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Abstract

The Wiener–Hopf technique is a powerful tool for constructing analytic solutions for a wide

range of problems in physics and engineering. The key step in its application is solution of

the Riemann–Hilbert problem, which consists of finding a piece-wise analytic (vector-) func-

tion in the complex plane for a specified behavior of its discontinuities. In this dissertation,

the applied theory of vector Riemann–Hilbert problems is reviewed. The analytical solu-

tion representing the problem on a Riemann surface, and a numerical solution that reduces

the problem to singular integral equations, are considered, as well as a combination of the

numerical and analytical techniques (partial Wiener–Hopf factorization) is proposed.

In this work, we begin with a brief survey of the Riemann–Hilbert problem: constructing

solution of the scalar Riemann–Hilbert problem for a class of Hölder continuous functions;

considering classes of matrices that admit the closed-form solution of the vector Riemann–

Hilbert problem; discussing numerical and analytical techniques of constructing solutions of

vector Riemann–Hilbert problems.

We continue with applications of the Wiener–Hopf technique to problems of Dynamic

fracture mechanics: reviewing well-known solutions to problems on propagation of a semi-

infinite crack in an unbounded plane in the cases of a stationary crack, a crack propagating

at a constant speed, and a crack propagating at a non-uniform arbitrary speed. Based on

those, we derive solutions to new problems on a semi-infinite crack propagation in a half-

plane (steady-state and transient problems for subsonic speeds) as well as in a composite

strip (for intersonic speeds). These latter results are new and were first derived by Y. Antipov

and the author.

vi



Chapter 1

Introduction

The Riemann–Hilbert problem and its application to solving partial differential equations is

a powerful technique that is applied to a wide range of problems in physics and engineering.

In more then half a century, since the first scalar Riemann–Hilbert problem was stated and

solved, many studies were devoted to generalizing the problem and improving analytical and

numerical techniques of its solution. Special attention was given to vector Riemann–Hilbert

problems since they do not, in general, admit a closed-form analytical solution.

1.1 A Brief History of Riemann–Hilbert Problem

The Riemann–Hilbert boundary value problem was first introduced by B. Riemann in con-

nection with the so-called “Riemann monodromy” problem that concerns the existence of a

certain class of linear differential equations with specified singular points and monodromy

group [7]. The Riemann monodromy problem was transformed to what we call a Riemann–

Hilbert problem by D. Hilbert [44] and G.D. Birkhoff [21, 22]. J. Plemelj [67] used the results

of Riemann–Hilbert problems to study the Riemann monodromy problem.

The Riemann–Hilbert problem is defined as follows: given a closed (for convenience) con-

tour L, and functions a(t) and b(t) which are Hölder continuous on L and a(t) 6= 0 on L,

find two functions φ+(z) and φ−(z), analytic respectively inside and outside of the contour

L with a finite-degree growth at infinity, such that

φ+(t) = a(t)φ−(t) + b(t), t ∈ L (1.1)

This definition can be generalized with respect to the contour (e.g. open, infinite, non-simple

contours) and to the functions a(t), b(t) (e.g. functions with finitely or countably many

discontinuities on the contour L), as well as a system of several conditions of type (1.1) can

be considered (vector Riemann–Hilbert problem).

1



The first solution of the homogeneous (i.e. for b(t) = 0 on L) scalar Riemann–Hilbert

problem (1.1) was given by D. Hilbert [43] in terms of a Fredholm integral equation. J.

Plemelj [65, 66] gave the first closed form solution of (1.1) in the case when arg a(t) has

zero increment as t traverses along the contour L. T. Carleman [26] solved a related singular

integral equations. F.D. Gakhov [40] gave the full solution of the scalar Riemann–Hilbert

problem (1.1). Vector Riemann–Hilbert problems were considered by J. Plemelj [67], F.D.

Gakhov [41], N.I. Muskhelishvili [61], and by I. Vekua [81].

We should also note that the work [83] of N. Wiener and E. Hopf is closely related to

Riemann–Hilbert problems. They proposed a technique of solving the integral equation of

the form ∫ ∞
0

k(x− y)f(y)dy = g(x), 0 < x <∞ (1.2)

with respect to the function f : R+ → R, where k : R → R is a difference kernel and

g : R+ → R is a known function defined on the positive semi-axis. By introducing an

auxiliary function h : R− → R defined on the negative semi-axis so that∫ ∞
0

k(x− y)f(y)dy =

 g(x), 0 < x <∞

h(x), −∞ < x < 0

and applying Fourier transform to the equation, it is reduced to the equality

ĝ+(t) + ĥ−(t) = f̂+(t)k̂(t), −∞ < t <∞ (1.3)

where f̂+ and ĥ− are half-range Fourier transforms (taken over the intervals (0,∞) and

(−∞, 0) respectively), which are to be found. Moreover, the functions f̂+ and ĥ− are ana-

lytic respectively in the upper C+ and the lower C− half-planes provided that f and h are

integrable on the corresponding intervals. Thus, the equation (1.3) is a boundary condition

of a Riemann–Hilbert problem in the form (1.1) with a = 1/k̂ and b = ĝ+/k̂. For more

details on the Wiener–Hopf method, see the monograph [62].

The Wiener–Hopf technique has been applied to many problems in Physics and Mechanics

(see, for instance, works on diffraction [30], electromagnetic waves [27, 28], and sound waves
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[55]). D.S. Jones [49] simplified the Wiener–Hopf method by demonstrating that the equation

in form of a Riemann–Hilbert problem (1.1) can be derived immediately from a boundary

value problem by applying Fourier transform to the partial differential equations and, thus,

bypassing the integral equation (1.2).

There are two traditions to call the problems of determining analytic functions from the

functional equation (1.1). One of them is to use the term “Riemann–Hilbert problem.”

On the other hand, the term “Wiener–Hopf technique” refers to the method of reducing

a boundary value problem to a functional equation of the form (1.1) and solving it. Thus,

Riemann–Hilbert problem is an essential part of the Wiener–Hopf technique. On the other

hand, a factorization of the function a(t) in (1.1) is called the Wiener–Hopf factorization,

which is a key part of the solution of the Riemann–Hilbert problem. Since the method of a

Riemann–Hilbert problem and the Wiener–Hopf techniques refer to the same approach to

solving boundary value problems, we will use these terms interchangeably in this work.

Along with the scalar case, vector Riemann–Hilbert problem arise in a variety of models

in many areas, including mathematical physics, fluid and solid mechanics, and financial

mathematics. However, exact solution of a vector Riemann–Hilbert problem can be derived

only for few classes of matrices: the ones that allow for recasting a vector Riemann–Hilbert

problem into uncoupled scalar Riemann–Hilbert problems [47, 68, 84]; commutative matrices

of the Chebotarev–Khrapkov type [29, 52, 32]; matrices with special algebraic or group

structure [9, 50, 51, 59, 82]. For the other matrices, a number of approximate techniques has

been developed for solving Riemann–Hilbert problems or the corresponding singular integral

equations (see, for instance, the collocation method [33, 34, 63] and Padè approximants

[2, 3, 4]).

1.2 An Application: Sommerfeld Half-Plane Diffraction Problem

In order to illustrate the application of Riemann–Hilbert problems to solving partial differ-

ential equations, we begin with a discussion of the Sommerfeld half-plane diffraction problem

3



and its solution obtained by D. S. Jones [49]. While this application is short and simple, it

demonstrates a routine procedure for the problems that will be solved later in the disserta-

tion.

Consider waves propagating in two-dimensional space (x, y). We do not specify the physical

nature of the waves since the same technique is applied to the waves of any nature: sound

waves, light waves, etc. The problem is restricted to the steady-state case, in which the

wave oscillates in time with a constant angular velocity ω so that the solution has the form

ψ = φ(x, y)e−iωt where φ is the wave potential. Assume that a rigid boundary was placed

along the negative x-axis and waves

ψi = e−iωt exp(−ik1x− ik2y) (1.4)

where k1 = k cos θ and k2 = k cos θ, are incident in the (x, y)-plane (see Figure 1.1). Let us

represent the solution in the form ψt = ψi + ψ, where ψi is the incident waves defined by

(1.4) and ψ is incident-free solution. The wave propagation with damping is governed by the

partial differential equation

∂2ψ

∂x2
+
∂2ψ

∂y2
− 1

c2

∂2ψ

∂t2
− ε

c2

∂ψ

∂t
= 0 (1.5)

where x, y, and t are spacial and temporal coordinates, c a fixed constant denoting the

wave speed, and ε a positive damping factor. The wave potential φ satisfies the Helmholtz

equation

∂2φ

∂x2
+
∂2φ

∂y2
+ k2φ = 0 (1.6)

with the wave-number k such that k2 = (ω2 + iεω)/c2. We choose k to have a positive

imaginary part. The following conditions apply:

1. because of the boundary placed on the negative x-axis, the potentials φt and, therefore,

φ are twice-differentiable everywhere in the (x, y)-plane except the boundary −∞ <

x ≤ 0, y = 0, where φt and φ may have jump discontinuities

4



Half-plane

∂φt/∂y = 0 x

y

0

θ

Incident wave

Figure 1.1: Sommerfeld half-plane diffraction problem.

2. the derivative ∂φt/∂y vanishes on the boundary y = 0, −∞ < x ≤ 0, implying the

condition

∂φ

∂y

∣∣∣∣
y=0

= ik2 e
−ik1x, x < 0 (1.7)

3. the potentials φt and φ are bounded at infinity, while the derivatives ∂φt/∂y and ∂φ/∂y

may have a power-type discontinuity at the origin x = 0, y = 0

In order to solve the Sommerfeld half-plane diffraction problem, introduce the Fourier

transform

Φ(z, y) =

∫ 0

−∞
φ(x, y)eizxdx︸ ︷︷ ︸

Φ−(z,y)

+

∫ ∞
0

φ(x, y)eizxdx︸ ︷︷ ︸
Φ+(z,y)

(1.8)

Let z be a complex variable. Notice that as long as Im z > 0, the integral Φ+(z, y) is

continuous and infinitely differentiable in z, thus Φ+(z, y) is an analytic function in the

upper half-plane C+ = {z : Im z > 0}. Similarly, Φ−(z, y) is an analytic function in the lower

half-plane C− = {z : Im z < 0}.

If we apply the Fourier transform to the differential equation (1.6), we find that

(k2 − z2)Φ(z, y) +
∂2Φ(z, y)

∂y2
= 0, −∞ < y <∞ (1.9)

5



for all real values of z. Let γ = (z2− k2)1/2, where the branch of the square root is chosen so

that the real part of γ is positive for all real values of z. Then the solution of the ordinary

differential equation (1.9) that is bounded at infinity, is given by

Φ(z, y) =


C1(z) e−γy, y ≥ 0

C2(z) eγy, y ≤ 0

where C1 and C2 are function of only one variable z. There are two forms of the function Φ

since it is discontinuous across the line y = 0. Since ∂Φ/∂y is continuous at y = 0, we have

C1(z) = −C2(z). Thus

Φ(z, y) = sgn(y) C1(z) e−γ|y| (1.10)

In order to find C1(z), we have to satisfy Φ to the boundary conditions. The equality (1.7),

the representation (1.8), and the form (1.10) imply the identities

Φ+(z, 0) + Φ−(z, 0+) = C1(z)

Φ+(z, 0) + Φ−(z, 0−) = −C1(z)

∂Φ+(z, y)

∂y

∣∣∣∣
y=0

+
k2

z − k1

= −γC1(z)

(1.11)

for all real values of z. Eliminating C1(z) from (1.11), we derive a single equation

Ψ+(z) = −γ
2

Ψ−(z, 0+)− k2

z − k1

(1.12)

for all real values of z, where we introduced new functions

Ψ+(z) =
∂Φ+(z, y)

∂y

∣∣∣∣
y=0

, Ψ−(z) = Φ−(z, 0+)− Φ−(z, 0−)

in order to simplify the notation. Notice that the function Ψ+ is analytic in the upper half-

plane C+, while Ψ− is analytic in the lower half-plane C−. Thus, we derive a Riemann–Hilbert

problem with the boudnary condition (1.12).

We will discuss existence and uniqueness of the solution of the Riemann–Hilbert problem

later, assume here that there exists a unique solution satisfying the condition (1.12). This
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solution (i.e. the functions Ψ+(z) and Ψ−(z)) can be constructed explicitly. Given Ψ+(z)

and Ψ−(z), the function C1(α) can be found from the last identity in (1.11) and then Φ is

explicitly determined by the formula (1.10) for all values of z and y.

Thus, the partial differential equation (1.6) with boundary condition (1.7) was reduced

to the Riemann–Hilbert problem (1.12) with the help of Fourier transform. After solving

the problem, we find the Fourier transform (1.10) and its inverse, that is the solution of

the original partial differential equation (1.6). This procedure is common to the method

of Riemann–Hilbert problem and will be applied to solve problems of Dynamic fracture

mechanics in the following chapters.

1.3 Dynamic Fracture Mechanics

Later in the dissertation, we will consider applications of Riemann–Hilbert problem to several

problems from Dynamic fracture mechanics. Here, we give necessary definitions and facts

of the area. Although they can be found in any book on continuum fracture mechanics, we

mostly follow the monograph [39].

Let us consider a three-dimensional Euclidean space and introduce a rectangular coordi-

nate system with an orthonormal basis. Consider a deformable body occupying the region

Ω of the three-dimensional space at time t. The two fields that describe deformation of the

body are the stress- and strain-fields [54].

Stress is a physical quantity that expresses the internal forces that neighboring particles of

a continuous material exert on each other. Stress at a point x of the material is completely

determined by the second-order Cauchy stress tensor σ(x, t) with components

σij(x, t), i, j = 1, 2, 3, x = (x1, x2, x3) ∈ Ω

Suppose that a particular configuration of the body at time t = t◦ is identified as a reference

configuration. Material particles are labeled by associating each with its position x◦ = x(t◦)

in the reference configuration. We define the particle displacement at a time instance t as

the vector u(t) = x(t) − x◦. The corresponding particle velocity and acceleration are given
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by

v =
∂u

∂t

∣∣∣∣
x◦
, a =

∂v

∂t

∣∣∣∣
x◦

=
∂v

∂t

∣∣∣∣
x

+ v · ∇v (1.13)

In continuum mechanics, displacements of the material particles are assumed to be much

smaller than any relevant dimension of the body. Under the assumption of small stress

deformation, we introduce the strain tensor ε with components

εij =
1

2

(
∂ui
∂xj

+
∂uj
∂xi

)
, i, j = 1, 2, 3 (1.14)

Hereafter, we say that a body is homogeneous if its elastic parameters (density ρ, Lamé

elastic constants λ and µ) are the same at every point. Likewise, we say that a body is

isotropic if its elastic parameters are identical in all directions. The fundamental set of the

equations governing the motion of a homogeneous and isotropic elastic body consists of the

strain displacement relation (1.14), the linear stress-strain relation

σij = λδij(ε11 + ε22 + ε33) + 2µεij, i, j = 1, 2, 3. in Ω (1.15)

where δij is the Kronecker delta function (δij = 1 if i = j, and δij = 0 if i 6= j), and the

momentum balance equations

3∑
i=1

∂σij
∂xi

+ ρfj = ρüj, j = 1, 2, 3, in Ω (1.16)

where fj are the components of a body force per unit mass f applied to the material, and

üj are the components of acceleration a defined in (1.13). After we plug the identities (1.14)

and (1.15) into the balance equation (1.16), the latter, written in the vector form, reads

c2
l∇(∇ · u)− c2

s∇× (∇× u) + f = ü, cl =

√
λ+ 2µ

ρ
, cs =

√
µ

ρ
(1.17)

where ∇ is the del operator defined by (∂/∂x1, ∂/∂x2, ∂/∂x3)T , the symbols “·” and “×”

stand for the scalar and vector product respectively.

According to Helmholtz theorem [20], if the vector field u is twice continuously differen-

tiable in Ω and vanishes faster then 1/||x|| as x → ∞, then the following decomposition
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holds:

u = ∇φ+∇× ψ

where φ : Ω→ R and ψ : Ω→ R3 are scalar and vector fields on Ω. The first component of

the decomposition is an irrotational (curl-free) field since ∇ × (∇φ) = 0, while the second

component is a solenoidal (divergence-free) vector-field since ∇· (∇×ψ) = 0. It follows from

the equation (1.17), that the scalar φ and the vector ψ satisfy the wave equations

c2
l∇2φ− φ̈ = 0, c2

s∇2ψ − ψ̈ = 0, in Ω× R+ (1.18)

provided f = 0 and ∇ · ψ = 0. Hereafter, φ is called the longitudinal wave potential and ψ

the shear wave potential.

In this work, we will consider only plane deformation, so that the stress and deformation

fields are restricted to one of the planes in the reference configuration. If deformation is

restricted to the plane (x1, x2), then the shear wave potential ψ has only one non-zero

component ψ3 (hereafter, we will drop the index 3 and use ψ to denote the third component

of the vector ψ). Then the wave equations (1.18) become

∂2φ

∂x2
1

+
∂2φ

∂x2
2

− 1

c2
l

∂2φ

∂t2
= 0,

∂2ψ

∂x2
1

+
∂2ψ

∂x2
2

− 1

c2
l

∂2ψ

∂t2
= 0

In order to describe a crack propagation in an elastic body, we analyze the stress and

displacement fields in the body surrounding the crack. Due to the fact that the stress field

has a singularity at the tip of a crack, G. Irwin [48] introduced the elastic stress intensity

factors K, which allow to state a crack propagation criterion: he proposed that a crack will

begin to grow when K is increased to some values called the fracture toughness. For a tensile

crack in a plane body, this criterion is equivalent to the Griffith energy criterion [39].

Let us consider (x1, x2)-plain deformation of the body that occupies whole space R3 and

has a crack {(x1, 0, x3) : x1 < 0, |x3| < ∞}. Deformation of the faces of the crack can be

described with three modes (see Figure 1.2):
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Mode I Mode II Mode III

Figure 1.2: Three modes of a crack deformation.

• Mode I. In-plane opening deformation of the crack faces;

• Mode II. In-plane shear deformation of the crack faces;

• Mode III. Anti-plane shear deformation of the crack faces.

The corresponding stress intensity factors are defined by the relations

σ22 ∼
KI(v, t)√

2π(x1 − l(t))
, σ12 ∼

KII(v, t)√
2π(x1 − l(t))

, σ23 ∼
KIII(v, t)√
2π(x1 − l(t))

(1.19)

as x1 → l(t), where x1 = l(t) is the position of the crack top on x1-axis. If the crack

propagates in a homogeneous material, the stress field has a square root discontinuity (1.19)

at the tip of the crack, where the stress intensity factors generally depend on the shape of a

material, time t, and the propagation speed v. This dependence is the goal of many studies

in Fracture mechanics, and one of the main results derived in the following chapters.

1.4 Overview

In this work, we will present several computational and analytical approaches to solving

vector Riemann–Hilbert problem and consider their applications to problems of Dynamic

fracture mechanics. We start with rather conventional techniques and then develop them

farther to suit the particular set of problems under consideration.

The dissertation is laid out as follows. In Introduction, we briefly discussed the history of

the Riemann–Hilbert problem, considered an example of its application to the Sommerfeld

half-plane diffraction problem, and listed necessary facts from Fracture mechanics.
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Chapter 2 contains an overview of the theory of Riemann–Hilbert problem. In the first

section, which is based on the monograph [41], we provide some background information on

Hölder continuous functions and Cauchy integrals, state the scalar Riemann–Hilbert prob-

lem, and construct its analytical solution in the closed form. Here, only necessary definitions

and theorems are provided as well as the scalar Riemann–Hilbert problem is stated and

solved only in the case when the functions a(t) and b(t) in the equation (1.1) are Hölder

continuous everywhere on the contour L, the function a(t) does not vanish on L, and the

contour L is set to be the real axis R of the complex plane. Other classes of functions will be

considered later. In Section 2.1, we state the vector Riemann–Hilbert problem and discuss

difficulties that arise when we try to apply the technique used in the scalar case to the vector

problem. We list several classes of matrices, which allow for the closed-form solution of a

vector Riemann–Hilbert problem. Those classes include diagonal and triangular matrices,

functionally commutative matrices studied in [58, 29], and the Chebotarev–Khrapkov class

of matrices [32, 52]. In Section 2.3, we describe techniques of solving vector Riemann–Hilbert

problems. The first technique [13, 87] is applied to matrices of the Chebotarev–Chrapkov

type and based on transforming the problem to a scalar Riemann–Hilbert problem on a Rie-

mann surface, that can be solved in the closed form. The second technique is computational

and can be applied to a much bigger class of matrices; it consists of transforming the prob-

lem to a system of singular integral equations, which is solved numerically [35]. In Section

2.3.3, we propose two variations on so-called partial Wiener–Hopf factorization, which the

author and Y. Antipov successfully applied to some problems of Dynamic fracture mechanics

(see Chapters 5, 6, and the work [18]). This new techniques combine broad applicability of

numerical methods and reliability of analytical solutions.

In Chapter 3, we consider several well-known problems on a crack propagation in an

unbounded plane, which are reduced to scalar Riemann–Hilbert problems and solved re-

spectively. Although the solutions to those problems were already derived before (see, for
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instance, [39]), they provide an insight on behavior of the solutions to the problems on a

crack propagation in a half-plane, considered in the following chapters. The corresponding

vector Riemann–Hilbert problems in Chapters 4 and 5 require more elaborate solution, but

they are intrinsically similar to the scalar problems from Chapter 3, so we expect a similar

behavior and properties of the solution. In Section 3.1, we consider a stationary crack in

an unbounded plane, whose faces are subjected to uniform pressure; Section 3.2 contains a

similar problem under assumption that the crack propagates at constant speed; finally, in

Section 3.3, we build a solution of the problem for a non-uniform crack propagation when

the crack speed is an arbitrary continuous function of time.

The following two chapters solve problems on crack propagation in a half-plane. Presence

of the boundary of the half-plane results to vector Riemann–Hilbert problems that do not

admit a closed-form solution, and require a development of new techniques. To the best of

the author’s knowledge, these problems were first solved by Y. Antipov and the author and

published in [17, 18].

In Chapter 4, we analyze a two-dimensional steady-state problem on propagation of a

semi-infinite crack in a half-plane. The crack is subjected to normal and tangential loading

applied to its faces, and propagates at speed v along the half-plane boundary, which is free

of traction. The boundary of the half-plane violates the symmetry of the problem, and,

in contrast to the problem on a plane, the modes I and II of the crack deformation are

coupled. We derive an order-2 vector Riemann–Hilbert problem associated with the model.

Since the coefficient of the problem is a Hermitian matrix, which cannot be factorized in

a closed form, we reduce it to a system of two singular integral equations with respect

to the derivatives of the displacement jumps. In order to solve the system, the unknown

functions are expanded in terms of the orthonormal Jacobi polynomials, and the coefficients

of the expansions are determined from an infinite system of linear algebraic equations of the

second kind. Given the solution, we derive formulas for the stress intensity factors KI , KII
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and the weight functions WI,I , WI,II , WII,I , WII,II . By determining the energy released as

the crack extends to a small distance, we apply the Griffith criterion and establish a criterion

of the crack propagation: H(v,KI , KII) ≥ µT , where µ is the shear modulus and T is the

Griffith material constant. We compute the stress intensity factors, the weight functions,

and the Griffith criterion for different values of the speed v and the distance δ between the

crack and the half-plane boundary. It is found that the value H grows to infinity when the

distance δ between the crack and the half-plane boundary decreases while the crack speed

does not vary. The function H monotonically decreases as δ grows. When the distance δ is

fixed, H, as a function of v/cR, attains its minimum in the interval (0, 1) and grows as v → 0

or v → cR.

In Chapter 5, we derive the fundamental solution and the weight functions of the tran-

sient two-dimensional problem on a semi-infinite crack propagating at constant speed in the

direction parallel to the boundary of a half-plane. The boundary of the half-plane is free

of traction, while the crack faces are subjected to general time-independent loading. As be-

fore, we reduce the boundary-value problem to a vector Riemann–Hilbert problem on the

real axis. In the case when the crack is far away from the boundary of the half-plane, the

problem is identical to the one considered in Section 3.2. We split the matrix coefficient into

a discontinuous diagonal matrix and a continuous matrix, factorize the discontinuous part

and rewrite the vector Riemann–Hilbert problem as a system of two convolution equations.

We obtain numerical results for the stress intensity factors corresponding to concentrated

loading applied (at time instance t = 0) to the crack faces. This model problem generates

four weight functions Wi,j, i, j = I, II. It is discovered that during a certain initial period

of time, 0 < t < 2tl, the off-diagonal weight functions Wi,j, i 6= j, vanish and the diagonal

functions almost coincide with the ones derived in Section 3.2. For time t > 2tl, the boundary

effects play a significant role, and, in general, all the four weight functions do not vanish and

are different from the corresponding functions associated with the unbounded plane plane.
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Based on the Freund approximate algorithm [39] for the problem on a semi-infinite crack

propagating at a nonuniform rate in an unbounded plane, we develop a procedure for the case

when the crack propagates at prescribed variable sub-Rayleigh speed in a half-plane in the

direction parallel to the boundary and when the boundary effects are significant. The imple-

mentation of the method requires solving a system of Volterra convolution equations whose

kernels are the associated weight functions. We show that initially, before the longitudinal

wave reflected from the boundary strikes the crack and when the weight functions coincide

with those for an unbounded plane, the relatively simple Freund’s algorithm works. At the

same time, the solution is still different since it relies on the static solution on a cracked

half-plane, instead of a plane with the crack. When the first longitudinal wave reflected from

the half-plane boundary reaches the crack surface moving at speed v(t) < cR, the boundary

substantially affects the weight functions. In order to determine the stress intensity factors

at the crack tip at some time t ∈ (tk, tk+1), one may use the procedure presented that re-

quires solving the same transient problem for different constant speeds vi (i = 0, 1, . . . , k)

and a system of Volterra equations to determine at each step the loads need to be negated

to make possible for the crack to advance. As for the speeds vj (j = 0, 1, . . . ,) themselves,

they are to be determined by applying the dynamic Griffith criterion and solving a certain

transcendental equation associated with each step of the algorithm.

Chapter 6 contains the most recent problems. In Sections 6.1 and 6.2, we discuss Wiener–

Hopf factorization of one class of functions, those with countably many singular points on the

contour of a Riemann–Hilbert problem, which makes difficult an application of numerical

techniques. In order to derive its solution, we deform contour so to bypass the singular

points and show that the solution of the new Riemann–Hilbert problem can be used to find

a closed-form solution of the original one. The main advantage of this approach is that,

without recourse to the Cauchy integral, the solution is expressed in terms of integrals of

exponentially vanishing functions, which are easy to compute. In the work [5], a similar
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approach was applied to Wiener–Hopf factorization of a function that has two branch points

on the contour, and the solution was expressed in terms of finite non-singular integrals. The

technique described in Section 6.1 generalizes the approach to the case of countably many

singularities. Its application to the problem on propagation of a symmetric crack in a strip

is given in Section 6.2.

In Section 6.3, we consider a crack propagating in a strip along the interface between two

elastic materials. In this case, we assume anti-plane deformation. The lattice model [37, 57] of

the materials is accepted. Compared to the continuous mechanics, the lattice model allows for

a better description of behavior of stress and deformation fields near the crack tip: specifically,

for supersonic speeds of a crack propagation under anti-plane deformation, the continuum

fracture mechanics results to a zero energy release rate around the crack tip, which yields

to the conclusion that such propagation is impossible. However, some experiments register

a crack propagation at intersonic and supersonic speeds [69]. In order to construct a feasible

mathematical model of the phenomena, the cohesive zone model (see Section 6.2) and the

lattice model (see, for instance, [74]) were proposed. It is interesting to note that even in the

case of anti-plane deformation, the lattice model yields a vector Riemann-Hilbert problem.

A similar situation is in the anti-plane strain problem of micropolar elasticity [10] when

two out three modes are coupled, and the necessity of solving a vector Riemann-Hilbert

problem arises. The solution of the Riemann–Hilbert problem was derived using the partial

Wiener–Hopf factorization technique proposed in Section 2.3.3.
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Chapter 2

Riemann–Hilbert Problem

In this chapter, we give a brief overview of the Riemann–Hilbert problem as well as classes

of functions (and matrix-functions) for which the problem admits a solution, discuss its exis-

tence and uniqueness, and consider numerical methods of solving Riemann–Hilbert problems.

Among all exemplar monographs and papers on the subject, let us highlight monographs

by F.D. Gakhov [41] on Riemann–Hilbert problem, and by B. Noble [62] on Wiener–Hopf

factorization, which plays a key part in solving the problem.

In Section 2.1, we introduce certain definitions and theorems from Complex Analysis,

state the scalar Riemann–Hilbert problem, and derive its solution. This brief introduction to

Riemann–Hilbert problem and the technique of its solution is mostly based on the monograph

[41], where the reader can refer to for a more thorough information.

In Section 2.2, we state the vector Riemann–Hilbert problem and discuss difficulties that

arise when we apply previous techniques to its solution. The classes of matrices that admit the

Wiener–Hopf factorization (and analytical solution of the corresponding vector Riemann–

Hilbert problems can be constructed) will be considered. We briefly discuss the method

[13, 59] for the vector Riemann-Hilbert problem based on its transformation to a scalar

Riemann-Hilbert problem on a Riemann surface [87].

Section 2.3 contains overview of several numerical techniques of solving vector Riemann–

Hilbert problems, that will be used later in the next chapters. Main issue with most numerical

methods for solving Riemann–Hilbert problem is an amount of work necessary for dealing

with singularities of the solution, which grows exponentially (in general) with the number of

singularities. In this section, we propose the method of a partial factorization that improves

convergence and applicability of numerical techniques by utilizing some analytical tools.
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2.1 Scalar Riemann–Hilbert Problem

In this section, we discuss the class of Hölder continuous functions, properties of the Cauchy

integral of a Hölder continuous function, and its application in constructing Wiener–Hopf

factorization of a Hölder continuous function. Then, we state and solve a scalar Riemann–

Hilbert problem. This overview is mostly based on the study of Riemann–Hilbert problem

by F.D. Gakhov [41].

2.1.1 Hölder theory of Cauchy integrals

The fundamental object of study in the method of Riemann–Hilbert problem is the Cauchy

integral. Let L be a bounded smooth simple curve that lies in the complex plane C and

f : L→ C a continuous function on L. Then the singular integral

F (z) =
1

2πi

∫
L

f(t)

t− z
dt, z ∈ C (2.1)

is called the Cauchy integral. Since F (z) is infinitely differentiable at all points of the complex

plane C except the contour L, the function F (z) is analytic in C \ L. If the point z is large

enough, the series representation of the kernel 1/(t− z) implies

F (z) =
∞∑
n=1

cn
zn
, |z| > R, cn = − 1

2πi

∫
L

tn−1f(t)dt (2.2)

where R is the radius of a disk around the origin, containing the curve L. Thus the function

F (z) vanishes as z →∞ since the series (2.2) does not contain the constant term.

The Cauchy integral is so important to solving Riemann–Hilbert problems due to its

behavior on the contour L in the case when the integrand is a Hölder continuous function.

Definition 2.1. Let L be a bounded smooth curve. The function f : L → C is said to

be λ-Hölder continuous if there exists a positive constant A such that for any two points

t1, t2 ∈ L,

|f(t1)− f(t2)| < A|t1 − t2|λ (2.3)

where A and λ are positive numbers.

17



Notice that if λ > 1 then the derivative of a λ-Hölder continuous function is always equal

to zero and, therefore, such a function is just a constant. Hence, we consider only the values

λ ∈ (0, 1]. If λ = 1, then f is Lipschitz continuous. Thus, the class of Hölder continuous

functions contains the class of continuously differentiable functions.

Next, we introduce the principal value of the Cauchy integral.

Definition 2.2. Let L be a bounded smooth simple curve and z an arbitrary point on L.

Denote lρ = Dρ ∩ L, where Dρ is the disk of radius ρ centered at the point z. The integral

defined by

P.V.

∫
L

f(t)

t− z
dt = lim

ρ→0

∫
L\lρ

f(t)

t− z
dt, z ∈ L (2.4)

is called the principal value of the Cauchy integral. In order to distinguish the principal value

of an integral, we will write the letters “P.V.” in front of the integral.

It is helpful to consider the following example. Let us find the principal value of the integral∫
L

dt

t− z0

where L is a smooth simple open curve with end points a and b (if L is closed, then a = b).

Fix z0 ∈ L, then by definition

P.V.

∫
L

dt

t− z0

= lim
ρ→0

∫
L\lρ

dt

t− z0

= ln
b− z0

a− z0

− lim
ρ→0

ln
z2 − z0

z1 − z0

(2.5)

where z1 and z2 are the points of intersection of the circle ∂Dρ and the curve L (see Figure

2.1, a.). Assume that the complex plane C has a cut along a curve connecting the points z0

z0

z2

z1

�

a)

L

c
u
t

�

z0

z2

z1

�

b)

L

c
u
t

�

z0

z2

z1

�

c)

L

c
u
t

�

Figure 2.1: Limit of arg(z2 − z0)− arg(z1 − z0) as ρ→ 0 when (a) z0 is an inner point of L;
(b) z0 is on the left from L, (c) z0 is on the right from L.
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and ∞ and lying on the right side from L. Fix the branch of the logarithm in the formula

(2.5), then

lim
ρ→0

ln
z2 − z0

z1 − z0

= i lim
ρ→0
{arg(z2 − z0)− arg(z1 − z0)} = −πi

since |z2 − z0| = |z1 − z0| and the angle between the vectors z2 − z0 and z1 − z0 approaches

−π as ρ vanishes (Figure 2.1, a.). Thus

P.V.

∫
L

dt

t− z0

= ln
b− z0

a− z0

+ πi (2.6)

where the logarithm in the right-hand side vanishes if the curve L is closed (i.e. a = b).

Now, we are ready to state the existence of the principal value.

Lemma 2.3. If L is a bounded smooth simple contour and f : L→ C is a Hölder continuous

function, then the principal value of the integral∫
L

f(t)

t− z
dt

exists for all inner points of the contour L.

Proof. Since L is a bounded contour, we can represent the principal value of the integral as

follows

P.V.

∫
L

f(t)

t− z
dt = P.V.

∫
L

f(t)− f(z)

t− z
dt+ f(z) P.V.

∫
L

dt

t− z
(2.7)

The last integral in the right-hand side exists and its value is given by the formula (2.6). The

first integral in the right-hand side can be estimated using the condition (2.3) of a Hölder

continuous function,∣∣∣∣∫
L

f(t)− f(z)

t− z
dt

∣∣∣∣ ≤ ∫
L

|f(t)− f(z)|
|t− z|

dt < A

∫
L

|t− z|λ−1dt

Since λ > 0, the integral
∫
L
|t − z|λ−1dt exists in the Riemann sense and so does the first

integral in the right-hand side of (2.7). Then its principal value, that is the limit

lim
ρ→0

∫
L\lρ

f(t)− f(z)

t− z
dt
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exists and equals to the value of the Riemann integral over L. Thus, the right-hand side and,

therefore, the left-hand side of the equality (2.7) exist.

Remark 2.4. If an integral exists in the Riemann sense, then its principal value exists and

equals to the Riemann integral.

If L is a bounded smooth simple contour and f : L → C is a Hölder function, then the

Cauchy integral (2.1) is analytic in the region C \ L, while there exists the principal value

of the integral at all inner points of the contour L. Let us discuss the difference between the

principal value of the integral (2.1) at the point z0 ∈ L and the limits of the same integral

as z → z0 from the left and the right side of L. Hereafter, we use the following notation:

F+(z0) stands for the limit of F (z) as z → z0 from the left side of L; F−(z0) stands for the

limit of F (z) as z → z0 from the right side of L; and F (z0) stands for the principal value of

F (z). The relation between F±(z0) and F (z0) for z0 ∈ L is given by the Sokhotski–Plemelj

formulas as follows

Theorem 2.5. Let L be a bounded smooth simple contour, z0 an inner point of L, and

f : L→ C a Hölder function. The limit values F±(z0) of the Cauchy integral

F (z) =
1

2πi

∫
L

f(t)

t− z
dt

satisfy the equations

F±(z0) = ±1

2
f(z0) +

1

2πi
P.V.

