multigraphs is a proper subclass of apex-outerplanar multigraphs

(see next section).

A long-standing related open problem has been to find ob(P∗), that is the

excluded minors for the class of apex-planar graphs [1] (P∗ is minor-closed by

Observation 1.12). However, the problem is known to be very hard and is widely

open. Even if we restrict the class P∗ to 6-connected graphs, it is still not known

what the complete list of excluded minors is. This problem has only been solved

partially for large graphs.

Jorgensen [9] made the following powerful conjecture (which actually implies the

famous Hadwiger’s Conjecture for t = 6).

Conjecture 1.13. Every 6-connected graph with no K6-minor is apex-planar.

The conjecture is also related to two important open problems in structural

graph theory, namely those to characterize the structure of graphs that do not

contain the Petersen graph as a minor, and those that do not contain a K6-minor.

The conjecture says that if we impose the strong, extra condition of 6-connectedness

on the class of apex-planar graphs, then the only excluded minor is K6. For large

graphs, Thomas and Norin [18] proved the following powerful theorem about the

structure of graphs that do not contain a Kt-minor, which for the value t = 6

implies Jorgensen’s conjecture for large graphs.

Theorem 1.14. For every t there exists Nt such that for every t-connected graph

G �m Kt on at least Nt vertices, there exists X ⊆ V (G) with |X| 6 t−5 such that

G−X is planar.

For the value t = 6, this is exactly the statement of Jorgensen’s conjecture for

large graphs.
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1.5 Main Result

A graph G is outerplanar if it has a planar embedding with all of its vertices incident

to one common face. An outerplanar embedding of G is a planar embedding of G

with all of its vertices incident to the outer face. Note that every outerplanar graph

has an outerplanar embedding. It is easy to see that the class of outerplanar graphs

is minor-closed by an argument similar to the one for planar graphs from Section

1.3. We say that a graph G is apex-outerplanar if there exists v ∈ V (G) such that

G − v is outerplanar. Such a vertex, if it exists, is called an apex vertex of G. It

follows from these definitions that a multigraph is apex-outerplanar if and only

if its simplification is apex-outerplanar. This is the reason why we only consider

simple graphs in this dissertation.

The following theorem follows easily from Theorem 1.11.

Theorem 1.15. ob(O) = {K4, K2,3}.

Equivalently, since ∆(K4) 6 3 and ∆(K2,3) 6 3, it follows by Lemma 1.6 that:

Theorem 1.16. G is outerplanar if and only if it does not contain a K4- nor

K2,3-subdivision.

As corollary to Observation 1.12, we obtain that O∗ is minor-closed. As such,

it admits an excluded-minor characterization, and the goal of our work is to find

ob(O∗). We now state our main result. Let S be the set of graphs in Figure 2.1, T

be the set of graphs in Figure 3.1, G be the set of graphs in Figure 3.2, J be the

set of graphs in Figure 3.3, H be the set of graphs in Figure 3.4, and Q be the set

of graphs in Figure 3.5.

Theorem 1.17. A graph is apex-outerplanar if and only if it does not contain

any of the 57 graphs in the set S ∪ T ∪ G ∪ J ∪ H ∪Q as a minor. Equivalently,

ob(O∗) = S ∪ T ∪ G ∪ J ∪H ∪Q.
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Chapter 2

Key Lemma

2.1 Definitions

We start with a few important definitions.

Definition 2.1. Let G be a connected graph with cut-vertex x. A 1-separation of

G across x is a pair of subgraphs (L,R) of G such that:

(1) E(L) ∪ E(R) = E(G);

(2) V (L) ∪ V (R) = V (G) and V (L) ∩ V (R) = {x}.

Definition 2.2. Let G be a graph and x, y ∈ V (G). A 2-separation of G over

{x, y} is a pair of induced subgraphs (L,R) of G such that:

(1) E(L) ∪ E(R) = E(G);

(2) V (L) ∪ V (R) = V (G) and V (L) ∩ V (R) = {x, y};

(3) V (L) − V (R) 6= ∅ and V (R) − V (L) 6= ∅.

Note that in Definition 2.2 above, we require L and R to be induced subgraphs,

and that {x, y} is necessarily a 2-vertex-cut of G.

In this paper, the graphs K4 and K2,3 have special significance, since they are pre-

cisely the excluded minors for O. For simplicity, we define a K-graph to be a graph

that contains a K4- or K2,3-subdivision (both of which we call K-subdivisions).

Equivalently, by Theorem 1.16, K-graphs are precisely non-outerplanar graphs. A

K2,3-subdivision is also known in literature as a Θ-graph.

We observe the following.

Lemma 2.3. If G is 2-connected and contains a K-subdivision, then G = K4 or

G contains a K2,3-subdivision.
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Proof. If G contains a K2,3-subdivision then we are done. So suppose that G con-

tains a K4-subdivision and G 6= K4. Then, none of the edges of the K4-subdivision

are subdivided in G, for otherwise G contains a K2,3-subdivision. Hence G contains

K4 as a subgraph, call it H . Since G is simple and G 6= H = K4, it follows that G

has a non-trivial bridge B. Since G is 2-connected, B has at least two feet among

the four vertices of H = K4. Since B is non-trivial the two feet of B are connected

by a path in B of length at least two that is internally disjoint from H . Hence,

clearly G contains a K2,3-subdivision.

2.2 Starting Point

Let S := {K5, K3,3, Oct, Q, 2K4, K4|K2,3, 2K2,3} be the set of graphs in the figure

below.

FIGURE 2.1. Starting list of excluded minors for O∗

Observation 2.4. S ⊆ob(O∗)

The above observation can easily verified by checking that the graphs them-

selves do not belong to O∗, but all of their single-edge deletions and single-edge

contractions contain an apex vertex. We now observe the following.

Observation 2.5. Let G be a graph in ob(O∗) − S. Then:
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(1) G is planar

(2) G is 2-connected

(3) G is not 4-connected

Proof. (1) Since G �m K5 and G �m K3,3, it follows that G is planar.

(2) First, suppose that G is disconnected, and let G be a union of two disjoint

(not necessarily connected) graphs G1 and G2. If one of them, say G1 is outerplanar,

then by the minor-minimality of G, G2 = G − G1 ∈ O∗, hence G2 has a vertex

v such that G2 − v ∈ O. Then, G1|(G2 − v) ∈ O, hence v is an apex vertex in

G, a contradiction. Therefore, both G1 and G2 are not outerplanar, and so each

contains K4 or K2,3 as a minor. Hence G contains one of 2K4, K4|K2,3, 2K2,3 as a

minor, a contradiction.

Hence, G is connected. Now suppose that G has a cut-vertex x and let (L,R)

be the 1-separation across x. By the same argument as above, both L and R are

not outerplanar, hence they both contain K4 or K2,3 as a minor. This implies

that both R− x and L− x are outerplanar (for otherwise, G would contain one of

2K4, K4|K2,3, 2K2,3 as a minor). Hence G−x ∈ O, and so G ∈ O∗, a contradiction.

Therefore, G is 2-connected.

(3) Suppose that G is 4-connected. Then δ(G) > 4, and so by Theorem 2.6

below, G contains a K5- or Oct-minor, a contradiction since K5, Oct ∈ S

Theorem 2.6. (Halin and Jung [7]) If δ(G) > 4, then G contains a K5- or Oct-

minor.

It therefore follows by Observation 2.5 that if G ∈ ob(O∗) − S, then the con-

nectivity of G must be either 2 or 3. The rest of the dissertation is divided into

two sections dealing with each case separately.
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2.3 Key Lemma

In the remainder of this section we let G be a graph in ob(O∗)−S, and we assume

that G has connectivity 2. Note that G cannot contain two disjoint K-graphs, for

otherwise it would contain one of 2K4, K4|K2,3, 2K2,3 as a minor. The following is

the key Lemma of this section, which narrows down the structure of G.

Lemma 2.7. Let (L,R) be a 2-separation of G over vertices {x, y}.

(1) If L /∈ O and R /∈ O, then one of L and R is one of the five graphs L1, L2,

L3, L4, L5 with prescribed vertices x and y, as shown in Figure 2.2.

FIGURE 2.2. K4 and K2,3’s with prescribed vertices x and y

(2) If L ∈ O, then xy /∈ E(G) and L = P2 or C4, where P2 is a path on two edges

with endpoints x and y, and C4 is a cycle on four edges with x and y non-adjacent,

as shown in Figure 2.3.

FIGURE 2.3. P2 and C4

Proof.

(1) Suppose that L /∈ O and R /∈ O. Note that G − {x, y} ∈ O, for otherwise

G would contain two disjoint K-graphs (for instance, L and R − {x, y}). Since

G /∈ O∗, none of its vertices is apex. In particular, since x is not apex in G and y

is a cut-vertex in G− x, it follows that L− x or R− x, say R − x, contains a K-
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subdivision, call it K ′, which contains y (since R−{x, y} is outerplanar). Similarly,

R−y contains a K-subdivision (not L−y, because such a K-subdivision would be

disjoint from K ′), call it K ′′, which contains x. K ′ and K ′′ must intersect, otherwise

G would contain two disjoint K-graphs. Also, L − x ∈ O since it is disjoint from

K ′′, and L− y ∈ O since it is disjoint from K ′. Hence, G must have the following

structure:

x

y

K’’

K’
KG =

Note that, as long as L /∈ O, a graph with the above structure does not belong

to O∗. This is because none of its vertices is apex: x is not apex, because of K ′;

y is not apex, because of K ′′; if v ∈ L− {x, y}, then v is not apex, because of K ′

(or K ′′); finally if v ∈ R − {x, y}, then v is not apex, because of L. Therefore, if

L /∈ {K4, K2,3}, then since L /∈ O, it follows that L contains an edge e such that

either L\e /∈ O, or L/e /∈ O and e 6= xy. Hence, either G\e /∈ O∗ or G/e /∈ O∗, a

contradiction since G is minor-minimal not in O∗.

(2) Since G /∈ O∗, none of its vertices are apex. In particular, since x is not

apex, it follows that R − x contains a K-subdivision. Similarly, R − y contains a

K-subdivision. Since G is 2-connected, it follows that L is connected. We have two

cases based on the number of blocks of L.

Case 1: L has exactly one block.

Note that L 6= K2, for otherwise (L,R) is not a 2-separation. Hence L is 2-

connected.

Since L is 2-connected and outerplanar, it follows that L is a cycle C with chords,

which has a unique planar embedding such that all the vertices and edges of C
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are incident with the outer face, and all the chords lie in the interior of the disk

bounded by C. We now show that L has no chords. So, suppose that L does have

a chord e. Let s be an apex vertex in G\e. Then, since R − x and R − y contain

K-subdivisions, it follows that s ∈ V (R − {x, y}). Assume that (G\e) − s ∈ O is

embedded in the plane so that all of its vertices are incident with the outer face.

Then this embedding, restricted to the subgraph L\e, is such that all the vertices

and edges of C are incident with the outer face. Therefore, by putting the chord e

back in, we obtain an embedding of G− s with all of its vertices still incident with

the outer face, hence G− s is outerplanar, a contradiction. Hence, we have shown

that L has no chords, therefore L = C.

Now, suppose that x and y are consecutive vertices of C, that is xy ∈ E(C).

Let s be an apex vertex in G\xy. Then, again we have that s ∈ V (R − {x, y}).

Assume that (G\xy) − s ∈ O is embedded in the plane so that all of its vertices

are incident with the outer face. Since all the vertices of C − {x, y} have degree

= 2 in (G\xy)−s, it follows that all the edges of C except for xy are incident with

the outer face. Therefore, by putting the edge xy back in, we obtain an embedding

of G− s with all of its vertices still incident with the outer face, a contradiction.

Therefore, x and y are non-consecutive, which implies that the length of C is

at least four. In fact C = C4, for suppose that C = Cn with n > 5. Then one of

the two paths from x to y in C must have length at least three. Let f be an edge

on that path with endpoints different from x and y. Let s be an apex vertex in

G/f . Then, again s ∈ V (R − {x, y}). Assume that (G/f) − s ∈ O is embedded

in the plane so that all of its vertices are incident with the outer face. Since all

the vertices of (C/f)− {x, y} have degree = 2 in (G/f)− s, it follows that all the

edges of C/f are incident with the outer face. Therefore, by uncontracting edge

f ∈ E(C), we obtain an embedding of G − s with all of its vertices still incident
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with the outer face, hence G − s is outerplanar, a contradiction. Hence, we have

shown that L = C = C4.

Therefore, we have shown that if L has only one block, then L is 2-connected,

and in fact L = C4 with x and y non-adjacent. Now, we consider the more general

case.

Case 2: L has at least two blocks.

