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ABSTRACT

Let E be a Helson set in a locally compact abelian
group G such that 1 is not in E- Let F be a closed subset
of G that is disjoint from E U E  ̂ U (1}, and let g be
element of C(E) such that g(x = g (x) for x, x 1 in E.
Then for every e > o there is a positive definite function
f e C(G) such that f = g on E and |f| < e on F. If h
denotes the Helson constant of E and fz denotes the Fatou-

12Zygmund constant of E» then fz  ̂ (11664)(h ).



0. Introduct ion

Let E be a closed set in a locally compact abelian 
group G . Cq (E) denotes the set of continuous functions 
on E vanishing at <» . A function f on E is hermitian
if f(x) = f{x—1) for all x e E n E-1 . Let

Cq (E) = {f e Cq (E): f is hermitian}
A(E) = {fjE : f € A(G)}
A (E) = { f 1_ : f e A(G), f is positive definite}+ b
E is a Helson set if c q (e ) = A (E) - If E is a

Helson set, then
h (E ) = sup { ||f|lA(E) : f € Cq (E), llfllCo(E) * 1}

is a finite number that is called the Helson constant of E .
If E is a Helson set, we refer to the number

h0 <E) = sup{||f||A{E): f « Cq IE) , ||f|lCo(E) * 1)
as the hermitian Helson constant of E . Helson sets in
discrete G are called Sidon sets.

E is a Fatou - Zygmund set if cJjCE) = A+ (E) . Let
|| f || A (E) = inf { l|g|lA : g lE = f ' g is positive definite}.

+
|| ||A ^  is in general not a norm; for instance, || l||A ^^ ^ 
||-l||A E is a 3 - ̂  set/ then

fJ(E) = aup{||f||A (E): f e Cq (E) , ||f||c (E) s 1)
is a finite number [5, p. 94], that is called the Fatou -
Zygmund constant of E .

1
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E is a uniform Helson set if for every closed set F 
disjoint from E , every cp e Cg(E) and every e > 0
there exists a g e A(g ) with

g|E = <*>
jg| < e on F .

E is a uniform 3 - p set if for every closed set F 
disjoint from E U (E) U{l} * every cp e CQ (E) and every 
g > 0 there exists a g e A+ {g ) with

g|E = <*>
!gI < e on f .

S. W. Drury [1] showed that Sidon sets are uniform 
Helson sets. N. T h . Varopoulos [6] generalized Drury's 
argument to show that Helson sets are uniform Helson sets.
C. S. Herz produced an alternate proof to Varopoulos' 
proof. Drury [2] then showed that Sidon sets are uniform 
3 sets. 0. C. McGehee suggested that it might be
possible by using Herz's techniques to extend Drury's 
argument to show that Helson sets are uniform 3 - $ sets, 
and this is what we do.

We first show:

Theorem I. Let f^(E) = 1 . Let F be a closed
— 1 Visubset of G disjoint from E U E U { 1} . Let cp e C^(E) ,

livHo £ * ■ For everY K > 1 , g > 0 there existst0 ID
f e A+ C{G) such that:



Theorem I was proved by Varopoulos [6] for compact, 
totally disconnected, metrizable Kronecker sets. We prove 
Theorem I by making explicit an implicit proof in Herz 
[3]. We prove Theorem II by using Theorem I and the techniques 
Drury uses in showing Sidon sets are uniform 3 - p sets.
The constants in Theorem II are the same as those that Drury 
obtains for the case of a Sidon set E -

The outline of the paper is as follows. In Section 1 
we show that in proving Theorem I or Theorem II we may 
suppose G is compact. We show that in proving Theorem I 
in the case of a compact, metrizable set we may suppose that 
E is also totally disconnected. Finally, we give a sufficient
condition on E to yield f?(E) = 1 . Section 2 contains
the Smoothing Theorem and the Transfer Lemma which are the 
tools for proving Theorems I, II. Theorem I is proved in 
Section 3, Theorem II in Section U . We close with a few
remarks in Section 5.



1- Preliminaries

We want to show that it suffices to prove Theorems I 
and II in the case that G is compact. We give the reduc
tion for Theorem I. The reduction for Theorem II is similar.

It suffices to show the reduction for an equivalent 
formulation of Theorem I , wherin we replace the conclusion 
by: For every ? > 0 , K > 1 » e > 0 there exists a
f € A+ (G) such that:

i) Ilf -wllc0 (E> < !
U )  l|f|lc ( F )  * K 2 s

iii) ||f|lA s K /c

Lemma 1. In order to prove Theorem I, it suffices to 
prove it in the case when E is compact.

