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ABSTRACT

Let G be a compact abelian group whose dual group T
has a finite tbrsion subgroup. Let u € M(G) such that ful
assigns no mass to any coset of any closed subgroup of G
whose 1ndex is infinite. Then there is d > O, dependent
only on |u|| , such that if for each y € T , |G(Y)| >1 or
IR(¥)| < @, then the set (v : |Q(v)| > 1) is finite. &n
upper bound on the cardinality of this set is obtained in terms

of |lu|| and the carainality of the torsion subgroup of T .
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SECTION I
INTRODUCTION

G will denote a compact abelian group, T its dual
group and M(G) the measure algebra of finite Borel measures
on G . We shall assume that T has a finite torsion sub-
group. Let u e M(G) such that ‘u\ assigns no mass to any
coset of any closed subgroup of G whose index 1s infinite.
We prove that there is a number a > O , dependent only on
lull » such that if for each vy e I, \a(y)|‘2 1 or \ﬁ(y)\ < d
then the set of Yy such that |G(Y)\ 2 1 1is finite. We obtain
an upper bound on the cardinality of this set in terms of ||ul|
and the cardinslity of the torsion subgroup of T

De Leeuw and Katznelson first proved thils theorem for the

circle group T [1, Lemma 2]. They proved that, for any

2 satisfying the following:

C>O0, thereis da = d(C) < 107
Suppose that u € M(T) 1s a continuous measure with |u|| < C
and, for |n| sufficiently large, |ﬁ(n)| <a or

Re(G(n)) > 1l-d ; then ({n : |G(n)|‘2 d} 1is finite. Without

a numerical bound on the cardinality of ([n : |Q(n)|'2 a)



their method does not seem to generalize. Such a bound can
be obtained by imitating Davenport's procedure in [2], if
d 1is small enough and |ﬁ(n)\ <d or \ﬁ(n)\ > 1l-d for all
integers n . 1In [2] Davenport proves that if a trigonometric
polynomial p(x) = I a(n)exp(2minx) has N coefficients of
modulus at least one and all other coefficlents equal to
zero, then the Ll-norm of p 1s at least
8'1(1og N)l/h(log log N)"l/u . | |

For an arbitrary locally compact abelian group G ,
Glicksberg proved in [3] that if np e M(G) and O is isolated
in {0} u G(G) then there is a compact subgroup H of G for
which “H s the part of |y carried by the cosets of H , 1is
the convolution of a non-zero idempotent and an invertible. He
proved that iy = [(YgAy)mH] * . where A 1is a finite subset
of & s Wy 1s the Haar measure on H , and \ € M(G)'l .
For measures | such that My = O when H 1s a closed sub-
group of G of infinite index, the hypothesis that O is iso-
lated in (0} U ﬁ(é) ylelds the conclusion that #® is a trig-
onometric polynomial. When .G i1s compact and 8 has a
finite torsion subgroup, one can then use Hewitt and Zucker-

man's generalization [4] of Davenport's result [2] to estimate

the cardinality of the set of Yy € I' such that |G(Y)\ >0 .



SECTION II
THEOREMS

In thls section we state our theorems precisely and prove

Theorem 2 assuming Theorem 1. In what follows B = B(p) =
(v er: |\B(v)| > 1) .

Theorem 1. Let G be a compact abellian group whose dual group
I has at most K torsion elements. Let u € M(G) such that
|4| assigns no mass to any coset of any closed subgroup of G
whose index is infinite. If card(B(u)) > K(r+l)3r2 , then
there exist Yo éand Yk,J » 1< k< r2 » 1< J<r ’ in

B(W) such that if P, = {v,} ana

Pyyr = P U (Vpyp, 3 2 23U [i‘éj Py + Yee1,1 = Yie1,3) o
then

for vy eP,_; and 1< J, we have v + Yg,1 = Yk, 3 B . (1)

The proof of Theorem 1 requires several reductions which



will be postponed to later sections. Theorem 1 was suggested
by Theorem 1' which for the case of G =T can be found in

Davenport'!s paper [2].

Theorem l'. Let G be a compact abelian group whose dual

group I' 1s an ordered group. Suppose that W € M(G) such

2
that (r+1)3r < card(B(pn)) < » . Then there exist Y, and
Y,y » 1<K, 1< J<T, 1in B(u) such that if P, =

{Yo} and

Py = P U lvgya,y 1 1S3 SPI UL U P+ Vg g - Ve, ) o

for Y e P_q ana 1< J we have Y + Yi,1 = Yk, j ¢ B .

