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Abstract 
  

 This research determined the changes in phytoplankton community composition in a 

shallow subtropical lake, influenced by urban surroundings. Specifically this research focused on 

the effects of seasonal progression and episodic events on the changing inorganic nutrient 

dynamics and the effects those dynamics had on the phytoplankton community composition and 

productivity. This research quantified gross primary production and respiration to determine if 

seasonality or episodic events were acting as forcing functions of the phytoplankton community 

composition. Water samples were collected weekly at three sites on the lake’s perimeter, as well 

as following episodic events, to monitor nitrate (NO3), phosphate (PO4
-3), ammonium (NH4), 

and silicate (Si) concentrations, and diagnostic pigment concentrations. Gross primary 

production and respiration was measured following a four-hour incubation period. Results show 

that seasonality was not significant in affecting the inorganic nutrient concentrations, but 

episodic events were significant in influencing the concentrations of NO3 and PO4
-3. Gross 

primary production existed at a mean rate of 3.45 gram carbon/gram chlorophyll a/ hour (g C/g 

chl/hr), and the median respiration rate was 0.66 g C/g chl/hr. Primary production and respiration 

were not significantly affected by seasonal progression, but gross assimilation of oxygen was 

significantly increased following episodic events, and dependent on phosphate and ammonium 

concentrations. The phytoplankton community composition was determined to be 51% 

chlorophyceae, 30% cyanobacteria, 10% diatoms, and 3.4% cryptophyceae, Chlorophytes and 

diatoms significantly affected by seasonality and episodic events, but only at particular test sites, 

and the cyanobacteria and diatom populations experience a negative linear growth relationship 

with one another. The changes in community composition were the result of both seasonality and 

episodic events, and fluctuations of ammonium and phosphates, while productivity was 
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influenced solely by the occurrence of episodic events. Low biodiversity within the 

phytoplankton community exists in this lake as a result of urban runoff and eutrophication. 
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1. Introduction 
 

1.1 History 

The University Lake ecosystem in Baton Rouge, Louisiana, is a man-made drainage 

system consisting of six lakes: University Lake, City -Park Lake, Campus Lake, Crest Lake, 

Lake Erie, and College Lake (Figure 1.1.1).  University Lake is located approximately three 

kilometers east of the Mississippi River and 105 km north of the Gulf of Mexico.  

 

 

 

 

Figure 1.1.1 University Lake System, Baton Rouge, LA 
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The natural state of this region is a low-lying, sub-tropical drainage bayou. The man-made lakes 

were constructed in the early 1930’s when the existing cypress swamps were timbered and 

dammed. Construction of the lakes coincided with expansion and development of the Louisiana 

State University campus and the surrounding residential areas. This increased development of 

infrastructure and drainage systems, which further divided the lake into the six lakes present 

today (U.S. ACE 2004). Further modifications to the infrastructure and drainage systems due to 

human activity have impacted the hydrology of the lakes, limiting freshwater inflow and 

circulation. Other concerns from anthropogenic modifications include eutrophication, sewage 

infiltration, sedimentation, retreating bank edges, collapsing drainage infrastructure, and 

inadequate depth. Such water quality concerns are often limiting to the health of the ecosystem 

and could limit biodiversity as well.  

A restoration effort was made in 1977 by the U.S. Environmental Protection Agency, the 

State of Louisiana, and the City of Baton Rouge. During this period fecal coliform levels were 

very high, fish kills were common, bank erosion was becoming very dangerous, and the overall 

water quality for the six lakes was in a non-attainment status (City-Parish of Baton Rouge 1977).  

Fish kills in particular were extremely frequent between 1957 and 1978 because of oxygen 

depletion from algal decomposition (Knaus and Malone 1984). The plan for restoration included 

deepening the lakes by dredging in order to remove phosphorus-saturated sediments, increasing 

the retention time of the lake, and improving the oxygen levels in the lake, which were severely 

low due to decomposition of organics in the sediments. The areas that were dredged can be seen 

in Figure 1.1.2. Sewer system lines that were damaged and/or broken were identified by smoking 

the lines and repaired during the restoration.  In 1990, post-restoration monitoring results 

indicated that fecal coliform levels had been reduced from pre-restoration levels but were still 
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above attainment concentrations. The frequency of fish kills has decreased since the 1980’s, 

although fish kills have still been occasionally occurring in the summer months. Erosion of the 

banks has continued to be an issue for the City of Baton Rouge and is compromising the adjacent 

infrastructure (Malone et al. 1991).  Today there are new plans for lake maintenance and 

restoration designed by the New Orleans District Army Corps Of Engineers, including another 

dredging of the four largest lakes, but the plans are very costly, and there has been no progress to 

date. 

 

 1.2 Hydrology 

The Baton Rouge climate is subtropical, with a 30-year normal annual precipitation of 

155 cm (Ruley and Rusch 2002). Damming of Bayou Duplantier began in the 1920’s and 

flooded the cypress swamp. Completion of the lakes and the 1977 restoration effort has yielded a 

total water surface area of 120 hectares (ha). The watershed of the system is approximately 486  

ha of land that was historically part of the Mississippi River floodplain before the levee system 

was constructed (Malone et al. 1985).  Approximately 140 outflows enter the lakes from storm 

drains in the watershed. Corporation Canal was built during the 1930’s as a means to reroute 

runoff from the urban areas of Baton Rouge surrounding the lakes. The canal is located on the 

south and west sides of University Lake, and drains into Bayou Duplaintier downstream of the 

system. Campus Lake and College Lake still drain into Corporation Canal and are not connected 

to the rest of the system; the remaining four lakes are connected through a series of culverts and 

risers that outflow from University Lake into Bayou Duplantier through a spillway (Malone et al. 

1985).  The fetch of the system is oriented from north to south. University Lake is the largest 

lake in the system at approximately 80 ha. Its watershed includes the watersheds of the smaller 
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City Park Lake, Crest Lake, and Lake Erie, a total area of 425 ha. University Lake has an 

average hydraulic retention time (HRT) of approximately 50 days (Malone et al. 1985).  This 

average HRT is very similar to the rest of the lakes in the system, with the exception of Crest 

Lake, which has an average HRT of 561 days (Malone et al. 1991). The average depth of 

University Lake is 0.86 m (Mesmer 2008).  Depth and volume vary slightly throughout the year 

because of changes in precipitation and evapotranspiration.  The University Lake system is 

shallow and eutrophic.  Many characteristics commonly seen in shallow lake environments are 

apparent in the University Lake system.  Shallow lakes tend to have highly variable physical and 

chemical characteristics (Petaloti et al. 2004).  They lack a stable thermocline, experience 

frequent mixing of the entire water column, experience re-suspension of sediments, and in urban 

environments are likely to receive large inputs of allochthonous nutrients (Petaloti et al. 2004).  

Shallow lakes have water quality conditions that reflect these characteristics. Phosphorous 

concentrations, turbidity, chlorophyll a concentrations, and algal blooms display a much 

different pattern in shallow lakes compared to deeper lakes in the same locality (Petaloti et al. 

2004).  All of these factors are dependent on the external nutrient loads, which are influenced by 

the surrounding environment. 

 

1.3 Urban Water Bodies 

University Lake is surrounded by a portion of Baton Rouge that is primarily residential with 

respect to development.  An interstate highway bridge passes over City Park Lake roughly 1 km 

north of the juncture of University Lake and City Park Lake.  The surrounding urbanized area 

very likely subjects the University Lake system to higher levels of pollution runoff than a more 

isolated water body might experience (Lund 1972).  
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Urban environments are much more prone to be associated with non-point source pollution 

because of the large percentage of impervious surfaces present. Impervious surfaces prevent 

Figure 1.1.2 Corporation Canal and 
the University Lake drainage 
system, Lakeshore Drive, Baton 
Rouge 
April, 12 2012 
Photo A: Corporation Canal and drainage 
to Bayou Duplantier 
Photo B: Culvert between University Lake 
and Corporation Canal 
Photo C:  Culvert draining into Corporation 
Canal 
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infiltration into the ground, and surface rainfall and waters become contaminated with nutrients, 

heavy metals, pesticides, and toxic organic pollutants. Polluted runoff can eventually reach local 

water bodies and alter the ecosystem (Paul and Meyer 2001). Such alterations include effects on 

the decomposition of leaf-litter, the natural cycling of carbon, removal of nutrients from the 

water column, primary and secondary production, and algal community composition. Algal 

community composition has been shown to be a sensitive measure of water quality where non-

point source pollution is concerned (Johnson et al. 2011).  
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2. Literature Review 

2.1 Nutrient Loading 

External nutrient loads are vital to the health and functionality of a lake ecosystem.  

Inputs of nutrients and recycling thereof sustain the growth of aquatic plants in a natural lake.  

Nitrogen and phosphorous often limit the productivity of phytoplankton.  Compared to other 

nutrients, nitrogen and phosphorus are generally in short supply relative to cell growth 

requirements (Dodds et al. 2002).  Increases in nitrogen and phosphorous to an otherwise 

oligotrophic water body will result in increases in phytoplankton biomass (Vanni 1987).  The 

link between nutrient concentrations and algal biomass can have obvious effects on the health 

and community composition of a water body.  Without tertiary treatment, sewage effluent 

contains high concentrations of nitrogen and phosphorus, which can lead to algal blooms and 

have major impacts on the ecology of a lake (Edmondson and Lehman 1981).  The amount of 

phosphorous present in a water body is closely related to the quantity of phytoplankton.  