Proof. Let us suppose Theorem I is proved for the 
case of compact E . Now let E be arbitrary. Consider
the two convex subsets of CQ (E) *

B = { f  € C 0 (E)= llf-«p|| (E) < 5 }
2

C = <flE I f e A+ (G) , l|f|lc(F) s K2 e, H f | t A  s K 4 )
Note that B has a non-empty interior. Suppose B n C = 0 , 
we may apply the Hahn - Banach Theorem (U, p. 157 and p, 187J 
to the disjoint sets B - cp » C - cp . So there exists 
U e M(E), a e F such that
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Re <f-cp,M> s aiju[| for f € B
Re <f-tp,M> ^ a(|M|| for f e e .

But Re <f-«P,M> s ol||m II for f £ B implies a ^ • We
obtain that for all f e C

5||m || s Re <f-cp,n> * if (f-cp)dMl .
t E

Hence if 5 < ? there exists a compactly supported v
such that ||v|| s |juj| ,

IIv|| if (f-cp)dv| for f e e ,
E

but the integral is bounded by ||f-cp|l_, . • Itc (supp v) M
follows that Theorem I is false for the compact set 
supp(v) -

Lemma 2. in order to prove Theorem I, it suffices to 
prove it in the case when F is compact.

Proof. Let B = {f e CQ (F) : ||f||c (p) * R2 e} .

C = {f|p : f € A+ (G), H f-CpHCo (E) < t'fHA  ̂ •
Proceed as before, applying the Hahn - Banach theorem to B
and C .

For E a closed subset of G let B . (E) =
U#T

{M IE : U 6 Md (G) , M ^ °) • For f e Bd + (E) let
II f IIB (E ) = inf(II^HM :M e Md (G), U ̂  °'^IE = f) • If Ed,+
is compact, Bd + (E) = A + (E) and || || (E) = || ||ft (E .

a, + +
Lemma 3. in order to prove Theorem I, it suffices to 

prove it in the case when G is compact.
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Proof. Supposing the theorem is proved in the case of 
compact G * consider an arbitrary G . Let 6 be the
inclusion map of g into its Bohr compactification. We
may suppose E and F are compact, so that 0E and 
OF are compact. 6 is symmetric; that is, 6 (x =
(0x)-1 . So GF is disjoint from 0E U (£?E) * U { 1} .

Since fp(E> = 1 , Bd ,+(E) = A+<E > and H HB (E) =di +
II (I > . we have fP(0E) = 1 . So we have the theorem for " A, (E)+
0E and GF . But Bd< + (E UF) = A+ (EUF), || HB^ (E Uf) =
II IL • Hence, we have the theorem for E and F *A (E U F)

T

Lemma U . in order to prove 'Theorem I in the case 
when E is compact and metrizable, it suffices to prove it 
assuming that E is totally disconnected.

Proof. It suffices by the argument of Lemma 1 to 
show that for every K > 1 ,  e > 0 , S > 0 , p e M ( E )  
there is a f e A+ {E) such that

i *) IJ f-cp dn | < ? ||m ||
ii) |f| s K e on F

iii) ||f|lA * k 2/e -

Suppose Theorem I is true for totally disconnected subsets 
of E . Since E is compact and metrizable, for all

> 0 there is a v e M(E) such that supp v is totally 
disconnected, supp v c supp m , and *
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We know there is a f e A+ (E) satisfying:
|J f-Qp dv | < II, , ii) , iii) . Hence

|J f-cpdu| = |J (f-cp)d(v + M- v)| s

| J f-cp dv | + |j <f-cp) d(M - v) ) <

s' llvli + (i + k2/£)?/ < 5 M

for correct 5 ' .

Let U(E) = {f e C(E) : |f | ~ 1} . Let U^(E) denote 
the hermition elements of U(E) .

Lemma 5 . Suppose for every S > 0 , every f g U (E)
there exists J e G such that |f -Jf < 5 on E - Then 
f^(E) = 1 -

Proof. It suffices to prove this lemma under the 
assumption that E is symmetric.

Let A (E) denote the hermitian elements of A(E) .
C^(E) and A^(E) are real Banach spaces under the induced

h  1*1norms. Let 6 :A (E) - C {E) be the natural injection.
We wish to see ||0|| = 1 . Let 9 be the dual of 9 .
It suffices to see ||0*|| = 1 .

We know {I*, p. 179] that
(Ch (E) ) * s {Re <- , M> : U e M(E) } .