Since the proof of Theorem 1' found in [2] for G = T works
without change for the general case, we omit the proof of

Theorem 1' .

Theorem 2. Let G be a compact abellan group whose dual
group T has at most K torsion elements. Let W e M(G)

such that |p| assigns no mass to any coset of any closed
subgroup of G whose index is infinite. Let r be a posi-
tive integer greater than 2 such that 4'1(l-e'2)rl/2 > ull -
If



|ﬁ(v)| >1 or |f(y)|< o-1,3/2,-21° (2).

for all Y € T' , then the cardinality of B(u) 1s at most

2
K(r+1)37
The proof of Theorem 2 is adapted from [2]. Originally
condition (2) read - ~

Bl 21 or B0 | g 23 2(ra) 30

Gordon Woodward suggested the lmprovement.

B - 2
Proof of Theorem 2. Suppose card(B(up)) > K(r+1)3r . Using

Yo and vy, j 2 1< k< r2 s 1< jJ<r, as given by Theorem 1,
k] — — — — .
we define trigonometric polynomials Pos* ¥ o inductively as

. r
fo;lows:
9o = S(R(Yg)) (g *)
where o(x) = x\xl'l for x £ 0 and To(x) ='5?|x|’l .
o = weall - 2 - 1 s Slvg))e(lng ) v - Vi g))

+ 22 2Tl ) g, p00) -

Note that if Po,°",P o are defined as in the statement of
r



Theorem 1, each P 1s a Py-polynomlal. By [2, Lemmas 1

and 2], [mk(g)| <1 for all ge G . Let Iy = f ® (8)au(-g)
G
A
Then Iy = |u(Y5)| > 1 . Moreover

Re(I,) > (1-2r"%)Re(I, ;) +.% 32 (3)

To compute (3) we write
-2 A
Lo = (1-2r ) )+ 2 5 iy )|
-3 r 2 g (SR e sDB(Y vy - vy )
YeP, _; 1<
= (1-2r 81, +r 5/2 ¢ B (v, Pl r~3a

Thus,

Re(T,) > (1-2r"2)Re(I, ;) + r™ /%= r3|a| .

Observe that each term of A 1s bounded in modulus by

2
2~1p3/2;-2r by (1) ana (2) and that the number of terms in

A 1is at most % r(r-1)-cara(P._q) < r® card Peq £ rK

2-0

Note that card(Py) =1 (r and that

card(Py,,)
=card(P U (Y 9,5t 1 <3<l v [123Pk * Yye1,1 = Y41, 3))

1
Lcard P+ r + 5T (r-1)card P, < (1+r+é-(r)(r-l))card(Pk)

< re carda(P, ) ,



hence card(P.) < r2® . It follows from (3) using induction

that

Re (I, ) Z% /2 (l-r-a)k(%- rl/‘?-l) .

For k = r2 we conclude that

Tyl > Re(ry) > 3 /2 - <1-r‘2>r2<%r r/2.1)

> M2 - e B /2 > 2 R85 Yy

although \wk(g)\.s 1 for all g e G . This contradiction

establishes Theorem 1.



SECTION ITI
THEOREM 1 FOR G =T

In this section we prove Theorem 1 for G =T .

2
Proof. Let W € M(T) and card(B(u)) > (r+l)3r . We
must exhiblt Yo and Yy 4, 1<k<r®,1<J<r, in
, S KS L J5
B(W) such that if Py = {yy] and

Peyr = P U lyp,3 2283}l [igJPk + Ye41,1 " Yet1, 3] o

then for Y e‘Pk_l and 1< J we have Y + vy 4 - g 4 € B .
By Theorem 1' we may assume card(B(n)) = » . We suppose that
B(u) N zT is infinite.

