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ABSTRACT

Let E be a Helson set in a locally compact abelian
group G such that 1 is not in E. Let F be a closed subset

1y {1}, and let g be

of G that is disjoint from E U E~
element of C(E) such that g(x_l) = g(x) for x. x! in E.
Then for every € > 0 there is a positive definite function
f € C{G) such that £ = g on E and |f| < € on F. Ifh

denotes the Helson constant of E and fz denotes the Fatou-

Zygmund constant of E, then fz = (ll66h)(h12).
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. Introduction

Let E be a closed set in a locally compact abelian

group G . CO(E) denotes the set of continuous functions
on E vanishing at = . A function f on E 1is hermitian
if f(x) = £(x 1) for all x e EnE L . Let

cP(E) = {f e ¢ (B): £ is hermitian}

A(E) = {flE : £ € A(G)}

A (E) = {f[p:f € A(G), f is positive definite}

E 1is a Helson set if CO[E) = A(E}) . If E 1is a
Helson set, then
h(E) = sup{“f“A(E): £ e C,y(E), Hf”CO(E) < 1}

is a finite number that is called the Helson constant of E

If E is a Helson set, we refer to the number
h
hO(E) - Sup{”fHA(E): f € CO(E)c HfllCO(E) < l}

as the hermitian Helson constant of E . Helson sets in

discrete G are called Sidon sets.

E is a Fatou - Zygmund set if CE(E) = A+(E) . Let

£l 5 (E) = inf{“gﬂA:|g|E = f, g is positive definite}.

-+
| ”A+(E) is in general not a norm; for instance, ”l“A+(G) #
-1 Q) If E is a J-p) set, then

M h

£2(E) = sup{HfHA (E) f e Cy(E), Hf“CO(E) s 1}
+

is a finite number [5, p. 94], that is called the Fatou -

Zyqmund constant of E




E 1is a uniform Helson set if for every closed set F

disjoint from E, every o € CO(E) and every € > O
there exists a g € A(G}) with
glg = o
lgl < € on F .

E is a uniform JF -2 set if for every closed set F

disjoint from E U (E)_lLJ{l} ., every o € CE(E) and every
€ > 0 there exists a g € A+(G) with
glg = @
lg| < ¢ on F .

S. W. Drury (1] showed that Sidon sets are uniform
Helson sets. N. Th. Varopoulos (6] generalized Drury’s
argument to show that Helson sets are uniform Helson sets.
C. 8. Herz produced an alternate proof to Varopoulos’
proof. Drury [2) then showed that Sidon sets are uniform
F -, sets. O. C. McGehee suggested that it might be
possible by using Herz’s techniques to extend Drury's
argument to show that Helson sets are uniform J - Q2 sets,
and this is what we do.

We first show:

Theorem I. Let €£2(E}) =1 . Let F be a closed

subset of G disjoint from E U o

u{l} . Let cpng(E),
HQHCO(E) < 1 . For every K> 1, € > 0 there exists

f ¢ A+C(G) such that:



i) f =9 on E

. 2
i) el = K¢

i) €l = x°

Theorem I was proved by Varopoulos [6] for compact,
totally disconnected., metrizable Kronecker sets. We prove
Theorem I by making explicit an implicit proof in Herz
[3]. We prove Theorem II by using Theorem I and the techniques
Drury uses in showing Sidon sets are uniform & -2 sets.

The constants in Theorem 11 are the same as those that Drury
obtains for the case cf a Sidon set E .

The outline of the paper is as follows. 1In Section 1l
we show that in proving Theorem I or Theorem II we may
suppose G is compact. We show that in proving Theorem I
in the case of a compact, metrizable set we may suppose that
E 1is also totally disconnected. Finally, we give a sufficient
condition on E to yield f2(E) = 1 . Section 2 contains
the Smoothing Theorem and the Transfer Lemma which are the
tools for proving Theorems I, II. Theorem I is proved in
Section 3, Theorem II in Section 4. We close with a few

remarks in Section 5.



1. Preliminaries

We want to show that it suffices to prove Theorems I
and I1I in the case that G 1is compact. We give the reduc-
tion for Theorem I. The reduction for Theorem II is similar.

It suffices to show the reduction for an equivalent
formulation of Theorem I, wherin we replace the conclusion
by: For every & >0, K>1, € >0 there exists a

f ¢ A+(G) such that:

N 2
ii) ”f”C(F) < K ¢

2
iii) e, = ®/,

Lemma l. 1In order to prove Theorem I, it suffices to

prove it in the case when E 1is compact.

