
Louisiana State University Louisiana State University 

LSU Scholarly Repository LSU Scholarly Repository 

LSU Doctoral Dissertations Graduate School 

2015 

Thiol-ene Scaffolds as Synthetic Augments and Silicate Ceramics Thiol-ene Scaffolds as Synthetic Augments and Silicate Ceramics 

as Osteogenic Components for Bone Tissue Engineering as Osteogenic Components for Bone Tissue Engineering 

Applications Applications 

Cong Chen 
Louisiana State University and Agricultural and Mechanical College 

Follow this and additional works at: https://repository.lsu.edu/gradschool_dissertations 

 Part of the Engineering Science and Materials Commons 

Recommended Citation Recommended Citation 
Chen, Cong, "Thiol-ene Scaffolds as Synthetic Augments and Silicate Ceramics as Osteogenic 
Components for Bone Tissue Engineering Applications" (2015). LSU Doctoral Dissertations. 2811. 
https://repository.lsu.edu/gradschool_dissertations/2811 

This Dissertation is brought to you for free and open access by the Graduate School at LSU Scholarly Repository. It 
has been accepted for inclusion in LSU Doctoral Dissertations by an authorized graduate school editor of LSU 
Scholarly Repository. For more information, please contactgradetd@lsu.edu. 

https://repository.lsu.edu/
https://repository.lsu.edu/gradschool_dissertations
https://repository.lsu.edu/gradschool
https://repository.lsu.edu/gradschool_dissertations?utm_source=repository.lsu.edu%2Fgradschool_dissertations%2F2811&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/279?utm_source=repository.lsu.edu%2Fgradschool_dissertations%2F2811&utm_medium=PDF&utm_campaign=PDFCoverPages
https://repository.lsu.edu/gradschool_dissertations/2811?utm_source=repository.lsu.edu%2Fgradschool_dissertations%2F2811&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:gradetd@lsu.edu


THIOL-ENE SCAFFOLDS AS SYNTHETIC AUGMENTS  

AND SILICATE CERAMICS AS OSTEOGENIC  

COMPONENTS FOR BONE TISSUE ENGINEERING APPLICATIONS 

 

 

A Dissertation 

Submitted to the Graduate Faculty of the 

Louisiana State University and 

Agricultural and Mechanical College 

in partial fulfillment of the 

requirements for the degree of 

Doctor of Philosophy 

  

in 

 

The Donald W.Clayton Graduate Program 

in Engineering Science 

 

 

 

 

 

 

 

 

by 

Cong Chen 

B.Tech., Jiangnan University, 2009 

M.S., Louisana State Univeristy, 2011 

August, 2015 

 

 

 



ii 

 

 

 

 

♥ 

 

 

To my beloved parents without whom  

I would not have come so far... 

 

 

 

 

 

 

 

 

 

 

 

  



 

 

iii 

 

ACKNOWLEDGMENTS 

I would like to thank God for his blessings towards achieving this goal in my life and my 

family for their encouragement and unconditional support. Mom and Dad, I owe all my success 

to you. I would like to express my gratitude towards my parents for their parental love and for 

making me the person that I am today. 

Most of all, I would like to thank Dr. Hayes for accepting me as his research assistant and 

for their guidance and advice. He has been my mentor and has offered me his support at all 

times. I am very thankful to him for having given me the opportunity to work on interesting 

projects and for his constant encouragement and faith in me. His constant enthusiasm and zeal 

during my research have made my research work really interesting. I would also like to thank Dr. 

Monroe, Dr. Aita and Dr. Nguyen for serving on my committee. Their timely and valuable inputs 

to my project are highly appreciated.   

I would also like to thank Dr. Pojman and Dr. Boldor for all their help and valuable 

advice when I needed it. I am also grateful to Dr. Lopez for letting me work in her laboratory and 

for encouraging me to give my best at all times. I would like to thank all my colleagues and 

fellow graduate students at Biological & Agricultural Engineering Department. Special thanks go 

to Leah Garber, Dr. Ammar Qureshi, Dr. Akanksha Kanitkar, Dr. Del Piero, Dr. Dongmei Cao, 

Mollie Smoak, Katie Hogan, Elizabeth Jee, Ms. Ying Xiao, Forum Shah, Carmel Fargason, Dr. 

Thomas Scherr, Dr. Andre Zanetti and Dr. Michelle Walker for their help and assistance with my 

research. I would also like to extend my gratitude to Ms. Angie and Ms. Donna for their valuable 

support while working in BAE department. They have been great friends from whom I have 

gotten to learn a lot.  



 

 

iv 

 

  TABLE OF CONTENTS 

 

ACKNOWLEDGMENTS ............................................................................................................. iii 

ABSTRACT .................................................................................................................................. vii 

CHAPTER 1. INTRODUCTION ................................................................................................... 1 

1.1 Current biomaterials used in hASC bone tissue engineering strategies ................................ 1 

1.1.1 Biological materials ........................................................................................................ 1 

1.1.2 Synthetic polymers ......................................................................................................... 2 

1.1.3 Ceramics ......................................................................................................................... 5 

1.2 Scaffolds fabrication method ................................................................................................ 7 

1.3 Animal models used in bone tissue engineering ................................................................. 10 

1.4 Reference ............................................................................................................................. 13 

 

CHAPTER 2 THIOL-ACRYLATE NANOCOMPOSITE FOAMS FOR CRITICAL SIZE 

BONE DEFECT REPAIR: A NOVEL BIOMATERIAL
1
 ........................................................... 22 

2.1 Introduction ......................................................................................................................... 22 

2.2 Materials and Methods ........................................................................................................ 24 

2.2.1 Preparation of thiol-acrylate materials ......................................................................... 24 

2.2.2 Mechanical testing ........................................................................................................ 25 

2.2.3 hASC isolation and culture ........................................................................................... 25 

2.2.4 Mass loss test ................................................................................................................ 26 

2.2.5 Extract cytotoxicity ...................................................................................................... 26 

2.2.6 hASC loading on scaffolds and culture ........................................................................ 26 

2.2.7 In vitro hASC viability on scaffolds with alamar blue stain ........................................ 27 

2.2.8 In vitro hASC viability on scaffolds with picogreen .................................................... 27 

2.2.9 SEM analysis ................................................................................................................ 28 

2.2.10 Micro-CT analysis ...................................................................................................... 28 

2.2.11 Statistical analysis ...................................................................................................... 29 

2.3 Results and Discussion ........................................................................................................ 29 

2.3.1 Mass balance ................................................................................................................ 33 

2.3.2 Cytotoxicity test............................................................................................................ 34 

2.2.3 Biocompatibility test of hASC cells on the polymer .................................................... 35 

2.2.4 DNA quantification on scaffolds ( Picogreen assay) ................................................... 37 

2.2.5 SEM analysis. ............................................................................................................... 38 

2.3 Conclusion ........................................................................................................................... 42 

2.4 References ........................................................................................................................... 42 

 

CHAPTER 3 IN VITRO AND IN VIVO CHARACTERIZATION OF PENTAERYTHRITOL 

TRIACRYLATE-CO-TRIMETHYLOLPROPANE NANOCOMPOSITE SCAFFOLDS AS 

POTENTIAL BONE AUGMENTS AND GRAFTS
2
 .................................................................. 47 

3.1. Introduction ........................................................................................................................ 47 

3.2 Materials and Methods ........................................................................................................ 49 



 

 

v 

 

3.2.1 Preparation of thiol-acrylate materials ......................................................................... 49 

3.2.2 Mechanical testing ........................................................................................................ 50 

3.2.3 Morphological analysis ................................................................................................ 50 

3.2.4 Micro-CT analysis ........................................................................................................ 50 

3.2.5 Porosity calculation based on micro-Ct ........................................................................ 51 

3.2.6 Adult stem cells isolation and culture .......................................................................... 51 

3.2.7 hASC loading on scaffolds and culture ........................................................................ 52 

3.2.8 In vitro hASC metabolic activity on scaffolds ............................................................. 53 

3.2.9 Alizarin red staining ..................................................................................................... 53 

3.2.10 In vitro quantification of DNA on scaffolds............................................................... 53 

3.2.11 Quantitative real-time polymerase chain reaction (QPCR) ........................................ 54 

3.2.12 Statistical analysis ...................................................................................................... 54 

3.2.13 In vivo study ............................................................................................................... 55 

3.3. Results ................................................................................................................................ 57 

3.3.1. SEM analysis ............................................................................................................... 57 

3.3.2. Micro-CT analysis and porosity calculation................................................................ 58 

3.3.3. Mechanical testing ....................................................................................................... 59 

3.3.4. hASC metabolic activity and proliferation on scaffolds cultured in control and 

osteogenic media ................................................................................................................... 61 

3.3.5. Quantitative real-time polymerase chain reaction (QPCR) ......................................... 63 

3.3.6 Calcium deposition in hASC cultured in control and osteogenic media ...................... 64 

3.3.7 In vivo study ................................................................................................................. 66 

3.4. Discussion .......................................................................................................................... 69 

3.5. Conclusion .......................................................................................................................... 72 

3.6. References .......................................................................................................................... 73 

 

CHAPTER 4  TARGETING CALCIUM MAGNESIUM SLICATES FO 

POLYCAPROLACTONE/CERAMIC COMPOSITE SCAFFOLDS
3
 ........................................ 78 

4.1 Introduction ......................................................................................................................... 78 

4.2. Materials and Methods ....................................................................................................... 81 

4.2.1. Synthesis of diopside (CaMgSi2O6), akermanite (Ca2MgSi2O7), monticellite 

(CaMgSiO4), and merwinite (Ca3MgSi2O8) .......................................................................... 81 

4.2.2 Characterization of ceramics by powder X-ray diffraction .......................................... 81 

4.2.3 Fabrication of ceramic scaffolds .................................................................................. 82 

4.2.4 Fabrication and characterization of PCL and PCL:ceramic scaffolds.......................... 83 

4.2.5 Porosity calculation based on micro-ct ......................................................................... 83 

4.2.6 Compression test .......................................................................................................... 84 

4.2.7 Inductively coupled plasma atomic emission spectroscopy (ICP-OES) ...................... 84 

4.2.8 hASCs isolation and culture ......................................................................................... 84 

4.2.9 Extract cytotoxicity ...................................................................................................... 85 

4.2.10 hASCs loading on scaffolds and culture .................................................................... 85 

4.2.11 In vitro hASCs viability on scaffolds with alamarBlue
®
 stain ................................... 86 

4.2.12. Osteogenic extract study............................................................................................ 86 

4.2.13. Statistical analysis ..................................................................................................... 88 



 

 

vi 

 

4.3. Results and Discussion ....................................................................................................... 88 

4.3.1 Powder X-ray diffraction .............................................................................................. 88 

4.3.2 Micro-Ct and porosity analysis of 100% ceramic scaffolds (Figure 4.3) ..................... 89 

4.3.3 Compression analysis of 100% ceramic scaffolds ....................................................... 89 

4.3.4. ICP-OES  (Figure 4.5) ................................................................................................. 90 

4.3.5 Compression test of ceramic/PCL scaffolds................................................................. 91 

4.3.6 Viability of hASCs after acute exposure (24 hours) to the seven-day media extractives 

of different ceramic powders ................................................................................................. 93 

4.3.7. Viability of hASCs on scaffolds for 3 days in stromal media ..................................... 93 

4.3.8. Osteogenesis study of hASCs cultured with ceramic extractives ............................... 94 

4.4. Conclusion .......................................................................................................................... 99 

4.5 References ......................................................................................................................... 100 

 

CHAPTER 5. SUMMARY AND FUTURE WORK ................................................................. 106 

 

APPENDIX A: APPROVAL FROM JOURNAL OF BIOMEDICAL MATERIALS 

RESEARCH: PART A ............................................................................................................... 108 

 

APPENDIX B: APPROVAL FROM TISSUE ENGINEERING PART:A ................................ 110 

 

APPENDIX C: APPROVAL FROM ACS BIOMATERIALS SCIENCE &ENGINEERING . 111 

 

VITA ........................................................................................................................................... 112 

 

 

 

    



 

 

vii 

 

ABSTRACT 

Bone tissue engineering approaches using polymer/ceramic composites show promise as 

effective biocompatible, absorbable, and osteoinductive materials. A novel class of in situ 

polymerizing thiol-acrylate based copolymers synthesized via an amine-catalyzed Michael 

addition was studied for its potential to be used in bone defect repair. Both pentaerythritol 

triacrylate-co-trimethylolpropane tris(3-mercaptopropionate) (PETA-co-TMPTMP) and PETA-

co-TMPTMP with hydroxyapatite composites were fabricated in solid cast and foamed forms. 

These materials were characterized chemically and mechanically followed by an in vitro 

evaluation of the biocompatibility and chemical stability in conjunction with human adipose-

derived mesenchymal pluripotent stem cells (hASC). The solid PETA-co-TMPTMP with and 

without hydroxyapatite (HA) exhibited compressive strength in the range of 7-20 MPa, while the 

cytotoxicity and biocompatibility results demonstrate higher metabolic activity of hASC on 

PETA-co-TMPTMP than on a polycaprolactone control. SEM imaging of hASC show expected 

spindle shaped morphology when adhered to copolymer. Micro-CT analysis indicates open cell 

interconnected pores. Foamed PETA-co-TMPTMP HA composite shows promise as an 

alternative to FDA-approved biopolymers for bone tissue engineering applications.   

The results of the six week in vivo biocompatibility study using a posterior lumbar spinal 

fusion model demonstrate that PETA:HA can be foamed in vivo without serious adverse effects 

at the surgical site. Additionally, it was demonstrated that cells migrate into the interconnected 

pore volume are found within centers of ossification. 
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Because the natural mechanical strength of materials is highly dependent on the crystal 

structure, four different silicate-derived ceramics—diopside, akermanite, monticellite, and 

merwinite have been synthesized and evaluated for their potential as bone augments and grafts. 

This sparks our interest in the fabrication of polycaprolactone (PCL)/ceramic composites for 

potential use as scaffolds. Akermanite and monticellite exhibit better osteogenic properties than 

diopside and merwinite, suggesting that they might be the optimal material for fabricating bone 

scaffolds.
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CHAPTER 1. INTRODUCTION 

Biomaterial matrices are widely used to deliver genetic material and/or inductive 

biochemical signal, which allow developmental control over the delivered stem cells to some 

extent. Lots of studies using stem cell-scaffold constructs in regenerative medicine and showed 

promising results (Levi & Longaker, 2011b).  

1.1 Current biomaterials used in hASC bone tissue engineering strategies  

1.1.1 Biological materials 

Biologic scaffolds composed of naturally occurring extracellular matrix (ECM) facilitate 

constructive remodeling of tissues when used with site specific cells. The use of endogenous 

stem cells, modulation of the host innate immune response, and influence of cell differentiation 

could cause the remodeling process (Crapo et al., 2013). ECM materials are typically prepared 

with decellularization of source tissues, such as adipose and nervous system tissue, and then 

made into sheets, powder, or hydrogels. The decellularization is performed during ECM isolation 

in order to prevent inflammatory response and/or tissue rejection due to xenogeneic and 

allogeneic cellular antigens (Zanetti et al., 2013b). However, ECM still retain the structure and 

function original tissue to a large extent (Song & Ott, 2011) and could trigger desirable 

immunemediated responses at injury sites in multiple tissue types (Ariganello et al., 2011). 

Biologic scaffolds composed of ECM have been used in many studies to facilitate constructive 

remodeling in several tissues, including dura mater, bone, cartilage (Yang et al., 2008), cardiac 

muscles (Robinson et al., 2005), and peripheral and central nervous system(Crapo et al., 2013; 

Martini, 1994). 

In other studies, fibrin hydrogel were used as bone scaffolds. hASC were initially loaded on a 

fibrin hydrogel and then the hASC-fibrin hydrogel was wrapped around an orthopaedic construct
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to treat bone or cartilage defect (Hankemeier et al., 2007; Wang et al., 2010b). Therefore, the 

understanding of the biomechanical properties of the ECM loaded with hASC will be critical to 

future clinical use.   

1.1.2 Synthetic polymers 

 Biocompatible synthetic polymers can be produced reproducibly in bulk and in highly 

purified forms. Polyester polymers such asPCL, PGA, PLLA and their copolymer PLGA, which 

have been shown to support hASC proliferation and differentiation, are the most popular 

synthetic polymeric materials in bone tissue engineering.(Guven et al., 2011; Jeon et al., 2008; 

Lee et al., 2011; Levi et al., 2010; Wang et al., 2010a)  

Polycaprolactone (PCL) 

Polycaprolactone (PCL) is formed through ring-opening polymerization and has 

repeating units of one ester group and five methylene groups. The degradation of PCL is done in 

two steps, random hydrolysis of ester bonds and weight loss due to the diffusion of oligomeric 

sort from the volume(Sabir et al., 2009).  PCL degrades slowly and it can last for up to 2 years in 

vivo(van Gaalen et al., 2008) . As a versatile polymeric material, PCL has been made into 

nanofibers by eletrospinning and after seeding the cells on PCL nanofibers, mineralization and 

type I collagen were observed on the scaffolds(Yoshimoto et al., 2003). 