∫
L

f(t)

t− z0

dt (2.8)

Proof. In the proof of Lemma (2.3), we showed that the integral

ψ(z) =

∫
L

f(t)− f(z)

t− z
dt

exists in the Riemann sense if f is a Hölder function. Since L is a bounded curve, the integral

ψ(z) is a continuous function of z-variable [41]. Therefore for any inner point z0 of the curve
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L, we have ψ+(z0) = ψ−(z0) = ψ(z0). On the other hand, if a and b are the end points of

the curve L, then

lim
z→z0

∫
L

dt

t− z
=



ln
b− z0

a− z0

+ 2πi if z is on the left from L

ln
b− z0

a− z0

+ πi if z is on L

ln
b− z0

a− z0

if z is on the right from L

since in the first case, the curve L intersects the cut joining z0 and infinity so the value of

the integral is increased by 2πi (see Figures 2.1, b. and 2.1, c.). The second case was already

computed in (2.6).

Thus, we have the following representation

ψ+(z0) = 2πi F+(z0)− f(z0)

{
ln
b− z0

a− z0

− 2πi

}
ψ(z0) = P.V.

∫
L

f(t)

t− z0

dt− f(z0)

{
ln
b− z0

a− z0

− πi
}

ψ−(z0) = 2πi F−(z0)− f(z0) ln
b− z0

a− z0

Using the fact that the function ψ is continuous across L (i.e. ψ+(z0) = ψ−(z0) = ψ(z0)), we

immediately derive the identities (2.8).

Remark 2.6. If we take sum and difference of the equations (2.8), we derive formulas

F+(z0)− F−(z0) = f(z0)

F+(z0) + F−(z0) =
1

πi
P.V.

∫
L

f(t)

t− z0

dt
z0 ∈ L (2.9)

Remark 2.7. In the definition 2.2, we assume that L is a bounded curve. However, the

principal value of the Cauchy integral (2.4) exists and the Sokhotski–Plemelj formulas (2.8)

and (2.9) hold as well in the case when L is an unbounded curve [41] if the function f : L→ C

satisfies an additional condition

|f(t)− f∞| <
A

|t|µ
, µ > 0, A > 0 (2.10)

for all t ∈ L \ {∞}, where f∞ = limt→∞ f(t).
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Now we can state the scalar Riemann–Hilbert problem and derive its solution, using the

facts we just discussed.

2.1.2 Solution of a scalar Riemann–Hilbert problem

Hereafter, we assume that the curve L coincides with the real axis R of the complex plane C.

Although, the described technique is applicable for any smooth simple curve, all the problems

of the following chapters are reduced to Riemann–Hilbert problems on the real axis.

Let us introduce notation for the upper and lower half-plane, C+ and C− respectively:

C+ = {z ∈ C : Im z > 0}, C− = {z ∈ C : Im z < 0}

Definition 2.8. Let a : R → C and b : R → C be Hölder continuous functions such that

a(t) 6= 0 for all t ∈ R (including the infinite point). The problem of determining two functions

F± : C± → C, which are analytic in C± respectively, continuous on the real axis R, and may

grow as a polynomial of degree n at infinity, such that they satisfy the condition

F+(t) = a(t)F−(t) + b(t), t ∈ R (2.11)

is called the Riemann–Hilbert problem with coefficient a(t) and inhomogeneous part b(t).

We first outline the three main steps in construction of the solution of a scalar Riemann–

Hilbert problem.

1. Find two functions that are analytic in C± as well as continuous on R, such that

a(t) =
a+(t)

a−(t)
, t ∈ R (2.12)

The representation (2.12) is crucial to the solution and is called the Wiener–Hopf fac-

torization [62]. It can be achieved by using the first of the Sokhotski–Plemelj formulas

(2.9). Notice that the functions a± are defined in C± while the equality (2.12) holds

only on R. Hereafter, we define the values of the functions a± on the real axis R as the

limits

a±(t) = lim
z→t, z∈C±

a±(z), t ∈ R (2.13)
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That is, the value a+(t) for any t ∈ R is the limit of a+(z) as the variable z approaches

t from the left (i.e. C−) of the real axis R. Similarly, the value a−(t) for any t ∈ R is

the limit of a−(z) as the variable z approaches t from the right (i.e. C−) of the real axis

R. We will use this convention (2.13) for any function with superscript “+” or “−”.

Given the representation (2.12) for the function a, we can rewrite the condition (2.11)

as follows:

F+(t)

a+(t)
=
F−(t)

a−(t)
+

b(t)

a+(t)
, t ∈ R

2. Now we use a similar trick for the inhomogeneous part: represent it in the form

b(t)

a+(t)
= b+(t)− b−(t), t ∈ R (2.14)

where the functions b± : C± → C are analytic in C± respectively, and rewrite the

condition once again

F+(t)

a+(t)
− b+(t) =

F−(t)

a−(t)
− b−(t), t ∈ R (2.15)

3. Introduce an auxiliary function P : C→ C by the formula

P (z) =


F+(z)

a+(z)
− b+(z) if z ∈ C+

F−(z)

a−(z)
− b−(z) if z ∈ C−

(2.16)

Since all of the functions F+, a+, b+ are analytic in C+, the function P is analytic in

C+ except the points where a+ vanishes. Similarly, the function P is analytic in C−

except the points where a− vanishes. Finally, P is continuous on the real axis R due to

the equality (2.15). Therefore, uniqueness of an analytic function implies that P is a

meromorphic function on C and can be determined using Liouville’s theorem [41]. In

the case when the functions a± does not vanish in the half-planes C±, and due to the

fact that the functions F± may grow at infinity as a polynomial of degree n, while the

functions a± and b± are bounded, we have

P (z) = C0 + C1z + . . .+ Cnz
n
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where n is a degree of growth of the solution at infinity, defined in the statement of the

Riemann–Hilbert problem; C0, . . . , Cn are arbitrary complex-valued constants. Given

P , a±, and b±, the solution of the Riemann–Hilbert problem can be derived from (2.16)

as follows:

F±(z) = a±(z)
[
P (z) + b±(z)

]
, z ∈ C± (2.17)

Notice that if we seek solution of a Riemann–Hilbert problem, that vanishes at infinity,

then P (z) = 0 for all z ∈ C. Therefore, such a solution is unique (if exists). However in

general, solution of a Riemann–Hilbert problem is not unique and determined up to n + 1

arbitrary complex constants.

Let us discuss now the first step of the technique above. Assume that there exist two func-

tions a± analytic in C± respectively, that satisfy the equation (2.12). Taking the logarithm

of both sides of (2.12), we derive

ln a(t) = ln a+(t)− ln a−(t), t ∈ R

Notice that the value N+ = [ln a+(t)]R, the increment of ln a+(t) when t changes from −∞

to∞, is equal to the number of zeros of a+ in the upper half-plane C+, since a+ has no poles

in C+. Similarly, N− = −[ln a−(t)]R is the number of zeros of a− in the lower half-plane C−,

where the sign “−” indicates that the region C− lies on the right from the real axis R. Thus

N+ +N− =
1

2πi
[ln a(t)]R (2.18)

Value κ = [ln a(t)]R/(2πi) is called the index of the Riemman–Hilbert problem. Notice that

the index κ is an integer provided a(t) is a continuous function on R and has the same limit

as t→∞ and t→ −∞. Using the equality (2.18), we make the following conclusions:

1. The condition κ ≥ 0 is necessary for existence of functions a± satisfying (2.12) and

analytic in C± respectively.

2. If κ = 0, then the functions a± have no zeros in C± respectively.
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3. If κ > 0, then the functions a± together have κ zeros.

4. If κ < 0, then the functions a± have a pole at infinity of order −κ.

Consider the case κ = 0. Let us show that the functions a± defined by teh formula

a±(z) = exp

{
1

2πi

∫
R

ln a(t)

t− z
dt

}
, z ∈ C± (2.19)

provide the Wiener–Hopf factorization (2.12) when the values of a±(t) on the real axis R

are considered to be limits of the functions a±(z) as z approaches the point t ∈ R from the

half-spaces C± respectively.

Since the logarithm is a continuous and differentiable function on the positive or negative

semi-axes of R and the function a(t) is Hölder continuous and does not vanish on R, there

exist positive constants A, C, and λ such that

|ln a(t1)− ln a(t2)| < C |a(t1)− a(t2)| < A · C · |t1 − t2|λ

for any t1, t2 ∈ R. Thus ln a(t) is a Hölder function on R. Similarly, for any t ∈ R, there exist

positive constants A, C, and µ such that

|ln a(t)− ln a∞| < C|a(t)− a∞| <
A · C
|t|µ

where the value a∞, the limit of a(t) as t → ∞, exists since κ = 0 (i.e. the function ln a(t)

is continuous at infinity).

Since ln a(t) satisfies the conditions (2.3) and (2.10), the functions ln a±(z) exist and satisfy

the Sokhotsky–Plemelj formulas (see Remark 2.6 and Theorem 2.5), that is

ln a+(t)− ln a−(t) = ln a(t), t ∈ R

for any single-valued branch of the logarithm. From the identity above, we immediately

derive the equality (2.12). Notice that analyticity of the functions ln a± in the half-planes

25



C± implies that a± are analytic and non-zero in C± respectively. Thus the functions a±

defined in (2.19), conclude the first step of the solution of the Riemann–Hilbert problem.

In the case κ > 0, choose and fix an arbitrary point z0 ∈ C+. Then the function (t −

z0)−κa(t) has zero index since

[
ln{(t− z0)−κa(t)}

]
R = −κ[ln(t− z0)]R + [ln a(t)]R = −κ+ κ = 0

Let us define two auxiliary functions as follows

a±0 (z) =
1

2πi

∫
R

ln{(t− z0)−κa(t)}
t− z

dt, z ∈ C±

Applying our derivations for the case of zero index, we conclude that

a+
0 (t)

a−0 (t)
=

a(t)

(t− z0)κ
, t ∈ R

After multiplying the equation above by the term (t− z0)κ, it immediately follows that the

functions

a+(z) = (z − z0)κa+
0 (z), a−(z) = a−0 (z)

satisfy the equation (2.12). Notice that in this case, the function a+ analytic and have one

zero of order κ in the half-plane C+, while the function a− is analytic and non-zero in C−.

Remark 2.9. In the case κ > 0, we can replace the factor (t− z0)−κ by any other factor that

has the index κ on R. For instance, sometimes it is beneficial to choose arbitrary distinct

points z1, . . . , zκ ∈ C and use the factor
∏κ

k=1(t− zk)−1 instead of (t− z0)−κ.

In the case κ < 0, the solution exists only if the inhomogeneous part of the Riemann–

Hilbert problem satisfies additional conditions∫
R

b(t)

a+(t)
tk−1dt = 0, k = 1, 2, . . . ,−κ− 1

which “kill” the growth of the function a± at infinity in the formula (2.17).

The second step in the solution of the Riemann–Hilbert problem is fairly similar to the

first one. In order to construct the functions b± : C± → C analytic in C± and satisfying
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the equation (2.14), we use once again the Sokhotsky–Plemelj formulas (2.9) for the Cauchy

integral

b±(z) =
1

2πi

∫
R

b(t)

a+(t)

dt

t− z
(2.20)

Since a+(t) is a continuous function that does not vanish on R and bounded at infinity, while

the function b(t) is Hölder continuous, the factor b/a+ is Hölder continuous. Therefore, the

Sokhotsky–Plemelj formulas (2.9) imply that the functions b± defined by (2.20), satisfy the

condition (2.14).

2.2 Vector Riemann–Hilbert Problem

In the previous section, we solved Riemann–Hilbert problem with respect to scalar functions

F± satisfying the boundary condition (2.11). Now we will consider 2N functions F±k , k =

1, . . . , N , that satisfy a system of the boundary conditions of the type (2.11). In the matrix

form, such problem is formulated as follows

Definition 2.10. Let A : R→ CN×N be an invertible matrix-function on the real axis R with

Hölder continuous non-zero components. Let B : R → CN be a vector-function on the real

axis R with Hölder continuous components. The problem of determining two vector-functions

F± : C± → CN such that they satisfy the boundary condition

F+(t) = A(t)F−(t) +B(t), t ∈ R (2.21)

while the components of F± are analytic in C± respectively and may grow as a polynomial

of degree n at infinity, is called the vector Riemann–Hilbert problem with matrix-coefficient

A and inhomogeneous part B.

Hereafter, we assume that the matrix A is invertible and its components are Hölder contin-

uous on the real axis R. In order to construct solution of a vector Riemann–Hilbert problem

in the closed form, we could follow the same steps 1, 2, and 3, described in the previous

section. However, one difficulty arises due to the fact that matrices are non-commutative.
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Consider the first step of the solution and define the matrices

A±(z) = exp

{
1

2πi

∫
R

lnA(t)

t− z
dt

}
where the integral is understood as a component-wise operator. Assume that the components

of lnA(t) are Hölder continuous on R. The Sokhotsky–Plemelj formulas (2.8), applied to A±,

imply that

A±(z0) = exp

{
±1

2
lnA(z0) +

1

2πi
P.V.

∫
R

lnA(t)

t− z0

dt

}
, z0 ∈ R

In order to derive the equality A+[A−]
−1

= exp{lnA} on the real axis R, the exponents of

the matrices

g(z) = lnA(z) and h(z) = P.V.

∫
R

lnA(t)

t− z
dt (2.22)

have to satisfy the equation eg+h = egeh on the real axis R. However, the equation eg+h = egeh

does not hold for arbitrary matrices g and h. Thus, we need to specify class of matrices A

that admit the closed-form solution of the Riemann–Hilbert problem. Below, we consider

some of such classes.

2.2.1 Diagonal and triangular matrix-coefficient

In the case of a diagonal matrix-coefficient A of the Riemann–Hilbert problem (2.21), it is

easy to see that the problem is equivalent (except several special cases) to solving N separate

scalar Riemann–Hilbert problems with the corresponding boundary conditions

f+
j (t) = aj(t)f

−
j (t) + bj(t), t ∈ L, j = 1, . . . , N (2.23)

where f±j , bj are the components of the vectors F±, B respectively, and aj are the diagonal

components of the matrix A. The question of existence and uniqueness of the solution is,

therefore, reduced to existence and uniqueness of each of the separate scalar Riemann–

Hilbert problems, which depend on their corresponding indices κj (called partial indices of a

vector Riemann–Hilbert problem). In this case, the solution of (2.21) is given by the vector

F± = (f±1 , . . . , f
±
N )T . However, it is possible that a vector Riemann–Hilbert with a diagonal
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coefficient has a solution, while each of the problems (2.23) do not: for instance, if A is 2× 2

diagonal matrix and its components have partial indices κ1 =∞ and κ2 = −∞ [75].

In the case of a triangular matrix-coefficient A, the corresponding vector problem can be

reduced to N separate scalar Riemann–Hilbert problems. Assume that A is a lower triangular

matrix with components ai,j, j = 1, . . . , i and i = 1, . . . , N . Then the vector Riemann–Hilbert

problem takes the form

f+
1 (t) = a1,1(t)f−1 (t) + b1(t)

f+
2 (t) = a1,2(t)f−1 (t) + a2,2(t)f−2 (t) + b2(t)

...

f+
N (t) = aN,1(t)f−1 (t) + . . .+ aN,N(t)f−N (t) + bN(t)

t ∈ L

From the first row of the equations, we can determine the functions f±1 ; then, given f±1 , we

determine f±2 from the second row, and so on. Once again, uniqueness and existence of the

solution of the vector problem (2.21) will depend on uniqueness and existence of solution of

each scalar Riemann–Hilbert problem with the corresponding boundary conditions.

Thus in both cases, the vector problem (2.21) can be reduced to N scalar Riemann–

Hilbert problems. Next, we will consider several classes of matrices, that can be reduced to

the diagonal or triangular form.

2.2.2 Functionally commutative matrix-coefficient

In this section, we follow the theory of functionally commutative matrices studied by V.

Morozov [58] and applied to vector Riemann–Hilbert problems by G. Chebotarev [29].

Definition 2.11. Matrix A(t) is called functionally commutative on contour L if for any

t1, t2 ∈ L,

[A(t1), A(t2)] = 0

where [α, β] = αβ − βα is the matrix commutator.
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If A(t) is functionally commutative, then so is the matrix lnA(t), which follows from the

series representation of the logarithm. Therefore, for the matrices g and h defined in (2.22),

we have the equality

[g(z0), h(z0)] = P.V.

∫
L

[g(z0), g(t)]

t− z0

dt = 0

for all z0 ∈ L. Thus, using the series representation of the matrix exponential, we can

conclude that eg and eh commute,

[
eg(z0), eh(z0)

]
=
∞∑
k=0

1

k!

∞∑
l=0

1

l!

[
gk(z0), hl(z0)

]
= 0

where commutativity of gk and gl can be shown for any j, k ∈ N by the induction starting

with j = k = 1.

Theorem 2.12. Matrix A(t) is functionally commutative on contour L if and only if there

exist M linear independent functions ã1(t), . . . , ãM(t) and M constant pairwise commutative

matrices A1, . . . , AM such that

A(t) =
M∑
j=1

ãj(t)Aj, ∀t ∈ L (2.24)

Proof of the theorem can be found in [58]. One property of functionally commutative

matrices is of special importance for us: if A(t) is functionally commutative, then there exists

a constant matrix T such that TA(t)T−1 is a triangular matrix-function. This property is

based on the fact that if the matrices Aj, j = 1, . . . ,M in the representation (2.24) are

pairwise commutative, then they are simultaneously triangularisable [58].

Corollary 2.13. Eigenvalues of a functionally commutative matrix in the form

A(t) =
M∑
j=1

ãj(t)Aj, ∀t ∈ L

are linear combinations of functions ãj(t) with constant coefficients:

λk(t) =
M∑
j=1

ãj(t)λ̃jk, k = 1, . . . , N (2.25)
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Indeed, there exists a constant matrix T such that the matrices TA(t)T−1 and TAjT
−1,

j = 1, . . . ,M , are triangular. Since the diagonal components of triangular matrices contain

their eigenvalues, we derive the equations (2.25) from component-wise comparison of the

elements on the matrix diagonals.

Since the functionally commutative matrix A(t) in (2.21) is triangularizable by a constant

matrix T , condition of the Riemann–Hilbert problem can be transformed to the form

TF+(t) = TA(t)T−1︸ ︷︷ ︸
triangular

TF−(t) + TB(t), t ∈ L

where the components of the vectors TF± are analytic in C± respectively. In order to con-

struct the vectors TF±, we proceed as in the case of a triangular matrix-coefficient (see

section 2.2.1).

2.2.3 Chebotarev–Khrapkov class of matrices

The following derivation is based on the results [29]. Let A be 2 × 2 matrix-function with

Hölder continuous components. Find the class of matrices A such that the matrices g and h

defined in (2.22), commute. Notice that the condition [g, h] = 0 is equivalent to the following

three equations:

g12h21 = h12g21

g11h12 + g12h22 = h11g12 + h12g22

g21h11 + g22h21 = h21g11 + h22g21

(2.26)

with respect to components gij and hij, i, j ∈ {1, 2}, of the matrices g and h respectively. In

order to solve the system (2.26), we introduce the Cauchy integrals

Gij(z) =
1

2πi

∫
R

gij(t)

t− z
dt, i, j ∈ {1, 2}

Using the Sokhotsky-Plemelj formulas (2.9), we can write gij = G+
ij−G−ij and hij = πi(G+

ij +

G−ij). Then the equations (2.26) take the form

G+
12

G+
21

=
G−12

G−21

,
G+

11 −G+
22

G+
12

=
G−11 −G−22

G−12

,
G+

11 −G+
22

G+
21

=
G−11 −G−22

G−21

(2.27)
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where the third equation is redundant. The first equation implies that the functionG12(z)/G21(z)

is continuous across the real axis R and meromorphic in the complex plane C. The second

equation implies that the function [G11(z)−G22(z)]/G12(z) is continuous across R and mero-

morhic in C. Since the zeroes of G12/G21 coincide with the poles of (G11 −G22)/G12, there

exist three entire functions l,m, n : C→ C such that

G12

G21

=
m

n
,

G11 −G22

G12

= 2
l

m

where the factor 2 is chosen for convenience. Using the Sokhotsky–Plemelj formulas (2.9),

we find that ng12 = n(G+
12 −G−12) = m(G+

21 −G−21) = mg21 on the real axis R and, similarly,

m(g11 − g22) = 2lg12. Finally, we rewrite the matrix g in the form

g = g1I + g2J, where g1 = g11 −
l

m
g12, g2 =

g12

m
, J =

 l m

n −l


and I is the identity matrix. Notice that g1 and g2 are Hölder continuous functions on the

real axis R and J2 = ∆2I, where ∆2 = l2 +mn. Therefore,

A = eg =
∞∑
n=0

gn

n!
=
∞∑
n=0

1

n!

n∑
k=0

(
n

k

)
gn−k1 gk2J

k

=

 ∞∑
k=0

n∑
k=0

k is even

(
n

k

)
gn−k1 gk2∆k

n!

 I +

 ∞∑
k=0

n∑
k=0

k is odd

(
n

k

)
gn−k1 gk2∆k−1

n!

 J

Thus if the matrix-functions g and h defined in (2.22) commute, then A = αI + βJ , where

α and β are Hölder continuous on the real axis R, J2 = ∆2I, and ∆2 is an entire function

on C. Such matrices A were first introduced and used in several works by G.N. Chebotarev

[29], A.A. Khrapkov [52, 53], and V.G. Daniele [32].

In the case of the matrix-coefficient A of size N ×N for N > 2, D.S. Jones showed [50, 51]

that if matrix A has representation

A(t) =
m−1∑
k=0

αk(t)J
k(t), Jm = ∆mI (2.28)
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where m is a positive integer, αk are Hölder continuous functions on the contour L, com-

ponents of the matrix J are entire functions in the complex plane C, and trJk = 0 for

k = 1, . . . ,m− 1, then the matrix A admits Wiener–Hopf factorization (the latter condition

is not necessary, as was shown by N.G. Moiseev [59]). Moreover, if A admits Wiener–Hopf

representation

A(t) = A+(t)[A−(t)]−1, t ∈ L

where A± are analytic in D± respectively, and A± have distinct eigenvalues, then the matrix

A can be represented in the form (2.28).

2.3 Solution of a Vector Riemann–Hilbert Problem

Due to the difficulty of deriving the Wiener–Hopf factorization for a matrix, that we dis-

cussed in the previous section, there are many analytical and numerical methods for solving

vector Riemann–Hilbert problems, which depend on a class of the matrix-coefficient A in

the equation (2.21). In this section, we will discuss some of those methods.

As an example of deriving an analytical solution of a vector Riemann–Hilbert problem in

the closed form, we will consider the technique that allows for transformation of a vector

Riemann–Hilbert problem with a matrix-coefficient A of the Chebotarev–Khrapkov class to

a scalar Riemann–Hilbert problem on a Riemann surface. This technique is based on the

theory of the scalar Riemann-Hilbert problem on a Riemann surface [87], it was proposed

in [59] and developed and applied in [9, 11, 13, 14, 15, 70]. Another technique of matrix

factorization that is arising in fluid mechanics and built on the theory [87], was worked out

in [16].

In the case when Wiener–Hopf factorization for the matrix-coefficient A in (2.21) cannot be

found analytically in the closed form, various numerical techniques can be applied, which take

advantage of the intrinsic relation between vector Riemann–Hilbert problems and singular

integral equations. There exist numerous techniques for obtaining numerical solution of the

latter. Convenience and suitability of applying those techniques mostly depends on a class
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of the matrix-coefficient A and a shape of the contour L of a Riemann–Hilbert problem. In

this section, we will consider a technique of solving singular integral equations, that is based

on expanding the solution into the series over orthogonal polynomials on the contour L,

since this technique is actively used in the following chapters. At the end of this section, we

will also discuss the method of partial Wiener–Hopf factorization, which may significantly

improve convergence of the numerical methods.

Speaking of numerical solutions of matrix Riemann-Hilbert problems, it would be unfair

not to mention some other works. In the case when the contour L has a complex shape

consisting of several arcs, lines, and rays joined together, an effective numerical Wiener–

Hopf factorization can be achieved by special versions of the collocation method [33], [34],

[63]. On another hand, an approximate Wiener–Hopf factorization of the matrix-coefficient

A can be achieved by using Padè approximants, which was successfully employed for solving

various Riemann–Hilbert problems [2], [3], [4].

2.3.1 Scalar Riemann–Hilbert problem on Riemann surface

Let us consider a Riemann–Hilbert problem (2.21) with 2×2 matrix-coefficient A : R→ C2×2

of the Chebotarev–Khrapkov class. Although it can be generalized for matrix-coefficients of

size N ×N , N > 2, we will focus on the former case to demonstrate the technique.

In order to transform (2.21) into a scalar Riemann–Hilbert problem on a Riemann surface,

we perform the spectral decomposition A = V DV −1 of the Chebotarev–Khrapkov matrix-

coefficient A. Since the matrix A is of the Chebotarev–Khrapkov class, it can be represented

in the form

A = αI + βJ, J =

 l m

n −l


where α, β are Hölder continuous function on the real axis R and l,m, n are entire functions

in the complex plane C. Let us assume that the components of the matrix J are polynomials

(otherwise, the matrix J can be approximated; see, for instance, Padè approximants and

Abrahams’ technique [3]). The eigenvalues of the matrix A have the form α ± βw, where
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w =
√
l2 +mn. In order to fix a single-valued branch of the square root, we cut the complex

plane C along the union Γ of curves connecting pairs of the branch points of the function w,

such that Γ∩R = ∅. After computing the corresponding eigenvectors, we derive A = V DV −1,

where

D =

 α + βw 0

0 α− βw

 , V =

 1 1

w−l
m

n
l−w

 (2.29)

Notice that detV = −2w/m. Therefore, if the function w is not identically zero on the

real axis R, then the eigenvectors of the matrix A are linearly independent and the spectral

decomposition A = V DV −1 exists with

V −1 =
1

2w

 w + l m

w − l −m

 (2.30)

Consider now the vector Riemann–Hilbert problem with the condition (2.21). Replacing

the matrix A by its spectral decomposition and multiplying the equation by V −1 on the left,

we have

Φ+(t) = D(t)Φ−(t) + V −1(t)B(t), t ∈ R

where Φ± = V −1F±. Since D is a diagonal matrix, the condition above is equivalent to two

separate equations

φ+
j (t) = λj(t)φ

−
j (t) + µ(t), j = 1, 2, t ∈ R (2.31)

where the functions φ±1,2 and µ1,2 are components of the vectors Φ± and V −1B respectively,

λ1,2 are the diagonal elements of the matrix D. However, unlike F±, components of the

vectors Φ± are not necessarily analytic in the half-planes C±. Moreover, they are multi-

valued functions on the complex plane C due to the presence of the function w in the matrix

V −1.

Above, we defined Γ to be the union of curves on the complex plane C such that the

function w is single-valued on C\Γ and Γ does not intersect the contour L. Since components
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of the vectors F± are to be continuous across Γ, the vectors Φ± have to satisfy the equations

V (t+)Φ(t+) = V (t−)Φ(t−), t ∈ Γ (2.32)

where t+ stands for a limit of the corresponding function as z ∈ C approaches the point

t ∈ Γ while being on the left from Γ, and t− stands for the limit as z → t while being on

the right from Γ. Due to the property ∆(t+) = −∆(t−), and continuity of the functions l,

m, and n across Γ, we compute

V −1(t+)V (t−) =

 0 1

1 0

 , t ∈ Γ

After multiplying (2.32) by V −1(t+) on the left and using the identity above, we conclude

that the condition (2.32) is equivalent to

φ1(t+) = φ2(t−), φ2(t+) = φ1(t−), t ∈ Γ (2.33)

Thus, the vector Riemann–Hilbert problem can be reduced to determining four functions

φ±1,2 : C± \ Γ → C that are analytic in C± \ Γ respectively and satisfy the conditions (2.31)

and (2.33).

The Riemann–Hilbert problem with the boundary conditions (2.31) and (2.33) can be

transformed to a scalar Riemann–Hilbert problem on a Riemann surface. In order to do

that, let us recall that w is an algebraic function since it satisfies the equation

w2 = (z − z1)× . . .× (z − zn) (2.34)

where z1, . . . , zn are the branch points of the function w(z) (without lost of generality, we

assume that w2 is a monic polynomial). Let

g =


n

2
− 1 if n is even

n− 1

2
if n is odd
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and define the union Γ = Γ0 ∪ . . . ∪ Γg of open oriented smooth curves Γj connecting the

points z2j+1 and z2j+2 respectively (if n is odd, Γg connects the point z2g+1 and infinity),

such that Γj ∩ Γk = ∅ for all j 6= k. It can be shown [36] that there are two branches of

function w(z) that are single-valued on C \ Γ, where C is the extended complex plane (the

Riemann sphere).

In order to construct a Riemann surface for the algebraic function w (such surface is called

hyperelliptic Riemann surface), we consider two copies (C \Γ)1 and (C \Γ)2 of the extended

complex plane C with cuts along Γ, and then topologically identify the edges Γ± ∈ (C \ Γ)1

with the edges Γ∓ ∈ (C \ Γ)2 of the cuts on the first and second copies (see Figure 2.2).

Assume w1 and w2 are the two different branches of the function w on (C \Γ)1 and (C \Γ)2,

and define the point (z, w) of the Riemann surface R as follows:

(z, w) =


(z, w1) on (C \ Γ)1

(z, w2) on (C \ Γ)2

Then the function w : R→ C defined by

w =


w1(z) on (C \ Γ)1

w2(z) on (C \ Γ)2

is analytic and single-valued on the constructed Riemann surface R due to uniqueness of

analytical continuation, since w = w1 is analytic on (C \Γ)1, w = w2 is analytic on (C \Γ)2,

and w is continuous on Γ. The Riemann surface R is of genus g and topologically equivalent

to a sphere with g handles.

(C \ Γ)2

(C \ Γ)1

Γ+
j Γ−j

Γ+
j Γ−j

Figure 2.2: Connection between opposite edges of Γj, j = 0, . . . , g on two copies of C \ Γ.
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Let us derive a scalar Riemann–Hilbert problem on R. On the Riemann surface R, we

define the following functions:

φ±(z, w) =


φ±1 (z) on (C \ Γ)1

φ±2 (z) on (C \ Γ)2

, λ(z, w) =


λ1(z) on (C \ Γ)1

λ2(z) on (C \ Γ)2

µ(z, w) =


µ1(z) on (C \ Γ)1

µ2(z) on (C \ Γ)2

The functions φ± : R → C are analytic and single-valued in the regions D± = (C± \ Γ)1 ∪

(C± \ Γ)2 respectively, while they satisfy the boundary condition

φ+(t, w(t)) = λ(t, w(t))φ−(t, w(t)) + µ(t, w(t)), (t, w(t)) ∈ L (2.35)

due to (2.31), where L is the union of two copies of the contour L on (C \ Γ)1 and (C \ Γ)2.

Notice that the condition (2.32) is satisfied for any functions φ± analytic in D± due to the

identities

φ1,2(t+) = φ(t, w1,2(t+)) = φ(t, w2,1(t−)) = φ2,1(t−), t ∈ Γ

Thus, the vector Riemann–Hilbert problem is reduced to a scalar Riemann–Hilbert problem

on the Riemann surface R of determining two functions φ± : D± → C analytic in D± and

satisfying the boundary condition (2.35) on the contour L ⊂ R.

A thorough study of the Riemann–Hilbert problem on a compact Riemann surface was

given by È.I. Zverovič in his work [87]. Here, we highlight the major differences between the

problems on the complex plane and a Riemann surface.

The key element in constructing the solution of a Riemann–Hilbert problem on the complex

plane C, is the Cauchy integral with kernel

dt

t− z

In the framework of the theory of Riemann surfaces [36], this kernel has the following prop-

erties: (i) as a function of z, the kernel is holomorphic everywhere on C except a single pole
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at z = t and a single zero at z =∞; (ii) as a function of t, the kernel is an abelian differential

(meromorphic one-form) of the third kind [36] with two poles t = z and t = ∞ with the

corresponding residues 1 and −1.

Unfortunately, the kernel with the properties (i) and (ii) does not exist on a Riemann

surface of genus g > 1, which follows from the Riemann-Roch theorem [36]. More specifically,

there is no way to satisfy the property (i). Instead, let us find an analogue of the Cauchy

integral with the property (ii) only. An algorithm for constructing such a kernel was given

by Karl Weierstrass. The result of that algorithm applied in the hyper-elliptic case (that is,

when an algebraic function w(z) of the Riemann surfaceR is the square root of a polynomial)

is the differential

dW =
w(z) + w(t)

2w(t)
· dt

t− z
(2.36)

Properties of the kernel dW :

1. As a function of (t, w(t)), the differential dW is an abelian differential of the third kind

with three poles at the points (z, w(z)), (∞, w1(∞)), and (∞,∆2(∞)), where w1,2 are

two different single-valued branches of the algebraic function w. Indeed,

dW =
dt

t− z
+ regular terms, as (t, w(t))→ (z, w(z))

dW ∼ 1

2

dτ

τ
, τ =

1

t
, as (t, w(t))→ (∞, w1,2(∞))

(2.37)

2. As a function of (z, w(z)), the differential dW is a meromorphic function on R with a

simple pole at (t, w(t)) and two poles at the points (∞, w1,2(∞)):

dW =
dt

t− z
+ regular terms, as (z,∆(z))→ (t,∆(t))

dW ∼ O(zg)
dt

w(t)
, as (z,∆(z))→ (∞,∆1,2(∞))

(2.38)

Let us show that using the kernel dW , we can construct solution of the Riemann–Hilbert

problem (2.35). As on the complex plane C, the first step is to derive Wiener–Hopf decom-
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position of the coefficient of the problem,

λ(t, w(t)) =
λ+(t, w(t))

λ−(t, w(t))
, t ∈ L (2.39)

where λ± : D± → C are analytic functions in D± that are bounded at infinity (∞, w1,2(∞)).

Theorem 2.14. If R is a compact hyper-elliptic Riemann surface glued of two sheets of the

complex plane, and the function λ : L → C is Hölder continuous on the contour L ⊂ R,

then there exist g points (zj, w(zj)) ∈ R and integers mj, nj ∈ Z, j = 1, . . . , g, such that the

equation (2.39) holds on the contour L for the functions λ± : D± → C bounded at infinity

(∞, w1,2(∞)), that are defined by

λ±(z, w(z)) = exp{χ±(x,w(z))}, (z, w(z)) ∈ D±,

χ±(z, w(z)) =
1

2πi

∫
L

lnλ(t, w(t)) dW

+

g∑
j=1

(∫ (zj ,w(zj))

(z0,w(z0))

+mj

∫
aj

+nj

∫
bj

)
dW

(2.40)

where dW is the Weierstrass kernel (2.36), aj and bj are the canonical homology basis (see

Figure 2.3) of R, that does not intersect the contour L.

Proof. First, let as show that the function λ± : D± → C defined in (2.40) satisfy the equation

(2.39). Due to the first property in (2.37), the differential dW behaves like dt/(t − z) as

(t, w(t))→ (z, w(z)). Therefore the Sokhotsky–Plemelj formulas are applicable to the integral

over L in (2.40) if we replace dt/(t − z) by dW in the identities (2.9). Since the curves Γj,

Γ0

Γ1 Γ2

a1
a2b1

b2

Figure 2.3: Canonical homology basis a1,2 and b1,2 on the hyper-elliptic Riemann surface of
genus 2. Dashed lines denote curves on the second sheet of the surface.
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aj, and bj have no common points with the contour L, the integrals over these curves are

continuous across L. Thus

χ+(z, w(z))− χ−(z, w(z)) = lnλ(z, w(z)), z0 ∈ L

which implies the formula (2.39).

We also need to show that the functions λ± are bounded at infinity points (∞, w1,2(∞)).