Proof. Let us suppose Theorem I is proved for the
case of compaclL E . Now let E be arbitrary. Consider
the two convex subsets of CO(E) '

B={feccCy(E): |[f-aol y < 8)

CO(E

2 K°
c={flg:f£ecnc). =K" e, g, s © 4 )

C (F)
Note that B has a non-empty interior. Suppose BN C =4 ,
we may apply the Hahn - Banach Theorem {4, p. 157 and p, 187]
to the disjoint sets B-%, C-¢% . So there exists

M € M(E), @ € R =such that

4



Re <f-9,u> s afu}l for £ € B

Re <f-9,u> > alju]] for £ e C .
But Re J{f-9,u> = GHH” for f € B implies a > g . WwWe
obtain that for all f € C

gllul] = Re <f-p,u> = II (f-@)du| .
E

[

Hence if & < £ there exists a compactly supported v

such that vl < |l .
g’ f[vll = IJP (f~-9)dv| for £ € C ,
E

but the integral is bounded by [ f-oll It

|
C(supp‘u)H“dM '
follows that Theorem I is false for the compact set
supp (v) -
Lemma 2. 1In order to prove Theorem I, it suffices to

prove it in the case when F 1is compact.

Proof. Let B = {f € CO(F): | £]] K2 €} .

Cp (F)

2
¢ = {flp £ c e, lit-al < & llel, = K7

Co (E)
Proceed as before, applying the Hahn - Banach theorem to B

and C .

For E a closed subset of G let By L(E) =
A

A
{1t g M € My(G) o1 > 0}. For £ ¢ Bd'+(E) let

] A A
||f||Bd'+(E) = inf{lluil, :v e My(@ . 1w > 0,U]; = £} . If B
18 COmPaCt- Bd;"'(E) = A+(E) and || ”Bd +(E) = ” ||A+(E)

Lemma 3. In order to prove Theorem I, it suffices to

prove it in the case when G i8 compact.



Proof. Supposing the theorem is proved in the case of
compact G , consider an arbitrary G . Let €& be the
inclusion map of G into its Bohr compactificatiocn. We

may suppose E and F are compact, so that ©6E and

fF are compact. 6 is symmetric; that is, B(x-l) =
(Qx)-l . So 6F is disjoint from 6E U (BE)_l U {1}
since f£2(E) =1, By ,(E) = A, () and | ”Bd L (E)
Il H we have fJ(OE) = 1 . So we have the theurem for
A, (E)
6E and 6F . But By ,(EUF) = A_(EUF), | lle L(EUF)
H “A+(E UF) Hence, we have the theorem for E and F .
Lemma 4. In order to prove Theorem I in the case

when E 1s compact and metrizable, it suffices to prove it

assuming that E is totally disconnected.

Proof. It suffices by the argument of Lemma 1 to
show that for every K > 1, € >0, & >0, 1 ¢ M(E)
there is a f ¢ A+(E) such that
i’y II f£-¢ dul < & |lu]|
ii) |f| = K2 € on F
2
iii) g, = % /¢ -
Suppose Theorem I is true for totally disconnected subsets
of E . Since E 1is compact and metrizable, for all

€'> 0 there is a v € M(E) such that supp v 1is totally

disconnected, supp v € supp H , and ”H*vuM(E) <8’



We know there is a ff ¢ A+(E) satisfying:

If f-9 av| < &7 llvll, ii), iii). Hence
[ -0 aul = I (£-9) avru-v)| =
[ e-o avl + [ (£-@) am-v)| <
] K2 K]
g vl + (1 + T /08" < & |l

for correct &' .

Let U(E) = {f ¢ c(E): |£] = 1}. Let U"(E) denote

the hermition elements of U(E)} .

Lemma 5. Suppose for every % > 0, every f € Uh(E)
there exists J € 8 such that |f-—j| < 8§ on E . Then

£2(E) = 1

Proof. It suffices to prove this lemma under the

assumption that E is symmetric.

Let Ah(E) dencote the hermitian elements of A(E)
Ch(E) and Ah(E) are real Banach spaces under the induced
norms. Let 0 :Ah(E) - Ch(E) be the natural injection.

We wish to see HGH =1 . Let 9* be the dual of @8 .

*

It suffices to see “9 =1 .

We know [4, p- 179] that

(™€))" s {Re<-. Hu>: U € M(E)) -
= du(x"I

We call a measure, H , hermitian if du (x)

) .