Poly lactic acid (PLLA) 

PLLA is produced by the cyclic dimer of lactic acid that exists as two optical isomers. D 

&L- lactate is the isomer in natural form, as well as DL-lactide, which is the synthetic mixture of 

D-lactide and L-lactide (Sabir et al., 2009). Poly (lactic acid) also can be degraded by the 

homogenous hydrolysis erosion, releasing non-biocompatible products (acids) that can 
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dramatically change the scaffold microenvironment leading to cell death. The biocompatibility of 

PLLA scaffolds could be improved by combining in collagen or BMP-2, and used to treat 

segmental defect model in rat. Neo bone tissue was observed after 12 week after implantation of 

PLLA scaffolds (Liao et al., 2004). 

Poly glycolic acid (PGA) 

PGA is a rigid thermoplastic material, with high melting temperature and more 

hydrophilic than PLA. It is not soluble in most organic solvents due to the high crystallinity 

(Sabir et al., 2009). PGA can be fabricated in various ways such as extrusion, injection, and 

compression molding. The properties and the degradation can be affected by the type of 

processing technique. PGA, when fabricated with triple amount of β-TCP, exhibited a strong 

ability for osteogenesis, mineralization and biodegradation for bone replacement (Cao & 

Kuboyama, 2010). PGA was also made into an injectable copolymer with PLA and demonstrated 

to be a suitable osteoconductive material to treat critical size bone defects (Rimondini et al., 

2005).  

Poly (D,L-lactide-co-glycolide) PLGA 

Copolymerization of PLLA and PGA produce PLGA, which is amorphous, and has a 

slower degradation rate and weaker mechanical strength compared to PLLA.  Bone scaffolds are 

also made of PLGA and have been demonstrate to accelerate bone healing. Furthermore, PLGA 

scaffolds induce more rapid bone formation than untreated controls (Karp et al., 2003). Marra et 

al. mixed HAP granules into poly(caprolactone) and PLGA blends and observed the formation of 

collagen layer on the scaffold.(Marra et al., 1999) 



 

 

4 

 

  In comparison to the above techniques the amine catalyzed thiol-acrylate reaction utilized 

in this study is unique as it proceeds though as anionic step growth mechanism. Normally 

anionic polymerization mechanisms proceed via a chain growth mechanism.  This amine 

catalyzed thiol-acrylate mechanism proceeds via a chain “process” with sequential chain transfer 

steps with each addition causing the polymerization to follow the rules and attributes of a step 

growth mechanism in terms of molecular weight and physical properties. The general reaction 

scheme below is described in Bounds et al.(Bounds et al.) 

 

Figure 1.1 Scheme of Amine Catalyzed Thiol-Acrylate Reaction 
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1.1.3 Ceramics 

Bone is composed of hydroxyapatite (HA) crystals distributed within an organic matrix 

with porosity and percent mineralization varying among bone types.(Pallua & Suscheck, 2010a)  

The use of calcium phosphate ceramics as bone substitutes dates back more than 30 years to the 

field of dental implantation(Ambard & Mueninghoff, 2006). However, one of the main 

disadvantage of calcium phosphates is their weak mechanical strength, especially they are brittle 

and have poor fatigue resistance (Vallet‐Regí & Ruiz‐Hernández, 2011). Highly porous 

bioceramics and scaffolds have even weaker mechanical strength. Consequently, for biomedical 

applications, calcium phosphates are primarily used as fillers and coatings. Kim et al observed 

higher alkaline phosphatase activity of the proliferated cells on porous ZrO2 bone scaffold 

coated with hydroxyapatite than pure ZrO2 scaffolds(Kim et al., 2003a).  It is generally agreed 

that ceramic biomaterials used in bone tissue engineering applications should mimic the natural 

bone structure to support cell attachment and migration within the porous materials (Zanetti et 

al., 2013b).   β-tricalcium phosphate (β-TCP), is a synthetic apatite that shows great 

osteoconductive and osteoinductive properties compared to HA both in vitro and in vivo (Dong 

et al., 2002; Kwon et al., 2003; Yuan et al., 2001).  Lately, Liu et al.
 
evaluated the osteogenic 

potential of hASC loaded in β-TCP and akermanite scaffolds and demonstrated that Akermanite 

(Ca2MgSi2O7) has a stable degradation rate and superior bone deposition compared to β-TCP 

constructs (Liu et al., 2008b). Furthermore, akermanite scaffolds are able to improve hASCs’ 

osteogenic commitment since the cells have a strong affinity for Ca, Mg, and Si ions deposited 

on scaffold(Liu et al., 2008b). Diopside, another ceramic similar to akermanite, has been 

demonstrated to precipitate apatite mineral in simulated body fluid (SBF),(Iwata et al., 2004b) 
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support osteoblast culture(Wu & Chang, 2007a) and to form bone/ceramic interfaces in rabbit 

models of osteointegration.(Nonami & Tsutsumi, 1999) The bioactivity of diopside composites 

has also recently been explored in SBF. Sainz et al. evaluated the thermodynamic stability of a 

blend of wollatonite and diopside in finding that higher diopside content resulted in a more stable 

chemically stable substrate.(Sainz et al., 2010) Another recent study found that increased 

diopside content in Al2O3/diopside ceramic composites led to increased calcium deposition in 

SBF.(Zhang et al., 2010a) Zhang et al. found substantial mineral growth on the surface of 

HA/diopside composites immersed in SBF.  Unfortunately, this study did not have adequate 

controls or analysis to determine the nature of the mineral formations.(Zhang et al., 2011) We are 

particularly interested this phase because of the dimensionality of the structure type.  It is similar 

to akermanite and will expand our interest in understanding the role of structure and preparation 

in the strength and bioactivity of ceramics for bone scaffolding. 

 In addition to magnesium and silicon, strontium an alkaline earth element similar to calcium, 

has long been known as bioactive trace component of bone and has been explored as a treatment 

for osteoporosis.(Dahl et al., 2001; Shorr & Carter, 1952) Several recent studies have doped 

strontium into ceramics such calcium polyphosphate, hydroxyapatite, and hardystonite where in 

low percentages (wt/wt) strontium doped ceramics were found to up regulate osteogenic markers 

in vitro and increase bone volume in vivo. (Landi et al., 2007; Qiu et al., 2006; Tian et al., 2009; 

Zreiqat et al., 2010)  

It is important to note that ceramic materials prepared in the techniques as published typically 

have impurities and are not crystalline.  To correlate osteogenic properties with composition it is 

critical to study phase-pure materials and in the proposed project, we plan to prepare ceramics 



 

 

7 

 

with multiple heat treatments to reach sample equilibrium and carefully monitoring phase 

formation. 

 It is clear that scaffold technology plays a critical role in the success of the current stem cell 

based bone tissue engineering paradigms.  While a variety of different materials, both ceramics 

and polymers, have been tested in combination with hASC, it has been noted by Lendeckel et al. 

and others that composite scaffolds may offer a better clinical outcome as a result of improved 

mechanical and biological properties.(Lendeckel et al., 2004)  The study detailed in disseration 

will explore diopside, monticellite and merwinite, similar in composition to akermanite, as 

osteogenic components of PCL composites for potential use in bone defect repair.  

1.2 Scaffolds fabrication method 

Solvent casting 

Solvent casting or particulate leaching is generally used to make scaffolds at room 

temperature. For this method, polymers like PLLA or PLGA dissolved in an organic solvent such 

as chloroform first and then into a mold containing solid crystals. These salt crystals are 

insoluble in the organic solvent, however, could be leached out by immersing the scaffold in 

water to form a pore structure within the scaffold (Liao et al., 2002; Mozafari et al., 2010).  

Using different size and morphology of the salt crystals could change the pore size and 

porosity of scaffolds. The disadvantages of the this method include the extensive use of toxic 

organic solvents, long time required for solvent removal (days-to-weeks), residual particles in the 

scaffolds, as well as insufficient interconnectivity (Hutmacher, 2000). 
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Thermally induced phase separation. 

High volume of inter-connected micropore structure of bone scaffolds could be created 

through thermal precipitation method (Hutmacher, 2000). Briefly, the polymer was dissolved in 

organic solvents (1,4-dioxane or dimethylcarbonate) to produce a homogeneous mixture then 

mixed with ceramics powder. 

  The solution was freeze under -70
o
C for 24 hours and freeze-dry in a vacuum oven till 

reaching a constant weight (Maquet et al., 2004). Such method could be used to prepare 

PCL/Hydroxyapatite (Zargarian & Haddadi-Asl, 2010), PLLA/TCP composite scaffolds (Xiong 

et al., 2002).  

Material Injections 

Injectable pastes have been developed for use as a fixation material or to fabricate bone 

constructs for cell ingrowth or proceeding. Injectable materials have an advantage over pre-

sculpted scaffolds since they can conform to any shape that they are pressed into. In this method, 

polymerization can be done in situ (Shin et al., 2003; Temenoff & Mikos, 2000). Injectable 

calcium phosphate cements (CPC) have been widely used for filling of bone defects near the 

joint since 1980s but they have a low flexural and tensile strength (Brown & Chow, 1983; 

Larsson, 2010; LeGeros et al., 1982).  

Generally, properties of the injectable materials, such as viscosity, setting time, and initial 

mechanical strength, are important for their potential application as bone scaffolds. By using 

material injections, the material can fill the gaps in the defect regardless of defect shape and also 

it is easy to incorporate bioactive and therapeutic agents by mixing them together with the 

injectable materials(Di Martino et al., 2005). 
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Gas-Foaming Process 

Gas foaming process can also be used to fabricate polymer foams with high porosity 

without using highly toxic organic solvents (Cooper, 2000; Harris et al., 1998; Mooney et al., 

1996). 

  Carbon dioxide (CO2) is usually used as gas porogen for foaming the polymer. Solid 

polymers are saturated with CO2 when exposed to high pressure of CO2 gas. By using this 

approach, the porosity of polymer foam can reach up to 93% with pore size around 100 µm. 

However, gas-foaming results in a closed pore surface and with only 10–30% of interconnected 

pores.  

Combing particulate leaching method with gas foaming could significantly improve the 

pores interconnectivity of scaffolds (Liu & Ma, 2004). However, completely eliminating closed 

pores is still a great challenge (Mooney et al., 1996).  

3D Printing 

Rapid prototyping, especially 3D printing,  is becoming more and more popular to create 

custom implants based on individual need (Leukers et al., 2005). 3D Printing uses ink-jet 

printing technology to precisely place a ‘‘binder’’ solution on a bed of powder. It glues the 

powder together in a cross-sectional layer; any powdered material, including polymers, metals, 

or ceramics can be fused using an ink-jet head in theory (Stevens et al., 2008).  

A starch-based polymer powders (corn starch, dextran and gelatin) was made via 3D 

printing process (Lam et al., 2002). Furthermore, hydroxyapatite scaffolds has been successfully 

fabricated by 3D printing technology and cells proliferated deep into the structure forming close 

contact to Hydroxyapatite granules (Leukers et al., 2005). 



 

 

10 

 

Other applied scaffold fabrication technologies 

Other techniques for scaffold fabrication also include membrane lamination, fabrication of non-

woven, emulsion freeze drying, supercritical-fluid technology and fused deposition modeling. 

Table 1.1summarizes the key characteristics and parameters of the techniques currently used. 

Table 1.1 Key characteristics and parameters of the techniques currently used 

Fabrication 

technology 
Processing 

Material 

properties 

required for 

processing 

Porosity 

in % 
Architecture 

Membrane 

lamination 

Solvent 

bonding 
Soluble <85 Irregular pore structure 

Fabrication of 

non-woven 

Carding, 

Needling, 

Plate pressing 

Fibers <95 Insufficient mechanical properties 

Emulsion 

freeze drying 
Casting Soluble <97 

High volume of inter-connected 

micropore structure 

Supercritical-

fluid 

technology 

Casting Amorphous 10-30 
High volume of non-interconnected 

micropore structure 

Fused 

deposition 

modelling 

Solid free 

form 

fabrication 

Thermoplastic <90 

100% interconnected macropore 

structure (triangles, pentagons, 

honey comb, etc.),design and 

fabrication layer by layer 

 

1.3 Animal models used in bone tissue engineering  

Rat is one of the most commonly used animals in medical research. However, there are 

significant dissimilarities between rat and human bone. In addition,  rats are improper for 

emulating multiple implants simultaneously due the limitations of (Mooney & Siegel, 2005). 

Other animal models have been established to study parameters that affect bone healing.  

These animal models include dog (mongrel, beagle, foxhound, terrier, and bulldog), 

rabbit, guinea pig, and sheep. Growth factors, bone graft scaffolds, and macroscopic/microscopic 
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changes after different treatment were studies by using these models(Grynpas et al., 2002; 

Reichert et al., 2013; Viateau et al., 2007; Wang et al., 2010b). 

Rodents 

The most commonly used lab animal model is the rat. Rats are inexpensive, easy to raise 

and they do not carry the societal concerns compared with other larger animal models 

(Liebschner, 2004). Multiple bone implants surgery models, such as spinal fusion, cranial defect 

and long bone defect have been used on rats and demonstrated great success (Burdick et al., 2003; 

Cook et al., 1994; Lopez et al., 2009). Bone turnover and the effect of diet on this process since 

all types of rodents have been studied so extensively in research.  

There are, however, disadvantages in the use of rats and mice: they have a limited 

naturally occurrence of basic multicellular unit based remodeling; another limitation is the 

absence of impaired osteoblast function during the late stages of estrogen deficiency (Liebschner, 

2004). It is also impossible to collect large blood samples or obtain several biopsies in such a 

small animal for long term studies(Mooney & Siegel, 2005) . 

Canine 

The dog model is the most commonly used animal model for studying the spinal fusion 

process. A lot of literatures compare canine and human bone with regard to the usefulness of the 

dog as a model for human orthopaedic conditions. A major disadvantage of these dog models is 

that solid fusion always occurs, which is different from clinical situations in humans(Liebschner, 

2004).  

Trabecular bone from the distal femur of human’s and dog’s is similar in terms of 

mechanical and mass properties, but differs in ultimate strain resistance, indicating that canine 
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trabecular bone is able to withstand higher compressive strains before failure than human bone 

(Choi & Goldstein, 1992). Callewart et al. evaluated the dog spinal fusion method to determine 

the rate of fusion after decortication with autogenous bone grafting versus dicortication alone 

and found out 100% of the decorticated facets with iliac graft and 75% of the facet sites with 

decortication alone were determined to be fused after 6 months by manual testing (Schimandle & 

Boden, 1994) . 

Sheep and Goats 

The number of using sheep is increasing over the last decade and sheep were widely used 

in orthopedic research involving fractures, osteoporosis, bone-lengthening and osteoarthritis. 

Adult sheep weigh more similar human’s body and have long bones of dimensions suitable for 

the implantation of human implants (Newman et al., 1995).  

The bone structure of the sheep is quite different from human being histologically 

although sheep bones are relatively close to human bones. 

 In sheep, bone contains principally of primary bone (de Kleer, 2006) in contrast to the 

largely secondary, haversian bone composition in humans(Eitel et al., 1981). Kon et al. (Kon et 

al., 2000) have evaluated the potential of BMSCs (bone marrow derived stem cells) to repair 

bone defects in vivo in a sheep model. 

 They created a critical size defect in the sheep tibia and implanted an appropriately 

designed porous scaffold made of pure HA into the missing segment. Ceramics scaffolds were 

either seeded with BMSCs or left empty.   

Even though bone formation was histologically observed in both cell-seeded and not 

seeded implants, in the former bone formation was found to occur both within the internal 
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macropore space and around the HAC cylinder while in the latter bone formation was limited 

mostly to the outer surface and was not observed in most of the inner pores. Furthermore in an 

indentation assay, the stiffness of the complex HA-bone material was found to be higher in cell-

seeded implants than in constructs alone. 

Table 1.2 Summary of four key attributes in terms of similarity between animal and human bone 

(Pearce et al., 2007) 

 Canine Sheep/Goat Rodents 

Macrostructure ++ +++ + 

Microstructure ++ + + 

Bone Composition +++ +++ + 

Bone Remodelling ++ +++ ++ 
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CHAPTER 2 THIOL-ACRYLATE NANOCOMPOSITE FOAMS FOR CRITICAL SIZE 

BONE DEFECT REPAIR: A NOVEL BIOMATERIAL
1
 

2.1 Introduction 

Bone tissue engineering shows promise as an alternative strategy to current surgical 

techniques to replace or restore the function of traumatized, damaged, or lost bone.(Gaalen et al., 

2008; Pallua & Suscheck, 2010a) Over the past several decades, bone grafts have advanced as 

standard treatment to augment or accelerate bone regeneration.(Pallua & Suscheck, 2010a) 

Autogenous cancellous bone grafts have long been used to facilitate bone regrowth, although 

quantity is limited and surgical procedures for graft harvest are required.  Allogeneic bone grafts 

are costly, require time-consuming bone banking procedures, and have high potential for disease 

transmission.  Neither technique provides a clinically convenient method for conformal filling of 

a critical sized bone defect compared to a proposed injectable biomaterial providing mechanical 

support and biological cues to support bone regrowth. 