Due to the second property in (2.38), the differential dW may grow at infinity points as

O(zg). However, it is possible to choose the integers mj and nj in the formula (2.40) so that

to cancel the growth. Let us analyze the behavior of the differential dW at infinity. Since for

any t and z, we have

1

t− z
= −1

z
− t

z2
− . . .− tg−1

zg
+

tg

zg(t− z)

we can rewrite dW in the form

dW = −1

2

g∑
j=1

∆(z)

zj
tj−1dt

∆(t)
+

1

2

(
∆(z)

zg
tg

∆(t)
+ 1

)
dt

t− z

Notice that the last term in the right-hand side is bounded at the infinite points (∞, w1,2(∞))

since the function w(z) may grow at most like zg. Hence, in order to make the function

χ±(z, w(z)) bounded at infinity, we have to satisfy the following g equations

1

2πi

∫
L

lnλ(t, w(t))
tk−1dt

w(t)
+

g∑
j=1

(∫ (zj ,w(zj))

(z0,w(z0))

+mj

∫
aj

+nj

∫
bj

)
tk−1dt

w(t)
= 0

k = 1, . . . , g

Given the values of the first inetgral, the homology basis aj, bj, and the point (z0, w(z0)),

these equations uniquely determine the points (zj, w(zj)) ∈ R and the integers mj, nj (j =

1, . . . , g), which can be found by solving the Jacobi inverse problem [87].

Finally, the functions λ± are continuous on the contours of integration of the integrals∫ (zj ,w(zj))

(z0,w(z0))

dW ,

∫
aj

dW , and

∫
bj

dW (2.41)
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since the Sokhotsky–Plemelj formulas and the definition (2.36) imply that the integrals, as

functions of (z, w(z)), have jumps on the contours of integration, which are equal to 2πi.

Therefore teh functions λ± containing exponents of the integrals (2.41) is continuous on the

contours of integration.

The second and third steps of constructing solution of a Riemann–Hilbert problem on a

Riemann surface R is similar to the one on the complex plane C. On the second step, we

define the function

ψ±(z, w(z)) =

∫
L

µ(t, w(t))

λ+(t, w(t))
dW, (z, w(z)) ∈ D± (2.42)

which satisfies the equation ψ+−ψ− = µ/λ+ on the contour L. After multiplying the equation

(2.35) by 1/λ+ and using the representations (2.39) and (2.42), we derive the equation

φ+(t, w(t))

λ+(t, w(t))
− ψ+(t, w(t)) =

φ−(t, w(t))

λ−(t, w(t))
− ψ−(t, w(t)), (t, w(t)) ∈ L

On the third step, we define the function P : R → C by the formula

P (z, w(z)) =


φ+(z, w(z))

λ+(z, w(z))
− ψ+(z, w(z)), (z, w(z)) ∈ D+

φ−(z, w(z))

λ−(z, w(z))
− ψ−(z, w(z)), (z, w(z)) ∈ D−

The function P (z, w(z)) is meromorphic on the Riemann surface R and can be determined

by Liouville’s theorem.

Thus, the solution of the Riemann–Hilbert problem (2.35) is given by

φ±(z, w(z)) = λ±(z, w(z))
[
P (z, w(z)) + ψ±(z, w(z))

]
, (z, w(z)) ∈ D± (2.43)

From (2.43), we can recover the solution of the vector Riemann–Hilbert problem (2.21):

F±(z) = V (z, w1(z)) ·

 φ±1 (z)

φ±2 (z)


φ±j (z) = λ±(z, wj(z))

[
P (z, wj(z)) + ψ±(z, wj(z))

]
, j = 1, 2

where w1(z) and w2(z) are the two branches of the function w(z), and the matrix V (z, w1(z))

is defined in (2.29) with w replaces by w1(z).
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2.3.2 Gauss–Jacobi quadrature rule

In order to transform a vector Riemann–Hilbert problem into a system of singular integral

equations, we apply the inverse Fourier transform to the equation (2.21). Let us define the

inverse Fourier transform by the formula

F(x) =
1

2π

∫
R
F (t)e−itxdt, x ∈ R

as a component-wise operator on vectors F±, B and matrix A in (2.21) with the correspond-

ing transforms denoted by F±, B and A. After applying the transform to (2.21) and using

the convolution theorem, we derive the equation

F+(x) =

∫
R
A(x− ξ)F−(ξ)dξ + B(x), x ∈ R (2.44)

Since the components of the vector F+ are to be analytic in the upper half-plane C+,

it immediately follows from the Cauchy integral theorem that F+(x) = 0 for all x < 0.

Similarly, since components of F− are to be analytic in the lower half-plane C−, we have

F−(x) = 0 for all x > 0. Thus, considering the equation (2.44) for negative values of x, we

derive the integral equation with respect to the vector F−,

0 =

∫ 0

−∞
A(x− ξ)F−(ξ)dξ + B(x), x < 0 (2.45)

Then, given F−, we can determine F+ from the equation (2.44) considered for positive values

of x.

Let us notice that if the matrix A(t) takes different limits as t → ∞ and t → −∞ (i.e.

limt→−∞A(t) 6= limt→∞A(t)), its inverse Fourier transform A(x) contains the term 1/x.

Thus, (2.45) is a system of singular integral equation with the Cauchy kernel 1/(x− ξ).

Thus, we transformed a vector Riemann–Hilbert problem (2.21) to a system of singular

integral equations (2.45) with the Cauchy kernel. Let us consider a method of solving those

singular integral equations. Notice that the interval (−∞, 0) of the equation (2.45) is home-

omorphic to a finite interval (−1, 1). We will make two changes to the equation (2.45): (i)
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replace the interval (−∞, 0) by the interval (−1, 1) and (ii) consider a scalar case (however,

the method can be easily generalized to a system of singular integral equations; see Chapter

4). Thus, we consider the scalar equation

af(x) +
b

π
P.V.

∫ 1

−1

f(t)

t− x
dt+

∫ 1

−1

k(x, t)f(t)dt = g(x), −1 < x < 1 (2.46)

where a, b are constants, g is a Hölder continuous function on the interval [−1, 1].

Let us find numerical approximation of the solution f that is Hölder continuous on (−1, 1),

and at the end of the interval it behaves as follows:

f(x) = O(|1− x|α) as x→ 1, f(x) = O(|1 + x|β) as x→ −1 (2.47)

Existence and uniqueness of the Hölder continuous solution of (2.46) were proved in the

monograph [61] by studying existence and uniqueness of the solution of a scalar Riemann–

Hilbert problem that is equivalent to the dominant part of (2.46). The result of the study

is that there exists solution of the singular integral equation (2.46) in one of the following

classes of Hölder continuous functions on (−1, 1):

1. Class of functions bounded at the end points of the interval (−1, 1) satisfying (2.47)

with 0 < α < 1 and β = 1− α;

2. Class of functions having an integrable discontinuity only at the point x = 1 and

satisfying (2.47) with −1 < α < 0 and β = −α;

3. Class of functions having an integrable discontinuity only at the point x = −1 and

satisfying (2.47) with 0 < α < 1 and β = −α;

4. Class of functions having integrable discontinuities at both end-points and satisfying

(2.47) with −1 < α < 0 and β = −1− α.

Erdogan and Gupta [35] have shown that the integral equation (2.46) can be solved us-

ing the Gauss–Jacobi quadrature rule. By using the orthogonality property of the Jacobi

44



polynomials P
(α,β)
j on the interval [−1, 1], we represent solution of the equation (2.46) in the

form

f(x) = w(x)
∞∑
j=0

fjP
(α,β)
j (x) (2.48)

where w(x) = (1 − x)α(1 + x)β. From the classes of the solution listed above, if follows

that the sum α + β always takes one of the values −1, 0, or 1. In either case, the Jacobi

polynomials satisfy the following relations [76], [78] on the interval (−1, 1):

1

π
P.V.

∫ 1

−1

P
(α,β)
n (t)

t− x
w(t)dt = −a

b
w(x)P (α,β)

n (x)− 2α+β

sin(πα)
P

(−α,−β)
n+α+β (x)

∫ 1

−1

P (α,β)
n (t)P (α,β)

m w(t)dt =


0 if n 6= m

θn if n = m

(2.49)

θn =
21+α+β

2n+ 1 + α + β

Γ(n+ α + 1)Γ(n+ β + 1)

n!Γ(n+ 1 + α + β)

where Γ is the Gamma-function. Thus, after substituting the representation (2.48) into the

equation (2.46) and applying the first relation in (2.49), we derive the equation for x ∈ (−1, 1)

∞∑
j=0

fj

(
−b 2α+β

sin(πα)
P−α,−βj+α+β(x) +

∫ 1

−1

k(x, t)Pα,β
j (t)w(t)dt

)
= g(x) (2.50)

In order to make use of the second relation in (2.49), we multiply the equation by P
(−α,−β)
k (x)w(x)

for k = 0, 1, . . . and integrate in x-variable over the interval (−1, 1). Then the integral of the

first term in the parenthesis in (2.50) vanishes for all j 6= k. The truncated version of the

system takes the form

−b 2α+β

sin(πα)
θkfk−α−β +

M∑
j=0

djkfj = gk, k = 0, . . . ,M (2.51)

djk =

∫ 1

−1

∫ 1

−1

k(x, t)P
(α,β)
j (t)P

(−α,−β)
k+α+β (x)w(t)w−1(x) dt dx

gk =

∫ 1

−1

g(x)P
(−α,−β)
k+α+β (x)w−1(x) dx

In the case α + β = 0, the equations of the system (2.51) give unique solution for M + 1

unknown variables f0, . . . , fM . If α + β = 1, then the first term in (2.51) for k = 0, should
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vanish because of the orthogonality of P
(−α,−β)
0 and P

(−α,−β)
j+1 , j = 0, 1, . . .; thus, in the case

α + β = 1, we solve the system (2.51) for M + 1 unknown variables f0, . . . , fM provided

f−1 = 0. If α + β = −1, then there are M + 2 unknown variables f0, . . . , fM+2 but only

M + 1 equations given by (2.51); thus, the solution is not unique. In this case, we use one

more equation that is provided by the compatibility condition∫ 1

−1

f(t)dt = fc

which, after substitution of the representation (2.48) and using orthogonality of P
(α,β)
j , takes

the form f0θ0 = fc.

Notice that if we seek the solution bounded at the end-points, we can choose α = β = 0,

then the Jacobi polynomials become Legendre polynomials. If we seek the solution vanish-

ing at the end-points, we can choose α = β = 1/2, then the Jacobi polynomials becomes

Chebyshev polynomials. In Chapter 4, we will consider the case α = −β = 1/2.

2.3.3 Partial Wiener–Hopf Factorization

In this section, we will consider two applications of partial Wiener–Hopf factorization. In the

first application, the partial factorization will be used in order to derive a vector Riemann–

Hilbert problem suitable for numerical algorithms and ensure a good convergence. In the

second application, a new algorithm of constructing an approximate solution of a vec-

tor Riemann–Hilbert problem with the matrix-coefficient that is not of the Chebotarev–

Khrapkov class, will be discussed. That algorithm finds a numerical approximation to the

solution of the Riemann–Hilbert problem by reducing it to a system of linear equations.

Application I. Although the technique described in the previous section can be applied to

any invertible matrix A and any vector B whose components are Hölder continuous functions

on the real axis R and satisfy the condition bounded at infinity, the convergence rate of the

series (2.48) and the truncated system (2.51) may not be satisfactory for numerical estimation

of the solution of a Riemann–Hilbert problem.
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In Chapter 5, we will consider a problem with the matrix A(x), the inverse Fourier trans-

form of the matrix A(t), can be represented as follows:

A(x) = γ · cothx+A◦(x), x ∈ R

where γ is a constant diagonal matrix and A◦(x) is a matrix-function with components

that vanish as x → ±∞ and diagonal elements that have a logarithmic singularity at the

point x = 0. Since the singular kernel cothx does not vanish at infinity and A◦ has a

logarithmic singularity, straightforward application of the technique from Section 2.3.2 was

found extremely time-consuming. In Chapter 5, the partial Wiener–Hopf factorization was

used. Since only the diagonal elements contribute to the “bad” behavior of the matrix A,

constructing Wiener–Hopf factorization for the diagonal elements of the matrix-coefficient A

before transforming the Riemann–Hilbert problem to a system of singular integral equations

leads to significant improvements in the rate of convergence of numerical solution.

A thorough description of this method will be given in Chapter 5. Here, let us highlight its

key parts. Consider the Riemann–Hilbert problem (2.21) with 2× 2 matrix-coefficient A(t)

with Hölder continuous components ajk(t), i, j = 1, 2, that have the following behavior:

1. At infinity, the diagonal components a11(t) and a22(t) converge to non-zero values,

while the off-diagonal elements exponentially vanish as t→ ±∞;

2. At the origin, the diagonal components a11(t) and a22(t) have simple poles t = 0, while

the off-diagonal elements are continuous in its neighborhood.

We seek the vector-functions F± : C± → C2 whose components are analytic in C±, bounded

at infinity, and satisfy the equation (2.21) on the real axis R.

First, let us find Wiener–Hopf decomposition for the diagonal elements of the matrix A,

ajj(t) =
a+
jj(t)

a−jj(t)
, t ∈ R, j = 1, 2
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This can be done analytically, using the Cauchy integral and Sokhotski–Plemelj formulas

(see Section 2.1.2). Then the Riemann–Hilbert problem (2.21) can be represented in the

form f+
1 /a

+
11

f+
2 /a

+
22

 =

 1 a12a
−
22/a

+
11

a21a
−
11/a

+
22 1


 f−1 /a

−
11

f−2 /a
−
22

+

 b1/a
+
11

b2/a
+
22

 on R

Notice that the new matrix-coefficient has no singular points on the real axis R and equal to

the unitary matrix I at infinity, while the new unknown vectors are analytic in C+ and C−

respectively and bounded at infinity since the elements of the Wiener–Hopf decomposition

a±11(z) and a±22(z) does not vanish as z →∞. In this form, the Riemann–Hilbert problem can

be easily transformed to non-singular integral equation and solved numerically. See Chapter

5 for more detailed analysis of this technique.

Application II. Let us consider a Riemann–Hilbert problem (2.21) with 2 × 2 matrix-

coefficient A that is not of the form (2.28). If we construct LDU-decomposition of the matrix

A, then the equation (2.21) can be rewritten as follows:

L−1F+ = DUF− + L−1B, on R (2.52)

Here, L is the lower triangular matrix, D is the diagonal matrix, and U is the upper triangular

matrix given by

L =

 1 0

a21/a11 1

 , D =

 a11 0

0 a22 − a12a21/a11

 , U =

 1 a12/a11

0 1


Since the matrix D is diagonal it can be easily factorized, D = D+[D−] on the real axis R,

where

D±(z) =

 d±1 (z) 0

0 d±2 (z)

 , z ∈ C±

and d±1 , d±2 are the elements of the Wiener–Hopf factorization of each diagonal component

of the matrix D; that is, a11 = d+
1 /d

−
1 on R, and a22 − a12a21/a11 = d+

2 /d
−
2 on R. Such
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factorization is always exists provided the functions a11 and a22 − a12a21/a11 are Hölder

continuous on the real axis R. After substituting the Wiener–Hopf factorization, the equation

(2.52) takes the form

[D+]−1L−1F+ = D−UF− + [D+]−1L−1B on R (2.53)

After introducing the vector

Ψ±(z) =
1

2πi

∫
R
[D+(t)]−1L−1(t)B(t)

dt

t− z
, z ∈ C±

that satisfies the equation Ψ+ −Ψ− = [D+]−1L−1B on R, the condition (2.53) becomes

[D+]−1L−1F+ − Ψ+ = D−UF− − Ψ− on R (2.54)

Finally, we consider the vector P : C→ C2 defined as follows:

P (z) =


[D+(z)]−1L−1(z)F+(z)− Ψ+(z), z ∈ C+

[D−(z)]−1U(z)F−(z)− Ψ−(z), z ∈ C−
(2.55)

Let us analyze singularities of the vector in order to determine its form. First, vector P is

continuous across the real axis R due to the equation (2.54). After substituting definitions

of the matrices in (2.55), the components of the vector P in the upper half-plane C+ are

defined as follows: p1

p2

 =

 1/d+
1 0

0 1/d+
2


 1 0

−a21/a11 1


 f+

1

f+
2

−
 b+

1

b+
2

 (2.56)

which implies that the components p1 is analytic in C+, while the component p2 has singu-

larities in C− due to the factor a21/a11. In the lower half-plane, the components of the vector

P are defined by p1

p2

 =

 1/d−1 0

0 1/d−2


 1 a12/a11

0 1


 f−1

f−2

−
 b−1

b−2

 (2.57)
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Thus, the component p1 has singularities in C− due to the factor a12/a11, while the component

p2 is analytic in C−. For simplicity, assume that the vector P is bounded at infinity, and the

factors a21/a11 and a12/a11 are meromorphic functions on the complex plane C with only

simple poles. In this case, Liouville’s theorem [41] implies that

p1(z) =
∑
ζ′∈Z−

1

z − ζ ′
f−2 (ζ ′)

d−1 (ζ ′)
resζ′

a12

a11

p2(z) =
∑
ζ′′∈Z+

1

ζ ′′ − z
f+

1 (ζ ′′)

d+
2 (ζ ′′)

resζ′′
a21

a11

(2.58)

where Z− are the set of poles of the function a12/a11 in the lower half-plane C−, and Z+

is the set of poles of the function a21/a11 in the upper half-plane C+. If at least one of Z±

is an infinite set, then the only possible limit point for the elements of those sets is infinity

ζ = ∞ (otherwise, components of the matrix A are not meromorphic functions). Thus, the

corresponding series in (2.58) is absolutely convergent if

{
f−2 (ζ ′)

d−1 (ζ ′)
resζ′

a12

a11

}
ζ′∈Z−

and

{
f+

1 (ζ ′′)

d+
2 (ζ ′′)

resζ′′
a21

a11

}
ζ′′∈Z+

are lp-sequences for 0 ≤ p < ∞, which can be provided, for instance, by requiring the

components of the vector-functions F± to vanish at infinity and the off-diagonal components

of the matrix-function A to grow slower at infinity then its diagonal components.

In order to find the values f+
1 (ζ ′′) and f−2 (ζ ′) in the series (2.58), we the formulas (2.56)

and (2.57) once again. It follows from the identities (2.56) and (2.58) that

p1(ζ ′′) =
f+

1 (ζ ′′)

d+
1 (ζ ′′)

− b+
1 (ζ ′′) =

∑
ζ′∈Z−

1

ζ ′′ − ζ ′
f−2 (ζ ′)

d−1 (ζ ′)
resζ′

a12

a11

, ζ ′′ ∈ Z+

Similarly, from the identities (2.57) and (2.58), we derive

p2(ζ ′) =
f−2 (ζ ′)

d−2 (ζ ′)
− b−2 (ζ ′) =

∑
ζ′′∈Z+

1

ζ ′′ − ζ ′
f+

1 (ζ ′′)

d+
2 (ζ ′′)

resζ′′
a21

a11

, ζ ′ ∈ Z−
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The last two equations can be written in the vector form f+A · f = b, where f and b are the

infinite sequences and A is the operator defined by

f =



f+
1 (ζ ′′1 )

f−2 (ζ ′1)

f+
1 (ζ ′′2 )

f−2 (ζ ′2)

...


, A =



0 a1
11 0 a1

12 · · ·

a2
11 0 a2

12 0 · · ·

0 a1
21 0 a1

22 · · ·

a2
21 0 a2

22 0 · · ·
...

...
...

...
. . .


, b =



d+
1 (ζ ′′1 )b+

1 (ζ ′′1 )

d−2 (ζ ′1)b−2 (ζ ′1)

d+
1 (ζ ′′2 )b+

1 (ζ ′′2 )

d−2 (ζ ′2)b−2 (ζ ′2)

...


a1
jk =

1

ζ ′j − ζ ′′k
d+

1 (ζ ′′k )

d−1 (ζ ′j)
resζ′j

a12

a11

, a2
jk =

1

ζ ′j − ζ ′′k

d−2 (ζ ′j)

d+
2 (ζ ′′k )

resζ′′k
a21

a11

ζ ′j ∈ Z−, ζ ′′k ∈ Z+, j, k = 1, 2, 3, . . .

Denote l∞ the space of bounded sequences. Recall [72] that the equation T · x = v has a

unique l∞ solution if v ∈ l∞ and the operator T = {tjk} satisfies the conditions

1. There exists a η > 0 such that

|tjj| ≥ η ∀j = 1, 2, 3, . . . (2.59)

2. There exists a σ ∈ [0, 1) such that

∞∑
k=1,j 6=k

|tjk| = σj|tjj| (2.60)

where 0 ≤ σj ≤ σ < 1 for all j = 1, 2, 3, . . .

Moreover, the solution x satisfies the inequality ||x|| ≤ [η(1− σ)]−1||v||.

Let us consider existence and uniqueness of the solution of the system f+A · f = b with the

operator A defined above. Notice that the operator I + A, where I is the identity operator,

contains only the value 1 on its main diagonal; thus the first condition (2.59) is satisfied with

η = 1. In order to satisfy the condition (2.60), the following identities have to hold

∞∑
k=1

∣∣∣∣∣ 1

ζ ′j − ζ ′′k
d+

1 (ζ ′′k )

d−1 (ζ ′j)
resζ′j

a12

a11

∣∣∣∣∣ = σ1
j ,

∞∑
k=1

∣∣∣∣∣ 1

ζ ′j − ζ ′′k

d−2 (ζ ′j)

d+
2 (ζ ′′k )

resζ′′k
a21

a11

∣∣∣∣∣ = σ2
j
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where j = 1, 2, 3, . . . and σ1
j , σ

2
j do not exceed some value σ ∈ [0, 1). Then the solution of

the system exists and is unique [72].

If we allow the sequences f and b to be from l2-space, then there exists a unique l2 solution

of the equation f + A · f = b, provided [79]

∞∑
j,k=1

∣∣∣∣∣ 1

ζ ′j − ζ ′′k
d+

1 (ζ ′′k )

d−1 (ζ ′j)
resζ′j

a12

a11

∣∣∣∣∣
2

<∞,
∞∑

j,k=1

∣∣∣∣∣ 1

ζ ′j − ζ ′′k

d−2 (ζ ′j)

d+
2 (ζ ′′k )

resζ′′k
a21

a11

∣∣∣∣∣
2

<∞

Given the values f+
1 (ζ ′′j ) and f−2 (ζ ′j), j = 1, 2, 3, . . ., the solution of the Riemann–Hilbert

problem is derived from (2.55) as follows:

F+(z) = L(z)D+(z)
[
P (z) + Ψ+(z)

]
, z ∈ C+

F−(z) = U−1(z)D−(z)
[
P (z) + Ψ−(z)

]
, z ∈ C+

where the components of the vector P are defined in (2.58).
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Chapter 3

Modeling of Crack Propagation

The field of fracture mechanics is concerned with quantitative description of deformation in

materials containing cracks. Describing the deformation of a particular system is provided by

building a mathematical model of the system and applying methods of mathematical anal-

ysis. Dynamic fracture mechanics considers fracture phenomena that significantly change in

time due to, for instance, rapidly applied loading on a cracked solid or rapid crack propaga-

tion. There are several reasons for the study of the asymptotic crack tip field for dynamic

growth of a crack in a material: (i) The influence of material inertia on the distribution

of stress and deformation near the crack edge in order to understand mechanisms of crack

propagation; (ii) Numerical methods are often the only means for obtaining full field so-

lutions within this problem class, however for points very close to the crack edge where

stresses are most severe the accuracy of numerical solutions is difficult to assess. The ability

to match computed fields to asymptotic fields valid in this region establishes confidence in

the numerical results.

In this chapter, we will consider three typical problems on the crack propagation: stationary

crack problem (i.e. the crack does not propagate), the crack propagation at constant speed

v, and the crack propagation at a non-uniform speed v(t). This are well known problems and

their solutions can be found, for instance, in [39]. However, this consideration will be helpful

in the study of more complex case in the following chapters.

3.1 Suddenly Applied Crack Face Pressure

The following problem and its solution can be found in [39]. Consider an elastic unbounded

body that contains a half-plane crack. It is assumed that the crack has no thickness; that

is, when no loading applied to the body, the two faces of the crack form the same surface
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in space. Introduce a rectangular coordinate system so that x3-axis lies along the crack

edge, and x2-axis is normal to the plane of the crack. The crack occupies the half-plane

{(x1, 0, x3) : −∞ < x1 ≤ 0, |x3| <∞} (see Figure 3.1).

Assume that the crack faces are subjected to uniform pressure of magnitude σ∗ suddenly

applied at time t = 0. We seek the solution of the wave equations (1.18) with the boundary

conditions

σ21(x1, 0
±, x3, t) = 0

σ22(x1, 0
±, x3, t) = ∓σ∗H(t)

σ23(x1, 0
±, x3, t) = 0

(3.1)

−∞ < x1 < 0, −∞ < x3 <∞, −∞ < t <∞

In the case of (x1, x2)-plane deformations, the component u3 of the displacement vector u

is equal to zero, while u1 and u2 do not depend on x3-variable and satisfy the symmetry

relations [39] u1(x1,−x2, t) = u1(x1, x2, t) and u2(x1,−x2, t) = −u2(x1, x2, t) for all values of

x1,x2, and t.

Let Ω be an unbounded plane (x1, x2) with the crack {(x1, 0) : −∞ < x1 < 0} on

the negative part of x1-axis. For the plane strain deformation that is independent of x3,

the vector potential ψ has only one non-zero component. Thus, we need to find functions

φ, ψ : R2 × R+ → R that satisfy the wave equations

c2
l

(
∂2φ

∂x2
1

+
∂2φ

∂x2
2

)
− φ̈ = 0, c2

s

(
∂2ψ

∂x2
1

+
∂2ψ

∂x2
2

)
− ψ̈ = 0 in Ω× R+ (3.2)

with the initial conditions

φ(x1, x2, 0) =
∂φ

∂t
(x1, x2, 0) = ψ(x1, x2, 0) =

∂ψ

∂t
(x1, x2, 0) = 0, x1, x2 ∈ R (3.3)

and, through the relations (1.14) and (1.15), the boundary conditions (3.1).

3.1.1 Solution of the partial differential equations

In order to solve the problem (3.1), (3.2), (3.3), we apply Laplace and Fourier transform

to transform it to the Riemann–Hilbert problem. Assume that the functions φ and ψ are
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x2

0
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σ∗

wave front
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Figure 3.1: Suddenly applied crack pressure.

continuous in t-variable on the interval (0,∞) and absolute integrable in x1-variable on the

interval (−∞,∞) provided x2 6= 0. First, we take Laplace transform with respect to the

temporal variable,

φ̃(x1, x2, s) =

∫ ∞
0

φ(x1, x2, t)e
−stdt, ψ̃(x1, x2, s) =

∫ ∞
0

ψ(x1, x2, t)e
−stdt

which are valid for Re s > 0. Using integration by parts and the initial conditions (3.3), we

find that (φ̈)∼ = s2φ̃ and (ψ̈)∼ = s2ψ̃. Thus, Laplace transform applied to the wave equations

(3.2), gives

c2
l

(
∂2φ̃

∂x2
1

+
∂2φ̃

∂x2
2

)
− s2φ̃ = 0, c2

s

(
∂2ψ̃

∂x2
1

+
∂2ψ̃

∂x2
2

)
− s2ψ̃ = 0 in Ω× R+

where we assume that the variable s is positive. Next, we apply Fourier transform

φ̂(z, x2, s) =

∫ ∞
−∞

φ̃(x1, x2, s)e
iszx1dx1

ψ̂(z, x2, s) =

∫ ∞
−∞

ψ̃(x1, x2, s)e
iszx1dx1

z ∈ R (3.4)

where the exponent factor s is introduced for convenience. Since (∂2φ̃/∂x2
1)∧ = −s2z2φ̂

and (∂2ψ̃/∂x2
1)∧ = −s2z2ψ̂, the partial differential equations above become the ordinary
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differential equations

∂2φ̂

∂x2
2

− s2(z2 + c−2
l )φ̂ = 0,

∂2ψ̂

∂x2
2

− s2(z2 + c−2
s )ψ̂ = 0 in Ω× R+

Because of the symmetry conditions, it is sufficient to find solutions for only positive values of

x2. Assuming x2 > 0, the bounded at infinity solutions of the ordinary differential equations

are given by

φ̂(z, x2, s) = P (z, s)e−sα(z)x2

ψ̂(z, x2, s) = Q(z, s)e−sβ(z)x2

z ∈ R, x2, s ∈ R+ (3.5)

where α(z) =
√
z2 + c−2

l and β(z) =
√
z2 + c−2

s are branches of the square roots such that

α(z) > 0 and β(z) > 0 for all z ∈ R.

The functions P (z, s) and Q(z, s) are to be determined from the boundary conditions (3.1).

In terms of the functions φ, ψ and wave velocities cl, cs, components of the stress tensor σ

and displacement vector u take the form

1

µ
σ11 =

c2
l

c2
s

∂2φ

∂x2
1

+

(
c2
l

c2
s

− 2

)
∂2φ

∂x2
2

+ 2
∂2ψ

∂x1∂x2

1

µ
σ22 =

(
c2
l

c2
s

− 2

)
∂2φ

∂x2
1

+
c2
l

c2
s

∂2φ

∂x2
2

− 2
∂2ψ

∂x1∂x2

1

µ
σ12 = 2

∂2φ

∂x1∂x2

− ∂2ψ

∂x2
1

+
∂2ψ

∂x2
2

u1 =
∂φ

∂x1

+
∂ψ

∂x2

u2 =
∂φ

∂x2

− ∂ψ

∂x1

(3.6)

After applying Laplace and Fourier transforms and plugging the solution (3.5) into the

equations (3.6), we have the identities

1

µs2
σ̂11(z, x2, s) =

(
c−2
s − 2α2(z)

)
P (z, s)e−sα(z)x2 + 2izβ(z)Q(z, s)e−sβ(z)x2

1

µs2
σ̂22(z, x2, s) =

(
z2 + β2(z)

)
P (z, s)e−sα(z)x2 − 2izβ(z)Q(z, s)e−sβ(z)x2

1

µs2
σ̂12(z, x2, s) = 2izα(z)P (z, s)e−sα(z)x2 +

(
z2 + β2(z)

)
Q(z, s)e−sβ(z)x2

1

s
û1(z, x2, s) = −izP (z, s)e−sα(z)x2 − β(z)Q(z, s)e−sβ(z)x2

1

s
û2(z, x2, s) = −α(z)P (z, s)e−sα(z)x2 + izQ(z, s)e−sβ(z)x2

(3.7)
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On the other hand, the transforms applied to the boundary conditions (3.1) imply

σ̂12(x, 0±, s) = σ̂+
12(z, 0±, s)

σ̂22(z, 0±, s) = σ̂+
22(z, 0±, s)∓ σ∗

is2z

z ∈ R, s ∈ R+ (3.8)

where σ̂+
12 and σ̂+

22 are defined as Fourier transforms of the products H(x1)σj2(x1, x2, s) of

the stress components σj2 and the step function H(x1) that is equal to 1 for x1 > 0 and to

0 for x1 < 0.

As we consider only positive values of x2-variable, combining the equations (3.7) and (3.8)

for x2 = 0+ gives

1

µs2
σ̂+

12(z, 0+, s) = 2izα(z)P (z, s) +
(
z2 + β2(z)

)
Q(z, s)

1

µs2
σ̂+

22(z, 0+, s)− σ∗

iµs4z
=
(
z2 + β2(z)

)
P (z, s)− 2izβ(z)Q(z, s)

(3.9)

By solving the system above with respect to the functions P (z, s) and Q(z, s), we derive

P (z, s) =
2izβ(z)

µs2R(z)
σ̂+

12(z, 0+, s) +
z2 + β2(z)

µs2R(z)

(
σ̂+

22(z, 0+, s)− σ∗

is2z

)
Q(z, s) =

z2 + β2(z)

µs2R(z)
σ̂+

12(z, 0+, s)− 2izα(z)

µs2R(z)

(
σ̂+

22(z, 0+, s)− σ∗

is2z

) (3.10)

R(z) =
(
z2 + β2(z)

)2 − 4z2α(z)β(z)

The solution of the system (3.9) exists whenever the function R(z), which is proportional to

the determinant of the system (3.9), does not equal zero. In fact, R(z) is called the Rayleigh

function, it is a multi-valued function with branch points ±i/cl and ±i/cs and, for a fixed

choice of its single-valued branch, has two zeros ±i/cR, where cR is the Rayleigh wave speed

[39]. Thus, the function R(z) does not vanish on the real axis R.

The Fourier transforms φ̂ and ψ̂ of the wave potentials are defined by the formulas (3.5)

and (3.10). However, the values of the Fourier transforms σ̂+
12 and σ̂+

22 for x2 = 0+ in the

right-hand side of the equations (3.10), are not known yet. In order to find σ̂+
12(z, 0+, s) and

σ̂+
12(z, 0+, s), we formulate and solve a Riemann–Hilbert problem.
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Notice that the condition u1(x1,−x2, t) = u1(x1, x2, t) implies that the line x2 = 0 is a

symmetry axis of the displacement component u2. Therefore, ∂u1/∂x2 = 0 if x2 = 0. The

condition u2(x1,−x2, t) = −u2(x1, x2, t) implies that the component u2 is zero if x2 = 0.

Hence, in front of the crack, we have

u2(x1, 0, t) = 0, σ12(x1, 0, t) = µ

(
∂u1

∂x2

+
∂u2

∂x1

)∣∣∣∣
x2=0

= 0, x1 > 0

for any time instance t. Since σ12(x1, 0, t) = 0 for all x1 < 0 due to the boundary condition

(3.1), the formula (3.10) for P (z, s) and Q(z, s) can be simplified by setting σ̂+
12 to zero.

Moreover, since the displacement component u2 is equal to zero for x1 > 0, x2 = 0, the last

equation in (3.7) reads

1

s
û−2 (z, 0+, s) = −α(z)P (z, s) + izQ(z, s)

= − 1

µs4c2
s

α(z)

R(z)

(
s2σ̂+

22(z, 0+, s)− σ∗

iz

)
, z ∈ R, s ∈ R+

(3.11)

Introduce two new functions

Σ+(z) = s2σ̂+
22(z, 0+, s) = s2

∫ ∞
0

σ̃22(x1, 0
+, s)eiszx1dx1

U−(z) = s3û−2 (x, 0+, s) = s3

∫ 0

−∞
ũ2(x1, 0

+, s)eiszx1dx1

(3.12)

then they satisfy the condition

Σ+(z) = a(z)U−(z) + b(z), z ∈ R (3.13)

a(z) = −µc2
s

R(z)

α(z)
, b(z) =

σ∗

iz

which follows from (3.11). Since all of the known terms in the equation (3.13) do not depend

on s-variable, the functions Σ+ and U− do not depend on s either. Moreover, the first and

second integrals in the right-hand sides of the identities (3.12) exist and infinitely differen-

tiable whenever Im z > 0 and Im z < 0 respectively, provided that σ̃22 and ũ2 are absolute

integrable in x1-variable. Thus, the function Σ+ : C+ → C is analytic in the upper half-plane
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C+ = {z : Im z > 0} and continuous on the real axis R = {z : Im z = 0}. Similarly, the func-

tion U− : C− → C is analytic in the lower half-plane C− = {z : Im z < 0} and continuous on

the real axis R. The problem of determining such functions that satisfy the condition (3.13)

is the Riemann-Hilbert problem discussed in the previous chapter.

3.1.2 Solution of the Riemann–Hilbert problem

In order to solve the Riemann–Hilbert problem (3.13), let us first determine index κ of the

problem. Both functions α(z) and R(z) in the equation (3.13) take only real values for z ∈ R,

while α(z) is continuous and R(z) does not vanish on the real axis R. Thus, arg{R(z)/α(z)}

does not change on R and

κ = arg {a(z)}|z=∞z=−∞ = 0

Since the problem has zero index, there exists a unique solution of the Riemann–Hilbert

problem (3.13) that vanishes at infinity.

Now, we will follow the general algorithm of solving a scalar Riemann–Hilbert problem

described in the previous chapter. However, due to the behavior of the coefficient a(z) of the

problem (3.13), we will need to make several changes in the algorithm.

Notice that the function a(z) is Hölder continuous on the real axis R since it is continuously

differentiable there. But it has a simple pole at infinity since R(z) = O(|z|2) and α(z) =

O(|z|) as z → ±∞. Therefore, the integral in the formula (2.19) would not exist. In order to

construct the Wiener–Hopf factorization of a(z), we represent it in the form

a(z) = −µc2
sa∗(z)a∗∗(z), a∗(z) =

z2 + c−2
R

α(z)
, a∗∗(z) =

R(z)

z2 + c−2
R

where cR is the Rayleigh wave speed. The factor a∗∗(z) is Hölder continuous on the real axis

R, takes a finite non-zero value as z → ±∞ and, hence, can be factorized by the formula

(2.19). The factor a∗(z) is relatively simple and can be factorized as follows

a∗(z) =
a+
∗ (z)

a−∗ (z)
, z ∈ R, a+

∗ (z) =
z + i/cR√
z + i/cl

, a−∗ (z) =

√
z − i/cl

z − i/cR
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for a specific choice of branches of the square roots. It is clear that the functions a±∗ are

analytic and non-zero in the half-planes C± respectively.