Let Bx and By be two distinct blocks containing x and y, respectively. Then the

block tree of L is, in fact, a path from Bx to By, for otherwise G would contain a

cut-vertex. Every block on this path is either K2 or is 2-connected. If L contains

a block B that is 2-connected, then let s, t ∈ V (B) be the two cut-vertices in L

(or in the case of Bx and By the associated pair is given by the corresponding

cut-vertex, and x or y, respectively). Then since G has a 2-separation (B,R′) over

{s, t}, it follows by the previous argument that B = C4. Therefore, every block of

L (which is a path) is either K2 or C4.

Now suppose that L contains a block B = C4, and let B′ be any other block.

Denote by G/B′ the graph obtained by contracting all the edges of B′. Again,

let s be an apex vertex in G/B′. Then again s ∈ V (R − {x, y}). Assume that

(G/B′) − s ∈ O is embedded in the plane so that all of its vertices are incident

with the outer face. Since two of the non-adjacent vertices of B have degree = 2 in

(G/B′)−s and since all the blocks are either K2 or C4, it follows that all the edges

of B and, in fact, all the edges of L/B′ are incident with the outer face. Therefore,

by uncontracting block B′, we obtain an embedding of G−s with all of its vertices

still incident with the outer face, a contradiction. Hence, we have shown that L

does not contain a block B = C4, and therefore all the blocks of L are K2’s, or

equivalently L is an induced path of length at least two from x to y.

Then, in fact, L = P2, for suppose that L = Pn with n > 3. Let f be an edge
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in L = Pn with endpoints different from x and y. Let s be an apex vertex in G/f .

Then, again s ∈ V (R − {x, y}). Assume that (G/f) − s ∈ O is embedded in the

plane so that all of its vertices are incident with the outer face. Since all the vertices

of (L/f)−{x, y} have degree = 2 in (G/f)− s, it follows that all the edges of L/f

are incident with the outer face. Therefore, by uncontracting edge f , we obtain

an embedding of G − s with all of its vertices still incident with the outer face, a

contradiction. Hence, we have shown that L = P2. This proves (2). 2

Finally, we note that 2-separations (L,R) with L = P2 or L = C4 are indeed

realized by graphs in ob(O∗) as will be shown later.
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Chapter 3

Connectivity Two

3.1 Roadmap

Roadmap.

The proof of the connectivity-2 case will follow the following roadmap. We

will split up the case analysis based on the existence of the possible types of

2-separations that can occur in G, as indicated by Lemma 2.7. In the following

outline of the case structure, all the 2-separations refer to 2-separations (L,R) in

G over vertices {x, y}. Also, P2 and C4 are as drawn in Figure 2.3, with vertices

{x, y} as labelled in the Figure.

Case 1: There exists a 2-separation such that both L /∈ O and R /∈ O;

Case 2: For each 2-separation, L = P2 or C4;

Case 2.1: There exists a 2-separation such that L = C4;

Case 2.1.1: There exists a 2-separation such that L = C4 and G−{x, y} /∈ O;

Case 2.1.2: There exists a 2-separation such that L = C4 and for every such

2-separation G− {x, y} ∈ O;

Case 2.2: For each 2-separation, L = P2;

Case 2.2.1: There exists a 2-separation such that L = P2 and G−{x, y} /∈ O;

Case 2.2.2: For each 2-separation, L = P2 and G− {x, y} ∈ O.

Note that organizing the case analysis in this way restricts the structure of G

more and more as we proceed through the cases.

3.2 Case 1: Both Sides Non-Outerplanar

Case 1: There exists a 2-separation such that both L /∈ O and R /∈ O.
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By Lemma 2.7, L ∈ {L1, L2, L3, L4, L5}. Note that R−{x, y} is outerplanar, for

otherwise G contains two disjoint K-graphs. Since G /∈ O∗, none of its vertices is

apex. In particular, since x is not apex, R−x contains a K-subdivision, which con-

tains y (since R−{x, y} is outerplanar). Similarly, R−y contains a K-subdivision,

which contains x. These two K-subdivisions must intersect, otherwise G would

contain two disjoint K-graphs. Hence, G must have the following structure:

Note that each of the Li (i = 1, . . . , 5) contains C4 as a minor (with the vertices

x and y preserved). Let G′ be the graph obtained from G by reducing L (under the

minor operation) to C4, so that (C4, R) is a 2-separation of G′ over {x, y}. Note

that G′ is a proper minor of G, hence by the minor-minimality of G, it follows that

G′ ∈ O∗. If there are at least two internally disjoint paths in R from x to y, then

G′ has no apex vertex, a contradiction.

Hence, R has a cut-vertex z. Note that R − z ∈ O, otherwise R contains two

disjoint K-graphs, a contradiction.
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Let R1 and R2 be the two sides of the 1-separation of R across z, such that x ∈ R1

and y ∈ R2. By applying Lemma 2.7 to the 2-separation in G over {x, z}, and to the

2-separation in G over {y, z}, we conclude that both R1, R2 ∈ {L1, L2, L3, L4, L5}.

Therefore, G is one of the 30 graphs {T1, T2, . . . , T30} listed in Figure 3.1. It is

straightforward to verify that each Ti is minor-minimal /∈ O∗ satisfying the hy-

pothesis of Case 1. Hence Ti ∈ ob(O∗) for i = 1, . . . , 30. 2
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FIGURE 3.1. T family

27



3.3 Case 2: One Side Outerplanar

Case 2: For each 2-separation, L = P2 or C4.

3.3.1 Case 2.1

Case 2.1: There exists a 2-separation such that L = C4

Case 2.1.1: For each 2-separation, L = P2 or C4, and there exists a 2-separation

such that L = C4 with G− {x, y} /∈ O;

By the hypothesis, it follows that R − {x, y} /∈ O, hence R − {x, y} contains a

K-subdivision as a subgraph, call it K ′. Note that if R does not have at least two

internally disjoint paths from x to y, then R has a cut-vertex z separating x and y,

and hence G has a 2-separation (L′, R′) over {x, z} or over {y, z} with the property

that R′ /∈ O, and either L′ /∈ O (violating the Case 2 hypothesis) or L′ ∈ O but

L′ different from P2 and C4 (violating Lemma 2.7), a contradiction. Hence,

(a) R has at least two internally disjoint paths from x to y.

Also, note that R does not have a path P from x to y disjoint from K ′, for other-

wise G would contain two disjoint K-graphs (namely K ′ and the K2,3-subdivision

formed from the union of L and P ). Therefore G has the following structure:

x

y

K’G =

Note that,

(b) A graph with the above structure does not belong to O∗.

This is because none of its vertices is apex: if v ∈ V (G) − V (K ′), then v is not

apex, because of K ′; and if v ∈ V (K ′), then R − v has a path from x to y, which

along with L forms a K2,3-subdivision in G− v, hence v is not apex.
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Fix a planar embedding of G. Let C be the outer cycle of K ′. Let Sx ⊆ V (C)

and Sy ⊆ V (C) be the sets of vertices of C from which there is a path to x, or

respectively to y, that doesn’t contain other vertices of C. It follows, by (a), that

|Sx| > 2 and |Sy| > 2, hence |Sx ∪ Sy| > 2. However, if |Sx ∪ Sy| = 2 (see the

following figure), then let {a, b} := Sx = Sy, and note that G has a 2-separation

(L′′, R′′) over {a, b}, where L′′ = K ′ /∈ O and R′′ contains a subdivision of K2,4,

hence R′′ /∈ O, contradicting the hypothesis of Case 2.

Hence, |Sx ∪Sy| > 3. Also, note that, by (b), the paths from Sx to x and Sy to y

are actually simple edges, for otherwise we could perform a contraction along such

a path, and by (b), the resulting graph would still be outside of O∗, contradicting

the minor-minimality of G.

Since K ′ is a subdivision of either K4 or K2,3, it follows that actually K ′ = K4

or K ′ is a subdivision of K2,3. If K ′ = K4, then in view of all the observations

above, G is the following graph:

It is easy to verify that the above graph is minor-minimal /∈ O∗ satisfying the

hypothesis of Case 2.1.1. We label it G1, and so G1 ∈ ob(O∗).

So now, K ′ 6= K4, and so K ′ is a subdivision of K2,3, or equivalently, K ′ is a

Θ-graph. Therefore K ′ consists of the outer cycle C and a path Q of length at

least 2 connecting two non-adjacent vertices of C. Note that Q has length exactly
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2, for otherwise we could perform a contraction along Q, and by (b), the resulting

graph would still be outside of O∗, contradicting the minor-minimality of G. Let

Q = a, c, b, so that a, b ∈ V (C). Then since K ′ is a Θ-graph, we have:

(c) There is at least one vertex in C(a, b) and at least one in C(b, a).

Thus, G has the following structure:

It is straightforward to verify that the following graphs are minor-minimal /∈ O∗

satisfying the hypothesis of Case 2.1.1 (except the second one, which is minor-

minimal after contracting e; we label this graph J1). We label them G2, G3, G4,

G5. Hence J1, Gi ∈ ob(O∗) for i = 1, . . . , 5.

In the remainder of the proof, assume furthermore that G /∈ {J1, G1, G2, G3, G4, G5}.

Let x1, x2 ∈ Sx and y1, y2 ∈ Sy in the clockwise order x1, x2, y1, y2 around C.

First, assume that all four can be chosen so that they are all distinct. Then, if

a, b ∈ C[x1, x2] or a, b ∈ C[y1, y2], then by (c), G >m J1, a contradiction. If

a, b ∈ C[x2, y1] or a, b ∈ C[y2, x1], then by (c), G >m G2, a contradiction. Finally,

if a and b are in distinct segments among C(x1, x2), C(y1, y2), C(x2, y1), C(y2, x1),

or if {a, b} = {x1, y1} or if {a, b} = {x2, y2}, then G >m G5, a contradiction.
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Therefore x1, x2, y1, y2 cannot be chosen to be all distinct. Since |Sx| > 2 and

|Sy| > 2, and |Sx ∪ Sy| > 3, it follows that |Sx ∪ Sy| = 3. Hence, we let x1 = y2

and x2 6= y1, as in the figure below.

Now, if a is in one of C(x1, x2) or C(y1, x1), say C(y1, x1), then: if b ∈ C[y1, x1],

then by (c), G >m J1, a contradiction; if b ∈ C(x1, x2], then G >m G4; finally, if

b ∈ C(x2, y1), then G >m G3. Hence, we have shown that neither a nor b can be

in C(x1, x2) ∪ C(y1, x1). If a = x1, then if b = x2 or y1, then by (c), G >m J1,

a contradiction; and if b ∈ C(x2, y1), then G >m G3, a contradiction. So finally,

both a and b must be in C[x2, y1]. But, then it follows by (c) that G >m G2, a

contradiction. This concludes the proof of Case 2.1.1.

Finally, Figure 3.2 shows slightly different embeddings of the Gi’s from the ones

above.
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FIGURE 3.2. G family

2

Case 2.1.2: For each 2-separation, L = P2 or C4, and there exists a 2-separation

such that L = C4, and for every such 2-separation G− {x, y} ∈ O.

It is straightforward to verify that the graphs in Figure 3.3 are minor-minimal

/∈ O∗ satisfying the hypothesis of Case 2.1.2. We label them J1, J2, J3, J4, J5.

Hence Ji ∈ ob(O∗) for i = 1, . . . , 5.

FIGURE 3.3. J family
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In the remainder of the proof, assume furthermore that G /∈ {J1, J2, J3, J4, J5, Q2},

where Q2 ∈ ob(O∗) as will be shown in Case 2.2.2. Since R−{x, y} ∈ O, it follows

by the same arguments as in Case 1, that G must have the following structure:

where K ′ is a K-subdivision contained in R−x containing y (so that K ′−y ∈ O),

and K ′′ is a K-subdivision contained in R− y containing x (so that K ′′ − x ∈ O).

Note that,

(a) R does not have a path P from x to y that is internally disjoint from K ′ ∪K ′′.

For otherwise, G would have a 2-separation (L′, R′) over {x, y}, with L′ = L∪P /∈

O and R′ = R /∈ O, contradicting the hypothesis of Case 2.

Also, note that if R does not have at least two internally disjoint paths from x to

y, then R has a cut-vertex z. Note that z lies at the intersection of K ′ and K ′′ (for

otherwise K ′ and K ′′ would be disjoint, or R − {x, y} would not be outerplanar).

But, R− z ∈ O (for otherwise K ′ and K ′′ would be disjoint), therefore G− z ∈ O,

a contradiction. Hence, R has at least two internally disjoint paths from x to y.

Note that,

(b) a graph with the above structure does not belong to O∗.

This is because none of its vertices is apex: if v ∈ V (G) − V (K ′), then v is not

apex, because of K ′; if v ∈ V (G)−V (K ′′), then v is not apex, because of K ′′; and
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if v ∈ V (K ′) ∩ V (K ′′), then R − v has a path from x to y, which along with L

forms a K2,3-subdivision in G− v, hence v is not apex.