 To date, a clear trend towards the use of composite scaffolds as an alternative to allogenic or 

autogenic bone can be observed in many of the current models.(Hwang & Todo, 2012; Liu et al., 

2012; Ravichandran et al., 2012; Wu et al., 2012) Native bone is composed of naturally 

occurring hydroxyapatite (HA) crystals distributed within an organic matrix, with porosity and 

percent mineralization varying among bone types.(Pallua & Suscheck, 2010b) Synthetic HA has 

been widely used in bone scaffold fabrication because it possesses osteogenic properties.(Jeon et 

al., 2012; Ohba et al., 2012) While several of these studies involved the use of extracellular 

matrix or other natural occurring compounds such as collagen, decellularized bone or chitosan, 

synthetic polymers can be highly pure, readily reproducible and have adaptable mechanical, 

1
Reprinted with the permission of Journal of Biomedical Materials Research Part A (Appendix A) 
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chemical, and biological properties to suit specific clinical applications. Much of the research 

utilizing synthetic polymers in hASC-combined tissue engineering has been focused on hybrid 

cell/scaffold constructs using degradable polyester polymers such as poly(lactide-co-glycolide) 

(PLGA), poly(L-lactide) (PLLA), and poly-ɛ-caprolactone (PCL).  

Thiol-ene chemistry possesses many advantageous properties for tissue engineering 

applications.
2-5

 Specifically thiol-acrylate chemistry has already been used in biomedical 

applications, but has only been explored in photolytically polymerized systems.(Rydholm et al., 

2005; Rydholm et al., 2008; Rydholm et al., 2006) Thiol-acrylate polymers synthesized via an 

amine-catalyzed Michael addition reaction have not been explored for biomedical applications. 

Scheme 1 displays how the general reaction proceeds by the formation of a catalyst/comonomer 

molecule through the Michael addition of the secondary diethylamine across the double bond 

found in acrylate monomers. These activated acrylates were then individually mixed with a thiol 

comonomer (TMPTMP). This in situ tertiary amine catalyzed Michael addition proceeds via a 

chain “process” due to the sequential chain transfer step after each addition. The Michael 

addition reaction causes the polymerization to follow the rules and attributes of a step-growth 

mechanism in terms of molecular weight and physical properties.  

In this study, the synthesis and characterization of a novel class of thiol-acrylate 

copolymers(Bounds et al.) has been reported. The tunable gel times and mechanical properties 

were determined. A series of biocompatibility tests indicate this new synthetic polymer is 

capable of supporting human adipose derived stromal cell culture. Furthermore, SEM and micro-

CT studies illustrate the morphology of solid and foamed PETA-co-TMPTMP HA composites.  



 

 

24 

 

These materials are a potentially transformative class of novel biomaterials with the application 

for in situ conformal polymerization at the site of trauma. 

2.2 Materials and Methods 

2.2.1 Preparation of thiol-acrylate materials  

All chemicals were used as received. Trimethylolpropane triacrylate (TMPTA), 

poly(ethylene glycol) diacrylate(PEGDA) (MW 700), poly(ethylene glycol) diacrylate (PEGDA) 

(575), poly-caprolactone(PCL), trimethylolpropane ethoxylate triacrylate (TMPeTA) (MW 912), 

trimethylolpropane ethoxylate triacrylate (TMPeTA)(MW 692),  trimethylolpropane tris(3-

mercaptopropianate) (TMPTMP) were obtained from Aldrich. Diethylamine (DEA) was 

obtained with 99% purity from AGROS organics, and pentaerythritol triacrylate (PETA) was 

obtained from Alfa Aesar.    

Several compositions consisting of TMPTMP with di- or tri-functional acrylates listed 

above were prepared in a 1:1 functionality ratio. These solutions were subjected to hASC 

cytotoxicity and mass loss tests that are further explained below.  PETA-co-TMPTMP was 

selected for further experimentation. Twenty stock solutions containing PETA with DEA content 

ranging from 2.8-35.1% were prepared and subjected to mechanical testing. The 16.1% DEA 

concentration was chosen not only for its maximum mechanical strength, but also its gel time 

allowed for an appropriate time range needed for mixing and application of the material. 

The preparation of the foamed composite material was prepared by adding 16.1% 

PETA/DEA stock solution to TMPTMP in a 1:1 molar functionality ratio followed by 3 hours of 

mixing. HA (20% wt/wt) was added to the PETA-co-TMPTMP solution and cast into cylindrical 
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molds (10x10mm). The foamed composite copolymer was prepared by pouring the PETA-co-

TMPTMP with HA into a 250 mL pressurized spray canister using 7g-compressed nitrous oxide 

as a gaseous porogen. The foamed composite copolymer was expelled from the canister into the 

same cylindrical molds used for solid casting. The same foamed procedure was used for the solid 

copolymer without HA. Another 20% HA foamed sample was prepared in vitro by foaming 

directly into a beaker containing stromal cell medium instead of cylindrical molds to test the 

impact of physiological solution on polymerization and foam structure.   

2.2.2 Mechanical testing  

Compression testing was performed on four specimens of each scaffold type with 

cylindrical geometry of 10 mm  10 mm at room temperature using a hydraulic universal testing 

machine (Instron Model 5696, Canton, MA, USA) at an extension rate of 0.5 mm/min to a 

maximum compression strain of 90%. These scaffold types included foamed PETA-co-

TMPTMP with HA(20%), in vitro foamed PETA-TMPTMP with HA(20%), foamed PETA-co-

TMPTMP without HA, and solid PETA-co-TMPTMP. 

2.2.3 hASC isolation and culture  

Liposuction aspirates from subcutaneous adipose tissue were obtained from three donors. 

All tissues were obtained with informed consent under a clinical protocol reviewed and approved 

by the Institutional Review Board at the Pennington Biomedical Research Center. Isolation of 

hASC was performed as described elsewhere.(Gimble et al., 2010) The initial passage of the 

primary cell culture was referred to as “Passage 0” (p0). The cells were passaged after 

trypsinization and plated at a density of 5,000 cells/cm
2
 (‘‘Passage 1’’) for expansion on T125 
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flasks in order to attain 80%. Passage 2 of each individual was used for cell viability test after 

acute exposure to the scaffold medium extractives and on scaffolds after loading using a spinner 

flask. 

2.2.4 Mass loss test 

Composite copolymer-HA (foam and solid) mass loss as a function of composition was 

analyzed with PCL foam prepared through thermally induced phase separation(Zanetti et al., 

Accepted October 4, 2012) serving as a positive control and solid cast PETA composite 

providing an internal comparison for previous experiments. All samples were normalized to the 

initial mass before media exposure.  

The samples were incubated on an orbital shaker with 5mL stromal media at 37
o
C and 

200rpm/min for 7 days.  

2.2.5 Extract cytotoxicity  

The extracts from the mass loss test were filtered (0.22 μm pore size) and pipetted (100 

μL/well) into a 96-well plate previously sub-cultured with hASC (2,500 cells/well) and incubated 

in a CO2 incubator at 37ᵒC containing 5% CO2 for 24 hours. The cellular viability on scaffold 

cultures was determined using the Alamar blue assay by adding 10 μL Alamar blue reagent to 

each well and re-incubated at 37ᵒC in 5% CO2 for 2 h. The fluorescence was measured at an 

excitation wavelength of 530 nm and an emission wavelength of 595 nm using a fluorescence 

plate reader. The tissue culture treated plastic 96-well plate served as a control substrate. 

2.2.6 hASC loading on scaffolds and culture   

5 μL (1.0104 cells/μL) of Passage 2 of each donor (n = 3) were pooled and directly 

loaded on the top of each sample. After 30 min of incubation at 37 ᵒC and 5% CO2, the opposite 



 

 

27 

 

side of each sample was loaded with the same number of cells by the same approach. 

Experimental groups included: PETA-co-TMPTMP solid, PETA-co-TMPTMP foam, PETA-co-

TMPTMP+HA solid, PETA-co-TMPTMP+HA foam, PCL solid and PCL foam. Scaffolds 

loaded with hASC were immediately transferred to new 48-well plates and cultured in stromal 

media (DMEM, 10% FBS, and 1% triple antibiotic solution) for 7 days followed by sample 

collection to assess cell viability with Alamar blue stain.  

2.2.7 In vitro hASC viability on scaffolds with alamar blue stain  

The viability of cells within the scaffolds in stromal media was determined after 7 days 

using an Alamar Blue™ metabolic activity assay. The scaffolds were removed from culture, 

washed three times in PBS, and incubated with 10% Alamar Blue™ in Hank’s balanced salt 

solution (HBSS) without phenol red (pH 7) for 90 min. Aliquots (100 μL) of Alamar 

Blue™/HBSS were placed in a 96-well plate in triplicate, and the fluorescence was measured at 

an excitation wavelength of 530 nm and an emission wavelength of 595 nm using a fluorescence 

plate reader. 

2.2.8 In vitro hASC viability on scaffolds with picogreen  

Scaffolds were sectioned using forceps and then incubated with 0.5 mL proteinase K (0.5 

mg/mL) at 56ºC overnight. The mixture was centrifuged for 5 minutes at 108g, and 50 μl 

aliquots of the mixture were mixed with 50 μl Picogreen dye solution (0.1 g/mL, Invitrogen) in 

96-well plates. Samples were excited at 480 nm and total DNA concentration was compared to 

the live control. Scaffold without cells were used to subtract the background fluorescence 

emission from all readings.  
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2.2.9 SEM analysis 

The solid precast PETA-co-TMPTMP polymer was placed in a 12-well plate to form a 

thin layer (1mm thickness). The polymers seeded with stem cells were fixed first for 30mins by 2% 

glutaraldhyde (GA) (made with 2parts Cocadylate, 1part 8% GA and 1 part distilled H2O). The 

samples were subjected to a dehydration procedure by using 30-100% ethanol solution 

increasing by 10% increment every 30 minutes. 100% HDMS (Hexamethyldisilazane) was 

added to the samples to replace the dried air and ethanol overnight. A conductive platinum 

coating was applied using EMS550X sputter coater for 2 minutes followed by standard SEM 

analysis. In situ and in vitro foamed samples were also subjected to standard SEM analysis.  

2.2.10 Micro-CT analysis 

Three PETA-co-TMPTMP foams were fabricated with pressurized extrusion foaming as 

described with the first two foams having 0 and 20%HA content. The third sample also had a 

20%HA content, but was foamed into stromal media (in vitro). Samples were sliced into 1-2 mm 

approximate cuboids of 10-15 mm height. Samples were imaged with 11 keV monochromatic x-

rays with 2.5 μm/px resolution at the tomography beamline at the Center for Advanced 

Microstructures and Devices (Louisiana State University, Baton Rouge, LA). Projections 

numbered 720 corresponding to Δθ=0.25; projection exposure time varied between 2 and 4 

seconds, but reconstruction algorithms ensure normalized data. The two different datasets are 

directly comparable, both as an aggregate dataset and as slices. Reconstruction data are 16-bit 

signed integer with mean air intensity scaled to zero. Pore size was measured using ImageJ 64.  

Volume renderings were generated from the three foamed samples 3D data using Avizo 

7.0.1 (Visualization Services Group). Two overlapping sub-volumes are rendered 
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simultaneously, one with a red-orange-white colormap corresponding to trithiol-triacrylate foam, 

and the other with a blue-green colormap corresponding to hydroxyapatite inclusions. 

Orthogonal slices were created using ImageJ and have equivalent scale, brightness, contrast, and 

grey map settings.  

2.2.11 Statistical analysis  

All results were expressed as mean ± SEM. Normality of the data was confirmed using 

the Shapiro-Wilk test (P < 0.001). Data were analyzed with one or two-way analysis of variance 

(ANOVA), followed by Tukey’s minimum significant difference (MSD) post hoc test for 

pairwise comparisons of main effects. For all comparisons, a P-value < 0.05 was considered 

significant. 

2.3 Results and Discussion 

Thiol-acrylate chemistry incorporates nearly all of the materials used in the synthesis 

process into one complete network greatly reducing the risks of leaching toxic monomers and 

short chain oligomers as is observed with other techniques.(Burdick & Anseth, 2002; Nuttelman 

et al., 2006) Additionally, bioactive compounds such as peptides can be copolymerized as has 

been demonstrated with photoinitiated thiol-acrylate chemistries.(Salinas & Anseth, 2008) Third, 

and perhaps most importantly, these materials can rapidly polymerize in situ and in an in vitro 

environment through an attached tertiary amine, self-catalyzed “chain” process.  

These materials have broadly tunable mechanical and chemical properties in that many 

compositions of polymer chain repeating units with thiol and acrylate moieties can be created 

using the same approach and biocompatible reaction scheme. By varying the number of 
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functional moieties, straight chain, branched and cross-linked compositions can be synthesized. 

However, for in situ polymerization to be practical, gel times must be tunable across a range 

from minutes to hours, which is easily achievable using this thiol-acrylate system. The strength 

of these materials can also be manipulated by varying the initial DEA concentration, as the 

functionality and cross-link density are both a function of the DEA concentration. This is caused 

by the first Michael addition with the secondary amine, which results in the loss of an acrylate 

functionality to the trifunctional acrylate. The 16.1% DEA concentration was chosen for further 

analysis as a potential bone repair composite because it possessed the highest Young’s Modulus 

and could be optimized to have a 15-20 minute gel time while forming a material with suitable 

flexural strength. PETA was the most attractive acrylate in terms of biocompatibility and mass 

loss data.  

In Figure 2.1, the conversion of Alamar blue by PETA and PETA+HA polymers is 

statistically the same as the tissue culture treated plastic and PCL control samples and similar to 

other materials tested. The mass loss over a week of exposure to physiological solution is 

represented in Figure 2.2. 

 Both PETA and PETA+HA demonstrated greater stability than other experimental 

materials tested with similar losses to PCL. Greater physiological stability is considered an asset 

in the proposed application as bone regeneration time is often on the order of weeks to 

months.(van Gaalen et al., 2008) PETA containing polymers and composites degraded much 

more rapidly than PETA, and the stability correlates with the molecular weight of the oligomer. 
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While not explored in this study these polymers may have utility in other applications, such as 

wound care, where rapid degradation may be seen as a positive attribute.  

 Biomimicry of the complex mechanical properties of native tissues proves elusive; 

native tissue presents unique mechanical properties of nonlinear viscoelasticity and strain-

dependent moduli.(Freed et al., 2009)        

 

Figure 2.1 Relative metabolic activity of hASC in thiol-acrylate extractives as measured by 

Alamarblue fluorescent conversion. Relative fluorescent units have been normalized to live 

control. Asterisk indicates the sample is significantly different from dead control 

The compressive strength of human cortical and cancellous bone are 130-180 MPa and 4-

12 MPa, respectively.(Rezwan et al., 2006) The mechanical testing of solid/foam PETA-co-

TMPTMP materials is shown in Figure 2.3.  

Additionally, it was found that the maximal compressive strength of this PETA-co-

TMPTMP+HA polymer at 90% strain is 19.23 ± 1.39 MPa while the pure PETA-co-TMPTMP 
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polymer is 7.71 ± 0.09 MPa. This result indicated that the introduction of ceramics improves the 

mechanical strength of the PETA copolymer similar to previously published results.(Hong et al., 

2008; Reynaud et al., 2001) The compressive strength of PETA-co-TMPTMP+HA foam is 0.72 

± 0.07MPa while the pure PETA-co-TMPTMP foam is 0.14 ± 0.02MPa. 

 

Figure 2.2 Mass loss after 7 days of incubation in stromal media. Samples are normalized to the 

starting mass for each sample 

The foamed polymer has decreased mechanical strength compared to the solid polymer 

due to the large porosity. The mechanical properties of the copolymer polymerized in vitro, 0.84 

± 0.05 MPa, and in situ, 0.85 ± 0.06 MPa, in physiological media were very similar, indicating 

the presence of aqueous physiological media during the polymerization and foam structure 

formation has little impact on morphology and mechanical properties.  



 

 

33 

 

2.3.1 Mass balance 

The polymer samples were extracted for 7 days in the stromal medium in order to 

determine the extent of mass loss. 

These extracts were later used in cytotoxicity testing. The copolymer-HA composite 

foam and solid cast copolymer were found to have significantly greater mass loss than the PCL 

control foam. 

 

Figure 2.3 Compressive strength tested using hydraulic universal testing machine at an extension 

rate of 0.5mm/min to a maximum compression strain of 90%. 

The mass loss is believed to occur as a result of hydrolytic chain scission in a manner similar to 

the degradation of PCL in physiological solutions.(Pitt et al., 1981)  The PCL sample increased 

in mass likely as a result of mineralization or non-specific protein deposition (Figure 2.4). 

Similarly to PLLA and PGA, the degradation of PCL occurs by bulk or surface hydrolysis of 
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ester linkages resulting in a byproduct of caproic acid.(Ahn et al., 2009) At high concentrations 

of these degradation products, local tissue acidity may increase, resulting in adverse responses 

such as inflammation or fibrous encapsulation.(van Gaalen et al., 2008) 

 

 

Figure 2.4 Mass loss of foamed samples after 7 days of incubation in stromal media. 

Samples are normalized to the staring mass of each sample. 