We call a measure, m , hermitian if dM(x) = d n ( x ~ .
We denote the set of hermitian measures in M(E) by 
M*1 (E) . For every M e M(E) the hermitian measure
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dv (x) - ^  tx)— : ^  (.x— 1_ has property that Re <f ,u> =
P hj fdv for f e e  (E) . Hence,

(Ch (E))* S {< , M> : M £ Mh (E) } .
If u e M^(E) , then ■,IV  i is hermitian a.e.d | u  |

So we may write ■■ jr* r = e1*1 where h(x) - -h (x mod(2;r)d | u |
a.e. By a modification of the proof of Lusin's theorem 
we may for every ? > 0 find a continuous g such that: 
g(x) = -g (x ■*") mod(2ir) and g = h except on a set A 
with |u | (A) < ? . So for U € M*1 (E) we have

Hull . = sup |f fdu| = sup |f fdul =
(C (E) ) ||ff * 1 J f £ u h (E) J

Ch (E)

sup I f S du I = Hull ^ •
j . s  (Ah (E))*

So for every ? > 0 , every f e C^{E) there exists
f e l/(G) satisfying: ||f|| A s 1 + ? and ^ = f on E

L' (G) 1 ABut Re f = f on E since Re f (x) = -=■ [ f (x) + f {x)] =

[i(x) + £{x 1)] = [ f (x) + f (x 1] = f(x) .

We know there exists J e ^ within ? of -1 on E .

Let f+ , f denote the positive and negative parts of f
Then {f+ + f>, _ i * f ) A i® within ? of f on E .

<J_>

So f^(E) = 1 .



2 . The Drury - Herz Theorems

Given a Banach space B , 1 s p < °° * let L^(G«B)
denote the completion of the space of continuous B-valued

completion of this space for the supremum norm will be 
CQ (G,B) .

The Smoothing Theorem. a) Let E be a compact Helson 
set in G with Helson constant h , hermitian Helson 
constant h^ . Let 6 be a continuous map of E into a
locally compact abelian group H . If C is a compact

A Asubset of H , 6 > 0 , K > 1 #  and r\ e H , then there
1 Aexists a. e L (G) such that if we let

a (T|) = & (x) for (x »r|) e G x h  then:X  T]

If 6 is symmetric, we may replace h by h^ in ii) ,

functions with compact support on G for the norm ||u|j =P
where dx is Haar measure on G . The

i) l ^ t x ) -  ti(Ox ) j < 6 for (x »ti) e E x c  .

Ax CQ {g » a (h )}

iii).
b) Suppose that E is a compact symmetric Helson

set and 0 is symmetric. Then each can be taken to
be a real measure. We may write cl = ql’+ - a whereT) T]

, a are nonnegative measures such that if we let
where

9
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a* = ajlj+ + a~~ * a*(Tl) = (a*)A (x) for (x j T|) e g x A , then

iv, « c0 (fi.*(0 ),. llafllCo,S,A(G,)S R 2 h o •

v, * K 2 h2 .

AProof of a) We may find a k :H - [0,1] with compact
symmetric supporc K such that |jk|| 2 a S  ̂ anc*

L (H)
1) |l - (k*k) (n) I < V 3 for r) e c .

Since dE is compact the set
U = {̂ 1 e A : 11 - <0x,Ti> I <; for all x e e}

is a neighborhood of the identity in H . since K is 
compact it is covered by a finite number of translated of U

K c U "=1 riiU .
Let K1 = K n r|1 U, Ki+1 = (K fl T1̂ +1 U)\Uj_ ̂  Kj - Then

2) |<ex,r)i> -<0x,ti>| < -| for x e E , T] e .

For every i there exists p. e L1 (G) with ||P-|| , A s K h
1 ' (G)

3) §. (x) = <0x,n.> for x e E .
L

Let b be the Borel measurable, A{g ) valued function
Adefined on H by

^(x) for e Ki
4) b(x,Ti) =

0 otherwise

Then k(h) b{x,‘H) £ L^(H,A(G)) with norm bounded by K h  .
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Let

5) a = k b * k b
AH

/\ 2 2 a (x/T|) e C_ (H/ A (G) ) and | |a <x,  n) II ,A  , . . s K h since 0 C0 (H,A(G))

Ilk b * kbll A ^ j|)c t>)i 2 A ffk b ll 2 A
A CQ (H,A(G)) L (H»A(G)) L (H * A (G))

We let e L1 (G) be such that = a(-,n) ii)
is immediate.

We wish to see iii) . If F*G e L2 (H) then F*G e A(H) 
and ||f *g || ,a ,s ||f || 0 a ||g || 0 a . Hence to show iii) it

suffices to show k b  e Cn (G,L2 (6)) and ||k b|| - £ k h
0 CQ (G t L (H) )

This follows from the norm decreasing inclusions:

l 2 (h ,a (g )) c L2 (A,c 0 (g )) c c 0 (g ,l 2 (h )) .

