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Abstract

In this dissertation we study a special kind of wavelets, the so-called minimally

supported frequency wavelets and the associated wavelet sets. Most of the examples

of wavelet sets are for dilation sets which are groups. In this work we construct

wavelet sets for which the dilation set, D, is of the form D = MN , where the

product is direct, and so D is not necessarily group. In the second part of this

dissertation we construct multiwavelets associated with MRA’s and we generalize

the rotations in the dilation sets to Coxeter groups.

v



1. Introduction

Wavelets have been used in mathematics, physics, and signal or image processing

long time before they were given the name and the importance they have now.

Wavelets are an extension of Fourier analysis. The periodic exponentials, e−2πitλ,

which are used as basis in Fourier analysis, are replaced in wavelet analysis by

translates and dilates of a single function, called mother wavelet.

One of the obvious question is the construction of wavelets with given properties.

The classical wavelet system on the line, is a function ψ ∈ L2(R), such that

the dyadic dilates and integer translates of ψ form a orthonormal basis for L2(R).

Thus, {ψj,n}j,n∈Z with ψj,n(t) = 2j/2ψ(2jt+n)}, is an orthonormal basis for L2(R).

There are several obvious generalization: One can replace 2 by any integer N ; one

can allow several functions ψ1, . . . , ψL; and one can consider orthonormal basis for

a closed subspace of L2(R). There have also been several publications of wavelets

in higher dimensions, cf. [1, 2, 3, 4, 10, 12, 13, 23, 5, 20, 21] to name few. One of

the difference in higher dimensions is, that we now have much more choices in the

sets of dilations and translations.

An important way of constructing wavelets involves the concept of a multires-

olution analysis or MRA. This method is completely recursive and therefore it

is ideal for computations; a signal f0 is is split into a blurred version f1 at a

coarser resolution and a detail version, d1. By repeating this process, one gets a

sequence of coarser and coarser versions f0, f1, ... of the signal together with the

details d1, d2, ... The interesting thing is that each detail is a linear combination

of dilations and translations of a mother wavelet.
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So, to fix the notation, let D ⊆ GL(n,R) and T ⊆ Rn countable sets. A (D, T )-

wavelet is a square integrable function ψ with the property that the set

{| det d| 12ϕ(dx+ t) | d ∈ D, t ∈ T } (1.1)

forms an orthonormal basis for L2(Rn). The set D is then called the dilation set and

the set T is called the translation set. If we replace L2(Rn) in the above definition

by

L2
M(Rn) = {f ∈ L2(Rn) | suppf̂ ⊆M}

for some measurable subset M ⊆ Rn, |M | > 0, we get a (D, T )-subspace wavelet.

Here F stands for the Fourier transform

F(f)(λ) =

∫

Rn

f(x)e−2πi<λ,x> dt .

The most natural starting point is to consider groups of dilations and full rank

lattices as translation sets. The simples examples would then be groups generated

by one element D = {ak | k ∈ Z}, see [24] and the reference therein. In [20, 21]

more general sets of dilations were considered, and in general those dilations do

not form a group. Even more general constructions can be found in [1].

In this dissertation, we consider a special class of wavelets corresponding to

wavelet sets. Those are functions ψ such that F(ψ) = χΩ, and Ω is a measurable

subset of Rn. The wavelet property is then closely related to geometric properties

of the set Ω, in particular spectral and tiling properties of Ω. The study of wavelet

sets then becomes a interplay between group theory, geometry, operator theory and

analysis, cf. [7, 9]. One of our results is an existence Theorem for such wavelets for

some special dilation sets D which are not necessarily groups, see Theorem 4.16

and Theorem 4.18.
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The first chapter reviews some elements of Fourier transform, Fourier series,

the windowed Fourier transform and the continuous wavelet transform that are

essential to a proper understanding of wavelet analysis..

Chapter 3 provides an exposition of the general notion of multiresolution analysis

in one dimension, followed by a recipe for constructing wavelet orthonormal bases,

and some examples of such wavelets.

Chapter 4 and Chapter 5 contain our main results. In hapter 4 we give a con-

structive existence theorem for wavelet sets with dilation sets D of the form

D = MN ,

where the product is direct, and it ends with three examples of such wavelet sets.

In Chapter 5 we present a method of constructing scaling sets and the asso-

ciated multiresolution analysis and wavelets, corresponding to Coxeter groups as

dilations. We end Chapter 5 and this dissertation with several examples which

describe very nicely our main results.corresponding
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2. Integral Transforms

We start this chapter by describing several function spaces which are well suited

for the Fourier transform and the wavelet transform.

2.1 Function Spaces

Let

Lp(Rn) = {f : Rn → C|f measurable,
[ ∫

Rn

[f(x)]pdx
] 1

p <∞},

be the space of p-Lebesgue integrable functions.

In particular, we will mostly use the space of integrable functions on Rn, L1(Rn),

and the space of square integrable functions, or finite energy functions, L2(Rn).

Another important vector space of functions is the space of rapidly decreasing

smooth functions on Rn, which consists of the smooth functions f , satisfying

sup
x∈Rn

(1 + |x|2)N |Dαf(x)| <∞,

for all N ∈ N and α ∈ Nn. This space with seminorms | · |N,α given by

|f |N,α = sup
x∈Rn

(1 + |x|2)N |Dαf(x)|

is the Schwartz space of rapidly decreasing smooth functions on Rn and is denoted

by S(Rn). It contains C∞
c (Rn), the space of smooth functions with compact sup-

port, as a vector subspace. Note that other norms and seminorms, in particular

the p-norms, are continuous in the Schwartz topology.

Proposition 2.1. The space C∞
c (Rn) is dense in S(Rn). Moreover, C∞

c (Rn) is

dense in Lp(Rn), for 1 ≤ p <∞.
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2.2 Convolution in Rn

Assume that f and g are functions on Rn such that the function y → f(y)g(x− y)

is integrable for almost all x. Then the function

f ∗ g(x) :=

∫
f(y)g(x− y)dy

is defined almost everywhere and it is called the convolution of f and g. The

convolution has some very nice properties.

i) If f, g are complex valued measurable functions on Rn, then f ∗ g(x) exists iff

g ∗ f(x) exists and then f ∗ g(x) = g ∗ f(x);

ii) Let 1 ≤ p ≤ q ≤ ∞ satisfy 1
p

+ 1
q

= 1. If f ∈ Lp(Rn) and g ∈ Lq(Rn), then

f ∗ g(x) exists, f ∗ g is continuous and |f ∗ g(x)| ≤ |f |p|g|q.

iii) Let f ∈ L1(Rn) and g ∈ Lp(Rn), where 1 ≤ p < ∞. Then f ∗ g ∈ Lp(Rn) and

|f ∗ g|p ≤ |f |1|g|p. In particular, the mapping g → f ∗ g is a bounded linear

operator on Lp(Rn).

iv) Let f ∈ L1(Rn) and g ∈ S(Rn). Then f ∗ g is smooth and

p(D)(f ∗ g) = f ∗ (p(D)g)

for any differential operator of the form p(D) =
∑
aαD

α with constant coeffi-

cients aα.

v) If f, g ∈ S(Rn), then f ∗ g ∈ S(Rn) and the bilinear map

S(Rn) × S(Rn) → S(Rn), (f, g) → f ∗ g

is continuous.
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2.3 Fourier Transform

We start by defining the Fourier transform of an integrable function.

Let

eλ : Rn → C, eλ(x) = e2πi<λ,x>.

For f ∈ L1(Rn), define

f̂(λ) = F(f)(λ) =

∫

Rn

f(x)eλ(−x) dx =

∫

Rn

f(x)e−2πi<λ,x> dx

exists for each λ ∈ Rn. The function f̂ is called the Fourier transform of the L1

function f and is continuous at each point λ ∈ Rn.

We define now the following linear transformations:

λ(y)f(x) = fy,0 = f(x− y)

δ(a)f(x) = f0,a−1 = a−
n
2 f(a−1x)

and

τ(y)f(x) = e−2πi<x,y>f(x).

We will list some of the most important properties of the Fourier transform in the

following lemma.

Lemma 2.2. Let f ∈ L1(Rn). Then the following holds:

i) f̂ ∈ C(Rn) and |f̂ |∞ ≤ |f |1

ii) λ̂(y)f = τ(y)f̂

iii) τ̂(y)f = λ(y)f

iv) δ̂(a)f = δ(a−1)f̂

Note that f̂ may not be in L1(Rn) and
ˆ̂
f may not exist. That is why one needs

a nicer space to work with. For that we consider the Schwartz space, S(Rn).
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Proposition 2.3. If f ∈ S(Rn), then f̂ ∈ L1(Rn). Moreover,
ˆ̂
f exists and

ˆ̂
f(x) = f(−x).

The fact that S(Rn) is dense in L2(Rn) leads to the Plancherel theorem.

Theorem 2.4 (Plancherel Theorem). The mapping F : S(Rn) → S(Rn) extends

to an unitary isometry of L2(Rn) onto L2(Rn). We denote this extension again by

F or f̂ and we have that F2f(x) = f(−x).

Note that if f ∈ L2(Rn), then f̂ is the L2 limit of any sequence {f̂k}k, where fk

are Schwartz functions converging in L2 to f . The Fourier transform f̂ may not be

given by the integral ∫

Rn

f(x)e−2πi<λ,x> dx ,

since this integral might not exist.