2.3.2 Cytotoxicity test  

PCL foam was  fabricated by thermally induced phase separation from 1,4-dioxane followed by 

lyophilization.(Zanetti et al., Accepted October 4, 2012)   Tissue culture treated polystyrene 

served as a positive control, while ethanol treated hASC served as a negative control.  Cells 
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exposed to both the copolymer and copolymer+HA composite (solid and foam) extracts had 

significantly higher metabolic activity than the dead control or cells exposed to the PCL extract 

(Figure 2.5A). The reduction of hASC metabolic activity cultured on PCL does not correlate 

with a significant mass loss (Figure 2.4), indicating that this reduction in activity is likely not 

related to the generation of acidic PCL degradation products.  

2.2.3 Biocompatibility test of hASC cells on the polymer  

The ability of the PETA-co-TMPTMP polymer to support hASC cell adhesion and short-

term culture was evaluated using Alamar blue metabolic activity assays and SEM to examine cell 

morphology. Cells were cultured on solid cast PETA and PETA-HA (20% wt/wt) composite 

samples for 4 days in stromal media and assayed for fluorescent Alamar blue conversion; styrene 

treated tissue culture plates served as a positive control. Compared to the positive control, hASC 

cultured on both the copolymer and the copolymer-HA composite had significantly lower 

metabolic activity (Figure 2.5B).  Additionally, it appears that cells cultured on the copolymer-

HA composite have significantly lower metabolic activity than cells on the non-composite. This 

may be a result of reduced metabolic activity associated with the differentiation of stem cells 

exposed to HA, a known osteogenic compound, and may not be indicative of reduced 

biocompatibility.(Rydholm et al., 2005)  Based on Figure 2.5C, PETA foam demonstrates a 

relatively higher metabolic activity than solid PETA-HA composite and PCL foam, but 

significantly lower metabolic activity than cells on tissue cultured treated styrene. Although the 

foam PETA copolymer has a much larger surface area than solid PETA copolymer, the results 
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indicated that both forms of PETA copolymer supports hASC growth around the same level 

compared to the positive control.  

 

Figure 2.5 Relative metabolic activity of hASC as determined by Alamarblue conversion. 

Asterisks indicate the sample is significantly different from live control. The results are 

normalized to the live control. A: Exposure to 7 day stromal media extracts from PETA, PETA-

HA, and PCL foams and solids. B: Cultured on solid cast PETA and PETAHA composites. C: 

hASC cultured on foamed PETA and PETA-HA composites. 
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2.2.4 DNA quantification on scaffolds ( Picogreen assay)  

DNA content of hASC cultured on all pure PETA, PETA composite, and PCL scaffolds 

was compared as a relative measure of cell viability and proliferation.  After 4 days, the highest 

DNA content was observed in the PETA (20% HA) scaffold, 66.7% of the TCP control. The 

relative DNA content of the pure PETA and PCL scaffolds are approximately 56% and 65% of 

the live control respectively (Figure 2.6). The DNA content from cells cultured on all 

experimental samples are similar indicating that the total number of cells does not vary 

significantly with composition. This result is in contrast to the metabolic activity results (Figure 

2.5a), which indicate a significantly reduced metabolic activity for cells grown on composite 

PETA/HA samples. This further supports the hypothesis that these cells on PETA/HA are likely 

in a reduced metabolic state as a result of early stage osteogenic differentiation.(Liu et al., 

2008b)  

 

Figure 2.6 Relative total DNA amount as determined by picogreen assay for hASC 

cultured on foamed PETA and PETA-HA composites. The results are normalized to the live 

control. Asterisks indicate significant difference among the samples 
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2.2.5 SEM analysis. 

The PETA-co-TMPTMP foam materials were found to have a largely closed celled 

structure with a pore size ranging from ~200-300 μm (Figure 2.7 right).  

 

Figure 2.7 SEM image of PETA polymers in solid (left) and foamed (right) forms. 

Magnification is ×100 with scale bars of 100µm 

A comparative image of the cast solid copolymer of the same composition can be seen in 

the left panel of Figure 2.7. The bubbles in the solid sample (Figure 2.7 left) are likely a result of 

air introduced during the mixing procedure.  

The size of the pores found in the foamed sample fall within the range of pores found in 

native cancellous bone.(Hulbert et al., 1970) hASC morphology analysis was performed after 

culturing the human ASC cultured for 7 days on the solid cast PETA films.   

The cells were fixed and imaged by SEM in an effort to evaluate the morphology of 

hASC on the thiol-acrylate copolymer.  

From these images, it appears that hASC adhere well and take on the expected spindle 

shaped morphology during culture on the thiol-acrylate copolymer films (Figure 2.8). 
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 It is likely the thiol groups impart a negative charge to the PETA co-polymer, potentially 

increasing the adhesion, spreading, and proliferation of hASC cells on these surfaces compared 

to neutral surfaces.(Kumar et al., 2010; Schneider et al., 2004)  

 

Figure 2.8 SEM images of PETA solid cast polymer films (A&B) and hASC after culture for 7 

days on PETA films. Magnification is ×100 (A&C) and×1000 (B&D), scale bars are 100 and 

10µm, respectively. 

At lower magnification (100×) (Figure 2.8C) a confluent cell population is seen 

spreading more or less uniformly across the surface, while at higher magnification (1000×) the 

aligned spindle shaped morphology of individual cells can be clearly seen (Figure 2.8D). Cell 

free controls (Figure 2.8A&B) are included in this image for comparison.  SEM analysis 

indicates that there is no substantial difference between the in vitro and in situ (20%HA) foamed 

samples in terms of porosity and morphology (Figure 2.9A-D).  
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Figure 2.9 SEM images of in vitro PETA-co-TMPMP þ HA foam (A&C) and in situ PETA-co-

TMPTMP+ HA foam (B&D). Magnification is ×100 (A&B) and×1000 (C&D), scale bars are 

100 and 10 µm, respectively. 

2.2.6 Micro-CT analysis 

Micro-CT image data (Figure 2.10A-C) show good contrast between HA and polymer, 

confirming suitability of micro-CT as an appropriate study the HA distribution and pore 

morphology.  

 

Figure 2.10 Micro Ct obtained orthogonal slices analyzed using Image J. Foamed PETA-co-

TMPMP with 0% HA (A), and in situ PETA-co-TMPTMP foam (B), in vitro PETA-co-TMPMP 

foam (C) are all shown to have pore sizes ranging from 100 to 800 µm. The scale bar is 500 µm. 
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Volume renderings (Figure 2.11A) were generated from PETA-co-TMPTMP foam 3D 

data using Avizo 7.0.1 (Visualization Services Group).  

 

Figure 2.11 Micro Ct obtained 3D data with two overlapping subvolumes rendered 

simultaneously. Red–orange–white colormap corresponds to the PETA-co-TMPTMP foam, and 

the blue–green corresponds to HA inclusions. A: 0% HA foamed. B: In situ foamed 20% HA. C: 

In vitro foamed 20% HA. 

Figures 2.11B (in situ) and Figure 2.11C (in vitro) were generated from PETA-co-TMPTMP 

with 20%HA foam 3D data. Two overlapping sub-volumes are rendered simultaneously, one 

with a red-orange-white colormap corresponding to thiol-acrylate foam, and the other with a 

blue-green colormap corresponding to hydroxyapatite inclusions.   

Volume renderings indicate open-cell foam and interconnectivity.  By providing an 

interconnected pore structure the support of cell migration, differentiation, nutrient support (Di 

Maggio et al., 2011; Lawrence & Madihally, 2008) and in some cases, the formation of blood 

vessels (Mehrkens et al., 2009; Papadimitropoulos et al., 2011; Scherberich et al., 2007) can be 

established. HA inclusions with the size of 10-50 microns were aggregated showing that a higher 

torque and speed of the stirrer are needed to achieve better homogeneity. Measurements using 

NIH ImageJ from these datasets indicate pores ranging from 100-500 microns for control (0% 

HA) and 20% HA having 125-800 microns. 
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2.3 Conclusion 

 The step growth nature of the amine catalyzed Michael addition reaction alleviated the 

concern of unreacted monomer or radicals leaching into the body as would typically occur using 

a chain-growth mechanism involving a free-radical process. In situ polymerization opens the 

opportunity for the development of absorbable foams for the conformal repair of critical sized 

tissue defects, which can be easily delivered in the clinical surgical setting. This represents a 

substantial improvement over PCL, which are foamed externally prior to surgical insertion, and 

methylmethacrylate bone cements, which are largely inert, non-porous, and permanent. The 

SEM analysis, mechanical testing, and micro CT data prove that there is no distinct difference 

between the PETA-co-TMPTMP foam made in situ and in vitro. While this material has many 

advantages, future work includes the development of a homogenous HA containing polymer 

network, osteogenic studies and improved mechanical strength of the foamed PETA-co-

TMPTMP with varying HA amounts. It is clear that scaffold technology plays a critical role in 

the success of the current stem cell based bone tissue engineering paradigms.  While a variety of 

different materials, both ceramics and polymers, have been tested in combination with hASC, 

Lendeckel et al. and others note that composite scaffolds may offer a better clinical outcome as a 

result of improved mechanical and biological properties.(Lendeckel et al., 2004) Calcium 

phosphate nanoscale ceramic particles of HA and β-TCP will be used as the inorganic osteogenic 

phase and thixotropic agent in future studies.   
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CHAPTER 3 IN VITRO AND IN VIVO CHARACTERIZATION OF 

PENTAERYTHRITOL TRIACRYLATE-CO-TRIMETHYLOLPROPANE 

NANOCOMPOSITE SCAFFOLDS AS POTENTIAL BONE AUGMENTS AND 

GRAFTS
2
 

3.1. Introduction 

For the past several decades, the standard treatment to augment or accelerate bone 

regeneration has been the implantation of bone grafts. (Pallua & Suscheck, 2010a) Allogeneic 

bone grafts are costly, require time-consuming bone banking procedures, and have the potential 

for disease transmission. Autogenous bone grafts have long been used as bone replacements but 

require additional surgeries, which increase the risk of donor site morbidity and the burden on 

health care providers. (Ahlmann et al., 2002) Moreover, these techniques do not address the need 

for a clinically convenient and biodegradable method for conformally filling a critical sized bone 

defect while providing mechanical support and biological cues necessary to promote bone 

regrowth. Artificial composite scaffolds, whether bioderived, synthetic or hybrids, while studied 

extensively as alternatives for bone grafting and augmentation, have yet to see wide clinical 

adoption. (Zanetti et al., 2013b) Composite structures with calcium phosphates and 

magnesium silicates composing the bioactive ceramic portion, have been studied thoroughly to 

improve both the mechanical and osteogenic properties of scaffolds but an in situ polymerizing 

biodegradable bone augment or graft with biomimetic morphology and mechanical properties 

remains elusive. (Bohner, 2010; Hutmacher, 2000; Zanetti et al., 2013b) An initial study 

conducted by our group demonstrated the formation of a porous interconnected scaffold derived 

from the product of an amine-catalyzed Michael addition polymerization reaction.(Garber et al., 

2013a) This thiol-acrylate reaction proceeds through a non-radical, step-growth process initiated 

2
Reprinted with the permission of Tissue Engineering Part A (Appendix B) 
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by an amine/acrylate co-monomer which is consumed in the reaction and incorporated into the 

growing polymer. Porous composite scaffolds made with this system were found to support 

human mesenchymal stromal/stem cell growth and to possess similar mechanical properties to 

cortical bone. (Sundelacruz & Kaplan, 2009)  

The fabrication method of a scaffold can have a substantial impact on mechanical properties 

and bio-functionality by controlling porosity and interconnectivity. These factors influence cell 

attachment, proliferation, extracellular matrix production, and the transport of nutrients and 

wastes. (Degasne et al., 1999; Karageorgiou & Kaplan, 2005; Levine, 2008; Singh et al., 2009; 

Zanetti et al., 2012b) Solid freeform fabrication, thermal precipitation, gas foaming, and solvent 

casting followed by particulate leaching are the common approaches for making porous scaffolds 

for bone repair. (Karageorgiou & Kaplan, 2005; Levine, 2008) Except for gas foaming, these 

methods are not readily applicable to thermoset polymers due to their cross-linking densities and 

viscoelastic properties. Gas porogens and foaming apparatuses have the potential to be readily 

adapted to filling conformal defects in a clinical environment, similar to other surgical devices in 

use, such as  fibrin sealant (Topart et al., 2005; Yeh & Tucker, 2005) and bone putty. (Gertzman 

& Sunwoo, 2000)  

Herein we report on the in vitro characterization of the mechanical and osteoinductive 

properties of a gas foamed nanocomposite scaffold consisting of a thiol-acrylate copolymer with 

nanoscale hydroxyapatite (HA) inclusions. Scaffolds were prepared using a gas phase propellant 

and foaming agent to investigate the relationship of scaffold composition to morphology, 

mechanical properties, cytocompatibility, and osteogenic properties. The impact of varying HA 
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concentration in the PETA polymer on morphology is illustrated using SEM and micro-CT 

imaging. Mechanical testing was conducted to determine the compressive yield strength and 

modulus of the material. To evaluate cytocompatibility and osteogenic activity, human adipose 

derived mesenchymal stromal cells (hASC) were used as a model cell type. Metabolic activity, 

DNA content, calcium deposition, and the expression of the osteogenic markers alkaline 

phosphatase (ALP) and osteocalcin (OCN) were quantified with respect to scaffold composition. 

A six-week in vivo study was also conducted to assess the basic biocompatibility of the foamed 

composite and the feasibility of in situ foaming for a boney fusion model. 

3.2 Materials and Methods 

3.2.1 Preparation of thiol-acrylate materials 

All chemicals were used as received: Trimethylolpropane tris(3-mercaptopropionate) 

(TMPTMP) was obtained from Aldrich, diethylamine (99% purity) (DEA) from AGROS 

organics, and pentaerythritol triacrylate from Alfa Aesar.  

Scaffolds were prepared by formulating PETA with 16.1% DEA and adding TMPTMP in 

a 1:1 molar functionality ratio, followed by mixing with a stir rod for 3 hours as previously 

described.(Garber et al., 2013a) Several concentrations of copolymer PETA with HA were 

studied, the first number in the abbreviation connotes the polymer content while the second 

number provides the amount of HA found in the composite as a wt/wt percentage (100:0, 85:15, 

80:20, 75:25). The mixtures were cast into cylindrical molds (510 mm) to form a solid scaffold. 

The foamed composite copolymer was prepared by pouring the PETA and HA (150 g in total) 
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into a 250 mL pressurized canister using 7 g-compressed nitrous oxide as a gas foaming agent. 

The foamed composite copolymer was expelled into the same cylindrical molds used for solid 

casting.  

3.2.2 Mechanical testing 

 Solid and foamed scaffolds, molded to 6mm (diameter)×12mm(height) cylinder shape, 

were tested to determine maximal compressive strength and modulus.  All scaffolds, solid, gas 

foamed or thermally precipitated, were subjected compression, and the ultimate compressive 

strength was reported at 30 percent strain. A universal testing machine (Instron Model 5696, 

Canton, MA, USA) was used at an extension rate of 0.5 mm/min.(Garber et al., 2013a) 

3.2.3 Morphological analysis 

 All of the scaffolds were placed on the EMS550X sputter coater, which applied a 

conductive platinum coating for 4 minutes followed by standard SEM analysis. Human cadaver 

bone from knee area was obtained under LSU exempted IRB protocol HE 13-10 from the LSU 

Health Science Center.    

3.2.4 Micro-CT analysis 

Four PETA:HA (100: 0), (85:15), (80:20), (75:25) foams were fabricated by pressurized 

extrusion foaming and prepared as previously described.(Garber et al., 2013a) The imaging was 

conducted at the Center for Advanced Microstructures and Devices (Louisiana State University, 

Baton Rouge, LA) using a tomography beamline with 13 keV monochromatic x-rays with a 2.5 

μm/px resolution. Projection exposure time varied from 2-4 seconds with Δθ=0.25 corresponding 
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to the number of image slices (520). Reconstruction data were 16-bit signed integer with mean 

air intensity scaled to zero.   

Avizo 7.0.1(Visualization Services Group) generated the volume renderings from the 3D 

data of the four foamed samples with two overlapping sub-volumes displayed simultaneously. 

The blue-green colormap represents the hydroxyapatite inclusions, and the red-orange colormap 

represents the copolymer foam. Image J generated 2-D orthogonal slices possessing grey 

colormap settings using the same data with a scale equivalent to the 3-D rendering. An 

approximate pore size was also measured using Image J. The orthogonal and micro-CT datasets 

were directly comparable, both as an aggregate dataset and as slices. 

3.2.5 Porosity calculation based on micro-Ct  

To analyze the three-dimensional data, two dimensional slices were read into a custom 

MATLAB code.  For each slice the grayscale image was thresholded using Otsu’s method (Otsu, 

1975) and then converted into a binary image.  Morphological operations were performed to 

remove small imaging artifacts, and isolate interior and exterior pores.  After quantifying solid 

and void pixels, porosity was calculated as follows: 

 

3.2.6 Adult stem cells isolation and culture 

Liposuction aspirates from subcutaneous adipose tissue were obtained from three healthy 

adult subjects (male = 1 and females = 2) undergoing elective procedures.  All tissues were 
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obtained with informed consent under a clinical protocol reviewed and approved by the 

Institutional Review Board at the LSU Pennington Biomedical Research Center and used under 

an exempted protocol at LSU A&M College.  Isolation of hASC was performed as 

published.(Zanetti et al., 2012b)  Passage 2 of each individual was used for in vitro hASC 

osteogenesis evaluation on tissue culture treated plastic or on scaffolds of different compositions. 