We denote the set of hermitian measures in M(E) by

Mh(E) . For every H € M(E) the hermitian measure



du(x)-z du(x_I)

dv(x) = has the property that Re J{f,u> =
j fdv for f € Ch(E) . Hence,
h * h
(CT(B)) < {< »H>: M € M (E)} .
If 4 € Mh(E) ’ then j%ﬁT is hermitian a.e.
. dpl ih -1
_ = - 2
SO we may write ETET e where h(x) h{x 7)) mod(2n)

a.e. By a modification of the proof of Lusin’s theorem

we may for every £ > 0 find a continuous g such that:

gi{x) = —g(x_l) mod (2w} and g = h except on a set A
with [ul(a) <2 . so for u ¢ Mh(E) we have
Iadl 4 . = suf) |f fau| = sup |j fdu| =
(™ (E)) lell <2 £ e UM (E)
C (E)
sup || sau] = [l .
eg"[ (A" (E))*

So for every £ > 0, every f ¢ Ch(E} there exists

f ¢ L'(e) satisfying: | £} , A S1+¢8 and ?-f on E
L (G)
. I vay
But Re £ = f on E since Re f(x) = 5 [f{x) + £{x)] =

FL200 + Ferl)] = FLE60 + £ = £(x)

We know there exists f € é within & of ~1 on E

Let f', f denote the positive and negative parts of f .

- A . . .
Then (f+ + & ] * £f) is within € of f on E .

()

So fZ2(E) =1 .



2. The Drury —Herz Theorems

Given a Banach space B , 1 <pg o, let LP(G.B)
denote the completion of the space of continuous B-valued
functions with compact support on G for the norm Hqu =
(j Hu(x)Hg clx)l/p where dx 1is Haar measure on G . The
cgipletion of this space for the supremum norm will be
C0 (G.B) .

The Smoothing Theorem. a) Let E be a compact Helson

set in G with Helson constant h , hermitian Helson
constant ho . Let 68 be a continuous map of E into a
locally compact abelian group H . If C 1is a compact
subset of ﬁ P S >0, K>1, and "N € ﬁ ' then there

A
exists Gn € Ll(G) such that if we let

ax(ﬂ) = an(x) for (x.,M) € G Xﬁ then:

i) lan(x)—ﬂ(ex)l < & for (x,m) € EXC .

2.2

ii) 9 e co@.a)), 18] s k% n

A
n CO(H-A(G))

2.2

1i1) a, € cy(G.a@), fal k* n

A =
CO(G.A(H) )

If ¢ 1is symmetric, we may replace h by ho in ii),
iii).
b} Suppose that E 1is a compact symmetric Helson

set and 6 1s symmetric. Then each aﬂ can be taken to

++ --

be a real measure. We may write an = uﬂ - an where
++ - . .
Gn P Gn are nonnegative measures such that if we let

9
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a:] = c.:1'++ a;‘, a;(ﬂ) = (a:’])’\(x) for (x.m) € GxfA , then
++ ++
. a-- , , a—— A < 2.2
iv) 877 e c A, 1§ oy doaey) X 1o
v) a* e ¢ (G A(ﬁ)) Ha*“ < g2 h2
X o’ ! x

A K ]
Cy {(G,A(H)) 0

A
Proof of a) We may find a k :H - [0,1] with compact

symmetric supporc K such that Hk“ 2 A =1 and
L™ (H)

1) Il - (k2k) (M | < 6/3 for Mme C
Since O6E 1is compact the set
U = {n ¢ ﬁ :ll -<Ox.ﬂ>| < 6/3 for all x ¢ E}
A
is a neighborhood of the identity in H . Since K is
compact it is covered by a finite number of translated of U .
n
kK eU_,nU. |
i
Let Ky =K ﬂlLJ, Kiq = (K N ni+lLJ)\Uj=1.Kj‘ Then

&
2) |<6x.ni> -<9x,ﬂ>| < 3 for x € E ., n € Ki .

. . A .
For every 1 there exists Bi € Ll(G) with ”Bi S Kh .

[
L' @)
3} @i(x) = <6x.ﬂi> for x € E

Let b Dbe the Borel measurable, A{(G) valued function

A
defined on H by

Bi(x) for N € Ky
4y b(x,n) =

0 otherwise

Then k(Nn)} b{x.n) € Lz(Q.A(G)) with norm bounded by Kh .
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Let

5) a=%kDb

A 2.2 .
a({x,n) € CO(H:A(G)) and J|la{x,n)]l =K' h since

Co (H.A(G))

Ix b k b

» A < jlk bl , A ik bl , A
A C,y (H.A(G)) L? (H.,A(G)) L (H,A(6))
1 A ..
We let aﬂ € L (G) be such that an = af{-,n) 1ii)

is immediate.
. . 2 A A
We wish to see iii). If F.G € L {H) then F»G € A(H)

and “F*G”A(ﬁ)S ”F“Lz(ﬁ)nanz(ﬁ) . Hence to show iii) it

suffices to show kDb € CO(G.LZ(Q}) and “k bH k h

2 =
cO(G.L (Q))

This follows from the norm decreasing inclusions:
A A
12 #.a06)) ¢ L¥flcy ) & ¢,y (e.L? (H)) .

