Totally Factorable Operators.

Johnny Gills Jr

Louisiana State University and Agricultural & Mechanical College

Follow this and additional works at: https://repository.lsu.edu/gradschool_disstheses

Recommended Citation

This Dissertation is brought to you for free and open access by the Graduate School at LSU Scholarly Repository. It has been accepted for inclusion in LSU Historical Dissertations and Theses by an authorized administrator of LSU Scholarly Repository. For more information, please contact gradetd@lsu.edu.
INFORMATION TO USERS

This material was produced from a microfilm copy of the original document. While the most advanced technological means to photograph and reproduce this document have been used, the quality is heavily dependent upon the quality of the original submitted.

The following explanation of techniques is provided to help you understand markings or patterns which may appear on this reproduction.

1. The sign or “target” for pages apparently lacking from the document photographed is “Missing Page(s)”. If it was possible to obtain the missing page(s) or section, they are spliced into the film along with adjacent pages. This may have necessitated cutting thru an image and duplicating adjacent pages to insure you complete continuity.

2. When an image on the film is obliterated with a large round black mark, it is an indication that the photographer suspected that the copy may have moved during exposure and thus cause a blurred image. You will find a good image of the page in the adjacent frame.

3. When a map, drawing or chart, etc., was part of the material being photographed the photographer followed a definite method in “sectioning” the material. It is customary to begin photoing at the upper left hand corner of a large sheet and to continue photoing from left to right in equal sections with a small overlap. If necessary, sectioning is continued again — beginning below the first row and continuing on until complete.

4. The majority of users indicate that the textual content is of greatest value, however, a somewhat higher quality reproduction could be made from “photographs” if essential to the understanding of the dissertation. Silver prints of “photographs” may be ordered at additional charge by writing the Order Department, giving the catalog number, title, author and specific pages you wish reproduced.

5. PLEASE NOTE: Some pages may have indistinct print. Filmed as received.

University Microfilms International
300 North Zeeb Road
Ann Arbor, Michigan 48106 USA
St. John's Road, Tyler's Green
High Wycombe, Bucks, England HP10 8HR
77-25,382

GILLS, Johnny, Jr., 1946-
TOTALLY FACTORABLE OPERATORS.

The Louisiana State University and
Agricultural and Mechanical College
Ph.D., 1977
Mathematics

Xerox University Microfilms, Ann Arbor, Michigan 48106
TOTALLY FACTORABLE OPERATORS

A Dissertation

Submitted to the Graduate Faculty of the Louisiana State University and Agricultural and Mechanical College in partial fulfillment of the requirements for the degree of Doctor of Philosophy

in

The Department of Mathematics

by

Johnny Gills, Jr.
B.S., Louisiana State University, 1969
M.S., Louisiana State University, 1970
May 1977
EXAMINATION AND THESIS REPORT

Candidate: Johnny Gills, Jr.

Major Field: Mathematics (Analysis)

Title of Thesis: Totally Factorable Operators

Approved:

[Signatures and titles]

Date of Examination:

April 22, 1977
ACKNOWLEDGMENT

The author wishes to express his gratitude and appreciation to Professor James R. Retherford for his help, guidance and encouragement in the preparation of this dissertation.
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>ACKNOWLEDGEMENTS</td>
<td>ii</td>
</tr>
<tr>
<td>ABSTRACT</td>
<td>iv</td>
</tr>
<tr>
<td>CHAPTER 0</td>
<td>1</td>
</tr>
<tr>
<td>CHAPTER I</td>
<td>12</td>
</tr>
<tr>
<td>CHAPTER II</td>
<td>31</td>
</tr>
<tr>
<td>CHAPTER III</td>
<td>54</td>
</tr>
<tr>
<td>CHAPTER IV</td>
<td>63</td>
</tr>
<tr>
<td>REFERENCES</td>
<td>70</td>
</tr>
<tr>
<td>VITA</td>
<td>74</td>
</tr>
</tbody>
</table>

iii
ABSTRACT

An operator is totally factorable if it factors through every infinite dimensional Banach space. The totally factorable operators offer a new approach to two long outstanding conjectures of A. Grothendieck. The "Big Grothendieck" conjecture: If each bounded linear operator from E to F is nuclear either E or F is finite dimensional. And, the "Little Grothendieck" conjecture: If every compact operator on E is nuclear, then E is finite dimensional. This study, to our knowledge, is the first of such properties. However, Figiel has studied operators which factor through a subspace of any Banach space, and shown that any compact operator into a Hilbert space meets this requirement.

In Chapter I, the S_p - and D_p - spaces are defined. Using a lemma of Figiel we obtain a new result about S_p - spaces. We later use this result to obtain the machinery crucial to the constructions in Chapter II.

In Chapter II we introduce totally factorable operators. We then almost completely characterize the totally factorable diagonal operators between ℓ_p - spaces. As a by-product of these characterizations we discover that the totally factorable operators between two arbitrary Hilbert spaces are precisely the Hilbert-Schmidt operators. At the end of this chapter we investigate the relationship...
between totally factorable operators and the "Little Grothendieck" conjecture. Our main concern is the question: Is every nuclear operator totally factorable? We show that a negative response to this question settles many long outstanding problems in Banach space theory.

In Chapter III, we investigate the composition of totally factorable operators. The major question of the chapter is whether the composition of two totally factorable operators is nuclear. A negative answer to this question implies a positive answer to the "Big Grothendieck" conjecture. We show that in general the composition of two totally factorable operators is Cohen 2-nuclear. We give new proofs of several known results by employing techniques developed in this paper.

In Chapter IV we give three more examples of totally factorable operators (two of which are not compact). We then discuss briefly whether the sum of two totally factorable operators is again a totally factorable operator.
Throughout this paper all spaces are infinite dimensional Banach spaces unless otherwise specified. We denote by B_E the unit ball $\{x \in E: ||x|| \leq 1\}$ of E. We will denote the Banach space of all bounded linear operators from E into F by $L(E, F)$ with norm,

$$||T|| = \sup_{x \in B_E} ||Tx||.$$

By operator, or map, we will always mean a bounded linear operator. A $T \in L(E, F)$ is called a (weakly) compact operator if $T(B_E)$ is contained in a (weakly) compact set. The Banach space of all (weakly) compact operators from E into F is denoted by $(W(E, F)) K(E, F)$.

By $L_p(K, E, \mu), 1 \leq p \leq \infty$, we mean the Banach space of equivalence classes of measurable functions f on some measure space (K, E, μ) for which (if $p < \infty$)

$$\int_K |f(x)|^p d\mu(x) < +\infty$$

and with norm,

$$||f|| = \left(\int_K |f(x)|^p d\mu(x) \right)^{1/p}.$$
(if \(P = +\infty \), the space consists of those measurable \(f \) for which \(||f|| = \text{essential supremum} |f(x)|_{+\infty} \). We shall often omit the measure space \(K \) and the \(\sigma \)-field \(E \) from the notation and speak simply of an \(L_p(\mu) \)-space.

A subspace is a closed linear subset. Let \(I \) be an index set and \(\{ x_i : i \in I \} \subseteq E \), then by \([x_i : i \in I] \) we mean the subspace generated by \(\{ x_i : i \in I \} \). If \(M \) is a subspace of \(E \), \(J^E_M \) denotes the injection map from \(M \) into \(E \). By the dual \(E' \), we mean the Banach space of all continuous linear functionals on \(E \) with norm

\[
||f|| = \sup_{x \in \mathbb{U}_E} |<x,f>|.
\]

For subspaces \(X \subseteq E \) and \(Y \subseteq E' \),

\[
X^\perp = \{ f \in E' : <x,f> = 0 \text{ for all } x \in X \}
\]

\[
^\perp Y = \{ x \in E : <x,f> = 0 \text{ for all } f \in Y \}
\]

For each \(x \in E \), let \(J_E x : a \mapsto <x,a> \), then \(J_E \) is an operator from \(E \) into the bidual \(E'' \) and \(||J_E x|| = ||x|| \). The space \(E \) is reflexive if \(J_E \) is onto. A space \(E \) is reflexive if and only if \(\mathbb{U}_E \) is weakly compact.

For each Banach space \(E \), we denote by \(I_E \) the identity map on \(E \). A projection \(P \) is an element of \(l(E,E) \) such that \(P^2 = P \). A subspace \(M \) of \(E \) is said to be complemented in \(E \) if there is a projection \(P \) on \(E \) with \(P(E) = M \).
An operator $T \in \mathcal{L}(E,F)$ is called finite, written $T \in \mathcal{F}(E,F)$, if T has finite dimensional range. An operator $T \in \mathcal{F}(E,F)$ if and only if there are elements $a_1, \ldots, a_n \in E'$ and elements $y_1, \ldots, y_n \in F$, such that

$$ Tx = \sum_{i=1}^{n} <x, a_i> y_i $$

for $x \in E$. We will usually write

$$ T = \sum_{i=1}^{n} a_i \otimes y_i. $$

For each operator $T \in \mathcal{F}(E,F)$

$$ \text{Tr}(T) = \sum_{i=1}^{n} <y_i, a_i> $$

where

$$ T = \sum_{i=1}^{n} a_i \otimes y_i. $$

By a biorthogonal system (x_i, f_i) in E we mean sequences (x_i) in E, (f_i) in E' (called coefficient functionals) such that $<x_i, f_j> = \delta_{ij}$. A Schauder basis for E is a biorthogonal system (x_i, f_i) such that for each $x \in E$

$$ x = \sum_{i=1}^{\infty} <x, f_i> x_i , $$
convergence in the norm of E. A Schauder basis will be called a basis. A sequence (x_i) in E is called a basic sequence if it is a basis for $[x_i : \iota \in \mathbb{Z}^+]$, where \mathbb{Z}^+ denotes the positive integers. Let (x_i) be a basic sequence with coefficient functionals (f_i); define

$$P_n(x) = \sum_{i \leq n} \langle x, f_i \rangle x_i$$

where $x \in [x_i : \iota \in \mathbb{Z}^+]$. Then $\sup_n |P_n|$ exists and is called the basis constant of (x_i). Let (x_i) and (y_i) be two basic sequences, then an operator

$$D : [x_i : \iota \in \mathbb{Z}^+] \rightarrow [y_i : \iota \in \mathbb{Z}^+]$$

is called a diagonal operator if

$$D \left(\sum_{i=1}^{\infty} \alpha_i x_i \right) = \sum_{i=1}^{\infty} \lambda_i \alpha_i x_i$$

for some sequence (λ_i) of scalars and every

$$x = \sum_{i=1}^{\infty} \alpha_i x_i \in [x_i : \iota \in \mathbb{Z}^+]$$

We will have need of the following special case of [5, theorem 5, p. 93].

Theorem 0.1 Let E be an infinite dimensional normed space. Then there is a biorthogonal system (x_i, f_i) in E
with $||x_i|| = ||f_i|| = 1$ for each i. Furthermore, (x_i) can be chosen to be basic with basis constant ≤ 2.

Let E be an arbitrary Banach space.

$1 \leq p \leq +\infty$ and $\frac{1}{p} + \frac{1}{p'} = 1$.

Definitions 0.2:

(a) $\ell_p ([p, +\infty))$ is the Banach space of pth power summable scalar sequences with norm,

$$|| (\lambda_i) ||_p = \left(\sum_{i=1}^{\infty} |\lambda_i|^p \right)^{1/p}.$$

(b) ℓ_∞ is the Banach space of all bounded scalar sequences with norm,

$$|| (\lambda_i) ||_\infty = \sup_{i} |\lambda_i|.$$

(c) c_0 is the subspace of ℓ_∞ consisting of those sequences which converge to zero.

(d) ℓ_n^p is the Banach space of all ordered n-tuples with norm,

$$|| (\lambda_i)_{i=1}^{n} ||_p = \begin{cases} \left(\sum_{i=1}^{n} |\lambda_i|^p \right)^{1/p} & \text{for } p \neq +\infty \\
\max |\lambda_i| & \text{for } p = +\infty \end{cases}.$$
(e) $\ell_p(E)$ is the Banach space of sequences (x_i) in E, such that $(\|x_i\|) \in \ell_p$ and norm,

$$a_p(x_i) = \|(|x_i|)|_p.$$

Element of $\ell_p(E)$ are called absolutely p-summing sequences.

(f) $c_0(E)$ is the subspace of $\ell_\infty(E)$ consisting of those sequences (x_i) in E which converge to zero in norm.