In both cases, hASC were cultured in either stromal (control - DMEM, 10% FBS, and 1% triple 

antibiotic solution) or osteogenic (DMEM, 10% FBS, 0.1 μM dexamethasone, 50 μM ascorbate-

2-phosphate, 10 mM β-glycerophosphate, and 1% triple antibiotic solution) media for up to 21 

days with media maintenance performed three times a week.  

3.2.7 hASC loading on scaffolds and culture  

All types of scaffolds were either molded or sculpted into 5 mm(diameter)×10mm(height) 

cylinder shape and gas sterilized afterwards. All the scaffolds were then submerged in stromal 

medium for 1hour before loading the hASCs.  The same amount of second cell passages from all 

donors (n = 3) were pooled and directly loaded on a single face of each scaffold type at a 

concentration of 1.0 × 10
4
 cells/µL for total volume of 5 µL. After 30 min of incubation in a 

saturated humidity atmosphere incubator at 37 °C and 5% CO2, the same volume of  hASCs 

containing solution were directly applied on the opposite side of each scaffold as previously 

described. (Zanetti et al., 2012b) Control groups included PCL:HA (100:0 and 80:20) scaffolds. 

Experimental groups included PETA:HA (100:0, 85:15, 80:20, 75:25) scaffolds. Scaffolds 

loaded with hASC were immediately transferred to 48-well plates and cultured in stromal or 

osteogenic media for 21 days. Cell medium were changed every 2-3 days. Triplicates were 

performed for each assay.  
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3.2.8 In vitro hASC metabolic activity on scaffolds   

AlamarBlue
TM

 (Life Technologies) is a useful measure of metabolic activity and is frequently 

used as an analog of cell viability and proliferation. All scaffold samples were seeded with hASC 

and cultured in stromal or osteogenic media for 21 days. The AlmarBlue
TM

 conversion was 

measured at 7, 14, and 21 days The scaffolds were removed from culture, washed three times in 

Phosphate Buffered Saline (PBS), and incubated with 10% Alamar Blue™ in Hank’s balanced 

salt solution (HBSS) without phenol red (pH 7) for 90 min.  The fluorescence of three aliquots 

(100 L) from each scaffold were measured at an excitation wavelength of 530 nm and an 

emission wavelength of 595 nm using a fluorescence plate reader (Wallac 1420 multilabel hts 

counter).   

3.2.9 Alizarin red staining  

hASC calcium deposition (triplicates of scaffolds alone and cell-scaffolds) was assessed after 

7, 14, and 21 days of culture in control or osteogenic medium based on alizarin red staining.  

Wells were washed with 0.9% NaCl and fixed with 70% ethanol.  Wells were stained with 2% 

alizarin red for 10 minutes and washed with DI water.  Wells were destained with 10% 

cetylpyridinium chloride monohydrate for 4 hours at room temperature with constant agitation.  

Results were normalized to values from scaffolds cultured without cells for the same time 

periods.   

3.2.10 In vitro quantification of DNA on scaffolds  

Total DNA content was used to determine the number of cells on each scaffold as previously 

described.(Liu et al., 2008a)  After triplicates of each scaffold were minced by a scalpel and the 

DNA was digested with 0.5 mL of 0.5mg/mL proteinase K (Sigma-Aldrich) at 56 ºC overnight, 
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aliquots (50 µL) were mixed with equal volumes of 0.1 g/mL  Picogreen dye solution 

(Invitrogen) in 96-well plates.  Samples were then excited at 480 nm with a plate reader (Wallac 

1420 multilabel hts counter).  Scaffolds without cells were used as negative controls.  

3.2.11 Quantitative real-time polymerase chain reaction (QPCR)
 

Total RNA was extracted from triplicates of cell-scaffold constructs as previously 

described.(Zanetti et al., 2012b) Total RNA to cDNA EcoDry Premix (ClonTech) for cDNA 

synthesis.  qRT-PCR was performed using 2× iTaq
TM

 SYBR
®
 green supermix with ROX 

(Biorad) and primers for alkaline phosphatase (ALP) and osteoscalcin (OCN)(Zanetti et al., 

2012b) to quantify osteogenic target gene expression of hASC loaded to scaffolds and cultured in 

either stromal or osteogenic media for 7, 14, and 21 days.  Reactions were performed with a MJ 

Mini
TM

 Thermal Cycler (BioRad). The sequences of PCR primers (forward and backward, 50-

30) were as follows: ALP, 5’-AATATGCCCTGGAGCTTCAGAA-3’ and 5’-

CCATCCCATCTCCCAGGAA-3’;OCN, 5’-GCCCAGCGGTGCAGAGT-3’ and 5’-

TAGCGCCTGGGTCTCTTCAC-3’.Samples were normalized (ΔCt) against the house keeping 

gene 18S rRNA and the - ΔΔCt  value of  ALP and OCN in scaffolds cultured in osteogenic and 

control media was calculated using the ΔΔCt method.(Livak & Schmittgen, 2001b)  

3.2.12 Statistical analysis 

All results were expressed as mean ± SEM.  Data was analyzed with one-way analysis of 

variance (ANOVA), followed by Tukey’s minimum significant difference (MSD) post hoc test 

for pairwise comparisons of main effects.  For all comparisons, a P-value < 0.05 was considered 

significant. 
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3.2.13 In vivo study 

Scaffold Preparation and Surgical Implantation 

Five male Fischer rats (Harlan Sprague-Dawley, Indianapolis, IN) were randomly assigned 

to three different treatments: (1) 1 rat was implanted with pre-sculpted PETA+20% HA, (2) 3 

rats were implanted with PETA+20% foamed in situ, or (3) 1 rat was implanted with PETA+0% 

HA foamed in situ Stock/HA and TMPTMP/HA pre-polymer mixture were placed into a 250 mL 

pressurized spray canister with 7 g-compressed nitrous oxide as a gas foaming agent. The 

foamed composite copolymer was expelled from the canister onto a sterile surface.   The solid 

composite was cut into a rectangle with dimensions (15 mm×10 mm×1 mm) for rat number 1.   

For rats 2, 3, and 4, the pre-polymer mixture was prepared as described above and foamed into a 

5 mL syringe for surgical application.  The process was the same for rat 5, but the formulation 

did not contain HA.   The rat posterolateral lumbar spinal fusion surgery was performed as 

previously described (Aust et al., 2004).  Prior to general anesthesia, rats received a 

subcutaneous injection of 0.5 mg/kg butorphanol (Torbugesic, Fort Dodge Animal Health) and 

0.02 mg/kg glycopyrrolate (Robinul-V, Fort Dodge Animal Health, Fort Dodge, IA). Isoflurane 

was administered 20 minutes later in an induction chamber to induce anesthesia. The isoflurane 

was maintained at 1.5% via nose cone on a Bain circuit for the remainder of the procedure. The 

lumbar region was clipped and aseptically prepared with 70% isopropanol and betadine. A 

posterior midline skin incision was made over the lumbar spine. Two fascial incisions were made 

3 mm lateral and parallel to the dorsal spinus processes. The L4 and L5 transverse processes 

were exposed with sharp and blunt dissection. A scalpel was used to decorticate each transverse 

process.  Surgical sites were thoroughly lavaged with physiologic saline. In rat 1, solid scaffolds 
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were placed adjacent to both sides of the spine such that they spanned between the midpoint of 

each transverse process. For the remaining rats, 3 ml of each foamed scaffold was applied so that 

scaffold spanned between the center of each transverse process next to the spine.  Fascial and 

subcutaneous incisions were closed separately with 3-0 polyglactin 910 (Vicryl, Ethicon) in a 

simple continuous pattern. Closure of the fascia around the implants effectively filled any 

potential space. A subcutaneous/subcuticular suture pattern was used to approximate skin edges, 

and tissue adhesive was used for skin closure (Vetbond, 3M). Scaffolds were harvested 3 (rat 3) 

or 6 (rats 1,2,4,5) weeks after implantation following euthanasia by CO2 asphyxiation (Lopez et 

al., 2009). At 3 weeks, no significant results were shown in radiographs, micro-CT or histology 

analysis. Therefore, no results from Rat 3 were reported in the results and discussion sections. 

Micro-CT Analysis  

Immediately postmortem, two-dimensional (2-D) microcomputed tomography (μ-CT) 

imaging was performed (40 kV and 540 ms)  to obtain 0.04 mm slices every 0.9°throughout a 

360° rotation (SkyScan 1074, Skyscan n.v., Belgium). Three-dimensional (3-D) files were 

reconstructed from 2-D images. Measurements of 2-D and 3-D images were performed with 

AVIZO® Standard packages (FEITMVisualization Sciences Group). A density line was first 

drawn in void space with no tissue to measure the optical density (OD) of the image background. 

The line was then moved to L3 of the specimen’s vertebral column to determine the OD of the 

tissue unaffected by the surgery. Lastly, the density line was moved between L4 and L5 of the 

specimen’s vertebral column to calculate the OD of the area treated by the scaffolds. The density 

of the area treated by the implant was normalized by the densities of the void space and the 
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unaffected bone region in order to calculate the percentage of bone growth present in each 

specimen (Lopez et al., 2009). 

 𝑂𝐷 = log
255

𝑃𝑖𝑥𝑒𝑙 𝑣𝑎𝑙𝑢𝑒
                                  

𝑂𝐷𝑇𝑟𝑒𝑎𝑡𝑒𝑑

𝑂𝐷𝑈𝑛𝑡𝑟𝑒𝑎𝑡𝑒𝑑
× 100 = % 𝑛𝑒𝑤 𝑔𝑟𝑜𝑤𝑡ℎ    

Histology 

Following imaging, spines were cut in half and fixed in neutral buffered formalin.  One 

half of each spine was decalcified, paraffin embedded and longitudinal sections (5 um) were 

stained with hematoxylin and eosin.  Microarchitecture was evaluated using Olympus BX46 

microscope.  

3.3. Results  

3.3.1. SEM analysis  

The foamed scaffold samples were analyzed using SEM to examine the trends in 

morphology. The morphology of the foam containing 0-20% HA was similar to cancellous 

human cadaver bone (Figure 3.1). 

 

Figure 1 SEM analysis of PETA:HA (100:0), (85:15), (80:20), (75:25) scaffolds 
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The average pore diameters of PETA: HA 100:0 and 85:15 scaffolds were 250µm-

300µm, with no significant difference between the two. PETA:HA 80:20 had a slightly smaller 

pore diameter of 150µm-200µm. The pore diameter of PETA:HA 75:25 was only 70µm-100µm.  

PETA:HA 70:30 had a pore diameter of less than 50µm. It is apparent from the results in Figure 

3.1 that pore size is inversely related to HA content; pore diameter decreases as HA 

concentrations increase. Additionally, increasing HA content correlates with increased pore wall 

thickness and an apparent reduction in scaffold interconnectivity. 

3.3.2. Micro-CT analysis and porosity calculation 

There is a limitation associated with the amount of material that SEM can qualitatively 

analyze, reducing the generalizability of the data. To address this limitation, the interconnectivity, 

pore volume, and ceramic phase distribution of HA-PETA copolymer composites and PCL 

(control) were further analyzed by micro-CT. Micro-CT image analysis is a more senstivie 

method for estimating porosity of materials when compared to SEM, flow porosimetry, and gas 

adsorption. (Ho & Hutmacher, 2006) Volume renderings (Figure 3.2) were generated from 

PETA and PCL composite foam 3-D data using Avizo 7.0.1 (Visualization Services Group). 

Two overlapping sub-volumes were rendered simultaneously, one with a red-orange-white 

colormap corresponding to thiol-acrylate foam, and another with a blue-green colormap 

corresponding to hydroxyapatite additives. The porosity of PETA: HA (100:0, 85:15, and 80:20) 

are 66.9%, 72.0%, and 66.4% respectively (Figure 3.3A). It should be noted that an apparent 

transition in morphology occurred between 20% and 25% HA inclusions. As HA concentration 

increased from 20% to 25%, the porosity decreased significantly from 66.4% to 44.7%. When 
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HA concentration reaches 25%, the pore size is substantially reduced and the interconnected void 

volume appeared to decrease, resulting in a structure similar to a closed-cell foam (Figure 

3.2K&L). 

 

Figure 2 Avizo rendering pictures (3D &2D) of micro-ct data of scaffolds. Figure 2A&B 

PCL:HA (100:0); Figure 2C&D PCL:HA (80:20) ;Figure 2E&F PETA: HA (100:0) Figure 

2G&H PETA: HA (85:15) scaffolds; Figure 2I&J PETA: HA (80:20) scaffolds; Figure 2K&L 

PETA: HA (75:25) scaffolds. Each scale bar in the 2D pictures indicates 500µm. 

This is attributed to increased polymer solution viscosity correlated with reduced N2O 

expansion and mobility.  In addition, the inclusion of 20% HA to PCL scaffolds increased the 

porosity from 78.0% (PCL:HA 100:0) to 87.6% (PCL:HA 80:20) (Figure 3.2A&C).  

3.3.3. Mechanical testing  

Figure 3.3B shows the compressive yield strength of the foamed and solid PCL:HA (100:0, 

80:20), PETA:HA (100:0, 85:15, 80:20, 75:25) samples.  
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Compressive strength of solid PCL:HA (100:0, 80:20) samples are significantly higher 

than corresponding PETA:HA (100:0, 80:20) samples. When comparing among porous scaffolds, 

PETA:HA (100:0, 80:20)  scaffolds are either the same as or stronger than PCL:HA (100:0, 

80:20). The compressive strength of the foamed PETA:HA steadily increased with increasing 

HA content; however, the solid samples did not follow a similar trend. The addition of 15% HA 

in the foam resulted in a significant increase in compressive strength compared to the control 

samples and increasing the HA content beyond 15% correlated with increased compressive 

strength. 

 

Figure 3 porosity of PETA:HA (100: 0), (85:15), (80:20), (75:25) scaffolds; B: maximum 

compressive strength of PETA:HA PETA:HA (100: 0), (85:15), (80:20), (75:25) 

composites(solid and foam) 

Conversely, solid PETA:HA (85:15, 80:20, 75:25) composite scaffolds exhibited 

approximately the same compressive strength for all HA containing samples. It is believed that 

the porosity (Figure 3A) is responsible for the different trends between solid and foamed 

scaffolds.  
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3.3.4. hASC metabolic activity and proliferation on scaffolds cultured in control and 

osteogenic media   

 

For cell-scaffold constructs cultured in stromal media, PETA:HA (100:0) had the highest 

metabolic activity after 14 days of culture. PCL:HA (100:0) had the highest levels of metabolic 

activity after  21 days of culture in stromal medium and no significant differences were observed 

from this scaffolds between any time point. In osteogenic media, PETA:HA (100:0) scaffolds 

again exhibited the highest metabolic activity after 7, 14 and 21 days of culture. PETA:HA 

(85:15 and 80:20) scaffolds had the next highest metabolic activity at all time points. PCL 

scaffolds showed the lowest levels of metabolic activity after 7, 14 and 21 days of culture 

(Figure 3.4A). The addition of HA to PETA and PCL scaffolds decreased metabolic activity on 

constructs cultured in stromal and osteogenic media.  

Significantly higher metabolic activity in was observed at all-time points for PCL:HA (100:0) 

and PCL:HA (80:20) scaffolds cultured in  stromal media  compared to osteogenic media. This 

data is in agreement with previous studies which indicate the metabolic activity of hASC is 

expected to decrease as cells commit to an osteogenic linage.(Qureshi et al., 2013; Zanetti et al., 

2012b)  

No differences in metabolic activity were seen in PETA:HA composite samples between 

stromal and osteogenic conditions. hASC cultured on HA-containing scaffolds were expected to 

begin differentiation into an osteogenic linage regardless of the media condition, potentially 

accounting for the differences in metabolic activity between HA-containing and control samples 

with respect to media condition. Almost no metabolic activity was measured in PETA:HA (75:25) 

scaffolds, likely as a result of the reduced pore size and interconnectivity.  
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Figure 3.4 Panel A: relative metabolic activity of hASC on PETA:HA (100:0), (85:15), (80:20), 

(75:25) scaffolds; Panel B: relative DNA content of hASC on PETA:HA (100: 0), (85:15), 

(80:20), (75:25) scaffolds; Panel C: q-rtPCR analysis of ALP (7 day) and OCN (14 and 21 day)  

expression from hASC on PETA:HA (100:0), (85:15), (80:20), (75:25) scaffolds. 
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Total DNA content was quantified using Quant-iT™ PicoGreen 
®
, to analyze the hASC 

proliferation in scaffolds. Differences in DNA content, between stromal and osteogenic media 

conditions, were observed at the 7 day culture time point for PCL:HA (80:20), PETA:HA (85:15) 

and PETA:HA (80:20) composite scaffolds. When comparing samples within the stromal media 

treatment condition, it can be observed that the PETA:HA samples had significantly fewer cells 

than the PCL or PETA control. The most pronounced difference in DNA content was between 

PCL:HA (80:20) composites and PETA:HA scaffolds in stromal media conditions, (Figure 3.4B) 

where the DNA content in PCL (80:20) scaffolds was significantly higher than PETA:HA 

composites. At 14 and 21 days, levels of DNA content observed in both PCL scaffolds and the 

pure PETA scaffolds were significantly higher than the PETA:HA composites, in stromal media 

conditions. Within the osteogenic media treatment groups, the PETA:HA scaffolds showed 

slightly increased DNA content compared with the PCL:HA scaffolds, but all scaffolds 

contained a similar numbers of cells.  