In order to factorize a∗∗ on the real axis R, we define the functions

a±∗∗(z) = exp

{
1

2πi

∫ ∞
−∞

ln a∗∗(t)

t− z
dt

}
, z ∈ C±

Since a∗∗ is Hölder continuous on the real axis R and takes a finite non-zero value as z → ±∞,

we have the equality a∗∗(z) = a+
∗∗(z)/a−∗∗(z) for all z ∈ R due to the Sokhotski–Plemelj

formulas (2.9). Thus, a(z) = a+(z)/a−(z), z ∈ R, for

a+(z) = −µc2
sa

+
∗ (z)a+

∗∗(z), z ∈ C+, a−(z) = a−∗ (z)a−∗∗(z), z ∈ C− (3.14)

The functions a±(z) are continuous on the real axis R, and a+(z) = O(|z|1/2), a−(z) =

O(|z|−1/2) as z →∞.

According to the algorithm of solving a scalar Riemann–Hilbert problem, replace the

function a in (3.13) by the fraction a+/a− and divide the equation (3.13) by a+, then

Σ+(z)

a+(z)
=
U−(z)

a−(z)
+

b(z)

a+(z)
, z ∈ R (3.15)

The next step is to take the Cauchy integral of the term b/a+. At infinity, the fraction

b(z)/a+(z) vanishes as |z|−3/2 and has a simple pole at the origin,

b(z)

a+(z)
∼ σ∗

ia+(0)

1

z
as z → 0

In order to deal with the pole, we transform the contour R to pass around the point z = 0.

So far, we considered the functions Σ+ and U− to be analytical in the upper C+ and the

lower C− half-planes respectively. However, a thorough analysis allows for expansion of those

regions of analyticity.

Consider behavior of the functions σ22(x1, 0, t) and u2(x1, 0, t) in front of the crack. Fix

an arbitrary point (x◦1, 0) such that x◦1 > 0. Since the body is initially stress-free, the stress
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component σ22(x◦1, 0, t) is equal to zero until the wave of deformation reaches this point (see

Figure 3.1), that is for all t < x◦1/cl. Thus

σ̃22(x◦1, 0, s) =

∫ ∞
x◦1/cl

σ22(x◦1, 0, t)e
−stdt

= e
−sx

◦
1
cl

∫ ∞
0

σ22(x◦1, 0, t+ x◦1/cl)e
−stdt

(3.16)

The function σ̃22 exponentially vanishes as x◦1 →∞ since the integral in the right-hand side

of the last equality in (3.16) is bounded. From properties of the Fourier integral, it follows

[77] that in this case, the function Σ+ is analytic in the region {z : Im z > −1/cl}. As for

the displacement component u2(x1, 0, t), it is non-zero for all t > 0 since the loading σ∗ is

applied uniformly to the faces of the crack (x1 < 0). Analysis of the regions of analyticity of

the functions Σ+ and U− implies that in the equation (3.15) the contour R can be changed

to the contour

R−ε = {z : Im z = −ε}

for some ε ∈ (0, 1/cl). Let us introduce the half-planes C+
−ε = {z : Im z > −ε} and C−−ε =

{z : Im z < −ε} and consider the functions Σ+ and U− on them. According to the third step

in the solution of a scalar Riemann–Hilbert problem, we define

P (z) =


Σ+(z)− b(z)

a+(z)
z ∈ C+

−ε

U−(z)

a−(z)
z ∈ C−−ε

(3.17)

Notice that the function P (z) is continuous across the boundary between C−−ε and C+
−ε due

to the condition (3.15) with the contour R replaced by R−ε. Moreover, P (z) is analytic in

C−−ε and has a single simple pole z = 0 in C+
−ε. At infinity, P (z) vanishes since

Σ+(z)− b(z)

a+(z)
= O(|z|−1/2) and

U−(z)

a−(z)
= O(|z|1/2) as z →∞

Thus, by Liouville’s theorem [41]

P (z) =
C

z
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where C is an arbitrary constant. From the formula (3.17), we conclude that

Σ+(z) =
C

z
a+(z) + b(z), z ∈ C+

−ε, U−(z) =
C

z
a−(z), z ∈ C−−ε

Since the function Σ+ is required to be analytic in C+
−ε, we set C = iσ∗/a+(0) in order to

eliminate the pole at z = 0. Finally, the solution of the Riemann–Hilbert problem (3.13)

takes the form

Σ+(z) =

(
1− a+(z)

a+(0)

)
b(z), U−(z) = −a

−(z)

a+(0)
b(z) (3.18)

After plugging values σ̂+
22(z, 0+, s) = Σ+(z)/s2 into the formulas (3.10) and (3.5) and

applying inverse Fourier transform and inverse Laplace transform to φ̂ and φ̂, we derive the

explicit formulas for the wave potentials φ and ψ in Ω × R+. Using the identities (3.6), we

can find all displacement and stress components in the body.

3.1.3 Derivation of stress intensity factor KI

One of the advantages of explicit solutions is that they allow for describing behavior of the

stress and displacement components near the tip of a crack. In order to do that, we derive

useful relations between behavior of a function and its Fourier transforms at singular points.

Assume that f+ : R→ C is L1-function such that f+(x) = 0 for all x < 0, and f+(x) ∼ f ◦+/x
λ

as x→ 0+, λ ∈ (0, 1). Then its Fourier transform f̂+ : C+ → C is analytic in C+ and

f̂+(iy) =

∫ ∞
0

f+(x)e−yxdx =
1

y

∫ ∞
0

f+(ξ/y)e−ξdξ

∼ f ◦+y
λ−1

∫ ∞
0

ξ−λeiξdξ = f ◦+y
λ−1Γ(1− λ), y →∞

where Γ is Gamma-function and x = ξ/y. A similar identity holds for f− : R→ C such that

f−(x) = 0 for all x > 0 and f−(x) ∼ f ◦−/x
λ as x→ 0−. Therefore,

lim
x→0+

(
xλf+(x)

)
=

1

Γ(1− λ)
lim
y→∞

(
y1−λf̂+(iy)

)
lim
x→0−

(
xλf−(x)

)
=

1

Γ(1− λ)
lim
y→∞

(
y1−λf̂−(−iy)

) 0 < λ < 1 (3.19)

From the identities (3.19), it follows that in order to determine behavior of σ+
22(x1, 0, t)

and u−2 (x1, 0, t) as x1 → 0, we need to consider behavior of the functions Σ+(z) and U−(z)
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as z →∞. We can easily find that a±∗ (z) = O(|z|±1/2) as Im z → ±∞ and

lim
z→∞

a±∗∗(z) =
(

lim
z→∞

a∗∗(z)
)±1/2

=

(
2

c2
s

− 2

c2
l

)±1/2

Thus,

a+(iy) ∼ −
√

2iµ
cs
cl

√
c2
l − c2

s y
1/2

a−(−iy) ∼ 1√
−2i

clcs√
c2
l − c2

s

y−1/2
y →∞

Substituting b(z) = −iσ∗/z into the solution (3.18), we find that as y →∞

Σ+(iy) ∼ −
√

2iµ
cs
cl

√
c2
l − c2

s

σ∗

a+(0)
y−1/2

Using the first identity in (3.19) for λ = 1/2, we derive

σ̃22(x1, 0, s) ∼ −
√

2iµ
cs
cl

√
c2
l − c2

s

σ∗

a+(0)

1

s3/2

1
√
πx1

as x1 → 0+

σ22(x1, 0, t) ∼ −
2
√

2i

π
µ
cs
cl

√
c2
l − c2

s

σ∗

a+(0)

√
t

x1

as x1 → 0, t > 0 (3.20)

By comparing the expression (3.20) and the definition of the stress intensity factors (1.19),

we derive the formula for the stress intensity factor KI ,

KI(t) = −4µ

√
i

π

cs
cl

√
c2
l − c2

s

σ∗

a+(0)

√
t, t > 0

In order to find the value a+(0), we notice that due to symmetry of the function a∗∗ on the

real axis R, we have

a+
∗∗(iy) = exp

{
1

2πi

∫ ∞
−∞

ln a∗∗(t)

t− iy
dt

}
= exp

{
− 1

2πi

∫ ∞
−∞

ln a∗∗(t)

t+ iy
dt

}
=

1

a−∗∗(−iy)

for all y > 0. Taking the limit as y → 0+, we derive the identity a+
∗∗(0) = 1/a−∗∗(0). Together

with the factorization a∗∗ = a+
∗∗/a

−
∗∗ on the real axis R, the latter gives a+

∗∗(0) =
√
a∗∗(0).

After finding values a+
∗ (0) and a+

∗∗(0) and plugging them into the formula (3.14), we derive

the value a+(0) = −µ
√
icl. Hence

KI(t) = σ∗
4√
π

cs√
cl

√
1− c2

s

c2
l

√
t, t > 0
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3.2 Crack Propagation at Constant Speed

Let us consider the problem on suddenly applied crack face loading from Section 3.1, but

assume that the crack propagates at a constant subsonic speed (v < cR) along x1-axis (see

Figure 3.1). Although the solution to this problem is known [39], the solution derived here

has a different form, which will be used as a building block for the approximate procedure

proposed later for the solution of the problem on a crack in a half-plane (see Chapter 5).

Derivation of the solution for the problem is identical to the one described in Section 3.1

except the choice of a moving coordinate system (x, y) such that the crack tip coincides with

the origin at any time instance t. Thus, in the wave equations 3.2, we make the substitution

x1 = x+ vt and x2 = y:

(c2
l − v2)

∂2φ

∂x2
+ c2

l

∂2φ

∂y2
+ 2v

∂2φ

∂x∂t
− ∂2φ

∂t2
= 0

(c2
s − v2)

∂2ψ

∂x2
+ c2

s

∂2ψ

∂y2
+ 2v

∂2ψ

∂x∂t
− ∂2ψ

∂t2
= 0

in Ω× R+ (3.21)

where Ω is the unbounded plane with the cut {(x, 0) : −∞ < x < 0}, the functions φ(x, y, t)

and ψ(x, y, t) are the wave potentials in the moving coordinate system (x, y) (i.e. they are

different from φ and ψ used in Section 3.1).

We assume the stress-free state for t < 0 as an initial condition, while the boundary

conditions have the form

σj2(x+ vt, 0±, t) = −σ◦j (x+ vt)H(t), −∞ < x < 0, j = 1, 2 (3.22)

which expresses the fact that the shear σ◦1 and normal σ◦2 loading is time-independent in

(x1, x2)-coordinate system so that the crack tip moves away from the loading.

3.2.1 General solution of the problem

This solution follows the works [18, 19]. As in Section 3.1, we apply the Laplace transform

with respect to the temporal variable t and Fourier transform with respect to the spacial

variable x, defined by

f̃(x, s) =

∫ ∞
0

f(x, t)e−stdt, f̂(z, s) =

∫ ∞
−∞

f(x, s)eizxdx
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for all values z ∈ R and Re s > 0, provided the function f : R × R+ → C is integrable on

the interval (0,∞) in t-variable and on the interval (−∞,∞) in x-variable. Notice that the

Fourier transform is different from the one used in (3.4) and (3.12) since the exponent eizx

does not contain the factor s.

After solving partial differential equations (3.21) with the boundary conditions (3.22), the

problem is reduced to two separate Riemann–Hilbert problems with the conditions

σ̂+
j (z, s) = µiaj(z, s)χ̂

−
j (z, s) + bj(z, s), z ∈ R, j = 1, 2. (3.23)

where σ̂+
j , bj, χ̂

−
j are the Fourier and Laplace transforms of the stress components σj2(x +

vt, 0, t) in front of the crack tip (x > 0), the loading σ◦j (x+ vt) behind the crack tip (x < 0),

and the jumps of displacement rate of change

χj(x, t) =
∂uj
∂x

(x+ vt, 0+, t)− ∂uj
∂x

(x+ vt, 0−, t)

behind the crack tip (x < 0) respectively. The coefficients aj of the Riemann–Hilbert prob-

lems are defined as follows:

a1(z, s) =
Rs(z)

2βs(z) (z2 − β2
s (z)) z

, a2(z, s) =
Rs(z)

2αs(z) (z2 − β2
s (z)) z

(3.24)

Rs(z) =
(
z2 + β2

s (z)
)2 − 4z2αs(z)βs(z)

α2
s(z) =

(
1− v2

c2
l

)
z2 + 2iz

sv

c2
l

+
s2

c2
l

, β2
s (z) =

(
1− v2

c2
s

)
z2 + 2iz

sv

c2
s

+
s2

c2
s

Notice that the functions Rs(zs), αs(zs), and βs(zs) are identical to R(z), α(z), and β(z)

defined in Section 3.1 if we set v = 0. Moreover, using the identities αs(zs) = sα1(z),

βs(zs) = sβ1(z), and Rs(zs) = s4R1(z), where single-valued branches of the functions α1, β1

are chosen so that α1(z) > 0 and β1(z) > 0, we can rewrite the equation (3.23) in the form

σ̂+
j (zs, s) = µiaj(z, 1)χ̂−j (zs, s) + bj(zs, s), z ∈ R, j = 1, 2, (3.25)

The functions aj(z, 1) take non-zero values ±γj as z → ±∞ and have simple poles at the

origin z = 0. once again, the integral of ln aj(z, 1) in the formula (2.19) would not exist. In
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order to deal with these singularities, let us represent the coefficients of the Riemann–Hilbert

problems as

aj(z, 1) = −γj coth(πz)a∗j(z). (3.26)

Since the coefficients of the Riemann-Hilbert problems, ã1 and ã2, have a simple pole at the

point z = 0, we deform the contour R to bypass this point. Following the argument conducted

for the case of stationary crack in the paragraph below the formula (3.16), we conclude that

the contour R in the equation (3.25) can be replaced by the line R−ε = {z : Im z = −ε}

for some value ε ∈ (0, 1/cl), which splits the z-plane into two domains: C+
−ε containing the

origin z = 0, and C−−ε. On the contour R−ε, the functions a◦j can be easily factorized in terms

of the Cauchy integrals

a±j (z) = exp

{
1

2πi

∫
R−ε

ln a◦j(τ)

τ − z
dτ

}
, z ∈ C±−ε, (3.27)

due to the fact that the functions ln a◦j are Hölder continuous on the contour R−ε, vanish at

infinity, and have zero-increment of the argument of a◦j(τ) as τ traverses the contour R−ε

(i.e. index κ of the problem is equal to zero).

After factorizing the function coth(πz) in terms of the Gamma-functions

coth(πz) =
iK+(z)

K−(z)
, K+(z) =

Γ(1− iz)

Γ(1/2− iz)
, K−(z) =

Γ(1/2 + iz)

Γ(iz)
, (3.28)

and using the identity a◦j = a+
j /a

−
j on R−ε, it is possible to transform the boundary condition

(3.25) of the Riemann–Hilbert problem to the form

σ̂+
j (zs, s)

K+(z)a+
j (z)

−Ψ+
j (z, s) =

µγjχ̂
−
j (zs, s)

K−(z)a−j (z)
−Ψ−j (z, s), z ∈ R−ε, (3.29)

where

Ψj(z, s) =
1

2πi

∫
R−ε

bj(τs, s)

K+(τ)a+
j (τ)

dτ

τ − z
, z ∈ C±−ε (3.30)

Analysis of behavior of the functions in (3.29) shows that

K±(z) ∼ (∓iz)1/2, a±j (z) ∼ 1, Ψ±j (z, s) = O(|z|−1), z →∞ (3.31)
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while σ̂+
j and χ̂−j are assumed to be bounded at infinity. By applying the continuity principle

and the Liouville theorem, we derive the unique solution of the Riemann–Hilbert problem

(3.25):

σ̂+
j (zs, s) = K+(z)a+

j (z)Ψ+
j (z, s), z ∈ C+

−ε,

χ̂−j (zs, s) = (µγj)
−1K−(z)a−j (z)Ψ−j (z, s), z ∈ C−−ε.

(3.32)

Passing to the limit ε → 0+ shows that the functions χ̂−j (−iεs, s) → 0, which is consistent

with the fact that the difference between the displacement components on the faces of the

crack vanishes at infinity (i.e. as x→ −∞).

3.2.2 Fundamental solutions of the problem

In this section, we will consider the stress intensity factors KI(t) and KII(t) introduced in

(1.19). In the moving coordinate system (x, y), we define the stress intensity factors by the

relations

σ12(x+ vt, 0, t) ∼ KII(t)√
2π

x−1/2, σ22(x+ vt, 0, t) ∼ KI(t)√
2π

x−1/2, x→ 0+.

After applying Laplace transform, the relations above become

σ̃12(x, s) ∼ K̃II(s)√
2π

x−1/2, σ̃22(x, s) ∼ K̃I(s)√
2π

x−1/2, x→ 0+ (3.33)

On the other hand, behavior of the functions σ̃12 and σ̃22 near the point x = 0 can be

determined from the first identity in (3.19) if we know behavior of their Fourier transforms

at infinity. Combining the formulas (3.32) and (3.31), we derive

σ̂+
j (z, s) ∼ i

(
−iz
s

)−1/2

Ψ∞j (s), Im z →∞

where

Ψ∞j (s) =
1

2πi

∫
R−ε

bj(τs, s)

K+(τ)a+
j (τ)

dτ (3.34)

Thus, the first identity in (3.19) with λ = 1/2 and the relations (3.33) imply

K̃II(s) = i
√

2sΨ∞1 (s), K̃I(s) = i
√

2sΨ∞2 (s), Re s > 0
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Let us consider fundamental solutions of the problem, which corresponds to the loading

σ◦j (x1) = δ(x1). After taking Laplace and Fourier transforms of σ◦j (x+vt), we derive bj(z, s) =

1/(s + izv) provided Im z < 0. After plugging these values into the formula (3.34), the

functions Ψ∞1 and Ψ∞2 take the form

Ψ∞j (s) = − 1

2πsv

∫
R−ε

dτ

(τ − i/v)K+(τ)a+
j (τ)

Since the integrand has only one simple pole z = i/v and vanishes as O(|z|−3/2) at infinity

in the upper half-plane C+
−ε, the residue theorem implies that

Ψ∞j (s) = −i 1

svK+(i/v)a+
j (i/v)

, j = 1, 2, Re s > 0

The corresponding Laplace transforms K̃II and K̃I of the stress intensity factors, are given

by

K̃II(s) =

√
2

s

1

vK+(i/v)a+
1 (i/v)

, K̃I(s) =

√
2

s

1

vK+(i/v)a+
2 (i/v)

(3.35)

As in the case of a stationary crack, we can explicitly determine the inverse Laplace trans-

forms of (3.35) due to the fact that the inverse Laplace transform of 1/
√
s is 1/

√
πt,

KII(t) =

√
2

πvt
kII(v), kII(v) =

Γ(1 + 1/v)√
vΓ(1/2 + 1/v)a+

1 (i/v)

KI(t) =

√
2

πvt
kI(v), kI(v) =

Γ(1 + 1/v)√
vΓ(1/2 + 1/v)a+

2 (i/v)

(3.36)

Thus, the temporal variable t contributes to the stress intensity factors KI and KII only

through the term 1/
√
πvt, while the factors kI and kII depend only on the velocity v. Graphs

of the dimensionless functions kI and kII versus the dimensionless speed v/cR for ν = 0.3

is shown in Figure 3.2. The graph of the function kI is in good agreement with the one

presented in [39], p. 349.

If σ◦1(x1) and σ◦2(x1) is arbitrary shear and normal loading applied to the crack faces

(x1 < 0), then the corresponding stress intensity factors are given by the integrals

KII(t) =

∫ 0

−∞
σ1(x1)KII(x1; t)dx1, KI(t) =

∫ 0

−∞
σ2(x1)KI(x1; t)dx1
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Figure 3.2: Functions kI and kII against v/cR for ν = 0.3.

where KI(x1; t) and KII(x1; t) are given by the formula (3.36) with vt replaced by vt − x1.

After substituting them into the integrals, we derive the stress intensity factors for arbitrary

loading

KII(t) = kII(v)

√
2

π

∫ 0

−∞

σ◦1(x1)√
vt− x1

dx1

KI(t) = kI(v)

√
2

π

∫ 0

−∞

σ◦2(x1)√
vt− x1

dx1

(3.37)

provided the integrals above exist.

3.3 Crack Propagation at Non-Uniform Speed

In the previous two sections, we discussed behavior of the stress field near the tip of a station-

ary crack and of a crack growing at constant speed. However, the more natural assumption

is that a crack grows at speed v(t) that changes in time t. Following [39], we will construct

an approximate solution of such problem as the superposition of solutions for the problem

on a suddenly stopped crack.

3.3.1 Piecewise model of a crack propagation

Consider an unbounded plane R2 with a semi-infinite crack {(x1, 0) : −∞ < x1 < 0}

subjected to the external in-plane loading σext(x1) (Figure 3.1). Assume that at the time

instance t = 0, the crack begins growing in x1-direction and then stops at the time instance
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T , so that the position of the crack tip is described by the law x1 = l(t), t ∈ [0, T ], where

l(t) is a continuous increasing function of time t.

In order to determine the stress distribution σ(x1, x2, t) in the body, we replace the function

l(t) by its piecewise linear approximation L(t). Let {tn}Nn=0 be a partition of the time-interval

[0, T ] such that 0 = t0 < t1 < t2 < . . . < tN = T . Let us assume that on the time-interval

[tn−1, tn], the crack tip is moving at constant speed

vn =
ln − ln−1

tn − tn−1

, ln = l(tn), n = 1, 2, . . . , N

according to the law x1 = ln−1 + vn(t− tn−1). Thus, the function l(t) is approximated by the

piecewise linear continuous function (see Figure 3.3)

L(t) =



v1t, 0 < t < t1

l1 + v2(t− t1), t1 < t < t2

· · · , · · ·

lN−1 + vN(t− tN−1), tN−1 < t < tN

We seek the stress field σ in the unbounded plane with the crack {(x1, 0) : −∞ < x1 <

L(t)}, that satisfies the boundary condition

σ(x1, 0
±, t) = σext(x1)H(−x1), −∞ < x1 < L(t) (3.38)

The stress tensor σ is represented in the form

σ(x1, x2, t) =
N∑
n=0

σn(x1, x2, t) (3.39)

The term σ0(x1, x2, t) is the stress distribution corresponding to the stationary crack {(x1, 0) :

−∞ < x1 < 0} in the plane R2 with the boundary condition

σ0(x1, 0, t) = σext(x1), −∞ < x1 < 0, t > 0 (3.40)

This problem in the case of uniform pressure on the crack faces was solved in Section 3.1.

Since for an arbitrary loading σext the solution is similar, σ0 is assumed to be known.

70



t0 t1 t2 t3
t

l1

l2

l3

x1

l(t)

L(t)

Figure 3.3: The piecewise linear curve L(t) approximates the crack tip trajectory l(t).

The term σn(x1, x2, t) for n = 1, 2, . . . , N is the stress distribution corresponding to the

dynamic problem on propagation of a semi-infinite crack in a stress-free plane when the

preexisting crack {(x1, 0) : −∞ < x1 < ln−1} starts to grow at the time instance t = tn−1

with the constant velocity vn, and suddenly stops at the time instance t = tn at the point

x1 = ln. In this case, the crack faces are subjected to the loads pn(x1) on the interval

[ln−1, L(t)]:

σn(x1, 0, t) = pn(x1)H(x1 − ln−1), −∞ < x1 < L(t) (3.41)

where

pn(x1) = −
n−1∑
j=0

σj(x1, 0, tj) (3.42)

Let us show that the stress field σ(x1, x2, t) defined in (3.39) satisfies the boundary condi-

tion (3.38). For the time t ≤ 0, all the terms except σ0 in (3.39) are identically zero. Since

σ0 is the solution of the corresponding problem on a stationary crack, σ(x1, x2, t) satisfies

the boundary conditions for t ≤ 0.

Fix the time instance t ∈ (0, T ). If x1 ≤ 0, then σ(x1, 0, t) = σext(x1) since all but the first

term σ0 in the sum (3.39) vanish due to the boundary condition (3.41), and σ0 = σext due

(3.40). If 0 < x1 < L(t), then there exists an integer m such that x1 ∈ [lm−1, lm). Notice that
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σn(x1, 0, t) = 0 for all n > m due to the boundary condition (3.41) and the fact that since

x1 < lm ≤ ln−1. Thus

σ(x1, 0, t) =
m∑
n=0

σn(x1, 0, t) =
m−1∑
n=0

σn(x1, 0, tn) + pm(x1) = 0

where t was replaced by tn for n = 0, 1, . . . ,m − 1 since σn(x1, x2, t) do not change on the

time-interval [tn,∞), and the last equality holds due to the definition (3.42) of the loading

pm(x1). Hence

σ(x1, 0, t) =


σext(x1), x1 < 0

0, 0 < x1 < L(t)

0 < t < T

For any time instance t ≥ T , the stress fields σn do not depend on time t and their sum

(3.39) satisfies the boundary condition (3.38) due to the same argument as for the case

t ∈ (0, T ).

Thus, the formula (3.39) gives an approximate solution of the problem on a crack that

start propagating at time t = 0 and stops at time t = T with the crack tip position described

by the law x1 = l(t), t ∈ [0, T ].

3.3.2 Problem of a suddenly stopped crack

In order to find the stress field σn, we need to solve the problem of a suddenly stopped crack:

a semi-infinite crack {(x1, 0) −∞ < x1 < ln−1} in the stress-free unbounded plane, begins

to grow in x1-direction at the time t = tn−1 with the constant speed vn and suddenly stops

at the time t = tn at the point x1 = xn, while the crack faces are subjected to the loading

σn(x1, 0, t) = pn(x1)H(x1 − ln−1), x1 < L(t)

Assume that the cracks keeps propagating for t > tn at the same velocity vn, while its faces

are subjected to auxiliary loads qn(x1) for ln < x1 < Ln(t), where Ln(t) = ln + vn(t − tn).
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Then the stress intensity factors KI(t) and KII(t) are determined by KI(t)

KII(t)

 =

∫ ln

ln−1

W (x1, t) · pn(x1)dx1

+

∫ Ln(t)

ln

W (x1, t) · qn(x1)dx1, t > tn−1

where W is the matrix of stress intensity factors for the fundamental solutions of the problem

on propagation of semi-infinite crack at constant speed in a plane. To model a suddenly

stopped crack, set KI(t) = KII(t) = 0 for t > tn (according to [39], zero stress intensity

factors for t > tn implies that the displacement field u(x1, 0, t) is continuous for x1 > ln).

Then the vector qn is to be determined from the system of integral equations

0 =

∫ ln

ln−1

W (x1, t) · pn(x1)dx1

+

∫ Ln(t)

ln

W (x1, t) · qn(x1)dx1, t > tn

(3.43)

Notice that

σn(x1, 0, t) = qn(x1), x1 > ln

is the stress distribution ahead of the crack after the crack has stopped. For future references,

we write the values σn(x1, 0, tn) as they are used in (3.42):

σn(x1, 0, tn) =


0, −∞ < x1 < ln−1

pn(x1), ln−1 < x1 < ln

qn(x1), ln < x1 <∞

(3.44)

where pn is defined in (3.42) and qn is the solution of the system of integral equations (3.43).

In the case of a crack propagation in a plane (see Section 3.2), the matrix W is a diagonal

matrix with the stress intensity factors KI and KII determined by (3.36) for the fundamental

solutions. Thus, the system (3.43) is split into two separate equations. Let us consider one

of them,

0 =

∫ ln

ln−1

pn22(x1)dx1√
vnt− x1

+

∫ Ln(t)

ln

qn22(x1)dx1√
vnt− x1

, t > tn
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By making the substitution x1 = vnτ
′+ln and t = τ+tn, we derive Volterra integral equation

0 =

∫ 0

tn−1−tn

pn22(vnτ
′ + ln)√

τ − τ ′
dτ ′ +

∫ τ

0

qn22(vnτ
′ + ln)√

τ − τ ′
dτ ′, τ > 0 (3.45)

which can be solved by applying Laplace transform. The solution of (3.45) is given by

qn22(vnτ + ln) =
1

2π

∫ τ

0

∫ 0

tn−1−tn

pn22(vnξ + ln)√
(τ − τ ′)(τ ′ − ξ)3

dτ ′dξ

− 1

π
√
τ

∫ 0

tn−1−tn

pn22(vnτ
′ + ln)√
−τ ′

dτ ′, τ > 0

3.3.3 Inverse problem of a crack propagation

So far, we assumed the function l(t) (and the function L(t) respectively) is known. However,

in most cases the motion of the crack tip is what needs to be found. Let the crack tip motion

be described by the law x1 = L(t), where L(t) is an unknown piecewise linear continuous

function with vertexes at the points (tn, ln), n = 0, 1, . . ., and L(t) = 0 for t < 0. Given the

time instances tn, we need to determine the corresponding positions ln of the crack tip.

Let us adopt one of the crack propagation criteria. For instance, assume that the crack

propagates when its energy release rate G near the crack tip equals to some constant, say

Γ. Typically, the energy release rate G depends on the speed v of the crack, stress intensity

factors KI(t, v) and KII(t, v), and the material parameters. Thus

G(v(t), KI(t, v(t)), KII(t, v(t))) = Γ, t > 0

Now we are able to construct the function L(t). Assume that for some positive integer n,

we know the values lj for j = 0, 1, . . . , n and vj for j = 1, 2, . . . , n. That is, the function L(t)

is known on the time-interval (0, tn]. In order to construct L(t) for tn < t < tn+1, we have to

determine velocity vn+1. It can be found from the propagation criterion, specifically we will

solve the equation

G(vn+1, KI(tn, vn+1), KII(tn, vn+1)) = Γ (3.46)

with respect to the unknown vn+1.
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The only terms in the sum (3.39) that have discontinuities at the point x1 = ln are the

stress fields σn and σn+1 since the tensor σn corresponds to the crack that stops propagation

at the point x1 = ln while σn+1 corresponds to the crack that starts propagation at x1 = ln.

Thus

KI,II(tn, vn+1) = Kn
I,II(tn) +Kn+1

I,II (tn, vn+1) (3.47)

The values Kn
I,II(tn) are the stress intensity factors of σn, which do not depend on velocity

vn+1 and can be determined from (3.44) for n = 1, 2, . . ., Kn
I (ln)

Kn
II(ln)

 =
√

2π lim
x1→l+n

[√
x1 − ln qn(x1)

]
(3.48)

In the case n = 0,  K0
I (l0)

K0
II(l0)

 =
√

2π lim
x1→0+

[√
x1 σ

0(x1, 0, t0)
]

(3.49)

The values Kn+1
I,II (tn, vn+1) can be determined by the formula Kn+1

I (t, vn+1)

Kn+1
II (t, vn+1)

 =

∫ ln+vn+1(t−tn)

ln

W (x1 − ln, t, vn+1) · pn+1(x1)dx1

by taking the limit t → tn. Since W (x1 − ln, t, vn+1) has a square-root discontinuity at

x1 = ln + vn+1(t− tn) and pn+1 has a square-root discontinuity at x1 = ln, the limit of Kn+1
I,II

as t→ t+n is equal to Kn+1
I (tn, vn+1)

Kn+1
II (tn, vn+1)

 = − w(0, t+n , vn+1) ·

 Kn
I (ln)

Kn
II(ln)

 (3.50)

where

w(x, t, v) =

√
π

2
(vt− x)W (x, t, v)

The formulas (3.48), (3.49), and (3.50), and the identity (3.47) imply KI(ln, vn+1)

KII(ln, vn+1)

 =
[
I − w(0, t+n , vn+1)

]
·

 Kn
I (ln)

Kn
II(ln)

 (3.51)

75



where I is the identity matrix. By plugging the stress intensity factors KI,II(ln, vn+1) into

the equation (3.46) and solving it, we determine the velocity vn+1.

Now describe how a piece-wise linear continuous function L(t) can be constructed. On the

first step, we choose the partition {tn}∞n=0 of the time interval [0,∞) with t0 = 0. Assume that

for t < 0, the crack lies on the negative semi-axis {−∞ < x1 < 0, x2 = 0}, that is l0 = 0 is

the position of the crack tip at the time t = 0. Let σ0(x1, x2) be the stress distribution of the

corresponding static problem. Then the stress intensity factors KI,I(0, v1) of σ(x1, x2, t0) as

x1 → 0 are determined from (3.51), where n = 0 and K0
I,II(0) are the stress intensity factors

of σ0(x1, x2). Notice that KI,II(0, v1) depend on unknown velocity v1 through the matrix

w(0, 0+, v1). It is interesting to notice that the off-diagonal components of w(0, 0+, v1) are

equal to zero; thus, for n = 0 the formula (3.51) is analogous to its counterpart for a crack

propagation in a plane [39]. Given the stress intensity factors KI,II(0, v1), we determine the

velocity v1 from the equation (3.46) for n = 0 and calculate the next position of the crack

as l1 = v1t1.

On the second step, we know the position of the crack l1 at the time instance t1 and the

stress intensity factors K1
I,II(l1) determined by the formula (3.48) for n = 1, where q1(x1) is

the solution of the system of integral equations (3.43). In order to find velocity v2, we solve

the equation (3.46) for n = 1 with respect to v2, where the stress intensity factors KI,II(t1, v2)

are defined by (3.51). Then we calculate the next position of the crack: l2 = l1 + v2(t2 − t1).

On the third step, given l2 and K2
I,II(l2), we determine v3 and l3, and thus continue

iteratively.
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Chapter 4

Steady-State Crack Propagation in a Half-plane

In this chapter, we will study the boundary effects on a crack propagating with constant

subsonic speed in the direction parallel to the boundary of a solid. The static problem for a

semi-infinite crack parallel to the boundary of a half-plane was analyzed by A.N. Zlatin and

A.A. Khrapkov [86]. They reduced the problem to a vector Riemann–Hilbert problem of the

second order and derived a closed-form solution, by explicitly constructing the Wiener–Hopf

factorization of the matrix coefficient. The steady-state problem for a plane with a semi-

infinite crack {(x1, 0) : −∞ < x1 < 0} driven by moving normal and tangential forces applied

to the crack faces, was considered by J.W. Craggs [31]. Because of the symmetry, Craggs’

problem admits decoupling and can be solved in closed form by a variety of methods including

the factorization method for a scalar Riemann–Hilbert problem, the Mellin transform method

which bypasses the Riemann–Hilbert problem, and the method of orthogonal polynomials.

Many researchers analyzed different aspects of the Craggs model problem and considered its

generalizations. Surveys of the results were given by L.B. Freund [39] and K.B. Broberg [24].

The problem considered in this chapter, was first solved by Y. Antipov and the author in

[17].

4.1 Vector Riemann–Hilbert problem and Orthogonal Polynomials

Let us start with describing the model problem for a half-plane {(x1, x2) : −∞ < x1 <

∞,−∞ < x2 < δ}, δ > 0, containing a crack {(x1, 0) : −∞ < x1 < vt} driven by normal

and tangential traction loading applied to the crack faces (see Figure 4.1). It is assumed

that the loading moves with the crack at the same speed v. By employing the method of

integral transformations, we map the boundary value problem for the governing system of

partial differential equations to a vector Riemann–Hilbert problem with the matrix coefficient
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Figure 4.1: Semi-infinite crack parallel to the boundary of a half-plane.

A(z) = a(z)I + b(z)J(z), where a(z), b(z) are Hölder continuous functions on the real axis

R, I is the identity matrix, and

J(z) =

 1 −iα1 tanh(α0z)

iα2 tanh(α0z) −1

 , (4.1)

with real nonzero constants α1, α2.

Next, we transform the Riemann–Hilbert problem into a system of two singular integral

equations on the finite interval (−1, 1). We seek its solution in the Hilbert space L2,ρ(−1, 1)

of square integrable functions with the weight ρ(z) = (1 + z)1/2(1− z)−1/2. By representing

the unknown functions as a series over elements of an orthonormal basis on L2,ρ(−1, 1), we

reduce the system of integral equations to an infinite system of linear algebraic equations

that is solved numerically.