(g) $\ell_p[E]$ is the Banach space of all sequences (x_i) in E with $(<x_i,f>) \in \ell_p$ for each $f \in \mathcal{F}_E$, and norm,

$$e_p(x_i) = \sup_{f \in \mathcal{F}_E} \|<x_i,f>\|_p.$$

(h) $\ell_p^*[E']$ is the Banach space of all sequences (f_i) in E' with $(\epsilon,f_i) \in \ell_p$ for all $\epsilon \in E$ and norm,

$$e^*_p(f_i) = \sup_{\epsilon \in \mathcal{F}_E} \|<\epsilon,f_i>\|_p.$$

(i) $\ell_p<E>$ is the Banach space of all sequences (x_i) in E with $(<x_i,f_i>) \in \ell_1$ for $(f_i) \in \ell_p,[E']$ and norm,

$$u_p(x_i) = \{ \sum_{i=1}^{\infty} x_i f_i : e^{*}_p(f_i) \leq 1 \}.$$

In the case of n-tuples, the functions e_p, e^*_p, a_p, and u_p have the canonical meanings.
Definition 0.3: If $T \in \ell(E,F)$, then T is called an absolutely p-summing operator if there is a $\rho > 0$ such that

$$\alpha_p \left(\sum_{i=1}^{n} |T(x_i)|^p \right)^{1/p} \leq \rho \varepsilon_p \left(\sum_{i=1}^{n} |x_i|^p \right)^{1/p}$$

for all finite sets $\{x_1, \ldots, x_n\}$ in E. The Banach space of all absolutely p-summing operators from E into F is denoted by $\Pi_p(E,F)$ with norm,

$$\pi_p(T) = \inf \rho \ ,$$

ρ satisfying the above inequality.

Theorem 0.4: If $p \leq q$, then $\Pi_p(E,F) \subseteq \Pi_q(E,F)$ with $\pi_q(T) \leq \pi_p(T)$.

We will have need of a factorization result due to Pietsch [34].

Theorem 0.5: If $T \in \Pi_p(E,F)$ then there exists a probability measure on \bigcup_{E_i}, and operators $I: E \rightarrow C(\bigcup_{E_i})$, $J: C(\bigcup_{E_i}) \rightarrow L_p(\mu)$, and $S: JI(E) \rightarrow F$ such that $T = SJI$. Furthermore, if $p = 2$ we may take S to be defined on $L_2(\mu)$.

Definition 0.6: If $T \in \ell(E,F)$, then T is called a nuclear operator if

$$Tx = \sum_{i=1}^{\infty} \langle x, e_i \rangle y_i$$
where \(f_i \in E', y_i \in F \) and
\[
\sum_{i=1}^{\infty} ||f_i|| ||y_i|| < +\infty.
\]

The Banach space of all nuclear operators from \(E \) into \(F \) is denoted by \(\mathfrak{n}(E,F) \) with norm,
\[
v(T) = \inf \sum_{i=1}^{\infty} ||f_i|| ||y_i||
\]
where the inf is taken over all such representations of \(T \).

Our next result is a factorization theorem for nuclear operators due to A. Grothendieck [14].

Theorem 0.7 If \(T \in \mathfrak{n}(E,F) \), then \(T \) admits the following factorization:

\[
\begin{array}{ccc}
T & \Downarrow & F \\
E & \downarrow & \downarrow A \\
A & \downarrow & B \\
D & \downarrow & C_1 \\
\end{array}
\]

where \(D \) is a diagonal operator corresponding to an element of \(l_1 \), and \(A \) and \(B \) are compact. The next result is also due to Grothendieck [14].

Theorem 0.8 If \(T \in \mathfrak{n}_2(E,F) \) and \(S \in \mathfrak{n}_2(F,G) \), then \(ST \in \mathfrak{n}(E,G) \).

Definition 0.9: Let \(T \in \mathfrak{l}(E,F) \), then \(T \) is called a quasi-nuclear if there is an absolutely convergent series
\[\sum_{i=1}^{\infty} f_i \text{ in } E' \text{ such that} \]
\[\|Tx\| \leq \sum_{i=1}^{\infty} |\langle x, f_i \rangle| \quad \text{for each } x \in E. \]

We denote by \(Q_n(E,F) \) the quasi-nuclear operators from \(E \) into \(F \).

The following is due to Pietsch [33].

Theorem 0.10 Let \(T \in Q_n(E,F) \) and \(\Gamma \) an index set such that \(F \leq \ell_{\infty}(\Gamma) \). Then if \(\psi \) is the injection of \(F \) into \(\ell_{\infty}(\Gamma) \), then \(\psi T \in Q_n(E,\ell_{\infty}(\Gamma)) \).

Definition 0.11 Let \(E \) and \(F \) be isomorphic Banach spaces. The distance coefficient of \(E \) and \(F \), \(d(E,F) \), is defined by

\[d(E,F) = \inf \| T \| \| T^{-1} \| \]

where \(T : E \to F \) is an isomorphism.

We are now in a position to define the \(L^p \)-spaces of [26], i.e., those Banach spaces whose finite dimensional subspaces are close to the finite dimensional subspaces of \(L^p(\mu) \)-spaces. It is well known that the \(L^p \)-spaces generalizes the \(L^p(\mu) \)- and \(C(K) \)-spaces.

Definition 0.12 Let \(\lambda > 1 \) and \(1 \leq p \leq +\infty \). A Banach space \(E \) is a \(L^p \)-space if for each finite dimensional \(F \subset E \) there exists a finite dimensional subspace \(B \) with \(F \subset B \subset E \).
such that \(d(B, A^n) \leq \lambda \) where \(n = \dim B \). A Banach space \(E \) is a \(L_p \)-space if \(E \) is a \(L_p, \lambda \)-space for some \(\lambda \geq 1 \). We shall use the result that the dual of a \(L_p \)-space is a \(L_p \)-space, \(1 \leq p < +\infty \) and \(\frac{1}{p} + \frac{1}{q} = 1 \), [27].

Two results, essentially due to Grothendieck (proofs may be found in [26]) are:

Theorem 0.13 If \(E \) is a \(L_1 \)-space and \(F \) is a \(L_2 \)-space, then

\[
L(E, F) = \Pi_1(E, F) .
\]

Theorem 0.14 If \(E \) is a \(L_{\infty} \)-space and \(F \) is a \(L_p \)-space for \(1 \leq p \leq 2 \), then \(L(E, F) = \Pi_2(E, F) \).

In Chapter II, we make repeated use of the following result.

Theorem 0.15 Let \(F \) be an arbitrary Banach space, then any absolutely summing operator \(T: c_0 \rightarrow F \) is nuclear.

Proof: Let \((e_i) \) denote the usual unit vector basis of \(c_0 \). Then \(\epsilon_1(e_i) = 1 \), hence \(\sum_{i=1}^{\infty} ||Te_i|| < +\infty \). If \(x = \sum_{i=1}^{\infty} <x, f_i> e_i \) is in \(c_0 \), then \(Tx = \sum_{i=1}^{\infty} <x, f_i> Te_i \) where \(f_i \) is the unit vector basis of \(l_1 \). Finally,

\[
\sum_{i=1}^{\infty} ||f_i|| ||Te_i|| = \sum_{i=1}^{\infty} ||Te_i|| < +\infty \text{ which implies that } T \text{ is nuclear.}
\]

Remark 0.16 In Chapter III we define the concept of a Banach ideal. Since we will find occasion to use ideal properties, we mention here that \(L, K, \Pi_p \), and \(\eta \) are Banach ideals.
Definition 0.17 A Banach space F has the λ-extension property if for every $T_0 \in \ell(M,F)$, there exists for each $E \supseteq M$ an operator $T \in \ell(E,F)$ with $T_0 = T \cdot J_M^E$ and $||T|| \leq \lambda ||T_0||$. An operator $T_0 \in \ell(M,F)$ is said to be extendable if for every $E \subseteq M$, there exists $T \in \ell(E,F)$ such that $T_0 = T \cdot J_M^E$.

Theorem 0.18 Every $L_\infty(\mu)$-space has the λ-extension property for some λ.

Theorem 0.19 If $T_0 \in \Pi_p(M,F)$, then T_0 is extendable.

Proof: See the factorization result 0.5 and 0.18.
CHAPTER I
S_p-Spaces

In their paper, "Fully and Completely Nuclear
Operators with Applications to l_1 - and L_∞-space" [36],
Retherford and Stegall introduced the Sufficiently
Euclidean spaces. Theorem I.7 of that paper is the
following: A Banach space E is sufficiently Euclidean if
and only if each subspace of finite codimension of E is
sufficiently Euclidean. As an immediate consequence of
a result first published in [9], we obtain an unexpected
improvement of this result. We begin this chapter with
the definitions and properties of S_p- and D_p-spaces (first
introduced in [29]). The S_p-spaces are natural
generalizations of the sufficiently Euclidean spaces.

This chapter is devoted to a very natural generaliza-
tion, I.21, of Theorem 3.7 of [29]. This result will be
a major tool in our construction of totally factorable
operators.

Also included in this chapter is a result dual to
I.21. This result along with I.21 will enable us to
almost completely characterize the diagonal operators
between ℓ_p-spaces which are totally factorable.

The last theorem of this chapter is a summary of the
major results of this chapter. We then show that the
first part of this theorem is in a certain sense, the
best possible.
Definition I.1 A Banach space E is called an S_p-space, $1 \leq p \leq \infty$, if there exists a positive constant C and sequences of operators $\{J_n\}$ and $\{P_n\}$ such that

$$J_n P_n \xrightarrow{n \to \infty} E + \mathscr{L}^n_p$$

and $P_n J_n = I_n$, the identity operator on \mathscr{L}^n_p. $|J_n| \leq 1$ and $|P_n| \leq C$ for every n.

Remark I.2 If E is an S_p-space with constant C, then

$$d(J_n(\mathscr{L}^n_p), \mathscr{L}^n_p) \leq C.$$

According to [36], a Banach space is sufficiently Euclidean if and only if it is an S_2-space. We will need the improved version of the "Principle of Local Reflexivity" [20].

Theorem I.3 (The Principle of Local Reflexivity). Let X be a Banach space (regarded as a subspace of X''), let E and G be finite dimensional subspaces of X'' and X', respectively, and let $0 < \varepsilon < 1$. Assume that there is a projection P from X'' onto E with $||P|| = M$. Then there is a one-to-one operator T from E into X and a projection P_0 from X onto $T(E)$ such that

i. $T_e = e$ for all $e \in E \cap X$

ii. $f(Te) = e(f)$ for all $e \in E$ and $f \in G$

iii. $||T|| ||T^{-1}|| \leq 1 + \varepsilon$

iv. $||P_0|| \leq M(1 + \varepsilon)$
As a consequence to the above result, we obtain the following generalization first given in (29) of Theorem I.4 of [36].

Theorem I.4 A Banach space is a S_p-space if and only if E' is and $S_{p'}$-space where \(\frac{1}{p} + \frac{1}{p'} = 1 \).

Proof: If E is an S_p-space with constant C and \(\{P_n\} \) and \(\{J_n\} \) the given operators, then clearly the adjoints \(\{P_n^*\} \), \(\{J_n^*\} \) and the same constant C will suffice for E'. The converse follows from the Principle of Local Reflexivity. If E' is an $S_{p'}$-space, then E'' is an S_p-space, so we have the operators \(\{J_n\}, \{P_n\} \) and the constant C given by the definition. Let $e=1$, $J_{n}P_{n}$ be the projection, \(J_{n}P_{n}(E'') \) the finite dimensional subspace of E'', then we obtain an isomorphism \(S_n : J_{n}P_{n}(E'') \rightarrow E \), and a projection \(Q_n : E \rightarrow E \) such that \(Q_n(E) = S_nJ_{n}P_{n}(E'') \) with \(||S_n|| ||S_n^{-1}|| \leq 2 \) and \(||Q_n|| \leq 2C \); thus \(\{S_nJ_n\} \) and \(\{P_nS_n^{-1}Q_n\} \) are the desired operators and \(4C^2 \) the desired constant.

The following lemma and its proof can be found in [9]. First, we need a definition.

Definition I.5 Let \((X_i)_{i \in I} \) be a family of Banach spaces, and let \(1 \leq p \leq \infty \). Let $\bigodot_{i \in I} X_i$ denote the space of all functions $f : I \rightarrow \bigcup_{i \in I} X_i$ such that $f(i) \in X_i$, for $i \in I$, and the norm of f defined as follows
is finite. If $p = \infty$, then we require additionally that for every $\varepsilon > 0$ the set $\{i \in I : \|f(i)\|_{X_i} > \varepsilon\}$ is finite.

Lemma 1.6 Let E be a Banach space and $S \in \mathcal{F}(E, E)$, with rank$(S) = m < +\infty$. Let Z be a r-dimensional Banach space. For $1 \leq p < +\infty$, denote by F the ℓ_p-sum of $(mr + 1)^2$ copies of Z. Suppose P is a projection on E such that $\|P\| \leq K$, and $d(P(E), F) \leq L$. Then, there is a projection Q on E such that $QS = SQ = 0$, $\|Q\| \leq KL$, and $d(Q(E), Z) \leq L$.