Let vy, Dbe any member of B(W) . Suppose that Yk,j in
B(u) have been chosen for 1< J<r, 1 <k<ml (m>1)
consistent with (1). Let Yo, be any element of B such
that '

Yo, r > Y] for vy eP 5 . (4)

We suppose that y have been chosen in B(u for
m, J



i+1 < J < r consistent with (1) and satisfying (4) in the
place of Ym.r ° Suppose that no p € B can be chosen as

3
Ym,i to satisfy (4) in the role of Ym,r ° Then for large
p € B there are Y € Pm-l anda i+l < j < r such that
p+~Y-ym,.j € B. If p 1is large enough p+Y:Ym,j will satisfy
(4) in the place of Yo,r There exist y € P, and

! t

141 < j £ r so that (p+Y-Ym’j) Y = Yp,i' € B - Let M
be 2 max{Ym g i+l < J<r} . If IM< p < (L+1)M , then

, S Jd 2 =
(L-1)M < pHy=y_ j < p 3 thus there are at least L points in

J

BN [M,(L+1)M) . We conclude that

1im inf(2r+1)"Y £ @)% > (an)™t > 0
R4 |n|<R

which implies that u 1s not continuoﬁs, a contradiction.
Thus some p € B satisfying (4) in the place of Yp.p Can be
3

chosen as Y Inductively we obtain Yo and vy, 5 2
k]

m, i
1<k<r®,1<Jj<r, as required.



SECTION IV
RANDOM WALKS IN Z°

We shall prove Theorem 1 for groups G = it s n>1,
by induction on n . We require some geometrical lemmas con-

cerning random walks in 7" . In what follows, a hyperplane

H in R"

will be called rational if for some z € Z° > 2+H
is a subspace of R containing n-1 1linearly independent
vectors from Z° . This is equivalent to saylng that for some

z in 2z, (z+H) n Z" 4is isomorphic to z0-1

D and S be

Lemma 1. ILet n > 1, {pi] be a sequence in 7Z
a finite subset of 2" such that Pi41-Py € S for all i
Then for each positive integer N there are N integers j

and a rational hyperplane H such that pJ € H.

Before we prove Lemma 1, consider an example in 22 . We
assume that p, # O for all 1 and that 6 = (6,,6,) is a
cluster point of ["pin"lpi] such that 91 and 6, are ra-
tional. Let H be the line through 0 anda 6 . Since 91

and 62 are rational there 1is a minimum distance d > O

10



11

between translates of H by elements of Z2 . We can enu-

merate such translates of H as Hy so that Hy is a dis-
tance dli\ from H . Suppose the lemma false for some N .
Fix a point p; . Among the first (2k+1)(N-1) + 1 successors
of Py at least one, say pJ s occurs on an Hi with

|£] > kx . Let M be the meximum of |<s,6>| for s e s,
where <-+,+*> denotes the usual inner product in R2 . Con-

sider the angle A formed between two lines, H and the line

through O and pJ . We have
|tan(a)| > (ka)(|<p;,6>| + (2k+1)(N-1)M)"%
If k 1is large enough,

|tan(A)| > = a(amN)™* = amw)~t .

o] L

Let H' and H" be lines through O with rational slopes

forming angles with H that are less than arctan d(MMN)'l

’
but on opposite sides of H . Since a subsequence of
[Hpi“'lpi} converges to 6 , we have infinitely many choices
for Py in the same region between H' and H  as H is.
For each such P there 1s a successor pj on the opposite
side of H' or H" . We conclude that the broken-line path
traced by the sequence [pi] crosses H' or H" infinitely

often. Since H' and H" have rational slopes, a finite



12

number of translates of them cover all the points in z0
within a certain fixea aistance. If we choose that distance
to be the maximum of ||s|| for s € S, one of the translates
contains Py for infinitely many 1 .

Thls example suggested how to handle the general case.
When 6, and 6, could not botn~bé rational, we chose Gi
and Gé close to 61 and 62 and attempted a similar argu-
ment. It became important to control the least common denomi-
nator Q' of Gi and eé because our lower estimate for d
was (Q')"'1 . We were led to invoke the diophantine approxi-
mations given by Theorem VII of [5, p. 14}: 1If 91""’9n N

are real numbers, then there are integers Q , Qys ** 5 qy with

Q arbiltrarily large such that
1/n .
Q™ "max{|Qb,;~q,| : 1 < 1 < n} < n/(n+l) .

Proof of Lemma l. We shall argue by contradiction to obtain

a rational hyperplane H which the broken-line path tracea by
the sequence [pi} crosses infinitely often. A finite number
of translates of any rational hyperplane H covers all the

" whose distance from H 1s bounded by a certain

points in 2
number. In our case, 1f we choose that number to be the
maximum of ||s|] for s € S, some translate of H will con-
tain py for infinitely many integers 1 , because there

will be that many points Py for whilch p; and p,,, areon



13

opposite sides of H .