Seasonality of a lake is reflected in primary productivity levels, and in temperate lakes there is 

typically a high correlation between phytoplankton levels in the spring/summer and the 

concentration of phosphorous during the winter (Edmondson and Lehman1981).  Ammonium is 

a form of nitrogen available to all phytoplankton, and nitrate can be used as a nitrogen source by 

any species with the ability to carry out assimilatory nitrate reduction.  Silicates are an important 

essential nutrient for diatoms.  Discharges of these nutrients, along with phosphorus, may have 

dramatic effects on phytoplankton biomass and community composition.  The relative abundance 

of nutrients can affect phytoplankton species composition.  Phytoplankton communities respond 

to both nutrient supply as well as ratios of essential nutrients.  For example, nitrogen-fixing 

cyanobacteria are dominant at low N:P ratios, and diatom species are dominant at high Si:P 
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ratios (Vanni 1987).  The relative supply of nutrients will influence phytoplankton community 

composition because of the nutritional preferences of different groups of algae. 

 

2.2 Eutrophication 

Over time, nutrients are assimilated by plants. In some cases herbivores are unable to 

keep pace with algal production, and a phytoplankton bloom occurs.  When nutrients are 

exhausted and/or conditions become unfavorable for algal growth, the algae may die and decay.  

When this happens, the decomposition process may strip virtually all oxygen from the water, the 

result being fish kills and septic conditions.  Eutrophication, or the enrichment by plant nutrients, 

is a natural process, but it can be accelerated by anthropogenic activities (Lund 1972).   

The University Lake watershed is in an urbanized area, and the lakes experience nutrient 

inputs from point and non-point pollution sources.  Due to the shallowness of the University 

Lake system, its resident organisms are much more vulnerable to loading of nutrients and 

pollutants.  The system is highly eutrophic, most likely from a combination of street runoff and 

leaky sewer lines.  The former may in part reflect use of fertilizer on lawns and gardens.  

Eutrophication can significantly alter productivity, nutrient cycling, water quality, biodiversity, 

and health of a water body (Paerl et al. 2007).  Phytoplankton are especially responsive to 

eutrophication of a lake with a long enough residence time to permit the development of algal 

blooms.  In streams and fast-moving waters, phytoplankton are not as much of a concern as are 

periphyton and rooted aquatic plants, which cannot be flushed out of the system. Chlorophyll is a 

reliable indicator of nutrient enrichment because of the fact that it is found in all phytoplankton 

(Cottingham and Carpenter 1998).  In relation to eutrophication, increases in chlorophyll could 

be used to determine changes in nutrient availability and inputs of excess nutrients.  Sewage and 
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fertilizers contain basic nutrients vital to plant growth.  When large quantities of nitrogen and 

phosphorous enter a water body, whether from natural or anthropogenic sources, a spike in algal 

growth often occurs, particularly in tropical and sub-tropical climates.  These algal blooms can 

be potentially harmful to the fauna of a lake if the algae release toxins into the water (Van Dolah 

2000) or if the subsequent decomposition of the algal bloom reduces oxygen concentrations to 

stressful levels, a condition referred to as hypoxia (Paerl et al. 1998).  The virtual absence of 

oxygen (anoxia) will likely have devastating effects (Paerl et al. 1997) and is associated with a 

shift from aerobic to anaerobic respiration.  This can lead to fish kills and undesirable 

consequences for the lake.  The relationship of nutrient availability to algal biomass is quite 

strong in a limnetic environment, and knowledge of that relationship can be used to manage 

problems caused by eutrophication and to monitor water quality (Dodds et al. 2002). 

 

2.3 Primary Production 

Phytoplankton are responsible for the majority of primary production in most aquatic 

environments.  The energy stored during primary production moves through the food chain and 

supports secondary production at higher trophic levels.  Nutrient loading can have noticeable 

impacts on the phytoplankton community, whose biomass, composition, and productivity will 

likely have major effects on organisms at higher trophic levels, on ecosystem processes, and on 

the ecosystem overall (Paerl et al. 2007).  An addition of nitrogen, phosphorous, or both nutrients 

has been demonstrated to stimulate algal growth and alter the primary production cycle 

(Francouer 2001).  Growth may also be accelerated in shallow waters because microbial activity 

in the sediments can maintain nutrient levels for algal growth (Eppley 1972).  In temperate and 

boreal latitudes seasonality will also affect the primary production cycle (Heinrich 1962).  The 
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seasonal increase in temperature and irradiance in the spring and summer months seen in 

temperate and boreal latitudes leads to the vernal blooming of phytoplankton and an increase in 

primary production (Eppley 1972).  Seasonal variations in temperature, turbulence, and 

environmental disturbances can put stress on phytoplankton and thus temporally alter the 

community composition. Under more severe conditions, certain algal species may be 

outcompeted by other more adaptive species that will come to dominate the community 

composition (Aubry and Acri 2004).  Seasonal progression of phytoplankton will also be 

dependent on the particular environment.  The ability of a body of water to develop a seasonal 

thermocline and stratified layers encourages particular algal forms and alters the planktonic 

community composition (Proulx et al. 1996).  

 

2.4 Limiting Nutrients 

Two main factors that control progression of phytoplankton growth are light and 

nutrients.  Nutrient deprivation inhibits growth in certain phases of the phytoplankton cell cycle, 

and nutrient limitation may also lead to a difference in duration of growth phases (Pascual and 

Caswell 1997).  Even in a constant environment the structure of the phytoplankton population 

varies over time (Pascual and Caswell 1997).  Interaction of light and nutrients and the effect 

those factors have on different algal groups can greatly affect the community composition.  In a 

natural environment, the length of daylight and angle of the sun will vary seasonally, and effects 

on primary production rates can be documented.  Other factors, such as the grazing of 

herbivorous zooplankton, sedimentation, water column stability, environmental disturbances, and 

benthic organism activity may also have effects on the phytoplankton community structure 

(Mallin and Paerl 1994, Lewis 1990).  Species richness and diversity of the phytoplankton 
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community are generally greater than the number of limiting resources, and it has been shown 

that disturbances can increase diversity and species richness within the community structure 

(Interlandi and Kilham 2001).  Although disturbances can increase species richness, the stability 

of the water column, and the health of the environment must be taken into account.  Limiting 

resources and disturbances are both factors that influence the diversity of phytoplankton species.  

Frequency and intensity of disturbance may increase or decrease diversity, depending on nutrient 

characteristics of the water body. Frequent disturbances can cause dominance by a few species 

and decrease the diversity of the community composition (Grover and Chrzanowski 2004).  The 

impacts of external forcing factors are important considerations when assessing the 

phytoplankton community composition of a water body, but characteristics of the phytoplankton 

themselves must also be taken into account.  The size of particular phytoplankton species may 

have an effect on the transfer efficiency of energy.  In eutrophic systems, the energy generated 

during primary production is the basis for the energy that will flow up through higher trophic 

levels.  Average size of phytoplankton generally increases with community biomass, and larger 

algae tend to be better competitors in dense communities, whereas the smaller varieties have the 

competitive advantage in more sparse communities (Duarte et al. 1990).  For example, a shallow, 

eutrophic lake without a thermocline would be better suited to large forms because increased 

vertical mixing prevents them from sinking out of the water column (Eppley 1972).  Dense 

communities are more likely to be seen in a eutrophic environment, so it is reasonable to expect 

that slightly larger algal species represent a larger portion of the algal community in a eutrophic 

environment as opposed to an oligotrophic environment. Eutrophic environments experience 

many water quality issues, most of which reflect an imbalance between algal production and 
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consumption.  Identifying the phytoplankton community structure of a water body helps one to 

understand the natural and anthropogenic conditions and forces at work in an ecosystem.  

 

2.5 Diagnostic Pigments 

A pigment profile is useful for identifying the phytoplankton groups present in a water 

body, as certain pigments are representative of specific taxa.  The composition of the algal 

community is a function of environmental conditions.  In eutrophic lakes with dense algal 

communities, cyanobacteria tend to be dominant (Duarte et al. 1992).  Particular community 

structures develop as a result of trophic energy transfer efficiency, nutrient availability, and the 

current environmental conditions.  The combination of these natural factors determines which 

algal groups will dominate a particular water body.  Since certain pigments, or combinations of 

pigments, are unique to particular algal groups, an analysis of the concentrations of those 

particular pigments can be used to estimate the biomass of that algal group.  Chlorophyll a is the 

major light-harvesting pigment for photoautotrophs and can be used as a measure of total algal 

biomass.  Pigments can be used as biomarkers of phytoplankton groups and even determine 

community composition with seasonal progression (Deydier-Stephan et. al. 2003).  An example 

of the use of a pigment biomarker would be using chlorophyll b, lutein, violaxanthin, and β-

carotene concentrations to identify Chlorophyta (green algae).  This particular pigment 

combination is generally in high concentration when green algae are present.  Diagnostic High 

pressure liquid chromatography (HPLC) pigment markers are excellent not only for measuring 

biomass, but for environmental monitoring of phytoplankton as well.  HPLC is the preferred 

technique for determining phytoplankton community composition (Paerl et al. 2003).  
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2.6 Community Composition 

The algal community composition of a lake environment can be dependent on many 

natural factors. Nutrient concentrations can greatly influence the success or demise of particular 

algal species. For example, it has been shown that the high success of cyanobacteria can often 

inhibit growth of diatoms. In eutrophic lakes in particular, it is thought that cyanobacterial 

dominance is due to allelopathic effects (Keating 1987). The initial cyanobacterial growth leaves 

behind allelopathic substances, which inhibit future diatom growth. Nutrient levels and 

circulation patterns are known to have an effect on the phytoplankton community structure of a 

body of water, but there are more factors to take into account. Interspecies competition always 

exists in a natural environment but is not the only factor that affects community composition of 

phytoplankton. Zooplankton as well as planktivorous fish can be responsible for changes in 

phytoplankton community composition. Changes in terms of a trophic cascade can also be 

responsible for altering the phytoplankton community composition as well as changes to 

population size.  Zooplankton health is often a direct result of phytoplankton health, and large 

numbers of zooplankton do not always lead to a decline in phytoplankton (Kerfoot et al. 1988). 

Of course, predation does play a part in the regulation of phytoplankton concentrations. 