2.4 Fourier Series

Harmonic analysis attempts to understand complicated periodic functions in terms

of simple ones. It was Jean Baptiste Joseph Fourier who developed the idea that

a periodic function f , of period 1, can be written as an infinite sum of harmonics

∑
f̂(n)e2πinθ.

Definition 2.5. A measurable function f : R → C is periodic if there exists a

positive number L, called the period, such that f(x + L) = f(x) for almost all

x ∈ R.

When the period is 2π, the domain is the unit circle.

For f ∈ L1([0, 1]), define f̂ : Z → C by

f̂(n) =

∫ 1

0

f(t)e−2πint dt.

7



Definition 2.6. The Fourier series of a function f ∈ L1[0, 1], is an expression of

the form
∞∑

n=−∞

f̂(n)e2πinθ.

Proposition 2.7. If f ∈ L1([0, 1]) and f̂(n) = 0 for all n, then f = 0 a.e.

Let l2 be the space of square summable sequences {an}n∈N, i.e.

l2 = {{an}n∈N|
∞∑

n=1

|an|2 <∞}.

This is a Hilbert space and more than that, l2 is isomorphic with L2([0, 1]).

Theorem 2.8. (Plancherel Theorem) The Fourier transform F : L2([0, 1]) → l2

is an isomorphism of Hilbert spaces.

Theorem 2.9. (Poisson summation formula) Let f be a smooth function such

that f(x)(1 + x2)N is bounded for all N ∈ N. Then

∞∑

n=−∞

f(x+ n) =
∞∑

n=−∞

f̂(n)e2πinx.

The interesting question about the Fourier series is if they converge, and if the

answer is positive, then how do they converge?

Theorem 2.10. If f is a C∞ periodic function of period 1, then its Fourier series

∑
f̂(n)e2πinθ converges uniformly to f and the derivatives of these series converge

uniformly to the derivatives of f .

What if the function f(x) is not even once differentiable?

Definition 2.11. A function f on a finite interval I is called piecewise differen-

tiable on I if it is piecewise continuous with only jump discontinuities if any, if

f ′ exists at all points in I but finitely many and if f ′ is piecewise continuous with

only jump discontinuities if any.
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A function which is piecewise differentiable has, as Gustave Lejeune Dirichlet

showed, a pointwise convergent Fourier series.

Theorem 2.12. Let f be a periodic, piecewise differentiable function, of period 1.

Then the sequence of partial sums of the Fourier series of f , {SN (x)}, where

SN(x) =
N∑

n=−N

f̂(n)e2πinx,

converges pointwise to f̃(x) = 1
2

[
limt→x− f(t) + limt→x+ f(t)

]
.

If we assume that f(x) is continuous, then we get a stronger version of the above

theorem.

Theorem 2.13. Let f(x) be a continuous, periodic, piecewise differentiable func-

tion, of period 1. Then the sequence of partial sums of the Fourier series of f ,

{SN}, converges uniformly to f .

2.5 Heisenberg Uncertainty Principle

A signal f and its Fourier transform f̂ cannot be simultaneously localized in a small

domain. If the signal has compact support, then its Fourier transform spreads out

to infinity. This phenomenon is described quantitative in the famous Heisenberg

Uncertainty Principle.

Theorem 2.14. (Heisenberg Uncertainty Principle) Let f ∈ L2(Rn). Then

|xf |2 · |λf̂ |2 ≥
1

2
|f |2.

This problem appears in any method one would use to decompose a signal simul-

taneously into time and frequency. Precise information about time can be obtained

only by accepting a certain vagueness about frequency and the other way around.

9



2.6 The Shannon Sampling Theorem

One of the interesting questions about a signal, i.e. a measurable function on Rn,

is if it is possible to reconstruct it from discrete values completely. Most of the

time the answer to this question is no. But with enough assumptions on the signal

f , Shannon sampling theorem is one of the theorems which gives an affirmative

answer to that questions.

Before stating this theorem, we need to define what bandlimited functions are.

Definition 2.15. An integrable function f is called bandlimited, if its Fourier

transform vanishes outside a compact set.

For a measurable set M ⊂ Rn, |M | > 0, set

L2
M (Rn) = {f ∈ L2(Rn) | suppf̂ ⊆M}.

Theorem 2.16. (The Shannon sampling theorem) Let f ∈ L2(Rn) be a bandlimited

function with suppf̂ ⊆ [−Ω,Ω]. Then f can be reconstructed from its values at a

discrete number of points in its domain, by the following formula:

f(t) =
∑

n∈Z

sin[2πΩ(t− nT ]

2πΩ(t− nT )
f(nT ),

where T = 1
2Ω

.

Note, however, that the function t→ sinc(t) := sin t
t

decays very slowly.

10



2.7 Windowed Fourier Transform

One way to get around Heisenberg Uncertainty Principle is to use a windowed

Fourier Transform. The Windowed Fourier transform, abbreviated WFT, uses a

window function g, to give a better localization with respect to time and frequency.

Let f, ψ ∈ L2(Rn). Then, for b, ω ∈ Rn, the function x → ψ(x − b)e2πi<ω,x> is

also square integrable and so, we can define the following operator in L2(Rn):

Sψf(b, ω) :=

∫

Rn

f(x)ψ(x− b)e−2πi<ω,x> dx .

This is a well defined linear operator. Some of the properties of the WFT are listed

in the proposition below:

Proposition 2.17. Let f, ψ ∈ L2(Rn). Then the following holds:

i) |Sψf(b, ω)| ≤ |f |2|ψ|2. In particular, the mapping Sψf : Rn × Rn → C is

continuous and bounded.

ii) Sψ : L2(Rn) → C0(R
n × Rn) is a linear map.

iii) Sψf(b, ω) = e2πi<ω,x>Sψ̂f̂(ω,−b)

Theorem 2.18. (Plancherel) Let f, g, ψ, φ ∈ L2(Rn). Then

< Sψf, Sφg >=< f, g >< ψ, φ > .

Let φωb (x) = φ(x− b)e2πi<ω,x>.

Theorem 2.19. (Inversion) Let ψ, φ ∈ L2(Rn). Then for all f ∈ L2(Rn), the

function

(b, ω) → Sψf(b, ω)φωb

is weakly integrable and

∫

Rn

∫

Rn

Sψf(b, ω)φωb db dω =< φ, ψ > f.

11



2.8 Continuous Wavelet Transform

The Windowed Fourier transform combines the exponential functions with a win-

dow function to localize a signal in both time and frequency domain. To get rid

completely of the exponential functions, we can dilate and translate enough the

window function to get all the information about the signal.

We consider now the group of affine linear transformations on Rn, denoted by

Aff(Rn), see [10], [22]. Aff(Rn) consists of pairs (a, b) with a ∈ GL(n,R) and b ∈ Rn.

The action of (a, b) ∈ Aff(Rn) on Rn is given by

(a, b) · x = ax+ b

with x ∈ Rn and the product of group elements is given by

(a, b)(a′, b′) = (aa′, ab′ + b).

Define a measure on G :=Aff(Rn), dµ(a, b) = dadb
|det a|2

. This measure is left invariant.

Let f, ψ ∈ Rn. Define Wψ : L2(Rn) → L2(G) by

Wψf(a, b) = | det a|− 1

2

∫

Rn

f(ω)ψ[a−1(ω − b)]dω.

Then

|Wψf |L2(G) =

∫

Rn

|f̂(ξ)|2
∫

H

|ψ̂(hT ξ)|2 dh

| det h|dξ.

Hence, Wψ is an isometry into L2(G) if and only if

∫

H

|ψ̂(hT ξ)|2 dh

| deth| = 1.

Note, however, that for any ξ 6= 0, ξ ∈ Rn, there exist g ∈ GL(n,R) such that

gTe1 = ξ, where e1 = (1, 0, ..., 0). Thus

∫
H
|ψ̂(hT ξ)|2 dh

|det h|
=

∫
H
|ψ̂(hTgTe1)|2 dh

|det h|

=
∫
H
|ψ̂((gh)Te1)|2 dh

|det h|

=
∫
H
|ψ̂(hT e1)|2 dh

|det h|

12



and so, Wψ is an isometry into L2(G) if and only if

∫

H

|ψ̂(hT e1)|2
dh

| deth| = 1.

Theorem 2.20. (Plancherel Theorem) Let ψ ∈ Rn such that

∫
H
|ψ̂(hT e1)|2 dh

|det h|
= 1. Then

< Wψf,Wψg >L2(G)=< f, g >L2(Rn)

for all f, g ∈ L2(Rn). In particular the following holds:

i) Wψ : L2(Rn) → L2(G, µ) is continuous.

ii) For all f ∈ Rn, f = W ∗
ψWψf .

iii) Wψ : L2(Rn) → Im(Wψ) is an unitary isomorphism.

Plancherel theorem gives an inversion formula using W ∗
ψ, but f can be recovered

as a weak integral only from Wψ.

Theorem 2.21. Let ψ ∈ Rn such that
∫
H
|ψ̂(hT e1)|2 dh

|det h|
= 1. Then

f =

∫

G

Wψf(a, b)ψa,b dµ(a, b) ,

for all f ∈ Rn.
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3. Wavelets

3.1 Multiresolution Analysis

The classical definition of a Multiresolution Analysis or a MRA is as follows, see

[14].