Let 0 = (el,---,en) be & cluster point of [”pi"'lpi]

Note that if Py = 0 infinitely often, the lemma follows.

We may therefore assume that Py # 0 for all i . Since

0 £ 0, we may assume 6, # 0 . By Theorem VII of [5, p. 14]
there are integers Q > O and Qys 0 qy such that

(a) Ql/h|QGi-qi| <1l for 1<1i<n;

(b)) QP > emmnl/? where M > 1 + ||s| for all s e S ;

() lagl > (1/2)]64Q] for 1< i< n;

(@) @ H(aB+ad) 2 e =2 .

Let q be the vector (ql,---,qn) and w the vector
(-qg,ql,o,---,o) - Choose a rational number r so that
l6n1/2Q'(n'*‘l)/n <rc< (l\lMNQ)‘1 » by (b). Let H and H''
be the subspaces of R” orthogonal to rq-w ‘and rq+w-, Tre-
spectively.

Assuming the lemma false, we shall show that the path
traced by the sequence [pi] crosses either H' or H" in-
finitely often. We shall estimate the ratio \<p,w><p,q>'l\
for some points p from the sequence. We shall show that
the inequalities \<pi,w><pi,q>'l\ <r and \<pi,w><pi,q>‘1|
2_(4MNQ)"1 each have infinitely many solutions for the.index.
It then suffices to show that points satisfying the first in-
equality are separated from points satisfying the second by

H' or H" . Note that H' and H" are the points where

that ratio 1s r . For example, suppose that



|<pysw><py,a>71| < r and that (<p,,q>) > 0, but that
<PJ-:W><PJ,C1>-1 2 (uM]\IQ)_l and (<pqu>) > 0 . Then

<Py, TQ=W> = T<Py,q> = <Py,W> = <Py, > (T - <Py, WPy, > ) > O

but
<pj,rq-w> = <pj,q>(1‘ - <pJ:W><pJ,q>-l) <0.

Thus p; &and pJ are on opposite sides of H' . The other
cases are handled similarly.

To see that |<pi,w><pi,q>"l\ < r infinitely often, we
need ohly show that |<6,w><9,q>'1‘.$ l6nl/2Q,"(n+1)/n , since
a subsequence of [Hpin’lpi] converges to 6 and

16n1/2Q,'(n+1)/n < r . Since q is orthogonal to w ,

[<0.u>| = |<6-q"Xa,u>| < [16-a" Yalj ]

< nl/2Q'(n+l)/h(q§tqg)l/2.s 2n1/2Q-l/h .
On the other handg,

|<6,a>| = Q'1|<Q9,q>\ = Q‘1|<Q9-q,q> + <aq,3>|

> @ (llall® - llee-alllall) > @ Hall (flall - »¥/%Q7Y/7)

14



15

Since |q4| > %. |6;Q] for all 1, gl > %Q . Moreover,
by (b), %-Q > n1/2Q'1/h . Thus

Mal(fal - 02 > 1728 @ - n2%7MP) > (1/8)q
Thus

|<6,W><9,q>'1|.g 2nl/2Q-l/h[(1/8).Q]-l = 16nY/2g- (n+l)/n

To argue that \<pi,w><pi,q>'1| > (4MNQ)~1  infinitely
often we need to assume that the lemma is false. Let F be
the subspace of R" generated by the vector q and the vectors
e; = (6k,i) 5 for 3<1i<n . Note that F is a rational
hyperplane and that there 1s a minimum distance d Dbetween
translates of F Dby elements of 7P . Enumerate these trans-
lates as F; for 1 e Z in such a manner that Fi is in
distance |i|d from F . Fix some integer J . If the lemma
is false, among the points p;.; , 1 <1< (2k+1) (N-1) + 1 ,
at least one, say Pyyq » oOcCcCurs on an F; with 1] > k .
Since w 1is orthogonal to F and F 1is n-l-dimensional,
the aistance from pJ+j to F 1s equal to |<pJ+j,Hw"‘1W>| .
Thus

|<Pzpqw>| > Kafu] .

Estimating |<p;.j,@>| , we obtain



I<Psiyo @ £ <oy, > + [(2441) (N-1)+1]max{|<s,q>| : s € 8} .