Finally, we derive the stress intensity factors KI , KII for the fundamental problem. In

addition, we determine the energy released as the crack extends from x1 to x1 + δx1, and

δx1 is small. Then, we apply the Griffith criterion of propagation and derive a Willis-type

formula for a mode-I,II semi-infinite crack propagating along the boundary of a half-plane,

similar to the criterion of steady-state propagation of a semi-infinite crack in a plane, derived
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by Willis [85]. We also discuss some numerical results obtained for the stress intensity factors

and the Griffith criterion.

4.1.1 Derivation of the vector Riemann–Hilbert problem

A semi-infinite crack that occupies the region {(x1, 0, x3) : −∞ < x1 < vt, |x3| <∞} prop-

agates in the direction parallel to the boundary of an elastic half-space R3
+ = {(x1, x2, x3) :

|x1| <∞, −∞ < x2 < δ, |x3| <∞} where δ > 0. The boundary of the half-space is assumed

to be free of traction. The speed v is constant and does not exceed the Rayleigh wave speed

cR for the elastic isotropic homogeneous solid whose density and the Lamé constants are ρ,

λ, and µ respectively. The faces of the crack are subjected to plane-strain loading

σj2(x1, x2, t) = σ◦j2(x1 − vt), −∞ < x1 < vt, x2 = 0±, j = 1, 2. (4.2)

In the case of the plain-strain deformation that does not change in x3-direction, the dis-

placement vector and stress tensor are expressed (see Chapter 3) in terms of the dynamic

potentials φ and ψ that satisfy the system of equations identical to (3.2) in the spacial re-

gion Ω = R2
+ \ S(t), where R2

+ = {(x1, x2) : |x1| < ∞,−∞ < x2 < δ} is a half-plane and

S(t) = {(x1, 0) : −∞ < x1 < vt} a semi-infinite crack growing at constant speed v (see

Figure 4.1).

We introduce the coordinate system (x, y) moving with the crack so that x = x1 − vt

and y = x2. Since both the configuration of the body and the traction distribution are time

invariant in the new coordinate system, we seek the steady state solution of the problem,

which does not depend on time t in (x, y)-coordinate system. The latter permits to “drop”

the temporal variable t from all equations. In this case, the governing equations (3.2) are

simplified to

α2∂
2φ

∂x2
+
∂2φ

∂y2
= 0, β2∂

2ψ

∂x2
+
∂2ψ

∂y2
= 0 (4.3)

where α =
√

1− v2/c2
l , β =

√
1− v2/c2

s. After applying Fourier transform

φ̂(z, y) =

∫ ∞
−∞

φ(x, y)eizxdx, ψ̂(z, y) =

∫ ∞
−∞

ψ(x, y)eizxdx (4.4)
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to the differential equations (4.3), we find the solution of the corresponding ordinary differen-

tial equation with respect to y-variable. The bounded solution on the semi-axis −∞ < y < 0

is given by

φ̂(z, y) = C0(z)eα|z|y, ψ̂(z, y) = D0(z)eβ|z|y, z ∈ R (4.5)

where C0 and D0 are two arbitrary functions independent of y. On the interval 0 < y < δ,

the bounded solution takes the form

φ̂(z, y) = C1(z) cosh(αzy) + C2(z) sinh(αzy)

ψ̂(z, y) = D1(z) cosh(βzy) +D2(z) sinh(βzy)

z ∈ R (4.6)

The functions Cj : R → C and Dj : R → C (j = 0, 1, 2) are to be determined from the

boundary conditions

σ12(x, δ) = σ22(x, δ) = 0, −∞ < x <∞

σ12(x, 0±) = σ◦12(x), σ22(x, 0±) = σ◦22(x), x < 0

(4.7)

where the first line expresses the fact that the body is free of tension on the boundary y = δ,

while the second line is derived from (4.2). Recall that the stress components are related

to the potentials φ and ψ through the identities (3.6). After applying Fourier transform to

the corresponding equations in (3.6) and to the boundary conditions (4.7), we derive the

equations

d2ψ̂

dy2
+ z2ψ̂ − 2iz

dφ̂

dy
= 0 y = δ

c2
l

c2
s

d2φ̂

dy2
+ z2

(
2− c2

l

c2
s

)
φ̂+ 2iz

dψ̂

dy
= 0, y = δ

d2ψ̂

dy2
+ z2ψ̂ − 2iz

dφ̂

dy
= Σ+

1 (z) + Σ−1 (z), y = 0±

c2
l

c2
s

d2φ̂

dy2
+ z2

(
2− c2

l

c2
s

)
φ̂+ 2iz

dψ̂

dy
= Σ+

2 (z) + Σ−2 (z), y = 0±

(4.8)

where the Fourier transforms

Σ+
j (z) =

1

µ

∫ ∞
0

σj2(x, 0)eizxdx, Σ−j (z) =
1

µ

∫ 0

−∞
σ◦j2(x)eizxdx, j = 1, 2
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considered as functions of complex variable z, are analytic in the upper half-plane C+ =

{z : Im z > 0} and in the lower half-plane C− = {z : Im z < 0} respectively, provided that

σj2(·, 0) and σ◦j2 are integrable on the corresponding intervals (0,∞) and (−∞, 0). Notice that

the functions Σ+
1 and Σ+

2 are unknown since the stress components σ12(x, 0) and σ22(x, 0) in

front of the crack tip (x > 0) are not determined yet. These functions Σ+
1 and Σ+

2 will be

found later from a Riemann–Hilbert problem.

Plugging the functions φ̂ and ψ̂ defined by (4.5) and (4.6), into the boundary conditions

(4.8), we find the unknown functions Cj and Dj, j = 0, 1, 2:

C0(z) =
1 + β2

z2R1

Σ+
2 (z)− 2iβ sgn{z}

z2R1

Σ+
1 (z)

D0(z) =
1 + β2

z2R1

Σ+
1 (z) +

2iα sgn{z}
z2R1

Σ+
2 (z)

C1(z) =−
{

2αβ(1 + β2)(3 + β2) [cosh(βδz) cosh(αδz)− 1]

+
[
(1 + β2)3 + 8α2β2

]
sinh(αδz) sinh(βδz)

} Σ+
1 (z)

z2∆(z)

C2(z) =− (1− β2) {4αβ cosh(βδz) sinh(αδz)

−(1 + β2)2 cosh(αδz) sinh(βδz)
} Σ+

2 (z)

z2∆(z)

D1(z) =
{
−2αβ(1 + β2)(3 + β2) [cosh(βδz) cosh(αδz)− 1]

+
[
(1 + β2)3 + 8α2β2

]
sinh(αδz) sinh(βδz)

} Σ+
1 (z)

z2∆(z)

D2(z) =− (1− β2) {4αβ cosh(αδz) sinh(βδz)

−(1 + β2)2 cosh(βδz) sinh(αδz)
} Σ+

2 (z)

z2∆(z)

where

∆(z) = R2
1 sinh2

(
α + β

2
δz

)
−R2

2 sinh2

(
α− β

2
δz

)
R1 = (1 + β2)2 − 4αβ, R2 = (1 + β2)2 + 4αβ

Thus, the Fourier transforms φ̂ and ψ̂ of wave potentials are given by the formulas (4.5),

(4.6), (4.7). In order to determine the unknown functions Σ+
1 and Σ+

2 in the identities above,
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let us consider discontinuities of the derivative ∂x of the displacement components u1 and u2

across x-axis. Define the auxiliary functions

χj(x) =
∂uj
∂x

(x, 0+)− ∂uj
∂x

(x, 0−), j = 1, 2, −∞ < x <∞, (4.9)

Since the displacement components are continuous in front of the crack tip (x > 0), the

functions χ1 and χ2 vanish for positive values of the argument. Therefore, their Fourier

transforms

X−j (z) = i

∫ 0

−∞
χj(x)eizxdx, j = 1, 2

are analytic in the lower half-plane C−. Applying the Fourier transforms to the identities

(4.9) and using the formulas (3.6), we derive equations(
dψ̂

dy
− izφ̂

)
y=0+

−

(
dψ̂

dy
− izφ̂

)
y=0−

=
X−1 (z)

z(
dφ̂

dy
+ izψ̂

)
y=0+

−

(
dφ̂

dy
+ izψ̂

)
y=0−

=
X−2 (z)

z

z ∈ R

which, after using the formulas (4.5), (4.6) for φ̂, ψ̂, and the expressions for Cj, Dj (j =

0, 1, 2), take the form of a vector Riemann–Hilbert problem:

 Σ+
1 (z)

Σ+
2 (z)

 = A(z)

 β−1X−1 (z)

α−1X−2 (z)

−
 Σ−1 (z)

Σ−2 (z)

 , −∞ < z < +∞, (4.10)

where Σ+
1,2 are functions analytic in the upper half-plane C+, while X−1,2 and Σ−1,2 are analytic

in the lower half-plane C−. At the infinite point, all the functions Σ±1,2 and X−1,2 are assumed

to be bounded. The matrix coefficient A has the structure A = aI + bJ , where

a(z) =
e−(α+β)δ|z|

2(1− β2)

[
R1 sinh(α + β)δz +

2∆(z) sgn z

R1

]
b(z) = − R2

1− β2
e−(α+β)δ|z| sinh

1

2
(α− β)δz

J(z) =

 cosh 1
2
(α− β)δz −4iα

R1
(1 + β2) sinh 1

2
(α− β)δz

4iβ
R1

(1 + β2) sinh 1
2
(α− β)δz − cosh 1

2
(α− β)δz

 (4.11)
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and I is the unit 2× 2 matrix. The matrix A does not admit a Wiener-Hopf factorization by

the methods currently available in the literature. Although it can be represented in the form

(2.28) and it is possible to transform the vector problem (4.10) to a scalar Riemann–Hilbert

problem on a Riemann surface, the corresponding Riemann surface would have infinitely

many branch points and the problem can be solved only approximately (see Section 2.3.1).

Evaluating of the total index κ of the Riemann–Hilbert problem (4.10), shows that κ = 2 if

the real axis R is transformed to pass under the origin x = 0 (see the contour R−ε introduces

in Section 3.1.2). Since the problem does not admit the closed-form solution, evaluating of

the partial indexes currently presents a certain difficulty. However, the fact that in the case

δ →∞, the matrix A(z) converges to a diagonal piece-wise constant matrix

A(z) = sgn z
R1

2(1− β2)
I

and the corresponding two partial indexes κ1 and κ2 are equal to 1, makes us to suggest

that κ1 = κ2 = 1 for finite values of δ as well (however, justification of this suggestion

is a separate and challenging problem on its own, so it is left beyond the scope of the

dissertation). In the case κ1 = κ2 = 1, the solution of the Riemann–Hilbert problem is stable

[42], meaning the an approximate solution is expected to converge to the exact solution

of the problem, and depends on two arbitrary constants that can be determined from the

condition X−1 (0) = X−2 (0) = 0 (see the paragraph after formula (3.32)). Notice that in the

next section, this condition is satisfied due to the choice of a class of the solution (4.16).

4.1.2 System of integral equations

Since there are no known method that would allow for explicit construction of a Wiener–

Hopf factorization of the matrix coefficient A in the closed form, we will find an approximate

solution of the Riemann–Hilbert problem (4.10) based on the method described in Section

2.3.2. Let us transform the equation (4.10) to a system of singular integral equations on a

semi-infinite interval and develop an efficient numerical scheme for its solution.
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By applying the inverse Fourier transform to the equation (4.10) and using the convolution

theorem, we find the following expressions valid for −∞ < x <∞:

−πβ
γ
σ12(x, 0) =

∫ 0

−∞

[
1

ξ − x
+ k11(ξ − x)

]
χ1(ξ)dξ +

∫ 0

−∞
k12(ξ − x)χ2(ξ)dξ

−πα
γ
σ22(x, 0) =

∫ 0

−∞
k21(ξ − x)χ1(ξ)dξ +

∫ 0

−∞

[
1

ξ − x
+ k22(ξ − x)

]
χ2(ξ)dξ

(4.12)

where

k11(x) =
R(1−R)x

2[x2 + 4α2δ2]
− R(1 +R)x

2[x2 + 4β2δ2]
+

(R2 − 1)x

x2 + (α + β)2δ2

k22(x) = − R(1 +R)x

2[x2 + 4α2δ2]
+

R(1−R)x

2[x2 + 4β2δ2]
+

(R2 − 1)x

x2 + (α + β)2δ2

k12(x) =
4R(1 + β2)β

R1

(
α

x2 + 4α2δ2
+

β

x2 + 4β2δ2
− α + β

x2 + (α + β)2δ2

)
k21(x) = −α

β
k12(x), R =

R2

R1

, γ =
µR1

2(1− β2)

Due to the fact that the stress components σ12(x, 0) and σ22(x, 0) are prescribed for the values

x on the negative semi-axis (−∞, 0) (see the boundary conditions (4.7)), the equations (4.12)

yield the system of singular integral equations with respect to the functions χ1 and χ2 on

the interval (−∞, 0):∫ 0

−∞

[
1

ξ − x
+ k11(ξ − x)

]
χ1(ξ)dξ +

∫ 0

−∞
k12(ξ − x)χ2(ξ)dξ = −πf1(x)∫ 0

−∞
k21(ξ − x)χ1(ξ)dξ +

∫ 0

−∞

[
1

ξ − x
+ k22(ξ − x)

]
χ2(ξ)dξ = −πf2(x)

(4.13)

where f1(x) = σ◦12(x)β/γ and f2(x) = σ◦22(x)α/γ.

As δ → ∞ (the half-plane becomes an unbounded plane), the kernels k12 and k21 vanish

so the system (4.13) decouples. Then, its closed form solution is given by

χj(x) =
1

π
√
−x

∫ 0

−∞

√
−ξfj(ξ)dξ
ξ − x

, −∞ < x < 0, j = 1, 2 (4.14)

In the case of a finite value δ, the system can be solved numerically by an approximate

scheme based on the method of orthogonal polynomials (see Section 2.3.2).

First, let us transform the interval (−∞, 0) into the interval (−1, 1) by making substitu-

tions ξ = (ξ′+ 1)/(ξ′− 1), x = (x′+ 1)/(x′− 1), and introducing new functions χ̃j and f̃j as
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follows:

(1− x′)χ̃j(x′) = χj(x), (1− x′)f̃j(x′) = fj(x), j = 1, 2. (4.15)

Since in the problem on a semi-infinite crack in an unbounded plane [31], the displacement

components vanish as O(|x|1/2) at the origin x = 0 and as O(|x|−1/2) as x→ −∞, the same

behavior is assumed the displacement components in a half-plane. The latter results to the

following behavior of the functions χ1 and χ2 on the negative semi-axis (−∞, 0):

χj(x) = O(|x|−1/2), x→ 0−; χj(x) = O(|x|−3/2), x→ −∞ (4.16)

When written for the new functions χ̃1 and χ̃2 defined in (4.15), this yield the identities

χ̃j(x
′) = O(|1 + x′|−1/2), x′ → −1; χ̃j(x

′) = O(|1− x′|1/2), x′ → 1 (4.17)

Let P̃
1/2,−1/2
n be Jacobi polynomials scaled so that they form an orthonormal basis in the

space of square integrable functions on the interval (−1, 1). We represent the functions χ̃1

and χ̃2 in the form

χ̃j(x
′) =

√
1− x′
1 + x′

∞∑
m=0

a(j)
m P̃ 1/2,−1/2

m (x′), j = 1, 2, x′ ∈ (−1, 1) (4.18)

where the coefficients a
(j)
n are to be determined. The original functions χ1(x) and χ2(x) may

be put into the form

χj(x) =
2

(1− x)
√
−x

∞∑
m=0

a(j)
m P̂ 1/2,−1/2

m

(
x+ 1

x− 1

)
, j = 1, 2, x ∈ (−∞, 0) (4.19)

By employing the spectral relation∫ 1

−1

√
1− ξ′
1 + ξ′

P̃
1/2,−1/2
m (ξ′)dξ′

ξ′ − x′
= −πP̂−1/2,1/2

m (x′), x′ ∈ (−1, 1) (4.20)

and the orthogonality of the polynomials,∫ 1

−1

√
1 + x′

1− x′
P̃−1/2,1/2
m (x′)P̃−1/2,1/2

n (x′)dx′ = δmn, n,m = 0, 1, . . . (4.21)
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(δmn is the Kronecker symbol), we transform the system of integral equations into an infinite

algebraic system

a(j)
n +

∞∑
m=0

[c(j,j)
nm a(j)

m + c(j,3−j)
nm a(3−j)

m ] = b(j)
n , n = 0, 1, . . . ; j = 1, 2. (4.22)

Here,

c(j,l)
nm =

2

π

∫ 1

−1

∫ 1

−1

√
1 + x′

(1− x′)3

P̃
−1/2,1/2
n (x′)P̃

1/2,−1/2
m (ξ′)√

1− ξ′2
kjl(ξ − x)dξ′dx′,

b(j)
n = −

∫ 1

−1

√
1 + x′

(1− x′)3
P̂−1/2,1/2
n (x′)fj(x)dx′ (4.23)

In order to compute the coefficients c
(j,l)
nm , we rearrange the integrands as√

1 + x′

(1− x′)3

kjj(ξ − x)√
1− ξ′2

=

√
1 + x′

1− x′

√
1− ξ′
1 + ξ′

k̂jj(ξ
′, x′), j = 1, 2,

√
1 + x′

(1− x′)3

k12(ξ − x)√
1− ξ′2

=
√

1− x′2
√

1− ξ′
1 + ξ′

k̂12(ξ′, x′), (4.24)

where

k̂jj(ξ
′, x′) = (R2 − 1)Σ1(ξ′, x′;α + β) + (−1)j[rjΣ1(ξ′, x′; 2β)− r3−jΣ1(ξ′, x′; 2α)], j = 1, 2,

k̂12(ξ′, x′) =
2R(1 + β2)β

R1

[Σ0(ξ′, x′; 2α) + Σ0(ξ′, x′; 2β)− 2Σ0(ξ′, x′;α + β)],

k̂21(ξ′, x′) = −α
β
k̂12(ξ′, x′),

r1 =
R

2
(1 +R), r2 =

R

2
(1−R), Σ0(ξ′, x′; ε) =

ε(1− ξ′)
4(ξ′ − x′)2 + [εδ(1− ξ′)(1− x′)]2

,

Σ1(ξ′, x′; ε) =
2(x′ − ξ′)

4(ξ′ − x′)2 + [εδ(1− ξ′)(1− x′)]2
, (4.25)

and apply the Gaussian type quadrature formulas [6]∫ 1

−1

√
1 + x′

1− x′
f(x′)dx′ =

4π

2M + 1

M∑
j=1

cos2 φjf(cos 2φj),

∫ 1

−1

√
1− x′2f(x′)dx′ =

π

M + 1

M∑
j=1

sin2 2ψjf(cos 2ψj), (4.26)
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where

φj =
(2j − 1)π

2(2M + 1)
, ψj =

jπ

2(M + 1)
, (4.27)

and M is the number of abscissas. Using the connection between the Chebyshev and the

orthonormal Jacobi polynomials

P̃−1/2,1/2
n (x′) =

√
2

π(x′ + 1)
T2n+1

(√
x′ + 1

2

)
,

P̃ 1/2,−1/2
n (x′) =

1√
π
U2n

(√
x′ + 1

2

)
, (4.28)

we derive

c(j,j)
nm =

32(−1)m

(2M + 1)2

M∑
j=1

cosφj cos(2n+ 1)φj

M∑
s=1

cosφs cos(2m+ 1)φsk̂jj(− cos 2φs, cos 2φj),

c(1,2)
nm =

32(−1)m

(2M + 1)(M + 1)

M∑
j=1

sin2 ψj cosψj cos(2n+ 1)ψj

×
M∑
s=1

cosφs cos(2m+ 1)φsk̂12(− cos 2φs, cos 2ψj). c(2,1)
nm = −α

β
c(1,2)
nm . (4.29)

The integrals b
(j)
n can be written in the form

b(j)
n = − 1√

π

∫ 0

−∞

1√
1− x

T2n+1

(√
−x

1− x

)
fj(x)dx. (4.30)

Their convergence is guaranteed if fj(x) ∈ L1(−A, 0) for any finite A > 0, and fj(x) =

o(|x|−1/2), x→ −∞.

Show finally that if δ → ∞, then the solution of the infinite system tends to the closed-

form solution (4.14) for the whole plane. When δ →∞, then c
(j,l)
nm → 0 and a

(j)
m → b

(j)
m , that

is if δ =∞, then

χ̃j(x
′) = −

√
1− x′
1 + x′

∫ 1

−1

fj(ξ)

√
1 + ξ′

(1− ξ′)3
Λ(ξ′, x′)dξ′, (4.31)

where

Λ(ξ′, x′) =
∞∑
m=0

P̃−1/2,1/2
m (ξ′)P̃ 1/2,−1/2

m (x′). (4.32)
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To summarize this series, we employ the relations (4.28) and also the formula

lim
q→1−

∞∑
m=0

q2m+1 sin(2m+ 1)x =
1

2 sinx
. (4.33)

This gives us

Λ(ξ′, x′) =
1

π(ξ′ − x′)
, (4.34)

and therefore,

χj(x) = − 1

π

√
(1− x′)3

1 + x′

∫ 1

−1

fj(ξ)

√
1 + ξ′

(1− ξ′)3

dξ′

ξ′ − x′
, (4.35)

where x = (x′ + 1)/(x′ − 1), ξ = (ξ′ + 1)/(ξ′ − 1). This formula, when rearranged, coincides

with (4.14).

4.2 Properties of the Solution

In this section, we will discuss the stress intensity factors for the problem, its dependence on

elastic parameters of the problem and construct Griffith criterion of the crack propagation.

4.2.1 Stress field near the tip of the crack

In order to evaluate the stress intensity factors, we analyze behavior of the stress components

σ12(x+ vt, 0), σ22(x+ vt, 0) as x→ 0+. From the integral equations (4.12), we have

σ22(x+ vt, 0) ∼ − γ

πα

∫ 0

−∞

χ2(ξ)dξ

ξ − x
, x→ 0+. (4.36)

since the kernels kij, i, j = 1, 2, are continuous on the real axis R. After replacing the

functions χj with χ̃j according to the identities (4.15), and using the representation (4.18),

the formula (4.36) becomes

σ22(x+ vt, 0) ∼ γ(1− x′)
πα

∞∑
m=0

a(2)
m

∫ 1

−1

√
1− ξ′
1 + ξ′

P̂ 1/2,−1/2
m (ξ′)

dξ′

ξ′ − x′
. (4.37)

The integrals in the right-hand side can be evaluated using the following relation for the

Jacobi polynomials:∫ 1

0

√
τ

1− τ
P 1/2,−1/2
n (1− 2τ)

dτ

τ − t
=

√
πΓ(1/2 + n)

Γ(1 + n)
F (1 + n,−n, 1/2; t)

− 2
√
πΓ(3/2 + n)

n!
(−t)1/2F (3/2 + n, 1/2− n, 3/2; t), t /∈ (0, 1)
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For the orthonormal Jacobi polynomials P̂
1/2,−1/2
n (ξ′), this relation can be simplified, and we

obtain

σ22(x+ vt, 0) ∼ 2γx−1/2

√
πα

∞∑
m=0

(−1)ma(2)
m , x→ 0+.

After comparing this asymptotic relation with the definition of the stress intensity factor

KI , we derive the final formula for KI ,

KI =
2
√

2γ

α

∞∑
m=0

(−1)ma(2)
m . (4.38)

Similarly,

KII =
2
√

2γ

β

∞∑
m=0

(−1)ma(1)
m . (4.39)

For computations, we take the Poisson ratio ν = 0.3. The Rayleigh speed cR is defined

explicitly [8] as

cR = cs
√
s∗, s∗ =

1

3
(8−R+ −R−), R± =

(
45κ0

2
− 404± 3

√
3R∗
2

)1/3

,

R∗ = −14656 + 2768κ0 − 181κ2
0 + 4κ3

0, κ0 = 8(2− ν)/(1− ν) ∈ (16, 24).

The way in which the stress intensity factors approach their asymptotic values as δ →∞

is seen in Figure 4.2: the factors K
(1)
I and K

(2)
II tend to K◦I and K◦II , respectively, while the

other two factors, K
(2)
I and K

(1)
II tend to zero. Here,

K◦I =
2
√

2γ

α

∞∑
m=0

(−1)mb(2)
m , K◦II =

2
√

2γ

β

∞∑
m=0

(−1)mb(1)
m . (4.40)

In Figure 4.2, the crack propagation speed v is chosen to be the half of the Rayleigh speed,

v = 0.5cR. The factors K
(1)
I and K

(1)
II denote the stress intensity factors for the case when

σ◦22(x) = 1 for −1 < x < 0, and σ◦22(x) = 0 otherwise, and σ◦12(x) = 0 for all x < 0. The

factors K
(2)
I and K

(2)
II are the SIFs for the case σ◦12(x) = 1 for −1 < x < 0, and σ◦12(x) = 0,

x < −1, and σ◦22(x) = 0 for all x < 0. As δ → 0, the absolute values of all the factors except

for K
(2)
II are growing. The factor K

(2)
II approaches zero as the distance between the crack and

the boundary of the half-plane tends to zero.
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Figure 4.2: The stress intensity factors vs δ for V/cR = 0.5: K
(1)
I and K

(1)
II are the factors

for the case σ◦22(x) = 1, −1 < x < 0, σ◦22(x) = 0, x < −1, and σ◦12(x) = 0, x < 0; K
(2)
I and

K
(2)
II are the factors for the case σ◦12(x) = 1, −1 < x < 0, σ◦12(x) = 0, x < −1, and

σ◦22(x) = 0, x < 0.

When the crack is close to the surface (δ = 2) and the crack propagation speed v is growing

toward the Rayleigh speed cR, the magnitudes of all the stress intensity factors apart from

K
(1)
I are growing. The factor K

(1)
I is decreasing as v → cR. This is seen plotted in Figure 4.3.

4.2.2 Weight functions

In the problem on a crack in an unbounded plane, propagating at a constant speed (see

Section 3.2), we used two fundamental solutions in order to express stress intensity factors

for an arbitrary loading. In the case of a half-plane, a similar approach can be taken so that

KI =

∫ 0

−∞
WI,I(ξ)σ

◦
22(ξ)dξ +

∫ 0

−∞
WI,II(ξ)σ

◦
12(ξ)dξ

KII =

∫ 0

−∞
WII,I(ξ)σ

◦
22(ξ)dξ +

∫ 0

−∞
WII,II(ξ)σ

◦
12(ξ)dξ

where σ◦12 and σ◦22 are time-independent tangential and normal loading applied to the faces

of the crack. The weight functions WI,I , WI,II , WII,I , and WII,II are defined as the stress

intensity factors corresponding to two fundamental solutions. Let us notice that we have two

stress intensity factors for each fundamental solution since the equations for tangential and

normal components are coupled because of presence of the boundary of a half-plane.
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Figure 4.3: The stress intensity factors vs V/cR for δ = 2: K
(1)
I and K

(1)
II are the factors for

the case σ◦22(x) = 1, −1 < x < 0, σ◦22(x) = 0, x < −1, and σ◦12(x) = 0, x < 0; K
(2)
I and K

(2)
II

are the factors for the case σ◦12(x) = 1, −1 < x < 0, σ◦12(x) = 0, x < −1, and σ◦22(x) = 0,
x < 0.

In order to determine the weight functions, we use the method introduced in [10]. The

values WI,I(x0) and WII,I(x0) are equal to the stress intensity factors KI and KII for the

fundamental solution of the problem (4.3), (4.7) with the loading

σ12(x+ vt, 0) = 0, σ22(x+ vt, 0) = δ(x− x0), −∞ < x < 0, (4.41)

where −∞ < x < 0 and δ(x) is the Dirac delta function. In this case, the right-hand side of

the system of equations (4.22), i.e. the coefficients b
(1)
n and b

(2)
n , can be computed explicitly

by the formula (4.30), where we take f1(x) = 0 and f2(x) = δ(x− x0)α/γ:

b(1)
n = 0, b(2)

n = − α

γ
√
π(1− x0)

T2n+1

(√
x0

x0 − 1

)
(4.42)

For improving convergence of the method used to solve the system (4.22), we represent

the coefficients a
(j)
n as the sum a

(j)
n = b

(j)
n + ã

(j)
n , j = 1, 2. After using the formulas (4.38) and

(4.39) for the stress intensity factors, we derive

WI,I(x0) = W ◦
I,I(x0) + W̃I,I(x0), WII,I(x0) = W ◦

II,I(x0) + W̃II,I(x0)
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where

W ◦
I,I(x0) =

2
√

2γ

α

∞∑
m=0

(−1)mb(2)
m

W ◦
II,I(x0) =

2
√

2γ

α

∞∑
m=0

(−1)mb(1)
m

W̃I,I(x0) =
2
√

2γ

α

∞∑
m=0

(−1)mã(2)
m

W̃II,I(x0) =
2
√

2γ

β

∞∑
m=0

(−1)mã(1)
m

Notice that W ◦
II,I(x0) = 0 since b

(1)
m = 0 for all m = 0, 1, 2 . . . due to (4.42). The value

W ◦
I,I(x0) can be computed explicitly by plugging b2

m defined in (4.42) and using the identity

Tn(x) = 1
2
(x −

√
x2 − 1)n + 1

2
(x +

√
x2 − 1)n for Chebyshev polynomials; then, W ◦

I,I(x0) =

−
√

2/
√
−πx0. The coefficients ã

(1)
m , ã

(1)
m (and the values W̃I,I(x0) and W̃II,I(x0) respectively)

are to be determined from the system of linear equations

ã(j)
n +

∞∑
m=0

[c(j,j)
nm ã(j)

m + c(j,3−j)
nm ã(3−j)

m ] = b̃(j)
n , n = 0, 1, . . . ; j = 1, 2, (4.43)

where

b̃(1)
n = 0, b̃(2)

n = −
∞∑
m=0

c(2,2)
nm b(2)

m . (4.44)

The values WI,II(x0) and WII,II(x0) are the stress intensity factors KI and KII for the

fundamental solution of the problem (4.3), (4.7) with σ12(x+ vt, 0) = δ(x− x0) and σ22(x+

vt, 0) = 0. They can be represented as

WI,II(x0) =
2
√

2γ

α

∞∑
m=0

(−1)mã(2)
m

WII,II(x0) = −
√

2

−πx0

+
2
√

2γ

β

∞∑
m=0

(−1)mã(1)
m

where the coefficients ã
(1)
m , ã

(2)
m form the solution of the infinite system (4.43) with the right-

hand side defined by

b̃(1)
n = −

∞∑
m=0

c(1,1)
nm b(1)

m , b(1)
m = − β

γ
√
π(1− x0)

T2n+1

(√
x0

x0 − 1

)
, b̃(2)

n = 0
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For numerical computations of the weight functions, we choose ν = 0.3 and x0 = −1.

When the velocity v is fixed (v < cR) and δ →∞, the weight functions WI,I and WII,II tend

to the value −
√

2/π, which correspond to the problem on an unbounded plane. The other

two functions, WI,II and WII,I , vanish so that the problem for tangential and normal stress

components decouples (see Figure 4.4). The magnitudes of all of the weight functions grow

as δ → 0, while v is fixed (v = 0.5cR in Figure 4.4).

The weight function curves on Figure 4.5 for δ = 1, ν = 0.3, x0 = −1 show that the

weight function WI,I decreases as v → cR. The other functions may also decrease when the

normalized speed v/cR is close to 1. Our numerical scheme becomes less reliable when v

approaches the critical speed cR.

4.2.3 Griffith criterion

In order to construct Griffith crack propagation criteria [85], let us consider the potential

energy δU released when the crack S(t) = {(x1, 0) : −∞ < x1 < vt} extends by a small

value r to the crack S(t) + δS(t) = {(x1, 0) : −∞ < x1 < vt + r}. The energy δU may be

expressed as

δU =
1

2

∫ vt+r

vt

{σ12(x1, 0)[u1](x1) + σ22(x1, 0)[u2](x1)}dx1 (4.45)
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Figure 4.4: The weight functions Wj,l(x0) (j, l = I, II) vs δ for v/cR = 0.5, x0 = −1.
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Figure 4.5: The weight functions Wj,l(x0) (j, l = I, II) vs v/cR for δ = 1, x0 = −1.

where [u1], [u2] are the displacement jumps related to the extended crack in the horizontal

and vertical direction respectively.

Recall that the stress field has the following asymptotic behavior near the tip of the crack:

σ12(x+ vt, 0) ∼ KII√
2πx

, σ22(x+ vt, 0) ∼ KI√
2πx

, x→ 0+ (4.46)

In order to find asymptotic expansions for δ[u1], δ[u2], we integrate the identities (4.19) and

fix the constant of integration so that the displacement jumps vanish at the crack tip. For

the displacement jumps [u1] and [u2], we derive [u1] (x+ vt)

[u2] (x+ vt)

 = 2
∞∑
m=0

 a
(1)
m

a
(2)
m

∫ x

0

P̂ 1/2,−1/2
m

(
ξ + 1

ξ − 1

)
dξ

(1− ξ)
√
−ξ

, x < 0. (4.47)

The displacement jumps vanish at the point x = 0 and tend to finite and, in general, non-zero

values as x→ −∞. Since P̂
1/2,−1/2
m (−1) = π−1/2(−1)m, the formula (4.31) implies

[u2](x+ vt) = −4

√
−x
π

∞∑
m=0

(−1)ma(2)
m +O(|x|3/2), x→ 0−. (4.48)

By comparing the formula (4.48) to (4.38) and (4.39), we can express the jumps [u1](x+ vt)

and [u2](x+ vt) through the stress intensity factor KI and KII as follows

[u1](x+ vt) ∼ −
√
−2x

π

βKII

γ
, [u2](x+ vt) ∼ −

√
−2x

π

αKI

γ
, x→ 0− (4.49)
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After plugging the identities (4.46) and (4.49) in the integral in (4.45) and noticing that the

products σ12[u1] and σ22[u2] are bounded on the interval [vt, vt+ r], we derive the formula

δU ∼ − 1

4γ
(αK2

I + βK2
II)r, r → 0+. (4.50)

This formula can be written in terms of the Rayleigh function

R(v) = 4

√(
1− v2

c2
l

)(
1− v2

c2
s

)
−
(

2− v2

c2
s

)2

(4.51)

as

δU ∼ v2r

2csµR(v)
(αK2

I + βK2
II), r → 0+. (4.52)

According to the Griffith criterion, the crack starts propagating if the energy δU equals or

greater than the increase in the surface energy 2Tr, δU ≥ 2Tr, where T is the Griffith

material constant. This criterion may be represented in terms of the stress intensity factors

in the form √
1− v2

c2
l

K2
I +

√
1− v2

c2
s

K2
II ≥

4Tc2
sµR(v)

v2
. (4.53)

Notice, that if δ =∞, and σ◦12(x) = 0 for all x < 0, then the inequality (4.53) coincides with

the criterion

K2
I ≥

4Tc2
sµR(v)

v2
√

1− v2/c2
l

(4.54)

obtained by Willis [85]. For finite values of δ, even when the tangential component of loading

vanishes, the stress intensity factor KII does not equal to zero, and both factors, KI and

KII , are involved in the Griffith crack propagation criterion.

Another way to represent the crack propagation criterion is to rewrite inequality (4.53) as

H(KI , KII , v/cs, v/cl) ≥ µT, (4.55)

where

H =
αK2

I + βK2
II

4(cs/v)2R(v)
. (4.56)
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Figure 4.6 shows the results of calculations of the function H versus δ for v/cR = 0.5 and

some loads. It is seen that H rapidly advances as the distance between the crack and the

half-plane boundary decreases. The dependence of H on the normalized crack speed v/cR

when δ = 2 is plotted in Figure 4.7. The function H → ∞ as v/cR → 0 and it grows as

the crack speed v approaches the Rayleigh speed. The curves in Figure 4.7 are reminiscent

of the graph of modulus of cohesion kc(v) versus v/cs in the Barenblatt-type criterion for

intersonic shear crack propagation [12].

Let us notice that the solution of the steady-state problem, considered in this chapter,

holds for propagation of the crack at any speed v in the range 0 < v < cR. However, one

important question that arises in the problems on crack propagation is how to determine the

propagation speed v for a specified loading and a shape of the domain containing the crack.