Definition 3.1. A multiresolution analysis on R is a sequence of subspaces {Vj}j∈Z

of functions in L2(R) satisfying the following properties:

i) For all j ∈ Z, Vj ⊆ Vj+1

ii) If f(·) ∈ Vj, then f(2·) ∈ Vj+1

iii)
⋂
j∈Z

Vj = {0}

iv)
⋃
j∈Z

Vj = L2(R)

v) There exists a function φ(x) ∈ L2(R) such that {φ(·−k)|k ∈ Z} is an orthonor-

mal basis of V0.

The function φ is called a scaling function. There have been done some gen-

eralizations of this definition. One can replace the diadic dilation by any integer

dilation and in higher dimensions the dilation becomes a matrix with certain prop-

erties.

Definition 3.2. A family (fi)i∈I in a Hilbert space H is called a Riesz basis if

there exist constants 0 < A ≤ B such that

A
∑

i∈I

|ai|2 ≤
∥∥∥∥

∑

i∈I

aifi

∥∥∥∥
2

≤ B
∑

i∈I

|ai|2,

for any (ai)i∈I ∈ l2(I), and if span (fi) = H.
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Definition 3.3. A family (fi)i∈I in a Hilbert space H is called a frame if there

exist constants 0 < A ≤ B such that for any f ∈ H, the following inequality holds

A||f ||2 ≤
∑

i∈I

| < f, fi > |2 ≤ B||f ||2.

One can weaken condition v) in the definition of MRA by replacing the or-

thonormal basis with a Riesz basis or a frame. That is usually called a Generalized

Multiresolution Analysis or a GMRA. One also can allow more than one scaling

function, say d, and then the MRA or GMRA has multiplicity d. Even though the

traditional definition of a MRA has five properties, it was shown in Weiss that

they are dependent.

Theorem 3.4. Conditions i), ii), and v) imply iii) even if in v) we only assume

that {ψ(· − n)} is a Riesz basis.

Theorem 3.5. Assume that {Vj}j∈Z is a sequence of closed subspaces of L2(R)

satisfying conditions i), ii), and v). If the scaling function φ is such that |φ̂| is

continuous at 0, then

φ̂(0) 6= 0 if and only if
⋃

j∈Z

Vj = L2(R).

The following proposition gives a method for finding scaling functions.

Proposition 3.6. If f ∈ L2(R), then {f(·−k) : k ∈ Z} is an orthonormal system

if and only if
∑

k∈Z

|f̂(ω + k)|2 = 1

for almost all ω ∈ R.

3.2 Construction of Wavelets from a MRA

We are discussing now the construction of wavelets from MRA. For any i ∈ Z, let

Wi be the orthogonal complement of Vi in Vi+1; that is, Vi+1 = Vi ⊕Wi. It is easy

15



to see that

Vj =

j⊕

l=−∞

Wl

and so

L2(R) =
∞⊕

l=−∞

Wl.

For j ∈ Z and k ∈ Z, set

ψj,k(x) := 2j/2ψ(2jx− k)

If there exists a function ψ ∈ W0 such that {ψ(· − k)|k ∈ Z} is an orthonormal

basis for W0, then {ψj,k|k ∈ Z} is an orthonormal basis for Wj , and {ψj,k|k, j ∈ Z}

is an orthonormal basis for L2(R). Such a function ψ is called an orthonormal

wavelet associated with the given MRA.

Since {φk|k ∈ Z} is an orthonormal basis for V0, we obtain

φ(x/2) =
∑

k∈Z

αkφ(x− k).

Taking Fourier transforms, we get

φ̂(2ξ) = φ̂(ξ)m0(ξ),

where

m0(ξ) =
∑

k∈Z

αke
2πikξ

is a periodic function. The periodic function m0 is called the low pass filter asso-

ciated with the scaling function φ. An important property of the low pass filter

is

|m0(ξ)|2 + |m0(ξ + 1/2)|2 = 1

almost everywhere. There is a characterization of all orthonormal wavelets in W0

given by the following proposition.

16



Proposition 3.7. If φ is a scaling function for an MRA and m0 is the associated

low-pass filter, then a function ψ ∈W0 is an orthonormal vector for L2(Rn) if and

only if

ψ̂(2ξ) = e2πiξs(2ξ)mo(ξ +
1

2
)φ̂(ξ)

almost everywhere, for some 1-periodic function s such that |s(ξ)| = 1 almost

everywhere.

In particular, if we define φ by

ψ̂(2ξ) = e2πiξmo(ξ +
1

2
)φ̂(ξ)

then we get an orthonormal wavelet in W0. Using also the fact that

φ̂(2ξ) = φ̂(ξ)m0(ξ),

we get that

ψ̂(2ξ) =
∑

k∈Z

(−1)kαk e
−2πi(k−1)ξφ̂(ξ).

Therefore

ψ̂(ξ) =
∑

k∈Z

(−1)kαk e
−2πi(k−1) ξ

2 φ̂(
ξ

2
)

and by taking the inverse Fourier transform, we get

ψ(x) = 2
∑

k∈Z

(−1)kαk φ(2x− (k − 1)).

We will show next how to obtain |φ̂| from |ψ̂|. We have that

|φ̂(2ξ)|2 + |ψ̂(2ξ)|2 = |φ̂(ξ)|2{|m0(ξ)|2 + |m0(ξ +
1

2
)|2} = |φ̂(ξ)|2

and so

|φ̂(ξ)|2 = |φ̂(2pξ)|2 +

p∑

j=1

|ψ̂(2jξ)|2 for all p ≥ 1.

17



Moreover,
∫

R

|φ̂(2pξ)|2 dξ =
1

2p

∫

R

|φ̂(ξ)|2 dξ → 0 as p→ ∞

and so, by Fatou’s lemma we get that

lim
p→∞

|φ̂(2pξ)|2 = 0

which shows that

|φ̂(ξ)|2 =

∞∑

j=1

|ψ̂(2jξ)|2 a.e..

3.3 Band-limited Wavelets

One of the conditions that characterize the completness of a orthonormal system

ψj,k is given by the following theorem, see [14].

Theorem 3.8. If ψ is a band-limited orthonormal wavelet, then

∑

j∈Z

|ψ̂(2jξ)|2 = 1

almost everywhere.

Before we get to the second condition, we need the following propositions:

Proposition 3.9. If ψ is band-limited, |ψ̂| is continuous at zero and {ψj,k|j, k ∈ Z}

is an orthonormal system, then ψ̂(0) = 0.

A stronger result holds if ψ is an orthonormal wavelet.

Proposition 3.10. If ψ is a band-limited orthonormal wavelet such that |ψ̂| is

continuous at zero, then ψ̂ = 0 almost everywhere in an open neighborhood of the

origin.

We are ready now to state the second condition on the completion of the system

{ψj,k|j, k ∈ Z}.
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Theorem 3.11. If ψ is a band-limited orthonormal wavelet such that |ψ̂| is con-

tinuous at zero, then for each odd integer p we have

∞∑

j=0

ψ̂(2jξ)ψ̂(2j(ξ + p)) = 0 a.e. on R.

The following theorem gives an necessary and sufficient condition for the com-

pletness of a system.

Theorem 3.12. If ψ ∈ L2(R) is a bandlimited function such that |ψ̂| is zero in a

neighborhood of the origin and {ψj,k|j, k ∈ Z} is an orthonormal system, then the

system is complete if and only if

∑

j∈Z

|ψ̂(2jξ)|2 = 1 a.e. on R

and
∞∑

j=0

ψ̂(2jξ)ψ̂(2j(ξ + p)) = 0 a.e. onR, p ∈ 2Z + 1.

3.4 The Haar System

The simplest wavelet was introduced by the hungarian mathematician, Alfred

Haar, in 1909, long before wavelets came in the attention of the mathematicians.

The Haar wavelet is constructed from the MRA generated by the scaling function

φ(x) = χ[−1,0). Then Vj is the space of L2(R) functions which are constant on

intervals of the form [2−jk, 2−j(k + 1)], k ∈ Z. Since

1

2
φ(

1

2
x) =

1

2
χ[−2,0)(x) =

1

2
φ(x) +

1

2
φ(x+ 1),

we get that

ψ(x) = φ(2x+ 1) − φ(2x) = χ[−1,− 1

2
) − χ[− 1

2
,0),

φ̂(ξ) =
e2πiξ − 1

2πiξ
, m0(ξ) =

e2πiξ + 1

2
.
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3.5 The Shannon Wavelet

Another well known wavelet is the Shannon wavelet. Let I = [−1,−1
2
)∪ [1

2
, 1) and

ψ̂(ξ) = eπiξχI(ξ).

Then the function ψ is called the Shannon wavelet. To find a scaling function of

the MRA associated with this wavelet, we compute ψ̂(2jξ),

ψ̂(2jξ) = e2
jπiξχIj(ξ),

where

Ij = [−2−j,−2−j−1) ∪ [2−j−1, 2−j).