Fix a planar embedding of G. Since R does not have a cut-vertex, it is 2-

connected. Let C be the outer cycle of R, so that the rest of R is embedded

in the closed disk bounded by C. Let P1 and P2 be the two internally disjoint

paths from x to y whose union is C. Note that neither P1 nor P2 is a simple edge,

since xy /∈ E(G). Note that,

(c) There must be a path P3 between int(P1) and int(P2) such that V (P3)∩V (C) =

{a, b}, where a ∈ int(P1) and b ∈ int(P2) are the endpoints of P3.

For otherwise, one of int(P1) or int(P2) would be vertex-disjoint from K ′ ∪ K ′′,

contradicting (a).

Let P be the set of paths with property (c). By (c), it follows that |P| > 1. The

remainder of the analysis for this case is based on the length l(P) of the longest

path in P.

Case 2.1.2a: l(P) = 1.

By hypothesis, all the paths in P are simple edges. Let a1, a2, . . . , as ∈ int(P1)

be the left endpoints of the paths in P in the order of vertices in P1 from x to y,

and similarly let b1, b2, . . . , bt ∈ int(P2) be the right endpoints of the paths in P

in the order of vertices in P2 from x to y. Note that, for i = 1, . . . , s− 1 (and for

j = 1, . . . t−1), if aiai+1 (or bjbj+1) is not a simple edge, then G has a 2-separation

(L′, R′) over {ai, ai+1} (or over {bj , bj+1}). By the Case 2 hypothesis, L′ = P2 or
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C4. However, by the hypothesis of Case 2.1.2, L′ 6= C4, because G−{ai, ai+1} (and

G− {bj , bj+1}) contains a K2,3-subdivision. Hence,

(d) for i = 1, . . . , s− 1 and for j = 1, . . . t− 1, aiai+1 and bjbj+1 are either simple

edges or edges subdivided once.

y

G =
a

b

x

s

t

a
1

1

b

= oror

Similarly, if xa1, xb1, yas, or ybt is not a simple edge, then G has a 2-separation

(L′, R′) over the corresponding 2-vertex set, and by the Case 2 hypothesis, L′ = P2

or C4. If L′(x, a1) = C4 and L′(y, as) = C4 (or L′(x, b1) = C4 and L′(y, bt) = C4),

then G >m J3, a contradiction (see figure below). Similarly, L′(x, a1) = C4 and

L′(y, bt) = C4 (or L′(x, b1) = C4 and L′(y, as) = C4), then G >m J1, a contradiction

(see figure below).

Therefore, for one of the sides, say the x-side, we must have that xa1 and xb1

are either simple edges, or edges subdivided once. Therefore, it follows by (d) that

the vertex y is apex, a contradiction since G /∈ O∗.

Case 2.1.2b: l(P) > 2.

Let P = p0p1 . . . pn be a path in P of length n := l(P), with p0 ∈ int(P1) and

pn ∈ int(P2). Since G �m J1, it follows that:

(e) for i = 0, 1, . . . , n− 2, there is no path of length > 2 from pi to int(P2) that is

internally disjoint from P ∪ C.

Note that, by choice of P , the same holds true for i = n− 1. Similarly:
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(f) for i = 2, 3, . . . , n, there is no path of length > 2 from pi to int(P1) that is

internally disjoint from P ∪ C.

And, by choice of P , the above also holds true for i = 1. Therefore, equivalently:

(e′) for i = 0, 1, . . . , n − 1, all the paths from pi to int(P2) that are internally

disjoint from P ∪ C are simple edges.

(f ′) for i = 1, 2, . . . , n, all the paths from pi to int(P1) that are internally disjoint

from P ∪ C are simple edges.

Let P11 and P12 be the subpaths of P1 from x to p0, and from p0 to y, respectively.

Similarly, Let P21 and P22 be the subpaths of P2 from x to pn, and from pn to y,

respectively. Let Cx be the cycle formed from the union of the paths P , P11 and

P21, and let Cy be the cycle formed from the union of the paths P , P12 and P22.

Again, since G �m J1, it follows that:

(g) all the paths in P that are internally disjoint from P are simple edges.

It follows by (e′) and (f ′), that G does not have a bridge with one foot in int(P )

and another in int(P1) ∪ int(P2). Also, if G has a bridge with two feet in P , then

if the feet are consecutive vertices of P , then this violates the choice of P ; and if

they are non-consecutive, then G >m J1, a contradiction. Therefore:

(h) the only bridges of G that attach to int(P ) have one foot in int(P ) and the

other at x or y.

Let B be a bridge that attaches to int(P ). Then, it follows by (h) that B has one

foot, call it p, in int(P ) and the other at x or y, say x. Then G has a 2-separation

(L′, R′) over {x, p}, and it follows by the Case 2 hypothesis that L′ = P2 or C4.

Hence, B−{x, p} is a single vertex, or a pair of non-adjacent vertices. We call such

a bridge a P2-bridge, or a C4-bridge over {x, p}, respectively. Thus we have shown:

(h′) If B is a bridge with one foot p ∈ int(P ) and the other at x (or y), then B is

a P2- or C4-bridge over {x, p} (over {y, p} respectively).
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Let F0 be the set of edges with one endpoint in int(P1) − {p0} and the other

in int(P2) − {pn}, and let F1 be the set of edges whose both endpoints are non-

consecutive vertices of P . Let F2 be the set of edges with one endpoint in {p0, p1, . . . , pn−2}

and the other in int(P2) − {pn}, and let F3 be the set of edges with one endpoint

in {p2, p3, . . . , pn} and the other in int(P1)−{p0}. Note that F0, F1, F2, and F3 are

pairwise disjoint. Let F := F0 ∪ F1 ∪ F2 ∪ F3 if n ≥ 3. For shorthand, we will say

that an edge or a vertex is embedded in the top or in the bottom, if it is embedded

in the closed disk bounded by Cx or in the closed disk bounded by Cx, respectively.

We prove the following:

(i) If F 6= ∅, then all edges of F can be embedded on one side: top or bottom.

First, assume that this is impossible for two edges e and f of F1. If the endpoints

of e = pi0pi1 and f = pi2pi3 overlap, in the sense that i0 < i2 < i1 < i3, then

G >m J1, a contradiction (see figure below).

If the endpoints of e and f do not overlap (in the sense that i0 < i1 < i2 < i3)

and, without loss of generality, e is in the top and f is in the bottom, then since

G does not have a 2-separation over {pi0 , pi1} (by the Case 2 hypothesis), and

since the vertices pi0 , pi1 are non-consecutive in P , there is a path from a vertex

in P (pi0, pi1) to P12 (note that if the path is to a vertex in int(P2), then G >m J1

as in the overlapping case; and similarly if the path is to a vertex pi4 ∈ P for

some i4 < i0 or i4 > i1). Similarly, since G does not have a 2-separation over

{pi2 , pi3}, there is a path from a vertex in P (pi2, pi3) to P21. Therefore G >m Q2, a

contradiction (see figure below).
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Second, assume that (i) is impossible due to two edges e and f of F2 (the proof

for F3 is similar). Hence, both e and f have one endpoint in {p0, p1, . . . , pn−2},

however e has the other endpoint in int(P21) and f in int(P22). Then, G− {x, y}

contains a K2,3-subdivision, contradicting the hypothesis of Case 2.1.2.

Third, assume that (i) is impossible due to an edge e ∈ F2, embedded, say, in the

bottom, and an edge f ∈ F3 embedded in the top. Then G contains the following

minor, which contains a Q2-minor, a contradiction (see figure below).

Fourth, assume that (i) is impossible due to an edge e ∈ F1, embedded, say, in

the bottom, and an edge f ∈ F2 (the proof for f ∈ F3 is similar) embedded in the

top. Let pi0q := f with i0 ∈ {0, 1, . . . , n− 2} and q ∈ int(P21), and let pi1pi2 := e

with i1 < i2. If i1 > i0, then G−{x, y} contains a K4-subdivision, a contradiction.

Hence, i1 < i0. If i2 = n, then since i0 ∈ {0, 1, . . . , n−2}, it follows that G−{x, y}

contains a K2,3-subdivision, a contradiction. If i2 ∈ (i0, n − 1], then G >m J1 (as

in the overlapping case), a contradiction. Therefore, i2 6 i0 and since G does not

have a 2-separation over {pi1, pi2} (by the Case 2 hypothesis), there is a path from

a vertex in P (pi1, pi2) to P12−{p0}, and thus G contains the following minor, which

contains a Q2-minor, a contradiction (see figure below).

38



Finally, assume that (i) is impossible due to an edge e ∈ F0, embedded, say, in

the top, and an edge f ∈ F0 ∪ F1 ∪ F2 ∪ F3 embedded in the bottom (the case

f ∈ F0 is illustrated below). Then, it can easily be checked that G−{x, y} contains

a K4- or K2,3-subdivision, a contradiction. This proves (i).

2

As in Case 2.1.2a, let a1, a2, . . . , as ∈ int(P1) be the left endpoints of the paths in

P in the order of vertices on P1 from x to y, and similarly let b1, b2, . . . , bt ∈ int(P2)

be the right endpoints of the paths in P in the order of vertices on P2 from x to

y. Similarly to (d) in Case 2.1.2a, we have that:

(j) for i = 1, . . . , s− 1 and for j = 1, . . . t − 1, aiai+1 and bjbj+1 are either simple

edges or edges subdivided once.

Similarly, if xa1, xb1, yas, or ybt is not a simple edge, then G has a 2-separation

(L′, R′) over the corresponding 2-vertex set, and by the Case 2 hypothesis, L′ = P2

or C4. Thus:

(k) If xa1, xb1, yas, or ybt is not a simple edge, then L′(x, a1), L
′(x, b1), L

′(y, as),

L′(y, bt) ∈ {P2, C4}, respectively (equivalently, G has a P2- or C4-bridge over

{x, a1}, {x, b1}, {y, as}, or {y, bt}, respectively)

We will first consider the case that F 6= ∅. Then, it follows from (i) that all the

edges of F can be embedded, say, in the bottom (hence there are no edges of F

embedded in the top). We will show that since G does not contain Ji-minor for
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i = 1, . . . , 5, the vertex x will be apex in G, obtaining a contradiction. To do this,

we first prove the following Claim.

Claim. The only vertices in the bottom are those lying on the cycle Cy.

We prove the above claim by showing that there are no bridges in the interior of

the disk bounded by Cy. So assume that there is such a bridge B. First, if B has a

foot in int(P ), then by (h), it follows that the other foot of B is y. Since F 6= ∅,

it contains an edge e ∈ Fi for some i = 0, 1, 2, 3. Actually, e /∈ F0, for otherwise

e would cross B, a contradiction. If e ∈ F1, then G contains the following minor,

which contains a Q2-minor, contradiction (see figure below).

And if e ∈ F2 (the proof for F3 is similar), then G contains the following minor,

which again contains a Q2-minor, contradiction (see figure below).

Therefore B has its feet in P12∪P22, but it cannot have a foot in P12 and another

in P22, because this would contradict either (e′), (f ′), or (g). Hence, B has all of

its feet in P12 or all in P22; by symmetry, we may assume that in P12. Let p and

q be the first and last feet of B in the order of vertices on P12. Then G has a

2-separation (L′, R′) over {p, q}, and by the Case 2 hypothesis, L′ = P2 or C4, so

that B is a P2- or C4-bridge over {p, q}. Since F 6= ∅, it follows that B 6= C4 for

otherwise G would contain a J2-, J4-, or J5-minor (see figure below).

40



Hence, B = P2, and so B is a subgraph of P12. This proves the Claim. 2

Hence, it follows by the Claim, that L′(y, as) 6= C4 and L′(y, bt) 6= C4. Hence,

yas and ybt are either simple edges, or edges subdivided once. However, L′(x, a1)

and L′(x, b1) could be either P2 or C4, or xa1 and xb1 could be simple edges.

By the fact that there are no edges of F in the top, and from (h), (h′), (j), and

(k), it follows that the only possible edges in the top are:

- edges from p1 to P11;

- edges from pn−1 to P21;

- edges from int(P ) to x;

- edges that are part of the P2- or C4-bridges from int(P ) to x;

- edges that are part of the P2- or C4-bridges from a1 or b1 to x;

- edges of the cycle Cx;

Hence, the only possible vertices lying in the interior of the disk bounded by Cx

are those from the P2- or C4-bridges from int(P ) ∪ {a1, b1} to x. Hence, from this

and the Claim it follows that G− x is outerplanar (i.e. x is an apex vertex of G),

a contradiction. 2
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Finally, we consider the case that F = ∅. Again, by the fact that there are no

edges of F in the top and none in the bottom, and from (h), (h′), (j), and (k), it

follows that the only possible edges in G are:

- edges from p1 to P1;

- edges from pn−1 to P2;

- edges from int(P ) to x or to y;

- edges that are part of the P2- or C4-bridges from int(P ) to x or to y;

- edges that are part of the P2- or C4-bridges from a1 or b1 to x, and from as or

bt to y;

- edges of the cycles Cx and Cy.