In order to answer that question, we apply the Griffith propagation criterion (4.55) and find

speed v from the equation H = µT . On Figure 4.8, we demonstrate values of the propagation

speed v for some loading (here, x0 = −1, ν = 0.3, T = 100). It is clear from Figure 4.7 that

the equation H = µT may have no solutions, one solution, or two different solutions, say

v1 and v2. We can assume the following two scenarios: (i) the crack starts propagating and

its speed slowly increases until it reaches value v1 at which the speed becomes stable and

0 2 4 6 8 10
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H(3)

H(2)
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Figure 4.6: The function H vs δ for v/cR = 0.5, x0 = −1 and loading σ◦22 = δ(x− x0),
σ◦12 = 0: H(1); σ◦22 = 0, σ◦12 = δ(x− x0): H(2); σ◦22 = δ(x− x0), σ◦12 = δ(x− x0): H(3).
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Figure 4.7: The function H vs v/cR for δ = 2, x0 = −1 and loading σ◦22 = δ(x− x0),
σ◦12 = 0: H(1); σ◦22 = 0, σ◦12 = δ(x− x0): H(2); σ◦22 = δ(x− x0), σ◦12 = δ(x− x0): H(3).

the crack approaches the steady-state regime; (ii) the crack starts propagating and its speed

quickly jumps up to the Rayleigh speed limit cR and then stabilizes at value v2. Notice that

if the loading has high enough amplitude, then the equation H = µT has no solution (take,

for instance, parameter σ∗ = 25 and speed v(3) on Figure 4.8). In this case, the function

H exceeds the value µT resulting to the crack propagation, but its speed becomes unstable

and, thus, such propagation cannot be described by the model considered in this chapter.

σ∗

v(1)/cR

v(2)/cR

v(3)/cR

Figure 4.8: Propagation speed v against the parameter σ∗ corresponding to the loading
σ◦22 = σ∗δ(x− x0), σ◦12 = 0: v(1); σ◦22 = 0, σ◦12 = σ∗δ(x− x0): v(2); σ◦22 = σ∗δ(x− x0),

σ◦12 = σ∗δ(x− x0): v(3).
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Chapter 5

Transient Crack Propagation in a Half-Plane

In this chapter we will propose a new method of partial Wiener–Hopf factorization for

analyzing plane dynamic transient problems in the case when the two deformation modes are

coupled, and the standard Wiener-Hopf method does not work. In addition to factorization

of two scalar functions it employs derivation and solution of a certain system of two integral

equations. The method is illustrated by the study of a crack propagating at sub-Rayleigh

speed parallel to the boundary of a solid when loading is time independent. The model

problem admits formulation as a vector Riemann-Hilbert problem.

First, we will describe the transient model and apply the Fourier and Laplace transforms

in a standard manner [39, 73, 19] in order to reduce the governing boundary-value problem

to a second order vector Riemann–Hilbert problem.

Next, we will propose an approximate solution for the vector Riemann–Hilbert problem

associated with the transient problem on a half-plane. The solution takes advantage of a par-

tial Wiener–Hopf factorization. First, we split the matrix coefficient into a diagonal matrix

that is discontinuous at infinity and a matrix that is continuous. After factorizing the discon-

tinuous part and recasting the vector Riemann–Hilbert problem, we derive a new problem

that is equivalent to a system of two integral equations on the interval (−∞, 0). The diagonal

elements of the matrix kernel are constants, while the off-diagonal elements are continuous

functions which have a second order zero at infinity. We will show that in order to determine

the Laplace transforms of the stress intensity factors and the weight functions, it is sufficient

to know the solution to the system of integral equations at one point only. We will describe

the numerical procedure and the inversion method of the Laplace transform we applied and

discuss the numerical results for the weight functions.
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5.1 Crack Propagation at Constant Speed due to Time-Independent Loading

In this section, we will describe the problem on a semi-infinite crack propagation in the di-

rection parallel to the boundary of a half-plane, compare it to similar problems considered in

Chapter 3 and Chapter 4, and transform the problem to a vector Riemann–Hilbert problem.

5.1.1 Comparison to the previous problems

When the crack is far away from the boundary of an elastic material, the problem can be

described as propagation of a semi-infinite crack along the interface between two weakly

bonded, identical and isotropic half-planes. The problem on a crack growth in a plane at a

constant sub-Rayleigh speed due to general time-independent loading (including the case of

concentrated forces applied to the crack faces) was solved explicitly in [38, 39] by applying

the Wiener–Hopf method. The intersonic regime corresponding to a speed propagation from

the range between the shear wave speed cs and the longitudinal wave speed cl, was analyzed

in [45, 46]. The case of concentrated forces (the fundamental solution problem) and the

model problem on a suddenly stopping crack were considered.

In the case of an unbounded plane, the problem was solved in Section 3.2. The vector

Riemann–Hilbert problem is decoupled and solved by quadratures. We derived explicit for-

mulas for the stress intensity factors (3.36) and the weight functions (3.37).

If the crack is close to the boundary of the body, the boundary effects cannot be ignored,

and the problem on a crack propagating parallel to the half-plane boundary can be consid-

ered as an adequate model. In the static case, the matrix coefficient of the corresponding

Riemann–Hilbert problem admits a closed-form factorization [86]. The steady-state case,

when the faces of a propagating crack are subjected to the loading moving with the crack

at the same constant speed, was analyzed in Chapter 4. By applying Fourier transform, the

problem was reduced to a vector Riemann–Hilbert problem whose matrix coefficient does

not allow for an explicit factorization. The problem was transformed to a system of singular

integral equations, and an approximate method of orthogonal polynomials for its solution
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was proposed. To the best of my knowledge, no analytical solution to the transient problem

on a semi-infinite crack propagating along the boundary of a half-plane is available in the

literature.

Although the matrix coefficient for the transient problem in a half-plane has the same

structure (4.11) as in the steady-state case (see Chapter 4), the solution of the transient

problem is more elaborate since the parameters α and β are functions of the variables intro-

duced by Laplace and Fourier transforms,involved. As in the steady-state case, the Wiener–

Hopf factorization cannot be constructed explicitly using standard techniques (for instance,

the one described in Section 2.3.1) due to infinitely many branch points of the matrix J2 in

(4.11).

The partial indices [81] play an essential part in solvability theory of a vector Riemann–

Hilbert problem and in the theory of approximate Wiener-Hopf matrix factorization. Ac-

cording to the stability criterion for partial indices [23, 42, 81] applied to a 2 × 2 matrix,

an approximate matrix factorization is stable if and only if |κ1 − κ2| ≤ 1 for partial indices

κ1 and κ2 of the corresponding Riemann–Hilbert problem. If they do not satisfy this crite-

rion, then approximate canonical Wiener-Hopf factors may not converge to the exact ones.

At the same time, without knowledge of exact factorization, in general, there is no way to

determine the partial indices. An example (not inspired by an applied physical problem) of

unstable partial indices is given in [56]. However, the partial indices associated with contact,

fracture, and diffraction models available in the literature [60, 11, 13] are stable. Due to this

fact, we will eliminate the problem of determination of the partial indices and bypass the

approximate matrix Wiener–Hopf factorization. Instead, we will propose a method of partial

factorization that comprises factorization of some scalar functions and numerical solution of

a certain system of integral equations.

After deriving solution for the problem on a semi-infinite crack propagating at a constant

speed, it is possible to construct solution to the problem in the case of an arbitrary non-
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uniform speed (see Section 3.3). For an unbounded plane such an algorithm based on the

fundamental solution and the solution of the model problem on a suddenly stopped crack is

known [39]. In this chapter, we will generalize this procedure to the case of a half-plane. The

key feature here is the fact that the Mode I and Mode II weight functions after the longitudi-

nal wave reflects from the boundary and strikes the crack do not act alone anymore and the

off-diagonal weight functions play a substantial part in the solution. In order to determine

the stress field radiated out by a suddenly stopped crack, one needs to solve a system of

two Volterra convolution equations, a generalization of the single Abel equation appeared

in the Freund method in the case of an unbounded plane. By solving this system explicitly,

we determine the stress values the crack needs to negate on the prospective fracture plane

to proceed further. This procedure allows for the possibility of finding the stress intensity

factors at the tip of a crack propagating at a piecewise constant speed bellow the boundary

and, in conjunction with the dynamic Griffith criterion, describing the actual nonuniform

speed of crack propagation.

5.1.2 Transient problem for a half-plane as a vector Riemann–Hilbert problem

The statement of the transient problem on a semi-infinite crack in a half-plane is similar to

the one considered in Chapter 4 except the loading is assumed to be time-independent. The

elastic medium {(x1, x2) : |x1| < ∞, −∞ < x2 < δ} through which the crack propagates,

consists of an infinite strip {(x1, x2) : |x1| < ∞, 0 < x2 < δ} and a half-plane {(x!, x2) :

|x1| < ∞, −∞ < x2 < 0} bonded together. The bonding is not perfect, and a semi-infinite

crack is assumed to lie along the interface. The boundary of the body is free of traction,

while the faces of the crack are subjected to plane strain loading that forces the crack to

propagate at a constant sub-Rayleigh speed v:

σj2(x1, 0
±, t) = −σ◦j2(x1)H(t), −∞ < x1 < vt

σj2(x1, δ, t) = 0, −∞ < x1 <∞
j = 1, 2 (5.1)
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where σ◦12, σ◦22 are prescribed functions and H(t) is the unit step function. The presence of

the weak interface encourages the crack to propagate parallel to the boundary of the half-

plane rather than deviate towards it (see Figure 4.2). The Lamé constants λ and µ and the

density ρ of the strip and the half-plane are assumed to be the same.

It is helpful to change variables from the material coordinates x1, x2 to the local crack tip

coordinates x = x1 − vt, y = x2. In these coordinates, displacement potentials ϕ and ψ of

the medium satisfy the wave equations

c2
l α̂

2∂
2ϕ

∂x2
+ c2

l

∂2ϕ

∂y2
+ 2v

∂2ϕ

∂x∂t
− ∂2ϕ

∂t2
= 0,

c2
sβ̂

2∂
2ψ

∂x2
+ c2

s

∂2ψ

∂y2
+ 2v

∂2ψ

∂x∂t
− ∂2ψ

∂t2
= 0,

(x, y) ∈ Ω, t > 0, (5.2)

where Ω = {(x, y) : |x| < ∞, y < δ} \ {(x, 0) : x < 0} is the shape of the material. The

potentials φ and ψ are to satisfy the zero initial conditions

ϕ = ψ = 0,
∂ϕ

∂t
=
∂ψ

∂t
= 0, (x, y) ∈ Ω, t < 0. (5.3)

Here, cl and cs are the longitudinal and shear wave speeds defined in (1.17) and α̂ =
√

1− v2
l ,

β̂ =
√

1− v2
s , vl = v/cl, vs = v/cs.

Let us transform the boundary value problem (5.1), (5.2), (5.3) to a vector Riemann–

Hilbert problem. By applying first Laplace transform with respect to temporal variable t ϕ̃

ψ̃

 (x, y, s) =

∫ ∞
0

 ϕ

ψ

 (x, y, t)e−stdt, Re s = σ > 0,

and then Fourier transform with respect to spacial variable x ϕ̂

ψ̂

 (z, y, s) =

∫ ∞
−∞

 ϕ̃

ψ̃

 (x, y, s)eizxdx, p ∈ R,

we can write the governing equations (5.2) in the form

∂2ϕ̂

∂y2
− α2ϕ̂ = 0,

∂2ψ̂

∂y2
− β2ψ̂ = 0, y ∈ {−∞, δ} \ {0}, (5.4)
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where

α2(z) = α̂2z2 + 2izsvl/cl + s2/c2
l , β2(z) = β̂2z2 + 2izsvs/cs + s2/c2

s. (5.5)

The coefficients α and β of the ordinary differential equations (5.4), are multi-valued func-

tions of z-variable with the branch points a± = is/(v ± cl) ∈ C± and b± = is/(v ± cs) ∈ C±

respectively. In order to fix single branches of α(z) and β(z), we cut the z-plane along lines

that pass through the infinite point and join the branch points a± of the function α and β±

of the function β. Let us choose the single branches

α(z) = α̂(z − a−)1/2(z − a+)1/2, β(z) = β̂(z − b−)1/2(z − b+)1/2, (5.6)

so that Reα(z) > 0 and Re β(z) > 0 for all z ∈ R.

For the values y ∈ (−∞, 0) and z ∈ R, the differential equations (5.4) admit the solution

that is bounded as y → −∞, in the form

ϕ̂(z, y, s) = C0(z, s)eαy, ψ̂(z, y, s) = D0(z, s)eβy, −∞ < y < 0, (5.7)

since α > 0 and β > 0 (hereafter, we drop the argument z of the functions α, β in the case

when it does not cause a confusion). For the values y ∈ (0, δ), z ∈ R, the solution of (5.4) is

given by

ϕ̂(z, y, s) = C1(z, s) cosh(αy) + C2(z, s) sinh(αy),

ψ̂(z, y, s) = D1(z, s) cosh(βy) +D2(z, s) sinh(βy),

0 < y < δ. (5.8)

As in the steady-state case, we introduce auxiliary functions representing the jumps of the

tangential derivatives of the displacement components u1, u2 on the crack faces,

χ1(x, t) =
∂u1

∂x
(x+ vt, 0+, t)− ∂u1

∂x
(x+ vt, 0−, t)

χ2(x, t) =
∂u2

∂x
(x+ vt, 0+, t)− ∂u2

∂x
(x+ vt, 0−, t)

(5.9)
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defined for x ∈ (−∞, 0) and t ∈ (0,∞). Then, we define the Laplace transforms with respect

to time t,

χ̃j(x, s) =

∫ ∞
0

χj(x, t)e
−stdt

bj(x, s) =

∫ ∞
0

σ◦j (x+ vt)e−stdt

σ̃j(x, s) =

∫ ∞
0

σj2(x+ vt, 0, t)e−stdt

Re s > 0, j = 1, 2

and the one-sided Fourier transforms with respect to x-variable

χ̂−j (z, s) =

∫ 0

−∞
χ̃j(x, s)e

izxdx

b̂−j (z, s) =

∫ 0

−∞
bj(x, s)e

izxdx

σ̂+
j (z, s) =

∫ ∞
0

σ̃j(x, s)e
izxdx

j = 1, 2 (5.10)

For a fixed values of s, if z is treated as a complex variable, then the functions σ̂+
j (·, s) are

analytic in the upper half-plane C+, while the functions χ̂−j , b̂−j are analytic in the lower

half-plane C− provided σ̃j, χ̃j, and bj are integrable in x on the corresponding intervals.

In order to derive a vector Riemann–Hilbert problem, we apply the Laplace and Fourier

transforms to the six boundary conditions (5.1) and identities (5.9), plug the solutions (5.7)

and (5.8), and eliminate the functions Cj(z, s) and Dj(z, s) (j = 0, 1, 2) (here, we follow the

pattern described in Section 3.2). The two equations left comprise a vector Riemann–Hilbert

problem with the condition σ̂+
1 (z, s)

σ̂+
2 (z, s)

 = µiA(z, s)

 χ̂−1 (z, s)

χ̂−2 (z, s)

+

 b̂−1 (z, s)

b̂−2 (z, s)

 , z ∈ R (5.11)

Assume that the value s is fixed so that Re s > 0. We seek two functions σ̂+
j (z, s) that are

analytic in the upper half-plane C+ and bounded at infinity, and two functions χ̂−j (z, s) that

are analytic in the lower half-plane C− and also vanish at infinity. On the real axis R, they

satisfy the condition (5.11). The matrix coefficient A of the problem is defined by

A(z, s) =

 a11(z, s) ia12(z, s)

−ia12(z, s) a22(z, s)

 (5.12)
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a11(z, s) =
e−(α+β)δ

2β(z2 − β2)z

[
R1 sinh{(α + β)δ} −R2 sinh{(α− β)δ}+

2∆

R1

]
,

a12(z, s) =
4R2(z2 + β2)

R1(z2 − β2)
e−(α+β)δ sinh2 (α− β)δ

2
,

a22(z, s) =
e−(α+β)δ

2α(z2 − β2)z

[
R1 sinh{(α + β)δ}+R2 sinh{(α− β)δ}+

2∆

R1

]
,

∆ = R2
1 sinh2 (α + β)δ

2
−R2

2 sinh2 (α− β)δ

2
,

R1 = (z2 + β2)2 − 4αβz2, R2 = (z2 + β2)2 + 4αβz2.

(5.13)

The matrix A(p, s) resembles its analogue in the steady-state case (4.11). However, although

we drop the argument z of the parameters ∆, R1, R2, α, and β, let us highlight that all of

them are functions of z-variable and depend on s as well.

5.1.3 Kernel of the integral equations

We show first that the direct use of the convolution theorem reduces the boundary condition

of the vector Riemann–Hilbert problem (5.11) to a system of integral equations that is not

convenient for numerical method of its solution due to a singular kernel.

Applying the inverse Fourier transform to the equation (5.11) and using the convolution

theorem and the fact that σ̃1, σ̃2 vanish for negative x-values, we derive a system of integral

equations

∫ 0

−∞
K(x− ξ, s)

 χ̃1(ξ, s)

χ̃2(ξ, s)

 dξ = − 1

µ

 b1(x, s)

b2(x, s)

 , −∞ < x < 0 (5.14)

with the kernel

K(ξ, s) =
i

2π

∫ ∞
−∞

A(z, s)e−izξdz

By analyzing asymptotic behavior of the elements of the matrix function A(z, s) as z → 0

and z → ∞, we discover that the diagonal elements of A have a jump discontinuity at

infinity, while the off-diagonal elements exponentially vanish at infinity:

ajj(z, s) ∼ −γj sgn z

[
1 +

rj
z

+O

(
1

z2

)]
, j = 1, 2,

a12(z, s) ∼ r0e
−2β̂δ|z|, z → ±∞, (5.15)
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where rj (j = 0, 1, 2) are nonzero constants, and γj are positive constants. Near the origin, the

diagonal elements have simple poles and the off-diagonal elements are continuous: ajj(z, s) ∼

−γ̃jz−1 and a12(z, s) ∼ −γ̃0 as z → 0 (γ̃j are positive constants).

In order to clarify the structure of the diagonal elements of the kernel K, we represent

the functions ajj(z, s) as the sum ajj(z, s) = −γj[coth(πz) + a◦jj(z, s)]. From the behavior

of coth(πz) on the real axis R and the described above properties of ajj at the origin and

infinity, it immediately follows that

a◦jj(z, s) =
rj
|z|

+O

(
1

z2

)
, z → ±∞, a◦jj(z, s) ∼

γ̂j
z
, z → 0, (5.16)

where γ̂j are constants. Thus, a◦jj have simple zeros at infinity and simple poles at the origin.

Due to the identity ∫ ∞
−∞

coth(πz)e−izxdz = −i coth
x

2
, x ∈ R

the equation (5.14) takes the form of a system of singular integral equations∫ 0

−∞

[
coth

ξ − x
2

+ kjj(x− ξ, s)
]
χ̃j(ξ, s)dξ

+

∫ 0

−∞
kj 3−j(x− ξ, s)χ̃3−j(ξ, s)dξ = − 2π

µγj
bj(x, s)

j = 1, 2 (5.17)

on the negative semi-axis (−∞, 0), where the kernels kij are defined by the identities

kjj(ξ, s) =
i

2π

∫ ∞
−∞

a◦jj(z, s)e
−ixξdξ, j = 1, 2

k12(ξ, s) = − 1

2π

∫ ∞
−∞

a12(z, s)e−ixξdξ, k21(ξ, s) = −k12(ξ, s)

Due to the behavior (5.16), the functions kjj(ξ, s) have a logarithmic singularity at the

origin ξ = 0, while the functions kj 3−j(ξ, x) are bounded at ξ = 0. As ξ → ±∞, all of the

kernels decay, kij = O(|ξ|−1). Thus, the numerical method for solving the system of integral

equations (5.17) has to take into account simple poles and the logarithmic discontinuity at

ξ = 0 of the diagonal elements of the kernel K, as well as their jump discontinuity at infinity.

That is, an application of the technique described in Section 2.3.2 or similar ones would not

work or would work poorly.
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5.2 Approximate Solution of the Transient Problem for a Half-Plane

Since the structure of the matrix A(z, s) given by (5.12), (5.13) does not allow for its explicit

factorization by the methods currently available in the literature, let us propose a method of

partial Wiener–Hopf factorization. This technique eventually leads to a system of two integral

equations convenient for the determination of the stress intensity factors and numerical

implementation.

5.2.1 Partial Wiener–Hopf factorization

In order to avoid dealing with the kernel K described in Section 5.1.3, let us take another

approach. Before transforming the system (5.14) to a system of singular integral equations,

we rewrite it in a different form.

As in the case of an unbounded plane (see Section 3.2), we construct a Wiener–Hopf

factorization of the diagonal elements of the matrix A. Represent the elements in the form

ajj(z, s) = −γj coth(πz)ǎjj(z, s), j = 1, 2, (5.18)

Wiener–Hopf factorization for the function coth(πz) is given in (3.28), while the functions

ǎjj(z, s) admit the factorization as follows:

ǎjj(z, s) =
ǎ+
jj(z, s)

ǎ−jj(z, s)
, z ∈ R−ε (5.19)

ǎjj(z, s) = exp

{
1

2πi

∫
R−ε

ln ǎjj(τ, s)dτ

τ − z

}
, z ∈ C±−ε.

where, as in Section 3.2, C+
−ε is the upper half-plane {z : Im z > −ε}, C−−ε is the lower

half-plane {z : Im z < −ε}, and R−ε is the line {z : Im z = −ε}, for some small parameter

ε ∈ (0, 1/cl). The reason and justification for taking C±−ε, R−ε instead of C±, R is given in

Section 3.2; in short, the functions ajj have simple poles at the origin z = 0, so we choose

the contour R−ε to pass around under the singular point.
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Introduce new functions

σ̌+
j (z, s) =

σ̂+
j (z, s)

K+(z)ǎ+
jj(z, s)

, χ̌−j (p, s) =
µχ̂−j (z, s)

K−(z)ǎ−jj(z, s)
,

b̌j(z, s) =
b̂−j (z, s)

K+(z)ǎ+
jj(z, s)

, j = 1, 2.

(5.20)

After the representations (5.18), (5.19), and (3.28) are substituted in the matrix A in (5.12),

and the rows of A are divided by the terms K+ǎ+
11 and K+a+

22, while the terms 1/(K−ǎ−11)

and 1/(K−ǎ−22) are factored out from the columns of A, the equation (5.11) of the original

vector Riemann–Hilbert problem takes the form σ̌+
1 (z, s)

σ̌+
2 (z, s)

 =

 γ1 ǎ1(z, s)

ǎ2(z, s) γ2


 χ̌−1 (z, s)

χ̌−2 (z, s)

+

 b̌1(z, s)

b̌2(z, s)

 (5.21)

on the contour R−ε, where

ǎ1(z, s) = −ia12(z, s)ǎ−22(z, s)

coth(πz)ǎ+
11(z, s)

, ǎ2(z, s) =
ia12(z, s)ǎ−11(z, s)

coth(πz)ǎ+
22(z, s)

, (5.22)

and values of the functions ǎ±jj(z, s) on R−ε are determined by the Sokhotski-Plemelj formulas

(2.8).

Assume that the value x is negative. By applying the inverse Fourier transform and the

convolution theorem to the equation (5.21), we conclude that the vector Riemann–Hilbert

problem (5.21) yields the system of integral equations

γ1χ
∗
1(x, s) +

∫ 0

−∞
k∗1(x− ξ, s)χ∗2(ξ, s)dξ = −b∗1(x, s)

γ2χ
∗
2(x, s) +

∫ 0

−∞
k∗2(x− ξ, s)χ∗1(ξ, s)dξ = −b∗2(x, s)

−∞ < x < 0 (5.23)

where

χ∗j(x, s) =
1

2π

∫
R−ε

χ̌−j (z, s)e−izxdz, k∗j (x, s) =
1

2π

∫
R−ε

ǎj(z, s)e
−izxdz,

b∗j(x, s) =
1

2π

∫
R−ε

b̌j(z, s)e
−izxdz, j = 1, 2. (5.24)

Due to the behavior (5.15) of the off-diagonal element a12 at infinity, the functions ǎj(z, s)

decay exponentially as z → ±∞. Moreover, it follows from the definitions (5.22) that the
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functions ǎj(z, s) are continuously differentiable on the contour R including the point z = 0,

where they vanish. Therefore, k∗j (x, s) = O(|x|−2) as x→ ±∞ (for fixed values of s). By the

Riemann-Lebesgue lemma [], the functions χ∗j(x, s) vanish as x→ −∞.

5.2.2 Weight functions

Since the mode-I and mode-II are coupled in the case of a crack in a half-plane, we use

four weight functions WI,I , WI,II , WII,I , and WII,II such that the stress intensity factors for

arbitrary loading σ◦12 and σ◦22, are given by

KI(t) =

∫ vt

−∞
WI,I(x1, t)σ

◦
22(x1, 0)dx1 +

∫ vt

−∞
WI,II(x1, t)σ

◦
12(x1, 0)dx1

KII(t) =

∫ vt

−∞
WII,I(x1, t)σ

◦
22(x1, 0)dx1 +

∫ vt

−∞
WII,II(x1, t)σ

◦
12(x1, 0)dx1

(5.25)

The weight functions WI,I and WII,I for a fixed value x1 = x0 are defined as the stress

intensity factors KI and KII respectively, derived for the fundamental solution of the problem

with the boundary conditions σ◦22(x1, 0) = δ(x1−x0) and σ◦12(x1, 0) = 0. Similarly, the weigh

functions WI,II and WII,II are equal to the stress intensity factors KI and KII corresponding

to the fundamental solution with the boundary conditions σ◦22(x1, 0) = 0 and σ◦12(x1, 0) =

δ(x1−x0). As in the case of a plane, the transforms of the traction components, σ̂+
1 and σ̂+

2 ,

have the following behavior at infinity:

σ̂+
1 (z, s) ∼ K̃II(s)√

−2iz
, σ̂+

2 (z, s) ∼ K̃I(s)√
−2iz

, Im z →∞ (5.26)

Let χ∗1 and χ∗2 be the solution of the system (5.23). Since the convolution theorem applied

to the equation (5.21) gives the identities∫ 0

−∞
k∗1(x− ξ, s)χ∗2(ξ, s)dξ = σ∗1(x, s)− b∗1(x, s)∫ 0

−∞
k∗2(x− ξ, s)χ∗1(ξ, s)dξ = σ∗2(x, s)− b∗2(x, s)

(5.27)

for positive values of x-variable, where

σ∗j (x, s) =
1

2π

∫
R−ε

σ̌+
j (z, s)e−izxdz, j = 1, 2. (5.28)
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taking the limit x→ 0+ yields the equations (k∗j ∗χ∗3−j)(0+) = σ∗j (0
+, s)− b∗j(0+, s), j = 1, 2.

On the other hand, the identities (5.23) as x → 0− imply the equations γjχ
∗(0−) + (k∗j ∗

χ∗3−j)(0
−) = −b∗j(0−, s), j = 1, 2. Due to the fact that the kernels k∗1 and k∗2 are continuous

on the real axis R, we derive the equality

γjχ
∗
j(0
−, s) = −σ∗j (0+, s) + b∗j(0

+, s)− b∗j(0−, s), j = 1, 2, (5.29)

which will be used to express behavior of the stress field near the crack tip through the

solution χ∗1, χ∗2 of the system (5.23).

Next, we will show that b∗j(0
+) = b∗j(0

−, s) for the fundamental solutions. Let us fix s-value

so that s > 0. The functions b̌j are defined as follows

b̌1(x, s) = 0, b̌2(z, s) =
eizx0

s+ ivz

1

K+(z)ǎ+
22(z, s)

(5.30)

for the weight functions WI,I , WII,I , and as

b̌1(z, s) =
eizx0

s+ ivz

1

K+(z)ǎ+
11(z, s)

, b̌2(z, s) = 0 (5.31)

for the weight functions WI,II , WII,II . Let us consider the formula (5.30). By plugging the

identities (5.30) into the definition (5.23) of the functions b∗j , we derive

b∗1(x, s) = 0, b∗2(x, s) =
1

2π

∫
R−ε

eiz(x0−x)

(s+ ivz)K+(z)ǎ+
22(z, s)

dz (5.32)

If x < x0, then the integrand in (5.32) has only one simple pole z = is/v in the upper

half-plane C+ and exponentially vanishes as Im z →∞. Thus, the residue theorem implies

b∗2(x, s) =
es(x−x0)/v

vK+(is/v)ǎ+
22(is/v, s)

, x < x0

Assume that x > x0. Due to the identities (3.28), (5.18), (5.19), we replace the terms K+ǎ+
22

by the terms −a22K
−ǎ−22/γ2 in the integral in (5.30). Then the integrand is analytic in the

lower half-plane C−−ε except the imaginary semi-axis {z : Re z = 0,−∞ < Im z ≤ s/(v− cl)}

where the function a22 has branch points a− and b− due to the functions α(z) and β(z).
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Since the integrand exponentially vanishes as Im z → −∞, we transform the contour R−ε

into the imaginary semi-axis and make a substitution z = −iy:

b∗2(x, s) =
γ2

2πi

∫ ∞
s

cl−v

ey(x0−x)

(s+ vy)K−(−iy)ǎ−22(−iy, s)

[
1

a22

]
(y) dy (5.33)

where [
1

a22

]
(y) =

1

a22(−0− iy)
− 1

a22(0− iy)

is the difference between the values a22(−0− iy) of the functions a22 on the left side of the

semi-axis and the values a22(0 − iy) of the function a22 on the right side of the semi-axis.

Thus, near the point x = 0, the function b∗2(x, s) is defined by the formula (5.33) and is

continuous on the interval (x0,∞). The continuity of b∗2 and the fact that b∗1 is equal to 0

imply b∗j(0
+) = b∗j(0

−, s), j = 1, 2. Similar analysis holds for the functions (5.31), which yield

the right-hand side b∗1, b∗2 of the system (5.23) defined as follows:

b∗1(x, s) =


es(x−x0)/v

vK+(is/v)ǎ+
11(is/v, s)

, x < x0

γ1

2πi

∫ ∞
s

cl−v

ey(x0−x)

(s+ vy)K−(−iy)ǎ−11(−iy, s)

[
1

a11

]
(y) dy, x > x0

b∗2(x, s) = 0, −∞ < x <∞[
1

a11

]
(y) =

1

a11(−0− iy)
− 1

a11(0− iy)

Since b∗j(0
+) = b∗j(0

−, s) (j = 1, 2) in the case of the fundamental solutions, the identity

(5.29) reduces to the form

γjχ
∗
j(0
−, s) = −σ∗j (0+, s), j = 1, 2 (5.34)

The formula (5.28) and the identities (3.19) and (5.34) imply that

σ̌+
j (z, s) ∼

σ∗j (0
+, s)

−iz
=
γjχ

∗
j(0
−, s)

iz
, Im z →∞ (5.35)

From the definition (5.20) of the function σ̌+
j and the asymptotic behavior (5.35) and (3.31)

of the functions in (5.20), we derive the formula

σ̂+
j (z, s) ∼ −

γjχ
∗
j(0
−, s)

√
−iz

, Im z →∞
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Comparing the latter identity with (5.26), we conclude that the Laplace transforms of the

stress intensity factors are given by

K̃I(s) = −
√

2γ2χ
∗
2(0−, s), K̃II(s) = −

√
2γ1χ

∗
1(0−, s). (5.36)

The stress intensity factors are recovered from their Laplace transform by the inversion

formula. The inversion can be implemented by computing one of the real integrals

Kj(t) =
2eσt

π

∫ ∞
0

Re{K̂j(σ + iτ)} cos τt dτ

Kj(t) = −2eσt

π

∫ ∞
0

Im{K̂j(σ + iτ)} sin τt dτ

j = I, II (5.37)

where the preference is made to the one with a better rate of convergence.

5.2.3 Solution of the system of integral equations

Let us now describe the numerical procedure for evaluation of the weight functions. Recall

that the weight functions coincide with the stress intensity factors of the fundamental so-

lutions. Due to the formulas (5.36), the Laplace transforms of the stress intensity factors

require the knowledge of the solution of the system of integral equations (5.23) at the point

x = 0, that is χ∗j(0
−, s), j = 1, 2. It is convenient to map the system (5.23) on the semi-

infinite interval into a system on the finite interval (−1, 1), which is achieved by introducing

the variables

ξ =
ξ′ − 1

ξ′ + 1
, −1 < ξ′ < 1, x =

x′ − 1

x′ + 1
, −1 < x′ < 1.

In the new variables, the system (5.26) of integral equations takes the form

γjXj(x′, s) +

∫ 1

−1

K3−j(x
′, ξ′, s)Xj(ξ′, s)dξ′ = −Bj(x′, s), j = 1, 2 (5.38)

on the interval (−1, 1), where

Xj(x′, s) = χ∗j(x, s), Kj(x′, ξ′, s) =
2k∗j (x− ξ, s)

(ξ′ + 1)2
, Bj(x′, s) = q∗j (x, s).

Due to the behavior of the original kernels, k∗j (x, s) = O(|x|−2) as x→ ±∞, the new kernels

Kj(x′, ξ′, s) are bounded as the end point ξ′ = −1 and ξ′ = 1. Hence, the kernels Kj are
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non-singular on the interval (−1, 1), and the system (5.38) can be approximately solved, for

instance, by using the collocation method with the collocation points ξk (k = 1, 2, . . . , N)

chosen to be the zeros of the degree-N Legendre polynomial PN(x). The system of 2N linear

algebraic equations associated with the system (5.38) has the form

γjXj(xn, s) +
N∑
k=1

vkK3−j(xn, xk, s)X3−j(xk, s) = −Qj(xn, s),

n = 1, 2, . . . , N, j = 1, 2, (5.39)

where vk are the Gauss-Legendre weights given by vk = 2(1− x2
k)
−1[P ′N(xk)]

−2.

The chief difficulty in the implementation of this procedure is the evaluation of the prin-

cipal value of the Cauchy integrals. It is helpful to rewrite them as integrals over the arc

l = {|z′| = 1, arg z′ ∈ (−π/2.π/2)}

ǎ±jj(z, s) = exp

{
1 + z′

2πi
P.V.

∫
l

Γj(τ
′, s)dτ ′

τ ′ − z′

}
, z ∈ C± (5.40)

where

Γj(τ
′, s) =

ln ǎjj(τ, s)

1 + τ ′
, τ ′ =

1 + iτ

1− iτ
, z′ =

1 + iz

1− iz
. (5.41)

Among numerous approximate formulas for the principal value of the Cauchy integral over

a circle we choose [64], p.116

Ωjj(z, s) = exp

{
1 + z′

2M + 1

M∑
j=−M

Γj(e
iθj , s)

×

[
1

2
+
i sin M

2
(θ − θj) sin M+1

2
(θ − θj)

sin 1
2
(θ − θj)

]}

as the one proving a good accuracy. Here, θ = −i ln z′, θj = 2πj/(2M + 1).

The final step in the evaluation of the weight functions or, equivalently, the stress intensity

factors KI and KII with the special loads applied, is the inversion of the Laplace transform.

This can be done by applying one of the formulas in (5.37). For computations, we employ
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the uniform grid trapezoidal rule with m+ 1 grid points

Kj(t) ≈
hes0t

π

[
Re K̃j(σ) + Re K̃j(σ + iT ) cosTt

+2
m−1∑
n=1

Re K̃j(σ + inh) cosnht

] (5.42)

where h is the grid spacing. The numerical estimation of the functions K̃I(s) and K̃II(s)

show (see Figure 5.1) that both their real and imaginary parts vanish slow as Im s → ±∞.

To accelerate the convergence of the series in (5.42), we apply the Euler summation method

[71] for alternating series. In order to transform (5.42) into an alternating sum, we put

h = π/(2t), σ = A/(2t) and T = πm/(2t), where A is a fixed real positive constant. Then

[1]

Kj(t) ≈
eA/2

2t

[
Re K̃j

(
A

2t

)
+ Re K̃j

(
A+ iπm

2t

)
cos

πm

2
+ 2

m−1∑
n=1

(−1)n
∆n

2n+1

]
,

where

∆n =
n∑
k=0

(−1)k

 n

k

Re

{
K̃j

(
A+ 2(n− k)πi

2t

)}
.