As an application of the above lemma, we obtain an improvement of Theorem 1.7 in [36]. Theorem 1.7 states the following: A Banach space E is a S_2-space if and only if every E_0 (with codimension of E_0 finite) is a S_2-space. In this case, the projections $\{P_n\}$ are defined on E_0. The following result is much stronger. It states that the projections can be chosen to be defined on E and uniformly bounded independent of the choice of E_0.

Theorem 1.7 If E is a S_p-space with constant C, then for $E_0 \subseteq E$ with $\text{codim}_E E_0 < +\infty$, there exists sequences $\{T_n\}$ and $\{Q_n\}$ such that
$T_n : \ell_p^n \rightarrow E \leq E$

$Q_n : E \rightarrow \ell_p^n$

and $Q_n T_n = I_n$, the identity on ℓ_p^n, with $||T_n|| \leq 1$ and $||Q|| \leq C^3$.

Proof: Fix n. Let $\text{codim } E = m$, and $E = E_\circ \oplus F$.

Let S be a projection on E with $S(E) = F$. Let $K = n(mn+1)^2$,
then ℓ_p^K is equal to the ℓ_p-sum of $(mn+1)^2$ copies of ℓ_p^n.

By I.1 and I.2 there exists $\{J_K\}$ and $\{P_K\}$ such that

$$\ell_p^K \overset{J_K}{\rightarrow} E \overset{P_K}{\rightarrow} \ell_p^K$$

with $P_K J_K = \text{identity on } \ell_p^K$, $||J_K|| \leq 1$, $||P_K|| \leq C$ and

$d(J_K P_K(E), \ell_p^K) \leq C$. Now applying I.6, there exists a pro-

jection Q on E such that $QS = SQ = 0$, $||Q|| \leq C^2$ and

$d(Q(E), \ell_p^n) \leq C$. Let $e \in E$ and $Q(e) = e_\circ + f$, where $e_\circ \in E_\circ$ and

$f \in F$. Now $Q(e) = e_\circ$, since $f = S(e_\circ + f) = S(Q(e)) = 0$.

Therefore, $Q(E) \leq E_\circ$. Let T be an invertible operator

from ℓ_p^n to $Q(E)$ such that $||T|| = 1$ and $||T^{-1}|| \leq C+1$.

Consider the following diagram:

$$\ell_p^n \overset{T}{\rightarrow} Q(E) \overset{j}{\rightarrow} E \overset{T^{-1}}{\rightarrow} Q(E) \overset{\ell_p^n}{\rightarrow}$$

where j is the natural injection. Now, define $T_n = jT$ and

$Q_n = T^{-1}Q$. This completes the argument.
Corollary 1.8 If E is a S_p-space, then there exists a constant C such that for every subspace E_0 of finite codimension, there exists sequences $\{F_n\}$ and $\{Q_n\}$ satisfying:

$F_n \subseteq E_0; \ d(F_n, k^n_p) \leq C; \ Q_n$ are projections on $E; \ Q_n(E) = F_n$ and $||Q_n|| \leq C$.

Proof: Combine 1.2 and 1.7.

Every L_p-space, $1 \leq p < +\infty$ is a S_p-space. In [36, Corollary 1.6] it is shown that every L_p-space, $1 \leq p < +\infty$ is a S_2-space, and that L_1- and L_∞-spaces are not S_2-spaces.

An outstanding contribution to Banach space theory is the following result due to Dvoretzky [8].

Theorem 1.9 For each $\varepsilon > 0$ and each positive integer n, there exists an integer $N(n, \varepsilon)$ such that if E is any Banach space and $\dim E > N(n, \varepsilon)$, then there exists a subspace F of E such that $d(F, k^n_2) \leq 1 + \varepsilon$.

Extending the above conclusion in a natural fashion, we make the following definition:

Definition I.10 A Banach space E is a D_p-space if there exists a constant C and a sequence $\{F_n\}$ of subspaces of E satisfying $d(F_n, k^n_p) \leq C$ for every n.

Remark I.11 Every S_∞-space is a D_p-space for all $p \geq 1$.

Rephrasing Dvoretzky's result: Every infinite
dimensional Banach space is a D_2-space where the constant may be chosen to be $1+\varepsilon$ for any $\varepsilon>0$.

A parallel result to Corollary 1.8 for D_p-spaces is the following.

Corollary 1.12 If E is a D_p-space, then there exists a constant C such that for every subspace E_0 with $\text{codim}_EE_0<\infty$, we can find subspaces $F_n \subseteq E_0$ and $d(F_n, E_p^n) < C$.

Relationships between S_p^-, D_p^-, and l_p^--spaces can be found in [29].

We now turn our attention to a large collection of spaces which were first introduced in [6].

Definition 1.13 A Banach E has LUST if there is a family $E_i \ i \in I$ of finite dimensional spaces, each with unconditional basis constant 1, and a constant $C>1$ such that for each finite dimensional subspace $F \subseteq E$, there is an $i \in I$ and an operator $T:E_i \rightarrow E$ such that $T(E_i) \supseteq F$ and $||e|| \leq ||Te|| \leq C||e||$ for $e \in E_i$, and moreover, for each i there is an operator $S:E_i \rightarrow E$ with $||e|| \leq ||Se|| \leq C||e||$ for $e \in E$.

Discussion of the various properties of Banach spaces with LUST can be found in the following papers [6], [10], [18], [21], [25], and [35]. An abbreviated discussion of some of the ideas involving LUST can be found in Section 11 of [35].
For our particular discussion here we only need the following result due to Johnson and Tzafriri [21].

Theorem 1.14 If X is a subspace of a Banach lattice which is not a D_∞-space, then X contains uniformly complemented E_n with $\sup d(E_n, \ell_1^n) < +\infty$ or $\sup d(E_n, \ell_2^n) < +\infty$. Thus, if X has LUST, then X is either a S_1^-, S_2^-, or S_∞-space.

Although it is known that not every Banach space has LUST (see [25]), it is still conjectured that every Banach space is an S_1^-, S_2^-, or S_∞-spaces! All known examples of Banach spaces not possessing LUST are either an S_1^-, S_2^-, or S_∞-space.

We now turn our attention to the problem of presenting two "series properties" which are enjoyed by D_p- and S_p-spaces. Finally, we will show how these properties may be an approach to solving the "Little Grothendieck" conjecture: If $K(E,E) = \eta(E,E)$, then E is finite dimensional.

These "series properties" are extensions of a result of [29]. The techniques in the constructions have been used before [17].

Definition 1.15 Let P and Q be subspaces of a Banach space E. The inclination of P and Q is defined to be

$$I(P;Q) = \inf\{||x+y||: x \in P, ||x|| = 1, y \in Q\}$$
Definition I.16 Let \((x_i) \) be a sequence in a Banach space \(E \), then define

\[
\theta(x_i)_{i=1}^m = \min_{1 \leq S < m} \{ I([x_i; i \leq S]; [x_i; S < i < m]) \}
\]

The next two results are due to Guararii [17].

Theorem I.17 Let \((x_i)_{i=i_{K-1}+1}^{i_K} \) be a basis for \(P_K \) where \(\{i_K\}_{K=1}^\infty \) is a subsequence of the positive integers, \(i_0 = 0 \). If \(\theta(x_i)_{i=i_{K-1}+1}^{i_K} > \alpha > 0 \) for each \(K \), and for any integer \(m \),

\[
I(P_1 \oplus \cdots \oplus P_m; P_{m+1}) > \beta_i > 0
\]

where \(\Pi \beta_i = \beta > 0 \). Then \((x_i) \) is a basic sequence.

Theorem I.18 Given \(\varepsilon > 0 \) and a finite dimensional subspace \(P \) of an infinite dimensional Banach space, there exists an infinite dimensional subspace \(Q \) of \(E \) such that \(I(P; Q) > 1 - \varepsilon \).

Theorem I.19

(a) Let \(T: \ell_p^\infty \rightarrow E \subset E \) be an isomorphism with \(||T|| \)

\[
||T^{-1}|| \leq C,
\]

then \(\varepsilon_q(y_i)_{i=1}^n \leq C \) where \(Te_i = x_i \) and \(y_i = x_i/||x_i|| \).

(b) Define \(y_i^* = ||x_i||(T^{-1})' e_i' \), where \((e_i') \) is the usual unit vector basis of \(\ell_q^n \), then \(y_i^*(y_j) = \delta_{ij} \) and \(\varepsilon_p^*(y_i^*) \leq C \).
Proof of part (a). We will assume \(|T| = 1\). Now,
\[1 - |e_1| = |T^{-1} x_1| \leq |T^{-1}| |x_1| \leq C |x_1|.
Hence \(1/|x_1| \leq C\).

\[e_q(y_i)^n_{i=1} = \sup_{f \in \mathbb{B}} \left(\sum_{i=1}^{n} |y_i, f| q \right)^{1/q}
\leq C \sup_{f \in \mathbb{B}} \left(\sum_{i=1}^{n} |f(T(e_i))| q \right)^{1/q}
\leq C, \text{ since } fT \in (\mathbb{B}_p)^n,\]
and \(||fT|| \leq 1\).

Proof of part (b).

\[y_i'(y_j) = |x_i| |(T^{-1})' e_i(y_j)| = |x_i| |e_i'(T^{-1} y_j)|
= |x_i| / |x_j| |e_i'(e_j)| = \delta_{ij},\]

If \(x \in [y_i : 1 \leq i \leq n]\) and \(|x| \leq 1\), then \(T^{-1} x = (\xi_i)^n \in \mathbb{B}_p^n\) with
\(|| (\xi_i) ||_{\mathbb{B}_p^n} \leq C.\]
Proof of part (c). Let \(1 \leq s < n\), \(w \in \{x_i: 1 \leq i \leq s\}\) and \(z \in \{x_i: s < i \leq n\}\). Then \(w = \sum_{i=1}^{s} a_i T e_i\) and \(z = \sum_{i=s+1}^{n} a_i T e_i\).

\[
C \|z + w\| \geq \|T^{-1}\| \|T(\sum_{l=1}^{n} a_l e_i)\|
\]

\[
\geq \|\sum_{l=1}^{n} a_l e_i\|_p^n
\]

\[
\geq \|\sum_{l=1}^{s} a_l e_i\|_p^n
\]

\[
\geq \|\sum_{l=1}^{s} a_l e_i\|_p^n
\]

\[
= \|T\| \|\sum_{l=1}^{s} a_l e_i\|_p^n
\]

\[
\geq \|T(\sum_{l=1}^{s} a_l e_i)\|_p
\]

\[
= \|w\|.
\]
Hence, $\theta(y_i) \geq \frac{1}{C}$.

Corollary I.20. Let E be a \mathcal{D}_p-space. Then there exists a constant C such that every finite codimensional subspace Q contains an n-tuple $(y_i)^n_{i=1}$ of unit vectors in Q with $\varepsilon_q(y_i)^n_1 \leq C$, and $\theta(y_i)^n_1 \geq 1/C$. Furthermore, the corresponding coefficient functionals (y_i^*) on $[y_i:1 \leq i \leq n]$ satisfy

$$\varepsilon_p^*(y_i^*) \leq C$$

Theorem I.21 For $1 \leq p < \infty$, let E be a \mathcal{D}_p-space and $(a_i) \in c_0$ with $0 < a_i < 1$, then there exists a basic sequence (x_i) in E such that $\|x_i\| = a_i$ and $(x_i) \in \ell_q(E)$. In the case $q = +\infty$, we also have $(x_i) \in c_0(E)$. Furthermore, there exists $(f_i) \subseteq [x_i:i \in \mathbb{Z}^+]'$ such that $(a_i f_i) \in \ell_p^*[x_i]$ and $f_i(x_j) = a_i \delta_{ij}$. Finally in the case $p = \infty$, $(a_i f_i) \in c_0([x_i]^*)$.