Carnivorous large-bodied zooplankton do have the ability to clear the water column, although in 

shallow, eutrophic environments, phytoplankton growth is so rapid that this cannot generally be 

accomplished. The presence of fish can often result in higher phytoplankton populations, 

especially when zooplankton populations are high, as the fish will feed on the larger zooplankton 

(Proulx et al. 1996). The impact of high-trophic-level fish on phytoplankton biomass is 

determined by whether their presence increases or decreases the concentration of herbivores 

(Brett and Goldman 1996). Predatory fish will influence the abundance of planktivorous fish, 
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which will determine the size and composition of the zooplankton community. The zooplankton 

community composition, particularly whether the community has a large representation of 

carnivorous zooplankton, will in turn influence the abundance, community composition, and 

productivity of the phytoplankton community (Carpenter et. al 1987). An example of this trophic 

control can be seen in the highly eutrophic Lake Washington. Phytoplanton would be considered 

trophic level 1, and any increase of biomass on an even numbered trophic level would be 

expected to reduce the phytoplankton population. It can be assumed that any increase of biomass 

on an odd numbered trophic level would be expected to increase the phytoplankton population. 

In the 1970’s, Lake Washington’s smelt population reduced the population of predatory 

Neomysis mercedis. Low neomysis population allows for an increase in daphnia population, 

thereby reducing the phytoplankton population (Edmondson and Litt 1982).  

Disturbances may also be able to affect the variations in quantity of certain algal forms, 

as well as presence or absence. Disturbances are generally measured in intensity and frequency. 

High frequency and low intensity has been linked to higher biological diversity in a natural water 

body than low frequency, high intensity disturbances (Sommer 1995). Diversity in relation to 

disturbance is calculated based on the assumption of an existing negative relationship between 

disturbance intensity and frequency (Gaedeke 1986). Most phytoplankton communities naturally 

exhibit a high level of species diversity. It is thought that disturbances allow an intermediate 

period for species succession to occur. Disturbances of medium intensity are also favorable for 

the maintenance of high species diversity (Hambright and Tamar 2000).  
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3. Methods 

3.1 Study Site 

University Lake is located adjacent to the Louisiana State University campus in Baton 

Rouge, Louisiana (Latitude 30°24'N, Longitude 91°10'W). It is the largest lake of the system and 

is surrounded by five smaller lakes. The lake perimeter is 6.7 km, and the combined shoreline 

perimeter of all six lakes is approximately 10 km. The climate in this area is considered 

subtropical, with a long, hot summer period, and a short, mild winter.  Long-term climate data 

(1931–2000) collected by the National Weather Service (station ID# 160549) at the Baton Rouge 

Ryan Airport shows a historical mean annual temperature of 19.9 °C. The highest historical 

monthly mean (27.9 °C) occurred in July, and the lowest historical monthly mean (19.9 °C) 

occurred in January. Historical average annual temperature trends can be seen in Figure 3.1.1, 

and the climate normals are displayed in Figure 3.1.3. 

 

 
Figure 3.1.1 Average Annual Temperature 
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Historically, the greatest monthly precipitation levels have occurred in the month of June. 

These high June precipitation levels reflect the rainy season that has existed in the past sixty 

years during the summer months, and a decrease in precipitation experienced throughout the fall. 

Average annual accumulated precipitation from 1950–2010 was 148 cm (Fig. 3.1.2). Weather 

data for the sampling period from February 2011–February 2012 were collected at a residential 

station on the lake’s perimeter (ID LA-EB-2), operated by an employee of the Southern Regional 

Climate Center.    

 

         
Figure 3.1.2 Average Annual Precipitation 
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Figure 3.1.3 Temperature and Precipitation Normals for Baton Rouge, LA, Courtesy of the 

Southern Regional Climate Center, LSU 
 

 

3.2 In-situ Sampling 

Water samples for this project were taken from three locations on the lake’s perimeter. 

Each site is in an area of the lake that experiences heightened human-environment interaction. 

Sites can be seen in Figure 3.2.1. Site 1: Dalrymple is located on Dalrymple Drive, a few meters 

from the intersection of Dalrymple Dr. and Lakeshore Dr. This site is located on a land bridge 

that divides University Lake and Crest Lake. A railed bridge area provided a convenient 

sampling point for collecting water. Site 2: Campus is located on West Lakeshore Drive, where 
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South Campus Drive becomes West Lakeshore Drive. This site is adjacent to the LSU 

dormitories. The bank edge at this location was fairly stable and facilitated taking water samples. 

Site 3: Stanford is located on Stanford Street, at what is called the Stanford Beach. It is a popular 

area for recreation and has a large parking lot as well as a boat launch. The boat launch docks 

were used for water collection. These sites were chosen because they each represent a different 

fraction of University Lake and experience a unique input and output hydrology in comparison to 

the other sites.   

 

 

  

 

 

 

 

 

 

 

 

 

  

 

Figure 3.2.1 Test Sites 

 

 Water samples were taken on Wednesday of each week. These regular samples act as the 

control samples for the set. Samples were also taken two days after an episodic event occurred to 

allow enough time for the development of a phytoplankton community response. An episodic 
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event was defined as any precipitation event in which more than one centimeter of precipitation 

fell in a one-hour period. On every sample date, two liters of water were collected at each site for 

analysis of diagnostic pigments, inorganic nutrients, and photosynthetic and respiration rates 

assayed by changes in dissolved oxygen. Measurements of water temperature were also taken at 

each location with a thermometer. Water was collected using a homemade Niskin bottle. The 

Niskin bottle was a 500 mL volume bottle, supported by a PVC pipe casing. A length of rope 

was attached on both sides of the PVC pipe, and a metal clamp marker was used to ensure that 

samples would be collected at a uniform depth of 30 cm. Immediately after water collection, the 

samples were returned to the lab for initial analysis.  

 

3.3 Measurement of Inorganic Nutrients  

 Nutrient analysis for phosphates, silicates, and ammonium were carried out 

according to the methods described by Strickland and Parsons (1972).  The concentrations of 

inorganic nutrients are detected beginning with the limit of detection for each method. The limit 

of detection when referring to inorganic nutrients is the smallest concentration that can be 

measured with reasonable certainty, based on the method of analysis (Thomsen et al. 2003). 

 Silicate analysis is accomplished by allowing the water sample to react with molybdate 

under conditions that result in the formation of silicomolybdate, phosphomolybdate, and 

arsenomolybdate complexes. A reducing solution of metol and oxalic acid is added to reduce the 

silicomolybdate complex, yielding a reduction compound. The reducing solution also 

decomposes the phosphomolybdate and arsenomolybdate to prevent any phosphate or arsenate 

interference. The extinction was measured at 8100 Å using a Varian Cary 50 WinUV 

spectrophotometer.  
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 Phosphate analysis allows the water sample to react with a composite reagent of 

molybdic acid, ascorbic acid, and trivalent antimony. The resulting complex heteropoly acid is 

reduced to create a blue solution whose extinction was measured at 8850 Å. 

 Nitrate analysis is conducted by reducing the nitrate in a water sample to nitrite by 

passing the water sample through a column of granulated copper-cadmium filings. This process 

allows detection of nitrate plus nitrite. The nitrite produced by this oxidation-reduction reaction 

was determined by diazotizing sulphanilamide and combining it with N-(1-napthyl)-

ethylenediamine to form a pink solution whose extinction was measured at 5430 Å.   

 Determination of ammonia-ammonium was conducted by treating the water sample in an 

alkaline citrate medium with sodium hypochlorite and phenol. Sodium nitroprusside acts as a 

catalyst to form a blue solution. The extinction was read at 6400 Å. 

 Thomas Blanchard of Analytical Services in the Department of Oceanography and 

Coastal Sciences at LSU, using an OI Analytical Flow Solutions IV autoanalyzer, performed an 

additional nutrient analysis for all four measured inorganic nutrients.  

 

3.4 Measurement of Photosynthetic and Respiration Rates 

3.4.1 Changes in Dissolved Oxygen Using the “Light and Dark Bottle” Method 

 Photosynthetic and respiration rates measured from February 23, 2011 through October 

12, 2011 were analyzed using the “light-and-dark-bottle” method. Since the majority of aquatic 

photosynthesis is carried out by phytoplankton, a glass BOD (biochemical oxygen demand) 

bottle can be a tool for creating a representative environment to determine the approximate 

photosynthetic and respiration rates of an area. When photosynthesis or respiration occurs, the 

associated changes in the concentrations of oxygen and carbon dioxide in the bottle provide 
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estimates of the photosynthetic and respiration rates (Strickland and Parsons 1972). BOD bottles 

were used to measure the initial oxygen concentration at each of the sites by immediately adding 

the required reagents according to the procedure developed by Strickland and Parsons 

(Strickland and Parsons 1972). BOD bottles were also used for the light and dark incubations. 

The “light” bottles were placed in front of fluorescent lights in the lab at a standard irradiance of 

400 µmol quanta m–2 s–1. The use of a standard irradiance allows for a more accurate assessment 

of the physiological condition of the algae. This irradiance is more than adequate to saturate 

photosynthetic rates (Davis and McIntire 1983). Naturally varying light has obvious effects on 

metabolic rates because light is the most basic requirement for photosynthesis. Using a constant 

light source provides a consistent reflection of the physiological condition of the algae. The 

“light” bottles were placed in front of the fluorescent lights for four hours to allow 

photosynthesis and oxygen liberation. “Dark” bottles were immediately wrapped in aluminum 

foil to protect the samples from any light infiltration and to allow respiration and oxygen uptake 

to occur. The dark incubation also lasted four hours. Both light and dark bottles were incubated 

in the Environmental Microbiology lab, kept at 19-20°C. 

The procedure used to determine oxygen concentrations following the incubations was a 

modification of the Winkler method, where a divalent manganese solution, followed by strong 

alkali is added to the sample. The precipitated manganous hydroxide is dispersed evenly 

throughout the water sample. Any dissolved oxygen oxidizes an equal amount of divalent 

manganese to basic hydroxides of higher valency states. Once the solution is acidified in the 

presence of iodide, the oxidized manganese reverts to the divalent state and iodine is liberated. 