If there are no P2- or C4-bridges from int(P ) to x nor to y, then, just as in

the proof of Case 2.1.2a, if L′(x, a1) = C4 and L′(y, as) = C4 (or L′(x, b1) = C4

and L′(y, bt) = C4), then G >m J3 (see old figure). Similarly, L′(x, a1) = C4 and

L′(y, bt) = C4 (or L′(x, b1) = C4 and L′(y, as) = C4), then G >m J1 (see old

figure). Therefore, for one of the sides, say the x-side, we must have that xa1 and

xb1 are either simple edges, or edges subdivided once. Hence, G−y is outerplanar,

a contradiction.

Hence, there is a P2- or C4-bridge from int(P ) to x or to y, but there cannot be

such bridges to both x and y, for otherwise G would contain a Q2-minor. Hence,

there is a P2- or C4-bridge from int(P ) to, say x, but not to y. Then, L′(y, as) 6= C4

and L′(y, bt) 6= C4, for otherwise G >m J5 (see figure below).
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Therefore, yas and ybt are either simple edges, or edges subdivided once. Hence,

G− x is outerplanar, a contradiction (see figure below).

This concludes the proof of Case 2.1.2. 2

3.3.2 Case 2.2

Case 2.2: For each 2-separation, L = P2;

Recall that a graph H is internally 3-connected if it is 2-connected, and for

every 2-cut {s, t}, H − {s, t} has two connected components, one of which is a

single vertex.

It follows from the Case 2.2 hypothesis that G is internally 3-connected. Let

(L,R) be a 2-separation over vertices {x, y} such that L = P2. Let v be the third

(middle) vertex of L. Since G is minor-minimal /∈ O∗, G/vy has an apex vertex a

(i.e. a such that (G/vy)−a ∈ O). Note that a 6= y and a 6= x, for otherwise y (or x,

respectively) is an apex vertex in G, a contradiction. Since deg(v) = 2, it follows

that G/vy is also internally 3-connected. Hence, the only possible 1-separations

in (G/vy) − a are those that separate a pendant vertex. Call such 1-separations

trivial. Therefore, (G/vy) − a is 2-connected up to trivial 1-separations (pendant

edges), and outerplanar.

Fix a planar embedding of G so that all the vertices of (G/vy) − a ∈ O and a

are incident with the outer face (i.e. infinite face). Since (G/vy)− a is 2-connected

up to trivial 1-separations, it follows that all the vertices of (G/vy) − a ∈ O lie

along a cycle C, except (possibly) for the vertices of degree 1 in (G/vy) − a that
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are adjacent to some vertex of C. Note that such vertices have degree 2 in G/vy

(and in G), and that no two of them are adjacent to the same vertex c of C, for

otherwise G has a 2-separation (L′, R′) over {c, a} such that L′ = C4 or L′ /∈ O

and R′ /∈ O, contradicting the hypothesis of Case 2.2. Since v ∈ G − a /∈ O, it

follows that v is embedded in the interior of the disk bounded by C. Hence,

(a) The edges of G are:

- edges of C;

- chords of C, that is, edges not in E(C) with both endpoints in C (note that

such edges are embedded in the interior of the disk bounded by C);

- edges xv and vy, with x, y ∈ V (C);

- edges with one endpoint in C and the other at a (or such edges subdivided

once).

Also note that there are no two consecutive vertices in C of degree 2, since

such vertices and their neighbors would induce a P3 or a C4 in G giving rise to a

2-separation violating the hypothesis of Case 2.2.

In this Case 2.2, by a neighbor of a, we mean a vertex u in C such that au is

actually an edge of G or an edge subdivided once. As usual, we denote by N(a)

the set of neighbors of a. Since xy /∈ E(G), it follows that G has vertices in both

C(x, y) and C(y, x). Furthermore,

(b) a must have a neighbor in both C(x, y) and C(y, x).

For otherwise, G has a 2-separation over {x, y} contradicting the hypothesis of

Case 2.2.

Note that a chord must have both of its endpoints in C[x, y] or C[y, x]. We say

that two chords c := c1c2 and d := d1d2 are non-overlapping if their endpoints

satisfy c1 < c2 6 d1 < d2 in the cyclic order of C. Two chords are said to be nested

if they are not non-overlapping. It follows from (a) that:
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(b′) If c := c1c2 is a chord with c1 < c2 (in the clockwise order restricted to C[x, y]

or C[y, x]), then a has a neighbor in C(c1, c2).

For otherwise, G has a 2-separation over {c1, c2} contradicting the hypothesis of

Case 2.2. Also,

(b′′) Within a single segment C[x, y] or C[y, x], there are no non-overlapping chords

(or equivalently, all the chords are nested).

Suppose that the chords c := c1c2 and d := d1d2 are non-overlapping with

c1 < c2 6 d1 < d2 within, say C[x, y]. Then, by (b′), a has a neighbor in C(c1, c2)

and in C(d1, d2), and by (b), it has a neighbor in C(y, x). Then, G contains the

following graph as a minor, which we label Q1, and which can easily be verified to

belong to ob(O∗). This is a contradiction, since G is minor-minimal /∈ O∗.

Case 2.2.1: For each 2-separation, L = P2, and there exists such a 2-separation

with G− {x, y} /∈ O;

We now further analyze the structure of G. By the hypothesis, G− {x, y} /∈ O,

hence G − {x, y} contains a K-subdivision as a subgraph, call it K ′. By (a), it

follows that a is a cut-vertex in G−{x, y}, hence, without loss of generality, K ′ is a

subgraph of G−C[y, x]. Let C ′ be the outer cycle of K ′. Then, |V (C ′)∩C(x, y)| > 2,

for otherwise if u := V (C ′) ∩ C(x, y), then it follows by (a) that G has a 2-

separation (L′, R′) over {a, u} such that L′ /∈ O and R′ /∈ O, contradicting the

Case 2 hypothesis.
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Let s, t ∈ V (C ′) ∩ C(x, y) be the first and last vertices, respectively, of V (C ′) ∩

C(x, y) in the clockwise order of C(x, y). Note that s 6= x and t 6= y. Also, since G

does not contain two disjoint K-graphs, it follows that:

(c) G does not have a chord with one endpoint in C[x, s) and the other in C(t, y].

It is straightforward to verify that the graphs in Figure 3.4 are minor-minimal

/∈ O∗ satisfying the hypothesis of Case 2.2.1. We label them H1, H2, H3, H4, H5.

Hence Hi ∈ ob(O∗) for i = 1, . . . , 5.

FIGURE 3.4. H family

Therefore, if a has at least two neighbors in C(y, x), or one neighbor z ∈ C(y, x)

and C(y, z) 6= ∅ and C(z, x) 6= ∅, then it is easy to verify that G contains an

Hi-minor for some i = 1, . . . , 5 (see figure below).
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Hence, let z be the only neighbor of a in C(y, x). We only need to consider two

cases: either both C(y, z) and C(z, x) are empty, or one of them is empty, say

C(y, z), and the other is not.

First, suppose that C(y, z) = ∅ and C(z, x) 6= ∅. So yz ∈ E(G). Then G has

the following structure as a subgraph:

(d) In G/yz, the only apex vertex is s.

This is because an apex vertex in G/yz must destroy both K ′ and the Θ-graph

with outer cycle C. Hence it must be a vertex in V (C ′) ∩ C(x, y). If u ∈ C(s, t] is

apex, then since s, t, and a all lie on C ′, it follows that in G/yz−u there is a path

P ′ in C ′ from a to s; this path, combined with the (possibly subdivided) edge ay

(= az) and the path along C from y to s form an outer cycle of a Θ-graph with

inner path x, v, y. Hence, G/yz − u contains a K2,3-subdivision, a contradiction.

This proves (d).

(e) y (= z) is a cut-vertex in G/yz − s.

Note that there are no edges (or edges subdivided once) from a to C(z, x) in

G/yz, since z is the only neighbor of a in C(y, x) in G. Also, note that there are no

47



edges (or edges subdivided once) from a to C[x, s) in G/yz, for otherwise G/yz−s

contains a K2,3-subdivision, contradicting (d). Finally, there are no chords from

C[x, s) to C(s, t] in G/yz, for otherwise G/yz − s contains a K2,3-subdivision, a

contradiction. These facts combined with (c) imply (e).

Therefore, it follows by (e) that after uncontracting edge yz in G/yz − s, the

resulting graph G− s is also outerplanar, a contradiction since G /∈ O∗.

Now consider the other case, that is: both C(y, z) and C(z, x) are empty (so

that yz, zx ∈ E(G)). Recall that z is the only neighbor of a in C(y, x). Then G

has the following structure as a subgraph:

Similary to (d), we obtain the following fact.

(f) In G\az, the only possible apex vertices are s and t.

We use the above to prove the following key fact.

(g) One or both of the following hold:

(i) xs is an edge of G (or an edge subdivided once) and deg(x) = 3;

(ii) yt is an edge of G (or an edge subdivided once) and deg(y) = 3.

Note that if a vertex in C(x, s) or C(t, y) has degree > 3, then it is a neighbor

of a or an endpoint of a chord. Similarly, if deg(x) > 4 or deg(y) > 4, then x,

respectively y, is a neighbor of a or an endpoint of a chord. To prove (g), we first

note that a does not have neighbors in both C[x, s) and C(t, y], for otherwise G\az

has no apex vertex (since neither s nor t is apex in G\az), a contradiction. Hence,

by symmetry, a has no neighbors in C[x, s). Then, by (b′), there are no chords with
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both endpoints in C[x, s]. If a has a neighbor in C(t, y], then there are no chords

with one endpoint in C[x, s) and the other in C(s, t], for otherwise G\az has no

apex vertex (note that the other endpoint cannot lie in C(t, y] by (c)), and thus (i)

holds. And if a has no neighbors in C(t, y] then, again by (b′), there are no chords

with both endpoints in C[t, y]. Therefore, the only chords in G are those with one

endpoint in C[x, s) and the other in C(s, t] (in which case (ii) holds), or those

with one endpoint in C[s, t) and the other in C(t, y] (in which case (i) holds), but

not both, since two such chords would either cross or would be non-overlapping,

violating (b′′). This proves (g).

By symmetry, we have that (i) holds in (g), so that xs is an edge of G (or an

edge subdivided once, in which case denote the subdividing vertex by w). In the

remainder of the proof, by G/xs we mean the graph obtained from G by contracting

the path (of length 1 or 2) along C from s to x.

Similarly to (d) and (f), we obtain:

(h) In G/xs, the only apex vertex is s (= x), unless (ii) in (g) also holds, then t

may also be apex.

This is because if (ii) doesn’t hold, then either a has a neighbor in C(t, y] or G

has a chord with one endpoint in C[s, t) and the other in C(t, y]. And in either

case t is not apex in G/xs.

Note that (G/xs) − s = G − {x, s} (or possibly (G/xs) − s = G − {x, w, s}

if xs is subdivided). Re-embed the graph (G/xs) − s ∈ O (if necessary), so that

all of its vertices are incident with the outer face. In (G/xs) − s, deg(z) = 2 and

deg(v) = 1, hence edges zy and vy are also incident with the outer face. Since yz

is a simple edge, by putting x (and possibly w) back in, we obtain an embedding

of G− s in which all the vertices are still incident with the outer face, hence G− s

is outerplanar, a contradiction (see figure below).
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Finally, if t is also apex in G/xs, then by the above, (ii) in (g) also holds, so

that yt is an edge of G (or an edge subdivided once, in which case denote the

subdividing vertex by u) and deg(y) = 3. Since (G/xs) − t ∈ O, there is a face

f in the current embedding incident with all the vertices of (G/xs) − t. Since the

path (of length 1 or 2) from s to x can be uncontracted along C, it follows that

f is also incident with all the vertices of G− t, a contradiction since G /∈ O∗ (see

figure below).

This concludes the proof of the subcase that both C(y, z) and C(z, x) are empty,

as well as that of Case 2.1.2. 2

Case 2.2.2: For each 2-separation, L = P2 and G− {x, y} ∈ O.

It is straightforward to verify that the graphs in Figure 3.5 are minor-minimal

/∈ O∗ satisfying the hypothesis of Case 2.2.2. We label them Q1, Q2, Q3, Q4, Q5.

Hence Qi ∈ ob(O∗) for i = 1, . . . , 5.
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FIGURE 3.5. Q family

In the remainder of the proof, assume furthermore that G /∈ {Q1, Q2, Q3, Q4, Q5}.