The intervals I ′js are disjoint and their union for j ≥ 1 is, up to measure zero, the

interval [−1
2
, 1

2
] and so, we can take φ̂(ξ) = χ[− 1

2
, 1
2
]. Let Vj = span{φj,k|k ∈ Z} for

all j ∈ Z. Then {Vj|j ∈ Z} is a multiresolution analysis and the low pass filter is

a 1-periodic function defined by the equation

mo(ξ) =





1 if −1
4
≤ ξ ≤ 1

4

0 if −1
2
≤ ξ ≤ −1

4
or 1

4
≤ ξ ≤ 1

2

extended periodically from [−1
2
, 1

2
] to R. The graph of the Shannon wavelet ψ is

given in Figure 3.1.

We say that a wavelet ψ has k vanishing moments if

∫

R

xkψ(x) dx = 0.

It was shown that if {ψj,k|j, k ∈ Z} is is an orthonormal system on R and if ψ is

smooth, then it will have vanishing moments.

Theorem 3.13. If {ψj,k|j, k ∈ Z} is is an orthonormal system on R, and if xNψ(x)

and ξN+1ψ̂(ξ) are both integrable, then

∫

R

xmψ(x) dx = 0 for 0 ≤ m ≤ N.
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FIGURE 3.1. The wavelet ψ = 1
πx(sin 2πx− sinπx).

Remark 3.14. Since ξN+1ψ̂(ξ) ∈ L1(R), it follows that ψ ∈ CN+1(R), so this

assumption can be viewed as a smoothness assumption.

3.6 The Daubechies Wavelet

Ingrid Daubechies was the first to give a general construction of orthonormal

wavelets with compact support and with a given degree of smoothness. She noticed

that if the wavelet ψ and the scaling function φ are both in CN−1(R), then the low

pass filter m0 is of the form

m0(ξ) =
(1 + e−2πiξ

2

)N
g(ξ)

with g being 1-periodic and g ∈ CN−1(R).

Example 3.15. The low pass filters for N = 1, 2 are as follows:

N=1 Then the periodic function g(ξ) = 1 and so

1 + e−2πiξ

2
.

N=2 Then the periodic function is

g(ξ) =
1 +

√
3

2
+

1 −
√

3

2
e−2πiξ
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and so, the low pass filter is

m0(ξ) =
∑

k∈Z

αke
2πikξ

with

α0 =
1 −

√
3

8
, α−1 =

3 −
√

3

8
, α−2 =

3 +
√

3

8
, α−3 =

1 +
√

3

8
,

and the rest of coefficients zero.

3.7 Minimally Supported Frequency Wavelets

A special kind of band-limited wavelets are the MSF, Minimally Supported Fre-

quency wavelets. These wavelets have the form

F−1χΩ,

for some measurable set Ω. The sets Ω which are the support of the MSF wavelets

are called wavelet sets. In the next chapter we study the relation between wavelets

sets and tilings and spectral sets.
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4. Wavelet Sets in R2

4.1 Spectral Sets

Spectral sets have been intensely studied lately also because of the well known

Fuglede’s conjecture. Set eλ(ξ) = e2πi〈λ,ξ〉. If Ω is a Lebesgue measurable subset of

Rn, then

|Ω| =

∫
χΩ(t1, . . . , tn) dt1 . . . dtn

denotes the measure of Ω with respect to the standard Lebesgue measure on Rn.

Definition 4.1. A set Ω ⊆ Rn with 0 < µ(Ω) <∞ is a spectral set if there exists

a set T ⊆ Rn such that

{eλ | λ ∈ T }

is an orthogonal basis for L2(Ω). The set T is called a spectrum of Ω, and (Ω, T )

is said to be a spectral pair.

4.2 Tilings

Definition 4.2. A measurable tiling of a measure space (M,µ) is a countable

collection of subsets {Ωj} of M , such that

µ(Ωi ∩ Ωj) = 0

and

µ(M�
⋃

j

Ωj) = 0 .

Definition 4.3. Let M ⊆ Rn be a measurable set with |M | > 0. Let D ⊆ GL(n,R)

and T ⊆ Rn.

1.) We call D a multiplicative tiling set of M if there exists a measurable set

Ω ⊆ Rn, |Ω| > 0, such that {dΩ | d ∈ D} is a measurable tiling of M . The set

Ω is called a multiplicative tile.
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2.) We call T an additive tiling set of Rn if there exists a measurable set Ω ⊆ Rn,

|Ω| > 0, such that {Ω + t | t ∈ T } is a measurable tiling of Rn. The set Ω is

called an additive tile.

3.) A set Ω is called a (D, T )-tile if it is a D- multiplicative tile and a T - additive

tile.

Remark 4.4. Note, that we do not assume that DM ⊆ M or even

|(M \ DM) ∪ ((DM) \M)| = 0 . (4.1)

Neither do we assume that there exists a zero set Z, such that Ω ⊆ M ∪ Z. That

will always be the case if id ∈ D. But we can always, without loss of generality

assume that id ∈ D and Ω ⊆ M .

Dai and Larson proved that a measurable set Ω ⊆ Rn is a wavelet set with

respect to the translation set Zn and dilation set D = {2j id|j ∈ Z} if and only

if

i) {Ω + z|z ∈ Z} is an additive tiling of Rn and

ii) {2jΩ|j ∈ Z} is an multiplicative tiling Rn.

4.3 Fuglede’s Conjecture

The spectral property of a set is closely related to the tiling property, in particular if

the spectrum is a lattice. This was first noticed by Fuglede in [11]. For a non-empty

subset T ⊂ Rn, set

T ∗ := {t ∈ Rn | 〈t, s〉 ∈ Z, for all s ∈ T } .

If T is a lattice, then so is T ∗. In that case T ∗ is called the dual lattice of T .

Theorem 4.5 (Fuglede [11]). Assume that T is a lattice. Then Ω is a spectral set

with spectrum T if and only if {Ω + t | t ∈ T ∗} is a measurable tiling of Rn.
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This result and several examples led Fuglede to the conjecture:

Conjecture 1 (The Spectral-Tile Conjecture). A measurable set Ω, with positive

and finite measure, is a spectral set if and only if it is an additive tile.

Several people worked on this conjecture and derived important results and

validated the conjecture for some special cases, see [15, 17, 18, 19, 26] and the

references therein. However, in 2003, T. Tao [25] showed that the conjecture is

false in dimension 5 and higher, if the lattice hypothesis is drooped. But even now,

after the Spectral-Tiling conjecture have been proven to fail in higher dimension,

it is still interesting and important to understand better the connection between

spectral properties and tilings, in particular because of the connection to wavelet

sets.

Theorem 4.6 (Tao, 2003). Let d ≥ 5 be an integer. Then there exists a compact

set Ω ⊂ Rd of positive measure such that L2(Ω) admits an orthonormal basis of

exponentials {eλ | λ ∈ T } for some T ⊂ Rd, but such that {Ω} does not tile Rd by

translation. In particular, Fuglede’s conjecture is false in Rd for d ≥ 5.

In June 2004, M. Kolountzakis and M. Matolcsi show that the direction tile →

spectral is also false for dimension 5 or higher.

Theorem 4.7 (Kolountzakis, Matolcsi). In each of the groups Zd and Rd, d ≥ 5,

there exists a set which tiles the group by translation but is not spectral.

In October 2004, M. Kolountzakis and M. Matolcsi improve the last two results

by showing that the direction spectral→ tile is false already in dimension 3.

4.4 Benedetto and Sumetkijakan’s Construction

Benedetto and Leon have given a general construction of wavelet sets in Rd, with

respect to the translation set Zn and dilation set D = {2j id|j ∈ Z}, see [16]. They
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consider a bounded neighborhood of the origin K0 and a fixed number N such that

K0 ⊆ [−N,N ]d and K0 ∼Z Q, where Q := [−1
2
,−1

2
]d. Define a injective integer

translated map,

T : K0 → [−2N, 2N ]d \ [−N,N ]d

T (x) = x+ nx, for somenx ∈ Zd,

as follows:

A0 := K0 ∩
[ ⋃

j≥1

2−jK0

]
and K1 := [K0 \ A0] ∪ T (A0).

Note that if Kn = K−
n ∪K+

n , where

K−
n ⊆ [−N,N ]d,

K+
n ⊆ [−2N, 2N ]d \ [−N,N ]d,

then we have that

K−
1 = K0 \ A0 ⊆ K0 ⊆ [−N,N ]d,

and

K+
n = T (A0) ⊆ [−2N, 2N ]d \ [−N,N ]d.

In general, define

An := Kn ∩
[ ⋃

j≥1

2−jKn

]

and

Kn+1 := [K−
n \ An] ∪ [K+

n ∪ T (An)] = K−
n+1 ∪K+

n+1.

Then we have that

Kn+1 =
[
K0 \

n⋃

k=0

Ak
]
∪

[ n⋃

k=0

T (Ak)
]

and then finally define

K =
[
K0 \

∞⋃

k=0

Ak
]
∪

[ ∞⋃

k=0

T (Ak)
]
.
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It can be verified easily that

{K + z|z ∈ Z}

is an additive tiling of Rd and

{2jK|j ∈ Z}

is an multiplicative tiling of Rd, and so, K is a wavelet set.

Example 4.8. Let T : [−1
2
,−1

2
]2 → [−1, 1]2 \ [−1

2
,−1

2
]2 defined by

T (x, y) = (x, y) − (sgn x, sgn y).