Following [1], we take A = 8 ln 10.
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~
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Figure 5.1: Graphs of the functions Re K̃I(s), Re K̃II(s), Im K̃I(s), and Im K̃II(s) for
Re s = 0.5.
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Figures 5.2 and 5.3 show how the functions wi,j(x0, t) =
√

1
2
π(vt− x0)Wi,j(x0, t) and the

weight functions Wi,j(x0, t) evolve in time. For computations, we assume x0 to be zero, that is

the time independent concentrated loads are applied at the origin (0, 0) of the (x1, x2)-plane,

which coincides with the tip of the crack at the initial time instance t = 0. Since the material

is stress-free for t < 0, it is expected that, when the crack starts propagating at constant

speed v, the elastic medium remains stress-free outside the disc of radius clt centered at the

point x1 = x2 = 0.

On the Figures 5.2 and 5.3, we can see the zero values of the functions wI,II , wII,I and

WI,II , WII,I during some time interval at the beginning of the crack propagation. Then,

those values start growing. This happens at the time instance when the longitudinal and

shear waves, reflected from the boundary of the half-plane, come back to the crack tip, so

the crack propagation gets affected by the presence of the boundary. At time t′l = δ/cl, the

first longitudinal wave strikes the boundary of the half-plane at the right angle, and at time

t = 2t′0, it returns to the origin x1 = x2 = 0. By that time, the crack tip has covered the

distance 2vt′l away from the origin, and the distortion caused by the reflected wave reaches

the crack tip at time t∗l > 2t′l (for δ � 1, we have t∗l ∼ 4t′1). The shear waves propagate

0 5 10 15 20 25 30

0.0

0.5

1.0

1.5

2.0

2.5

wII,I

wI,II

wII,II

wI,I

t

Figure 5.2: The functions wi,j(0, t) =
√

1
2
πvtWi,j(0, t) (i, j = I, II) versus time t when

ν = 0.3, δ = 1 m, v = 0.5cR m/s, cl = 1 m/s (cs ≈ 0.5345 m/s, cR ≈ 0.4957 m/s).
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Figure 5.3: The weight functions Wi,j(0, t), (i, j = I, II) versus time t when ν = 0.3,
δ = 1 m, v = 0.5cR m/s, cl = 1 m/s (cs ≈ 0.5345 m/s, cR ≈ 0.4957 m/s).

slower, and the corresponding time, when the shear wave incident normally alters the stress

intensity factors, is greater than 2δ/cs > t∗l . Due to other longitudinal waves reflected from

the boundary at acute angles, the actual time when the boundary affects the stress intensity

factors lies in the range between 2t′l and t∗l . The time when the reflected longitudinal wave

strikes the crack at its tip can be quickly evaluated. Let this wave hit the boundary of the

half-plane at time t = tl at angle θ (θ ∈ (π/2, π) is measured from the incident wave direction

to the boundary of the half-plane) (see Figure 5.4). Then the reflected wave strikes the crack

tip at time t = 2tl. By that time, the crack has covered the distance 2vtl, and therefore,√
c2
l t

2
l − δ2 = vtl. This implies

tl =
δ√

c2
l − v2

, θ =
π

2
+ tan−1 1√

1/v2
l − 1

. (5.43)

In the example used on Figures 5.2 and 5.3, we take the following values δ = 1 m, v = 0.5cR,

and cR ≈ 0.4957 m/s. Simple calculations show that 2tl ≈ 2.0644 s and θ = 1.8213. This

time is consistent with the time 2tl ≈ 2 s discovered from the approximate solution. The

numerical calculations (Figure 5.2 and 5.3) show that for time 0 < t < 2tl, the functions

wii(0, t) (i = I, II) are constant and practically coincide with the parameters ki associated

116



2Vt

V

x

x

l
1

2

0

θ

σ

σ
12

22

ο

ο

c
l

Figure 5.4: Influence of the boundary of half-plane on the crack propagation.

with the mode-I and II weight functions for the whole plane, which are given by (3.36). The

mixed mode functions wI,II(0, t) and wII,I(0, t) are very close to zero when 0 < t < 2tl.

The weight functions Wij(t, 0) approximately equal the corresponding weight functions of

the problem on the whole plane for 0 < t < 2tl. At time t = 2tl, the graphs of the weight

functions associated with the half-plane and the plane start to diverge.

The functions wi,j(0, t) versus the dimensionless speed v/cR are plotted in Figure 5.5. As in

the case of the whole plane, the functions wI,I and wII,II tend to 1 and to 0 when v/cR → 0

and v/cR → 1 respectively, while the off-diagonal functions, wI,II and wII,I tend to zero not

only when v/cR → 1, but also when v/cR → 0. In the case of the whole plane, the functions

wI and wII are monotonic, while in the case of the half-plane, they are not.

When the distance δ from the crack to the boundary of the half-plane decreases, all the four

functions wi,j(0, t) grow (see Figure 5.6). As it is expected, when δ →∞, the functions wi,j

approach their limits, the corresponding functions for the whole plane, wI,II → 0, wII,I → 0,

and when ν = 0.3, wI,I → kI = 0.781473, wII,II → kII = 0.659882.

5.3 Crack Growth at Non-Uniform Speed

With the fundamental solution and weight functions at hand, derived and computed in the

previous sections, we come to the problem on nonuniform motion of a semi-infinite crack in

the direction parallel to the boundary of a half-plane. In order to do this, first we describe

117



0.0 0.2 0.4 0.6 0.8

0.0

0.5

1.0

1.5

2.0
wII,II

wII,I

wI,II

wI,I

V/cR

Figure 5.5: The functions wi,j(0, t) (i, j = I, II) versus v/cR when ν = 0.3, δ = 1 m,
t = 10s, cl = 1 m/s (cs ≈ 0.5345 m/s, cR ≈ 0.4957 m/s).

the motion of the crack when speed, v(t), is a prescribed smooth function of time t > 0. Then

we solve the inverse problem of determining the speed by employing one of the propagation

criteria. For elaborate on the approximate method proposed in [39] and described in Section

3.3 for a semi-infinite crack moving at non-uniform speed in an unbounded body.

5.3.1 Problem on a suddenly stopped crack

Suppose at time t = 0 the crack starts moving, and its position at time t is described by l(t),

a continuously differentiable non-decreasing function such that v(t) = l′(t) < cR for all t > 0.

2 4 6 8

0.0

0.5

1.0

1.5

wI,I

wII,I

wI,II

wII,II

δ

Figure 5.6: The functions wi,j(0, t) (i, j = I, II) versus the distance δ from the crack to the
half-plane boundary when ν = 0.3, v = 0.5cR m/s, cl = 1 m/s, t = 10 s (cs ≈ 0.5345 m/s,

cR ≈ 0.4957 m/s).
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We approximate the curve l(t) by a polygonal line with the vertices (tk, lk), lk = l(tk), t0 = 0,

l0 = 0. Thus, we assume that during the time-interval tk < t < tk+1, the crack propagates at

constant speed vk = (lk+1 − lk)/(tk+1 − tk).

As in Section 3.3, let us represent the stress field corresponding to the crack propagation

x1 = l(t) as the superposition of the stress fields derived as the solution of the problems on

a suddenly stopped crack. We will refers to those problems as P0-problem, P1-problems, etc.

We also denote the problem on a stationary crack as P−1-problem.

On the time-interval 0 < t < t1, the crack extends at constant speed v0 by negating

the stresses σ0
12(x1, 0) and σ0

22(x1, 0) in front of the crack tip (x1 > 0), which are determined

from the solution of P−1-problem on a stationary semi-infinite crack parallel to the boundary

of a half-plane. This problem provides the starting point for a complete description of the

non-uniform motion of the crack. An exact method of matrix Wiener-Hopf factorization for

this problem was presented in [86] for the case when the forces were applied to the strip at

infinity, and the boundary was free of traction. The problem was reduced to a homogeneous

second-order vector Riemann–Hilbert problem, that was solved, and the corresponding stress

intensity factors were found. Hereafter, we assume that the solution to P−1-problem is already

known.

Before, we continue with the solution of P0-problem, let us show the following remarkable

property of the weight functions:

Wi,j(x0, t; v) = Wi,j(0, t− x0/v; v), i, j = I, II. (5.44)

Recall that the Laplace transforms of the loading for the weight functions are given by

bj(x, s) = e−sx0/v e
sx/v

v
, j = 1, 2. From the identities (5.10), (5.20), and (5.24), it follows that

the relations

b̂−j (z, s;x0) = e−sx0/v b̂−j (z, s; 0), b̌j(z, s;x0) = e−sx0/v b̌−j (z, s; 0),

χ̌−j (z, s;x0) = e−sx0/vχ̌−j (z, s; 0), χ∗j(x, s;x0) = e−sx0/vχ∗j(x, s; 0),
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which, together with (5.36), imply that the Laplace transforms of the weight functions satisfy

the equation

W̃i,j(x0, s; v) = e−sx0/vW̃i,j(0, s; v), i, j = I, II. (5.45)

The relation (5.44) immediately follows from (5.45).

Assume that the crack suddenly stops at time t = t1 at the point (l1, 0) of the half-plane.

The stress field with components σ̃1
12(x1, 0) and σ̃1

22(x1, 0) is radiated away along the line

x2 = 0, x1 > l1. In order to describe a crack that suddenly stops at time t and at the point

(l1, 0), we require the stress intensity factors to vanish for all x1 = v0t > l1:

KI(t; v0) = 0, KII(t; v0) = 0, v0t > l1, (5.46)

where KI(t; v0) and KII(t; v0) are the stress intensity factors corresponding to the problem on

propagation of a semi-infinite crack in a half-plane with constant speed v0. The statement of

P0-problem coincides with that given in the previous section with the exception that v = v0

and the boundary conditions (5.1) on the faces of the crack takes the form

σj2(x1, 0, t) =


0, −∞ < x1 < 0

− σ0
j2(x1, 0), 0 < x1 < l1

σ̃1
j2(x1, 0), l1 < x1 < v0t

t > t1 (5.47)

with σ̃1
j2(x1, 0) to be determined from the condition (5.46) that expresses the fact that the

crack stops propagating at time instance t1 = l1/v0.

Combining these results, we can write down formulas (5.25) for the stress intensity factors

in the form

KI(t; v0) = −K ′(t; v0) +

∫ v0t

l1

[
WI,I(0, t− x1/v0; v0)σ̃1

22(x1, 0)

+WI,II(0, t− x1/v0; v0)σ̃1
12(x1, 0)

]
dx1

KII(t; v0) = −K ′′(t; v0) +

∫ v0t

l1

[
WII,I(0, t− x1/v0; v0)σ̃1

22(x1, 0)

+WII,II(0, t− x1/V0;V0)σ̃1
12(x1, 0)

]
dx1

(5.48)
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where the functions K ′(t; v0) and K ′′(t; v0) are defined by

K ′(t; v0) =

∫ l1

0

[
WI,I(0, t− x1/v0; v0)σ0

22(x1, 0)

+WI,II(0, t− x1/v0; v0)σ0
12(x1, 0)

]
dx1

K ′′(t; v0) =

∫ l1

0

[
WII,I(0, t− x1/v0; v0)σ0

22(x1, 0)

+WII,II(0, t− x1/v0; v0)σ0
12(x1, 0)

]
dx1

The left-hand side of the equations (5.48) vanishes for t > t1 due to the condition (5.46), while

the terms K ′(y, v0) and k′′(t, v0) are known functions containing σ0
22 and σ0

12 determined from

the solution of P−1-problem. Thus, we solve the system (5.25) on the time-interval (t1,∞)

with respect to the functions σ̃1
12(x1, 0) and σ̃1

12(x1, 0).

The system (5.25) can be transformed to a system of two Volterra convolution equations,

which admits the solution by applying Laplace transform. Indeed, after the substitution

x1 = v0τ
′ + l1, t = τ + l1/v0, (5.49)

the system (5.46) takes the form

II∑
j=I

∫ τ

0

Wi,j(0, τ − τ ′; v0)πi(τ
′)dτ ′ = ωi(τ), τ > 0, i = I, II, (5.50)

where

πI(τ
′) = σ̃1

22(v0τ
′ + l1, 0), πII(τ

′) = σ̃1
12(v0τ

′ + l1, 0)

ωI(τ) = v−1
0 K ′(τ + l1/v0; v0), ωII(τ) = v−1

0 K ′′(τ + l1/v0; v0)

The Laplace images π̃i(s) of the unknown functions πi(τ
′) can be determined from the system

of linear algebraic equations

II∑
j=I

W̃i,j(0, s; v0)π̃i(s) = ω̃i(s), i = I, II.

By performing the Laplace inversion, we derive

πI(τ
′) =

1

2πi

∫ σ+i∞

σ−i∞

W̃II,II(0, s; v0)ω̃I(s)− W̃I.II(0, s; v0)ω̃II(s)

W̃ (s; v0)
esτ
′
ds

πII(τ
′) =

1

2πi

∫ σ+i∞

σ−i∞

W̃I,I(0, s; v0)ω̂II(s)− W̃II.I(0, s; v0)ω̂I(s)

W̃ (s; v0)
esτ
′
ds,
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where σ > 0 and

W̃ (s; v0) = W̃I,I(0, s; v0)W̃II,II(0, s; v0)− W̃I,II(0, s; v0)W̃II,I(0, s; v0)

Thus, the stress components in front of the suddenly stopped crack, corresponding to P0-

problem can be found from

σ̃1
22(x1, 0) = πI

(
x1 − l1
v0

)
, σ̃1

12(x1, 0) = πII

(
x1 − l1
v0

)
, x1 > l1. (5.51)

Let us note that the Laplace transforms W̃i,j(0, s; v0) have already been determined. They

are expressed through the solution at the point 0 of the system of integral equations (5.27)

by the formula (5.36) for v = v0 with the loading σ◦22(x1, 0) = δ(x1) and σ◦12(x1, 0) = 0 for

the weight functions WI,I(0, t; v0) and WII,I(0, t; v0), and with the loading σ◦22(x1, 0) = 0 and

σ◦12(x1, 0) = δ(x1) for the functions WI,II(0, t; v0) and WII,II(0, t; v0).

In addition to vanishing stress intensity factors in front of a suddenly stopped crack, the

solution σ̃1
12 and σ̃1

22 has to generate zero displacement jumps through the line x2 = 0 on

the segment l1 < x1 < v0t. In contrast to the problem in an unbounded plane, when this

is possible to verify analytically [39] for the sub-Rayleigh speeds and [46] for the transonic

regime), it is not visible how it can be done without deploying computer based computations.

That is why this condition needs to be tested numerically when the algorithm is applied.

By employing this procedure for the next period of time, t1 < t < t2, and determining

the weight functions associated with speed v = v1, we can find the loads σ̃2
i2(x1, 0) (i = 1, 2)

needed to negate the stresses generated by the crack when it suddenly stops at the point

x1 = l2. In this case, we replace the boundary conditions (5.47) by

σj2(x1, 0, t) =


0, −∞ < x1 < l1

− σ1
j2(x1, 0), l1 < x1 < l2

σ̃2
j2(x1, 0), l2 < x1 < l1 + v1t

t > t2

where the traction components σ1
j2(x1, 0) are known

σ1
j2(x1, 0) = σ0

j2(x1, 0) + σ̃1
j2(x1, 0),
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while the components σ̃2
j2(x1, 0) have to be recovered from the system of two equations

KI(t; v1) = 0, KII(t; v1) = 0, v1t > l2, that is equivalent to the corresponding system of two

Volterra equations solvable by the Laplace transform as in the previous step.

Following the pattern established above, this procedure can be continued further up to

any period of time (tk, tk+1). It gives an approximate solution of the problem on motion of

a semi-infinite crack beneath the boundary at piecewise constant speed v = vi, t ∈ (ti, ti+1),

i = 0, 1, . . . , k, that approximates the original smooth function v(t). The solution of this

model problem is obtained by the superposition of the solutions of all Problems Pi (i =

−1, 0, 1, 2, . . . , k), where P−1 is the problem for a stationary semi-infinite crack, Problems

Pi (i = 0, 1, . . . , k − 1) are the transient problems with the boundary conditions chosen

accordingly. As it was shown in Section 3.3, for the total problem P , the homogeneous

boundary conditions on the crack faces {(x1, 0
±) : 0 < x1 < l(t)} are satisfied. As for the

stress intensity factors at the tip of the crack at time t ∈ (tk, tk+1), when the crack moves

at speed vk, (in general, they do not vanish) they are defined by the stress intensity factors

generated by Problem Pk.

A feature of Problem P is in the presence of the boundary. As it was pointed out in the

previous section, initially, when t < 2tl (tl is given by (5.43)), and when the longitudinal wave

reflected from the half-plane boundary has not reached the crack, the off-diagonal weight

functions WI,II and WII,I vanish, and the diagonal functions WI,I and WII,II coincide with

those associated with the problem on an unbounded plane with a crack. Therefore, for this

short period of time, the algorithm proposed in [39] can be repeated without any changes.

However, this does not mean that the actual motion of the crack in a half-plane will be the

same as in the case of an unbounded plane even for time t < 2tl. To make this conclusion, we

need to recall that the boundary conditions of Problems Pk depend on the stresses σ0
i2(x1, 0)

(i = 1, 2) generated by the static crack in the half-plane which are apparently not the same

as the ones associated for an unbounded plane. When time exceeds 2tl, then, in general, all
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the weight functions Wi,j are nonzero and different from those associated with the case of

an unbounded plane. Thus, the boundary of the half-plane affects the stress field near the

crack tip. In this case, in order to describe a non-uniform propagation of the semi-infinite

crack parallel to the boundary of a half-plane, the algorithm introduced in this section needs

to be applied.

5.3.2 Determination of propagation speed

In the previous section, prescribed piece-wise constant speed v(t) was considered. Assume

now that the speed is an unknown function of time t and determine it by employing the

Griffith dynamic criterion [85, 17]. Let δU(t) be the potential energy released when the crack

S(t) = {(x1, 0) : −∞ < x1 < v0t} extends to S(t) + δS(t) = {(x1, 0) : −∞ < x1 < v0t + r},

where r is small. The energy δU(t) may be expressed as

δU(t) =
1

2

∫ r

0

{σxy(x, 0, t)δ[u](x, t) + σyy(x, 0, t)δ[v](x, t)}dx. (5.52)

Here, [u] + δ[u], [v] + δ[v] are the displacement jumps related to the extended crack, and

σ12 ∼
KII(t)√

2πx
, σ22 ∼

KI(t)√
2πx

, x ∈ (0, r), r → 0+. (5.53)

To find asymptotic expansions for δ[u], δ[v], we employ the relations (5.20), take into account

that

χ̌−j (z, s) ∼ 1

iz
χ∗j(0

−, s), Im z →∞ (5.54)

and also formulas (5.36). This and the Tauberian theorem eventually bring us to

χ̃1(x, s) ∼ − K̃II(s)

µγ1

√
−2πx

, χ̃2(x, s) ∼ − K̃I(s)

µγ2

√
−2πx

, x→ 0−. (5.55)

On integrating these relations with respect to x and fixing the constant of integration by

assuring that the displacement jumps vanish at the crack tip we obtain the displacement

jumps [u] and [v] for small negative x. When the crack extends to x = r, these formulas give

[v](x, t) ∼
√

2(r − x)

π

KI(t)

µγ2

, [u](x, t) ∼
√

2(r − x)

π

KII(t)

µγ1

, x→ r−. (5.56)
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Finally, by substituting the asymptotic relations (5.53) and (5.56) into (5.52) we find the

potential energy increment when the crack extends to S(t) + δS(t)

δU(t) ∼ r

4µ

(
K2
I (t)

γ2

+
K2
II(t)

γ1

)
, r → 0+. (5.57)

According to the Griffith criterion, the crack starts propagating if the energy δU(t) equals

or greater than the increase in the surface energy 2Tr, δU ≥ 2Tr, where T is the Griffith

material constant. This criterion may be represented in terms of the stress intensity factors

in the form

K2
I (t)

γ2

+
K2
II(t)

γ1

≥ 8µT. (5.58)

On applying this criterion, that is on solving the transcendental equation

γ1K
2
I (t) + γ2K

2
II(t) = 8µγ1γ2T, (5.59)

one may predict v0, the initial speed of crack propagation. Following the successive algorithm

described above and solving the associated equation (5.59) it is possible to determine all the

speeds vj j = 1, 2, . . ..
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Chapter 6

Fracture in an Infinite Strip

In this chapter, we will consider two problem on propagation of a crack in an infinite strip,

which use the cohesive zone and the lattice models of a crack propagation.

For intersonic propagation speed (cs < v < cl), the continuous model of a crack propa-

gation results to the zero release energy rate near the crack tip, which yields the fact that

such propagation is impossible. However, it has been observed experimentally [69]. In or-

der to describe propagation at intersonic speed, the cohesive zone model is employed, by

assuming the cohesive zone interval of unknown length l in front of the crack (see Figure

6.1) where the constant stress components are prescribed. This problem gives rise to a scalar

Riemann–Hilbert problem with the coefficient-function that has infinitely many simple poles

on the contour of the problem, which was not solved in the closed form before (to the best

of my knowledge). Although its solution can be constructed using the standard technique

described in Section 2.1, it is expressed through Cauchy integrals of functions with infinitely

many singular points on the contour, which are not easy to compute. the natural approach

in this case is the contour transformation (see, for instance, [4]). Here, we will describe a

technique of constructing Wiener–Hopf factorization of such a function.

Another approach that is used to deal with intersonic propagation speeds is to apply the

lattice model of crack propagation, where the material is described as a lattice of atoms

connected by massless bonds, while the crack propagation is modeled as breaking bonds

when their length exceeds certain critical value. Even in the case of anti-plane deformation,

this problem is equivalent to a vector Riemann–Hilbert problem with 2×2 matrix coefficient,

which does not admit a closed-form solution. This vector Riemann–Hilbert problem is solved

by employing a partial Wiener–Hopf factorization described earlier in Section 2.3.3.
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Figure 6.1: Symmetric semi-infinite crack in a strip

6.1 Factorization of a Class of Wiener–Hopf Kernels

Consider a function a(ξ) meromorphic in the complex plane C with infinitely many discrete

poles and zeros on the real and imaginary axes and at most finitely many poles and zeros

elsewhere (on example of such a function is a(ξ) = tan(ξ) tanh(ξ)). Let L be a curve in C,

which mostly coincides with the real axis R but passes around under the poles and zeros of

the function a(ξ) (see Figure 6.2), so that L contains neither poles nor zeros of a(ξ). The

radius of the semi-circular parts of L is considered to be infinitely small so that the curve L

coincides with the real axis R almost everywhere. Notice that the curve L splits the complex

plane C into two parts C+ and C−, above and below of L respectively.

The paper’s objective is to construct the Wiener–Hopf factorization

a(ξ) = a+(ξ)/a−(ξ), ξ ∈ L (6.1)

such that the function a±(ξ) is analytic in C±. Obtaining the Wiener–Hopf factorization on

the curve L is problematic since the function a(ξ) have no limits as ξ → ∞ along the line

L and the poles and zeros of a(ξ) are infinitely close to the integration path. For simplicity,

assume that a(ξ) has a simple pole at the origin: this case corresponds to the problem of

Dynamic fracture mechanics considered later. Otherwise the function a(ξ) can be multiplied

by a rational function in order to obtain a simple pole at the origin.
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Figure 6.2: The integration paths L and L on the complex plane

6.1.1 Auxiliary Wiener–Hopf factorization.

Since there are only finitely many poles and zeros of the function a(ξ) in the four quadrants

of the complex plane C, there is an angle θ ∈ (0, π/2) such that a(ξ) is analytic and non-zero

in the union of two sectors (see Figure 6.2)

D(θ) = {ξ : −θ − ε < arg ξ < 0} ∪ {ξ : −π < arg ξ < −π + θ + ε}

for a small positive value ε. Let L1 and L2 be two rays with a common endpoint at the origin

L1(θ) = {re−iθ : r > 0}, L2(θ) = {rei(θ−π) : r > 0}

Hereafter, whenever it is important to emphasize the dependence of D, L1, and L2 on the

parameter θ, they are written with θ as their argument, otherwise the argument is dropped.

In order to obtain the representation (6.1), construct an auxiliary Wiener–Hopf factoriza-

tion of a(ξ) on the union L = L1 ∪ L2. Since the function a(ξ) is analytic in D, it is Hölder

continuous [41] on L and its Wiener–Hopf factorization is given by

a±θ (ξ) = exp

{
1

2πi

∫
L

ln a(t)

t− ξ
dt

}
, ξ ∈ C \ L (6.2)

where the direction of the path integration is chosen so that Re{L} is increasing. However,

the integral in (6.2) has a logarithmic singularity at infinity due to ln a(t) may approach
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different limits as t → ∞ along L1 and along L2. Hence, it is computationally beneficial to

rewrite the functions a+
θ (ξ) and a−θ (ξ) as follows.

Let A1 and A2 be the limits of a(ξ) as ξ →∞ along L1 and L2 respectively,

A1 = lim
r→+∞

a(re−iθ), A2 = lim
r→+∞

a(rei(θ−π)) (6.3)

Represent the function a(ξ) as the product

a(ξ) = k(ξ) a∗(ξ), k(ξ) = γ
sinhπ(ξ + iq)

sinhπξ
(6.4)

and choose the parameters γ and q so that the function k(ξ) would have the behavior of a(ξ)

at infinity. It is easy to check that the values

γ =
√
A1A2, q =

1

2πi
ln
A1

A2

with a correct choice of branches of the square root and the logarithm above, provide

A1 = lim
r→+∞

k(re−iθ), A2 = lim
r→+∞

k(rei(θ−π)) (6.5)

In the representation (6.4), the function k(ξ) can be factorized explicitly as a product and

ratio of Γ-functions, while the Wiener–Hopf factorization of a∗(ξ) on L can be obtained

with Cauchy integrals of a better convergence due to a∗(ξ) being a Hölder function and

ln a∗(ξ)→ 0 as ξ →∞, ξ ∈ L. Hence,

a+
θ (ξ) = k+(ξ) exp

{
1

2πi

∫
L(θ)

ln a∗(t)

t− ξ
dt

}
a−θ (ξ) = k−(ξ) exp

{
1

2πi

∫
L(θ)

ln a∗(t)

t− ξ
dt

} (6.6)

k+(ξ) = γ
(ξ + iq)Γ(1− iξ)

Γ(1− iξ + q)
, k−(ξ) =

ξΓ(1 + iξ − q)
Γ(1 + iξ)

where a+
θ (ξ) is analytic and non-zero in C+ ∪ L ∪D(θ) and a−θ (ξ) is analytic and non-zero

in C− \D(θ). The identity

sinh(ξ) = πξ/[Γ(1 + iξ)Γ(1− iξ)] (6.7)

and the Sokhotsky–Plemelj formulas [62, 41] imply the Wiener–Hopf factorization a(ξ) =

a+
θ (ξ)/a−θ (ξ) for ξ ∈ L(θ).
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6.1.2 Transform of the integration path

Notice that for θ = 0, the functions a± = a±0 (ξ) would give the required Wiener–Hopf

factorization (6.1) if the integrals in (6.6) existed. Moreover, to find relation between the

integral over L(0) and over L(θ), one would use Cauchy’s theorem and derive the identities

a+(ξ) = k+(ξ) exp

{
1

2πi

∫
L(θ)

ln a∗(t)

t− ξ
dt

}
, ξ ∈ C+

a−(ξ) =


k−(ξ)

a∗(ξ)
exp

{
1

2πi

∫
L(θ)

ln a∗(t)

t− ξ
dt

}
, ξ ∈ D

k−(ξ) exp

{
1

2πi

∫
L(θ)

ln a∗(t)

t− ξ
dt

}
, ξ ∈ C− \D

(6.8)

Notice again that the identities (6.8) can be derived under the assumption of existence of the

integrals in (6.6). Since the integrals do not exist for the class of functions considered here,

the identities (6.8) cannot be taken for granted. Instead, it is possible to use (6.8) as the

definition of the functions a±(ξ) and to prove that they provide the requited Wiener–Hopf

factorization on L.

Thus, define the functions a±(ξ) by the formulas (6.8). First show that in spite of its

piecewise definition, the function a−(ξ) is analytic in C−. Fix a point ξ ∈ L(θ), ξ 6= 0. If

ζ → ξ from above of L(θ) (that is, ζ ∈ D), then the Sokhotski–Plemelj formulas imply

lim
ζ→ξ

a−(ζ) =
k−(ξ)

a∗(ξ)
exp

{
1

2
ln a∗(ξ)

}
, (ζ ∈ D) (6.9)

Similarly, if ζ → ξ from below of L(θ) (that is, ζ ∈ C− \D), then

lim
ζ→ξ

a−(ζ) = k−(ξ) exp

{
−1

2
ln a∗(ξ)

}
, (ζ ∈ C− \D) (6.10)

Thus, the limits above at the point ξ are equal as long as the branches of ln a∗(ξ), ξ ∈ L(θ)

are the same in the both formulas (6.9) and (6.10). Since ξ is an arbitrary non-zero point of

L(θ) and ln a∗(ξ) is Hölder continuous on L(θ), the formula (6.8) defines a function a−(ξ),

which is analytic in D and C− \D, continuous on L(θ), and, therefore, analytic in C− due

to uniqueness of the analytic continuation.
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Now, show that the function a±(ξ) is indeed the Wiener–Hopf factorization of a(ξ) on L;

that is, that they satisfy the equality (6.1). Notice that the function a+(ξ) can be analytically

continued onto C+ ∪ L ∪ D, thus is defined and continuous on L \ {0} (behavior near the

origin ξ = 0 will be considered later). The function a−(ξ) is analytic in C− and having

singularities on the real axis R, which are zeros of a∗(ξ). Since the curve L passes around

under those singularities, the function a−(ξ) is defined and continuous on L. Therefore, for

any point ξ ∈ L, that is not the origin, the formulas (6.8) yield the equality (6.1).

The case when ξ is the origin, should be treated separately since ξ = 0 lies on the in-

tegration path and is the vertex of the angle L(θ). The Sokhotski–Plemelj formulas for a

polygonal line [41] imply

a+(0) = iγq
[a∗(0)]

1
2
− θ
π

Γ(1 + q)
exp

{
1

2πi
p.v.

∫
L(θ)

ln a∗(t)
dt

t

}
a−(ξ) ∼ ξ

Γ(1− q)
[a∗(0)]

1
2

+ θ
π

exp

{
1

2πi
p.v.

∫
L(θ)

ln a∗(t)
dt

t

}
, ξ → 0

where a−(ξ) is the continuation of the function a−(ξ) defined by (6.8) onto a neighborhood

of ξ = 0. Thus

a+(ξ)

a−(ξ)
∼ iγq

a∗(0)

Γ(1 + q)Γ(1− q)
1

ξ
, ξ → 0 (6.11)

Using the representation (6.4) of the function a(ξ) and the identity (6.7), it is easy to see that

the right-hand side of (6.11) is the first term of the expansion of a(ξ) near the origin. Thus,

a+(ξ)/a−(ξ) ∼ a(ξ) as ξ → 0, and the functions a±(ξ) defined by (6.8) is the Wiener–Hopf

factorization of the function a(ξ) on L.

Notice that in spite of the function a(ξ) having an infinitely many poles and zeros on

the real axis R and no limit as ξ → ±∞, the formulas (6.8) provide the Wiener–Hopf

factorization of a(ξ) almost everywhere on R and the integrals in (6.8) are understood in the

usual sense. Moreover, the parameter θ can be chosen from the range of possible values so

that to provide the best convergence of the integrals.

131



6.2 Symmetric Crack in an Infinite Strip

The Wiener–Hopf technique is applicable to many problems in physics and engineering. In

order to demonstrate the technique described above, consider a problem of Dynamic fracture

mechanics on an intersonic steady–state crack propagation in a strip: the intersonic speed of

a crack and its propagation in a strip provide an example of an equation with a function–

coefficient of the class considered in Section 6.1.

6.2.1 Intersonic symmetric steady-state crack propagation

An elastic, isotropic, homogeneous medium under the plane–strain condition is characterized

by elastic modulus µ, shear wave speed cs, and longitudinal wave speed cl and has the shape

of an infinite strip of width 2d, that occupies the region S = {(x1, x2) : x1 ∈ R, x2 ∈ (−d, d)}

in R2. Through the middle of the strip, a stable propagation of a crack at the constant speed

v is assumed (see Figure 6.1). Introduce a coordinate system moving together with the crack

so that the crack tip stays at the origin for any time t, while the crack faces lie on the

negative real semi-axis. The faces are subject to a shear traction,

σ12(x1, 0
±) = ±σ0(x1),

σ22(x1, 0
±) = 0,

−∞ < x1 < 0 (6.12)

where the superscripts “ + ” and “ − ” denote the upper and the lower faces of the crack,

respectively. For simplicity, it is assumed that σ0 is an L2-function with compact support on

R−, although a bigger class can be considered. The borders of the strip are traction-free,

σ12(x1,±d) = σ22(x1,±d) = 0, −∞ < x1 <∞ (6.13)

The stress and displacement components in an elastic solid are expressed through two dis-

placement potentials φ and ψ [39],

1

µ
σ12 = 2

∂2φ

∂x1∂x2

− ∂2ψ

∂x2
1

+
∂2ψ

∂x2
2

1

µ
σ22 =

(
c2
l

c2
s

− 2

)
∂2φ

∂x2
1

+
c2
l

c2
s

∂2φ

∂x2
2

− 2
∂2ψ

∂x1∂x2

u1 =
∂φ

∂x1

+
∂ψ

∂x2

, u2 =
∂φ

∂x2

− ∂ψ

∂x1

(6.14)
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and the potentials satisfy the wave equations (in the moving coordinate system)

α2∂
2φ

∂x2
1

+
∂2φ

∂x2
2

= 0, −β2∂
2ψ

∂x2
1

+
∂2ψ

∂x2
2

= 0, (x1, x2) ∈ S \ R− (6.15)

where α =
√

1− v2/c2
l and β =

√
v2/c2

s − 1 are positive constants in the case of the inter-

sonic steady-state propagation cs < v < cl.

Because the crack lies on an axis of the strip symmetry, components of the displacement

satisfy the conditions u1(x1,−x2) = −u1(x1, x2) and u2(x1,−x2) = u2(x1, x2), which implies

u1(x1, 0) = 0, x1 > 0 (6.16)

Thus, it suffices to consider only the upper half of the strip with the additional assumption

that the u1-component vanishes in front of the crack.

Applying the Fourier transform (hereafter, the hat “∧” denotes the Fourier transform of

a function)

f̂(ξ, x2) =

∫ ∞
−∞

f(x1, x2)eiξx1dx1 (6.17)

to the wave equations (6.15) reduces them to ordinary differential equations in x2-variable,

whose solutions are

φ̂(ξ, x2) = C1(ξ) cosh(αξx2) + C2(ξ) sinh(αξx2),

ψ̂(ξ, x2) = D1(ξ) cos(βξx2) + iD2(ξ) sin(βξx2),

0 < x2 < d (6.18)

where the coefficients C1, C2, D1, and D2 can be found from the Fourier transforms of the

boundary conditions (6.12), (6.13), and the first two of the relations (6.14). After algebraic

calculations, one derives

C1(ξ) = − β

∆(ξ)

[
R sinh(α + iβ)ξd+ R̄ sinh(α− iβ)ξd

] σ̂12(ξ, 0)

µξ2

C2(ξ) =
2β

∆(ξ)

[
R sinh2 α + iβ

2
ξd+ R̄ sinh2 α− iβ

2
ξd

]
σ̂12(ξ, 0)

µξ2

D1(ξ) =
1− β2

∆(ξ)

[
R sinh2 α + iβ

2
ξd− R̄ sinh2 α− iβ

2
ξd

]
σ̂12(ξ, 0)

µξ2

D2(ξ) = −1− β2

2∆(ξ)

[
R sinh(α + iβ)ξd+ R̄ sinh(α− iβ)ξd

] σ̂12(ξ, 0)

µξ2

(6.19)
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where

∆(ξ) = R2 sinh2 α + iβ

2
ξd− R̄2 sinh2 α− iβ

2
ξd, R = (1− β2)2 − 4iαβ

In (6.19), the function σ̂12(ξ, 0) is unknown, and it is to be determined by the Wiener–Hopf

technique. Introduce the function representing the Fourier transform of the strain component

ε11 = ∂u1/∂x1 on the line x2 = 0,

E−(ξ) := ε̂11(ξ, 0) =

∫ 0

−∞
ε11(x1, 0)eiξx1dx1 (6.20)

where the integral is taken over the negative part of the real axis x2 = 0 since ε11(x1, 0) = 0

for x1 > 0 due to the condition (6.16). The function E−(ξ) is analytic in the lower half-plane

{ξ : Im(ξ) < 0} and decays at infinity, provided that ε11(x1, 0) is integrable on R−. For

negative values of x1, the stress component σ12(x1, 0) is equal to σ0(x1); that is

σ̂12(ξ, 0) = Σ+(ξ) + σ̂0(ξ), Σ+(ξ) =

∫ ∞
0

σ12(x1, 0)eiξx1dx1 (6.21)

The unknown function Σ+(ξ) is analytic in the upper half plane {ξ : Im(ξ) > 0}, provided

that σ12(x1, 0) is an integrable function on R+. The last two relations in (6.14) along with

(6.18), (6.19) yield the equation

E−(ξ) = a(ξ)[Σ+(ξ) + σ̂0(ξ)], ξ ∈ L (6.22)

a(ξ) =
β(1 + β2)

µ∆(ξ)

[
R sinh(α + iβ)ξd+ R̄ sinh(α− iβ)ξd

]
where the curve L mostly coincides with the real axis R and passes around under the poles

and zeros of a(ξ) (see Figure 6.2). Notice that the choice of L is somewhat arbitrary: the

curve L can pass around each of the poles and zeros of a(ξ) either above or below, which

would change the index [62] of a(ξ) and the Wiener–Hopf factors. However, in order to utilize

the technique described in Section 6.1, one needs the curve L passing around below the poles

and zeros of a(ξ). Notice also that with a few changes, the technique can be applicable if L

passes around above the poles and zeros of a(ξ).
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Thus, the problem of intersonic steady-state propagation of the semi-infinite crack in a

strip is reduced to the Riemann-Hilbert problem of finding two L2-functions Σ+(ξ) and E−(ξ)

so that Σ+(ξ) is analytic in C+, E− is analytic in C−, and they both are continuous on the

contour L and satisfy the boundary condition (6.22) on L.