Observe that now:

(i) deg(a) > 3.

For otherwise, if deg(a) = 2, then let the two neighbors of a be a1 and a2 (in

C(x, y) and C(y, x), respectively, by (b)). Note that there is a chord with one

endpoint in C[x, a1) and the other in C(a1, y], for otherwise, it follows by (a) that

a1 is apex in G, a contradiction. Similarly, there is a chord with one endpoint in

C[y, a2) and the other in C(a2, x], for otherwise, it follows by (a) that a2 is apex

in G, a contradiction. Since deg(a) = 2, it follows that G has a 2-separation over

{a1, a2} such that G−{a1, a2} contains a K2,3-subdivision, contradicting the Case

2.2.2 hypothesis. This proves (i).

We first consider the case the G has no chords.

Case 2.2.2a: G has no chords.

1, 1 Case: |N(a) ∩ C(x, y)| = 1 and |N(a) ∩ C(y, x)| = 1.
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Then, there is a subdivided edge ay, for otherwise x is apex. Also, there is a

subdivided edge ax, for otherwise y is apex, and hence G >m Q2, a contradiction.

2, 1 Case: |N(a) ∩ C(x, y)| = 2 and |N(a) ∩ C(y, x)| = 1.

First suppose that x, y /∈ N(a). Let a1 ∈ N(a) ∩ C(y, x) and a2, a3 ∈ N(a) ∩

C(x, y) in the clockwise order around C. Then, there is a vertex in C(a2, a3), for

otherwise a1 is apex. Edge aa3 is subdivided, for otherwise x is apex. Edge aa2 is

subdivided, for otherwise y is apex. There is a vertex in C(y, a1), for otherwise a2

is apex. Finally, there is a vertex in C(a1, x), for otherwise a3 is apex, and hence

G >m Q4, a contradiction.

Next, suppose that x ∈ N(a), but y /∈ N(a). Then, edge aa3 is subdivided,

for otherwise x is apex. Edge ax is not subdivided, for otherwise G >m Q2, a

contradiction. Edge aa2 is subdivided, for otherwise y is apex. Finally, there is a

vertex in C(a1, x), for otherwise a3 is apex, and hence G >m J1, a contradiction.

Finally, suppose that x, y ∈ N(a). Then, at least one of aa3, ay is subdivided,

for otherwise x is apex. Also, at least one of aa2, ax is subdivided, for otherwise y

is apex. If aa2 and aa3 are, then G >m J1, a contradiction. If ax and ay are, then

G >m Q2, a contradiction. Finally, if ax and aa3 are, or a2 and ay are, then again

G >m Q2, a contradiction.

3+, 1 Case: |N(a) ∩ C(x, y)| > 3 and |N(a) ∩ C(y, x)| = 1.

Let a1 ∈ N(a)∩C(y, x) and a2, a3 ∈ N(a)∩C(x, y) be such that a2 is the vertex

in N(a) ∩ C(x, y) closest to x, and a3 is the vertex in N(a) ∩ C(x, y) closest to y.

Note that if u ∈ N(a) ∩ C(a2, a3), then edge au is not subdivided, for otherwise

G− {x, y} contains a K2,3-subdivision, contradicting the Case 2.2.2 hypothesis.

Therefore, at least one of aa3, ay (if ay ∈ E(G)) is subdivided, for otherwise x

is apex. Also, at least one of aa2, ax (if ax ∈ E(G)) is subdivided, for otherwise y

is apex. Hence, G >m Q2, a contradiction.
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2+, 2+ Case: |N(a) ∩ C(x, y)| > 2 and |N(a) ∩ C(y, x)| > 2.

Let a1, a2 ∈ N(a) ∩ C(y, x) and a3, a4 ∈ N(a) ∩ C(x, y) be such that a1 and a4

are the two neighbors of a closest to y, and a2 and a3 are the two neighbors of a

closest to x. Note that if u ∈ N(a) ∩ (C(a1, a2) ∪ C(a3, a4)), then edge au is not

subdivided, for otherwise G−{x, y} contains a K2,3-subdivision, contradicting the

Case 2.2.2 hypothesis.

Therefore, at least one of aa1, aa4, ay (if ay ∈ E(G)) is subdivided, for otherwise

x is apex. Also, at least one of aa2, aa3, ax (if ax ∈ E(G)) is subdivided, for

otherwise y is apex. Hence, it follows from these two facts that if ay ∈ E(G) and

it is subdivided, then G >m Q2, a contradiction. Similarly, if ax ∈ E(G) and it is

subdivided, then G >m Q2, a contradiction. Hence, if ax ∈ E(G) or ay ∈ E(G),

then they are not subdivided. Finally, if aa1 and aa2 are, or if aa3 and aa4 are,

then G >m Q5, a contradiction. And if aa1 and aa3 are, or if aa2 and aa4 are, then

G >m Q2, a contradiction. This concludes the proof of Case 2.2.2a. 2

Case 2.2.2b: G has a chord.

We first strengthen (b′) to the following:

(j) If c := c1c2 is a chord with c1 < c2 (in the clockwise order restricted to C[x, y]

or C[y, x]), then a has a neighbor in C(c1, c2). Furthermore, for any such neighbor

w, the edge aw is not subdivided.

For otherwise, G would have a 2-separation over {a, w} contradicting the hy-

pothesis of Case 2.2.2 (since G− {a, w} would contain a K2,3-subdivision).

We first prove the following two Lemmas that will greatly limit the structure of

G.
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Lemma 3.1. Let c = c1c2, with c1, c2 ∈ C(x, y) in the clockwise order around C,

be an innermost chord of G (in the sense that there are no other chords with both

endpoints in C[c1, c2]). Then a does not have two neighbors in C(c1, c2).

Proof. Suppose that a does have two neighbors a1, a2 ∈ C(c1, c2). By (j), edges aa1

and aa2 are not subdivided. Also, a does not have any other neighbors in C(x, y),

for otherwise G− {x, y} would contain a K4-subdivision, violating the hypothesis

of Case 2.2.2. Also, C(a1, a2) = ∅, for otherwise G− {x, y} would contain a K2,3-

subdivision, violating the hypothesis of Case 2.2.2. Note that possibly, edges c1a1

and a2c2 are subdivided once, but since c is an innermost chord, there are no other

vertices in C(c1, c2). If a has at least two neighbors in C(y, x), then G >m Q5, a

contradiction. Hence, let z be the only neighbor of a in C(y, x).

We let u be an apex vertex in G\a1a2, and we assume that the graph (G\a1a2)−

u ∈ O is embedded in the plane with all of its vertices incident with the outer face.

Note that u ∈ {z, c1, c2}, for otherwise: if u ∈ {a1, a2}, then clearly u is apex in

G, a contradiction; if u ∈ {a} ∪C(c1, a1)∪C(a2, c2), then (G\a1a2)− u contains a

K2,3-subdivision; and if u ∈ {v} ∪ C(c2, z) ∪ C(z, c1), then (G\a1a2) − u contains

a K4-subdivision.

If u = z, then the only neighbors of a are a1, a2 and z (because if x or y is a

neighbor of a then (G\a1a2)−z contains a K2,3-subdivision). Then, in (G\a1a2)−z,

deg(a) = 2, hence edges aa1 and aa2 are incident with the outer face, and by putting

the edge a1a2 back in, we obtain an embedding of G− z in which all the vertices

are still incident with the outer face, hence G− z is outerplanar, a contradiction.

Finally, suppose that u = c1 (the case u = c2 is symmetric). If c1a1 is subdivided

once, then let b be the subdividing vertex. Then, in (G\a1a2)−c1, then deg(a1) = 1

(except if c1a1 is subdivided by b, then deg(a1) = 2, but a1 is adjacent to b with
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deg(b) = 1, that is a1b is a pendant edge), and deg(a2) = 2. Hence edges aa2 and

aa1 (and possibly a1b) are incident with the outer face, and since aa2 is a simple

edge, we can put edge a1a2 back in to obtain an embedding of G− c1 in which all

the vertices are still incident with the outer face, a contradiction.

Lemma 3.2. G does not have a chord with both endpoints distinct from x and y.

Proof. Suppose that G does have a chord with endpoints s, t ∈ C(x, y) in the

clockwise order around C. We may assume, without loss of generality, that st

is the innermost chord, in the sense that there are no other chords with both

endpoints in C[s, t]. By (j), there is a vertex w ∈ N(a)∩C(s, t) and the edge aw is

not subdivided. Also, by Lemma 3.1, N(a) ∩C(s, t) = {w}. Also, a does not have

neighbors in both C(x, s] and C[t, y), for otherwise G−{x, y} would contain a K4-

subdivision, violating the hypothesis of Case 2.2.2. Also, by (b′′), G does not have

chords with both endpoints in C[x, s] or both in C[t, y]. Let z ∈ N(a) ∩ C(y, x).

First, we show that:

(k) Neither s nor t can be a neighbor of a.

By symmetry, we may assume that t is a neighbor of a, so that s is not. Then,

C(x, s] ∩ N(a) = ∅. Also, C(w, t) = ∅, for otherwise G − {x, y} would contain a

K2,3-subdivision, violating the hypothesis of Case 2.2.2. Also, edges sw and ta are

possibly subdivided once, but by choice of chord c, there are no other vertices in

C(s, t). Hence G contains the following subgraph:
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First, suppose that edge ta is subdivided by vertex u. Then C(t, y] ∩ N(a) =

∅, for otherwise G >m Q3, a contradiction. For the same reason, we have that

(C(y, z)∪C(z, x))∩N(a) = ∅. Hence, the only neighbor of a other than z, w and

t is possibly x. Furthermore, if ax ∈ E(G) then it is not subdivided for otherwise

G >m Q2, a contradiction. Also, note that the remaining chords whose endpoints

lie in C[x, y] must have one of their endpoints at t, and the other in C[x, s),

for otherwise (b′′) is violated, or the subdivided edge ta violates (j). It follows

from all of the above that if C(z, x) = ∅, then t is apex in G, a contradiction.

Hence C(z, x) 6= ∅. Then, if ax ∈ E(G), then G >m J1 (by contracting z to y,

contracting s to x, and deleting ws), a contradiction. Thus ax /∈ E(G). Therefore,

since C(w, t) = ∅, if G has no chords with one endpoint in C[y, z) and the other in

C(z, x], then z is apex in G, a contradiction. Hence, G does have at least one such

chord c. If c has one endpoint in C(z, x) and the other in C[y, z), then G >m Q3

(by contracting z to a, and s to x), a contradiction. Hence, c has one endpoint at

x and the other in C(y, z), but then again G >m Q2 (by deleting st, contracting

z to a, contracting s to x, and contracting t to y), a contradiction. Thus we have

shown that ta is not subdivided, that is ta ∈ E(G).

We let p be an apex vertex in G\wt, and we assume that the graph (G\wt)−p ∈

O is embedded in the plane with all of its vertices incident with the outer face.

Note that p /∈ {w, t}, for otherwise p is apex in G, a contradiction. In fact, it is

easy to see that if p /∈ {z} ∪ C[x, s], then p is not apex in G\wt, a contradiction.

G and G\wt contain the following subgraphs, respectively:
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Suppose that p = z. Then, a has no neighbors other than w, t, and z, for

otherwise (G\wt)−p contains a K4-subdivision, a contradiction. Therefore, in the

graph (G\wt) − p, deg(a) = 2, hence edges aw and at are incident with the outer

face. Since at is a simple edge, we can put edge wt back in, to obtain an embedding

of G− z in which all the vertices are still incident with the outer face, hence G− z

is outerplanar, a contradiction.

Therefore p ∈ C[x, s]. Recall from above that C(x, s]∩N(a) = ∅. Note that there

are no chords with one endpoint in C[x, p) and the other in C[t, y], for otherwise

(G\wt) − p contains a K2,3-subdivision, a contradiction. Also, if a chord has one

endpoint in C(p, s], then its other endpoint is t, for otherwise (G\wt)− p contains

a K4-subdivision, a contradiction. For simplicity, assume that c = c1t is the only

such chord with c1 6= s. If there is more than one such chord, the argument is

similar. Also, note that edges pc1, c1s, and sw may be subdivided once, but the

subdividing vertices can be ignored for the purposes of this argument, as will

be apparent soon. So for simplicity, we assume that pc1, c1s, and sw are simple

edges. By the observations above, it follows that in (G\wt) − p, deg(w) = 2, and

deg(c1) = 2, hence edges wa, ws, c1s and c1t are incident with the outer face,

which implies that edge st is not. Therefore, since in (G\wt) − p, deg(s) = 3, it

follows that by putting edge wt back in, we obtain an embedding of G−p in which

all the vertices are still incident with the outer face, hence G − p is outerplanar,

a contradiction (see figure below). Finally, note that if edges pc1, c1s, and sw are
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subdivided once, then its subdividing vertices are still incident with the outer face

in the above embedding of G − p, since in the above argument edges c1s and sw

are incident with the outer face. This proves (k).