3.3.5. Quantitative real-time polymerase chain reaction (QPCR) 

Bone morphogenic proteins (BMPs), known to regulate osteogenesis, act on the transcription 

factor core binding factor alpha1 (Cbfa1) and result in the activation of osteoblast-related genes, 

such as ALP and OCN. (Liu et al., 2008a; Milat & Ng, 2009) The expression of these genes are 

commonly used as early and middle stage markers of osteogenesis, respectively.(Burge et al., 

2007)  QPCR was used to assess the expression of ALP at the 7 day time point and OCN at 14 

and 21 day time points (Figure 3.4C). Based on previous studies, ALP expression in hASC 

decreased dramatically after 7 days in culture and was therefore not measured at the 14 and 21 

day time points in this study.(Burge et al., 2007; Zanetti et al., 2012b) The differences in the 
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expression of ALP and OCN in hASCs cultured on scaffolds in stromal and osteogenic media are 

represented in Figure 3.4C. The cells on PETA:HA (85:15) and PETA:HA(80:20) scaffolds 

showed similar expression of ALP at 7days and were significantly higher than all other PETA 

and PCL scaffolds. Additionally, hASC on pure PETA scaffolds had higher ALP expression than 

pure PCL control scaffolds. While hASC cultured on PCL:HA(80:20) scaffolds had higher ALP 

expression than pure PETA or PCL, the expression was still lower than PETA:HA (85:15) and 

PETA:HA(80:20) scaffolds. Moreover, the expression of the OCN marker could only be 

observed at 21 days of culture, with little expression at 14 days regardless of treatment. The OCN 

expression level demonstrated in hASC as a function of scaffold type was the similar to that of 

ALP expression with maximal OCN expression observed in PETA:HA (85:15) and 

PETA:HA(80:20) followed closely by OCN levels in PCL:HA composites. Consistent with the 

previously described results, cells cultured on the PETA:HA (75:25) sample did not demonstrate 

substantial expression of either marker, likely the result of poor cell proliferation/survival 

associated with the lack of a porous and interconnected structure.  

3.3.6 Calcium deposition in hASC cultured in control and osteogenic media 

The mineralization of different scaffold types was assessed using alizarin red staining, which 

stains calcium-rich deposits. hASC cultured on the PETA composites in stromal and osteogenic 

media were tested against PCL and PCL:HA scaffolds. (Figure 3.5A)   

As expected, alizarin red staining was significantly higher in hASC cultured in osteogenic 

media compared to samples cultured in stromal media. (Zanetti et al., 2012b) Also, hASC 

cultured in osteogenic media showed a significant increase in staining with respect to increased 
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time in culture.  Except for PETA:HA (75:25), all scaffolds showed significant differences in the 

calcium deposition at 14 days between stromal and osteogenic media. 

 

Figure 3.5 Alizarin red stain of PETA:HA  as a function of scaffold composition, media 

treatment and time. Panel A, quantitative analysis of staining on scaffolds loaded with hASC and 

cultured in stromal and osteogenic media for 7, 14 and 21 days. Panel B, cross section of each 

type of scaffold stained with alizarin red on 21 days. 

Both PETA: HA (80:20) and PETA:HA (85:15) cultured in osteogenic media 

demonstrated significantly increased staining compared to all other experimental samples and 

controls. Almost no calcium deposition, however, was observed at 14 and 21 day culture time 

points in PETA:HA (75:25).  
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3.3.7 In vivo study 

Radiography 

Observed behavior and weight gain were normal (90.7 ± 5.9 g) for all rats after surgery. 

Foamed thiol-acrylate nanocomposite implants showed some increase in radiographically 

detectable opacity 3 weeks after implantation compared to immediately after surgery, and the 

opacity increased further by 6 weeks after implantation. The increasing intensity of bone 

scaffolds is consistent with scaffold calcification (Figure 3.6). Rats implanted with pre-molded 

samples, had a lower increase in radioopacity by 6 weeks after implantation compared to rats 

implanted with PETA+HA foamed in situ.   

 

Figure 3.6 Radiographs of in vivo study 

No evidence of calcification was observed in implants of 0% HA pre-sculpted PETA. 

This is consistent with the in vitro osteogenesis target gene expression results.   



 

 

67 

 

Microcomputed Tomography 

The micro-CT results support the radiographic findings.  The light colored regions 

indicate densification in the scaffolds in Figure 3.7.  In vivo, in situ polymerized scaffolds had 

the greatest amount of densification six weeks after surgery.  

 

Figure 3.7 Micro-CT data of the L4 (top) and L5 (bottom) vertebral bodies from the in vivo study. 

The light colored regions indicate densification in scaffolds. 

 

Analysis of Bone Formation using histology 

Histological examination was performed on pre-sculpted PETA:HA (80:20), PETA:HA 

(80:20) foamed in situ, and PETA:HA (100:0) foamed in situ. The essential step of decalcifying 

and staining the spinal column poses a problem in analyzing tissues for bone formation 

evaluating the calcified areas. For this reason, tissue morphology is considered a reliable 

parameter to measure bone formation(Schulte et al., 2013). Each cohort was examined six weeks 

post-op.  
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Treatment cohort 1 (pre-sculpted PETA:HA (80:20)proved to be biocompatible, support 

cell growth, and induce osteogenesis in tissue growing into the foam structure. Figure 3.8A 

shows that the PETA:HA (80:20) implant is partially demarcated by fibrosis and multifocal 

fibrocartilage formation, which incorporates multifocal, small areas of endochondral ossification.  

Figure 3.8D contains the implant surrounded by fibrous tissue, fibrocartilage, and 

peripheral endochondral ossification. The appearance of cells chondrocytic in appearance, a tide 

mark, and an ossified site present around the implant site indicate that the PETA:HA (80:20) 

scaffold have the potential to induce endochondral ossification. 

 

Figure 8 Histology analysis using Hematoxylin and eosin staining. A medial cut was made on the 

spinal column of each rat. The progress of this specimen guides the analysis of the other 

specimens. Figures 8A, 8B, 8D, 8F, and 8I: Rat was treated with the pre-sculpted PETA:HA 

(80:20) scaffold. Figure 8C, 8E, and 8G: Rats were treated with PETA:HA (80:20) scaffold 

foamed in situ. Figure 8H: Rat was treated with PETA:HA (100:0) foamed in situ. S: scaffold 

implants; *: site endochondral ossification 
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Figure 3.8B shows that the polymer implant is segmentally demarcated by fibrous and 

fibrocartilagenous tissues with an ossified rim blending into pre-existing trabecular bone. The 

findings in Figure 3.8B are further supported by Figure 3.8I and Figure 3.8F. 

 Treatment 2 (PETA:HA 80:20 in situ) was also shown to be biocompatible, support bone 

growth, and induce osteogenic differentiation. In cohort 2, histological changes are characterized 

by ostegenic activity around the implant site. Figure 3.8C shows a large accumulation of polymer 

implant near the skeletal muscle of the rat, surrounded by a thin layer of fibrous tissue with a 

focal area also containing macrophages. Figure 3.8E shows the presence of a cavitation lined by 

1-3 layers of spindled cells (fibroblasts) containing the scaffold and a sprouting nidus of 

endochondral ossification. Figure 3.8G shows that in the area adjacent to the polymer-occupied 

cavitation, there are fibrous tissues and a region of endochondral ossification.  

Histological analysis of cohort 3 PETA:HA (100:0) indicates that the lack of nanoscale 

HA reduces the osteogenic properties of the scaffolds. In Figure 3.8H, the scaffold is surrounded 

by a very thin layer of fibrous tissue, indicating a reduction in the formation of organized tissue 

in the implant region.  

3.4. Discussion 

Bone tissue engineering involving polymer/ceramic composites presents an attractive 

alternative approach to the repair and regeneration of damaged or traumatized bone tissue. 

(Gaalen et al., 2008; Pallua & Suscheck, 2010b). Several studies have previously explored the 

potential use of thiol-acrylate chemistry for biomedical devices, but radical based photoinitiators 

are usually used to drive the polymerization process.(Rydholm et al., 2008; Rydholm et al., 2006; 
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Zanetti et al., 2012b) A non-radical based polymerization method is potentially less cytotoxic 

and therefore more amenable to in situ polymerization. The amine catalyzed Michael addition for 

thiol-acrylate polymerization described in this study has potential advantages compared to 

photoinitiated reactions because the chain propagation does not require a free radical initiator 

during the polymerization reaction. The mechanism of this amine-catalyzed reaction has been 

previously investigated.(Bounds et al., 2013; Garber et al., 2013a) The general reaction occurs 

via the formation of a catalyst/comonomer molecule by the Michael addition of a secondary 

amine across the alkene end group found in acrylate monomers. The in situ catalyst produced 

reacts with a trifunctional thiol and trifunctional acrylates forming a high-density cross-linked 

copolymer. The step growth nature and the incorporation of the tertiary amine catalyst reduce 

concerns about potential leaching of free radical initiators and unreacted monomer. This reaction, 

therefore, is potentially more attractive for in situ polymerization for bone formation than 

comparative free radical-based methods.   

The PCL-based scaffold was synthesized via a thermal precipitation method resulting in 

pore size, volume, and interconnectivity that are largely independent of solution 

viscosity.(Qureshi et al., 2012) Results showed that such characteristics were directly influenced 

by the viscosity of the stock solution in the polymerization of PETA composites. (Barby & Haq, 

1985). It is well documented that an interconnected pore structure can help support cell 

migration, cell differentiation, nutrient transport (Di Maggio et al., 2011; Lawrence & Madihally, 

2008) and, in some cases, formation of blood vessels. (Mehrkens et al., 2009; Papadimitropoulos 

et al., 2011; Scherberich et al., 2007) Because HA was found to decrease interconnectivity, it 

was expected that the highest HA concentration sample, PETA:HA (75:25), would not provide a 
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suitable environment for cell in-growth and nutrient/waste transport. Electron microscopy 

images and micro-CT analysis indicate PETA:HA (75:25) scaffolds lack interconnectivity of the 

void volume providing for cell penetration and nutrient/waste transport required for cell growth 

and differentiation. The analysis of cell viability and expression of osteogenic markers further 

supported this hypothesis.  

The decreased metabolic activity of PETA:HA composites compared to the PETA control is 

likely related to differences in cell function, not cell number, attributed to osteogenic 

differentiation of hASC. The decreased cell proliferation and metabolic activity also had an 

inverse relationship with the increased calcium deposition and expression of osteogenic markers. 

This data further supports the hypothesis that hydroxyapatite induces osteogenesis, resulting in 

decreased metabolic activity and proliferation. (Bernhardt et al., 2009; He et al., 2010)  

Calcium deposition correlated with the expression of ALP and OCN in hASC cultured on 

PETA:HA (85:15) and PETA:HA (80:20) scaffolds, which were significantly greater than 

PCL:HA (80:20), pure PCL, and PETA control scaffolds in both media conditions, providing a 

further indication that scaffolds composed of PETA may be an appropriate material for the repair 

of bone defects. Increased alizarin stain uptake in PETA: HA (80:20) and PETA:HA (85:15), 

compared to PCL:HA (80:20), does not correlate with increased cell density or metabolic activity 

but does correlates with increased ALP and OCN expressionPETA is better able to induce the 

expression of osteogenic markers than PCL, but further comparisons at differing concentrations 

and with other degradable resins are required to test this hypothesis. . Cross sectional images of 

PETA:HA (75:25) scaffolds demonstrate poor alizarin red penetration providing further support 

that the void volume in not substantially interconnected.   
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Although increasing HA content resulted in reduced pore size and interconnectivity, it 

provided a more solid and stronger structure for the scaffold.  Other studies have shown a similar 

trend of decreasing porosity with increasing HA content.(Zhang & Ma, 1999) The increase in 

compressive strength seen in solid samples is predictable and similar to that seen with other 

nanoscale polymer fillers.(Ahn et al., 2004; Reynaud et al., 2001) As porosity played no role in 

the solid samples, the increase in viscosity with increasing HA content beyond 15% did not 

significantly affect the mechanical strength. Histological results demonstrated that both the pre-

sculpted and foamed in situ PETA:HA (80:20) scaffolds induced endochondral ossification. 

Radiography results indicating increased densification further supported these findings. During 

the in vivo study, the structure of the in situ polymerized foam sample may have been disrupted 

when the surgical site was closed during the surgery. Poor porosity and interconnectivity could 

be the reason why the densified regions of the radiographs were non-continuous. Overall results 

suggest that PETA:HA scaffolds could be a suitable substrate for bone regeneration. 

3.5. Conclusion 

 By gas foaming thiol-acrylate based copolymers synthesized via Michael addition with 

an in situ amine-catalyst, a porous polymeric scaffold with bone-like morphology was developed 

as a potential graft or augment in critical-sized bone defect repair. Not only does PETA:HA 

composite have substantial porosity and interconnectivity, it also demonstrates adequate 

mechanical strength as compared to cortical bone. Compared to PCL:HA composites, both 

PETA:HA (85:15) and PETA:HA (80:20) scaffolds showed higher mineral deposition and ALP 

and OCN expression level. Overall, the PETA:HA had higher compressive strength and  

improved cytocompatibility compared to PCL controls. Mesenchymal cells cultured on PETA 
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based scaffolds had a greater expression of osteogenic markers and the scaffolds exhibited 

significantly greater mineralization than hASC cultured on PCL controls. The in vivo study 

demonstrated that animals injected with PETA:HA composites showed no signs of surgical site 

or systemic toxicity and that PETA:HA composites induced osteogenesis in vivo. Additionally, 

the study serves as a proof-of-concept that gas foaming of thiol-acrylate polymers in vivo may be 

used to conformally fill irregular sized defects.  
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CHAPTER 4  TARGETING CALCIUM MAGNESIUM SLICATES FOR 

POLYCAPROLACTONE/CERAMIC COMPOSITE SCAFFOLDS
3
 

4.1 Introduction 

In order to properly facilitate bone regrowth, synthetic composite scaffolds, grafts and 

augments must be biocompatible, biodegradable, and provide adequate structural support for cell 

migration, as well as waste and nutrient transport. These characteristics may be achieved by 

manipulating tunable physical properties, such as porosity, modulus, degradation rate, absorption 

rate, and swelling by modifications with the inclusion of copolymers and ceramic phases as 

synthetic composite scaffolds.(Larrañaga et al., 2014; Wang et al., 2014) Synthetic bioceramics, 

in particular calcium phosphates, have demonstrated high biocompatibility, osteoconductivity, 

and osteoinductivity. These ceramics seek to mimic the natural hydroxyapatite (HA) crystal 

formation found in bone.(Hench & Paschall, 1973; Hench et al., 1971; Pallua & Suschek, 2010) 

Recently, silicon-based glass-ceramics, have been explored as an alternative to calcium 

phosphates. Some members of this group have demonstrated desirable mechanical strength, high 

bioactivity, and have been shown to enhance cell adhesion, proliferation, and mineralization of 

extracellular matrix.(Gu et al., 2011; Kotobuki et al., 2005; Liu et al., 2008a)  

 Akermanite (Ca2MgSi2O7), a calcium, magnesium silicate, has been demonstrated to 

have improved osteogenic properties compared to calcium phosphates (Ca3(PO4)2).(Haimi et al., 

2008; Sun et al., 2006) These properties may be attributed to the presence of Ca
2+

, Mg
2+

, and Si
4+

 

ions, which increases recruitment and osteogenic commitment of hASCs.(Gu et al., 2011; Liu et 

al., 2008a) In addition to superior osteogenic properties, akermanite (Ca2MgSi2O7) exhibits a 

stable degradation rate, an important scaffold design consideration for bone regrowth.(Sun et al., 

3
 Reprinted with the permission of ACS Biomaterials Science &Engineering (Appendix C) 
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2006; Wu & Chang, 2007b)  Structurally similar to akermanite (Ca2MgSi2O7), diopside 

(CaMgSi2O6) also supports  osteoblast culture (Sun et al., 2006) and precipitation of surface 

apatite.(Iwata et al., 2004a) The inclusion of diopside in Al2O3/diopside ceramic composites has 

been shown to increase calcium deposition in simulated body fluid (SBF).(Zhang et al., 2010b) 

This may be due to the structural similarities between akermanite and diopside. The structural 

similarities of each ceramic presented herein can be seen in the crystal structures in order of most 

three-dimensional to least three-dimensional in Figure 4.1. Although its potential as a biomaterial 

has only recently been explored, merwinite has also been shown to induce apatite 

formation(Hafezi-Ardakani et al., 2011) and osteoblast proliferation. (Ou et al., 2008)  

Monticellite has been shown to possess similar properties, increasing apatite formation in 

simulated body fluid (SBF) and stimulating osteoblast growth and adhesion in vitro. (Chen et al., 

2008) 

While possessing favorable characteristics for osteoinduction, the clinical translation of 

such bioactive glass-ceramics is severely limited by their brittle nature in pure form. However, 

these mechanical limitations may be overcome by the fabrication of ceramic-polymer 

composites. The inclusion of a polymer phase lends mechanical strength and tunable rheological 

properties.(Zanetti et al., 2012a) Combined with the osteoconductive and osteoinductive 

properties of bioactive ceramics, a more clinically relevant scaffold, graft or augment can be 

fabricated.(Zanetti et al., 2013a) Natural compounds, including collagen and chitosan have been 

employed in such composites.(Peter et al., 2010; Rodrigues et al., 2003) However, the ability to 

control the chemical composition, as well as mechanical and biological properties make 

biocompatible synthetic polymers a potentially more desirable alternative. Polycaprolactone 
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(PCL), an FDA-approved material, displays high biocompatibility and a low degradation rate, 

making it an ideal polymer phase for the slow growth process of bone regeneration.(Zanetti et 

al., 2012a; Zanetti et al., 2013a)  

Over 200,000 liposuction procedures are performed in the United States annually, and 

from the resulting lipoaspirate, a great deal of hASCs can be derived. Multipotent hASCs have 

been demonstrated to have similar morphology and differentiation capacity to those 

mesenchymal stem cells isolated from bone marrow.(Levi & Longaker, 2011a) The hASCs are 

capable of differentiating along the adipocyte, chondrocyte, neuronal, osteoblast, and skeletal 

myocyte pathways.  Abundant bone tissue engineering studies, as well as clinical trials, have 

been conducted and shown impressive results by using hASCs.(Aksu et al., 2008; Cui et al., 

2007; Gabbay et al., 2006; Gimble et al., 2007; Yoon et al., 2007) 

Herein, we present the preparation and comparison of composite polymer-ceramic 

biodegradable materials composed of diopside (CaMgSi2O6), akermanite (Ca2MgSi2O7), 

monticellite (CaMgSiO4), and merwinite (Ca3MgSi2O8).  Each ceramic was synthesized, 

characterized via X-ray diffraction, and incorporated into composite PCL:ceramic scaffolds. 