We now show i) . Let c(x,r|) = <0 x ,ti> . Then
-1 -1(ck) * (ck) (x,i"|) = J <ex,ririi > k(nTl1 ) COx,!^ k(nj_) drtx 

H H
= <0x,“n> (k *k) {T|)

which for T) e c differs from <0x,Tj> by no more than *
So for (x,“H) € E x A .
| (ck) * (ck) - (bk) * (bk) | * | ((c-b)k) *ck| + |bk * ((b-c)k)

‘ 6/3 l|k|lL 2 (A),,̂ llL2 (A) + 6/3 l|bk|lL2 (a,llk|lL2 (A)i 2V3 '
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Finally* we wish to see that for the case that 6

is symmetric we may replace h by h^ in ii), iii). If
9 is symmetric, <0x,r|^> is hermitian on E - So the
P. of line 3) may be chosen to have ||P . || , A s Khn *

1 L1 (8) 0
Proof of b) . We note that (Re P . )A (x) =

\  (x) + £ ± (x)] = -§ [pVtx) + P± (x X)J = -| [^(Qx) +rii ((0x) l)]

= ^ ( 0x) .
Let P+ , P denote the positive and negative parts 

of P .
Let

6) b+ (x, ti) =

7) b <x,ri) =

Let

(x) for t| e

0 otherwise

(x) for 71 e K i

0 otherwise

8) a = kb * kb + kb * kb
A AH H

9) a = kb * kb + kb * kb
A AH H

The same argument that gives a{x,h) e Cn (H,A(G)) will
+ +  A ± ±  i  Agive a (x,ri) e C0 (H,A(G)) . Let € L (G) be such
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A±± ±± ++that = a (■»rl) - We see that ~
We show iv) .

11 T1 A (G)
||J (kb+) ( .Tiri"1) (kb+) ( ,T11) + (kb“ ) ( ^T}"1) (kb") { ,7)̂  dTiJ^ 

£ J(||(kb+)( ,-nri-1) IIA + ||kb"( , TIT!-1) j|A ) (|j (kb+) ( »-ni)||A + 

II (kb") ( ,1̂ ) ||A ) d'H1 .

VBut since (kb ) ( ,'H'n̂ 1) and (kb ) ( ,'Ĥ ) are positive
Adefinite for all ^  e H this last expression can be written

J (|k(b+ +b ) ( , rrn“1 > IIA ||k (b+ + b‘) ( ^ X)IIA dri1 

* Hk(b+ + b")|| 2 A ||k(b+ + b")|| * K2 h2
LZ (H , A (G)) L (H(A (G) ) U

We show v). Let

( |Pi | ) A (x) for ’I £ Ki
10) b*(x,rt) =

0 otherwise
*  2  A'Then kfn) b (x,*"|) e L (H»A(G) ) with norm bounded by K hQ . 

So a* = kb* * kb* cl * = a* {- , *n) . we repeat the argument
A n

for iii) •

Transfer Lemma. Let G *H be locally compact abelian
groups. Let E be a compact subset of G . Let 0 be
a continuous map from E into H .

a) For every c > 0 , every ? > 0 and every
f e L1 (S  x A )  there exists a compact subset C of H and
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a 6 > o such that if

a e C (H,L1 (G)) , || a j |   ̂c
“ ^ C (H» L (G) )

and |& (x) - h(0X ) | < & for (Xth) e E x c

rthen g = i f_ * a dh satisfiesr]

i) g g L1 (g) , ||g|| i A * c||f|| , A A
L (G) L (G x H)

ii) |g (x) - f(x,0x) | < 5 for x e E .
A 1 Ab) Let a e C (HiL (G) ) . Define a (*n) byX

ax (Tl) - ^(x) .

If a c C(G,A(H)). II a II A s c , then
C<G,A(H) )

g = [ f * a _i ^  satisfies r|
iii) lg(x)| * c sup ! f (x.y) I .

yeH
Proof of a) . Since ||g|| ,

LA (G)
J IlfnH 1 A lla  -ll! 1 A  dT1 *  c  J  Ilf II dri =  C  ||f|| A  AJ L (G) ii L (G) J ^ L (G) L1 (G x H)
we have i) .

We show ii) . f_ e L"̂  (H# A (G) ) and H^JI , a
1 1 L (H#A(G ))

11 f|| , A A - So there is a compact symmetric set C in 
L (G X H)

AH such that
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L  II^Ia i g ) d’’ < min (?/3' ?/3c> ■i A 'Tl"A(G)
h \c

A AWe write
'A ■ r) H '

a  r A Ag (x) = J  a _ x (X) dr \ =

A A r A Afn(x) a (X ) dr] + | fL(x) a (x) dr\ .
n ' 1 JS\ C ^ r f 1

5So if we choose 6 ~ yjj ̂ jj we will have that for
T 1 A A L (G X H)

A Ax t E g(x) differs from f(x#0x) by no more than ? .

Proof of b) . g(x) = f £_(x) a (h *) dr; =• A I xH

J  t j  V y )  d T i =
h H

J  ^ r i ( x )  t j  ^ x ( y - 1 ) 71 ( v )  d y  ] d r i =
A Hh H

I* r A   A _ 1  r A A _ 1j f n (x) n ( y ) a x (y ) d h  d y  = J f ( x , y )  a x (y ) d y  . 
H A H
So |g(x)| s c sup If(x.y)I

We refer to the £>,C given by part a) of the Transfer 
Lemma as the c ,g,f choice .