2

Therefore, neither s nor t is a neighbor of a. We now show furthermore:

(l) a does not have a neighbor in C(x, s) ∪ C(t, y).

By symmetry, suppose that N(a)∩C(t, y) 6= ∅, so that N(a)∩C(x, s) = ∅, and

let t′ ∈ N(a) ∩ C(t, y). Then, all the chords that have an endpoint in C(t, y) have

the other endpoint at x, for otherwise (b′′) is violated, or G − {x, y} contains a

K4-subdivision, a contradiction. Also, C(w, t) = ∅, for otherwise G−{x, y} would

contain a K2,3-subdivision, violating the hypothesis of Case 2.2.2.

First, suppose that edge t′a is subdivided by vertex u. Then, C(t, t′)∩N(a) = ∅,

for otherwise G >m Q2, a contradiction. Also, C(t′, y] ∩ N(a) = ∅, for otherwise

G >m Q3, a contradiction. For the same reason, we have that (C(y, z)∪C(z, x))∩

N(a) = ∅. Hence, the only neighbor of a other than z, w and t′ is possibly x.

Furthermore, if ax ∈ E(G) then it is not subdivided for otherwise G >m Q2, a

contradiction. Now consider what the remaining chords within C[x, y] are. Note

that a chord cannot have an endpoint in C(t′, y], since it would violate either (b′′)

or (j). And it cannot have an endpoint at t, since the other endpoint would be in

C[x, s), and G would contain a Q2-minor. Hence, all the remaining chords whose

endpoints lie in C[x, y] have an endpoint at t′. It follows from all of the above
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that if C(z, x) = ∅, then t′ is apex in G, a contradiction. Hence C(z, x) 6= ∅, and

G >m Q5 (by contracting s to x and deleting all the chords incident with t′), a

contradiction. Thus we have shown that t′a is not subdivided, that is t′a ∈ E(G).

We will now proceed to show, in a sequence of steps, that the only possible

chords with both endpoints in C[x, y] other than st are the ones with one endpoint

at x and the other in C[t′, y). Recall from above that:

(1) All chords that have an endpoint in C(t, y) have the other endpoint at x

(2) There is no chord with one endpoint at t and the other in C[x, s).

For otherwise, let u ∈ C[x, s) be the other endpoint of such a chord, and choose

u to be the closest to s, in the sense that there are no chords with both endpoints

in C[u, t] other than st and ut. Note that, us and sw are either edges of G or

edges subdivided once, but again we may assume, without loss of generality, that

us and sw are just simple edges. Let p be an apex vertex in G\st. It is easy to

see that p ∈ C[x, u]. If p = u, then there are no more chords with and endpoint

at t, for otherwise (G\st) − u contains a K2,3-subdivision. Hence, in (G\st) − u,

deg(t) = 2 and deg(s) = 1, hence edges wt and ws are incident with the outer face.

Therefore, putting edge st back into this embedding, we obtain an outerplanar

embedding of G − u, a contradiction. Therefore, we must have p ∈ C[x, u). Also,

if a chord has one endpoint in C(p, u], then its other endpoint is t, for otherwise if

the other endpoint is y, then (G\st)−p contains a K4-subdivision, a contradiction.

For simplicity, assume that c = c1t is the only such chord with c1 6= s. If there
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is more than one such chord, the argument is similar. Also, note that edges pc1,

c1u, us and sw may be subdivided once, but again we may assume, without loss

of generality, that they are all just simple edges (since they will turn out to be

incident with the outer face in (G\st) − p). By the observations above, it follows

that in (G\st) − p, deg(s) = 2, and deg(c1) = 2, hence edges su, sw, c1u and c1t

are incident with the outer face, which implies that edge ut is not. Therefore, since

in (G\st)−p, deg(u) = 3, it follows that by putting edge st back in, we can embed

G− p so that all the vertices are still incident with the outer face, hence G− p is

outerplanar, a contradiction (see figure below). This proves (2).

(3) There is no chord with one endpoint in C(t, t′) and the other at x.

Suppose the contrary, and let u ∈ C(t, t′) be the endpoint of such a chord. By

(2), there is no chord with one endpoint at t and the other in C[x, s), hence xs

is an edge, or an edge subdivided once. Note that, xs and sw are either edges of

G or edges subdivided once, but again we may assume, without loss of generality,

that xs and sw are just simple edges. Let p be an apex vertex in G\st. It is easy

to see that p = x. Hence, in (G\st)−p, deg(t) = 2 and deg(s) = 1, hence edges wt

and ws are incident with the outer face. Therefore, putting edge st back into this

embedding, we obtain an outerplanar embedding of G − x, a contradiction. This

proves (3).

(4) There is no chord with one endpoint at y and the other in C(x, s]

Suppose the contrary, and let u ∈ C(x, s] be the endpoint of such a chord, and

choose u to be the closest to s, in the sense that there is no other chords with one

60



endpoint at y and the other in C(u, s]. Therefore, us and sw are either edges of G

or edges subdivided once, but again we may assume, without loss of generality, that

us and sw are just simple edges. It is easy to see that u is the only possible apex

vertex in G\wt. First, if u ∈ C(x, s], then in (G\wt)−u, deg(s) = 2, hence edges sw

and st are incident with the outer face. Therefore, putting edge wt back into this

embedding, we obtain an outerplanar embedding of G−u, a contradiction. Finally

if u = s, then in (G\wt)− s, deg(t′) = 2 and deg(t) = 1 = deg(w), hence edges tt′,

t′a, and aw are incident with the outer face. Therefore, since at′ is a simple edge,

by putting edge wt back into this embedding, we obtain an outerplanar embedding

of G− s, a contradiction. This proves (4).

Therefore, it follows by (1) - (4) that:

(5) The only possible chord with both endpoints in C[x, y] other than st are the

ones with one endpoint at x and the other in C[t′, y).

Hence, xs and sw are either edges of G or edges subdivided once, but again we

may assume, without loss of generality, that xs and sw are just simple edges. In

the remainder of the proof of (l), by G/xs we mean the graph obtained from G

by contracting the path (of length 1 or 2) along C from s to x. Let p be an apex

vertex in G/xs. It is easy to see that p = x or p = t′. If p = x, then in (G/xs)− x,

deg(w) = 2 = deg(t), hence edge wt is incident with the outer face. Therefore,

by putting edges ws and st back into this embedding, we obtain an outerplanar

embedding of G − x, a contradiction. And if p = t′, then observe the following

facts. First, there are no chords with one endpoint at x and the other in C(t′, y),

therefore the only possible chord with both endpoints in C[x, y] other than st is

xt′. Second, a has no other neighbors, except possibly x, for otherwise (G/xs)− t′

contains a K4-subdivision. And if x ∈ N(a), then xa is not subdivided. Third,

C(z, x) = ∅, and the only edges left in G are chords from x to C(y, z). These
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facts account for all the edges of G. Hence t′ is apex in G, a contradiction. This

concludes the proof of (l).

Therefore, a does not have neighbors in C(x, s) ∪ C(t, y). It follows, by (b′),

that there are no chords with both endpoints in C[x, s] or both in C[t, y]. Again,

we let p be an apex vertex in G/wa. It follows from (i) that besides w and z, a

has another neighbor (in C[y, x]). Therefore p 6= z, since (G/wa) − z contains a

K4-subdivision. In fact, it is easy to check that p ∈ C[x, s] ∪ C[t, y], for otherwise

(G/wa) − p contains a K-subdivision.

By symmetry, let p ∈ C[x, s]. First, if p = s, then all the chords whose endpoints

lie in C[x, y] have an endpoint at s, for otherwise (G/wa) − s contains a K2,3-

subdivision, a contradiction. Thus, in (G/wa) − s, deg(t) = 2, hence edge ta is

incident with the outer face. Therefore, in the current embedding of (G/wa) − s,

we can subdivide edge ta by w to obtain an embedding of G − s in which all

the vertices are still incident with the outer face, hence G − s is outerplanar, a

contradiction.

Therefore, p ∈ C[x, s). Then, by (k) and (l), a has no neighbors in C(p, s]. If a

chord has an endpoint in C(p, s], then its other endpoint is t, otherwise (G/wa)−p

contains a K4-subdivision. For simplicity, assume that c = c1t is the only such chord

with c1 6= s. If there is more than one such chord, the argument is similar. Again,

the edges pc1, c1s, and sw may be subdivided once, but the subdividing vertices

can be ignored for the purposes of this argument. So for simplicity, we assume
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that pc1, c1s, and sw are simple edges. By the observations above, it follows that

in (G/wa) − p, deg(c1) = 2, hence edges c1s and c1t are incident with the outer

face, which implies that edge st is not. Therefore, since in (G/wa)−p, deg(s) = 3,

it follows that sa is also incident with the outer face (and hence edge at is not,

for otherwise the edges of the cycle a, t, c1, s, a are all incident with the outer face,

which implies that those are all the vertices in (G/wa)−p, since (G/wa)−p has no

non-trivial 1-separations, a contradiction). Therefore, it follows that in the current

embedding of (G/wa) − p, we can delete edge sa, subdivide edge at by vertex w,

and add edge ws and obtain an embedding of G− p in which all the vertices are

still incident with the outer face, hence G− p is outerplanar, a contradiction (see

figure below). This concludes the proof of the Lemma.

We now finish the proof of Case 2.2.2b and the entire connectivity-2 case. By

Lemma 3.2 and (b′′), it follows that within each of the two segments C[x, y] and

C[y, x] all the chords have an endpoint at x or all the chords have an endpoint at

y. We have three subcases:

Subcase (i): There are chords within C[x, y] and within C[y, x], and the ones within

C[x, y] have an endpoint at y, and the ones within C[y, x] have an endpoint at x.

Let c1y and d1x be innermost chords within C[x, y] and C[y, x], respectively. By

(j), a has a neighbor w ∈ C(c1, y), and a neighbor z ∈ C(d1, x), and edges aw and

az are not subdivided.

First, suppose that a has a neighbor u such that edge au is subdivided. Then,
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by (j), u /∈ C(c1, y) ∪ C(d1, x). If u ∈ C(x, c1] or u ∈ C(y, d1], then G >m Q3 (by

contracting za or wa, respectively), a contradiction. Therefore, u ∈ {x, y}, so by

symmetry u = x. Since G �m Q2, it follows that N(a) ∩ (C(x, w) ∪C(w, y)) = ∅,

C(w, y) = ∅, and if y ∈ N(a), then ay is not subdivided. Therefore, x is apex in

G, a contradiction.

Therefore, for all neighbors u of a, au is a simple edge. Note that if a has no

neighbors in C(x, w) ∪ C(w, y) and C(w, y) = ∅, then x is apex in G, a contra-

diction. Similarly, if a has no neighbors in C(y, z)∪C(z, x) and C(z, x) = ∅, then

y is apex in G, a contradiction. Therefore, either N(a) ∩ (C(x, w) ∪ C(w, y)) 6= ∅

or C(w, y) 6= ∅; and either N(a) ∩ (C(y, z) ∪ C(z, x)) 6= ∅ or C(z, x) 6= ∅. It

can easily be seen that any one of the four combination yields a Q2-minor in G, a

contradiction.

Subcase (ii): There are chords within C[x, y] and within C[y, x], and all chords of

G have an endpoint at y.

Let c1y and d1y be innermost chords within C[x, y] and C[y, x], respectively. By

(j), a has a neighbor w ∈ C(c1, y), and a neighbor z ∈ C(y, d1), and edges aw and

az are not subdivided.

Note that a has a neighbor u 6= y such that au is subdivided, for otherwise y is

apex in G, a contradiction. Then, by (j), u /∈ C(c1, y)∪C(y, d1), hence u ∈ C[x, c1]∪

C[d1, x]. By symmetry, we only need to consider u ∈ C[x, c1]. First, if u = x, then

since G �m Q2, it follows that N(a)∩ (C(x, w)∪C(w, y)∪C(y, z)∪C(z, x)) = ∅,

C(w, y)∪C(y, z) = ∅, and if y ∈ N(a), then ay is not subdivided. Therefore, x is

apex in G, a contradiction. Second, if u ∈ C(x, c1), then since G �m Q3, it follows

that N(a)∩C(z, u) = ∅. Also, since G �m Q2, it follows that N(a)∩C(u, w) = ∅,

and C(w, y)∪C(y, z) = ∅, and if y ∈ N(a), then ay is not subdivided. Therefore,

u is apex in G, a contradiction. Therefore we must have u = c1. Again, since
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G �m Q3, it follows that N(a)∩C(z, u) = ∅. And, since G �m Q2, it follows that

C(y, z) = ∅, and if y ∈ N(a), then ay is not subdivided. Therefore, u is apex in

G, a contradiction.