We now show i). Let c(x,n) = <6x,N> . Then
-1

{ck) 1

-1
(ck) Ge,m) = [ <oxomny >
H

<ox.n> (k *k) (M)

A ) <6x,Mn;> k(n,y) dn,
H

which for mn e C differs from <6x,m> by no more than 6/3
So for (x.n) € E xf .
| (ck) * (ck) - (bk) * (bk) | = |((c-b)k) wck| + |bk * ((b-c)k)

) 25
< Okl flexl g

6 x| s “7y
L (H) vy t s L4 (fl 3

[Ibk||
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Finally, we wish to see that for the case that 6

is symmetric we may replace h by h0 in ii), 1ii). 1If

g 1is symmetric, <6x.ﬂi> is hermitian on E . So the

1 <
1.1 @)
Proof of b). We note that (Reﬁi)A(x) =

B. of line 3) may be chosen to have ”Bi” Kh

1 o

A — —
Lig, 0+ BLo) =308, 00+ B h) =2 (n ex) +n. (00 1))
= ﬂi(Qx)
Let B',B” denote the positive and negative parts
of B
Let

€f (x) for 1 € Ki

U

6) b (x.m)
0 otherwise

QT (x) for n e€ K

- i i
7) b (x.ﬂ] =
0 otherwise

Let
8) at™ = kbt » bt + kb” =« xb

A A

H H
9) a~ = xb' x kb~ + kb~ % kb"

A N

H H

. A
The same argument that gives a(x,n) ¢ CO(H.A(G)) will

s A ++ 1 A
give a (x,n) € CO(H.A(G)) . Let an € L7 (G) be such
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Qtt s
= -, " a = - Q .
that " a (.M We see that n - n

We show iv).

++ _
”an lae) =

+ -1 + - ~1 -
1 oep®y ¢ mnlhy (6™ (ump) + BT (Lmn] ) (BTY (umy) dnyll,

+ [lkb™( ,mn?

1 +
L) dEaep™y ¢ ol +

< [dlaw®y ¢ anTHil,

(™) € wmp) i) any

+ +
But since (kb ) ( .ﬂﬂ;l) and (kb ) ( ,ﬂl) are positive

A
definite for all n, € H this last expression can be written

J @t +7) CommThil, ket + 67 Conpll, any

< ket + ol , 4 Ik 6* + Bl s k¥ nd .

L% (4, A(G)) 2 @.aG)) °

We show v). Let

(I8, x) for nexy

10) b (x,n) =

0 otherwise
* 2 .A .
Then k(Nn) b (x,n) € L (H,A(G)) with norm bounded by K h0 .
A
so a% = kb* 5 kb* Qn* = a%(-,m . we repeat the argument

for iii).

Transfer Lemma. Let G,H be locally compact abelian

groups. Let E Dbe a compact subset of G . Let 6 Dbe
a continuous map from E into H
a) For every c > 0, every § > 0 and every

f € Ll(e XQ) there exists a compact subset C of ﬁ and



a % > 0 such that if

A1 A
a_ € C(H,L (G))., ||l

=
, A c

c .t (&)

and IQn(x) - ﬂ(Gx)| < b for (x,Mm) € EXC

then g = fﬂ * & _, dn satisfies

. .1 A
i) g ¢ LT(G), Hg” 1 A < cl £ 1A A
L™ {G) L™ (G x H)

A A
i1) |g(x) - f(x.6x)| < & for x € E

b) Let a, € C(Q.L (3)) . Define ax(ﬂ) by
A
a, (M = a,(x)

Fa
- =
If a, ¢ C(G,AH)), HaxH c

A ’ then
C{G,A(H))

g = F f » Q dn satisfies
J o n~1

o A . A
iiiy |gx)]| s ¢ sup [f(x,y)]
yeH

pProof of a). Since |g] 1.A =
L™ (G)

.
L7 (G) n L (G) L™ (G)
we have 1i).

A

L

(G X H)

L (H,A{G))

we show ii). f. ¢ LY(H.A(G)) and |2
i n ’ n'_1.A
HfH A A . So there is a compact symmetric set
L (G XH)

A
H such that

C

in

14

Jle gl iy yoan s e [lell v an=cliel ;A A .
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[ U8, ey an < min (/50 750
A nla(gy 97 < mn (V30 73¢

H\C
. A A A
We write g({x) = fﬂ o _l(x) an =
A
H n
A A r % A
J fe08 jeodan+ [ R @ 0 an
A
¢ n H\C i
So if we choose 6 = 5 we will have that for
3T £]] A
1 A A
L™ (G xH)
A A
x € E g(x) differs from f(x,06x) by no more than ¢