3. Proof of Theorem I .

The Pull Back Theorem. Let E be a compact set with 
fP(E) = 1 . Let 6 : E "• H be continuous and symmetric.
Let 7r : H ■* G be a continuous homomorphism such that
tt o 6 = id . Let h € A+ {H) . Then for every ? > 0 »
K > 1 , neighborhood V of 1 in G » there exists 
g 6 A+ (G) such that:

i) | h ° e - g | < ?  on E .
ii) lg(x)|  ̂ K2 sup |h(y)|

Try e Vx
iii) llgllA  s K 2 IIh||A  .

Proof. Let k / e A+ (G) be such that ^^  ̂A(G) = 
k *(1) = 1 k ' = 0 off v   ̂ . Then k ,(x)h(y) is in 
A+ (G x h ) . Since (x»y) — (x Try y) is an automorphism 
of G x h  , f (x,y) = k ' (x Try-1)h(y) g A+ (g x h ) l|f|lA s Ilh ll A •

2 ^Let 6 ,c be the K #?»f choice. Since h^(E) = 1 
we may apply the Smoothing Theorem to & #C,K to obtain 

at
i) |& (x) - h(0x) | < 6 for (x,r|) € E xc

that satisfy:

ii, ^  « C0 <fi.A<0 >>. l l V c 0 (H.A(G)) ‘ ^
K2Cn {G, A (H) )iii) ax € C0 (G.(A(A>). ||ax |l a a * K

'0
We wish to see that since f^(E) = 1 * we may choose 

^  0 for every r\ . We recall that cl (x) = a(x,ri)
16
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where from line 5) a = kb *kb . So we must, check that forAH
every r\ kth) ^ 0 and b(x,T|) e A+ (G) . But to satisfy
1) k may be chosen to be k = --- -— s-rc X-, for a

(m(K))A/2j ^
suitable compact set K C fi . Since fP (E) = 1 and 9

is symmetric we may find 0 . e L^ (G) » ||P -1| 1 A s K *
1 L (G)

^ 0 such that 3) is satisfied. And from U)

^  <x) for ri € Ki
b{x,n) =

0 otherwise

Therefore g - [ & . dTi e A (G) . g satisfies
A " "

by the Transfer Lemma.

i) |g(x) - f(x*0x)1 < ? for x e E .
ii) |g<x) | * K2 sup |f(x#y) |

ye H
iii) ||g||A s K2 |jftiA .

But f(x,0x) = k'(x*x )̂ h(£?x) = h(0x) for x e E *
and sup |f(x,y) f = sup |h(y)| .

y e H Try e Vx
We will suppose in the remainder of this section that

G is compact. This is possible by Lemma 3 of Section 1.
We may also assume cp = 1 , since fp (E) = 1 .

Lemma 1. If E is a finite set and fP(E) = 1 , 
then Theorem I is true for E .
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Proof. Write E = Eq u Eg U where EQ f'l EQ  ̂ = 0 ,
E0 ^ E0  ̂ and e0 contains only elements of order 2 .
Suppose |e „| - r , |e„| = s . Let E denote the0 0 r+s

IT Scanonical basis of Z x (z~) E , =2’ r+s
{*•^*2 xr'x r+l.....Xr+s^ ’ Let 0 : E "* Er+s bo 1-1

IT Sand symmetric. Let rr : Z x (Z2) “* G be the homomorphism
such that rr l 0 - id ^'"^fheorem I is true for OE since
we may choose f to be transform of a suitably normalized

A

Riesz product, f
A i r  i r+s
f = T I . t1 + e I* . + x . ))( tt (1 + ex.)) -e ]=1 3 3 j=n+l 3

Let E be a closed subset of our compact group G .
A ALet I' = !'(E) denote the group of all continuous hermitian

Afunctions from E to T . Give F the discrete topology,
Aand let F be the dual group of r . We define

8 : E "* T / < h,8x> = h(x) for x e E , h e r
a  a  a  a  r  r  rrr : G * * r ,  ( rrj ) (x) = < x , J >  for j e G , x *. E

tt : F “* G , < j , rry > = < ttJ , y > for y e F , j e G .

a  . aNote that rr is continuous since G is discrete.
Let E be a totally disconnected closed subset of G .