Then the wavelet set obtained using the above method is a generalization to R2 of

the wavelet set [−1,−1
2
] ∪ [1

2
, 1] associated with the Shannon wavelet.

x

y

−1 −0.5 0 0.5 1

1

0.5

0

−0.5

−1

FIGURE 4.1. The set K7
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4.5 Existence of Subspace Wavelet Sets

We discuss now briefly the some results by Dai, Larson, and Speegle [7]. For that

assume thatG is a countable group acting on a measure space (M,µ) by measurable

transformations. Two sets E and F are said to be G-dilation congruent, E ∼G F ,

if there exists measurable partitions {Ei} and {Fi} of E and F , respectively, such

that Fi = giEi for some gi ∈ G. Similarly, two sets E and F are said to be T -

translation congruent, E ∼T F , if there exists measurable partitions {Ei} and {Fi}

of E and F , respectively, such that Fi = ti + Ei for some ti ∈ T .

In 1996, the above three authors showed in [7], that wavelet sets exists for groups

of dilations. They first introduce the notion of abstract dilation-translation pair.

Definition 4.9 (Dai-Larson-Speegle). Let X be a metric space and D and T

discrete groups of automorphisms of X. A pair (D, T ) is called an abstract dilation-

translation pair if the following holds:

i) For each bounded set E and each open set F there exist d ∈ D and t ∈ T such

that t(E) ⊆ d(F ).

ii) There is a fixed point θ for D such that for any neighborhood N of θ and for

any bounded set E, there is an element d ∈ D such that d(E) ⊆ N .

In [7] the following is proved:

Theorem 4.10. Let X be a metric space and (D, T ) an abstract dilation-trans-

lation pair with θ as fixed point for D. If E and F are bounded measurable sets in

M such that E contains a neighborhood of θ and F has nonempty interior and is

bounded away from θ, then there exists a measurable set W ⊆M , W ⊆ ∪d∈Dd(F )

which is D-congruent to F and T -congruent to E.
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If d ∈ GL(n,R), γ ∈ Rn, and ψ : Rn → C set ψd,γ(x) = | det d|1/2ψ(dx + γ).

Note that the Fourier transform of ψd,γ is given by

ψ̂d,γ(λ) = e2πi<γ,d
−T λ>ψ̂(d−Tλ) . (4.2)

Definition 4.11. Let M ⊆ Rn be measurable, |M | > 0, and D ⊂ GL(n,R). Let

T ⊂ Rn be discrete. Then a measurable set Ω ⊆ M is called a M-subspace (D, T )-

wavelet set if the set of function {ψd,γ}(d,γ)∈D×T is a orthogonal basis for L2
M(Rn),

where ψ = F−1χΩ.

Remark 4.12. Note again, that we do not assume that Ω ⊂M nor that DM = M

up to set of measure zero. But this will follows if id ∈ D. As in Remark 4.4 one

can always assume this be replacing D by d−1D and Ω by dTΩ for a fixed d ∈ D.

We get from Theorem 4.9:

Theorem 4.13 (Dai-Larson-Speegle). Let a be an expansive matrix, and let M ⊆

Rn be a measurable set of positive measure such that aTM = M . Let D = {ak |

k ∈ Z} and let T be a full rank lattice. Then there exists a (D, T ) subspace wavelet

set for L2(M).

There are several generalization of this Theorem. We refer to [21] for discussion

and references. We will only mention two important result here.

A matrix with all eigenvalues greater than 1 is called an expansive matrix.

Theorem 4.14 (Dai, Diao, Gu, Han [9]). Let M be a measurable subset of Rn,

with positive measure satisfying aTM = M , for some expansive matrix a and let

T be a full rank lattice. Then there exists a set E ⊆ M such that {E + t | t ∈ T }

is a measurable tiling of Rn and {(aT )kE | k ∈ Z} is a measurable tiling of M . In

particular W is a subspace wavelet set for the space L2
M (Rn).
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Theorem 4.15 (Wang [26]). Let D ⊆ GL(n,R) and T ⊆ Rn. Let Ω ⊆ Rn be

measurable, with positive and finite measure. If Ω is a measurable DT -tile and

(Ω, T ) is a spectral pair, then Ω is a (D, T )-wavelet set. Conversely, if Ω is a

(D, T )-wavelet set and 0 ∈ T , then Ω is a measurable DT -tile and (Ω, T ) is a

spectral pair.

Let us sketch some of the ideas of the proof to underline the the connection

between spectral properties, tilings, and wavelet sets.

Let ψ = F−1χΩ. As the Fourier transform is an unitary isomorphism, it follows,

that the set {ψd,t | d ∈ D, t ∈ T } is an orthogonal basis for L2(Rn) if and only if

the set {ψ̂d,t | d ∈ D, t ∈ T } is an orthogonal bases for L2(Rn). Here, as before, we

have set

ψd,t(x) = | det d|1/2ψ(dx+ t) .

A simple calculation shows that

ψ̂d,t(λ) = | det d|− 1

2e2πi〈d
−1t,λ〉χdT Ω(λ) = | det d|− 1

2e2πi〈t,d
−T λ〉χdT Ω(λ) .

The fact, that dTΩ is a measurable tiling of Rn implies that

L2(Rn) '
⊕

d∈D

L2(dTΩ) .

The orthogonal projection onto L2(dTΩ) is given by f 7→ fχdtΩ and

f =
∑

d∈D

fχdT Ω .

The spectral property implies that {et}t∈T is an orthogonal basis for L2(Ω). As f 7→

| det d|−1/2f(d−T ·) is a unitary isomorphism L2(Ω) ' L2(dTΩ) it follows, that the

set of functions {| det d|−1/2e2πi〈t,d
−T ·〉 = | det d|−1/2ed−1t | t ∈ T } is an orthogonal

basis for L2(dTΩ). Putting those two things together, we get that {| det d|−1/2ed−1t |

d ∈ D, t ∈ T } is an orthogonal basis for L2(Rn).
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In this section we discuss how to construct subspace wavelet sets using kind of

“induction” process, i.e., using well known facts discussed in the previous section on

smaller dilation sets acting on a smaller frequency set and then extending those to

our bigger dilation set and frequency set. We start with two simple, but important,

observations. For A,B ⊂ GL(n,R) we say that the product AB = {ab | a ∈ A, b ∈

B} is direct if a1b1 = a2b2, a1, a2 ∈ A, b1, b2 ∈ B, implies that a1 = a2 and b1 = b2.

We state the following simple Lemma, but note, that we will be using the proof

more than the actual statement.

Lemma 4.16. Let M ⊆ Rn be measurable. Let A,B ⊂ GL(n,R) be two non-empty

sets and let D = AB = {ab | a ∈ A , b ∈ B}, such that the product AB is direct.

Then there exists a D-tile Ω for M if and only if there exists a measurable set

N ⊆ Rn, such that AN is a measurable tiling of M , and a B-tile Ω for N .

Proof. Assume that Ω is a D-tile for M . Set N := BΩ =
⋃
b∈B bΩ. Assume, that

there are b1, b2 ∈ B such that |b1Ω ∩ b2Ω| > 0. Then |(ab1Ω) ∩ (ab2Ω)| > 0 for all

a ∈ A, which contradicts our assumption, that DΩ is a measurable tiling of M .

Hence BΩ is a measurable tiling of N . We have, up to set of measure zero:

AN =
⋃

a∈A

an =
⋃

a∈A, b∈B

abΩ = M .

Assume, that there are a1, a2 ∈ A such that |a1N ∩ a2n| > 0. Then we can find

b1, b2 ∈ B such that a1b1Ω∩ a2b2Ω| > 0. As the product AB is direct, and DΩ is a

measurable tiling of M , it follows that a1 = a2. Hence AN is a measurable tiling

of M .

For the other direction, assume that AN is a measurable tiling of M and BΩ is

a measurable tiling of N . Then, up to sets of measure zero,

⋃

d∈D

dΩ =
⋃

a∈A

⋃

b∈B

abΩ =
⋃

a∈A

a
⋃

b∈B

bΩ =
⋃

a∈A

an = M .
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Assume that |d1Ω ∩ d2Ω| > 0. Then there are unique a1, a2 ∈ A, and b1, b2 ∈ B

such that d1 = a1b1 and d2 = a2b2. Hence |a1N ∩ a2N | > 0 which implies that

a1 = a2, as AN is a measurable tiling for M . But then |b1Ω ∩ b2Ω| > 0, which

implies that b1 = b2. Hence d1 = d2. This shows, that DΩ is a measurable tiling of

M .

Remark 4.17. We would like to remark at this point that we do not assume that

Ω ⊆M , nor that N ⊆ M . This will in fact be the case in most applications because

D will contain the identity matrix. Recall also from Remark 4.4 and Remark 4.12

that we can always assume that id ∈ D and Ω ⊆M up to set of measure zero. The

same remarks hold for the following Theorems.

Theorem 4.18 (Construction of wavelet sets by steps I). Let M,N ⊂ GL(n,R)

and let L = MN such that the product MN is direct.

Assume that M ⊆ Rn with |M | > 0, is measurable. Let T ⊂ Rn be discrete.

Then there exists a (L, T )-wavelet set Ω ⊂ M for M if and only if there exists a

N T -tiling set N ⊂M and a (M, T )-wavelet set Ω1 for N .

Proof. Set A = N T and B = MT .Then the conditions in Lemma 4.16 are satisfied.