The iodine is then titrated with a standardized thiosulphate solution (Strickland and Parsons 

1972). This method has a precision at the 0.7 mg-at/liter level. The assimilation numbers, or 
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photosynthetic rate per unit chlorophyll, can then be determined, as well as the photosynthesis to 

respiration ratio (P/R).  

 

 3.4.2 Changes in Dissolved Oxygen Using a YSI 

 Photosynthetic and respiration rates measured between October 12, 2011 and February 

15, 2012 were analyzed using a YSI 5905 BOD Probe dissolved oxygen meter. The YSI was 

calibrated before every use with de-ionized water from the Environmental Microbiology lab at 

LSU. Dissolved oxygen concentrations were recorded from an initial bottle, light bottle, and dark 

bottle for each site. Water samples from University Lake were saturated with oxygen, and 

required de-gassing.  De-gassing the “light” and “dark” bottles with nitrogen gas prevented them 

from becoming super-saturated with oxygen so photosynthesis and respiration could be 

measured accurately. The light and dark bottles were incubated for four hours. Once 

measurements of dissolved oxygen in mg/mL were taken, the assimilation number could again 

be determined.  

 

 3.5 Measurement of Diagnostic Pigments 

 High performance liquid chromatography (HPLC) pigment analyses were carried out at 

the University of Hawaii at the Center for Marine Microbial Ecology and Diversity (CMMED), 

according to the following method described by Bidigare et al. (2005). Filters for pigment 

analyses were extracted in 3 mL of HPLC-grade acetone in culture tubes with 50 µL of an 

internal standard (canthaxanthin) at 4 oC for 24 hours.  Filters were then hand ground in acetone 

using a glass-glass tissue homogenizer to ensure complete extraction of all pigments from 

phytoplankton cells. The extracts were then vortexed and centrifuged for five minutes to remove 
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cellular and filter debris.  Mixtures of 1-mL extracts plus 0.3-mL HPLC grade water were 

prepared in opaque auto-sampler vials and 200 µL injected onto a Varian 9012 HPLC system 

equipped with a Varian 9300 auto-sampler, a Timberline column heater (26o C), and a Waters 

Spherisorb® 5-µm ODS-2 analytical (4.6 x 250 mm) column and corresponding guard cartridge 

(7.5 x 4.6 mm).  Pigments were detected with a ThermoSeparation Products UV2000 detector 

(λ1 = 436, λ2 = 450).  A ternary solvent system was used for pigment analysis:  Eluent A 

(methanol:0.5 M ammonium acetate, 80:20, v/v), Eluent B (acetonitrile:water, 87.5:12.5, v/v), 

and Eluent C (100 % ethyl acetate).  Solvents A and B contained an additional 0.1 % 2,6-di-ter-

butyl-p-cresol (0.01 % BHT, w/v; Sigma-Aldrich) to prevent the conversion of chlorophyll a into 

chlorophyll a allomers.  The linear gradient used for pigment separation was a modified version 

of the Wright et al. (1991) method: 0.0' (90 % A, 10 % B), 1.00' (100 % B), 11.00' (78 % B, 22 

% C), 27.50' (10 % B, 90 % C), 29.00' (100 % B), 30.00' (100 % B), 31.00' (95 % A, 5 % B), 

37.00' (95 % A, 5 % B), and 38.00' (90 % A, 10 % B) (Bidigare et al., 2005).  Eluent flow rate 

was held constant at 1.0 mL min–1.   

 Chlorophyll a is the major light harvesting pigment for photosynthesis, but accessory 

pigment compounds can extend an organism’s optical collection window and prevent cellular 

damage at high growth irradiances (Christensen 2011). Use of an HPLC to simultaneously 

determine the concentrations of several carotenoids and chlorophylls and their degradation 

products allows for the isolation of particular pigments. Certain diagnostic pigments are 

representative of particular algal groups. A table of major freshwater algal classes and their 

diagnostic pigments can be seen in the Appendix. Those pigment signatures can then be matched 

to specific algal groups. Accessory pigments make up an alga’s antenna (Falkowski and Raven 

2007), which is used to capture wavelengths of light not effectively trapped by chlorophyll a. 
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The ratio of accessory pigments to chlorophyll provides the key to identifying what types of 

algae are present in the University Lake system. A list of pigments to be measured by HPLC can 

be seen in Table 3.5.1.  

 

Table 3.1.5 Pigments to be Measured by HPLC  

Xanthophylls Apocarotenoids Carotenes Chlorophylls 
Chlorophyll 
breakdown 

product 

Lutein Peridinin α carotene Chlorophyll a Chlorophyllide 

Violaxanthin  β carotene Divinyl  

Diadinoxanthin   Chlorophyll b  

Diatoxanthin     

Alloxanthin     

Fucoxanthin     

19′-butanoyl-     

oxyfucoxanthin     
19′-hexanoyl-

oxyfucoxanthin     

Prasinoxanthin     

Zeaxanthin     
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4. Results 
 

4.1 Analysis of Inorganic Nutrients 

 The development of algal blooms and changes in algal community composition are 

heavily influenced by nutrient inputs. An input of allochthonous nutrients will allow for an 

increased rate of photosynthesis and growth of phytoplankton. Many factors contribute to the co-

existence of multiple species during a bloom, and certain factors provide an advantage for 

particular species. When nutrient supplies fluctuate, multiple species are able to emerge and 

bloom, based on their nutrient preferences (Ebenhoh 1987). Changing mortality rates during a 

time of fluctuating nutrient availability can cause fluctuations in species abundance, but can 

contribute to the dominance of certain algal species in that period of time (Kishimoto 1990).  

 This analysis focused on the fluctuation of inorganic nutrient levels, and whether 

seasonality or episodic events had a greater influence on those fluctuations. A summary of the 

nutrient concentrations can be viewed in Table 4.1.1. Nitrate levels remained low throughout the 

experiment, and the three sites experience different peak levels on different dates. Phosphate 

levels were expected to be low over the course of the experiment because University Lake is 

phosphate limited (Mesmer 2010). Ammonium, when compared to the other inorganic nutrients 

measured in University Lake, had the largest swings in concentration levels, reaching very high 

values as well as values below the limit of detection. Silicates in University Lake have been 

shown to be abnormally high when compared to marine water bodies, but more comparable to 

silicate levels in other similar sub-tropical freshwater lakes (Pacheco et al 2010). Each site’s 

individual nutrient profiles can be seen in Figure 4.1.1-4.1.4. 
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Table 4.1.1  Summary of Nutrient Concentrations (µM) at Sites 1–3. *<LoD= levels 
below the limit of detection 

 

 

 

 

 
     Figure 4.1.1 Concentration of Nitrates by Test Site 
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Site Nitrate Phosphate Ammonium Silicate 

 mean min max mean min max mean min max mean min max 

1 0.85 ± 

1.7 

< 

LoD 

9.6 0.74 ± 

0.85 

0.27 5.2 5.8 ± 

6.5 

< 

LoD 

33 70 ±  26 24 140 

2 0.74 ± 

1.3 

< 

LoD 

4.9 0.84 ± 

0.6 

0.18 2.4 4.2 ± 

5.1 

0.31 21 150 ±  

106 

23 521 

3 1.5 ± 

2.1 

< 

LoD 

8.2 0.81 ± 

1.3 

0.24 8.0 7.1 ± 

7.0 

< 

LoD 

32 74 ±  30 29 125 
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Figure 4.1.2 Concentration of Phosphates by Test Site 

  

  

  

 

Figure 4.1.3 Concentration of Ammonium by Test Site 
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Figure 4.1.4 Concentration of Silicates by Test Site 

 

 

 Analysis of variance (ANOVA) was performed to determine if concentrations of 

inorganic nutrients were affected by seasonal progression, with the null hypothesis being that 

there would exist no seasonal pattern in the concentrations of inorganic nutrients. A one-way 

ANOVA, or the non-parametric Kruskal Wallis counterpart, was conducted to test the effects of 

seasonality on each inorganic nutrient measured at the three test sites. The unique hydrology of 

each site required that inorganic nutrient levels be considered individually by site. Seasonality in 

this case can be considered the independent variable and nutrient concentrations the dependent 

variable.  

 To filter out the effects of episodic events, the sampling dates following an event were 

excluded from the data. The nutrient concentrations were then assigned to one of four groups 

based on the season of the year when the samples were taken.  The null hypothesis was that the 
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variance between groups was no bigger than the variance within groups. The results were 

considered significant if the type I error rate was less than 0.1. Tests for normality were 

performed to determine whether parametric or non-parametric testing would be used, and the 

results of those analyses are summarized in Table 4.1.2. There was no evidence of seasonality 

affecting the variance in nitrate concentrations at any of the sites. 

 

Table 4.1.2 Statistical Results for Effects of Seasonality on Nitrate Concentrations 

Site Data Distribution Test Performed Resulting p Value 

1 Normal ANOVA 0.17 

2 Non-normal Kruskal Wallis 0.74 

3 Non-normal Kruskal Wallis 0.15 

  

  

 The procedure conducted for the effects of seasonality on variance in nitrate 

concentrations was repeated to test for the effects of seasonality on the variance of phosphate 

concentrations. These results are summarized in Table 4.1.3. There is no evidence that 

seasonality is affecting the phosphate concentrations at University Lake. 

 

 

 

 

 

 



 30 

Table 4.1.3 Statistical Results for Effects of Seasonality on Phosphate Concentrations 

Site Data Distribution Test Performed Resulting p Value 

1 Non-normal Kruskal Wallis 0.15 

2 Normal ANOVA 0.20 

3 Non-normal Kruskal Wallis 0.23 

 Ammonium concentrations at each site were analyzed for effects of seasonality using the 

same procedures for nitrates and phosphates. Similarity of the variances of the ammonium 

concentrations justified the use of ANOVA for those tests, the results of which are summarized 

in Table 4.1.4. Overall, there is no evidence to conclude that seasonality is affecting the 

ammonium concentrations.  