Let j denote a finite collection of disjoint clopen sets
with union F . Let E^ denote the finite set of equivalence
classes n.-neratcr' by j . A func n f is hermitian on E...........  - ■ — j



19

if for every [x^j , G Ej f (tx ^J) = f(tx2J) whenever
-1 Athere exists x g [x^J such that x e tx2J • T(Ej)

denotes the hermitian functions from E to T . Let
A ATn (E) = U r (E . ) where J denotes the collection of allu jej 3 Apartitions j . Let rQ (E) have the discrete topology 
and let Tq (E) denote its dual. We define

,r j :rQ (E) - r (e j) # ff-j y = y ^r(E ) for y € ro (E)
j

: E ^  ! o < E ) * < rb  ^ (x) for x e E , "H c !'0 (E)

¥ : r (e ) - rQ (E), < L/'t,y> = < h,y> , for h e v0 (e) -

Let A denote the kernel of i|/ .
Lemma 2 allows the reduction to a finite set situation.

Lemma 2 . Suppose E is a compact, totally disconnected 
subset of G and F is a closed subset of
{ OE ‘J (0E) (lj) - A that is disjoint from 0E U {OE) {1} .
For every Z > 0 there exists k e A+ (T(E)) such that
|l -k| < Z on GE , fk 1 < ? on F and ||k|f = 1 .

Pi

Proof. The map (y-^y) “* y^-y is 1-1 and so a
homeomorphism between (0E d (0E) ^U {1}) x A and
(GE U (0E) {l}) • A . So there is a closed set K c A
such that 1 / K and F c; (0e U (0E)_1 d {1})-K - Choose
p e A(P(E)) such that p(l) = 1 , p = 0 on K and
llpll = 1  p = £a pCHjh, p ^  0 , 1 p(h) = 1. For every

*!€[' (E)
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A A i | _h e r (E) there exists "Hq e rQ (E) such that I'H-’Iq I < ? 
on E - Note this says | t|— 1 | < ? on E . ^ i  =

(Yx^ for y = A ■ Let k = * Then
| k (0x * y ) - p (y) | = | £p (h) [ hQ <0x) r\ (0x) - 1 ] h(y)| < ?
for x e E , y e A .

In the proofs of Lemma 3 and Theorem I we will use the 
fact that f?(9E) = 1 . This fact is a consequence of 
Lemma 5 of Section 1.

Lemma 3 . If E is compact and totally disconnected, 
then Theorem I is true for 0E -

Proof. Fix K > 1 , 5 > 0 . By Lemma 2 and the fact
that f^(0E) = 1 , there exists f^ e A+ (T(E)) with f^ = 1 
on 0E , (f-jJ < 2% on F fl ( <0E U (0E) ” 1 U { 1} ) - A) and

IIf ill A * K * Let F0 = F 0 {y: lfi<y) I ^ ■ Then
t (0E U (6E )"1 U{1}) = 0qe U (0oE)-1U{1} and * fq are
disjoint compact sets in (E) - Hence there exists j
such that TTj (0qE U (^qe )  ̂u (l}) and i|f Fq are disjoint
compact sets in r(E^) . Since ̂ gFj a SGt and
fP(0QEj) = 1 , there exists by Lemma 1 fQ e A+ (T(Ej)) 
with fQ = 1 on 0QEj , |fq | s Ke on ^f q and

II f o 11 a  ̂K/c * Let f = W ^ ^ l  * Then f 6 A+ (F(E)) , 
f = 1 on 0E , and Hf Hc {F) * suP(K e * s k2g for
suitable ? H ^ a S "



Proof of Theorem I. Let V be a neighborhood of 1
in G such that VF H (e U e  ̂U{1}} = 0 . We may select

[■ / Aa finite number of s from G that separate
VF , E Ue  ̂U{1) ; that is, if x^,x2 are from different
members of this triple we have J  such that J(x^) ^
J(x2) . Let denote the group generated by these
f , A A AJ s . Let Gj be such that G^ x g2 = G . Let G = G^ x 
be the corresponding decomposition. Let p^ : G G^ ,
P2 : G Gj be the projection. Let p^ (E) = E^ , 
p-̂ (VF) = . Since G^ is compact and metrizable E^
is metrizable. Form T(E^) and let 6  ̂:E^ " F(E^) ,
T1 :^(E^) "* t l̂e corresponding maps.

Since S^E^ is metrizable and f^(0^E^) = 1 we know 
by Lemma U of Section 1 and by Lemma 3 that there exists 
f^ e A+ (f(Ex)) such that:

f1 = 1 on ^ E ^

C{tt“1(F1) )

Let f e A+ (T(Ex) x G2) be defined by:

f(y*x2) = f^(y) for (y,x2) e T(E1) x g2 -

Then f satisfies:
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Let 9 : E - r (E.^ x . tt : T (E^) x G2 - G1 x g2 be
defined by: 0x = (e^p^x, P2x) . Tr(y,x2) = (Tî y, x2) .
6 is symmetric and tt o 0 = id on E - We now apply
the Pull Back Theorem with H = r(E^) x g2 to complete
the proof.