Subcase (iii): All the chords of G lie within C[x, y] and they all have an endpoint

at y.

Let c1y be an innermost chord within C[x, y]. By (j), a has a neighbor w ∈

C(c1, y), and edge aw is not subdivided.

Note that a has a neighbor u 6= y such that au is subdivided, for otherwise

y is apex in G, a contradiction. Then, by (j), u /∈ C(c1, y). Let z ∈ C(y, x)

be the neighbor of a closest to y, in the sense that yz is an edge of G or an

edge subdivided once. Then u ∈ C(z, c1], for otherwise y is apex in G. First, if

u ∈ C(z, x], then N(a) ∩ C(u, x) = ∅, for otherwise G − {x, y} contains a K2,3-

subdivision, a contradiction. Also, since G �m Q2, it follows that N(a)∩C(x, w) =

∅, C(w, y) = ∅, and if y ∈ N(a), then ay is not subdivided. Therefore, x is apex

in G, a contradiction. Second, if u ∈ C(x, c1), then since G �m Q3, it follows that

N(a) ∩ C(z, u) = ∅. Also, since G �m Q5, we have that C(y, z) = ∅. And, since

G �m Q2, it follows that N(a) ∩ C(u, w) = ∅, and C(w, y) = ∅, and if y ∈ N(a),

then ay is not subdivided. Therefore, u is apex in G, a contradiction. Therefore,

we must have u = c1. Hence, c1y is the only chord in G, for otherwise (j) would be

violated. Again, since G �m Q3, it follows that N(a)∩C(z, u) = ∅. Hence, zx and

xc1 (= xu) are either edges of G or edges subdivided once. Also, since G �m Q2,

it follows that if y ∈ N(a), then ay is not subdivided. Hence, C(y, z) 6= ∅, for

otherwise u is apex in G. Finally, since G �m J1, it follows that C(u, w) = ∅ and

N(a) ∩ C(w, y] = ∅, and hence z is apex in G, a contradiction.

This concludes the proof of Case 2.2.2b and the entire connectivity-2 case. 2
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Chapter 4

Connectivity Three

In this section, we let G be 3-connected graph in ob(O∗)−{K5, K3,3, Oct, Q}, and

show that this set is actually empty.

We will make use of the following fundamental Theorem of Whitney from 1933,

which can be found in [3].

Theorem 4.1 (Whitney). Every simple 3-connected planar graph has a unique

planar embedding.

Whitney’s Theorem has an immediate consequence for outerplanar graphs.

Corollary 4.2. Every simple 2-connected outerplanar graph has a unique outer-

planar embedding.

We will also use the following basic lemma about 3-connected graphs (see [4]).

Lemma 4.3. If G is 3-connected and |V (G)| > 5, then G has an edge e such that

G/e is also 3-connected.

Such an edge is called contractible. We denote by vxy the new vertex obtained by

contracting edge xy. Since G is minor-minimal /∈ O∗, there are two possibilities:

Case 1: There exists a contractible edge xy ∈ E(G) such that vxy is not apex in

G/xy (and hence, there exists an apex vertex a 6= vxy in G/xy).

Case 2: For every contractible edge xy ∈ E(G), vxy is an apex vertex in G/xy.

4.1 Case 1

Let xy be an edge and a be a vertex that satisfy the hypothesis. Then, (G/xy)−a ∈

O is 2-connected. Since G is 3-connected, it has a unique planar embedding by

Whitney’s Theorem. Since (G/xy)− a ∈ O is 2-connected, it follows by Corollary
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4.2, that restricting this embedding to (G/xy)− a, we have that all the vertices of

(G/xy)−a lie on a cycle C ′ and are incident with the outer face. Since G−a /∈ O,

it follows that x or y, say x, is embedded in the interior of the disk bounded by C,

where C ⊆ G is the cycle isomorphic to C ′, and the corresponding isomorphism

φ : V (C ′) → V (C) is the identity map on V (C ′) − vxy and φ(vxy) = y.

Let u1, u2, . . . , un ∈ V (C) (n > 3) be the neighbors of x in the clockwise order

around C. For i = 1, . . . , n, let Si := C[ui, ui+1], where Sn is understood to be

C[un, u1]. We call the Si’s the segments of C. We call ui’s the endpoint vertices of

the segments and the vertices in C(ui, ui+1) for i = 1, . . . , n, the interior vertices

of the segments. Two segments of Si and Sj are said to be consecutive if |i− j| = 1

(where Sn+1 = S1). We observe the following facts.

(a) The edges of G are:

- edges of C;

- edges xui for i = 1, . . . , n;

- chords of C, that is, edges not in E(C) with both endpoints in a single segment

of C (note that such edges are embedded in the interior of the disk bounded by

C);

- edges with one endpoint in C and the other at a.

It follows by the above that:

(b) Interior vertices of the segments are either endpoints of chords or neighbors of

a.

(c) For every chord c1c2 in G with c1 < c2 (in the clockwise order restricted to the

segment containing c1c2), a has a neighbor in C(c1, c2) (by 3-connectivity of G).

Let N(a) := NG(a). We now prove the following Lemma.

Lemma 4.4. N(a) is covered by exactly two consecutive segments of C.
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Proof. First, we show that N(a) is covered by exactly two segments of C. If there

are four internally disjoint paths from a to x, then the subgraph of G formed from

the union of those paths and C contains an Oct-minor, a contradiction.

Therefore, by Menger’s Theorem and the fact that G is 3-connected, it follows

that G has a 3-cut separating a and x. By (a) above, it follows that this 3-cut is a

subset of V (C), and therefore at least one of a or x has degree 3. Let u ∈ {a, x} be

such that degG(u) = 3, and let v ∈ {a, x} − {u}. The three neighbors of u divide

C into three segments. If all three segments contain interior vertices that are in

N(v), then G contains a Q-minor, a contradiction

Hence, one segment does not contain any interior vertices that are in N(v).

Then, if u = x then we are done. And similarly, if u = a then we are done. Hence,

we have shown that N(a) is covered by exactly two segments of C.

Furthermore, the two segments that cover N(a) are consecutive. Suppose not,

and let Si and Sj be the two segments that cover N(a) with |i − j| > 1. If both

of them contain at least two neighbors of a, then two of those neighbors in each

segment can be contracted to four distinct endpoint vertices and thus G >m Oct,

a contradiction. Hence, one of them, say Si, contains only one neighbor of a, call

it n1. Since deg(a) > 3, Sj must contain at least two neighbors of a: let n2 be the
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closest one to uj, and n3 be the closest one to uj+1.

Suppose n1 is an endpoint vertex, so that n1 = ui or ui+1. Note that in this

case deg(x) > 5, for otherwise two consecutive segments cover N(a). Then, since

G /∈ O∗, it follows that C(n2, n3) 6= ∅ (for otherwise n1 is an apex vertex). But

then, G >m Q1, a contradiction (by deleting edge n1x and contracting n2 to uj,

and n3 to uj+1).

Therefore, n1 must be an interior vertex, so n1 ∈ C(ui, ui+1). Again, since G /∈

O∗, there is a vertex in C(n2, n3), or there is a chord with one endpoint in C[ui, n1)

and the other in C(n1, ui+1] (for otherwise n1 is an apex vertex). In the first case,

G >m Q1 (just like above), a contradiction. And in the second case, G >m Oct, a

contradiction (by contracting edge n1a). This proves the Lemma.

We now show that C actually has exactly three segments.

Lemma 4.5. C has exactly three segments, or equivalently deg(x) = 3, or equiva-

lently n = 3.
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Proof. By Lemma 4.4, we may assume that N(a) is covered by S1 and S2. Since

interior vertices are either endpoints of chords or neighbors of a, it follows by (b)

and (c) that C(ui, ui+1) = ∅ for i = 3, 4, . . . , n (where un+1 = u1).

Suppose that n > 4. By Lemma 4.4, it follows that a has neighbors in C[u1, u2)

and C(u2, u3]. Therefore, in the graph G\xu4, none of the vertices a, u2, x, u4 can

be apex (since the deletion of any one of them still leaves a K2,3-subdivision as

a subgraph). Let s be an apex vertex in G\xu4. Then s ∈ V (C). Therefore, the

unique embedding of G restricted to the graph (G\xu4) − s ∈ O is an embedding

in which all the vertices (including x) are incident with the outer face. By adding

edge xu4 to this embedding, we obtain an embedding of G − s in which all the

vertices are incident with the outer face, a contradiction.

Hence, we have shown that for i = 3, 4, . . . , n xui /∈ E(G), therefore, by 3-

connectivity of G, it follows that C has exactly three segments.

Hence G has the following general structure:

Therefore, let S1 and S2 cover N(a). It follows by (b), and (c) that C(u3, u1) = ∅

(that is u3u1 ∈ E(G)). Also, similarly to (b′′) of Case 2.2, since G �m Q1, we have

that

(d) Within a single segment S1 or S2, there are no non-overlapping chords (or

equivalently, all the chords are nested).

We say that segment S1 (respectively S2) is of type-one, if {z} := N(a)∩C[u1, u2)

with z 6= u1, and C(z, u2) 6= ∅ (respectively, {w} := N(a)∩C(u2, u3] with w 6= u3,
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and C(u2, w) 6= ∅). And we say that S1 (respectively S2) is of type-two, if |N(a)∩

C[u1, u2)| > 2 (respectively |N(a) ∩ C(u2, u3]| > 2). Note that if S1 (respectively

S2) is not of type-one nor type-two, then {z} := N(a)∩C[u1, u2) and zu2 ∈ E(C)

(respectively {w} := N(a)∩C(u2, u3] and u2w ∈ E(C)). Finally, note that at least

one of S1 or S2 is of type-one or type-two, for otherwise u2 is apex in G.

Hence, there are two subcases:

Case 1.1: Each of S1 and S2 is of type-one or type-two.

Suppose that one of the segments, say S2 is of type-one. Then, {w} := N(a) ∩

C(u2, u3] with w 6= u3, and C(u2, w) 6= ∅. Hence, it follows by (b), that there is

a chord with one endpoint c1 ∈ C(u2, w), and the other c2 ∈ C(w, u3]. Choose c1

and c2 so that the chord c1c2 is innermost. Then by (d), all other chords in S2

have one endpoint in C[u2, c1] and the other in C[c2, u3]. However, since S1 is of

type-one or type-two, we either have {z} := N(a) ∩ C[u1, u2) with z 6= u1, and

C(z, u2) 6= ∅ (which by (b) implies that there is a chord with one endpoint in

C[u1, z) and the other in C(z, u2)), or |N(a)∩C[u1, u2)| > 2. This implies that the

only other chords in S2 that do not have an endpoint at u2 (that is, those that do

have an endpoint in C(u2, c1]) have an endpoint at c2, for otherwise G >m Q1 (by

contracting wa and za if necessary, see figure below).

Therefore, u2 is apex in G, a contradiction.

Similarly, suppose that for one of the segments, say S1, is of type-two. Then,

|N(a) ∩ C[u1, u2)| > 2. If there are chords with endpoints distinct from u2 in
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S1, then let d1d2, with d1 < d2 in the cyclic order of C, be an innermost chord

of S1 with d2 6= u2, and let z ∈ N(a) ∩ C(d1, d2). Then again, since S2 is of

type-one or type-two, we either have {w} := N(a) ∩ C(u2, u3] with w 6= u3, and

C(u2, w) 6= ∅ (which by (b) implies that there is a chord with one endpoint in

C(u2, w) and the other in C(w, u3]), or |N(a) ∩ C(u2, u3]| > 2. This implies that

the only other chords in S1 that do not have an endpoint at u2 (that is, those that

do have an endpoint in C[d1, u2)) have an endpoint at d1, for otherwise G >m Q1.

Furthermore, N(a) ∩ (C(d1, z) ∪ C(z, u2)) = ∅, for otherwise G >m Q1 as above.

Therefore again, u2 is apex in G, a contradiction.

Case 1.2: Exactly one of the segments S1 or S2 is of type-one or type-two.

By symmetry, suppose that S2 is not of type-one nor type-two, and that S1 is.

Then, {w} := N(a) ∩ C(u2, u3] and u2w ∈ E(C). We divide this case into two

subcases depending on whether u1u2 is an edge of G.

Case 1.2.1: u1u2 /∈ E(G)

Let s be an apex vertex in G\xu3, and we assume that the graph (G\xu3)−s ∈ O

is embedded in the plane with all of its vertices incident with the outer face. Clearly,

s 6= x and s 6= u3, for otherwise x or u3 is apex in G, a contradiction. Also, s 6= a,

since (G\xu3) − a contains a K2,3-subdivision (because C(u1, u2) 6= ∅, since S1 is

of type-one or type-two).