Proof: Select a subsequence (i_k) of the positive integers satisfying the property: if $i > i_k$, then $a_i \leq 1/2^k$. Let $\sigma_k = \{i_{k-1}+1, \ldots, i_k\}$, $i_0 = 0$. By I.20, there exists $(y_i)_{i \in \sigma_k}$ such that $\|y_i\| = 1$, $\theta(y_i)_{i \in \sigma_k} \geq \frac{1}{C}$ and $\varepsilon_q(y_i) \leq C$. Let $x_i = a_i y_i$, then $\theta(x_i) \geq \frac{1}{C}$ and $\|x_i\| = a_i$. For purposes of notation, let $A_1 = (z_i)^\infty_1$ where
Now, $\epsilon_q(A_i) = \epsilon_q(x_i \in \sigma_1) \leq \left(\sup_{i \in \sigma_1} a_i \right) \epsilon_q(y_i) \leq C$. Select a sequence (ϵ_i) with $0 < \epsilon_i < 1$ and $\Pi(1 - \epsilon_i) = \beta > 0$. Let $F_1 = [x_i : i \in \sigma_1]$. Then by Theorem 1.18, there exists a subspace Q_1 of E such that $\text{codim}_E Q_1 < \infty$ and $I(F_1 : Q_1) > 1 - \epsilon_1$. Applying 1.20 again there exists $(y_i)_{i \in \sigma_2}$ in Q_1 with $||y_i|| = i$, $\theta(y_i) > \frac{1}{C}$ and $\epsilon_q(y_i) \leq C$. If $A_2 = (z_i)_1$, where

$$z_i = \begin{cases} x_i = a_i y_i, & i \in \sigma_2 \\ 0, & \text{otherwise} \end{cases}$$

then arguing as before, we get

$$\epsilon_q(A_2) \leq \frac{1}{2} C.$$

In the same manner as before we get a subspace Q_2 of finite codimension such that $I(F_1 \Theta F_2 : Q_2) > 1 - \epsilon_2$ where $F_2 = [x_i : i \in \sigma_2]$ and a sequence $(y_i)_{i \in \sigma_3}$ in Q_2 with $\theta(y_i)_{i \in \sigma_3} \geq \frac{1}{C}$ and $\epsilon_q(A_3) \leq 1/2^2 C$ where $A_3 = (z_i)$, and

$$z_i = \begin{cases} x_i = a_i y_i, & i \in \sigma_3 \\ 0, & \text{otherwise} \end{cases}$$
Continuing, we get a sequence \(\{Q_k\} \) such that
\[
I(F_1 \otimes \ldots \otimes F_k; Q_k) > 1 - \varepsilon_k
\]
where \(F_k = [x_i: i \in \sigma_k] \) and sequences
\[
\{y_i\}_{i \in \sigma_k} \text{ in } Q_k,
\]
\[
\theta(y_i)_{i \in \sigma_{k+1}} \geq \frac{1}{C} \quad \text{and} \quad \varepsilon_q(A_k) \leq \frac{1}{2^{k-1}} C
\]
where \(A_k = (z_i) \) and
\[
z_i = \begin{cases}
x_i = a_i y_i, & i \in \sigma_k \\
0, & \text{otherwise}
\end{cases}
\]
Finally,
\[
\varepsilon_q(x_i) \leq \sum_{k=1}^{\infty} \varepsilon_q(A_k)
\]
\[
\leq \sum \frac{1}{2^{k-1}} C
\]
\[
\leq 2C
\]
It now follows from the construction and Theorem 1.17 that \((x_i) \) is a basic sequence. We now turn our attention to the task of defining the \((f_i) \). Let \((y_i')_{i \in \sigma_k} \) be the functionals given in 1.20 corresponding to the \((y_i)_{i \in \sigma_k} \) above. We define the \(f_i \)'s as follows:
\[
f_i(x_j) = \begin{cases}
y_i'(x_j) = a_i \delta_{ij}, & \text{if } i \text{ and } j \text{ are not in the same } \sigma_k \\
0, & \text{otherwise}
\end{cases}
\]
It is clear that the \(f_i \)'s are bounded functionals on \[x_i: i \in \mathbb{Z}^+\] since \((x_i) \) is a basic sequence. Note that if
$i \in \sigma_k$, then $f_i = y_i'(P_{i_k} - P_{i_{k-1}})$. Let the basis constant of (x_i) be M. Then,

$$\epsilon^*_p(a_if_i) = \sup(\sum_{i=1}^{\infty} |a_i < x, f_i > |P|^{1/p})$$

$$= \sup(\sum_{k=1}^{\infty} \sum_{i \in \sigma_k} |a_i y_i'(P_{i_k} - P_{i_{k-1}}) x|P|^{1/p})$$

$$\leq 2M \sum_{k=1}^{\infty} \epsilon^*_p(a_i y_i') \sum_{i \in \sigma_k}$$

$$\leq 2M \sum_{k=1}^{\infty} \frac{C}{2^{k-1}}$$

$$= 4MC.$$

Corollary 1.22 If E is a D_p-space, then E contains a subspace E_0 which is a S_p-space.

Corollary 1.23 If E is a Banach space and (a_i) is as in Theorem 1.21, then there is a basic sequence (x_i) in E such that $||x_i|| = a_i$ and $\epsilon_2(x_i) < +\infty$. Further, there exists functionals (f_i) on $[x_i: i \in \mathbb{Z}^+]$ such that $f_i(x_j) = a_i f_i$, and $\epsilon_2(a_i f_i) < +\infty$.

Remark 1.24 If in 1.21 we allowed E to be an S_p-space, then the sequence of functionals (f_i) could be taken to be defined on E instead of the subspace $[x_i: i \in \mathbb{Z}^+]$.
Proof: In the proof of 1.21, let \(P_{\sigma_k} \) be the projections from \(E \) onto \([x_i : i \in \sigma_k] \). Now define \(F_i = f_i P \) where \(i \in \sigma_k \). Now \(\epsilon^*_p(a_i F_i) = \sup_{x \in E} (\sum_{i \in \sigma_k} |a_i F_i(x)|_p)^{1/p} \)

\[
= \sup_{k=1}^{\infty} \sum_{i \in \sigma_k} |a_i F_i(x)|_p^{1/p}
\]

\[
\leq \sum_{k=1}^{\infty} \sup_{i \in \sigma_k} (\sum_{i \in \sigma_k} |a_i F_i(x)|_p)^{1/p}
\]

\[
\leq \sum_{k=1}^{\infty} \sup_{i \in \sigma_k} (\sum_{i \in \sigma_k} |a_i f_i P_{\sigma_k}(x)|_p)^{1/p}
\]

\[
\leq \sum_{k=1}^{\infty} \sup_{i \in \sigma_k} (\sum_{z \in [x_i]} |a_i f_i P_{\sigma_k}(z)|_p)^{1/p}
\]

\[
\leq C \sum_{k=1}^{\infty} \frac{1}{2^{k-1}}
\]

\[
\leq 2MC, \text{ where } M = \sup_{k} ||P_{\sigma_k}||.
\]

Our final result of this chapter combines the Principle of Local Reflexivity with the techniques of 1.21 to construct an analogous sequence in \(E' \). These two results will almost characterize the diagonal operators on \(l_p \)-spaces which are totally factorable.

Theorem 1.25 Let \(E \) be a Banach space and \((\lambda_i) \) as in 1.21. Then, there exists a basic sequence \((x_i) \) in \(E \), and \((f_i) \) in \(E' \) satisfying
i. \[||x_i|| \leq 2 \]

ii. \[<x_i, f_j> = \delta_{ij} \]

iii. \[\epsilon_2(\lambda_i f_i) < +\infty \]

Proof: Set a subsequence \((i_k)\) of \(Z^+\) satisfying the property: If \(i > i_k\), then \(\lambda_i \leq \frac{1}{2^k}\). Without loss of generality we may assume that \(\lambda_i \leq 1\) for all \(i\). Let \(i_k = \{1, 2, \ldots, i_k\}\) and \(\sigma_k = \{i_{k-1}+1, \ldots, i_k\}\), where \(k = 1, 2, \ldots, i_0 = 0\), and \(m_k = i_k - i_{k-1}\). By I.9, there exists \([f_i: i \in \sigma_1]\) in \(E'\) such that \(d([f_i: i \in \sigma_1], \frac{m_1}{2} < 2\) and \(\theta(f_i)_{i \in \sigma_1} > \frac{1}{2}\). Let \(\{F_i: i \in \sigma_1\}\) consist of elements of \(E''\) which are biorthogonal to \((f_i)_{i \in \sigma_1}\) with \(||F_i|| < 2\). By local reflexivity, there exists \((x_i)_{i \in \sigma_1}\) in \(E\) biorthogonal to \((f_i)_{i \in \sigma_1}\) and \(||x_i|| \leq 2\). Let \(Y_1 = [f_i: i \in \sigma_1]\), then \(E = Y_1 \oplus [x_i: i \in \sigma_1]\) and \(Y_1 = [f_i: i \in \sigma_1]\). Pick a subspace \(Q_1\) of \(E'\) such that \(I([f_i: i \in \sigma_1]; Q_1) > 1-\epsilon_1\). If \(q \in Q_1\), then there exists a \(y \in Y\) such that \(q(y) \neq 0\). But, since \([x_i: i \in \sigma_1] \cap [y] = 0\), then \(q([x_i: i \in \sigma_1]) \equiv 0\), i.e. \(q \in [x_i: i \in \sigma_1]\). Select \((f_i)_{i \in \sigma_2}\) in \(Q_1\) such that \(d([f_i: i \in \sigma_2], \frac{m_2}{2} < 2\) and \(\theta(f_i)_{i \in \sigma_2} > \frac{1}{2}\). View each \(f_i, i \in \sigma_2\), as a linear functional on \(Y_1\). Note that \(f_i(Y_1) \neq 0\) for each \(i \in \sigma_2\). Now find \((F_i)_{i \in \sigma_2}\) in \(Y''\) and \((x_i)_{i \in \sigma_2}\) in \(Y_1\) as before. Now, define \(Y_2 = [f_i: i \in \sigma_2]\). Choose \(Q_2\) to be a subspace of \(E'\) such that
In the inductive step
\[Y_k = [f_i]_{i \in \sigma_1} \ldots \sigma_k \]
and
\[I([f_i]_{\sigma_1} \ldots \sigma_k ; Q_k) > 1 - \epsilon_k. \]

Now \((f_i)\) is a basic sequence in \(E'\) with \(\epsilon_2(\lambda_i f_i) < +\infty\) (see the proof of I.21). \((x_i)\) is a basic sequence with coefficient functionals \((f_i)\) by IV.5.

We end this chapter with a summary of the major results of this chapter.

Theorem I.26 Let \(E\) be a Banach space and \((a_i)\) be as in I.21. Then,

(i) there exists a basic sequence \((x_i)\) and functionals \((f_i)\) defined on \([x_i : i \in \mathbb{Z}^+]\) such that \(\epsilon_2(x_i) < +\infty\), \(\epsilon_2(a_i f_i) < +\infty\), and \(\langle x_i, f_j \rangle = a_i \delta_{ij}\).

(ii) there exists a basic sequence \((x_i)\) and functionals \((f_i)\) defined on \(E\) such that \(\epsilon_2(x_i) < +\infty\),
\(\langle x_i, f_j \rangle = a_i \delta_{ij}\), and \(||f_i||_i \rightarrow 0\).

(iii) there exists a basic sequence \((x_i)\) in \(E\) and functionals \((f_i)\) defined on \(E\) such that \(||x_i||\) is bounded,
\(\langle x_i, f_j \rangle = \delta_{ij}\), and \(\epsilon_2(a_i f_i) < +\infty\).

We conclude this chapter with the observation that
(i) above is the best possible result, i.e. we can not get
functionals \(f_i \) defined on \(E \). The operator in II.4 (a diagonal operator \(D_a : \ell_2 \to \ell_2 \) corresponding to an element of \(c_0 \)) shows that we cannot improve I.26 such that \(f_i \in E' \) instead of \([x_i]' \). In II.4 we show that \(D_\infty \) factors through a subspace of \(E \). If \(f_i \in E' \) for all \(i \), then the factorization can be taken through \(E \), i.e., \(D_\infty \) would factor through every Banach space. In particular, \(D_\infty \) would factor through \(\ell_1 \). But by 0.13 this would imply that \(D_\infty \) is absolutely summable. But this is a contradiction.
Chapter II
TOTALLY FACTORABLE OPERATORS

In this chapter, we will use I.23 and I.25 to show that
certain diagonal operators between ℓ^p-spaces will factor
through every Banach space. In fact we give an almost com­
plete characterization of these operators. The only instance
in which we fail is when $p>2$ and $q>2$. We note here that
this case includes the universal nuclear operators, i.e. a
diagonal operator (corresponding to an ℓ_1-sequence) from c_0
into ℓ_1. If we could prove that the nuclear operators were
totally factorable, then we could in turn prove the "Little
Grothendieck" conjecture: If $K(E,E) = \eta(E,E)$, then dim
$E < +\infty$.

In the first part of the chapter we introduce locally
and totally factorable operators. Next, we give a series of
results which almost characterize the diagonal totally factor­
able operators. At the end of these results we give a table
listings most of our results concerning totally factorable
diagonal operators. In the final chapter, we will give other
examples of totally factorable operators. In particular, we
will show that the natural injections

\[\ell_1 \rightarrow \ell_\infty \]

and

31
are totally factorable.