 

Table 4.1.4 Statistical Results for Effects of Seasonality on Ammonium Concentrations 

Site Data Distribution Test Performed Resulting p Value 

1 Normal ANOVA 0.13 

2 Normal ANOVA 0.35 

3 Normal  ANOVA 0.10 

 

 

 Silicates were analyzed for effects of seasonality using ANOVA, due to the similarity of 

the variances of silicate concentrations. The results of these tests are summarized in Table 

4.1.5.There was no evidence that seasonality affects the silicate concentrations at Sites 1 and 2, 
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however the ANOVA for the effects of seasonality on silicate concentrations at Site 3 indicated 

that the silicate concentrations are being significantly affected at Site 3.  

 

Table 4.1.5 Statistical Results for Effects of Seasonality on Silicate Concentrations 

Site Data Distribution Test Performed Resulting p Value 

1 Normal ANOVA 0.50 

2 Normal ANOVA 0.37 

3 Normal ANOVA 0.02  

  

  

 Because seasonality was concluded to be significantly affecting only the silicate 

concentrations at Site 3, it seems reasonable to conclude that seasonal phenomena are not 

primarily responsible for changes in inorganic nutrient levels in University Lake. The nutrient 

concentrations may not be driven by seasonal progression, but it could be possible that episodic 

events are having a significant effect on the availability of nutrients. All sampling dates were 

included to test for a difference in inorganic nutrient concentrations due to episodic events. 

These events were defined as storms in which more than one centimeter of precipitation fell in 

one hour, weather in which wind speeds caused visible surface disturbance, and fish kills.  

 Lilliefors tests for normal distribution were again performed on each set of data by site, to 

determine whether parametric or non-parametric testing was to be used. The results of these tests 

are summarized in Table 4.1.6. Episodic events did have a significant affect on the nitrate 

concentrations at Sites 1 and 3, as the nitrate concentrations following episodic events were 

significantly different from the background data, but there is no evidence to conclude that 
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episodic events are significantly affecting the nitrate concentrations at Site 2. An additional 

ANOVA test also provides evidence that the nitrate concentrations are not significantly different 

between test sites (p=0.129).  

 

Table 4.1.6 Statistical Results for the Effects of Episodic Events on Nitrate Concentrations 

Site Data Distribution Test Performed Resulting p Value 

1 Normal ANOVA 0.074 

2 Non-normal Kruskal Wallis 0.11 

3 Normal ANOVA 0.035 

 

 

 The procedures used for statistical testing for the effects of episodic events on nitrate 

concentrations were repeated for phosphates, the results of which are summarized in Table 4.1.7. 

There was no evidence to suggest that phosphate concentrations after episodic events were 

significantly different from background phosphate concentrations at Sites 1 and 3, but Site 2 did 

experience a significant difference. An additional KW to test for differences in phosphate 

concentrations between sites was performed, but it did not provide sufficient evidence that the 

concentrations were significantly different between sites (p=0.068). 
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Table 4.1.7 Statistical Results for the Effects of Episodic Events on Phosphate 
Concentrations 
 
Site Data Distribution Test Performed Resulting p Value 

1 Non-normal Kruskal Wallis 0.34 

2 Normal ANOVA 0.031 

3 Non-normal Kruskal Wallis 0.90 

 
 

 There was no evidence to suggest that the occurrence of episodic events significantly 

affects the ammonium concentrations in University Lake. A summary of the statistical tests can 

be seen in Table 4.1.8. An ANOVA to test for differences in the ammonium concentrations 

between sites was also performed, and the sites were not significantly different (p= 0.11).  

 

Table 4.1.8 Statistical Results for Effects of Episodic Events on Ammonium Concentrations 

Site Data Distribution Test Performed Resulting p Value 

1 Normal ANOVA 0.22 

2 Normal ANOVA 0.44 

3 Normal ANOVA 0.68 

  

  

 Silicate concentrations, like ammonium, were not significantly affected by the occurrence 

of episodic events; and the concentrations of silicate following episodic events were not different 

from the background silicate concentrations. The results of the statistical tests are summarized in 
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Table 4.1.9. An additional ANOVA did provide evidence that the silicate concentrations between 

the three test sites are significantly different (p=4x10-8). Site 2 had a mean rank that was 

significantly different than Sites 1 and 3.  

 

Table 4.1.9 Statistical Results for Effects of Episodic Events on Silicate Concentrations 

Site Data Distribution Test Performed Resulting p Value 

1 Normal ANOVA 0.4761 

2 Normal ANOVA 0.8193 

3 Normal ANOVA 0.121 

 

 

 

4.2 Analysis of Photosynthetic and Respiration Rates 

 

 Growth and development of phytoplankton are functions directly related to the carbon 

gained during photosynthesis and the carbon lost during respiration. Photosynthetic and 

respiration rates of phytoplankton are indicators of the health and physiology of the 

phytoplankton community, as well as environmental indicators. An average of photosynthetic to 

respiration ratios in freshwater environments are generally within a range of 10:1 to 12:1 

(Groeger and Kimmel 1989).  

 Oxygen gain and loss was recorded in samples collected between September of 2011 and 

February of 2012. During these months, the median gross assimilation number was 3.45 gram 

carbon/gram chlorophyll a/ hour (g C/g chl/hr), and the median respiration rate was 0.66 g C/g 

chl/hr. These numbers are quite reasonable, and within the range of average photosynthetic to 

respiration ratios that are expected in a limnetic environment (Geider and Osborne 1989). 
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However, there were dates when the gross assimilation number was above 10 g C/g chl/hr, and 

dates when no oxygen was lost during respiration. The highest gross assimilation number was 

reached at Site 2 on January 12, 2012, and gains of oxygen during dark respiration occurred in 

23% of the respiration samples. The changes in gross assimilation number and respiration can be 

seen in Figure 4.2.1-4.2.3. 

 The changes in gross assimilation number and respiration over time reflect the health and 

productivity of the phytoplankton community. Changes in the productivity of the community are 

likely a sign of changes to their environment, which could include episodic events and the flux of 

inorganic nutrients. To determine if the gross assimilation numbers were different on sampling 

dates following an episodic event compared to the regular sampling dates, a one-way ANOVA 

was conducted. The results were significant (p = 0.035), indicating that the assimilation numbers 

on sampling dates following episodic events were higher than the assimilation numbers on 

regular sampling dates. The results of that analysis can be seen in Figure 4.2.4.  

 

 

Figure 4.2.1 Gross Assimilation Number and Respiration at Site 1  *Negative respiration values 
indicate that respiration did not occur during the incubation period, rather the bottles continued to assimilate oxygen 
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Figure 4.2.2 Gross Assimilation Number and Respiration at Site 2 

 

 

Figure 4.2.3 Gross Assimilation Number and Respiration at Site 3 
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Figure 4.2.4 Results of Statistical Testing for Differences in Assimilation Numbers for 
Episodic Events vs. Regular Sampling  *Group 1: Samplings following episodic events, Group 2: 
Regular samplings 
 

 

The results of this analysis could indicate that the presence of a particular nutrient could be 

affecting the rates of photosynthesis and respiration.  

 Tests for correlation between gross assimilation numbers and individual inorganic 

nutrients were performed to determine if a particular nutrient was affecting productivity. In the 

case of gross assimilation numbers, the Pearson’s correlation coefficient between assimilation 

and ammonium was significant, demonstrating that the presence of ammonium has an effect on 

assimilation. The results of this correlation analysis can be seen in Table 4.2.1, and an example 

O2 

mg/L 
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figure of the relationship between gross assimilation number and ammonium concentration can 

be viewed in Figure 4.2.5. 

 
Table 4.2.1 Correlation Coefficients Between Gross Assimilation Numbers and Inorganic 
Nutrients  *Correlation is significant at the 0.05 level (2-tailed). AN= assimilation number 
 

 Gross AN Silicates Nitrates Ammonium Phosphates 

Gross AN Pearson Correlation 1 -.014 .185 .329* .243 

Sig. (2-tailed)  .927 .208 .022 .096 

N 48 48 48 48 48 
 
 

 

 
 
                      

 
Figure 4.2.5 Gross Assimilation Number versus Ammonium Concentration,   *AN units= gC/g 
chl a/hr, Ammonium units=µMol/L 
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 A similar correlation test was performed to determine if phytoplankton respiration was 

being affected by the presence or absence of inorganic nutrients. In the case of respiration rates, 

the Pearson’s correlation coefficient between respiration and phosphates was significant, and a 

visualization of the relationship between respiration rates and phosphate concentrations can be 

viewed in Figure 4.2.6. The results of this analysis can be seen in Table 4.2.2. 

 
 
Table 4.2.2 Correlation Coefficients Between Respiration Rates and Inorganic Nutrients    
*Correlation is significant at the 0.05 level (2-tailed). ** Correlation is significant at the 0.01 level (2-tailed). 
Resp.= respiration rates 

 
 Silicates Nitrates Ammonium Phosphates Resp 

 

 

 

 

 

 
 While the positive correlations were quite strong in the cases of ammonium 

concentrations and gross assimilation number, and phosphate concentrations and respiration, the 

correlations do appear to be more prevalent in the lower bounds. At high nutrient levels, 

assimilation and respiration is accordingly higher, but at low nutrient levels, assimilation of 

oxygen and respiration seems to be subject to variance. An approximation of these bounds can be 

seen in Figures 4.2.7 and 4.2.8. 