6.2.2 Solution of the Riemann-Hilbert problem

Considering the function a(ξ) defined in (6.22) on the complex plane C, we conclude that

it is meromorhic on the complex plane C with infinitely many simple poles on the real and

imaginary axes, that cannot be expressed in radicals. Thus, its Wiener–Hopf factorization

can be obtained by (6.8) and (6.4) with the parameters

γ =
2β(1 + β2)

µ|R|
, q =

1

π
tan−1 4αβ

(1− β2)2

The following solution follows the standard 3-steps procedure described in Section 2.1.2. In

the boundary condition (6.22), replace the function a(ξ) by its Wiener–Hopf factorization

and multiply the condition by a−(ξ). Then the equation (6.22) takes the form

a−(ξ)E−(ξ) = a+(ξ)Σ+(ξ)− a+(ξ)σ̂0(ξ), ξ ∈ L (6.23)

In order to find E−(ξ) and Σ+(ξ) satisfying (6.23), one needs to represent the function

a+(ξ)σ̂0(ξ) as a difference of a function analytic in C+ and a function analytic in C−. Similar

to the justification that (6.8) is the Wiener–Hopf factorization of a(ξ) on L, it can be shown

that a+(ξ)σ̂0(ξ) = Ψ+(ξ)−Ψ−(ξ) on L where

Ψ+(ξ) =
1

2πi

∫
L(θ1)

a+(t)σ̂0(t)

t− ξ
dt, ξ ∈ C+

Ψ−(ξ) =


−a−(ξ)σ̂0(ξ) +

1

2πi

∫
L(θ1)

a+(t)σ̂0(t)

t− ξ
dt, ξ ∈ D

1

2πi

∫
L(θ1)

a+(t)σ̂0(t)

t− ξ
dt, ξ ∈ C− \D

Notice that although the product a+(ξ)σ̂0(ξ) has no singularities on the real axis R, the

angle L(θ1) was used as an integration path, which significantly improves convergence of the
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integrals above. The parameter θ1 can be chosen arbitrary such that 0 < θ1 ≤ θ. Notice that

the function a+(ξ) is defined only on C+ in (6.8). Here, a+(ξ) for ξ ∈ L(θ1) is understood as

its analytic continuation from C+ onto C+∪L∪D, which is given by the same formula (6.8).

In the case θ1 = θ, the values a+(ξ) are understood as the limit for ζ → ξ from C+ ∪L∪D.

Replacing a+(ξ)σ̂0(ξ) in the equation (6.23) by the difference Ψ+(ξ)−Ψ−(ξ) yields

a−(ξ)E−(ξ)−Ψ−(ξ) = a+(ξ)Σ+(ξ)−Ψ+(ξ), ξ ∈ L (6.24)

Define the auxiliary function

R(ξ) =


a+(ξ)Σ+(ξ)−Ψ(ξ), ξ ∈ C+

a−(ξ)E−(ξ)−Ψ(ξ), ξ ∈ C−
(6.25)

It is analytic in C+ and C−, while it is continuous across L due to the equality (6.24). Hence,

R is an entire function on the complex plane C. In order to determine the function, notice

that

k+(ξ) ∼ iγ(−iξ)1−q, σ̂+
12(ξ) = O(|ξ|−

1
2 ), Im(ξ)→∞

k−(ξ) ∼ −i(iξ)1−q, ε̂+
11(ξ) = O(|ξ|−

1
2 ), Im(ξ)→ −∞

(6.26)

while the exponent terms in (6.8) approach unity, and Ψ±(ξ) vanishes at infinity. From the

behavior (6.26), the definition (6.25), and the factorization (6.8), it follows that R(ξ) =

O(|ξ| 12−q), 0 < q < 1/2. Hence, R(ξ) is identically equal to a constant for all ξ ∈ C.

To determine the constant, notice that E−(ξ) should be regular at the origin, while a−(ξ)

vanishes at ξ = 0. Therefore, R(ξ) ≡ R(0) = −Ψ−(0). From (6.25), one derives the solution

of (6.22)

Σ+(ξ) = [Ψ(ξ)−Ψ−(0)]/a+(ξ), ξ ∈ C+

E−(ξ) = [Ψ(ξ)−Ψ−(0)]/a−(ξ), ξ ∈ C−
(6.27)

6.2.3 Behavior of the solution near the crack tip

From the formulas (6.26), (6.27), and the identity [80]

lim
x1→0+

Γ(1− q)
x−q1

σ12(x1, 0) = lim
Im(ξ)→+∞

(−iξ)1−qΣ+(ξ) (6.28)
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it immediately follows that the stress component σ12(x1, 0) has a power singularity at the

origin,

σ12(x1, 0) ∼ K√
2πxq1

, x1 → 0+, K =
i
√

2π

γ

Ψ−(0)

Γ(1− q)
(6.29)

Since the possible value of the parameter q for the problem are those from the interval (0, 1/2)

whenever v 6=
√

2c2, the crack-tip energy rate [39] vanishes, which means the crack does not

propagate and the physical model should be considered as being incorrect. A correct model

of the crack propagation is introduced in [24]: a cohesive zone of length l is imposed behind

the crack tip so that the stress component σ12(x1, 0) is prescribed on the interval (0, l),

σ12(x1) = −σcH(x1 + l), x1 < 0 (6.30)

where the shear cohesive stress σc is depended on the strip material, and H is the unit step

function.

Assume that a pair of concentrated shear forces is applied to the crack faces at the points

(−x0, 0
±) as shown on Figure 6.1, then the resulting stress field is a sum of two solutions

corresponding to the boundary condition (6.30) and the boundary condition

σ12(x1) = σ∗δ(x1 + x0), x1 < 0 (6.31)

where δ is the Dirac delta function and x0 > l.

In order to determine length l of the cohesive zone, consider the near-tip behavior of the

two solutions of the problem: the first is for the boundary condition (6.31) and the second

is for the boundary condition (6.30). The behavior is given by the formula (6.29), where the

only term depending on the boundary conditions is Ψ−(0). According to the cohesive zone

model, the sum of two solutions should be regular at the crack tip, thus the formula (6.29)

implies that the equation

Ψ−1 (0) + Ψ−2 (0) = 0 (6.32)

where the value Ψ−1 (0) corresponds to the solution of the problem with the boundary con-

dition (6.31), while the value Ψ−2 (0) corresponds to the solution of the problem with the
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boundary condition (6.30). Thus, the length l is determined from the equation (6.32). The

length l and energy release rate [39]

G = 2σc

∫ −l
0

∂u1

∂x1

dx1 =
σc
πi

∫
L

E−(ξ)
1− eilξ

ξ
dξ

for different values of the parameters σ∗, σc, x0, and d were estimated numerically and shown

on Figure 6.3 and Figure 6.4.

6.3 Lattice Model of a Fracture in a Composite Infinite Strip

In this chapter, we will consider the problem of a crack propagation in a strip. The strip

consists of two different materials with the interface line between two materials, parallel to

the edges of the strip. The crack propagates along the interface with a constant velocity.

One edge of the strip is fixed while a uniform displacement is assumed on the other edge.

Anti-plane deformations of the strip are considered. This problem is similar to the one solved
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Figure 6.3: The length l and the energy release rate G versus the half-width d of the strip
for various speeds v of the crack propagation (for the case σ∗ = σc and ν = 1/3)
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Figure 6.4: The length l and the energy release rate G versus the ratio σ∗/σc for various
speeds v of the crack propagation (for the case d = x0/2 and ν = 1/3)

in [37, 57], except the current problem is not symmetric, so it is reduced to a system of two

Riemann–Hilbert problems.

6.3.1 Fracture in a composite infinite strip

Let us consider a problem of a crack propagation in a composite infinite strip. The crack is

modeled as the unit square lattice of mass points so that the first N1 + 1 layers of the points

constitute the first material and the other N2 + 1 layers of the points constitute the second

material (see Figure 6.5). The mass points of mass m1 and mass m2 are connected by zero-

mass bonds of stiffness k1 and k2 respectively. It is assumed that a bond can be stretched

until its deformation reaches a critical value resulting to a bond break. Thus, a sequence of

broken bonds forms a crack propagating along the interface between the materials under the

loading applied to the strip edges.

Let un,m be anti-plane displacement of the point (n,m). Then the balance of forces acting

on the interior mass point at the coordinate (n,m) of the upper material yields the equation

m1ün,m = −b1u̇n,m + k1(un,m+1 − 2un,m + un,m−1)

+ k1(un+1,m − 2un,m + un−1,m)

n = 1, . . . , N1 − 1, m = 0,±1, . . .

(6.33)

where b1 is the coefficient of Stokes dissipation. The steady–state deformation is assumed;

that is, after the substitution x = m− vt, the balance equation does not depend on time t.
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Figure 6.5: Lattice model of a composite infinite strip

Denote

un,m(t) = Un(m− vt)

and apply the Fourier transform

Ûn(ξ) =

∫ ∞
−∞

Un(x)eixξdx

so that the balance equation (6.33) yields

Ûn+1(ξ)−∆1(ξ)Ûn(ξ) + Ûn−1(ξ) = 0, n = 1, . . . , N1 − 1, ξ ∈ R

∆1(ξ) = 4− 2 cos ξ − m1

k1

v2ξ2 + i
b1

k1

vξ

Solution to the equation above is sought in the form λn(ξ). After substitution Ûn = λn, one

derives the quadratic equation λ2 −∆1λ+ 1 = 0, and its solution is

λ1,2 =
1

2
∆1 ±

1

2

√
∆2

1 − 4

Hereafter, the argument ξ of the functions λ1,2, ∆1, and others is sometimes dropped in order

to improve readability. The general solution of the equation has the form

Ûn(ξ) = C1(ξ)λn1 (ξ) + C2(ξ)λn2 (ξ), ξ ∈ R
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The functions C1 and C2 can be chosen to expresses the derived solution in terms of the

values Ûn on the layers n = 0+ and n = N1. Therefore,

Ûn =
λn2λ

N1
1 − λn1λ

N1
2

λN1
1 − λN1

2

Û0+ +
λn1 − λn2
λN1

1 − λN1
2

ÛN1 , n = 0+, . . . , N1 (6.34)

In the similar manner, the solution of the force balance equations for the interior points

of the lower material is derived,

Ûn =
µn1µ

−N2
2 − µn2µ

−N2
1

µ−N2
2 − µ−N2

1

Û0− +
µn2 − µn1

µ−N2
2 − µ−N2

1

Û−N2 , n = −N2, . . . , 0− (6.35)

where

µ1,2 =
1

2
∆2 ±

1

2

√
∆2

2 − 4, ∆2(ξ) = 4− 2 cos ξ − m2

k2

v2ξ2 + i
b2

k2

vξ

For mass points on the interface, the force balance equations are different due to partici-

pating of points and bond with different masses and stiffness respectively, and due to bond

snapping,

m1ü0+,m =k1(u0+,m+1 − 2u0+,m + u0+,m−1) + k1(u1,m − u0+,m)

− k2(u0+,m − u0−,m)H(uf − |u0+,m − u0−,m|)

m2ü0−,m =k2(u0−,m+1 − 2u0−,m + u0−,m−1)− k2(u0−,m − u−1,m)

+ k2(u0+,m − u0−,m)H(uf − |u0+,m − u0−,m|)

m = 0,±1, . . .

where H is the Heaviside step function and uf critical separation resulting to a bond snap.

Assume that the crack lies on the part of the interface corresponding to negative values of

x = m− vt. After applying the Fourier transform, one derives the equations

−µ1

k1

v2ξ2Û0+ = (2 cos ξ − 3)Û0+ + Û1 −
k2

k1

(Û+
0+
− Û+

0−)

−µ2

k2

v2ξ2Û0− = (2 cos ξ − 3)Û0− + Û−1 + (Û+
0+
− Û+

0−)

ξ ∈ R (6.36)

Hereafter, the super indices “+” and “−” stand for the parts of the Fourier transforms Û0±

defined by

Û+
0±(ξ) =

∫ ∞
0

U0±(x)eixξdx, Û−0±(ξ) =

∫ 0

−∞
U0±(x)eixξdx
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so that Û+
0±(ξ) is analytic in the upper half-plane C+ = {ξ : Im ξ > 0} and Û−0±(ξ) analytic in

the lower half-plane C− = {ξ : Im ξ < 0}. Substituting the functions Û1 and Û−1 determined

from the relations (6.34) and (6.35) into the equation (6.36), one derives relations between

Û±0± , which can be written in the vector form as follows

AU+ + U− = B on R (6.37)

where

U± =

 Û±0+

Û±0−

 , A =

 1 + kφ1 −kφ1

−φ2 1 + φ2

 , B =

 ψ1ÛN1

ψ2Û−N2


φ1 =

λN1
1 − λN1

2

λN1
1 (λ1 − 1)− λN1

2 (λ2 − 1)
, φ2 =

µN2
1 − µN2

2

µN2
1 (µ1 − 1)− µN2

2 (µ2 − 1)
, k =

k2

k1

ψ1 =
λ1 − λ2

λN1
1 (λ1 − 1)− λN1

2 (λ2 − 1)
, ψ2 =

µ1 − µ2

µN2
1 (µ1 − 1)− µN2

2 (µ2 − 1)

Notice that if the upper and lower materials are identical, then k = 1, N1 = N2, φ1 = φ2,

and ψ1 = ψ2. The matrix A and the vector B should be replaced in (6.37) by

A0 =

 1 + φ1 −φ1

−φ1 1 + φ1

 , B0 =

 ψ1ÛN1

ψ1Û−N1

 (6.38)

Thus, in this case, the solution of the problem with symmetric loading is symmetric itself in

the sense that Û±0+ = Û±0− , as expected.

Relation (6.37) can be considered as a boundary condition on the real axis R of the vector

Riemann–Hilbert problem with respect to the vectors U± with components of the vector U+

analytic in the upper half-plane C+ and vanishing at infinity, and components of the vector

U− analytic in the lower half-plane C− and vanishing at infinity.

The total index κ = 1
2π

[arg detA]R of the Riemann–Hilbert problem (6.37) is equal to

zero. Since the matrix coefficient A becomes symmetric (see formula (6.38)) in the case

k = 1 and N1 = N2, the corresponding partial indexes κ1 and κ2 should be equal to each

other. Therefore, κ1 = κ2 = 0 due to the fact that κ1 + κ2 = κ = 0. In more general case

of the Riemann–Hilbert problem (6.37), we make a suggestion that κ1 = κ2 = 0 as well,
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although this suggestion requires a proper justification that goes beyond the scope of this

dissertation. However, if κ1 = 0 and κ2 = 0, then the solution of the problem is unique and

stable [42].

6.3.2 Solution of the Riemann-Hilbert problem

The solution of the Riemann–Hilbert problem will be found using a variation of the Wiener–

Hopf technique for vector problems. First, apply the LDU-factorization to the matrix A as

follows: A = T−1
1 DT2, where T1 is a lower triangular matrix, T2 is an upper triangular matrix,

and D is diagonal,

T1 =

 1 0

φ2/(1 + kφ1) 1

 , T2 =

 1 −kφ1/(1 + kφ1)

0 1



D =

 1 + kφ1 0

0 (1 + kφ1 + φ2)/(1 + kφ1)


The triangular form of the matrices T1 and T2 is crucial and will play an important role in

derivation of the solution later. Since the matrix D is diagonal with components continuous

on the real axis R and approaching the unity at infinity, its Wiener–Hopf factorization can

be found as follows

D = [D−]−1D+ on R

where

D±(ξ) = exp

 1
2πi

∫
R ln{1 + kφ1(τ)} dτ

τ−ξ 0

0 1
2πi

∫
R ln 1+kφ1(τ)+φ2(τ)

1+kφ1(τ)
dτ
τ−ξ


After applying the LDU-factorization and Wiener–Hopf factorization, and multiplying by

D−T1, the equation (6.37) takes the form

D+TÛ
+ +D−TÛ

− = D−TB on R
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Assume that the upper edge of the strip is fixed and the lower edge of the strip is subjected

to a uniform displacement −U2. In this case, ÛN1 = 0, Û−N2 = −2α/(ξ2 + α2)U2, and

D−TB = −U2
2α

ξ2 + α2
ψ2D

−
2

 0

1


where α is arbitrary small positive number, and the limit α→ 0+ will be taken later. For α

being arbitrary small, the factor 2α/(ξ2 + α2) acts as the delta function. Therefore, ψ2 and

D−2 can be replaced by their values at the origin ψ2(0) and D−2 (0). Since

2α

ξ2 + α2
=

i

ξ + iα
− i

ξ − iα

the representation D−T1B = Ψ+ − Ψ− is valid for

Ψ± =

 0

Ψ±2

 , Ψ±2 (ζ) = − i

ζ ± iα
U2ψ2(0)D−2 (0)

Thus, the condition (6.37) of the Riemann–Hilbert problem can be rewritten as follows

D−TÛ
− + Ψ− = Ψ+ −D+TÛ

+ on R

Consider the vector-function

R =


Ψ+ −D+TU

+ in C+

D−TU
− + Ψ− in C−

(6.39)

Notice that in the case of a scalar Riemann–Hilbert problem, the factors T1 and T2 are

absent, and, since Ψ+, D+, U+ are analytic in the upper half-plane C+, while Ψ−, D−, U−

are analytic in the lower half-plane C−, the auxiliary function R is continuous across the

real axis R and, therefore, analytic in the whole complex plane, which allows to uniquely

determine R using Liouville’s theorem. Here, because of presence of T1 and T2, the process

of determination of the vector R is more elaborate but it follows the same pattern.

First, find all poles of the vector R. Its first component,

R1 =


−X+

1 Û
+
0+

+
kφ1

1 + kφ1

X+
1 Û

+
0− in C+

X−1 Û
−
0+

in C−
(6.40)
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vanishes at infinity and is analytic everywhere but simple poles ξ+
j in C+, which are the zeros

of 1 + kφ1, with the corresponding residues X+
1 (ξ+

j )Û+
0−(ξ+

j ) resξ+j
kφ1

1+kφ1
. Therefore, Mittag-

Leffler’s theorem implies

R1(ξ) =
∞∑
j=1

X+
1 (ξ+

j )Û+
0−(ξ+

j ) resξ+j
kφ1

1 + kφ1

· 1

ξ − ξ+
j

(6.41)

The second component of R,

R2 =


Ψ+

2 −X+
2 Û

+
0− in C+

φ2

1 + kφ1

X−2 Û
−
0+

+X−2 Û
−
0− + Ψ−2 in C−

(6.42)

vanishes at infinity and analytic everywhere but simple poles ξ−j in C−, which are the poles

of φ2 and zeros of 1 + kφ1. Therefore,

R2(ξ) =
∞∑
j=1

X−2 (ξ−j )Û−0+(ξ−j ) resξ−j
φ2

1 + kφ1

· 1

ξ − ξ−j
(6.43)

Notice that the poles of the functions R1 and R2 are all different. In fact, all poles of R1 are

in the upper half-plane C1 while all poles of R2 are in the lower half-plane C−. This fact is

due to the triangular form of the matrices T1 and T2 and was chosen on purpose.

The representations (6.41) and (6.43) contain the values Û+
0−(ξ+

j ) and Û−0+(ξ−j ), which are

yet to be determined. To find Û+
0−(ξ+

j ) and Û−0+(ξ−j ), evaluate the function R1 at the points

ξ−i , i = 1, 2, . . ., using the definitions (6.40) and (6.41),

R1(ξ−i ) = X−1 (ξ−i )Û−0+(ξ−i ) =
∞∑
j=1

X+
1 (ξ+

j )Û+
0−(ξ+

j ) resξ+j
kφ1

1 + kφ1

· 1

ξ−i − ξ+
j

Likewise, evaluate the function R2 at the points ξ+
i , i = 1, 2, . . ., using the definitions (6.42)

and (6.43),

R2(ξ+
i ) = Ψ2(ξ+

j )−X+
2 (ξ+

i )Û+
0−(ξ+

i ) =
∞∑
j=1

X−2 (ξ−j )Û−0+(ξ−j ) resξ−j
φ2

1 + kφ1

· 1

ξ+
i − ξ−j

Since the sets of poles ξ+
i and ξ−i (i = 1, 2, . . .) are disjoint, the factors 1/(ξ±i −ξ±j ) are bounded

and the sums are convergent. Moreover, the equalities above form an infinite system of linear

equations with respect to Û+
0−(ξ+

j ) and Û−0+(ξ−j ) admitting a unique solution.

145



After the solution of the system is found, components of the vector R are determined by

(6.41) and (6.43), while the vectors U± can be found from (6.39) as follows

U+ = [D+T]
−(Ψ+ −R), U− = [D−T]

−(R− Ψ−) (6.44)

6.3.3 Analysis of the solution

On Figure 6.6, values of the displacement U0+(x) on the upper interface layer and of the

displacement U0−(x) on the lower interface layer are showed for x = m−vt. For the values far

ahead of of crack (x� 0), the displacements correspond to those of anti-plane deformation

of the strip without a crack. Near the origin (x = 0), the separation starts increasing until

it reaches the critical values uf , which results to a bond snap. After the snapping, the upper

mass points tend to reach the equilibrium displacement U0+(x) = 0 (x� 0), while the lower

mass points tend to reach the displacement U0−(x) = −1 (x� 0).

In order to study stability of the crack [], consider relation between the crack velocity v

and the external loading U2. It is assumed that the crack propagates when the difference

δm = u0+,m − u0−,m reaches a critical value uf at the tip of the crack (m = 0). The value δ0

is given by the formula

lim
x→0−

[
U0+(x)− U0−(x)

]
= δ0

where the limit values of U0±(x) as x → 0− are determined from the Fourier transform

Û−0±(ξ), which in turn are given by (6.44),

U0+(x) =
1

2π

∫ ∞
−∞

R1(ξ)

D−1 (ξ)
e−ixξdξ

U0−(x) =
1

2π

∫ ∞
−∞

R2(ξ)−Ψ−2 (ξ)

D−2 (ξ)
e−ixξdξ

− 1

2π

∫ ∞
−∞

φ2(ξ)

1 + kφ1(ξ)

R1(ξ)

D−1 (ξ)
e−ixξdξ

Notice that the first two integrands behave like 1/ξ at infinity. Therefore, the inverse Fourier

transform have jump discontinuities at the origin. In particular, since R1(ξ) ∼ ρ1/ξ, R2(ξ) ∼

ρ2/ξ, and Ψ2(ξ) ∼ −iU2ψ2(0)D−2 (0)/ξ as ξ → ±∞, the functions U0+ and U0− have jumps

−iρ1 and − iρ2 + U2ψ2(0)D−2 (0)
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U0+
(x)

U0-
(x)

x

uf

Figure 6.6: Anti-plane separation between the upper interface layer n = 0+ and the lower
interface layer n = 0− for parameters U2 = 1, c2 = 5

6
c1, v = 4

6
c1, uf ≈ 0.2, N1 = N2 = 5,

b1 = b2 = 0.01, where cj =
√

kj
mj

, j = 1, 2, are the shear wave speeds for the upper and

lower material.

respectively. On the other hand, the functions U0±(x) are equal to zero for positive values of

x. Therefore,

lim
x→0−

U0+(x) = iρ1, lim
x→0−

U0−(x) = iρ2 − U2ψ2(0)D−2 (0)

Hence, for the crack to propagate, the solution must satisfy the following condition

uf = δ0 = i(ρ1 − ρ2) + U2ψ2(0)D−2 (0)

Since ρ1, ρ2, and D−2 (0) depends on velocity v, the expression above relates velocity v of the

crack propagation, the critical separation uf , and the external loading U2.

One can simplify the relation above, using the energy balance. Consider displacements

un,∞ far on the right of the strip. Solving the equation of one-dimensional force balance for

un,∞, one derives

un,∞ =


− U2

k(N1 − n)

1 + kN1 +N2

, 0+ ≤ n ≤ N1

− U2
1 + kN1 − n

1 + kN1 +N2

, −N2 ≤ n ≤ 0−

147



The elastic potential energy of one stretched bond is given by k(δu)2/2 where k is stiffness

and δu the distance stretched. Therefore the elastic potential energy far on the right of the

strip is the following

Eright =
1

2
k2

U2
2

1 + kN1 +N2

The elastic potential energy far on the left of the strip is zero. Thus, all potential energy

Eright is to be spent on breaking the bond at the tip of the crack,

Ebreak =
1

2
k2u

2
f

The energy balance implies

1

2
k2u

2
f ≤

1

2
k2

U2
2

1 + kN1 +N2

Therefore uf = δ0 ≤ U2/
√

1 + kN1 +N2.

Define a dimensionless parameter

∆ =
U2

δ0

√
1 + kN1 +N2

so that ∆ is proportional to the external loading U2 and the crack propagates if ∆ ≥ 1.

Figure 6.7 shows the relation between the crack velocity v and the parameter ∆ for the case

c2 = 5
6
c1, where cj =

√
kj
mj

, j = 1, 2, are the shear wave speeds of the two materials.

As it was shown in [57], [37], when v is less then about half of the limiting speed c1, the

crack does not propagate. When v changes from c1/2 to c2, the crack propagation is stable;

that is, the crack propagates along the interface between the materials. The case when the

crack velocity v lies between the two limiting speed,

c1 < v < c2

is of special interest and is shown on the picture on the right (Figure 6.7). One can distinguish

three regimes of the crack propagation: when v is close to c2, the crack propagates along the

interface; when v is somewhat in the middle between c1 and c2, the steady-state crack prop-

agation is unphysical (increase in the loading ∆ results to decrease of the velocity v); when
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Figure 6.7: Relation between the crack velocity v and the dimensionless parameter ∆ for
different numbers of the layers N1 and N2.

v is close to the limiting speed c1, the crack propagation is unstable due to crack branching.

The case of branching can be observed by evaluating the relative displacements between

neighbor mass points on the upper and lower interface layers: if the relative displacements

on the lower interface layer exceed the critical separation uf , then the crack propagates not

only along the interface but towards the interior of the second material as well. Thus, crack

branching occurs in this case.
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Chapter 7

Summary and Conclusions

In the dissertation, the Riemann–Hilbert formalism was used to derive solution for several

problems from the field of Dynamic Fracture Mechanics. Many problems on crack propaga-

tion in an unbounded plane have been solved using the Riemann–Hilbert problem, which

allows for finding analytical closed–form solution suitable for studying of fracture phenom-

ena. However, many of the problems on crack propagation in domains with a boundary

(e.g. a half-plane or a strip) require much more sophisticated techniques for solving the cor-

responding Riemann–Hilbert problems. In the dissertation, we considered several of such

problems.

The vector Riemann–Hilbert problems considered here do not admit an analytical solution

in the closed form (to the author’s knowledge) and, thus, have been solved approximately

using numerical techniques. However, analytical methods have been applied in order to im-

prove both convergence and applicability of the numerical techniques. With that in mind,

the technique of a partial Wiener–Hopf factorization was proposed and applied in two cases

of a vector Riemann–Hilbert problem.

In Chapter 4, we have analyzed a two-dimensional steady-state problem on propagation

of a semi-infinite crack in a half-plane. The crack is subjected to normal and tangential

loads applied to its faces, and it propagates at speed v along the half-plane boundary free

of traction. The boundary of the half-plane breaks the symmetry of the problem, and, in

contrast to the problem for a plane, the modes I and II are coupled. We have deduced

an order-2 vector Riemann–Hilbert problem associated with the model. The coefficient is

a Hermitian matrix which cannot be factorized in a closed form. We have reduced the

problem to a system of two singular integral equations with respect to the derivatives of
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the displacement jumps. The method of orthogonal polynomials has been employed for its

solution. The unknown functions have been expanded in terms of the orthonormal Jacobi

polynomials. The coefficients of the expansions have been determined from an infinite system

of linear algebraic equations of the second kind.

We have derived formulas for the stress intensity factors KI and KII and the weight

functions WI,I , WI,II , WII,I and WII,II . By determining the energy δU released when the

crack extends to a small distance, we applied the Griffith criterion and established that the

crack starts propagating when H ≥ µT , where

H =

√
1− (v/cl)2)K2

I +
√

1− (v/cs)2)K2
II

4(cs/v)2R(v)
,

R(v) is the Rayleigh function, cs, cl are the shear and longitudinal waves speeds, µ is the

shear modulus, and T is the Griffith material constant. We have computed the stress intensity

factors, the weight functions, and the function H for different v/cR and δ (cR is the Rayleigh

speed, and δ is the distance between the half-plane boundary and the crack). It has been

found that H grows to infinity when the distance δ between the crack and the half-plane

boundary decreases while the crack speed does not vary. The function H monotonically

decreases as δ grows. When the distance δ is fixed, H, as a function of v/cR, attains its

minimum in the interval (0, 1) and grows as v/cR approaches the points 0 and 1.

In Chapter 5, we have derived the fundamental solution and the weight functions of the

transient two-dimensional problem on a semi-infinite crack propagating at constant speed

parallel to the boundary of a half-plane. The boundary of the half-plane is free of traction,

while the crack faces are subjected to general time-independent loading. We have reduced

the boundary-value problem to a vector Riemann–Hilbert problem on the real axis. We have

split the matrix coefficient into a discontinuous diagonal matrix and a continuous matrix,

factorized the discontinuous part and rewritten the vector Riemann–Hilbert problem as a

system of two convolution equations on the segment −∞ < x < 0. For numerical purposes,

it was recast as a system of two Fredholm integral equations on the segment (−1, 1). We
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have derived the Laplace transforms of the stress intensity factors and the weight functions

in terms of the solution of the convolution equations at the point x = 0. The Laplace

transform has been inverted numerically. To improve the convergence, we have applied the

Euler summation method for alternating series. We have obtained numerical results for the

stress intensity factors for the case when concentrated loads are applied to the crack faces

(at time t = 0 at the crack tip). This model problem generates four weight functions Wi,j,

i, j = I, II. It has been discovered that during a certain initial period of time, 0 < t < 2tl,

the off-diagonal weight functions Wi,j, i 6= j, approximately equal zero, and the diagonal

functions almost coincide with the ones for the case of the whole plane. For time t > 2tl, the

boundary effects play a significant role, and, in general, all the four weight functions do not

vanish and are different from the corresponding functions associated with the whole plane. It

has also been found that the dimensionless functions wi,i(0, t) =
√

1
2
πV tWi,i(0, t) (i = I, II)

tend to 1 and 0 as v/cR tends to 0 and 1, respectively (v is the crack speed and cR is the

Rayleigh speed), while wi,j (i 6= j) vanish when v/cR approach both points, 0 and 1. We

have found that wij are not monotonic functions of v/cR and attain their local maximum in

the interval (0, v/cR). As the distance δ from the crack to the boundary decreases, all the

functions wij grow. We emphasize that apart from small δ our numerical method is stable

for all parameters δ.

Based on the Freund approximate algorithm [39] for the problem on a semi-infinite crack

propagated at a nonuniform rate in the whole plane, we have developed a procedure for the

case when the crack propagates also at prescribed variable sub-Rayleigh speed in a half-plane

parallel to the boundary and when the boundary effects are significant. The implementation

of the method requires solving a system of Volterra convolution equations whose kernels are

the associated weight functions, not a single Abel integral equation as in the whole plane

case. The system of Volterra equations also admits a closed-form solution. However, in the

case of a half-plane, there is no analog of the remarkable formula for the Mode I stress
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intensity factors KI(l(t), Vk) = k(Vk)KI(l(t), 0) in any interval tk < t < tk+1 derived for

the whole plane [39]. There is another difference between the whole plane and half-plane

solutions. The displacement jumps though the crack line x2 = 0 have to vanish on the

segments li < x1 < vi−1t, i = 1, . . . , k. This property was analytically proved in [39] for the

sub-Rayleigh regime and in [46] in the transonic regime. For the half-plane problem, this

condition needs to be verified numerically for each Problem Pi (i = 0, 1, . . . , k − 1) during

the implementation of the procedure.

To compute the stress intensity factors at time t, 2tl < tk < t < tk+1, for the crack in a half-

plane, one needs to derive the weight functions for all intermediate speeds vi. We have shown

that initially, before the longitudinal wave reflected from the boundary strikes the crack and

when the weight functions coincide with those for the whole plane, the relatively simple

Freund’s algorithm works. At the same time, the solution is still different since it relies on

the static solution on a cracked half-plane, not the whole plane with the crack. When the first

longitudinal wave reflected from the half-plane boundary reaches the crack surface moving

at speed v(t) < cR, the boundary substantially affects the weight functions. To determine

the stress intensity factors at the crack tip at some time t ∈ (tk, tk+1), consequently, one

may employ the procedure presented that requires solving the same transient problem for

different constant speeds vi (i = 0, 1, . . . , k) and a system of Volterra equations to determine

at each step the loads need to be negated to make possible for the crack to advance.

As for the speeds vj (j = 0, 1, . . . ,) themselves, they have been determined by applying

the dynamic Griffith criterion and solving a certain transcendental equation associated with

each step of the algorithm.

In Chapter 6, we have constructed Wiener–Hopf factorization of one class of functions,

those with countably many singular points on the contour of a Riemann–Hilbert problem,

which make them difficult to applying numerical techniques. We have deformed the in-

tegration contour to bypass the singular points and showed that the solution of the new
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Riemann–Hilbert problem can be used to find a closed-form solution of the original one.

The main advantage of this approach is that, without recourse to the Cauchy integral, the

solution has been expressed in terms of integrals of exponentially vanishing functions, which

are easy to compute. An application of the technique to the problem on propagation of a

symmetric crack in a strip has been given in Section.

Also, we have considered a crack propagating in a strip along the interface between two

elastic materials. Under the assumption of anti-plane deformation, the lattice model of the

materials has been accepted. The lattice model allows for a better description of behavior of

stress and deformation fields near the crack tip: specifically, for supersonic speeds of a crack

propagation under anti-plane deformation, the continuum fracture mechanics results to a zero

energy release rate around the crack tip, which yields to the conclusion that such propagation

is impossible. In order to construct a feasible mathematical model of the phenomena, the

cohesive zone model (see Section 6.2) and the lattice model (see, for instance, [74]) were

proposed. It is interesting to note that even in the case of anti-plane deformation, the lattice

model yields a vector Riemann-Hilbert problem. A similar situation is in the anti-plane

strain problem of micropolar elasticity [10] when two out three modes are coupled, and the

necessity of solving a vector Riemann-Hilbert problem arises. The solution of the Riemann–

Hilbert problem was derived using the partial Wiener–Hopf factorization technique proposed

in Section 2.3.3.
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