First, suppose that w = u3. Then u2u3 ∈ E(C) (that is, C(u2, u3) = ∅). If s = u2

(or by symmetry, if s = u1), then in (G\xu3) − s, deg(u3) = 2 and deg(x) = 1

hence edges u3u1, u3a, and xu1 are also incident with the outer face. Since u3u1

is a simple edge, by putting the edge xu3 back in, we can embed G − s so that

all the vertices are still incident with the outer face, hence G− s is outerplanar, a

contradiction (see figure below).
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Therefore, s /∈ {u1, u2, u3, x, a}, so that s ∈ C(u1, u2). Then, in (G\xu3) − s,

deg(x) = 2, and so (G\xu3)−s has an outerplanar embedding such that edges xu1

and xu2 are incident with the outer face. Also, note that x, u1, u3, u2 is a 4-cycle

in (G\xu3)− s. Therefore, since u1u2 /∈ E(G), we can put the edge xu3 back in to

obtain an embedding of G− s in which all the vertices are still incident with the

outer face, hence G− s is outerplanar, a contradiction (see figure below).

Therefore, w 6= u3 and so w ∈ C(u2, u3). Since u2w ∈ E(C), the only possible

chords in S2 have one endpoint at u2 and the other in C(w, u3]. Note that by

Subcase 1b hypothesis, u3a /∈ E(G).

If s = u2, then in (G\xu3) − s, deg(u3) = 2 and deg(x) = 1, hence edges

u3u1, u3w, and xu1 are incident with the outer face. Since u3u1 is a simple edge,

by putting the edge xu3 back in, we obtain an embedding of G − s in which all

the vertices are still incident with the outer face, hence G − s is outerplanar, a

contradiction.

Now suppose s = u1. If u2u3 is a chord of C, then in (G\xu3)−s, deg(u3) = 2 and

deg(x) = 1, hence edges u3u2, u3w, and xu2 are incident with the outer face. Since

u3u2 is a simple edge, by putting the edge xu3 back in, we can embed G−s so that

all the vertices are still incident with the outer face, hence G − s is outerplanar,
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a contradiction. Hence u2u3 is not a chord of C. If G has a chord c = u2c1 with

c1 ∈ C(w, u3), then choose c1 closest to u3, so that c1u3 ∈ E(C). And if there is no

such chord, then let c1 := w. Then, in (G\xu3) − s, deg(x) = 1, and deg(c1) = 3,

but c1 is adjacent to u3 with deg(u3) = 1, hence edges xu2, u2c1, and c1u3 are

all incident with the outer face. Since u2c1 is a simple edge (even if c1 = w), by

putting the edge xu3 back in, we can embed G− s so that all the vertices are still

incident with the outer face, hence G−s is outerplanar, a contradiction (see figure

below).

Similarly, if s = w, then G has no chords with one endpoint at u2 and the

other in C(w, u3], for otherwise (G\xu3) − s contains a K2,3-subdivision (because

C(u1, u2) 6= ∅, since S1 is of type-one or type-two). Hence, C(w, u3) = ∅. There-

fore, in (G\xu3) − s, deg(x) = 2 and deg(u3) = 1, hence edges xu1, and u1u3 are

incident with the outer face. Since xu1 is a simple edge, by putting the edge xu3

back in, we can embed G − s so that all the vertices are still incident with the

outer face, hence G− s is outerplanar, a contradiction.

Therefore, s /∈ {u1, u2, u3, x, a, w}, and so s ∈ C(u1, u2) (by (a)). Again, if G

has a chord c = u2c1 with c1 ∈ C(w, u3), then choose c1 closest to u3, so that

c1u3 ∈ E(G). And if there is no such chord, then let c1 := w. Then, in (G\xu3)−s,

deg(x) = 2, hence edges xu2 and xu1 are incident with the outer face. Also, note

that x, u1, u3, c1, u2 is a 5-cycle in (G\xu3) − s. Therefore, since u1u2 /∈ E(G) and

u1c1 /∈ E(G) (by (a)), we can put the edge xu3 back in (even if u2u3 ∈ E(G)) to
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obtain an embedding of G− s in which all the vertices are still incident with the

outer face, hence G− s is outerplanar, a contradiction (see figure below).

2

Case 1.2.2: u1u2 ∈ E(G)

If all chords within S1 have an endpoint at u1 or all have an endpoint at u2,

then u1, or u2 respectively, is apex in G, a contradiction. Hence, there is a chord

with both endpoints in C(u1, u2). Let c1c2 ∈ E(G) be the innermost chord with

c1, c2 ∈ C(u1, u2) (in the sense that there are no other chords with both endpoints

in C[c1, c2]), and let a1 ∈ N(a) ∩ C(c1, c2).

Suppose that a2 6= a1 is another neighbor of a in C(c1, c2). Then by choice of

c1c2, we have that deg(a1) = 3 = deg(a2). Note that a has no other neighbors in

C(u1, u2), for otherwise G contains two disjoint K-graphs, a contradiction. Let s

be an apex vertex in G\a1a2, and we assume that the graph (G\a1a2) − s ∈ O

is embedded in the plane with all of its vertices incident with the outer face.

It is easy to see that s = w (regardless of whether w = u3), for otherwise: if

s ∈ {a} ∪ C(u1, u2), then (G\a1a2) − s contains a K4-subdivision; and if u ∈

{u1, u2}∪C(w, u3], then (G\a1a2)−s contains a K2,3-subdivision. Therefore s = w,

and hence the only neighbors of a are a1, a2 and w (because if u1 or u2 is a

neighbor of a then (G\a1a2)−s contains a K2,3-subdivision). Then, in (G\a1a2)−s,

deg(a) = 2, hence edges aa1 and aa2 are incident with the outer face, and by putting
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the edge a1a2 back in, we obtain an embedding of G− s in which all the vertices

are still incident with the outer face, hence G− s is outerplanar, a contradiction.

Hence, we have shown that a1 is the only neighbor of a in C(c1, c2).

We now show furthermore that N(a) ∩ (C(u1, c1] ∪ C[c2, u2)) = ∅. For suppose

otherwise, and let c3 ∈ C(u1, c1] (the argument for c3 ∈ C[c2, u2) is similar). Then

N(a)∩C[c2, u2) = ∅ (for otherwise G >m 2K4). Let s be an apex vertex in G\c1a1.

Then clearly s ∈ {u2, w}. If s = w, then since w is apex in G\c1a1 we have that:

c3 = c1; N(a) ∩ (C[u1, c1) ∪ {u2}) = ∅; and G does not have any chords with one

endpoint at u2 and the other in C(w, u] (in the case that w 6= u3). Therefore w is

apex in G, a contradiction. If s = u2, then since u2 is apex in G\c1a1, it follows

that G has no chords with one endpoint in C[u1, c1) and the other in C[c2, u2).

Hence all chords of G have one endpoint at c1 or at u2. Therefore u2 is apex in G,

a contradiction.

Hence, we have shown that N(a) ∩ (C(u1, a1) ∪ C(a1, u2)) = ∅. Thus the only

possible neighbors of a are u1 and u2. In fact, at least one of them is a neighbor of

a since degG(a) > 3. Let s be an apex vertex in G/aa1. Then clearly s ∈ {u1, u2}.

Suppose that s = u2 (the argument for s = u1 is similar). Since u2 is apex in G/aa1,

it follows that G has no chords with one endpoint in C[u1, c1) and the other in

C[c2, u2). Hence all chords of G have one endpoint at c1 or at u2. Therefore u2 is

apex in G, a contradiction.

This concludes the proof of Subcase 1.2.2 and that of Case 1. 2

4.2 Case 2

In this case, we have that for every contractible edge xy ∈ E(G), vxy is an apex

vertex in G/xy.
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The following simple Lemma provides a way of testing whether an edge in a

3-connected graph is contractible.

Lemma 4.6. Let G be a 3-connected graph with edge xy. Then, G/xy is 3-

connected if and only if G− {x, y} (= (G/xy) − vxy) is 2-connected.

Proof. If G/xy is 3-connected, then clearly (G/xy) − vxy is 2-connected.

Now, suppose that G−{x, y} (= (G/xy)− vxy) is 2-connected and that G/xy is

not 3-connected, so that G/xy has a 2-cut. Since G is 3-connected, it follows that

vxy is one of the vertices in that 2-cut (for otherwise, this 2-cut would also be a

2-cut in G). Therefore, (G/xy) − vxy has a cut-vertex, a contradiction.

Let xy be a contractible edge. Then, by the above Lemma, (G/xy)− vxy ∈ O is

2-connected. Since G is 3-connected it has a unique planar embedding. Restricting

this embedding to (G/xy) − vxy, we have that all the vertices of (G/xy) − vxy lie

on a cycle C and are incident with the outer face.

Let x1, x2, . . . , xm ∈ V (C) (m > 2) be the neighbors of x in the clockwise order

around C. And let y1, y2, . . . , yn ∈ V (C) (n > 2) be the neighbors of y in the

clockwise order around C. Note that xi /∈ C(y1, yn) for all i and yj /∈ C(x1, xm) for

all j, for otherwise G would contain a K3,3-minor. Also, note that possibly xm = y1

or yn = x1.

(a) The edges of G are:

- edges of C;

- edges xxi for i = 1, . . . , m, and yyj for j = 1, . . . , n;

- chords of C, that is, edges not in E(C) with both endpoints in C (note that

such edges are embedded in the interior of the disk bounded by C);

- edge xy.

Just as in Case 1, it follows from (a) that:
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(b) The vertices of C are either endpoints of chords or neighbors of x or y.

(c) For every chord c1c2 in G with c1 < c2 (in the clockwise order restricted to the

segment containing c1c2), there is a neighbor of x or y in C(c1, c2).

Also, since neither y nor x is apex in G, it follows, respectively, that:

(d) C(x1, xm) 6= ∅ and C(y1, yn) 6= ∅.

Hence G has the following general structure:

Finally, note that:

(e) If a vertex is not in C[xm, y1] ∪ C[yn, x1], then it is not apex.

This is because, neither x nor y is apex by (d); and, G − V (C(x1, xm)) and

G− V (C(y1, yn)) both contain K4-subdivisions.

Before we proceed, we prove a Lemma regarding the structure of G.

Lemma 4.7. G does not have a chord with both endpoints in C[yn, y1]. And by

symmetry, the same statement holds for C[xm, x1].

Proof. Let c1c2 be a chord of G with both endpoints in C[yn, y1]. Without loss

of generality, we may assume that c1c2 is the innermost such chord, in the sense

that there are no other chords with both endpoints in C[c1, c2]. By (c), it follows

that x has a neighbor s in C(c1, c2). Note that x does not have another such

neighbor t in C(c1, c2), for otherwise edge st is contractible (because G− {s, t} is

2-connected), but (G/st) − vst /∈ O (because it contains a K2,3-subdivision, since

C(y1, yn) 6= ∅), violating the hypothesis of Case 2. Therefore, the only vertex in

C(c1, c2) is s. But then, edge xs is contractible (because G−{x, s} is 2-connected),
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and (G/xs)−vxs /∈ O (because it contains a K2,3-subdivision, since C(y1, yn) 6= ∅),

again a contradiction.

The Lemma has the following consequence.

Corollary 4.8. The only chords in G have one endpoint in C(x1, xm) and the

other in C(y1, yn).

The following Lemma further tightens up the structure of G.

Lemma 4.9. There is exactly one vertex in C(x1, xm) and exactly one in C(y1, yn).

Proof. Suppose that C(x1, xm) has two vertices s and t. Then, by (b) it follows

that both s and t are neighbors of x, or endpoints of chords whose other endpoints

lie in C(y1, yn) by Corollary 4.8, or both. Note that st is contractible (because G−

{s, t} is 2-connected), and (G/st)− vst /∈ O (because it contains a K4-subdivision,

consisting of the cycle formed by edge xxm, the clockwise path along C from xm

to x1, and edge x1x; and the three spokes from y to this cycle), violating the

hypothesis of Case 2.

With the structure of G restricted by the above two Lemmas, we are ready to

finish the proof. Let s and t be the unique vertices in C(x1, xm) and C(y1, yn),

respectively. Note that st ∈ E(G), for otherwise any one of x1, xm, y1, yn is

apex, a contradiction. Also, it follows by Corollary 4.8 that C(xm, y1) = ∅ and

C(yn, x1) = ∅.

If xm 6= y1 and yn 6= x1, then G >m Q, a contradiction (see figure below).
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Hence, we have either the case that xm 6= y1 and yn = x1, or that xm = y1 and

yn = x1. In either case, we cannot have that both sx, ty ∈ E(G), for otherwise

G >m Oct (see figure below).

Hence, by symmetry, sx /∈ E(G), and it follows that xm is apex, a contradiction.

This concludes the proof of Case 2, and also the connectivity-3 case. 2
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