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ABSTRACT 

Bioactive compounds from different agricultural food products have attracted great 

interest from food industries and researchers for their health promoting functions such as 

antioxidant, antiaging, anti-inflammatory and anticancer performance.  In this study, 

hydrophilic and lipophilic fraction of two economical agricultural products sweet sorghum 

millet and sweet potato, as well as two herbs, butterfly pea and basil were extracted.  The 

profiles and contents of phenolics, fatty acids, tocopherols, carotenoids and phytosterols in 

these selected agricultural products were determined by chromatography and mass 

spectrum methods.  Additionally, the anti-lipid-oxidation capability of sweet sorghum 

millet and basil, and anti-cancer potential of butterfly pea seed or petal and sweet potato 

were evaluated by emulsion models (cholesterol or cholesterol-linoleic acid emulsion) and 

cancer cell lines (HEp-2 and PC-12), respectively.  

In the study of sweet sorghum millet, nine major hydrophilic phytochemicals were 

quantified at levels of 8.9 µg/g for cinnamic acid to 1570.0 µg/g for apigeninidin, and 

lipophilic phytochemicals including α- and γ-tocopherol, lutein and β-carotene were 

quantified at levels of 7.7, 145.7, 4.8, and 18.8 µg/g, respectively.  The total phenolic 

content, scavenging DPPH activity and the ability of inhibiting cholesterol oxidation or 

stabilizing linoleic acid in hydrophilic extracts of the sweet sorghum millets were 

significantly higher than its lipophilic extracts.  In Thai holy/sweet basil leaves or seeds, 

eight phenolics rosmarinic, caftaric, caffeic, chicoric, p-hydroxybenzoic, p-coumaric, 

protocatechuic acid and rutin were identified.  The total phenolic content of Thai sweet 

basil leaves (TSBL) was significantly higher than Thai holy basil leaves (THBL), Thai 

holy (THBS) and sweet basil seed (TSBS).  The order of scavenging DPPH free radical 



xi 

 

activity and anti-lipid-oxidation ability from high to low was THBL, TSBL, THBS and 

TSBS.  Butterfly pea seeds contained fifteen major phenolics such as sinapic acid, 

epicatechin and hydroxycinnamic acid derivative with concentrations above 0.5 mg/g FW, 

while its petals contained a group of ternatins (A1, B2, B3, C2, D2 and D3), flavone 

glycosides, delphinidin derivatives and ellagic acid.  Both seeds and petals had four 

different phytosterols and - and - tocopherol.  Linoleic acid is the highest level of fatty 

acid in both seeds and petals, while phytanic acid was only found in the petals.  The 

cellular study demonstrated that hydrophilic butterfly pea seed (HBS) exhibited 

significantly higher capability than its petal (HBP) in inhibiting the proliferation of HEp-2 

cells.  However, the capability of lipophilic extracts of both seed and petal were much 

lower than their corresponding hydrophilic extracts.  In the sweet potato study, most of the 

phenolic compounds, fatty acids, and phytostrols significantly increased, and four more 

phenolic acids were found after fermentation of sweet potato due to the enzymatic action 

of Lactobacillus acidophilus LA-K compared with raw sweet potato.  In the anticancer 

potential study, the fermented sweet potato extracts exhibited higher efficiency than raw 

extracts in inhibiting the cancer cell PC-12 proliferation.  Also, purified hydrophilic 

extracts of raw or fermented extracts had greater anticancer potential than their 

corresponding lipophilic extracts.  However, each type of extracts had little influence on 

the normal monkey kidney cell (CV-1) growth.  Based on the dissertation research, the 

natural agricultural extracts could be used as health promoting ingredients in functional 

food or potential therapeutic ingredients for cancer treatment. 
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CHAPTER 1. LITERATURE REVIEW 

1.1 Lipid Oxidation  

Lipid oxidation involving complicated chain reactions is a major concern in food 

products and human health.  Autoxidation, photooxidation and enzymatic oxidation are 

three typical oxidations occurring in food products based on the lipid substrates, 

oxidation agents and environmental factors (Barriuso, Astiasarán, & Ansorena, 2013).  

Generally, enzymatic oxidation is catalyzed by lipoxygenases, while, photooxidation is 

initiated by active singlet oxygen species formed by the excitation of triplet molecular 

oxygen under light exposure or presence of photosensitizers (Choe & Min, 2006).  

However, autoxidation undergoes a series of chain reactions involving free radical 

initiation, propagation and termination, during which several oxidized compounds such 

as peroxides, aldehydes, ketones, epoxides, hydroxy compounds, oligomers and polymers 

are produced (Barriuso, Astiasarán, & Ansorena, 2013). 