Resp Pearson Correlation -.045 .171 .184 .393** 1 

Sig. (2-tailed) .761 .245 .210 .006  

N 48 48 48 48 48 
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Figure 4.2.6 Respiration Rates versus Phosphate Concentrations,   *Resp units= gC/g chl a/hr, 
Phosphate units=µMol/L 
 
 
 
  

 
 

Figure 4.2.7 Confidence Bounds for the Correlation Between Ammonium Concentrations 
and Gross Assimilation Numbers  *AN units= gC/g chl a/hr, Ammonium units=µMol/L 
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Figure 4.2.8 Confidence Bounds for the Correlation Between Phosphate Concentrations 
and Respiration Rates  *Resp units= gC/g chl a/hr, Phosphate units=µMol/L 
 
 
 

 

4.3 Diagnostic Pigment Analysis 

 

 Chlorophyll a is commonly known as the light harvesting pigment for photosynthetic 

organisms. However, there are many additional pigments that allow an organism to maximize 

photosynthetic capabilities, and these pigments vary between algal groups. By analyzing 

concentrations of marker pigments present in a water sample, the algal community composition 

can be discovered. The community composition of any body of water is variable to the 

parameters of its environment, which include effects of seasonality as well as disturbances.  

 Sixteen diagnostic pigments were measured for this analysis. A table of algal classes and 

their major diagnostic markers can be seen in Appendix X. The pigments peridinin, 
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prasinoxanthin, 19'-butanoyloxyfucoxanthin, and 19'-hexanoyloxyfucoxanthin were not detected 

at any time over the course of the yearlong study. The implication is that dinoflagellates, 

prasinophytes, pelagophytes, and prymnesiophytes are not part of the phytoplankton community 

of University Lake. Once the absent groups were eliminated, analyses to explain the variance in 

chlorophyll a, and analysis for the effects of seasonality and episodic events were carried out. 

The procedure used during the inorganic nutrient analysis was repeated to determine whether or 

not seasonality was a factor in the variations of monovinyl chlorophyll b, lutein, alloxanthin, 

fucoxanthin, zeaxanthin, and violaxanthin concentrations.  

 Marker pigments can be used to indentify and quantify classes of phytoplankton. 

However, quantification is based on the ratio of marker pigment:chlorophyll a, which is not a 

fixed number (Woitke et al. 1996). Variations of marker pigment:chlorophyll a ratios may occur 

as a result of change in the marker cell content or chlorophyll a cell content, or from changes in 

both (Descy et al. 2009).  To determine community composition, the concentration of 

chlorophyll a present at a given time must be explained by the presence of multiple algal species. 

The ratio of a marker pigment:chlorophyll a allows quantification of the amount of chlorophyll a 

associated with each class of phytoplankton that is present in the water.  

 A multiple regression analysis to explain as much as possible of the variance in 

chlorophyll a concentrations was conducted. All detected diagnostic pigments were used as 

independent variables. Violaxanthin, alloxanthin, and lutein were not significantly related to 

chlorophyll a in University Lake. The final regression model included fucoxanthin, monovinyl 

chlorophyll b, and zeaxanthin (marker pigments for diatoms, chlorophytes, and cyanobacteria, 

respectively) as the independent variables. Variations in the concentrations of these three 
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pigments accounted for 87% of the variance of the chlorophyll a concentrations. The regression 

line can be seen in Figure 4.3.1. 

 

 
 
 

Figure 4.3.1 Multiple Regression Explaining Variance of Chlorophyll a. The regression 
equation is Chl a= 

 

6.5 + 4.2⋅ fucoxanthin + 2.0⋅ zeaxanthin + 5.8⋅ chl b 
  

  

 Based on this multiple regression analysis, the regression coefficients for fucoxanthin 

(4.2), monovinyl chlorophyll b (5.8), and zeaxanthin (2.0) were multiplied by the concentration 

of each pigment to determine the percentage of chlorophyll a accounted for by diatoms, 
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chlorophytes, and cyanobacteria on each sampling date. This calculation indicated that 

approximately 10% of the phytoplankton community consisted of diatoms, 51% was 

chlorophytes, and 30% was cyanobacteria. These percentages fluctuated over the course of the 

experiment, and the changes in community composition can be seen in Figures 4.3.2-4.3.4. 

 Although lutein is a diagnostic pigment for chlorophytes, it did little to improve the 

goodness of fit of the model as long as monovinyl chlorophyll b (also diagnostic for 

chlorophytes) was also included. Because no other diagnostic pigments associated with 

chlorophyll b were detected, it can be assumed that the monovinyl chlorophyll b present during 

this analysis reflected the presence of chlorophytes in the phytoplankton community.  

 Variations in alloxanthin explained an insignificant percentage of the variance in 

chlorophyll a, but alloxanthin was consistently present in low concentrations throughout the 

year. Alloxanthin is a marker pigment only for cryptophytes, so it is clear that a small percentage 

of the phytoplankton community consisted of cryptophytes. Descy et al. (2009) estimated the 

ratio of cryptophytes:chlorophyll a in freshwater to be 0.3. The average concentration of 

alloxanthin in University Lake was 765 ng/L. When that ratio is applied to the average 

concentration of alloxanthin in University Lake, 2.6 µg/L of chlorophyll a can be explained by 

the presence of cryptophytes, which accounts for 3.4% of the total chlorophyll a or about  40% 

of the 6.5 µg/L of chlorophyll not explained by the multiple regression model (i.e., the intercept 

of the regression line) and indicates that cryptophytes represent approximately 3.4% of the 

phytoplankton biomass of University Lake.   

 Violaxanthin, like alloxanthin, accounted for an insignificant percentage of the variance 

of chlorophyll a, but is also present in low concentrations throughout the year. Unfortunately, the 
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Figure 4.3.2 Phytoplankton Community Composition Changes at Site 1. Fuco=fucoxanthin, marker pigment of diatoms. Chl b=monovinyl 
chlorophyll b, marker pigment of chlorophytes. Zea=zeaxanthin, marker pigment of cyanobacteria. 
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Figure 4.3.3 Phytoplankton Community Composition Changes at Site 2 
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Figure 4.3.4 Phytoplankton Community Composition Changes at Site 3 
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fact that no established ratio of violaxanthin:chlorophyll a exists makes an estimation of the 

biomass that contains violaxanthin extremely difficult. With this multiple regression analysis, 

only 6% of the total phytoplankton population is unaccounted for.  

 A principal component analysis was performed to determine variance about the 

diagnostic pigments. The first two principal components accounted for approximately 75% of the 

variance about the pigments. Principal component one was comprised of chlorophyll b, 

violaxanthin, and lutein, all of which represent chlorophytes and is consistent with the results of 

the multiple regression analysis. The second component was largely comprised of zeaxanthin, 

but also larger, negative contributions from fucoxanthin and diadinoxanthin. Component two 

also supports the conclusions of the multiple regression analysis, but is also indicative of a 

relationship between the cyanobacteria and diatom populations of the lake. The relationship 

between cyanobacteria and diatoms can be seen in Figure 4.3.5. It seems that when fucoxanthin 

and/or zeaxanthin concentrations are low, any concentration of the other pigment is possible. 

However, high fucoxanthin concentrations only occur when zeaxanthin is low, and high 

zeaxanthin concentrations only occur when fucoxanthin is low. This indicates that cyanobacteria 

are only able to bloom when the diatom population is low, and vice versa.  

 Seasonal progression can be expected to have an effect on phytoplankton growth and 

development, because more irradiance in summer months allows for increased productivity. 

Lilliefors tests for normality and equality of variance were performed on each set of pigment 

data identified during the multiple regression analysis, as well as for alloxanthin. The results of 

the ANOVAs are summarized in Table 4.3.1. Overall, the statistical testing did not provide 

evidence to suggest that seasonality significantly affects the phytoplankton community 
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composition of University Lake. Fucoxanthin concentrations were significantly different 

between seasons at Site 2, with summer and winter having significantly different mean 

concentrations. Chlorophyll b concentrations were also significantly affected by seasonality at 

Site 2, with spring and summer having significantly different mean concentrations.  

 

 

Figure 4.3.5 Relationship Between Fucoxanthin and Zeaxanthin Concentrations  *units are 
ng/L 
  

 
Table 4.3.1 Statistical Results for Effects of Seasonality on Phytoplankton Community 
Composition 
 
Pigment Site 1 Site 2 Site 3 

Fucoxanthin p = 0.52 p = 0.014 p = 0.44 

Zeaxanthin p = 0.11 p = 0.14 p = 0.69 

Monovinyl Chl b p = 0.14 p = 0.01 p = 0.12 

Alloxanthin p = 0.12 p = 0.46 p = 0.64 
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 Episodic events have been shown to affect phytoplankton community composition 

(White 1976, Thomas and Gibson 1990, Tynan 1993, Truscott 1995). The severity of an event 

may provide opportunity for enhanced interspecies competition, or a flux of nutrients that may 

favor the development of one algal class over another.  One-way ANOVAs were run to 

determine if episodic events were significantly altering the phytoplankton community 

composition. The results of these tests are summarized in Table 4.3.2.The ANOVAs again 

returned mostly insignificant results, indicating that episodic events are not a significant factor in 

the changing phytoplankton community composition. Fucoxanthin concentrations at Site 1 were 

found to be significantly different, with the concentrations of fucoxanthin following episodic 

events significantly higher than the concentrations found in background samples. Chlorophyll b 

concentrations were also significantly increased following episodic events at Site 1.  

 

Table 4.3.2 Statistical Results for the Effects of Episodic Events on Phytoplankton 
Community Composition 
 
Pigment Site 1 Site 2 Site 3 

Fucoxanthin p = 0.026 p = 0.56 p = 0.58 

Zeaxanthin p = 0.491 p = 0.47 p = 0.61 

Monovinyl Chl b p = 0.042 p = 0.21 p = 0.77 

Alloxanthin p = 0.41 p = 0.41 p = 0.70 

 
  

 

 The tests for effects of seasonality and episodic events did not yield results significant 

enough to signify that either forcing function is impacting the phytoplankton community 

composition. ANOVAs to determine if the community composition varied between the three test 
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sites returned extremely significant results (fucoxanthin, p = 9.31x10–7; zeaxanthin, p = 8.48x10–

5; monovinyl chlorophyll b, p = 4x10–4; alloxanthin, p = 0.08), with the exception of alloxanthin, 

which was not significant at the 95% confidence level, but was at the 90% level. These 

differences in pigment concentrations by site can be seen in Figures 4.3.5-4.3.8. 