Assume, that Ω ⊂M is a (L, T )-wavelet set for M . As above we set

N := BΩ :=
⋃

b∈M

bTΩ .

Then, as above, we see that AN is a measurable tiling of M . As Ω is a spectral

set, it follows from Theorem 4.15 that Ω is a (M, T )-wavelet set for N .

Assume now that N is a N T -tiling for M , and that Ω1 is a (M, T )-wavelet set

for N . Then, in particular Ω1 is a B-tile for N . As AN is a measurable tiling of M ,

it follows that LTΩ1 is a measurable tiling of M . As Ω1 is a spectral set it follows

from Theorem 4.15 that Ω1 is a (L, T )-wavelet set for M .
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Recall that if D ⊆ GL(n,R), and G ⊂ GL(n,R) is a group that acts on D form

the right, then there exists a subset D1 ⊆ D, such that D = D1G and the product

is direct. Note, that we do not assume that G ⊂ D.

Theorem 4.19 (Construction of wavelet sets by steps II). Let D ⊂ GL(n,R)

and M ⊆ Rn measurable with |M | > 0. Let T ⊂ Rn be discrete. Assume that

G ⊂ GL(n,R) is a group that acts on D form the right. Let D1 ⊆ D be such that

D = D1G as a direct product. Then there exists a (D, T )-wavelet set Ω for M if

and only if there exists a GT -tiling set N for M and a (D1, T )-wavelet set Ω1 for

N .

Proof. This follows directly from Theorem 4.18 with M = D1 and N = G.

The question is how to obtain a wavelet set for the starting subset N . The

following gives one way to do that.

Theorem 4.20 (Existence of subspace wavelet sets). Let M ⊆ Rn be a measurable

set, |M | > 0. Let a ∈ GL(n,R) be an expansive matrix and ∅ 6= D ⊂ GL(n,R).

Assume that DT is a multiplicative tiling of M , aD = D and aTM = M . If T is a

lattice, then there exists a measurable set Ω ⊆M such that Ω + T is a measurable

tiling of Rn and DTΩ is a measurable tiling of M . In particular, Ω is a (D, T )

wavelet set.

Proof. Let b = aT and B = {bk | k ∈ Z}. Then B is an abelian group that acts on

DT from the right. Hence, there exists a set A ⊂ D such that DT = AB and the

product is direct. Thus, the conditions in the previous Theorems are satisfied.

Let E ⊂M be such that DTE is a measurable tiling of M . Set N := BE ⊆M .

Then N is B invariant. By Theorem 4.13 there exists a (B, T )-wavelet set Ω for
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N . Set

N :=
⋃

k∈Z

bkΩ .

Then, as before, we see that Ω is a (D, T )-wavelet

4.6 Rotations

We will start this section by constructing a wavelet set for the dilation group

D2,π/2 := {2nRk
π/2|n ∈ Z, k = 0, . . . , 3}, where Rπ/2 represents the rotation in R2

by π/2.

Example 4.21. We use first Benedetto’s construction described in section 4.4. Then

the wavelet set is

W ′ := W ∩
(
[0,

1

2
]2 ∪ [−1,−1

2
]2

)
,

where W is the wavelet set described in section 4.4.

x

y

−1 −0.5 0 0.5 1

1

0.5

0

−0.5

−1

FIGURE 4.2. The set K ′
7

Benedetto’s construction works only for the rotations in R2 by π/2 or π. We give

next a construction of wavelet sets which works for rotations in R2 by any angle

of the form 2π/k with k ∈ Z. We need this condition on the angle to get a finite

group as dilation set.
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FIGURE 4.3. A (D2,4,T ) wavelet set.

Example 4.22. For θ ∈ R, let

Rθ =




cos θ − sin θ

sin θ cos θ




denote the rotation in R2 by the angle θ. Let a > 1. For any integer m ≥ 2 let

Da,m := {anRk
2π/m|n ∈ Z, k = 0, . . . , m− 1, } .

Note, that Rk
2π/m = R2πk/m and that Da,m is a group. Let T = Z2 Let

R2
2π/m = {r(cosψ, sinψ)T | 0 ≤ ψ ≤ 2π/m , r > 0} .

Then R2
2π/m is a tiling set for the finite group {Rk

2π/m | k = 0, 1, . . . , m − 1}. As

aid is expansive, it follows from Theorem 4.13 that there exists a (A := {ajid |

k ∈ Z}, T )-wavelet set Ω for R2
2π/m and hence a (Da,m, T )-wavelet set for R2, see

also Theorem 4.20. We show here how to construct such a wavelet set. Note that
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we only have to construct a (A, Tθ)-wavelet set for R2
2π/m. For that, let

E = [0, 1] × [0, tan(2π/m)] if m 6= 2, 4

E = [0, 1]2 if m = 4

E = [−1, 1] × [0, 1] if m = 2

F = {(x, y) ∈ R2
2π/m|1 < x < a}

There are infinitely many choices for E, F and Tθ, we just thought these are the

most convenient ones. The wavelet set W has the form

W =

2⋃

i=1

∞⋃

j=1

Wi,j,

see figure 4.3. The description of the Wi,j is as follows

W1,1 = (E \ a−1E) + (1, 0)

W2,1 = a−2
(
F \

(
E + (0, 1)

))

W1,2 = [(a−1E \ a−2E) \W2,1] + (1, 0)

W2,2 = a−3[W2,1 + (0, 1)]

For j ≥ 3, we have the following formulas

W1,j = [(a−n+1E \ a−nE) \W2,j−1] + (1, 0)

and

W2,j = a−n−1[W2,j−1 + (0, 1)].

From the construction, it is clear that W and E are T -translation congruent, and

W and F are D-dilation congruent. On the other hand, F is a Da,m-multiplicative

tile and {E, T } is a spectral pair. It follows that W is a Da,m-multiplicative tile

and {W, T } is a spectral set. Thus, by Theorem 4.15 W is a (Da,m, T ) wavelet set.
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4.7 Hyperbolic Rotation

The hyperbolic rotations case is very similar to the rotations described above. For

θ ∈ R, let

Rhθ =




cosh θ sinh θ

sinh θ cosh θ




denote a hyperbolic rotation in R2 by the angle θ. Let a > 1 and

Dha,m := {anRhk|n ∈ Z, k ∈ Z, a > 1} .

Note that Dha,m is a group. Let

T = Z × (tanh 1)Z .

Then T is a full rank lattice in R2. Let

E = [0, 1] × [0, tanh 1]

F = {(l cosh t, l sinh t)|t ∈ (0, 1), l ∈ (2, 4), }

The sets Wi,j are constructed as above, with small differences: Let

F ′
2,1 := {(l cosh t, l sinh t)|t ∈ (0, 1), l ∈ (2, 4) cosh t < 4},

F ′′
2,1 := {(l cosh t, l sinh t)|t ∈ (0, 1), l ∈ (2, 4) cosh t > 4}

and s = 2 cosh(sinh−1((tanh 1)/2)). Then

W1,1 = (E \ 2−1E) + (s, 0)

W2,1 = 2−3F ′
2,1 ∪ 2−4F ′′

2,1

W1,2 = [(2−1E \ 2−2E) \W2,1] + (s, 0)

W2,2 = 2−4[W2,1 + (s, 0)]

For j ≥ 3, we have the following formulas

W1,j = [(a−n+1E \ a−nE) \W2,j−1] + (s, 0)
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and

W2,j = a−n−2[W2,j−1 + (s, 0)].

The wavelet set W has again the form

W =
2⋃

i=1

∞⋃

j=1

Wi,j.

From the construction, it is clear that W and E are Tθ-translation congruent, and

W and F are D-dilation congruent. On the other hand, F is a Da,m-multiplicative

tile and {E, Tθ} is a spectral pair. It follows that W is a Da,m-multiplicative tile

and {W, Tθ} is a spectral set. Thus, by Theorem 4.15 W is a (Da,m, Tθ) wavelet set.
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FIGURE 4.4. A (D2,4,T1) wavelet set.

4.8 Example of Dilations Which Are Not

Groups

Example 4.23. Let a = ( 2 0
0 3 ), D = {Rk

π/4a
n | n ∈ Z} and T = Z2. We consider now

the action of the group D on the first quadrant of the R2, [0,∞)2. Let E = [0, 1]2
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and F = ([0, 2] × [0, 3]) \ [1, 1]2. Note that E is a Z2-tile and that F is a a-tile for

[0,∞)2. Following the same procedure, we get a set W such that W and E are

Z2-translation congruent, W and F are D-dilation congruent and so, it follows that

W is a D-multiplicative tile and {W,Z2} is a spectral set. Thus, W is a (D,Z2)

wavelet set. The wavelet set W has the form

W =

2⋃

i=1

∞⋃

j=1

Wi,j,

see figure 4.6. The description of the Wi,j is as follows

W1,1 = (E \ a−1E) + (1, 0)

W2,1 = a−2[(0, 1) × (1, 3)]

W1,2 = [(a−1E \ a−2E) \W2,1] + (1, 0)

W2,2 = a−3[W2,1 + (0, 1)]

For j ≥ 3, we have the following formulas

W1,j = [(a−n+1E \ a−nE) \W2,j−1] + (1, 0)

and

W2,j = a−n−1[W2,j−1 + (0, 1)].
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FIGURE 4.6. The sets W .
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5. Coxeter Groups

A Coxeter group W is an abstract group with certain properties, but one thinks

of W as a motion group generated by reflections through hyperplanes with respect

to a symmetric bilinear form, (·, ·). If the bilinear form is positive definite, then

the result is a finite Coxeter group.