Since

I<s,a>| < |<s,q-Q8>| + |<s,Q8>]

< lslilla-ae]l + qlls|l < llslin™/Za™ (P+1)/0 4 gy

S1+Qfsff <, vy (b),

we have

|<pJ+J,q>l < IKpgsa>| + (2k+1)NQM .

Thus

|<Pgy 4o W><Py o1 2 Kalwl| (|<py,a>| + (2k+1)map)™t .

If k 1is large enough

|<pJ+j,w><pJ+j,q>’1| > ajjwi| (’-LNQM)-l .

All we have left to show is that alw| > 1 .
Let u = (ql’qZ’O""’o) . For z = (zl,ze,--o,z
let Q(z) be the set of vectors v in R” such that

(1) zy < (Kvye>) <23 +1 for 3<1<n;

(11) zu? < (<v,w>) < (z,4)|u)?

16



(111) zq|w]® < (<v,w>) < (z9+1) (w2

The sets Q(z) partition R"

Hwlilull = ql + qg . Since the cardinality of Q(z) n 7" is

independent of 2z , each Q(z) has qi + qg points of z"

and each has Lebesgue measure

For every hyperplane z+F with z € z" and 0 < (<z,w>) <
nw"2 there is a point z' in Z%n Q(0,0,0,+++,0) such that

2z +F = z+F . For example, if 2z is in Q(O,ve,---,vn) , then

z =2 - (veu + Vgeg ok oeer vnen) is in Q(0,--+,0) . Since
z -2 € F , z'+F = z+F . Thus the cardinality of 70 n Q(0, -
is an upper bound on the number of hyperplanes z+F such that
0 < (Kz,w>) £ “w“2 and z e z2” . The distance of a point v
in Q(0,-++,0) from F 1is given by \<v,“w“"lw>\. Since
[<v,w>| < \\w\\-2 , that distance is bounded by lwl| . Since
the distance between two translates of F by elements of zl

1s always an integer multiple of the minimum distance d , we

have
2 2
d(ay + a5) > vl
but since "W“ ql + qg » we have dfw|| > 1, and we are
done.

Lemma 2 is a restatement of Lemma 1 in the form that will

be used in the next section.

Lemma 2. Let n > 1 and S a finite subset of 70 . Let

N € Z+ be glven. Then there 1s an N' ¢ z¥ such that if

17
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{pi] is a finite sequence in 7' of length N' and
Pyqq - Py € S for all 1i < N' s then there are N distinct

integers j and a hyperplane H such that pj € H .

Proof. Suppose Lemma 2 is false for some N ; then choose

for each N' e 2t a sequence {p , ]} of length N which

N ,1i
meets no rational hyperplane more than N-1 times. We shall

inductively define an infinite sequence {pi] such that
Pij4q - Py € S for all i and such that {pi] meets no hyper-

plane more than N-1 times, a contradiction of Lemma 1. We

may assume that p , = 0 for all N' 5 let Py = O . Then
N ,1
p, e85 forall N . Since 5 is finite there is a D, € S
3
such that for infinitely many N' s Py = p; and p , = Py -
N ,1 N ,2

Suppose Py, *+*sP,  have been chosen so that for arbitrarily

large choices of N' we have p , = Dy for 1 <1<k.
N ,i - T
Then among those sequences we have p , € Py + S . Since
N ,k+1
Py + S 1s finite, there 1is a Pr+1 € Px + S such that for
infinitely many N , p, =p; for 1< i< k+l . The in-
N ,1i

finite sequence {pi) meets no rational hyperplane more than

N-1l times because no initial segment of it can.



SECTION V
THEOREM 1 FOR G = TV

n

In this section we prove Theorem 1 for G = T° by in-

dauction on n .

.. Proof. We may assume that n > 1 and that the theorem is
true for G = T°°1 . If card(B(n)) < «» we are done by
Theorem l', since Z" 5 the dual group of T™ , 1is an ordered
group under the lexlcographic ordering. We therefore suppose
that card(B(p)) = «» . Let 7 Dbe the projection onto a coordi-
nate such that m(B(p)) 1s unbounded. We may suppose that
there exists {Y;} ¢ B(n) such that lim T(Y;) =+ . Let
Yo € B(u) be arbitrary and suppose that Yk,j s 1< S r,