4. Proof of Theorem II.

We now prove Theorem II under the assumption that G
Ais compact. Form T (E) , r (E) . Let 6,ir be the corres

ponding maps. Let gph $ ={ (x,0x) : x e E} . By Lemma 5
of Section 1 fp(gph 6) = 1 . There exists (l,r|_) e
A AG * r (E) such that = -1 on gph 6 . Let
k°, ke e M. (G x r (E) ) be defined byd

k 0 = 6 (1,1) ~ 6 {1, (ti,)"1) , ke = 6 (1,1) + 6 (1,

Let Nq be a neighborhood of gph 6 for which |ke | < % .
Let V be a neighborhood of 1 in G such that E nv =
FflV = 0  . Let LQ = { (G\V) X r  (E) } \  N0 . Let
L = Lq U {f x r  (E)} . Fix k' > 1 . By Theorem I there
exists f e A+ (Gxr(E)) such that:

i) f(x,0x) = cp(x) for x e E .

ii) l|£|lC(L) s k '2‘ /2
m )  I I a {g i r (E) ) S I

We use A  to denote convolution on G x h , * to
A , A Adenote convolution on G . Let o c L (G XT(E) be such

that ct = f . We make the h^ , 5, a *k*̂  choice of
A6 > 0 and of compact set C c T(E) . We apply the Smoothing

Theorem with parameters, C, 6, k', to obtain
*   * Aa » , ax , ax for x e g , r\ € T(E) . Let

23



1) T = | (o * “ A T1r {e ) ° £ l  + <° 6
(1. i o - V '1 * V i 1 dT1

Then t ^ 0 and
" " . ‘ .s. •

2/7 c k '<* h> . We rewrite

T = I ( (°Ar (e )
= T° + Te .

k°) * an ' h n- i + (0 Ke)^ *

We use the Transfer Lemma to estimate t® at various 
points.

For x e E , t °( x ) is within ? of (o k°)A (x,0x)
and (a k°)A {x,0x) = f(x(0x) = cp(x) .

For x e f , |t °( x ) | & k '2 h2 sup | {f-£0)(x,y) | ^
ye r (E)

We now estimate
For x e E , |ts (x) | s K /2 h2 sup | (f*£e)(x,y) | *

ye r (E)
K # h0 (max{sup |{f*ke)(x,y) |, sup | (f-ke) <x,y) |) ) *

y e Nfl(x) y e L(x)
/ 2

K ,2 h2 max ( 5 — — , K /2 e) s K h2 C for suitable ? .

For x e F # | t 0 (x) | ^ K /2 h2 sup | (f*ke)(x,y) | *
Y er<E)

K' h*e .
So altogether we have

i) II? -«Pllc(B) s 5 + h£c .

ii) l|f|lc(p) - 2 K ' k h * ‘ •
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1111 |T|' i ^  5 2/= K 'U h o •jj (G)

i) , ii) , iii) and iteration give Theorem II.



5. Remarks.

a. Let E be a Helson set and suppose 1 4 E . Since
every cp e Cq (E) may be written

9{x) = ytxj^cptx-1) + ± cpCx)-^y(x-1)

we have h(E) 51 2 f^(E) . And if we use Herz*s estimate 
that h(E UE_1) * 33/2 (h(E))3 we obtain fp(E)
16-36 (h{E))12 .

b. Let E be a closed subset of the circle group,
1X1 « 00

T . Let A+ (E) = 5 £ a e inX|.-, : £ |a | < «>} . E is a0 n 'E o n
Carleson set if A+ (E) = C(E) . Let

|| f II = inf { llgll : g | = f » g = E anelnX } *A (E) A t
If E is a Carleson set, then

c (E) = sup { ||f || :f e C (E) , l|f|L(p, s 1} -
A (E)

is a finite number, that is called the carleson constant
of E . I. Wik [VJ showed that every Helson subset of T
is a Carleson set.

Let E be a Helson subset of T such that 1 / E .
C. Graham asked whether A*(E) = C(E) . The answer is yes
and in fact

Theorem. Let E be a symmetric Helson subset of T
such that 1 $ E . Let F be closed and disjoint from
E u {l) . Let E have Carleson constant c . Let

26
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QP € C h  (E) , |M|qp € c (E) , IM!C (E) s 1 * Then for every K > 1 , C > 0
there exists f 6 A,(E) such that:

i) f = cp on E
j

ii) |f| s K e on F

Proof. We make the necessary modifications in the 
proofs of Theorems I and II. We recall from line 1) of the 
proof of Theorem II that the iterating function t is 
given by:

and e I ' (N) where N = {0,1,2,...} .
Choose k ', ? so that K > k ' > 1, S > 0 . Form

r (E) and let 0^ : E T(E), tt̂  :T{E) T be the corres
ponding maps. Let gph 0^ = { (x,0,x): x e E) . Form 
r (gph 0 )̂ and let &2 • gph 0  ̂“* T(gph0^),
^2 : r (gph ei) ’* T x F (E) be the corresponding maps.