Coxeter groups first appear as symmetry groups of regular geometric objects.

A reflection is a linear operator r on Rn which sends some nonzero vector α to

its negative and fixes pointwise the hyperplane Hα orthogonal to α. There is a

simple formula

rαλ = λ− 2(λ, α)

(α, α)
α.

It is clear that r2
α = 1 and rα is an orthogonal transformation, so rα has order 2 in

the group of orthogonal transformations on Rn. In this chapter, we will describe a

special kind of finite subgroups of the group of orthogonal transformations, those

finite groups generated by reflections, or finite reflection groups, for short.

Dihedral Group. Let R2 be the euclidian plane, and let Dm be the dihedral group

of order 2m, consisting of the orthogonal transformations which preserve a regular

m- sided polygon centered at the origin.

Dm contains m rotations through multiples of 2π/m, and m reflections about

the diagonals of the polygon. By ’diagonal’, we mean a line joining two vertices or

the midpoints of opposite sides if m is even, or joining a vertex to the midpoint of

the opposite side if m is odd.

The group Dm is actually generated by reflections, since a rotation through 2π/m

is a product of two reflections relative to a pair of adjacent diagonals which meet

at an angle of θ = π/m, see Figure 5.1.
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FIGURE 5.1. The dihedral group D4

The three dimensional case is more interesting. Let a, b, c be three linearly inde-

pendent vectors such that the corresponding reflections lie in a finite group. That

is only possible if ^(a, b), ^(a, c), ^(b, c) are rational multiple of π. This can be

obtain by choosing ^(a, b) to be an arbitrary multiple of π and then choosing c

such that ^(a, c) = ^(b, c) = π/2. In that case, the group generated by ra and

rb, < ra, rb >, is a dihedral group and < ra, rb, rc > is the direct product of the

dihedral group < ra, rb > and the cyclic group of order 2 generated by rc.

Except these direct products, there are only three 3-dimensional Euclidian re-

flection groups, the groups of symmetries of a regular tetrahedron, a cube, and a

regular dodecahedron.

Example 5.1. For each tetrahedron centered, there is a ’dual’ tetrahedron which

is congruent to the given one, and has the property that each edge of the given

tetrahedron is perpendicularly bisected by an edge of the dual. Together, the ver-

tices of the two tetrahedra give the vertices of a cube. Let a and c be the position

vectors of the midpoints of a pair of parallel but not opposite edges e1 and e2. Let

b be the position vector of the midpoint of one of the edges on the opposite face to
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that determined by e1 and e2, which are not parallel to e1 and e2. Then we have

the following:

^(a, b) = 2π/3, rarb has order 3;

^(a, c) = π/2, rarc has order 2;

^(b, c) = 2π/3, rbrc has order 3;

ra, rb, rc are symmetries of the tetrahedron, and so these three reflections gener-

ate the group of all symmetries of the tetrahedron, which is just Sym(4).

5.1 Roots

Let ∆ be a finite set of nonzero vectors in Rn satisfying the conditions:

i) ∆ ∩ Rα = {α,−α} for all α ∈ ∆;

ii) rα∆ = ∆ for all α ∈ ∆.

Let W be the group generated by all reflections rα, α ∈ ∆. We call ∆ a root

system with associated reflection group W . The elements of ∆ are called roots.

Suppose W is finite.

Recall that a total ordering of a real vector space V is a transitive relation on V

(denoted <) satisfying the following axioms:

1) For each pair µ, ν ∈ V , exactly one of µ < ν, µ = ν, µ > ν holds.

2) Let µ, ν, η ∈ V . If µ < ν, then µ+ η < ν + η.

3) If µ < ν and c is a nonzero real number, then cµ > cν if c < 0 and cµ < cν if

c > 0.

Given such a total ordering, we say that ν ∈ V is positive if 0 < ν.

Let ∆+ = {ν ∈ ∆|0 < ν} be the set of al positive roots in ∆.

A subset Π of ∆ is a simple system if Π is a vector space basis for the R-span

of ∆ in V and if each ν ∈ ∆ is a linear combination of Π with coefficients all of

of the same sign. It is easy to see that if Π is a simple system, then wΠ is also a

simple system, for any w ∈W .
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Theorem 5.2. Every positive system contains a unique simple system.

The group W is actually generated by simple reflections.

Theorem 5.3. If a subset Π of ∆ is a simple system, then

W =< rα|α ∈ Π > .

It turns out that the group W is completely characterized by the following

relations:

(rαrβ)
m(α,β) = 1, α, β ∈ Π,

where m(α, β) is the order of rαrβ in W . Any group having such a representation

is called a Coxeter group .

5.2 Fundamental Domain

In this section we describe the fundamental domain for the action of the Coxeter

group W on Rn. Assume that Rn = span∆. To describe the action of the group

W on Rn, we need to describe the orbits. Fix a simple system Π. Associated with

each hyperplane Hα, there are the open half-spaces Vα and V ′
α, where

Vα := {λ ∈ Rn|(λ, α) > 0}

and

V ′
α := −Vα.

Definition 5.4. Let G be a group acting on Rn. Then a closed subset D of Rn is

called a fundamental domain of G on Rn, if

Rn =
⋃

g∈G

gD,

and gD ∩ hD has empty interior for all g, h ∈ G.
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Definition 5.5. A subset C of a vector space V is a cone if λC ⊆ C, for any real

λ > 0.

Definition 5.6. A subset C of a vector space V is convex if for any vectors u, v ∈

C, the vector (1 − t)u+ tv is also in C for all t ∈ [0, 1].

Let C :=
⋂
α∈Π Vα. Then C is an open convex cone. Let D be the closure of C.

Then

D := {λ ∈ Rn|(λ, α) ≥ 0 for all α ∈ Π}

is a closed convex cone which is actually a fundamental domain for the action of

W on Rn.

Theorem 5.7. Let Π be a simple root system. Then D is a fundamental domain

for the action of W on V .

So, we have associated to a simple system Π an open convex cone C. If we replace

Π by wΠ, with w ∈W , then we replace C by wC. All of these open convex cones

are called chambers and they are the connected components of the complement of

⋃
α∈ΠHα in Rn. Given a chamber C associated with a simple system Π, its walls

are defined to be the hyperplanes Hα, with α ∈ Π. The angle between any two

walls is an angle of the form π/k, for some positive integer k > 1

5.3 Wavelet Sets in Rn

Let A be an expansive matrix and T be a full rank lattice. The definition of a

Multiresolution Analysis on higher dimensions than 1 is as follows.

Definition 5.8. A multiresolution analysis on Rn is a sequence of subspaces {Vj}j∈Z

of functions in L2(Rn) satisfying the following properties:

i) For all j ∈ Z, Vj ⊆ Vj+1

ii) If f(·) ∈ Vj, then f(A·) ∈ Vj+1
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iii)
⋂
j∈Z

Vj = {0}

iv)
⋃
j∈Z

Vj = L2(Rn)

v) There exists a function φ ∈ L2(Rn) such that {φ(·+t)|t ∈ T } is an orthonormal

basis of V0.

The function φ is called a scaling function. One can allow more than one scaling

function, say m, and then the MRA has multiplicity m.

Lemma 5.9. Let {Ω+ t | t ∈ T } be a measurable tiling of Rn. If f ∈ L2(Rn), then

{f(· + t)}t∈T is an orthonormal system if and only if

∑

t∈T

|f̂(ξ + t)|2 = 1,

for almost all ξ ∈ Rn.

Proof. Let {f(· + t)}t∈T be an orthonormal system. If s ∈ T , then

δo,s =
∫

Rn

f(x)f(x+ s)dx

=
∫

Rn

|f̂(ξ)|2e2πi<s,ξ>dξ

=
∑
t∈T

∫
Ω−t

|f̂(ξ)|2e2πi<s,ξ>dξ

=
∫
Ω

(
∑
t∈T

|f̂(ξ + t)|2)e2πi<s,ξ>dξ

Thus, the periodic function
∑
t∈T

|f̂(ξ + t)|2 is 1, since its Fourier coefficient at fre-

quency 0 is 1 and the rest of coefficients are zero. Note that the
∫

Ω−t

|f̂(ξ)|2e2πi<s,ξ>dξ

is bounded, so by the Lebesgue Dominated Convergence, we can interchange the

summation and integration in the last two equalities. The other direction is imme-

diate.

If we change condition iv) in the definition of the multiresolution analysis into

iv′)
⋃
j∈T Vj = L2

M(Rn), for some subset M ⊆ Rn, then we get a subspace multires-

olution analysis, SMRA.
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We are discussing now the construction of wavelets from MRA. Let W0 be the

orthogonal complement of V0 in V1, that is, V1 = V0 ⊕W0. In general, let Wi =

Vi+1 	 Vi, for each j ∈ Z,

Vj =

j⊕

l=−∞

Wl

and so

L2(Rn) =
∞⊕

l=−∞

Wl.