We end this chapter with an investigation of the Grothendieck conjecture.

To begin this chapter, we need the following notation:

For $1 \leq p, q \leq +\infty$ and $1/p + 1/p' = 1/q + 1/q' = 1$,

1. $\alpha(p, q) = \min \{p, p', q, q'\}$
2. $\omega(p, q) = \max \{p, p', q, q'\}$
3. $\phi(p, q) = \left\{q^{-1} - p^{-1} + \frac{1}{2}\right\}^{-1}$

Note that $\frac{1}{\alpha(p, q)} + \frac{1}{\omega(p, q)} = \frac{1}{\phi(p, q)} + \frac{1}{\phi(q, p)} = 1$.

In the results to follow $D_r: \ell_p \to \ell_q$ is a diagonal operator corresponding to a sequence $(\lambda_i) \in \ell^r$. For $r = \infty$, $(\lambda_i) \in c_0$. For convenience, we will sometimes abbreviate this by $D_r(\lambda_i)$. Nothing is lost by assuming that $1 > \lambda_i > 0$ for all i, so this assumption is made.

Definition II.1 Let $T \in \mathcal{L}(E, F)$. T is a locally factorable operator if for every infinite dimensional Banach space X, there exists a subspace $X_0 \subset X$, and operators A, B such that $A \in \mathcal{L}(E, X_0)$, $B \in \mathcal{L}(X_0, F)$ and $T = BA$. T is totally factorable if we can always take X_0 to be X itself.

Remark II.2 Let T be a totally (locally) factorable operator from E into F and $V \in \mathcal{L}(X, E)$ and $W \in \mathcal{L}(F, Y)$ for arbitrary
Banach spaces X and Y, then WTU is totally (locally) factorable.

Theorem II.3 An operator $T : E \mapsto F$ is locally factorable if and only if $iT : E \mapsto \ell_\infty(\Gamma)$ is totally factorable, where i is an isometry from F into $\ell_\infty(\Gamma)$ for some Γ.

Proof: (Sufficiency) This follows immediately from the fact that $\ell_\infty(\Gamma)$ has the extension property. See the following diagram. Here $\Gamma = U_F$.

$$\begin{array}{ccc}
E & \xrightarrow{T} & F \\
\downarrow{A} & & \downarrow{B} \\
X_o & \xrightarrow{S} & X \\
\end{array}$$

S extends iB.

Proof of Necessity: If $iT : E \mapsto \ell_\infty(\Gamma)$ is totally factorable, then given X, there exists $A \in \mathcal{L}(E, X)$ and $B \in \mathcal{L}(X, \ell_\infty(\Gamma))$ such that $T = BA$. Let $X_o = B^{-1}(iF)$ and $\hat{B} = i^{-1}B|_{X_o}$. Then $T = \hat{B}A$, since $A(E) \subseteq X_o$.

Proposition II.4 Let $D : \ell_2 \mapsto \ell_2$, then D is locally factorable.

Proof: Let E be an arbitrary Banach space. Let $D_\infty(\lambda_i)$. Without loss of generality we may assume that $0 < \lambda_i < 1$. For the sequence $\{\sqrt{\lambda_i}\}$, let $E_o = \{x_i : i \in \mathbb{Z}^+\}$, where (x_i) is the basic sequence from II.23 with corresponding functionals (f_i). Define $A : \ell_2 \mapsto E_o$ by $A(\xi_i) = \sum_{1}^{\infty} \xi_i x_i$, then
\[|A(\xi_i)| = \left| \sum_{i=1}^\omega \xi_i x_i \right| \]
\[= \sup_{f \in \mathcal{U}_E} |f(\sum_{i=1}^\omega \xi_i x_i)| \]
\[= \sup_{f \in \mathcal{U}_E} |\sum_{i=1}^\omega \xi_i f(x_i)| \]
\[\leq \sup_{\xi} |\xi|_2 \varepsilon_2(x_1) \]

Hence \(|A| \leq \varepsilon_2(x_1) \). Now define \(B : E \rightarrow \ell_2 \) by \(B(e) = (\sqrt{\lambda_i} f_i(e)) \). Then \(|B| \leq \varepsilon_2(f_1) \). Clearly \(D_\infty = BA \).

Corollary II.5 Let \(H_1 \) and \(H_2 \) be two Hilbert spaces and \(T \in \mathcal{K}(H_1, H_2) \), then \(T \) is locally factorable.

Proof: If \(T \in \mathcal{K}(H_1, H_2) \), then \(T = \sum \lambda_i e_i \otimes f_i \) where \((\lambda_i) \in \ell_1 \) and \((e_i), (f_i) \) are orthogonal subsets of \(H_1 \) and \(H_2 \) respectively. The proof is now constructed as in II.4.

Lemma II.6 Let \(E \) be an arbitrary Banach space and \(H \) a Hilbert space. If \(T \in \mathcal{K}(E, H) \), then \(T = BA \), where \(B \in \mathcal{K}(H, H) \) and \(A \in \mathcal{L}(E, H) \). Furthermore \(T \) is locally factorable.

Proof: Since \(T \) is compact, the closure of the range of \(T \) must be separable. Hence we may assume that \(H = \ell_2 \). The proof requires use of a well-known result concerning compactness in a space with a basis: Let \(X \) be a subset of a Banach space with basis \((x_i) \), then the closure of \(X \) is compact if and only if \((\sum_{i=1}^\omega a_i x_i) \) coverages uniformly to zero in norm for every \(x = \sum_{i=1}^\omega a_i x_i \in X \). For \(x \in E \), \(Tx = \sum_{i=1}^\omega <x, T_i e_i> e_i \).
Pick N_1 such that

$$|| \sum_{N_1}^\infty <x, T_i> e_i || < \frac{1}{2^n}$$

for every $x \in \mathcal{U}_E$. Let $\sigma_k = \{N_{k-1} + 1, N_k\}$. In general, pick N_m such that

$$|| \sum_{N_m}^\infty <x, T_i> e_i || < \frac{1}{2^{2m}}$$

for each $x \in \mathcal{U}_E$. Then $T = BA$ where $A : E \to \ell_2$ and $B : \ell_2 \to \ell_2$ are defined by formulas

$$A(x) = \sum_{m=1}^\infty \sum_{i \in \sigma_m} 2^{m-1} <x, T_i>e_i$$

$$B(\xi_i) = \sum_{m=1}^\infty \sum_{i \in \sigma_m} \frac{1}{2^{m-1}} \xi_i e_i.$$

That T is locally factorable follows from II.5.

Corollary II.7 Let H be a Hilbert space and E a Banach space, then every compact operator $T : H \to E$ is locally factorable.

Proof: If $T : H \to E$ is compact, then $T^* : E' \to H$ is compact.

By II.6 we have the following diagram

$$\begin{array}{ccc}
E' & \xrightarrow{T^*} & H \\
A & \downarrow & B \\
H & \leftarrow &
\end{array}$$
with B compact. Thus, we have by taking adjoints again the diagram

\[
\begin{array}{ccc}
H & \xrightarrow{T^{**}} & E'' \\
\downarrow B^* & & \downarrow A^* \\
H & \xrightarrow{T^*} & \end{array}
\]

Note that \(T^{**} x = T x \) for every \(x \in H \). Let \(\bar{A} = A^*P \) where \(P \) is a projection on \((A^*)^{-1}(E) \). Then \(T = \bar{A}B^* \). Since \(B^* \) is compact, \(B^* \) and therefore \(T \) is locally factorable.

Theorem II.8 Every quasi-nuclear \(T : E \to F \) is locally factorable.

Proof: If \(T \) is a quasi-nuclear operator, then by 0.10 iT is nuclear, and hence factors compactly through \(\ell_2 \) by Grothendieck's factorization of nuclear operators (0.7). Let \(iT = T_2 T_1 \) where \(T_1 \in K(E, \ell_2) \) and \(T_2 \in K(\ell_2, \ell_\infty(\Gamma)) \). Let \(T_1 = BA \) be a local factorization of \(T_1 \) and \(\bar{B} = i^{-1}T_2PB \) where \(P : \ell_2 \to T_2^{-1}(iF) \) is a projection. Thus \(T = \bar{B}A \) is a local factorization of \(T \).

Before beginning our characterizations of some of the diagonal totally factorable operators we will need results of Garling[11] and Tong[37], respectively.

Theorem II.9[11] The operator \(D_s \) is r- absolutely summing \((1 < r < \infty)\) from \(\ell_p \) into \(\ell_q \) if and only if the following conditions are satisfied:
(i) if $1 \leq p', l < 2$ and $p' < s$

$s = p'$ for $0 < r < p'$

$s = r$ for $p' \leq r < q$

$s = q$ for $q < r$.

(ii) if $1 < p' = q < 2$,

$s = p'$ for $1 \leq s < p'$,

$s = p'$ for $p' \leq r$;

(iii) if $p' = q = 2$, $s = 2$ for all values of r;

(iv) if $1 < q < q' < 2$, $s = q$ for all values of r;

(v) if $1 < q < 2$ and $2 < p' < \infty$,

$s = \phi(p, q)$ for all values of r;

(vi) if $2 < q' < \infty$,

$s = p'$ for $0 \leq r < p'$

(vii) if $2 < p' < q < \infty$,

$s = p'$ for $0 \leq r < p'$,

$s = r$ for $p' \leq r < q$;

and
Theorem II.10[37] The diagonal operator D_s is nuclear from l_p into l_q if and only if the following conditions are satisfied:

i. if $1 < q < p < \infty$, $s = 1$

ii. if $1 < p < q < \infty$, $s = \frac{pq}{pq + p - q}$

iii. if $q = \infty$ and $1 < q < \infty$, $s = \frac{p}{p - 1}$

iv. if $q = \infty$ and $p = 1$, $s = \infty$

Before proceeding, we will need a result concerning elements of l_p.

Lemma II.11 If $1 \leq p < \infty$, $(a_i) \in l_p$ and $\epsilon < 0$, then there exists a sequence of numbers of λ_i, $0 < \lambda_i < 1$, tending to zero, such that $\|a_i/\lambda_i\|_p < \|a_i\|_p + \epsilon$.

Proof: Let $N_{j+1} > N_j$ be such that $\frac{\epsilon}{2^j (j+1)p} < \frac{|a_i|^p}{N_{j+1}}$ for $j = 1, 2, \ldots$. Let $\sigma_j = \{N_{j+1}, \ldots, N_j + 1\}$.

Let

$$\lambda_i = \begin{cases}
1 & \text{for } i \leq N_1 \\
\frac{1}{j} & \text{for } i \in \sigma_j
\end{cases}$$

then $\sum_{i=1}^{\infty} |\frac{a_i}{\lambda_i}|^p$
which implies that

\[\| \alpha_i / \lambda_i \|_p \leq \varepsilon / 2 + (\sum_{i=1}^{N_1} |\alpha_i|^p)^{1/p} \]

and the desired result is obtained.

Corollary II.12 Let \((\lambda_i) \in \ell_\infty \), then \(\lambda_i = \alpha_i \beta_i \gamma_i \) where \(\frac{1}{r} = \frac{1}{p} + \frac{1}{q} \), \((\alpha_i) \in \ell_p \), \((\beta_i) \in \ell_q \), and \((\gamma_i) \in \ell_\infty \).

Theorem II.13 The diagonal operator

\[D_\omega : \ell_1 + \ell_2 \]

is totally factorable.
Proof: Let $D_\infty \sim (\lambda_i)$. Let E be an infinite dimensional Banach space. Then by I.25 there exists a basic sequence (x_i) in E and (f_i) in E' with $||x_i|| \leq 2$, $\langle x_i, f_j \rangle = \delta_{ij}$ and $\varepsilon_2(\lambda_i f_i) < +\infty$. Define $A: \ell_1 \to E$ by

$$A(\xi_i) = \sum_{i=1}^{\infty} \xi_i x_i;$$

and

$$B: E \to \ell_2$$

by

$$B(e) = (\langle e, \lambda_i f_i \rangle).$$

Then $||A|| \leq 2$, $||B|| \leq \varepsilon_2(\lambda_i f_i)$ and $D_\infty = BA$.

Theorem II.14 If $p \leq 2$, then

$$D_q: \ell_p \to \ell_q$$

is totally factorable.

Proof: Let $D_q \sim (\lambda_i)$ and E be infinite dimensional. By II.11 $\lambda_i = \alpha_i \beta_i$ where $(\alpha_i) \in c_0$ and $(\beta_i) \in \ell_q$. Now, consider the following diagram.
where \(i \) and \(j \) are natural injections; \(D_\infty (\alpha_i) \) and \(S \) is a diagonal operator corresponding to \((\beta_i) \). By II.4 \(D_\infty \) factors through a subspace \(E_\infty \) of \(E \). Let \(D_\infty = BA \) be the factorization through \(E_\infty \). Then \(jB \) maps \(E_\infty \) into \(l_\infty \). Since \(l_\infty \) has the extension property, \(jB \) can be extended to an operator \(jB \) from \(E \) into \(l_\infty \). Hence \(D_q \) factors through \(E \).