 

 

 

Figure 4.3.5 Fucoxanthin Concentration by Site  *fucoxanthin measured in ng/L 
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Figure 4.3.6 Zeaxanthin Concentration by Site  *zeaxanthin measured in ng/L 

 

Figure 4.3.7 Monovinyl Chlorophyll b Concentrations by Site  *chl b measured in ng/L 
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Figure 4.3.8 Alloxanthin Concentrations by Site  *alloxanthin measured in ng/L 
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5. Discussion 

5.1 Inorganic Nutrients and Variability 

 University Lake is a highly eutrophic, shallow lake, located in an urban setting. Urban 

water bodies tend to experience increased input of inorganic nutrients due to the large amount of 

impervious surfaces surrounding them. This addition of nutrients can alter the hydrology of the 

drainage systems because excess nutrients will speed up the eutrophication process. Urban lakes 

in particular are also more susceptible to the accumulation of nutrients as their hydrologic 

retention time is much longer than a stream or river.  

 Nutrient availability is crucial for algal development, but other environmental 

characteristics (e.g., temperature, irradiance) may have a greater influence on the type of species 

that will become dominant. It is necessary to consider the effects of seasonality in relation to the 

flux of inorganic nutrients, as well as the occurrence of episodic events. Turbulence is a factor 

that greatly affects the phytoplankton community composition of a water body and the potential 

for a bloom. Turbulent mixing can control the scale of nutrient availability, average water 

column irradiance, and phytoplankton growth. While turbulence can be beneficial for the 

phytoplankton population overall, laboratory experiments have shown that turbulent conditions 

depress dinoflagellate growth by reducing dinoflagellate cell division capabilities (White 1976, 

Thomas and Gibson 1990, Tynan 1993). Dinoflagellates seem to react poorly to episodic 

disturbances, while diatoms seem to be stimulated by the increased movement (Thomas and 

Gibson 1990). Stratification of a water body is often affected by turbulence, as well as 

modifiable by heat, wind, and runoff. Variations in microhabitats from changes in the 

stratification of a water body influences phytoplankton population growth. Fresh water from a 

combination of rainfall, runoff, and irradiance, creates improved zones for population growth 
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(Smayda 1997). These zones of improved growth exist only temporarily and are dependent on 

nutrient availability and algal utilization, but can result in a bloom. Eventually, horizontal 

dispersal of phytoplankton and nutrients will hinder bloom development (Kierstead and 

Slobodkin 1951).  

 University Lake is phosphate limited, with runoff being the primary factor affecting 

phosphate levels (Mesmer 2010). Measurable nitrate and phosphate levels have been recorded at 

extremely low levels in the past, while silicate levels are far in excess of concentrations that 

would be associated with nutrient limitation (Neale et al. 1991, Tilman et al. 1982, Hutchinson 

1957). Elevated levels of silicate in a water body indicate that diatoms should be present because 

the primary distinguishing feature of diatoms is the highly silicified cell wall composed of two 

overlapping halves (Smith 1950).  

 Overall, the nutrient concentrations in University Lake from February 2011 to February 

2012 echoed the expectations formulated from previous studies. The nitrate and phosphate 

concentrations remained at low levels throughout the year, with some prolonged spikes. 

Ammonium and silicate remained at high levels throughout the year, and the lowest levels 

experienced were still relatively high when compared with the concentrations found in other 

comparable lakes (Kilham 1971). It is likely that the nitrate levels remain low because the 

sediments of the lake are anoxic, and nitrate is being denitrified in the sediments. Seasonality 

was shown to be an insignificant forcing factor in terms of variations of inorganic nutrient 

concentrations, with the exception of silicate levels at Site 3. Site 3 is located at a busy 

intersection in Baton Rouge, and the sampling location was very close to the culvert connecting 

University Lake with Crest Lake. The hydrology of this site may be playing a bigger role in the 

control of silicate concentrations than seasonality. This sampling period also took place during a 



 56 

warm year with a hot summer and mild winter. It is possible that the unusually warm 

temperatures prevented effects of seasonality on inorganic nutrient concentrations during this 

experiment.  

 Episodic events are often responsible for an influx of nutrients through runoff. In the case 

of University Lake, episodic events did have a significant effect on the nitrate concentrations at 

Sites 1 and 3, as well as the phosphate concentrations at Site 2.  Extraneous inputs of nitrates are 

to be expected with a storm, especially in urban areas. Site 1 is adjacent to a large road in Baton 

Rouge, and the site is also the lake’s beach, with a boat launch, large parking lot, and restroom 

facilities. Sites 1 and 3 are more vulnerable to non-point source pollution and runoff than Site 2, 

which could explain why Site 2 did not experience such an effect from episodic events. 

However, the phosphate concentrations at site 2 were altered by episodic events. University Lake 

is extremely shallow, with an average depth of 0.83 m (Mesmer 2010), and shallow lakes are 

more susceptible to changes of biogeochemistry from bottom mixing (Carrick et al. 1993). An 

episodic event such a severe rainstorm or windstorm may have caused bottom mixing and the 

release of phosphates from the sediments at Site 2. The rapid uptake of nutrients by the lake 

phytoplankton community may have also prevented accurate measurement of the true 

phosphorous content entering the lake. Certain phytoplankton have been shown to take up 

phosphates at rates two to three orders of magnitude greater than normal conditions following 

substantial inputs of phosphates to their environments (Laws et al. 2011). Particularly in a 

phosphate-limited system, this mechanism provides a competitive advantage. Rapid uptake for 

storage could explain why the phosphorous levels at Sites 1 and 3 were not significantly affected 

by episodic events.  
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 Ammonium and silicate concentrations were not significantly affected by episodic 

events. Although the storm events did not significantly alter the concentration of ammonium, a 

different type of event did result in markedly high ammonium levels: a fish kill that occurred on 

July 15, 2011. The ammonium levels peaked in the lake on July 16, 2011, and never reached 

concentrations as high as this sample again. This event can be attributed to the eutrophication of 

the lake, and increased nutrient inputs, which resulted in amplified phytoplankton productivity 

followed by increased bacterial respiration, and depletion of oxygen. University Lake is a man-

made system that is constantly in EPA non-attainment status for fecal coliforms. The lake 

conditions were improved after the dredging in 1977, but the sedimentation and reversion of the 

lakes to a drainage bayou is worsening those conditions once more. This reversion could be 

contributing to the abnormally high levels of ammonium, but the ammonium content in 

University Lake may be a product of crumbling infrastructure and leaky sewage pipes. Broken 

sewage pipes were repaired in the 1977 restoration effort made by the City, and the systems are 

still maintained by the City, but it is likely that sewage effluent is escaping from the large sewage 

drainage infrastructure underneath and surrounding the lake.  

 The high silicate concentrations in University Lake are more difficult to account for. 

Eutrophic waters experience increased input of nitrogen compounds and phosphate, which can 

alter other elemental cycles. Other eutrophic systems have been shown to be silicate limited 

because the nitrate and phosphate inputs stimulate the growth of non-silicate requiring 

phytoplankton, causing a silicate limit, and limiting the growth of silicate-requiring 

phytoplankton (Admiraal and Van Der Vlugt 1990). This is obviously not the case in University 

Lake, since diatoms represent a significant portion of the variance in chlorophyll a. The lake has 

high levels of silicate and a stable diatom population. Hydrologic studies of the region have 
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found that in the inner shelf of the Atchafalaya Bay, rivers inject high concentrations of silicate 

into nearby surface waters (Sahl et al. 1993). It is possible the reversion of the lake to a drainage 

bayou, in combination with a hydraulic retention time more comparable to that of a lake, is 

trapping silicate deposits in University Lake.  

 

5.2 Discussion of Gross Assimilation Numbers and Respiration Rates 

 Inorganic nutrients are vital to the growth and development of phytoplankton. When the 

inorganic nutrient levels in a body of water fluctuate, the availabilities of nutrients may select for 

certain algal forms. There are also many algal classes capable of using multiple forms of 

nutrients, which allows for some leeway in their nutritional requirements. For example, many 

classes are able to utilize nitrates, nitrites, or ammonium compounds equally as well to satisfy 

their nitrogen requirements (Smith 1950).  

 The assimilation of oxygen was significantly affected following episodic events, which 

caused enhanced photosynthetic activity (ref. Figure 4.2.4). Nutrient loading from storm runoff 

provides the additional nutrients required to increase phytoplankton biomass and increased 

productivity.  A study done on Kaneohe Bay in Hawaii reported that nutrient loading via runoff 

caused an increase in algal biomass and productivity. The rapid depletion of nutrients by the 

enlarged phytoplankton population allowed the growth peak to last only a few days, before 

rapidly declining (Ringuet and Mackenzie 2005). The phytoplankton population of University 

Lake is experiencing a similar phenomenon following storms, but the high availability of 

ammonium is likely preventing a rapid decline of the phytoplankton population. The significant 

Pearson’s correlation coefficient between gross assimilation numbers and ammonium supports 

this conclusion.  
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 Studies indicate that a positive relationship between respiration rates and growth rates 

exists (Geider and Osborne 1989, Myers and Graham 1971). Dark respiration rates increase with 

growth rates, and are directly proportional to photosynthetic rates. The ratio of respiration to 

growth should only increase in suboptimal growth conditions (Geider and Osborne 1989). The 

significant Pearson’s correlation coefficient between respiration rates and phosphates suggests 

increased metabolic activity as a result of the presence of phosphates, which implies that gross 

assimilation of oxygen also increased in the presence of phosphates. During the course of this 

experiment, numerous samples from all three sites experience negative respiration. Most of the 

negative respiration was very near zero, but there were a few samples that experienced 

substantial negative respiration. When using BOD bottles for dissolved oxygen analysis, a 

common problem is that bubbles of oxygen remain after the bottle is sealed, and the oxygen 

bubbles break and release the oxygen into the sample during incubation. Additional inorganic 

matter from the unfiltered samples could also be trapping oxygen in a manner similar to the 

additional bubbles. It is likely that the negative respiration experienced in these samples is the 

result of trapped oxygen in the sample, and is preventing the respiration of the phytoplankton 

from being detected.  