Proof of bj. a(x) = J;@n(x) ax(n_l) dn =
H

jA%n(x) [I Qx(y) N(y)dy ] dn
H

H

A A ] —
JEe0 (] a,vh A ay ) an =
o H
H

A — A roA A1
[ ] t,comma whanay = [ fey ayhay
H ﬁ H

Fal Pl
so |g(x)| s ¢ sup |f(x.y)| .
Yy

We refer to the ©6,C given by part a) of the Transfer

Lemma as the <¢.£,f choice




3. Proof of Theoxem I.

The Pull Back Theorem. Let E be a compact set with

f2(E) = 1 . Let 6 :E ~ H be continuous and symmetric.
Let 7w :H = G be a continuous homomorphism such that
mo® =id . Let h € A _(H) . Then for every £> 0,
K> 1, neighborhood Vv of 1 in G , there exists
g € A+(G) such that:

i) |nce~gl <& on E.

ii) lg)| s k% sup  |n(y) |
TY € VX

o 2
iii) gl = x* [Inll, .

Proof. Let k' € A, (G) be such that Ik ‘||

A(G)
K'(l) =1 k=0 off v . Then k'(x)h(y) is in
A+(G XH) . Since (x,y) - (X'vyhl. Y) is an automorphism

of GXH., £(x,y) =k'(xmy Dh(y) € A cxm [£ll, = |nll, .

A
Let 6,C be the Kz.g.f choice. Since hO(E) =1
we may apply the Smoothing Theorem to §6,C,K to obtain

Qa that satisfy:

) i) |&n(x) - n(ex)| < & for (x.M) € EXC
ii) Gn € cu(H,A(G)), ”&ﬂ“co(ﬁ.A(G)) < 2
iii) a, € ¢ (G, (A(H)), L 2

We wish to see that since fQ2(E) = 1, we may choose

o, > 0 for every n . We recall that ﬁn(x) = a(x,M)

16
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where from line 5) a = kb kb . So we must check that for
A

H
every M k(n) > 0 and b({x,n) € A+(G) . But to satisfy

1
1} kX may be chosen to be k = —173 for a
(m(K)) x
suitable compact set K C ﬁ . Since f2(E) =1 and 6

. . . 1A i <
is symmetric we may find B, ¢ L7(G), ”Bi Ll(e) K,

B, 2 0 such that 3) is satisfied. And from 4)

Qi {x) for n € Ki

b{x,n}) =
] otherwise

o
Therefore q = J f a 1 dn € A, (G) - g satisfies
g "o !
by the Transfer Lemma.

i) |g(x) - f(x.,0x)| <& for x € E .

ii) lgx)| = K2 sup |£(x,y) |
YyeH

iii) gl < k% il .
But f£(x,0%) = k' (x-x L) h(6x) = h(6x) for x ¢ E .

and sup [f(x,y)| =sup |n(n| .
y €H TY € VX

We will suppose in the remainder of this section that
G 1is compact. This is possible by Lemma 3 of Section 1.

We may also assume ¢ = 1, since fZ2(E) =1

Lemma 1. If E 1s a finite set and f2(E) = 1,

then Theorem I is true for E
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. : v =1
3 = L ! U 3 =
Proof. Write E E, E, ¢, where E, 1l E, a .,
Eé < Eal and eq contains only elements of order 2.
Suppose 'E0| = r , |e0| = 5 . Let Er+s denote the
canonical basis of z° X(Zz)5 . E =
r+s
+ - - 3 —
{xlcxza-.-axraxr+lc---:xr+s} . Let g :E Er+s be 1-1
and symmetric. Let r : 2t x(22)s - G Dbe the homomorphism
such that 7 ¢ 0 = id «~—Theorem I is true for OF since

we may choose f to be transform of a suitably normalized

Riesz product, f

Eo L e 1y (7% (1 e
= ={(.n + X + €x. .
el i) (XJ x. "))t m | xJ))

1= J j=n+1

Let E be a closed subset of our compact group G .

A A

Let T = '(E) denote the group of all continucus hermitian
A

functions from E to T . Give the discrete topology,

r
A *
and let I be the dual group of ' . We define

A
n{x} for x ¢ E, N el

I

o

E~ T, < N, O0X>

Q>

- ? ¢ (#f)(x) = ( x.J;> for I g G ., X v E

N A . FAN
7 :I'" G, <( j.ny > =LKrw|l, y> for y e ", J ¢ G .

A . . . A . .
Note that m 1s continuous since G 1s discrete.