Theorem II.15 If \(p < 2 \), then

\[
D_r : l_p + l_q
\]

is totally factorable when \(r = \phi(p,q) \).

Proof: Let \(D_r (\lambda_i) \) and \(\lambda_i = a_i \beta_i \gamma_i \) (by II.12) where

\[
\frac{1}{t} = \frac{1}{2} - \frac{1}{p}, \quad (\lambda_i) \epsilon l_t, \quad (a_i) \epsilon l_q, \quad \text{and} \quad (\beta_i) \epsilon c_\infty.
\]

Now consider the diagram
where

\[D_t \sim (\alpha_i) \]

\[D_q \sim (\beta_i) \]

\[D_\infty \sim (\gamma_i) \]

The proof is now completed as in II.14.

Theorem II.16 \hspace{1em} \text{If } 1 \leq p < 2 < q, \text{ then}

\[D_r : \ell_p + \ell_q \]

is totally factorable if and only if \(r = \omega(p,q) \).

Proof: Consider the following diagram
Now, $D_\alpha(p,q)$ is absolutely summing by (i), (ii), (iii), and (iv) of II.9. The operator $D_\alpha(p,q)B$ is absolutely summing by 0.16, and hence $D_\alpha(p,q)B$ and $D_\alpha(p,q)D_r = D_\alpha(p,q)BA$ is nuclear by 0.15 and 0.16. By II.10 $D_\alpha(p,q)D_r$ is a diagonal operator corresponding to an ℓ_1 sequence. Hence $r \leq \omega(p,q)$.

Sufficiency: If $q \leq p'$, then $\omega(p,q) = p'$ and $D_\beta' : \ell_p + \ell_q$ factors in the following manner.

$$
\begin{array}{c}
\ell_p \\
D_p' \\
D \\
\ell_1 \\
\ell_2 \\
\ell_q \\
D_\alpha \\
\ell_p + \ell_q
\end{array}
$$

D is a diagonal operator corresponding to an element of ℓ_p'. The map D_p' is totally factorable since D_α is totally factorable. If $p' \leq q$ then $D_q : \ell_p + \ell_q$ is totally factorable by II.14.

Theorem II.17 If $1 \leq q \leq 2p$, and if

$$D_r : \ell_p + \ell_q$$
is totally factorable then $r < \phi(p,q)$.

Proof: We need to break the proof into two parts.

Part 1. $q < p'$

Consider the following diagram

\[
\begin{array}{ccc}
\ell_p & \xrightarrow{D_r} & \ell_q \\
& \SEarrow & \xrightarrow{D_q'} \SEarrow & \ell_p \\
\text{A} & \xrightarrow{c_0} & \odot & \xrightarrow{B} & \odot
\end{array}
\]

By II.9, parts (iii), (vi) and (vii) D_q' is absolutely summing. The proof is now completed as in II.16.

Part 2. $p' < q$

Consider the following diagram

\[
\begin{array}{ccc}
c_0 & \xrightarrow{D_p} & \ell_p \\
& \SEarrow & \xrightarrow{D_r} \SEarrow & \ell_q & \xrightarrow{\ell_2} \\
\text{A} & \xrightarrow{c_0} & \odot & \xrightarrow{B} & \odot
\end{array}
\]

By 0.13 B is absolutely summing. Now as before, the proof is completed.

Theorem II.18 If $p, q < 2$, then

\[
D_r : \ell_p \rightarrow \ell_q
\]

is totally factorable if and only if $r = \phi(p,q)$.

Proof: (Necessity) Consider the following diagram
\(D_\phi(q,p) \) is absolutely summing by II.9 (vi). Now, as in II.16 the proof is completed. Sufficiency: For \(r = \phi(p,q) \), the operator \(D_r \) factors in the following manner.

\[
\begin{align*}
\ell_p & \xrightarrow{D_p} \ell_1 \\
\ell_1 & \xrightarrow{D_\infty} \ell_2 \\
\ell_2 & \xrightarrow{D_t} \ell_q
\end{align*}
\]

with \(D_\infty \) totally factorable and \(\frac{1}{t} = \frac{1}{q} - \frac{1}{2} \).

Theorem II.19 If \(p,q,2 \), then

\[D_r: \ell_p + \ell_q \]

is totally factorable if and only if \(r = \phi(p,q) \).

Proof: (Necessity) Consider the following diagram

\[
\begin{align*}
\ell_p & \xrightarrow{D_p} \ell_1 \\
\ell_1 & \xrightarrow{D_r} \ell_q \\
\ell_q & \xrightarrow{D_t} \ell_2
\end{align*}
\]

where \(\frac{1}{t} = \frac{1}{2} - \frac{1}{q} \). The proof is completed as in II.17.

Sufficiency: See II.15.
We take this opportunity to summarize the preceding results in table form:

<table>
<thead>
<tr>
<th>$D_r: \ell^p \rightarrow \ell^q$</th>
<th>Sufficient Condition $r = \phi(p,q)$</th>
<th>Necessary Condition $r = \phi(p,q)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$p, q \leq 2$</td>
<td>$\phi(p,q)$</td>
<td>$\phi(p,q)$</td>
</tr>
<tr>
<td>$p, q \geq 2$</td>
<td>$\phi(p,q)$</td>
<td>$\phi(p,q)$</td>
</tr>
<tr>
<td>$p \leq 2 < q$</td>
<td>$\omega(p,q)$</td>
<td>$\omega(p,q)$</td>
</tr>
<tr>
<td>$p > 2 > q$</td>
<td>$\phi(p,q)$</td>
<td>$\alpha(p,q)$</td>
</tr>
</tbody>
</table>

Remark 11.20 Combining the proofs of propositions 11.15 and 11.19, we obtain new information about the Hilbert-Schmidt operators.

Definition 11.21 Let E and F be Hilbert spaces, then T is a Hilbert-Schmidt operator if for every pair of complete orthonormal systems $(e_i)_{i \in J}$, $(f_j)_{j \in J}$ of E and F respectively, we have

$$\sum_i ||T e_i||^2 = \sum_j ||T f_j||^2 < +\infty.$$

Theorem 11.22 T is a Hilbert-Schmidt operator if and only if T is a totally factorable operator.

Corollary 11.23 (Pietsch [34]) If T is a Hilbert-Schmidt operator, then T is absolutely summing.
Proof: Combine 0.13 and II.22

Remark II.23 A. Pelczyński has shown in [30] that the Hilbert-Schmidt operators coincide with the absolutely p-summing operators for all p.

Remark II.24 It was previously pointed out in Chapter I that it is conjectured that every Banach space is either a S_1^-, S_2^-, or S_∞^- space. If this conjecture is true, then we could show in the case $p>2>q$ that the operator $D_\alpha(p,q)$ factors through every Banach space.

In the rest of this chapter we investigate the two conjectures of Grothendieck discussed previously. We give a proof of the result of Johnson[18] which answers the "Little Grothendieck" conjecture for the case E has LUST. In fact, we prove the result in the more general case where E is a S_p^- space for any p. We achieve this by showing that if every nuclear operator factors through E, then $K(E,E) \neq \eta(E,E)$. This naturally brings up the question: What Banach spaces have the property that they admit a factorization of every nuclear operator?

We end this chapter with another interesting question: What conditions can be placed on the domain and range of a nuclear operator $T:E\to F$ to insure that it is totally factorable? One answer is: If E is a L_2^- space (Hilbert space) or F is a L_p^- space for $p>2$, then T is totally factorable. We conjecture that if E is a L_p^- for $p<2$, then T is totally factorable.
Theorem II.25 Let E be an infinite dimensional Banach space and suppose that every nuclear operator factors through E, then $K(E,E) \not= \eta(E,E)$.

Proof: Let T be a nuclear operator on E, then by 0.7, the following factorization is possible

$$
\begin{array}{cccc}
E & \overset{T}{\to} & E \\
\downarrow A & & \downarrow B \\
\downarrow D & & \downarrow L_1 \\
C_0 & \overset{D}{\to} & E \\
\end{array}
$$

where A, B are compact and D is nuclear. Now, if every nuclear operator factors through E, then D factors through E producing the following diagram

$$
\begin{array}{cccc}
E & \overset{T}{\to} & E \\
\downarrow A' & & \downarrow B' \\
\downarrow E & & \downarrow E \\
\end{array}
$$

where A', B' are compact, and hence nuclear by assumption.

In a paper to be published by Retherford, Johnson and König, they prove the following result: If $T=BA$ where $B \in \Pi_2(E,E)$ and $A \in \Pi_2(E,E)$ then $\Sigma |\lambda_i(T)| < +\infty$, where $(\lambda_i(T))$ are the eigenvalues of T. They also prove that if $T \in N(E,E)$ implies $\Sigma |\lambda_i(T)| < +\infty$, then E is isomorphic to a Hilbert space. This contradicts the diagram since it is well-known that there exists compact operators on infinite dimensional Hilbert spaces which are not nuclear.

The above results suggest that the problem of showing that every nuclear operator is totally factorable must be
very difficult. (In fact, all we really need to solve the "Little Grothendieck" conjecture is to show that every nuclear operator on E will factor compactly through E). The next result gives equivalent conditions for a nuclear operator to factor through a Banach space E.

Theorem II.26 Let E be a Banach space, then the following statements are equivalent:

(i) Every nuclear operator factors through E.

(ii) Every nuclear diagonal operator $D_1 : c_0 \to \ell_1$ factors through E.

(iii) For every $(\lambda_i) \in \ell_1$, there exists sequences (x_i) and (f_i) in E and E' respectively such that $\varepsilon_1(x_i) < +\infty$, $\varepsilon_1^*(f_i) < +\infty$, and $\langle x_i, f_j \rangle = \lambda_i \delta_{ij}$.

Proof: (i) and (ii) are equivalent by 0.7. (ii) implies (iii). Let $D_1 = BA$ be a factorization of D_1 through E. Define $x_i = A e_i$. Since $\varepsilon_1(e_i) < +\infty$ it follows that $\varepsilon_1(A e_i) = \varepsilon_1(x_i) < +\infty$. Define (f_i) to be the coordinate functional obtained from the operator $B : E \to \ell_1$. By definition $\varepsilon_1^*(f_i) < +\infty$.

(iii) implies (ii). Define $A : c_0 \to E$ by $A(\xi_1) = \sum \xi_i x_i$ and $B : E \to \ell_1$ by $Be = \langle e, f_i \rangle$.

In the results to follow, we essentially show (although, not directly) that every S_p-space satisfies II.26 iii. And, since every space with LUST is either a S_1, S_2 or S_∞-space, it follows that every nuclear operator factors through every
Theorem II.27 Let E be a S_p-space and $D_{\infty}:\ell_p \to \ell_p$ a diagonal operator, then D_{∞} factors through E.

Proof: Let $D_{\infty}^{\vee}(\lambda_i)e_i \in c_0$. Apply I.24 to the sequence $(\sqrt{\lambda_i})$ to obtain a basic sequence (x_i) in E and functionals (f_i) defined on E satisfying $\varepsilon_q(x_i) < +\infty$; $\|x_i\| = \sqrt{\lambda_i}$; $f_j(x_i) = \sqrt{\lambda_i} \delta_{ij}$ and $\varepsilon_p^{\vee}(\sqrt{\lambda_i} f_i) < +\infty$. Consider the following diagram

\[
\begin{array}{ccc}
\ell_p & \xrightarrow{A} & \ell_p \\
\downarrow & & \downarrow \\
E & \xrightarrow{B} & E
\end{array}
\]

where $A(x_i) = \sum \xi_i x_i$ and $Bx = (\sqrt{\lambda_i} f_i(x))$. Then $\|A\| \leq \varepsilon_p(x_i)$ and $\|B\| \leq \varepsilon_p^{\vee}(\sqrt{\lambda_i} f_i)$. Clearly $D_{\infty} = BA$.

Theorem II.28 Every nuclear operator will factor compactly through any S_p-space. In particular, every nuclear operator will factor compactly through every space with LUST.

Proof: By II.26 we may assume that our nuclear operator is a diagonal operator, $D_1:c_0 \to \ell_1$ corresponding to an element of ℓ_1. By II.2 a $D_1 = D_p D_{\infty} D'$ where $D_p:c_0 \to \ell_p$, $D_{\infty}:\ell_p \to \ell_p$ and $D':\ell_p \to \ell_p$. Now D_p and D' are compact, and by II.27 D factors through every S_p-space.