We select a neighborhood of 1, W = U x V , in 
T x r (E) such that W L  ft {gph 0^U {1}} jt 0 where L 
is defined as in the Proof of Theorem II. Using Theorem 
I we find h e A+ (r(gph 0^)) such that:

h = 1 on 02(gph 0 )̂

We must adjust a* a. 
++

++
so that for all r\ * o > o , G-~~ > 0Ti T) +-
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2 _ l _
h  ^ K ' e on (W L)

n i a * k '2 • V e .

C h o o s e  k,7/ e A (T) w i t h  H k ^ H  = k.* (1) = 1 k,* = 0i + l ^ l i
off U ^ - Let k^ be a t r i g o n o m e t r i c  p o l y n o m i a l  formed

from k ^  such that = k|(l) = 1 and |k^| < ?

of U ^ - C h o o s e  n e N so that g^Trint ^  ^ ag o n j_y

ifreque n c e s  in N . Let k^ = e k^ . Then

k x g A+(T), j|k1 HA  = k 1 (l) = 1 and | k j  < ? of i T 1 .

Let k 2 e A + (r (E) ) s a t i s f y  11^2^ ~ ^ 2 (1) = ^

k 2 = 0 off V -1 . Let k'(x,y,y') = k ^ x ) -  k 2 (y) for

x  e t , y e r ( E ) , y ' e V (gph 6^) . For all y , y '

k ' ( • , y , y ') g A*(T) . Let p x : T  x T (E) - T  ,

P 2 : T x r (E) -* T(E) be the n a t ural projections. Let 

k(x,y,y') = k'(x-pj^ 7r2 (y')_ 1 , y *p2 tt2 (y ')_ 1 » y ') .

Let k, e t  ' (Z x r (E) x f(gph£?^)) den o t e  the inverse

t r a n s f o r m s  of k, k' . T h e n

k'<J,ri,i) if n' = (Jpx tt2 ) ~ 1 - cn p 2 ^ 2 )_1
k o r u n ' )  =

0 o t h e r w i s e

Therefore, for each y,y* k( » y t y ' )  e A*(T) .

So f2 = k * h  s a t isfies for each y»y* f2 ( • , y » y / ) e

A*(T) - Let o 2 be such that & 2 = f .
2

W e m a k e  the K / , 5, ^ 2 ch o i c e  of 6 > 0 and of 

c o m p a c t  set C c  T (gph 6^) . We then app l y  the S m o o t h i n g
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Theorem with parameters K*, c to obtain for every
/ „ / A

r) e r(gph0^) an a / e I (Z * r (E) ) * Since
fP(P2 <9Pb 0) ) = 1 we may choose a » to satisfy:
ar]* ^ 0 ; Ctri/^J,r|̂ = 0 unless J  = 1 . Hence,

o, = r * a , i1 JA 2  ̂ (T| )r (gph e1)

satisfies 0 , e I * (N* (E) ) . Let =
f^ e A(TX T (E) ) . ■ ,y) e A*(T) for all y € T(E) and
f^ satisfies by the Transfer Lemma.

| f ̂^-11 < S on gph 0^
f f. (x,y) | * k '2 sup/ |h(y') | + ? k '2

7r2y e W* (x,y)
llf.ll * K'2||h|l .A A A

Since f^fp^tgph 0^) ) = 1 we may for correct ? obtain
f such that:

f ( ■ ,y) e A*(T) for y e r(E) . 
f = cp on gph (0 )̂
| f | K 2e on L
IUIIA * K2 l|h||ft .

The inverse transform of f is the required o for the
iterating function t  .

Finally, we check that we may choose for all t| e T (E) , 
++ ++ 

a “ ^  0 and a e t ’ (N) .
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We recall from the proof of the Smoothing Theorem the
++ ^ 

construction of a~" . We find a function k :r(E) “* F
with compact symmetric support K such that ||k|| - ^ 1

L *
and

11 - (k *k) (T)) | < \ for r) e C

We choose e T (E) and write K = where
ti. e K. . By W i k ^  theorem we may find 3 . e t ' (N> such

n n A  1that 10i!l y s K C and P^x) = < e^x,!"^ > . Take
L'

b + (x* T|) =

b  (x,ri) =

A +3± for T] €

otherwise

^  for h e K i

0 otherwise

where pT , 3  ̂ denote the positive and negative parts 
of 3 . Let

a++ = kb+ * kb+ + kb" * kb"
a = kb+ * kb + kb * kb+

A ++where the convolutions are over F(E)• Then a is defined by
A++ ++ a* <x) = a (x, "n)
A  __aT( (x) « a (x,T})

±± ++
Hence, for all ti ^  2 0 and a^~ € 1 ' (N) .
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