Let E be a totally disconnected closed subset of G .
Let j denote 4 finitc collection of disjoint clopen sets

with union P . Let Ej denote the finite set of equivalcence

classes a-nerate by j . A func ' n f 1is hermitian on Ej
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1if for every [xl]. [x2] € FE. f([xl]) = f([xzj) whenaver

]
- A
there exists X « [xlj such that x 1 € [x2] . F(Ej)

denotes the hermitian functicons from E to T . Let

A A
FO(E) = U F(Ej) where J denotes the collection of all
Jjed

A
partitions j . Let FO(E) have the discrete topology

and let FO(E) denote 1ts dual. We define

.t IL(E)Y = I'(E.)., . = A for =i
"y 2T (E) €. gy =yla o for y e i (E)

J M
90 :E — IO(E), 4 n,00x> = N(x) for x ¢ E , ™oL FO(E)

b :T(E) = To(E), < Mu¥y> = <My>., for ne " (E) .

Let & denote the kernel of

Lemma 2 allows the reduction to a finite set situation.

Lemma 2. Suppose E 1is a compact, totally disconnected

subset of G and F 1s a closed subset of

1 1

{6E U (BE) “U{1l}} -4 that is disjoint from ©6E U (QE) ~U {1}
For every £ > 0 there exists k € A+(F(E)) such that

l1-x! < ®% on VE, |kl < € on F and Hk“A = 1 .

Proof. The map (yl,y) i A is 1l-1 and so a

homeomorphism between (gE U (GE)_lU {1})x & and
(GE U (BE)_llJ{l})- 4 . So there is a closed set K & A
such that 1 ¢ K and F € (6E U (GE)_lU {1})-K . choose

p € A(I'(E)) such that p(l) =1, p =0 on K and

. A A A
“P”A =1 p= ¥ p(Mn, p>0, Ip(n) =1. For every
nel” (E)
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A
n € T(E) there exists

A
- e
Mo € Tg(E) such that |n-n | < &
on E . Note this says |ﬁ0ﬂ—1| <% on E . ﬂo(yi y) =
A —
Ngly;) for y =25 . Let k = E3p(TT)'rI'9‘I']. Then
Fal —
[k(ex-y) - p(y)| = | TpM [ A (6x) niex) - 1] niy) | < &

for x € E, vy e &

In the proofs of Lemma 3 and Theorem I we will use the
fact that f2(0E) = 1 . This fact is a consequence of
Lemma 5 of Section 1.

Lemma 3. If E 1is compact and totally disconnected,

then Theorem I is true for B6E

Proof. Fix K > 1, & > 0 . By Lemma 2 and the fact
that f2(6E) = 1 , there exists fl € A+(F(E)) with fl = 1
on 6E, [£;] <28 on FN ((BEV(GE) T U{1))-8) ana
HleA = K . Let F, = F N {y: |fl(y)| > 28} . Then
Y (6E U (6E) T U{1}) = 6,E U (8,E) "U{1} and ¥F, are
disjoint compact sets in TO(E) . Hence there exists j

-1 ...
U U .
such that wj(BoE (GOE) {1}) and Ty ¢F0 are disjoint
compact sets in F(Ej} . Since BOEj is a finite set and
f?(GOEj) =1, there exists by Lemma 1 fo € A+(F(Ej))
i = =
with fq 1 on GOEj ’ lfol K€ on L tFO and
||f0||A <K, . Let f = f£gomso¥) £y . Then f e A (I'(E)) .
1 .2

f =1 on G6E. and ”fHC(F) = sup{KeE, K- /€-2§) < K°e for

suitable & £}, = k%-1/,
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Proof of Theorem I. Let V be a neighborhood of 1

in G such that VF N {E ug ! U{l}) = # . wWe may select

a finite number of f's from 3 that separate

VF ., E vg~?! U{l} ; that is, if X;.Xx, are from different

members of this triple we have j such that j(xl) #

f{x2) . Let él denote the group generated by these

I’s. Let 32 be such that elxa2=e. Let G =G, x G,

be the corresponding decomposition. Let Py, :G ™ G,

P; :G ™ Gy be the projection. Let pl(E} = E, .

pl(VF) = Fy - Since G, is compact and metrizable E,

is metrizable. Form F(El) and let 91 :E) ~ F(El) ’

T :F(El} - Gl be the corresponding maps.
Since @,E; is metrizable and f?(elEl) = 1 we know

by Lemma 4 of Section 1 and by Lemma 3 that there exists

fl € A+(F(El)) such that:

Y
=
5

=

S
™

Let f ¢ A+(F(El) X G2) be defined by:
f(y.xz) = fl(y) for (y.xz) € F(El) X Gy -

Then f satisfies:
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Let 9:E"I"(E1)XG2¢ T!’:l"(E]")XGz"Gl?< G2 be
defined by: 6x = (9.plx. pzx) . TF(Y;Xz) = (le, x2) .
g is symmetric and wof = id on E . We now apply
the Pull Back Theorem with H = I‘(Elj X (32 to complete

the proof.