Corollary II.29 Let E be a S_p-space for some p, then $K(E,E) \neq \eta(E,E)$.

space with LUST.
Proof: See II.25 and II.28

Corollary II.30 If E is a S_p - space, then for any positive integer m, there exists a compact operator T on E such that T^m is not nuclear, but T^{m+1} is nuclear. Also, there exists a compact operator S on E such that S^n is not nuclear for any n.

Proof: See II.10 and II.27.

We conclude this chapter by showing that certain conditions on the domain and range insures that a nuclear operator will be totally factorable.

Theorem II.31 Let H be a Hilbert space; and $T:H+F$ a nuclear operator, then T is totally factorable.

Proof: By 0.7 the following factorization of T is possible.

\[
\begin{array}{ccc}
H & \xrightarrow{A} & F \\
\downarrow & & \downarrow \\
\ell_\infty & \xrightarrow{D} & \ell_1 \\
\end{array}
\]

where A is compact. By II.8 A is locally factorable. But since ℓ_∞ has the extension property, A is also totally factorable.

Our next goal is to show that a nuclear operator into a ℓ_p-space for $p \geq 2$ must also be totally factorable. To aid us in this task, we need two major results, due to
Theorem II.32 Let F be an l_r-space where $1<r<2$ and $1<p<2$, then $\pi_p(F,E) = \pi_1(F,E)$.

Theorem II.33 If E has LUST and $T\in \pi_1(E,F)$, the T factors through some $L_1(\mu)$-space.

Theorem II.34 Let F be a L_p-space for $p>2$ and $T: E \to F$ a nuclear operator, then T is totally factorable.

Proof: Case $p<+\infty$. Because of 0.7 we may assume that our situation is as follows

\[
\begin{array}{cccccc}
\mathbb{C}_0 & \xrightarrow{D_1} & \ell_1 & \xrightarrow{K} & F \\
\downarrow{D_2} & & & & \\
\ell_2 & \xrightarrow{D_2'} & \ell_1 & \xrightarrow{K} & F
\end{array}
\]

Now D_1 factors through ℓ_2 giving us the diagram

\[
\begin{array}{cccccc}
\mathbb{C}_0 & \xrightarrow{D_1} & \ell_1 & \xrightarrow{K} & F \\
\downarrow{D_2} & & & & \\
\ell_2 & \xrightarrow{D_2'} & \ell_1 & \xrightarrow{K} & F
\end{array}
\]

Taking adjoints our diagram becomes

\[
\begin{array}{cccccc}
F' & \xrightarrow{K^*} & \ell_\infty & \xrightarrow{D_2'} & \ell_2 & \xrightarrow{D_2} & \ell_1 \\
\end{array}
\]

By II.9 $D_2':\ell_\infty \to \ell_2$ is absolutely 2-summing. By II.32 $D_2'K^*$ is absolutely 2-summing. Now by II.33 $D_2'K^*$ factors through some $L_1(\mu)$-space. Taking adjoints again our diagram becomes
Lindenstrauss and Pełczyński[26] has shown that every L_p-space, $1 < p < +\infty$ is reflexive. Also, it is well known that the dual of $L_1(\mu)$ is $L_\infty(\mu)$. $B'D$ is extendable since its range lies in a $L_\infty(\mu)$-space, and $T = KD_2D_2^j$.

Case $p = +\infty$. Since D_2^j is compact it factors compactly through a subspace X_0 of X. Since an L_∞-space has the extension property of compact operators[27], $B'D$ can be extended to all of X.

\[
\begin{array}{ccccccc}
 c_0 & \longrightarrow & l_\infty & \overset{D_2^j}{\longrightarrow} & l_2 & \overset{K^{**}}{\longrightarrow} & F \\
 \downarrow & & \downarrow & & \downarrow & & \\
 C & \longrightarrow & X & \subseteq & X & \rightarrow & L_\infty(\mu) \\
 \downarrow & & \downarrow & & \downarrow & & \\
 X_0 & \longrightarrow & X & \longrightarrow & (l_\infty)_1 & \rightarrow & F
\end{array}
\]
III. PRODUCTS

In this chapter, we investigate the relationship between the "Big Grothendieck" conjecture and totally factorable operators. In the beginning we use results and techniques of Chapter II in order to obtain results of Johnson [18] and Retherford and Stegall [36]. Next, we use Banach Ideal theory to show that the product of two totally factorable operators is Cohen 2-nuclear. We end the chapter by showing that the product of two absolutely 2-summing operators is totally factorable.

Theorem III.1. If E and G are S_p-space, then there exists non-nuclear operators in $l(E,F)$ and $l(F,G)$.

Proof: Consider two diagonal operators D_2 and D_∞ on l_p such that D_2D_∞ does not correspond to an l_1 sequence. Consider the diagram

\[
\begin{array}{c}
\ell_p \\
\downarrow \quad \downarrow \quad \downarrow \\
E & F & G \\
\uparrow a & \uparrow b & \uparrow d \\
\ell_p & \ell_p & \ell_p \\
D_\infty & D_2 & D_\infty
\end{array}
\]

The factorizations $D_\infty = ba = fe$ is possible by II.26. And the factorization $D_2 = dc$ is possible by II.18 and II.19. By II.10 neither D_2D_∞ nor $D_\infty D_2$ is nuclear, hence cb and ed are not nuclear.
Corollary III.2. If either E or G is an S_p-space, then there exists a non-nuclear operator from E into G.

As an immediate corollary to the proof of III.1, we obtain Retherford and Stegall's fully nuclear version of the "Big Grothendieck" conjecture [36].

Definition III.3. An operator $T:E \to F$ is said to be fully nuclear if the astriction operator $T_a:E \to T(E)$ is nuclear. The set of fully nuclear operators from E into F is denoted by $F_{\text{fn}}(E,F)$.

Corollary III.4. Let F and G be Banach spaces, then there exists a non-fully nuclear operator from F into G.

Proof: In the proof of III.1 take $p = 2$. Then by II.4, $D_\infty = fe$ can be taken to be a locally factorization through a subspace $G_0 \subseteq G$. Hence $ed:F \to G_0$ is not nuclear and therefore $ed:F \to G$ is not fully nuclear.

Our next result shows that for $p > 2$ we can weaken the hypothesis of III.1 to D_p-spaces.

Theorem III.5. If E and G are D_p-spaces, $p > 2$, then there exists non-nuclear operators in $L(E,F)$ and $L(F,G)$.

Proof: Select D_2, D_p, and D_∞ to be diagonal operators on ℓ_p such that $D_2D_pD_\infty$ does not correspond to an element in ℓ_1. By I.22, E and G contain subspaces E_0 and G_0 respectively which are S_p-space. Now as in III.1, the following diagram is possible.
But, by 0.19 and II.9 $D_p b$ and $D_p f$ are extendable. Hence we obtain factorizations through E and G. The argument is now completed as in III.1.

In the proof of III.1 we saw that the product of a totally factorable operator and a locally factorable operator need not be nuclear. A natural question at this stage: Is the composition of two totally factorable operators always nuclear? It is clear that a negative answer to this question solves the "Big Grothendieck" conjecture. Unfortunately, we have only been able to give answer to this question in a few special cases. Our best result concerning the general question is the following: If T and S are totally factorable, then ST is Cohen 2-nuclear. The definition of a Cohen p-nuclear operator is given in III.9.9.

Theorem III.6. Let $T \in \mathcal{L}(E,F)$ and $S \in \mathcal{L}(F,G)$ be totally factorable operators, then if either of the following is true:

i. E is a L_∞-space
ii. F is a L_1-space
iii. G is a L_2-space

Then ST is nuclear.
Proof: We will only prove the case when \(E \) is an \(L_\infty \)-space. The proof in the other cases is essentially the same. Consider the following diagram.

\[
\begin{array}{c}
E \\
\downarrow a \\
\downarrow \lambda_1 \\
T \\
\downarrow S \\
F \\
\downarrow b \\
\downarrow \lambda_2 \\
G \\
\end{array}
\]

\(a \) is absolutely 2-summing by 0.14. \(cb \) is absolutely 2-summing by 0.4 and 0.13. Therefore, \(ST = dcba \) is nuclear by 0.8 and 0.16.

Before investigating the general problem, we need some preliminary information.

Definition III.7. Let \(L \) denote the class of all bounded linear operators between arbitrary Banach spaces and \(L(E,F) \), the set of all such operators between specific Banach spaces \(E \) and \(F \). A class \(A \) of bounded linear operators is an ideal if for each set \(A(E,F) = A \cap L(E,F) \) one has

i. if \(x' \in E' \), \(y \in F \), then \(x'\otimes y \in A(E,F) \).

ii. \(A(E,F) \) is a linear subset of \(L(E,F) \) for each \(E \) and \(F \), and

iii. if \(U \in L(X,E) \), \(T \in A(E,F) \), and \(V \in L(F,Y) \), then \(VTU \in A(X,Y) \).

A function \(\alpha : A \to \{ \text{non-negative reals} \} \) is an ideal norm if one has
iv. if \(x' \in E' \), \(y \in F \), then \(\alpha(x'y) = ||x'|| ||y||. \)

v. if \(S, T \in A(E,F) \), then \(\alpha(S+T) \leq \alpha(S) + \alpha(T) \); and

vi. if \(U \in L(X,E) \), \(T \in A(E,F) \) and \(V \in L(F,Y) \), then
\[\alpha(VTU) \leq ||V|| \alpha(T) ||U||. \]

An ideal \(A \) with norm \(\alpha \), denoted by \([A,\alpha]\) is called a Banach ideal if each component \(A(E,F) \) is a Banach space under the norm \(\alpha \).

To any normed ideal \([A,\alpha]\), we associate the following Banach ideals:

Definition III.8.a. The adjoint ideal \([A^*,\alpha^*]\) of the ideal \([A,\alpha]\) is the class of all operators \(T \in (E,G) \) for which there is a \(\rho > 0 \) such that for arbitrary finite dimensional Banach spaces \(E_0 \) and \(G_0 \) we have
\[|\text{trace } \omega BTX| \leq \rho \alpha(\omega) ||B|| ||X|| \]
for \(\omega \in A(G_0,E_0) \); \(X \in F(E_0,E) \); and \(B \in F(F,G_0) \). Finally, \(\alpha^*(T) = \inf \rho \).

b. The conjugate ideal \([A^\Delta,\alpha^\Delta]\) is the class of all \(T \in L(E,G) \) for which there is a \(\rho > 0 \) such that for all \(S \in F(G,E) \),
\[|\text{trace } ST| \leq \rho \alpha(S) \]
In this case, \(\alpha^\Delta(T) = \inf \rho \).

In what is to follow we need the following Banach ideals which were introduced and studied by J. Cohen[3], S. Kwapien[24], and A. Persson and A. Pietsch[32].
Definition III.9.a. Let $[J_p,j_p]$ denote the ideal of Cohen p-nuclear operators: $T \in J_p(E,F)$ if there is a $p > 0$ such that

$$\sigma_p(\{T x_i\}) \leq p \sigma_p(\{x_i\})$$

for all finite sets $\{x_1, \ldots, x_n\}$ in E. Here $j_p(T) = \inf \rho$.

b. Let $[\Gamma_p,\gamma_p]$ denote the ideal of operators factoring through L_p: $T \in \Gamma_p(E,F)$ if for some $L_p(\mu)$, μ a positive measure, there are operators $A \in L(E,L_p(\mu))$, $B \in L(L_p(\mu),F''\mu)$ such that $iT = BA$, where i is the canonical injection of F into F''. Here $\gamma_p(T) = \inf ||A|| ||B||$.

c. Let $[I_p,i_p]$ denote the ideal of p-integral operators: $T \in I_p(E,F)$ if there is a probability measure space (Ω,μ) and operators $V \in L(E,L_\infty(\mu))$ and $W \in L(L_p(\mu),F'')$ such that $W_j V = iT$, where j is the canonical injection of $L_\infty(\mu)$ into $L_p(\mu)$ and i is the canonical injection of F into F''. Here $i_p(T) = \inf ||V|| ||W||$.

Remark III.10. Before moving further, we should recall that the class $[\Pi_p,\pi_p]$, $[N,\nu]$, and $[K,|| \cdot ||]$ are all Banach ideals. In fact $[N,\nu]$ is contained in every Banach Ideal.

Remark III.11. Using proposition 16 of [34] and the definitions of $[\Pi_p,\pi_p]$ and $[I_p,i_p]$, it is easily seen that they coincide.
Theorem III.12. [35, Kwapien] Let \(1 \leq p \leq \infty \) and
\[
\frac{1}{p} + \frac{1}{p'} = 1.
\]
Then \([\Gamma_p^*, \gamma_p^*] = [j_p, j_p']\).