Mechanical testing was used to determine compressive yield strength and Young’s modulus for 

each scaffold. Human adipose-derived stem cells (hASCs) viability and in vitro osteogenesis 

were evaluated for each composite scaffold through extractive studies. To confirm osteogenic 

properties, metabolic activity, calcium deposition, DNA content, and osteogenic markers alkaline 

phosphatase (ALP) and osteocalcin (OCN), were quantified. 
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4.2. Materials and Methods 

4.2.1. Synthesis of diopside (CaMgSi2O6), akermanite (Ca2MgSi2O7), monticellite 

(CaMgSiO4), and merwinite (Ca3MgSi2O8) 

Diopside (CaMgSi2O6), akermanite (Ca2MgSi2O7), monticellite (CaMgSiO4), and merwinite 

(Ca3MgSi2O8) were synthesized by conventional ceramic methods with CaCO3 (99.95%), 

MgCO3 (98.95%), and SiO2 (99.999%). All reagents were stoichiometrically weighed, mixed, 

and grounded in an agate mortar and pestle (~ 20 min.), and powders were pressed into ~1 cm 

pellets and annealed in alumina boats. After an initial calcination at 950 °C at a rate of 100 °C/h 

for 48 h, multiple heat treatments were carried out up to 1300 °C at a rate of 100 °C with 

intermediate grinding and re-pelletizing until reaching phase equilibrium. Monticellite 

(CaMgSiO4) was obtained with heat treatments up to 1100 °C. Figure 4.1 shows the crystal 

structures of the four ceramic materials considered in this work. 

 

Figure 4.1 Crystal structures of CaMgSi2O6, Ca2MgSi2O7, CaMgSi2O4, and Ca3MgSi2O8. Purple 

spheres are Ca, red spheres are O, grey and blue polyhedra are Si and Mg, respectively.  

 

4.2.2 Characterization of ceramics by powder X-ray diffraction 

 Diopside (CaMgSi2O6), akermanite (Ca2MgSi2O7), monticellite (CaMgSiO4), and  

merwinite (Ca3MgSi2O8) were characterized by powder X-ray diffraction using a Bruker D8  
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Advance X-ray diffractometer operating at 40 kV and 30 mA with a Cu Kα radiation source with 

a LYNXEYE XE detector.  X-ray diffraction data were collected using Bragg Brentano 

geometry from 2θ of 10° to 80° using a step size of 0.02 at a rate of 1s per step. Phase purity was 

determined from calculated powder diffraction patterns.(Clark et al., 1969; Kuz'micheva et al., 

1995; Moore & Araki, 1972; Subbotin et al., 2008) The model of X-ray data (Table 4.1) of 

diopside (CaMgSi2O6), akermanite (Ca2MgSi2O7), monticellite (CaMgSiO4), and merwinite 

(Ca3MgSi2O8) were refined using TOPAS 4.2.
8
  

Table 4.1 Unit cell parameters of akermanite (CaMgSi2O6), diopside (Ca2MgSi2O7), monticellite 

(CaMgSiO4), and merwinite (Ca3MgSi2O8) 

 

4.2.3 Fabrication of ceramic scaffolds  

Diopside (CaMgSi2O6), akermanite (Ca2MgSi2O7), monticellite (CaMgSiO4), and 

merwinite (Ca3MgSi2O8) powders (~1 g) were used to prepare the pure ceramic scaffolds as 

previously described. The polyurethane foam templates 5 mm (height) x 10 mm (diameter) filled 

Unit Cell Parameters        

Compound  CaMgSi2O6 Ca2MgSi2O7 CaMgSiO4 Ca3MgSi2O8   

System monoclinic tetragonal orthorhombic monoclinic   

Space Group C2/c 𝑃4̅21𝑚 Pbnm P21/c   

a (Å) 9.74825(48) 7.9087(42) 4.7977(17) 13.1745(66)   

b (Å) 8.92577(43) - 11.0409(43) 5.2694(20) 

c (Å) 5.25162(24) 5.0458(27) 6.3556(22) 9.3006(41) 

β (°) 105.8862(30) - - 92.004(40) 

V (Å
3
) 439.495(37) 316.17(38) 336.66(21) 645.26(49)   
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with diopside, akermanite, monticellite and merwinite slurry mixtures were incubated overnight 

at 60 °C. 

  This was followed by annealing at 500 °C for 5 hours (after ramping up at a rate of 50 

°C/h from room temperature.) in a box furnace, yielding porous diopside, akermanite, 

monticellite and merwinite scaffolds. 

4.2.4 Fabrication and characterization of PCL and PCL:ceramic scaffolds 

Fabrication of PCL and PCL:ceramic scaffolds 

A 10% (wt/vol) PCL solution in 10 mL of 1,4- dioxane was prepared. Akermanite, 

merwinite, monticelite, and diopside were added to PCL individually at different weight ratios in 

a PDMS mold with 10 mm x 5 mm wells, frozen overnight at -80 ᵒC and lyophilized in a freeze-

drier for 24 hours before use.   

Micro-CT analysis and pore size determination  

Two-dimensional (2-D) microcomputed tomography (μ-CT) imaging on pure akermanite, 

monticellite, and diopside scaffolds  was performed (40 kV and 540 ms)  to obtain 0.04 mm 

slices every 0.9° throughout a 360° rotation (SkyScan 1074, Skyscan n.v., Belgium). Three-

dimensional (3-D) files were reconstructed from 2-D images. Volume renderings were generated 

through AVIZO 7.0.1 (Visualization Services Group)(Chen et al., 2014). Pore size was measured 

through AVIZO 7.0.1 as well. Merwinite scaffolds were too fragile to image. 

4.2.5 Porosity calculation based on micro-ct  

To analyze the three-dimensional data, two dimensional slices were read into a custom 

MATLAB code.  For each slice the grayscale image was thresholded using Otsu’s method (Otsu, 
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1975) and then converted into a binary image.  Morphological operations were performed to 

remove small imaging artifacts, and isolate interior and exterior pores(Chen et al., 2014).  After 

quantifying solid and void pixels, porosity was calculated as follows:  ∅ =
𝑉𝑝𝑜𝑟𝑒𝑠

𝑉𝑝𝑜𝑟𝑒𝑠+𝑉𝑠𝑜𝑙𝑖𝑑
× 100% 

4.2.6 Compression test 

Composite and PCL composite scaffolds, molded into a 5 mm (height)×10 mm (diameter) 

cylinder shape, were subjected to compression strain and the ultimate compressive strain tests. 

Results were reported at 80 percent elongation at a compression rate of 1mm/min. Five samples 

were tested for each group. The compressive strain of pure ceramic scaffolds was reported when 

the samples reached the failure point using an Instron Mechanical Test System 5696, at an 

extension rate of 0.5 mm/min.(Garber et al., 2013b) 

4.2.7 Inductively coupled plasma atomic emission spectroscopy (ICP-OES) 

0.1 gram of each ceramic were gas sterilized and then extracted in 5 mL of stromal media 

for 7 days (n=3) at 37 
o
C. The supernatants were then collected and filtered through 0.22 µm 

sterile filters after centrifugation of media from undissolved ceramic. Prior to elemental analysis 

(ICP-OES), solutions were acidified with 1 mL of nitric acid, transferred to weighed ICP-OES 

tubes, agitated for 2.5 h and diluted to a final volume of 10 mL with DI water. The final vials 

were massed and run on a Varian Vista MPX.(Smoak et al., 2014)  

4.2.8 hASCs isolation and culture  

Liposuction aspirates from subcutaneous adipose tissue were obtained from at least three 

donors. All tissues were obtained with informed consent under a clinical protocol reviewed and 

approved by the Institutional Review Board at the Pennington Biomedical Research Center. 
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Isolation of hASCs was performed according to previous work.(Gimble et al., 2010) The initial 

passage of the primary cell culture was referred to as “Passage 0” (p0). The cells were passaged 

after trypsinization and plated at a density of 5,000 cells/cm
2
 (‘‘Passage 1’’) for expansion on 

T125 flasks in order to attain 80% confluency.(Garber et al., 2013b) 

4.2.9 Extract cytotoxicity  

Ceramic extractives from the degradation test were filtered (0.22 μm pore size) and 

pipetted (100 μL/well) into a 96-well plate previously sub-cultured with hASCs (2,500 cells/well) 

and incubated in a CO2 incubator at 37 °C containing 5% CO2 for 24 hours. The cellular viability 

on scaffold cultures was determined using the alamarBlue
®
 assay. 10 μL alamarBlue

®
 reagent 

was added to each well which were then re-incubated at 37 °C in 5% CO2 for 2 hours. The 

fluorescence was measured using a fluorescence plate reader at an excitation wavelength of 530 

nm and an emission wavelength of 595 nm. The tissue culture treated plastic 96-well plate served 

as a control substrate.(Garber et al., 2013b) 

4.2.10 hASCs loading on scaffolds and culture  

5 μL (1.0  104 cells/μL) of Passage 2 from each donor (n = 3) were pooled and directly 

loaded on the top of each sample. After 30 min of incubation at 37 °C and 5% CO2, the opposite 

side of each sample was loaded with the same number of cells by the same approach. 

Experimental groups included: Ceramics (akermanite, merwinite, monticellite, or diopside):PCL, 

75:25; 50:50; 25:75; and pure PCL, 0:100. Scaffolds loaded with hASCs were immediately 

transferred to new 48-well plates and cultured in stromal media (DMEM, 10% FBS, and 1% 

triple antibiotic solution) for 3 days followed by sample collection to assess cell viability with 

alamarBlue
®
 stain.  
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4.2.11 In vitro hASCs viability on scaffolds with alamarBlue
®
 stain  

The viability of cells within the scaffolds in stromal media was determined after 3 days 

using an alamarBlue
®
 metabolic activity assay. The scaffolds were removed from culture, 

washed three times in PBS, and incubated with 10% alamarBlue
® 

in Hank’s balanced salt 

solution (HBSS) without phenol red (pH 7) for 90 min. Aliquots (100 μL) of alamarBlue
®
/HBSS 

were placed in a 96-well plate in triplicate, and the fluorescence was measured at an excitation 

wavelength of 530 nm and an emission wavelength of 595 nm using a fluorescence plate 

reader.(Zanetti et al., 2012a) 

4.2.12. Osteogenic extract study 

Each of the ceramics were suspended in DMEM F12 (0.5 g in 50 Ml) and placed on a 

shaker at medium speed for 7 days at 37 
o
C. After this time period, each solution containing 

ionic products from the ceramics dissolution was filtered with sterile 0.22 µm filters and 

normalized to a 7.0 Ph. The media were then supplemented with 10% FBS and 1% triple 

antibiotics. HASCs were cultured in stromal medium,  osteogenic medium, and the adjusted 

ceramic extractives for 21 days. The alamarBlue
® 

conversion was measured at 7, 14, and 21 days. 

Culture medium was removed from each scaffold, which was then washed three times in 

phosphate buffered saline (PBS) and incubated with 10% alamarBlue
® 

in Hank’s balanced salt 

solution (HBSS) without phenol red (Ph 7) for 120 minutes.  The fluorescence of three aliquots 

(100 L) from each scaffold was measured at an excitation wavelength of 530 nm and an 

emission wavelength of 595 nm using a fluorescence plate reader (Wallac 1420 multilabel hts 

counter).  HASCs calcium deposition (cells cultured with stromal, osteogenic medium and 

ceramic extractives) was assessed after 7, 14, and 21 days of culture by alizarin red staining.  
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Wells of sterile tissue culture plates containing the cultured hASCs were washed with 0.9% NaCl 

and fixed with 10% formaldehyde for 10 minutes at RT.  Wells were then stained with 2% 

alizarin red for 10 minutes and washed with DI water three times to remove excess stain, 

avoiding damage to the cells. Wells were then destained with 10% cetylpyridinium chloride 

monohydrate for 4 hours at room temperature with constant agitation. Total DNA content was 

used to determine the cell count on each scaffold as previously described.(Liu et al., 2008a)  0.5 

Ml proteinase K (Sigma-Aldrich) at a concentration of 0.5 mg/Ml were added to each well, and 

plates were kept at 56 ºC overnight to lyse the hASCs and release DNA.  Aliquots (50 µL) were 

mixed with equal volumes of 0.1 g/Ml Picogreen dye solution in 96-well plates.  Samples were 

then excited at 480 nm with a plate reader. Samples prepared without cells were used as blank 

controls. Total RNA was extracted from cell-scaffold constructs as previously described.(Zanetti 

et al., 2012a) Total RNA to Cdna EcoDry Premix (ClonTech) was used for Cdna synthesis.  Qrt-

PCR was performed using 2× iTaq
TM

 SYBR
®
 green supermix with ROX (Biorad) and primers 

for alkaline phosphatase (ALP) and osteoscalcin (OCN)(Zanetti et al., 2012a) to quantify 

osteogenic target gene expression of hASCs loaded onto the scaffolds and cultured in either 

stromal or osteogenic media for 7, 14, and 21 days.  Reactions were performed with a MJ Mini
TM

 

Thermal Cycler (BioRad). The sequences of PCR primers (forward and backward, 50-30) were 

as follows: ALP, 5’-AATATGCCCTGGAGCTTCAGAA-3’ and 5’-

CCATCCCATCTCCCAGGAA-3’;OCN, 5’-GCCCAGCGGTGCAGAGT-3’ and 5’-

TAGCGCCTGGGTCTCTTCAC-3’.Samples were normalized (ΔCt) against the house keeping 

gene 18S Rrna and the – ΔΔCt  value of  ALP and OCN in scaffolds cultured in osteogenic and 

control media was calculated using the ΔΔCt method.(Livak & Schmittgen, 2001a) 
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4.2.13. Statistical analysis 

All results were expressed as mean ± SEM.  Data was analyzed with one-way analysis of 

variance (ANOVA), followed by Tukey’s minimum significant difference (MSD) post hoc test 

for pairwise comparisons of main effects.  For all comparisons, a P-value < 0.05 was considered 

significant. All significant differences among groups have been mentioned in the results and 

discussion section. 

4.3. Results and Discussion 

4.3.1 Powder X-ray diffraction  

A minor impurity is observed and the results indicate the phase targeted. The diffraction 

results of the targeted CaMgSiO4 resulted in a two phase refinement of monticellite (95.9%) and 

merwinite (4.10%). Multiple subsequent heat treatments up to 1100 °C led to the increasing 

stability of merwinite. Figure 4.2 shows the X-ray powder diffraction patterns of diopside 

(CaMgSi2O6), akermanite (Ca2MgSi2O7), monticellite (CaMgSiO4), and merwinite 

(Ca3MgSi2O8). 