If there exists a function ψ ∈W0 such that {ψ(·+t)|t ∈ T } is an orthonormal basis

for W0, then {ψj,t|t ∈ T } is an orthonormal basis for Wj , and {ψj,t|t ∈ T , j ∈ Z}

is an orthonormal basis for L2(Rn), which means that ψ is an orthonormal wavelet

associated with the given MRA..

Since {φt|t ∈ T } is an orthonormal basis for V0, we obtain

φ̂(Bξ) = φ̂(ξ)m0(ξ),

with low pass filter

m0(ξ) =
∑

t∈T

e2πi<t,ξ>.

5.4 Wavelet Sets and SMRA

Let T be a full rank lattice and let A be an expansive matrix. Set B = AT . Suppose

BT ⊆ T and then let T /BT be the quotient group, where we identify its elements

with their representative vectors in Rn, v0, v1, ...vq−1, where q = | det(B)|.

Lemma 5.10. Let K be a T -tile such that B−1K ⊂ K. Let

Ki = (B−1K +B−1vi + T )
⋂

K.

Then

i) K =
⋃q−1
i=0 Ki up to measure zero and Ki

⋂
Kj = 0 up to measure zero for i 6= j.
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ii) BKi ∼T K.

Proof. Let x ∈ Ki ∩Kj . Then there exist u1, u2 ∈ K, vi, vj ∈ T /BT and t1, t2 ∈ T ,

such that

x = B−1u1 +B−1vi + t1 = B−1u2 +B−1vj + t2,

and so u1 − u2 ∈ T . But K is a T tile, so u1 = u2, and then vi − vj = B(t1 − t2).

Thus vi = vj and so i = j. Let the notations be as before and let

Ki,t = B−1K
⋂

(K − B−1vi − t).

Then
⋃
t∈T (Ki,t +B−1vi + t) = Ki.

Since K is a T tile, it follows that K − B−1vi is also a T tile. Thus Ki,t are

measurewise disjoint and
⋃
t∈T Ki,t = B−1K.

By definition, Ki ⊆ K, and

|Ki| = Σt∈T |Ki,t| = |B−1K| = q−1|K|

for i = 0, ..., q − 1, and |Ki

⋂
Kj| = 0 for i 6= j. Therefore

K =

q−1⋃

i=0

Ki

up to measure zero. Moreover,

B(Ki) =
⋃

t∈T

B(Ki,t +B−1vi + t) = K + vi +Bt

and thus

B(Ki) ∼T K.

Let K ⊂ Rn be a measurable set. Set V0 = L2
K(Rn) and Vj = {f(Aj·)|f(·) ∈ V0}.
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Definition 5.11. A set K ⊂ Rn, |K| = 1, is a scaling set, if the sequence described

above, {Vj}, is a multiresolution analysis with scaling function φ = F−1χK.

Theorem 5.12. A subset K ⊂ Rn is a scaling set if and only if B−1K ⊆ K and

K is a T − tile.

Proof. Suppose first that K ⊂ Rn is a scaling set. Then φ = F−1χK is a scaling

function and so

{φ0,t}t∈T

is an orthonormal basis for V0. This implies that

{φ̂0,t}t∈T

is an orthonormal basis for V̂0. It follows that V̂0 has a orthonormal basis of the

form

{e−2πi<t,·>χK}t∈T .

From this we get two things. The first is that (K, T ) is a spectral pair and thus K

is a T − tile. The second is that V̂0 = L2(K) and by the SMRA structure, we get

that

V̂−1 ⊂ V̂0

which implies that

B−1K ⊂ K.

Assume now that B−1K ⊂ K and that K is a T − tile.

Set V̂0 = L2(K) and V̂j = L2(BjK). Since B−1K ⊂ K, it follows that V̂j ⊂ V̂j+1.

The other conditions are easy to verify. Thus K ⊂ Rn is a scaling set.

The next theorem gives in a constructive way, the existence of SMRA wavelets.

Theorem 5.13. If K ⊂ Rn is a scaling set, then
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i) V̂0 = L2(K) and V̂j = L2(BjK)

ii) {ψi = χ̌Ωi
}q−1
i=1 is a SMRA multiwavelet, where Ωi = BKi.

Proof. i) follows from the theorem above.

ii) By lemma 1, Ωi ∼ K. This implies that (Ωi, T ) is a spectral pair. Then

{ψ̂io,t}t∈T

is an orthonormal basis for L2(Ωi).

Set Ŵ0,i = L2(Ωi) for i = 1, ..., q − 1. By construction,

BK = K ∪
q−1⋃

i=1

Ωi.

Therefore

V̂1 = L2(BK) = L2(K) ⊕
q−1⊕

i=1

L2(Ωi) = V̂0 ⊕ Ŵ0,1 ⊕ ...⊕ Ŵ0,q−1.

So

V1 = V0 ⊕
q−1⊕

i=1

W0,i

and for any j ∈ Z, we have

Vj+1 = Vj ⊕
q−1⊕

i=1

Wj,i.

Thus, {ψi = F−1χΩi
}q−1
i=1 is a SMRA multiwavelet.

5.5 Multiresolution and Coxeter Groups

Let W =< rαi
|αi ∈ Π > be a finite Coxeter group, where Π = {αi|i = 1, · · · , n} is

a simple root system, and let D be the fundamental domain for the action of W

on Rn. Let Π∗ = {α∗
i |(αi, α∗

j) = δi,j} be the dual basis and let R = (α∗
i )α∗

i ∈Π∗ . Let

A be an expansive, diagonal matrix with respect to the basis Π∗, and let B = AT .

P = {
n∑

i=1

tiα
∗
i |0 < ti ≤ si},
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where si are such that |P | = 1. Note that P is a n dimensional parallelepiped and

a RZn tile.

Indeed, if z ∈ Zn, then

P +Rz = {∑n
i=1 tiα

∗
i +

∑n
i=1 niα

∗
i |0 < ti ≤ si, ni ∈ Z}

= {∑n
i=1(ti + ni)α

∗
i |0 < ti ≤ si, ni ∈ Z}

so

|P ∩ (P +Rz)| = 0.

Let d1, ..., dn be the eigenvalues of B = AT . Then

B−1P = {
n∑

i=1

d−1
i tiα

∗
i |o < ti ≤ si} ⊂ P,

since 0 < d−1
i ti ≤ si. Moreover,

(
n∑

i=1

tiα
∗
i , αm) =

n∑

i=1

ti(α
∗
i , αm) = tm > 0.

Thus,

B−1P ⊂ P ⊂ D.

Theorem 5.14. Let P,B be as above. Then {ψi = χ̌Ωi
}q−1
i=1 is a SMRA multi-

wavelet, where Ωi = BPi and Pi = B−1P +B−1vi.

Proof. As shown above, P is a RZn-tile and B−1P ⊂ P and so P is a scaling set.

Thus, by theorem 4.8, {ψi = χ̌Ωi
}q−1
i=1 is a SMRA multiwavelet.

Example 5.15. Let the group D = {Rk
2π
m

}m−1
k=0 act on R2 and let D = {t1(1, 0) +

t2(cot 2π/m, 1), 0 < t1,2} be the fundamental domain of this action. Let B = 2id2

and P = {t1(1, 0) + t2(cot 2π/m, 1), t1,2 ∈ [0, 1]}. Let

Ω1 = P + (1, 0),
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FIGURE 5.2. SMRA wavelet sets in R2

Ω2 = P + (1 + cot 2π/m, 1),

Ω3 = P + (cot 2π/m, 1).

Then {ψi = χ̌Ωi
}3
i=1 is a SMRA multiwavelet, see Figure 5.2.

Example 5.16. Let W =< ra, rb, rc > be a Coxeter group, where a, b, c are as

described in Example 5.1. Then the fundamental domain for the action of W on

R3 is

D = {taa∗ + tbb
∗ + tcc

∗|0 < ta, tb, tc}.

Let P = {taa∗ + tbb
∗ + tcc

∗|0 < ta < sa, 0 < tb < sb, 0 < tc < sc}, such that

|P | = 1.

Let B = 2id3. Then det(B) = 23 = 8 and so there are 7 MRA wavelet sets, see

Figure 5.3.

5.6 Wavelet Sets and Coxeter Groups

The construction of wavelet sets given in chapter 3., can also be generalized to

higher dimensions using Coxeter groups.

Theorem 5.17. Let P be as above and let F = BP \ P . Define

W1,1 = (P \B−1P ) + α∗
i
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FIGURE 5.3. SMRA wavelet sets in R3

W2,1 = B−2[F \ (P + α∗
i )]

...

W1,n = [(B−n+1P \B−nP ) \W2,n−1] + α∗
i

W2,n = B−n−1{[(B−n+1P \B−nP ) + α∗
i ] \W1,n}.

Then

P =
∞⋃

n

W2,n

⋃ ∞⋃

n

(W1,n − α∗
i )

F =
∞⋃

n

W1,n

⋃ ∞⋃

n

Bn+1W1,n.

Moreover, if we let

W =
⋃

j=1,2

∞⋃

n

Wj,n,

then W is a wavelet set.
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Proof. We have shown above that P is a RZn-tile. On the other hand,

BF ∩ F = ∅,

and
⋃

n∈Z

BnF = D,

so F is a multiplicative tiling. By definition,

W ∼RZn P,

and

W ∼B F.

Thus, W is a wavelet set.
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