 

5.3 Discussion of the Phytoplankton Community Composition 

 The multiple regression analysis successfully identified 87% of the variance in 

chlorophyll a levels in University Lake. It was clear that roughly 51% of the phytoplankton 

population is chlorophytes, 30% is cyanobacteria, and 10% is diatoms. An additional estimation 

made from the established alloxanthin:chlorophyll a ratio (Descy et al. 2009), allowed for the 

quantification of the cryptophyte population, accounting for another 3.4% of the chlorophyll a, 
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meaning cryptophytes are 3.4% of the phytoplankton community. That left only 6% of the 

chlorophyll a unaccounted for. Violaxanthin was present throughout the year, but it was not 

significant in explaining the variance about the chlorophyll a. Violaxanthin is a marker pigment 

for chrysophytes, but is also part of the xanthophyll cycling of chlorophytes. The xanthophyll 

cycle acts as a measure of protection for phytoplankton from chlorophyll a in its excited form, or 

damage from harsh light. Since University Lake is so shallow, it would be reasonable to assume 

that the phytoplankton community requires the use of the xanthophyll cycle to protect them from 

harsh UV rays (Demmig-Adams and Adams 1996). Chlorophytes account for over half the 

phytoplankton biomass in University Lake, so it is likely that the violaxanthin detected during 

this study is associated with chlorophytes rather than chrysophytes (Masojidek et al. 2008). 

 Chlorophytes make up the majority of the phytoplankton community in University Lake 

(51%). Freshwater chlorophytes outnumber the combined species of all other algae in the United 

States. Samples taken from semi-permanent to permanent freshwater bodies often consist wholly 

of chlorophytes (Smith 1950). Chlorophytes have been documented to be most abundant during 

late spring and early fall, but the chlorophyte population in University Lake was only 

significantly affected by seasonality at Site 2. If the University Lake population of chlorophytes 

is a representative sample of a typical chlorophyte in the United States, seasonality should have 

played a greater role in the fluctuation of the chlorophyte population. The lack of seasonality 

experienced here may have been a result of the unseasonably warm temperatures in Baton Rouge 

between February 2011 and February 2012, which would have resulted in the absence of a 

traditional spring and fall turnover event. The larger factor to consider is the ecology of shallow 

lakes. University Lake has an average depth of less than one meter, and probably experiences 
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daily overturning of the water column. Either factor could be limiting the effects of seasonality 

on the fluctuations in chlorophytes present in University Lake. 

 Cyanobacteria make up the next largest algal portion of the phytoplankton community in 

University Lake (30%). Cyanobacteria are found in a variety of habitats, but are always present 

in freshwater bodies. The proportion of the community composition cyanobacteria comprise is 

known to fluctuate based on seasonality and the chemical composition of the water, and they are 

usually the most abundant during warm months (Smith 1950).  The cyanobacteria population of 

University Lake was not significantly affected by seasonality or episodic events, which may be a 

consequence of the unusually warm temperatures experienced throughout this experiment. 

Although the statistical testing for effects of seasonality on the fluctuation of the cyanobacteria 

population was insignificant, a clear spike in zeaxanthin can be seen at all three sites during late 

May, which coincides with the seasonal growth patterns typically observed for cyanobacteria.  

 Diatoms make up 10% of the University Lake phytoplankton community. These 

unicellular algae are unique when compared to chlorophytes and cyanobacteria. Diatoms are 

encased in a unique cell wall comprised of silica, called the frustule (Smith 1950). Diatoms 

require silicates to produce frustules, and the copious amounts of silicate found in University 

Lake sustain the diatom population, without any major blooms or population crashes. Seasonality 

was a significant effect on the diatom population at Site 2, likely as a result of the unseasonably 

warm year during this project. Diatoms are stimulated by increased turbidity, and heightened 

growth periods have been recorded following disturbances (Thomas and Gibson 1990). 

However, the diatom population of University Lake only fluctuated as a result of episodic events 

at Site 1. Site 1 is much more unprotected by vegetation and urban structures than Sites 2 and 3, 

and may be more vulnerable to the effects of episodic events.  
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 Cryptophytes make up only 3.4% of the phytoplankton community of University Lake. 

Certain species of cryptophytes are known to grow in water rich with organic material and 

nitrogenous material, and others can grow in nutrient poor waters (Smith 1950). Cryptophytes 

are one of the least researched classes of phytoplankton, and this population did not experience 

significant fluctuations in population from seasonality or episodic events.  

 The phytoplankton community composition of University Lake does not exhibit much 

diversity at the class level. However, the three major representatives of the phytoplankton 

community experience unique relationships between one another. The inability of cyanobacteria 

to bloom during times when the diatom population is high, and the inability of diatoms to bloom 

while the cyanobacteria population is high, could be indicative of an allelopathic relationship 

between the cyanobacteria and diatoms. Either class may be excreting a substance that prevents 

growth of the other, but toxic cyanobacteria are much more common in freshwater environments 

than toxic diatoms, so it is likely that a University Lake cyanobacteria species is excreting a 

toxin. For example, cyanobacteria have been reported to excrete toxins that can inhibit growth of 

other phytoplankton, plants, and microbes in their ecosystem (Inderjit and Dakshini 1994). 

However, it may be possible that some other environmental parameter, such as pH, temperature, 

or micronutrients, is limiting all three classes from blooming simultaneously. Macronutrients like 

nitrogen and phosphorous play a vital role in the growth and development of all phytoplankton, 

but the presence or absence of essential micronutrients may be a contributing factor to this 

limited diversity. Trace metals such as iron, copper, cobalt, nickel, and zinc can be crucial to the 

development of certain algal forms, but these metals in precise combination and ratios can also 

be toxic (Chakraborty et al. 2010). The classes of phytoplankton that make up the University 
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Lake phytoplankton community may have developed a tolerance for the different metal 

concentrations in the lake, or may be subject to allelopathic relationships within the system. 
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6. Conclusion 
 

 University Lake is a shallow, highly eutrophic, man-made lake system. Its urban setting 

allows for inputs of superfluous inorganic nutrients, which leads to excessive algal growth. The 

biogeochemical cycling of nutrients in this lake may be affected by the anthropogenic alterations 

to its hydrology, as well as the polluted inputs from anthropogenic activities.  

 Inorganic macronutrients were found to be unaffected by seasonality, and only affected 

by the occurrence of episodic events in the cases of nitrate and phosphate concentrations, on a 

site-by-site basis. Since nitrogen is a nutrient crucial to the growth and development of all 

phytoplankton, this fluctuation as a result of episodic events should be having a greater effect on 

the phytoplankton community of the lake. However, ammonium levels were measurably high 

throughout the year in the lake, and many phytoplankton classes prefer ammonium as their 

nitrogen source, and area able to utilize that form just as well, if not better, than nitrates. 

Excessive ammonia, perhaps from leaking sewer pipes, was positively correlated with gross 

assimilation of oxygen, and phytoplankton growth and productivity. With an excess of ammonia, 

low phosphate concentrations are the only factor restricting phytoplankton growth in the lake. 

Phosphate levels were positively correlated with phytoplankton respiration rates with extreme 

significance, which allows the conclusion that the phytoplankton community will respond to 

increased phosphate levels with increased growth and productivity. Silicate concentrations in 

University Lake are very high, which permits a relatively large and sustained population of 

diatoms.  

 Inorganic nutrients and the environmental parameters of University Lake have selected 

for a phytoplankton community composition of low diversity. Three algal classes represent 87% 

of the phytoplankton community. Seasonal progression is typically a considerable forcing 
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function for explaining changes in phytoplankton community composition, however the effects 

of seasonality were only experienced at one of the test sites, and not by the entire phytoplankton 

community. The year of 2011-2012 was extremely mild, and may have lessened the effects of 

temperature on the algal community. Mild temperatures and the extremely shallow nature of the 

lake prevent substantial fluctuations of representative phytoplankton class populations. Episodic 

events were also not a major forcing function for explaining the changes in phytoplankton 

community composition. The tremendous availability of ammonia and silicate is likely 

sustaining the phytoplankton community composition, and maintaining the low diversity.  

  Further studies of University Lake should include an analysis photosynthetic and 

respiration rate analysis with measurement of oxygen as well as carbon dioxide assimilation, 

measurement of zooplankton biomass, sample cell counts to gain a better understanding of the 

density of the phytoplankton community, and an analysis of essential micronutrients. It is 

possible that micronutrients are playing a role in the low phytoplankton biodiversity, however, 

the poor health of University Lake and the ongoing eutrophication processes likely explain the 

phenomena observed with the phytoplankton community during this experiment.  
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Appendix  
 
 
Summary of the Characteristic Pigment Biomarkers Used for the Identification of the 
Main Phytoplankton Phyla 
 
Algal Group Major Pigment Biomarkers 

Prochlorophytes Divinyl chlorophylls a and b 

Cyanobacteria Zeaxanthin, phycocyanin, monovinyl 
chlorophyll a 

Diatoms Fucoxanthin, diadinoxanthin 

Prymnesiophytes 19’-hexanoyloxyfucoxanthin 

Pelagophytes 19’-butonoyloxyfucoxanthin 

Chrysophytes Fucoxanthin, violaxanthin 

Cryptophytes Alloxanthin, monovinyl chlorophyll a 

Dinoflagellates Peridinin, monovinyl chlorophyll a 

Prasinophytes Prasinoxanthin, monovinyl chlorophyll a 

Chlorophytes Monovinyl chlorophyll a and b, lutein, 
violaxanthin 
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