 

Figure 4.2 Powder X-ray diffraction patterns of CaMgSi2O6 (black), Ca2MgSi2O7  (green), 

CaMgSi2O4  (blue), and Ca3MgSi2O8  (red). * represents unidentified reflections 
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4.3.2 Micro-Ct and porosity analysis of 100% ceramic scaffolds (Figure 4.3) 

Micro-CT images and porosity analysis revealed that monticellite was the most porous 

ceramic scaffold (34.17±13.07), followed by diopside (33.99±11.89), and akermanite 

(32.41±11.32). There does not appear to be any significant difference in the porosity of these 

scaffolds. The average pore size of diopside, akermanite and monticellite scaffolds is 

0.844±0.157 mm, 0.838±0.172 mm, and 0.844±0.178 mm respectively. These results suggest 

that the differences in mechanical strength between the ceramic scaffolds are due to differences 

in three-dimensionality and crystal structure, not to the porosity of the material.  

 

Figure 4.3 Micro-CT analysis of 100% ceramic scaffolds made diopside, akermanite and 

monticellite 

4.3.3 Compression analysis of 100% ceramic scaffolds 

The 100 % ceramic scaffolds showed significant differences in compressive strength 

from one another, as shown in Figure 4.4. Among the pure ceramic scaffolds, diopside 

(CaMgSi2O6) scaffolds had the greatest compression strength (0.27 MPa), twice as strong as to 

akermanite (Ca2MgSi2O7) with 0.12 MPa and six times stronger than monticellite 

(CaMgSi2O4)(0.04 MPa) scaffolds.  
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The compressive strength was significantly different between all groups. Merwinite 

(Ca3MgSi2O8), in sharp contrast to diopside, was powdery after the annealing of poly-urethane 

and poly vinyl alcohol, yielding 0 MPa compression strength. 

Figure 4.4 Compressive strength and Young’s modulus of 100% ceramic scaffolds made with 

diopside, akermanite, monticellite and merwinite respectively. 

Diopside is monoclinic, akermanite is tetragonal, and monticellite and merwinite are 

octahedral and monoclinic, respectively(Wu & Chang, 2007b) These differences in structural 

dimensionality of  the four silicates most likely contribute to differences in degradation and 

mechanical strength. Merwinite’s insubstantial three-dimensional structure may explain its low 

mechanical strength, ruling it out as a viable candidate for bone scaffold composites. 

4.3.4. ICP-OES  (Figure 4.5) 

The Ca, Mg and Si concentrations in CaMgSi2O6, Ca2MgSi2O7, and CaMgSiO4 

extractives were significantly higher in the ceramic experimental groups than in the stromal 

medium control.  
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Crystal structure may affect the degradation rates of the ceramics, leading to differences 

in their subsequent release profiles.(Ducheyne et al., 1993; Radin & Ducheyne, 

1994) Additionally, diopside, akermanite, and monticellite absorb over 50% of phosphorus from 

stromal medium. Merwinite precipitates almost all of the phosphorus as well as the magnesium 

from stromal medium.  

 

Figure 4.5 ICP-OES analysis of ceramic extractives from diopside, akermanite, monticellite and 

merwinite. 

4.3.5 Compression test of ceramic/PCL scaffolds  

Compressive strength of all types of ceramic/PCL scaffolds are reported in Figure 4.6. In 

general, PCL/ceramic composite scaffolds reach highest compressive strength at a 75:25 ratio of 

PCL to ceramics. Further increasing the amount of ceramics to 50% in the PCL/ceramic 

composite scaffolds causes the compressive strength to decrease. When the ceramic ratio reaches 

75% in the composite scaffolds, the compressive strength of scaffolds drops below 0.02MPa 

regardless of the ceramic type. 
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Figure 4.6 Compressive strength and Young’s modulus of PCL: ceramic composite 

scaffolds 

It should be noted that merwinite/PCL, 75:25 scaffolds maintain little integrity during 

normal handling and were consequently difficult to  measure under compression test conditions 

due to its low mechanical strength. Because all of the composite scaffolds were made via a 

thermal-precipitation method, the ceramic phases tended to precipitate to the lower part of the 

PCL/ceramic mixture in 1,4-dioxane. Phase separation may explain why the mechanical strength 

of PCL/ceramic scaffolds decrease dramatically when ceramics comprise over 25% of the 

composite.  

When compared, the compressive strength of PCL/ceramic (75:25) composite scaffolds 

followed a trend similar to that of the pure ceramic scaffolds. PCL/diopside (75:25) composite 

scaffolds exhibit the greatest mechanical strength, followed by PCL/akermanite (75:25), 

PCL/monticellite (75:25), and PCL/merwinite (75:25) composite scaffolds. PCL/ceramic (50:50) 



 

 

93 

 

scaffolds all exhibited similar mechanical properties, indicating that varying concentrations of 

PCL affects the performance of ceramics in the scaffolds.  

4.3.6 Viability of hASCs after acute exposure (24 hours) to the seven-day media extractives 

of different ceramic powders  

alamarBlue
® 

assay was used to determine the effect of ceramic component ions on 

hASCs metabolic activity when cultured in the ceramic extracts (Figure 4.7). Cells exposed to 

diopside extract and akermanite extract showed 80 % metabolic activity compared to the control, 

which was cultured in stromal medium containing no ceramic extracts. There were no statistical 

differences shown between the metabolic activity of hASCs cultured in diopside extracts, 

akermanite extracts and monticellite extracts. However, hASCs cultured in merwinite extracts 

were shown to exhibit significantly lower metabolic activity than those cultured in diopside 

extracts, akermanite extracts, and the control. Even so, the cells cultured in merwinite extracts 

showed above 70% relative metabolic activity.  

4.3.7. Viability of hASCs on scaffolds for 3 days in stromal media  

After characterization of the effects of ceramic extracts on hASCs cultured on sterile 

tissue culture plates, the viability of cells cultured on PCL scaffolds containing varying 

concentrations of ceramic additives was measured (Figure 8). Results from the 

alamarBlue
®
metabolic assay showed that the diopside and akermanite composites showed no 

significant difference from the control containing no ceramic additives. Composite scaffolds 

containing diopside and akermanite were shown to support the highest levels of relative hASCs 

metabolic activity. 
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Figure 4.7 Viability of hASCs after acute exposure (24 hours) to the 7 days media extractives of 

different ceramic powder. *, significantly different, P<0.05 

The merwinite additives at 25% and 50% as well as the monticellite additives at 25% and 75% 

displayed no statistical differences in metabolic activity from the scaffold control containing no 

ceramics.  The merwinite additives at 75% formed a scaffold with very poor mechanical strength 

and unstable structure. It failed to support hASCs growth, likely due to its rapid degradation in 

stromal medium.  

4.3.8. Osteogenesis study of hASCs cultured with ceramic extractives  

Alizarin red staining was performed to evaluate the mineral deposition of hASCs cultured with 

ceramic extractives (Figure-4.9A).  All groups showed peak mineralization at 21 days of culture. 
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Figure 4.8 Viability of hASCs on Scaffolds for 3 days in Stromal Media 

Among the ceramic groups, hASCs cultured with akermanite extractives showed the highest 

level of calcium deposition, followed by monticellite and diopside. Merwinite exhibited the 

lowest level of calcium deposition, lower than stromal medium negative control. Each of the 

ceramic extractives displayed significantly lower osteogenic induction based on calcium 

deposition in comparison to the positive control, osteogenic medium. qRT-PCR was performed 

to assess the expression of commonly used osteogenic stage markers and total DNA content was 

quantified using Quant-iT™ PicoGreen
®
, to analyze the hASCs proliferation in each 

group.(Burge et al., 2007) The activation of genes such as ALP and OCN, indicative of osteoblast 

activity, is the result of the osteogenic regulation and action on the transcription factor core 

binding factor alpha1 (Cbfa1) by bone morphogenic proteins (BMPs).(Liu et al., 2008a; Milat & 

Ng, 2009) ALP expression was measured 7 days after culture and OCN expression was measured 
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after 14 and 21 days (Figure 4.8B). Both ALP and OCN up-regulation was observed in cultures 

containing diopside, akermanite and monticellite extractives. Conversely, hASCs culture 

containing merwinite extractives exhibited down regulation of ALP and OCN in comparison to 

the stromal medium group. Among the ceramic groups, akermanite demonstrated the highest 

ALP and OCN expression levels, followed by monticellite and diopside. This trend was in 

accordance with calcium deposition levels.  The metabolic activity (Figure 4.9C) and 

proliferation (Figure 4.9D) of hASCs cultured in stromal medium, osteogenic medium, and 

ceramic extractives was also studied. Osteogenic medium displayed the lowest metabolic activity 

at both 7 and 14 day time points. Calcium deposition and qRT-PCR data suggests that the hASCs 

were committed to an osteogenic lineage at these time points, which has been demonstrated to 

decrease metabolic activity.(Qureshi et al., 2013; Zanetti et al., 2012a)  For the same reason, 

akermanite and monticellite groups also exhibited decreased metabolic activity compared to 

diopside and merwinte groups. Merwinite still shows a significant decrease in metabolic activity 

21 days after culture and a decrease in total cell number, as indicated by total DNA analysis 

(Figure 4.9D). Merwinite appeared to have a significantly decreased total cell number at 21 days 

due to cell death. Merwinite still shows a significant decrease in metabolic activity 21 days after 

culture and a decrease in total cell number, as indicated by total DNA analysis (Figure 4.9D). 

Merwinite appeared to have a significantly decreased total cell number at 21 days due to cell 

death. The most distinct difference in DNA content was seen between stromal medium and 

osteogenic medium. 
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Figure 4.9 Osteogensis study. A: calcium depostion of hASC cultured with diopside, akermanite, 

monticellite and merwinite extractives repectively; B: q-rtPCR analysis of ALP (7 day) and OCN 

(14 and 21 day)  expression from hASC cultured with diopside, akermanite, monticellite and 

merwinite extractives repectively; C: metabolic activity hASC cultured with diopside, 

akermanite, monticellite and merwinite extractives repectively; D:total DNA amount of hASC 

cultured with diopside, akermanite, monticellite and merwinite extractives repectively. 

When correlated with calcium deposition, gene expression, and metabolic activity, the 

steady number of cells between 7 and 21 indicates that hASCs have a lower proliferation rate 

when committed to an osteogenic lineage.  Akermanite and monticellite showed similar to trends 

to osteogenic medium, further indicating similar osteogenic pathways are activated by the media 

and ceramic induction.  
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 The hASC cultured in ceramic extractives has lower levels of osteogenic marker 

expression compared to the positive control group, osteogenic medium. One hypothesis is that 

this phenomena is related to the amounts of phosphorus absorption in the ceramics. Phosphorus 

is important for cellular structure and function.(DiBartola & Willard, 2006) Phosphorous influx 

into osteoblasts by means of a sodium-dependent phosphate co-transporter mechanism has  

recently  shown to trigger osteopontin mRNA and protein synthesis and to subsequently regulate 

mineralization.(Beck et al., 2000) In addition, different ceramics release varying amounts of 

calcium, magnesium and silicon, which are the crucial elements that stimulate gene transcription 

during osteogenesis.(Gu et al., 2011)  It is well known that calcium plays a crucial role in the 

process of bone mineralization. However, the ability for extracellular calcium to regulate cell-

specific responses has not been proven until recently.(Yamaguchi et al., 1998) Increased 

extracellular calcium binding to G-protein-coupled extracellular calcium-sensing receptors has 

been previously shown to induce osteoblast proliferation and chemotaxis. (Xynos et al., 2001) 

Silicon plays a role in cross-linking glycosaminoglycan molecules with collagen and the 

mineralization of human primary osteoblasts.(Seaborn & Nielsen, 2002) Likewise, Mg has a 

close relationship with the bone tissue mineralization,(Di Mario et al., 2004; Kim et al., 2003b; 

LeGeros, 1990) and Mg-substituted tricalcium phosphate, has been demonstrated to stimulate 

adhesion and proliferation of human osteoblast cells compared to calcium phosphate 

controls.(Sader et al., 2009) While merwinite was shown to release the greatest amount of 

calcium, it also absorbed a high level of phosphorus from stromal medium, which led to cell 

death and impeded the osteogenic differentiation. It is likely that as a result of severe 

hypophosphatemia in merwinite extractives, exposed hASCs have osteogenic failure and cell 
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death in 21 days.  Furthermore, the increased level of silicon released by merwinite may be 

responsible for the inhibition of cell proliferation observed.(Wu & Chang, 2007b) High silicone 

concentration could induce cellular vacuole formation,(Valerio et al., 2004) which is often 

associated with apoptosis or cell degeneration.(Serre et al., 1998) Diopside, on the other hand, 

released only 44.8% of the magnesium and 61.3% of the calcium when normalized to release 

from akermanite. Lower levels of these crucial ions may have led to the decreased osteogenic 

properties observed. 

4.4. Conclusion 

The dimensionality of the crystal structure of ceramics plays an important role in the 

fabrication of ceramic/polymer composite scaffolds. Increased three-dimensionality allows for 

better stability and higher mechanical strength of the ceramic scaffolds, as well as limiting 

scaffold phosphorous absorption from the environment. Furthermore,composite scaffolds 

provide greater stability to support hASCs attachment and growth than pure ceramics. The 

composites containing ceramics were also shown to degrade more slowly and maintain a 

relatively intact structure after prolonged exposure to cell medium compared to polymer 

scaffolds without ceramic additives as well as pure ceramic scaffolds. Overall, akermanite and 

monticellite-containing composites exhibit better osteogenic properties than those containing 

diopside and merwinite, suggesting that they might be the better ceramics for fabricating tissue 

engineered bone scaffolds. 
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CHAPTER 5. SUMMARY AND FUTURE WORK 

 The step growth nature of the amine catalyzed Michael addition reaction alleviated the 

concern of unreacted monomer or radicals leaching into the body as would typically occur using 

a chain-growth mechanism involving a free-radical process. In situ polymerization opens the 

opportunity for the development of absorbable foams for the conformal repair of critical sized 

tissue defects, which can be easily delivered in the clinical surgical setting. This represents a 

substantial improvement over PCL, which are foamed externally prior to surgical insertion, and 

methylmethacrylate bone cements, which are largely inert, non-porous, and permanent. The 

SEM analysis, mechanical testing, and micro CT data prove that there is no distinct difference 

between the PETA-co-TMPTMP foam made in situ and in vitro. While this material has many 

advantages, future work includes the development of a homogenous HA containing polymer 

network, osteogenic studies and improved mechanical strength of the foamed PETA-co-

TMPTMP with varying HA amounts. It is clear that scaffold technology plays a critical role in 

the success of the current stem cell based bone tissue engineering paradigms.  While a variety of 

different materials, both ceramics and polymers have been tested in combination with hASC, 

Lendeckel et al. and others note that composite scaffolds may offer a better clinical outcome as a 

result of improved mechanical and biological properties.(Lendeckel et al., 2004) Calcium 

phosphate nanoscale ceramic particles of HA and β-TCP will be used as the inorganic osteogenic 

phase and thixotropic agent in future studies.   

 By gas foaming thiol-acrylate based copolymers synthesized via Michael addition with an in 

situ amine-catalyst, a porous polymeric scaffold with bone-like morphology was developed as a 

potential graft or augment in critical-sized bone defect repair. Not only does PETA:HA 
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composite have substantial porosity and interconnectivity, it also demonstrates adequate 

mechanical strength as compared to cortical bone. Compared to PCL:HA composites, both 

PETA:HA (85:15) and PETA:HA (80:20) scaffolds showed higher mineral deposition and ALP 

and OCN expression level. Overall, the PETA:HA had higher compressive strength and  

improved cytocompatibility compared to PCL controls. Mesenchymal cells cultured on PETA 

based scaffolds had a greater expression of osteogenic markers and the scaffolds exhibited 

significantly greater mineralization than hASC cultured on PCL controls. The in vivo study 

demonstrated that animals injected with PETA:HA composites showed no signs of surgical site 

or systemic toxicity and that PETA:HA composites induced osteogenesis in vivo. Additionally, 

the study serves as a proof-of-concept that gas foaming of thiol-acrylate polymers in vivo may be 

used to conformally fill irregular sized defects. 

The dimensionality of the crystal structure of ceramics plays an important role in the 

fabrication of ceramic/polymer composite scaffolds. Increased three-dimensionality allows for 

better stability and higher mechanical strength of the ceramic scaffolds, as well as limiting 

scaffold phosphorous absorption from the environment. Furthermore, composite scaffolds 

provide greater stability to support hASCs attachment and growth than pure ceramics. The 

composites containing ceramics were also shown to degrade more slowly and maintain a 

relatively intact structure after prolonged exposure to cell medium compared to polymer 

scaffolds without ceramic additives as well as pure ceramic scaffolds. Overall, akermanite and 

monticellite-containing composites exhibit better osteogenic properties than those containing 

diopside and merwinite, suggesting that they might be the better ceramics for fabricating tissue 

engineered bone scaffolds. 
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APPENDIX A: APPROVAL FROM JOURNAL OF BIOMEDICAL MATERIALS 

RESEARCH: PART A 
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APPENDIX B: APPROVAL FROM TISSUE ENGINEERING PART:A 
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APPENDIX C: APPROVAL FROM ACS BIOMATERIALS SCIENCE &ENGINEERING 
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