Theorem III.13. [13, Theorem 25(a)]. Let \(T \in L(E,F) \) and
\[
\frac{1}{p} + \frac{1}{p'} = 1, \text{ then } \pi_p^\Delta = i_p^\Delta.
\]

Theorem III.14. Let \(T \in L(E,F) \) and \(S \in L(F,G) \) be totally
factorable, then \(ST \in [J_2, j_2] \).

Proof: The idea of this proof is to use Theorem 3.7
and show that \(ST \in [\Gamma_2^*, \gamma_2^*] \). Consider the following diagram
with \(E_0, G_0, X, B, \) and \(S \) as given in Definition III.8.

\[
\begin{array}{ccccccc}
E_0 & \xrightarrow{T} & E & \xrightarrow{S} & F & \xrightarrow{G} & B & \xrightarrow{W} & E_0 \\
& a & b & c & d & e & f \\
L_\infty(\mu_1) & L_1(\mu_2) & L_2(\mu_3)
\end{array}
\]

The first inequality results from III.8.b, III.13, and
III.11

\[
|\text{Trace } WBSTX| = |\text{Trace } (feBd)(cbAX)|
\]
\[
\leq \pi_2(cbAX)\pi_2(fedBd)
\]
\[
\leq |a||X||f|\pi_2(cb)\pi_1(edBd)
\leq K|a||X||f||cb||edBd|
\leq K|a||b||c||d||e||f||B||X|
\leq K(i_\infty(T)+1)(i_1(S)+1)(i_2(W)+\epsilon)||B||X|
\]
for arbitrary \(\epsilon > 0 \). Hence for \(\rho = K(i_\infty(T)+1)(i_1(S)+1) \), we
obtain the desired result. Note that the last inequality
is obtained by choosing \(a, b, c, d, e, f\) in the proper fashion.

Our final result of this chapter gives a sufficient condition for the composition of two operators to be totally factorable.

Definition III.15. An operator \(T\) is called Hilbertian if it can be factored through a Hilbert space \(H\).

Theorem III.16. If \(T\) is Hilbertian and \(S\) is absolutely 2-summing, then \(ST\) is totally factorable.

Proof: By 0.5 and III.15 the following factorization is possible.

\[
\begin{array}{ccc}
E & \longrightarrow & F \\
V & \downarrow & \nwarrow \\
H & \longrightarrow & L_\infty(K,\mu) \\
\nearrow & \downarrow & \rightarrow \\
L_2(K,\mu) & \longrightarrow & \quad J \\
\end{array}
\]

\(J\) is absolutely 2-summing by 0.14. Hence \(JIW\) is a Hilbert-Schmidt operator (absolutely 2-summing) and therefore totally factorable by II.22.

In particular, the composition of two absolutely 2-summing operators is totally factorable.

As we shall see in the next chapter, not every totally factorable is compact. But, the composition of two totally factorable operators is easily shown to be compact (by
first factoring through ℓ_2 and then through ℓ_1 and using the fact that every operator from ℓ_2 into ℓ_1 is compact). Furthermore, the composition of three totally factorable operators is nuclear. (Factor through ℓ_∞, ℓ_1, and ℓ_2, obtaining an operator which is the composition of two absolutely 2-summing operators which must be nuclear.)
IV. EXAMPLES AND REMARKS

All examples of totally factorable thus far have been compact. In this chapter we give two examples of non-compact totally factorable operators. Our two examples are the natural injections of \(l_1 \) into \(c_0 \) and \(l_\infty \). Although the \(l_\infty \) case follows immediately from the \(c_0 \) case, we give a separate easier proof. At this stage (including the first two examples of this chapter), all explicitly stated examples of totally factorable operators have been diagonal operators. Although, results of chapters II and III clearly show how to obtain non-diagonal totally factorable operators. Our final example of a totally factorable operator is significant, not only because it is not a diagonal operator, but because its verification is completely different from any other we have seen.

We briefly discuss whether the sum of two totally factorable is again totally factorable.

Theorem IV.1. The natural injection \(j: l_1 \to l_\infty \) is totally factorable.

Proof: Let \(E \) be an arbitrary Banach space, then by 0.1 there is a basic sequence \((x_i) \) in \(E \) with coefficient functionals \((f_i) \) such that \(||x_i|| = ||f_i|| = 1 \) for every \(i \).
Let \((F^1_1)\) be the norm preserving extension of \((f^1_1)\) to \(E\).
Now define \(A:\ell^1_1 \to E\) and \(B:E \to \ell^\infty_\infty\) by the following formulas,

\[
A(\xi_1) = \sum_{i=1}^{\infty} \xi_i x_i \quad \text{and} \quad B(e) = \langle e, f^1_1 \rangle .
\]

Clearly, \(J = BA\).

A natural question at this stage: Is the natural injection \(\ell^1_1 \to c_0\) totally factorable. Although the answer to this question is yes, there seems to be no way to modify the argument above to achieve this result. A completely different proof is required. It utilizes a new result of Josefson [22] and a result easily obtainable from the remarks following theorem III.1 in [19].

Theorem IV.2. (Josefson) Let \(E\) be a Banach space, then there exists \(\phi_n \in E', n \in \mathbb{Z}^+\), such that \(||\phi_n|| = 1\) and

\[
\lim_{n \to \infty} \phi_n(z) = 0 \quad \text{for all } z \in E .
\]

Theorem IV.3. (Johnson and Rosenthal) Let \(E\) be a Banach space and \((\phi_n) \subset E'\) with zero the only weak* cluster point of \((\phi_n)\) and \(0 < \lim \sup ||\phi_j|| < \infty\), then \((\phi_n)\) has a basic subsequence \((\phi_n^j)\) such that if \((f^j)\) is a sequence biorthogonal to \((\phi_n^j)\) in \([\phi_n^j]'\) and \(T:E \to [\phi_n^j]'\) is defined by

\[
(Tx)(y) = y(x) \quad \text{for all } y \in [\phi_n^j] \quad \text{and } x \in E ,
\]

then \(T(E) \not\supset [f^j]\).
Before obtaining our desired conclusion we need the following well-known facts.

Theorem IV.4. Let E and F be Banach spaces and $T : E \rightarrow F$, a surjection. Then, there exists some constant $m > 0$ such that each $y \in F$ is of the form $y = Tx$, where $||x|| \leq m||Tx||$.

Theorem IV.5. Let (e_i) be a basis for a Banach space E. Then the coefficient functionals (β_i) are a basic sequence.

Theorem IV.6. Let E be a Banach space then there exists a basic sequence in E, (x_n), with coefficient functionals (ψ_n) such that $\{||x_n||\}$ is a bounded set and zero is the w*-limit of (ψ_n).

Proof: By IV.2 then exists in E' a sequence (ϕ_n) with $||\phi_n|| = 1$ and $\lim_{n} \phi_n(x) = 0$ for every $x \in E$. By IV.3 there exists a subsequence (ϕ_{n_j}) of (ϕ_n) which is basic. Define $\psi_j = \phi_{n_j}$. Let (f_j) be the coefficient functionals in IV.3 and T as defined in IV.3. Let $E_0 = T^{-1}([f_n])$, then E_0 is a Banach space. Now $T|_{E_0} : E_0 + [f_n]$ satisfies IV.4, hence there exists in E_0 a sequence (x_i) such that $Tx_i = f_i$ and $||x_n||$ is bounded by $2mK$; where m is obtained from IV.4 and K is the basis constant of (ψ_n). Observe that $E \subseteq [\psi_n]'$ and (ψ_n, x_n) satisfy IV.5, hence (x_n) is a basic sequence with coefficient functionals (ψ_n).
Corollary IV.7. The natural injection $l_1 \to c_0$ is totally factorable.

We now consider questions about the dual of a totally factorable operator.

Theorem IV.8. Let $T:E \to F$ be a totally factorable operator, then $T^*:F' \to E'$ factors through every conjugate space.

Proof: Let $T = BA$ be a factorization through a Banach space X, then $T^* = A^*B^*$ is a factorization through X'.

Corollary IV.9. If $T:E \to F$ and T^* is totally factorable, then iT factors through every conjugate space where i is the natural injection of F into F''.

Unfortunately, many unanswered questions are left by the two results. Some very obvious questions are:

1. Is the dual of a totally factorable operator also totally factorable?

2. If the dual of an operator is totally factorable, is the operator totally factorable?

3. If the dual of an operator is totally factorable, does the operator factor through every conjugate space?

We conjecture that the answer to the above questions is no. Our belief in these answers are motivated by the techniques (which appear to be necessary) used to prove the
total factorability of our next example. One final result, due to Lindenstrauss and Pelczyński [26], is necessary before we consider our example.

Definition IV.10. Let \(\sigma: l_1 \to l_\infty\) be the "sum operator," namely the operator mapping the sequence \((a_i)\in l_1\) into the sequence of its partial sums \((\sum_{i=1}^{n} a_i)\in l_\infty\).

Theorem IV.11. Let \(E\) and \(F\) be Banach spaces and let \(T \in L(E,F)\). The operator \(T\) is not weakly compact if and only if there exists operators \(J: l_1 \to X\) and \(U: Y \to l_\infty\) such that \(UTS = \sigma\).

Example IV.12. Let \(D_2: l_\infty \to l_2\) be a diagonal operator corresponding to an element of \(l_2\). Then the composition \(D_2\sigma: l_1 \to l_2\) is totally factorable.

Proof: First assume that \(E\) is a reflexive Banach space. Observe that the adjoint \(D_2: l_2 \to (l_\infty)'\) is compact and hence by II.7 is locally factorable. But since \(\sigma'\) maps in \(l_\infty\), we can conclude that \(\sigma'D_2\) is totally factorable. Now applying IV.9 \(D_2\sigma = D_2\sigma''i\) factors through every conjugate space.

Non-reflexive case: If \(E\) is non-reflexive, then the identity operator on \(E\) is not weakly compact. Hence, by IV.4 \(\sigma\) factors through \(E\). Therefore \(D_2\sigma\) factors through \(E\).
Johnson defines the Banach space $C_Z(E,F)$ of operators which factor compactly through Z, where $Z = \sum_{p} Z_p$. It can easily be shown that the nuclear operators are contained in every Banach ideal. Hence by II.25, we see that the "Little Grothendieck" conjecture is solved for spaces satisfying $Z = \sum_{p} Z_p$. This suggests the following question: Is the collection of all totally factorable operators a Banach ideal. If the answer to this question is yes, then we solve the conjecture. Unfortunately, even the problem of showing that the sum of two totally factorable operators is again totally factorable appears to be extremely difficult. If it were true that every Banach space E could be written as: $E = X + Y$ with $\dim X = \infty$ and $\dim Y = \infty$, then the sum problem follows immediately. The decomposition of a Banach space in this manner is a long standing problem. A result of Lindenstrauss in this direction is the following theorem.

Theorem IV.13. [1, Page 243] Let X be a Banach space which is generated by a weakly compact set and let Y be a separable subspace of X. Then there is a separable subspace Z of X which contains Y and a projection of norm one from X into Z.

In particular, this result shows that the sum of two totally factorable operators will factor through every non-separable reflexive space.
Grothendieck proved in [14] the existence of a nuclear operator T whose astriction is not nuclear. Our next example shows that there exists totally factorable operators whose astriction is not totally factorable.

Example IV.14. Let $J: l_2 \rightarrow l_\infty(\Gamma)$ be an isometry, then iJD_∞ is totally factorable but not totally factorable. $D_\infty: l_2 \rightarrow l_2$ and $i: J(l_2) \rightarrow l_\infty(\Gamma)$. It is clear that iJD_∞ is totally factorable since D_∞ is locally factorable and it is followed by a map into $l_\infty(\Gamma)$ which has the extension property. Now the astriction of iJD_∞ is just JD_∞. If JD_∞ is totally factorable then $D_\infty = J^{-1}JD_\infty$ is totally factorable. But we have shown in chapter II that not every compact map on l_2 is totally factorable.

Our final result shows the existence "in most cases" of non-totally factorable operators.

Theorem IV.15. Suppose E is a S_p-space and F is a S_q-space for $1 < p, q < +\infty$. Then, there exists $T \in L(E,F)$ such that T is not totally factorable.
REFERENCES

25. D. R. Lewis, An Isomorphic Characterization of the Schmidt Class, to appear

VITA

Johnny Gills, Jr. was born October 15, 1946, in New Orleans, Louisiana. He received his elementary and secondary education in the public schools there, graduating in May, 1964. He began college at Louisiana State University in New Orleans in the summer of 1964, transferring in the spring semester of 1965 to the main campus at Baton Rouge, receiving his B.S. degree in January, 1969; and M.S. in August, 1970. After working for three years, he returned to Louisiana State University in the summer of 1973. He is presently working on the Doctor of Philosophy degree.