1<k<m-1 (m>1) , have been found in B(p) . It is con-

sistent with (1) to let Yp,r b€ any member of B(M) such that

r

(Y

m,r) > m(y) for all y e P ; . (5)

We may suppose that Yo j for i+l < J < r have been found
, S Jd
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to satisfy (5) in the role of vy and (1), but that no

m,r

Ym,i ©en be found to satisfy (5) in the role of Ym,r Let

M be 2max{m(y, ) : il < J<r) . Let N' be the integer
s S J 5

given by Lemma 2 for S = [Y-Ym . o Y' € P and i+l < J < r)
, S J o

J m-1
2 ; .
and N = (r+1)3r + 1 . Consider any p € B such that

T(p) > N'M . Since p satisfies (5) in the place Y the

m,r °
reason p cannot serve as a Ym,i satisfying (5) is that for
some Y € Pm-l and i+l < j < r we have p+Y‘Ym,j € B . Note
that (N'-l)M < v(p+y-Ym’j) < m(p) . Since ol = pHY=Y, 5 sa-
tisfies (5) also, there must be Y' € Pm-l and 1+l < j'.g r
such that p'+y'-Ym,j: € B . Also (N'-2)M < W(p'+y'-ym,ju) <
W(p') . If we let p =p; , and p' = pp , we can continue in
this way to obtain a sequence {p;} of length N'  such that
Pg41 ~ Py € S for 1< N . Note that'fhe sequence is com-
posed of distinct points. By Lemmea 2 there are a rational hy-
perplane H and N = (r+1)3r2+1 integers J such that Py € H .
Thus, since the p;'s are distinct, card(H n B(w)) > (r+l)3r2».
Let z e Z° such that (z+H) n Z° is isomorphic to
70=1 | Let ¢ be the quotient map from T to
T™/[ (2+H) n Z"1* . Let v = y(z-u) be the measure on v (T")
such that v(E) = (z-u)(w'l(E)) for all Borel sets E c v (%) .
| Equivalently, v 1s that measure in M(w(Tn)) such that for

y € (z+H) n 2°

Siv) = [V(z-w)INY) = (z-u)M(y) = D(y-2) . (6)



2l

Then v satisfies the hypotheses of Theorem 1 for w(Tn)

n-1 2

isomorphic to T » 1 LJ<r,

be given in B(v) = z + (B(n) N H) satisfying condition (1)
be

1 t
Let YO’Yk,j’lsksr

of Theorem 1. Then redefine vy to be y' -z, Y, . to
0 0 k,J
t
Yk,J'Z for 1 {k<m1,1<Jj<r, and Ym,J to be
! !

Y -2z for 41 < j<r . If we let ij=ij'z for
- - L 2

m, J
the remaining indices, we are done.



SECTION VI
THE GENERAL CASE

In this section we finish the proof of Theorem 1.

Proof. Let us assume that T 1s finitely generated. By

[6, p. 49], T = A ® Z" for some non-negative integer n ,
where A is the torsion subgroup of I’ and hence by assump-
tion card(A) < K . Since card(B(mp)) > K(r+1)3r2 there is
& % € A such that carda((x+z") n B(u)) > (r+l)3r2 . Let
be the quotient map G to G/(Z")* . Then v =~¢(f-u) is

the measure on §(G) satisfying
- A
0(2) = (W)Mz) = U(r+2) , for z e 2V

Since ¢(G) is isomorphic to T" and since v satisfies the

hypotheses of Theorem 1, there exist Yé and Y; i 1l <k K r2 ’
, SRS

1<J<r, in B(v) = -x + [B(n) n (a+2")] satisfying (1) ,
t 1
with Yo » Yk,J replacing Yo éand Yk,j , respectively.

] ]
Then Y5 = AYg Yr,3 = MYx,j 1<k< r® »1LJLr,
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satisfy (1) for u .

In the fully general case, let S be a subset of B(u)
of cardinality K(r+1)3r2 +1 . Let A be the subgroup of
T generated by S . Let § be the quotient map from G to
G/A* . Let v = y(u) be the measure on G/A* such that
0(x) = ﬁ(x) for all ) € A . v satisties the hypotheses of
Theorem 1 and [w(G)]A = A which is finitely generated. As
we have already proven, for v there are Yo Yk,j s
1<k<r®,1<J<r, satisfying (1). Since B(u) N A = B(v)
and A 1is a subgroup, the same Yo and Yk,j'S will work

for u .
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