4. Proof of Theorem II.

We now prove Theorem II under the assumption that &
A
is compact. Form T(E), T(E). Let 6.7 be the corres-
ponding maps. Let gph 8 ={(xX.6x): X € E} . By Lemma 5

of Section 1 fp(gph 8)=1 . There exists (1,7_) €

A A

G x I'(E) such that (1,n_) = -1 on gph 6 . Let

o) e AA .

k¥, k= € Md(G XI"(E}) be defined by

b - b ] )
O -y T Paamoth Loe . Py fPa, ot
2 2
A

Let N be a neighborhood of gph 6 for which Ike| < g

6
Let V be a neighborhood of 1 in G such that ENV =

FNV =g . Let L ={(G\V)XI‘(E)}\N9. Let

0O
L = L, U{F XxT'{E)} . Fix K’ > 1 . By Theorem I there

exists f ¢ A+(G xT"(E)) such that:

i) f(x.9x) = 9{x) for x € E
ii) |IfIIC(L) s k''¢

K’2

iii) Hf“A(G xT (E)) lra

We use 7 to denote convolution on G X H, * to
, A A A
denote convolution on G . Let 0 € L'(G XT'(E) Dbe such
A 2
that 0 = £ . We make the K’ hg.

A
5 > 0 and of compact set C © T(E) . We apply the Smoothing

§.<J*k0 choice of

Theorem with parameters, C., 8, K’, to obtain

* -= * A
an ' Gﬂ R an , ax . ax for x € G, neTr{(E) . Let

23
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_ ++ --
1) T = J-/\( )(GT] * O.T_]__l + (O 6(1' n )—l))"] * aﬂ-l) dn
I'{E -

Then T > 0 and [T} 1 A = 7/ K hy . We rewrite T
L™ (G)

_ 0 e *
T_fA {6 K)o w @& 3+ (0 K), «p }dn

n
T (E)

. A .
We use the Transfer Lemma to estimate TO at wvarious

points.

A . . , A
For x ¢ E , TO(x) is within & of (0 ko) {(x.,6x) ,

and (0 x9)"(x.6%) = £(x,06x) = ®(x) .

For X € F , IQO(K)l s I('2 hg sup l(f-ﬁo)(x.y)l <
2 ye I'(E)
)
K hoe
We now estimate Qe ,
A
For xe€ E, |T7%x)| = x'? hg sup l(f-Qe)(x.y)l <
ve T (E)
2 A A
K'? hh(max(sup | (£-k%) (¥} |, sup [ (£-X%) 0y ) =
Yy € Ng(x) Y € L(x)
P
K'z‘hg max ( & 5;— . K'zs) < K'h hgt for suitable £
A A
For x € F , lTe(x)l < K"2 hg sup |(f-keux.y)| s
y €T (E)
K'u hge
So altogether we have
. A 2
- <
iy T w”c(E) & +x'" hoe .

. A b2
ii) ||T||C(F) = 2K'"hge .



P 2 y 2
iiiy [Tl 1A S 7e K’ hy -
L7 (G)

i}, ii), 1iii) and iteration give Theorem II.

25



5. Remarks.

a. Let E be a Helson set and suppose 1 ¢ E . Since

every ¢ ¢ CO(E) may be written

Q(x)- p(x=1)
21

+ i

%1
mm)=:¢wyzwu )

we have h(E) = 2 f2(E). And 1f we use Herz’'s estimate

3/2 m(e))? we obtain f£2(E) s

that h(E UE"l) s 3
16-3%m@E)) 12 .

b. Let E be a closed subset of the circle group,

+ ~ 1x3 inx .m .
T . Let A (E) = & g a_e IE' g |an| < »} . E 1is a
Carleson set 1if A+(E) = C(E) . Let
H = inf {llgfl,: gl = £. g = FTa ™) .
A+(E) A E n

If E 1is a Carleson set, then

c(E) = sup {{lfl , :f e c@®. el g = 1)

A (E)

is a finite number, that is called the Carleson constant

of E . I. Wik [7] showed that every Helson subset of T

is a Carleson set.

Let E Dbe a Helson subset of T such that 1 ¢ E .
C. Graham asked whether A:(E) = C(E) . The answer 1s yes
and in fact

Theorem. Let E be a symmetric Helson subset of T
such that 1 ¢ E . Let F be closed and disjoint from
EU{l} . Let E have Carleson constant ¢ . Let

26
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P € Ch(E), ”w”C(E) = 1 . Then for every K > 1, € > 0

there exists f € AI(E) such that:

i) f =% on E

ii) !fl = ch on F
k% 16 ch
iii) £l = /e
Proof. We make the necessary modifications in the
proofs of Theorems I and II. We recall from line 1} of the

proof of Theorem II that the iterating function T is

given by:
++ -—
T = (o_ % ot + (o & 1)y * @ Z1) dn .
IF(E) noon-l (L, (my™H'm 7 Tm
++ ++
We must adjust o, @ so that for all n:0_> 0, o~ >0
++ n n
and 0., @ € £'(N) where N = {0,1,2,...} .

Choose K’, £ so that K >K’'>1, £ >0 . Form
T(E) and let 81 :E = T'(E)., Ty :T{(E) * T be the corres-
ponding maps. Let gph 8, = {(x,6.x): x € E} . Form
I'(gph 6,) and let 6, :gph 6, = (gph8,),
L2 : T (gph 81) = T x T(E) be the corresponding maps.

We select a neighborhood of 1, W =UX Vv, in
T x T(E) such that WL n {gph 6, {1}} # # where L
is defined as in the Proof of Theorem II. Using Theorem

I we find h ¢ A+(F(gph 91)) such that:

h =1 on Bz(gph 61)
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12 1
Inll, = k2 -

[

I . I ¢ [ 4 _
Choose k;" € A _(T) with Hkl HA =k (1) =1 k=0

1 1
1

off U Let ki be a trigonometric polynomial formed
F F. r _ I

from kl such that “leA = kl(l) =1 and Ikll < £

of UL . Choose n ¢ N so that e2"lnt‘ki has only

frequences in N . Let k; = g2mint ki . Then

k, € AT(T), HleA =k, (1) =1 and [k | <& of vl

Let k, € A_(T(E)) satisfy ||k2HA = k,(1) =1

k, =0 off vl . Let k’'(ry.y’) =k (x)- ky(y) for

xXeT, yeT(E), y € I'(gph 6,) - For all y.,y’
k’( * rYlY,) € A:(T) . Let Pl :T X F(E) - T,

p, :T X '(E) = I'(E) be the natural projections. Let

k(x,y,y') = k' (x-py mo(y )7V yep, Mty ) Thyy

A ' .
Let k. Q' € L (2 X 9(E) X P(gphel)) denote the inverse
transforms of k, k'. Then
A -1 -1
/ 1 L .
R ’ k (Icnal) 1f n = (jpl Trz) (N pzvz)
k([,mn’) =
0 otherwise
Therefore, for each y,y k{ ,y.y') € A:(T)
So f, = k*h satisfies for each v.y' £, -ey,y’) €
+ fal
A+(T) . Let o, be such that 02 = f2 .

We make the K'z. £,0, choice of & > 0 and of

compact set C < [ (gph 61). We then apply the Smoothing
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Theorem with parameters K', 8§, C to obtain for every
n’ e F(gphel) an &na e £'(z x F(E)). Since
f?(pztgph 8)) = 1 we may choose anf to satiafy:

an. > 0 anf(j,n) = 0 unless I = 1 . Hence,

o, = IA (0) e % & 4 an
T (gph 6;)

satisfies clrz 0, Ol € L'(Nx P(E)). Let Gl =
£, € A(TXT(E)) . £,(-,y) e AI(T) for all y € T'(E) and

fl satisfies by the Transfer Lemma.

|fl—l| < & on gph 91

g0y | s k% sup,  [niy)] + 8k
2
f = K h
TARERS R
Since f2(p,(gph 6,)) = 1 we may for correct £ obtain

£f such that:

£( -.,y) € A:(T) for y € T(E)

£ =% on gph(8,)
If| s Kze on L

2

The inverse transform of f is the required ¢ for the
iterating function T .

A
Finally, we check that we may choose for all 7 € T(E) ,
++ ++

a~" - )
n 2 0 and un e L (N)
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We recall from the proof of the Smoothing Theorem the
++

——

A
construction of « . We find a function k :T(E) = rRY .

with compact symmetric support K such that Hk” 2 <1

L
and
l1-xsx)m| < % for nec.
A
We choose M,,...,N_ € T(E) and write K = Lﬂ K. where
1 n =1 "]
nj € Kj . By Wik’'s theorem we may find Bi e £'(N) such
A
that HBiHLl = KC and B (x) =<8;x,n > . Take
A+
B. for T € K.
+ i i
b (x.m) =
0 otherwise
) éi for mn € Ki
b (x.,n) =

0 otherwise

where BI . B; denote the positive and negative parts

of B . Let

at™ = kbt » kb 4+ kT BT
a~ =kb s kb~ + kb~ + kb’
A ++
where the convolutions are over ['(E). Then o is defined by
AT S ++
°~n (x) = a  (x.m)
A__ —_—
a'.n (x) = a (x. 1)
H+ *+
Hence, for all =7 & >0 and a ¢ L (N) .
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