1.1.1 Lipid oxidation and food 

Dietary lipids, either naturally existing in raw food materials or manually added during 

processing, have important influence on food qualities, especially the flavor and nutrition.  

A direct influence of lipid oxidation on high lipid food is the production of flavors and 

odors (Eskin et al., 2013).  Although lipids play an important role in contributing to the 

special aroma characteristics of cooked food, they easily undergo oxidation and 

deterioration during processing or storage (Wsowicz et al., 2013).  Primary flavor 

compounds can be lost, while secondary compounds can be formed and usually cause 

rancidity, which is known as characteristic of a variety of pungent, and oily off-odors.  
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The primary off-flavor compounds, particularly aldehydes and ketones were listed in 

Table 1.1 (Eskin et al., 2013). 

Table 1.1 Off-flavors produced by various lipid oxidation products 

 

           Source: Eskin et al. (2013) 

 For example, both adipose tissue and intramuscular fat contents in meat are prone 

to get oxidized and degraded under constant exposure to lights, high temperature, metal 

or other sensors to create a prolific number of volatile or off-flavor compounds (Akyar, 

2012).  Due to their low odor threshold, the presence of lipid oxidation degraded products; 

even at relatively low concentration, it could impair the food sensory properties (Akyar, 

2012).  In the study of Grosh et al (1992), compared with fresh sample, eight times higher 

levels of the unpleasant fatty off-flavor including vinyl ketone, 1,5-octadien- 3-one and 2-
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nonenal, were generated in butter fat after 42 days of storage.  In addition, the increase in 

the concentration of carbonyls such as 2-nonenal in butter oil or 1,5-octadien-3-ol in 

boiled frozen trout significantly increased, replacing their original aroma with fatty, 

tallowy, green off-odors (Grosch et al., 1994).  In fried food or aging oil, a group of 

volatile compounds including pentane, 2-heptenal, isomers of 2,4-heptadienal, and 

isomers of 2,4-decadienal occur.  With an increasing storage time, the concentration of 

aldehydes and ketones pyridines, sulfides, thiazoles, alcohols, phenols and esters in fried 

food or oil were several times higher than the original level (Min, & Schweizer, 1983).   

Moreover, trimethylamine, as well as oxidized polyunsaturated fatty acids are responsible 

for the off-flavors of products containing fish oil (Van Ba, Touseef, Jeong, & Hwang, 

2012).  Generally, lipid oxidation not only generates off-flavors of food, but also gives 

rise to the loss of essential amino acids, fat-soluble vitamins, and other bioactive 

compounds.  

1.1.2 Lipid oxidation and health 

In human body, free radicals could be generated internally in the normal metabolism or 

by reactive oxygen species (ROS) in some external condition such as smoking, pollution, 

and radiation.  Especially, ROS induces the production of lipid peroxidation products 

such as peroxides and aldehydes which then diffuse from their site of generation and 

inflict damage at remote locations (Ramana, Srivastava, & Singhal, 2013).  Therefore, 

initiated by ROS, oxidized lipid products are able to propagate the responses and cause 

dysfunction in biological tissue or organ injury (Ramana, Srivastava, & Singhal, 2013).    

Generally, the oxidation of fatty acids is one of the most fundamental reactions in 

lipid chemistry. Most oxidative degradation of fatty acids occurs in cellular membranes 
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such as mitochondria, microsomes, peroxisomes and plasma membrane (Boveris, & 

Navarro, 2008).  The onset of lipid peroxidation within biological membranes is 

associated with changes in their physicochemical properties and with alteration of 

biological function of lipids and proteins (Repetto et al., 2012).  As a result, the toxicity 

of lipid peroxidation products will further involve in neurotoxicity, hepatotoxicity and 

nephrotoxicity (Boveris et al., 2008).  Several studies have demonstrated that liver, 

kidney, and heart are major target organs for oxidative damage (Eder, 1999).  Oxidative 

damage in liver is associated with hepatic lipid metabolism, and symptoms of the change 

of liver weights and hepatic bile duct lesions were observed in test animals by 

administration of oxidized oils and fats in the study of Eder (1999).  Similar results 

showed that lipid oxidation induced morphological damages and mitochondrial swelling 

would further affect the organ structure and malfunction of the bile canaliculi as well as 

the absorption and transportation mechanisms of α-tocopherol (Repetto et al., 2012).  

Also, cardiac fibrotic lesions and necrosis were observed in heart due to the inflammatory 

response from lipid peroxidation and disorder (Repetto et al., 2010).  It has been reported 

that fatty acid peroxides could accelerate three key phases of atherosclerosis which 

includes endothelial injury in initiation, accumulation of plaque in progression and 

thrombosis in termination (Singh et al., 2002).  With the stimulation of endothelium, 

inflammatory response starts to display adhesive molecules for circulating white blood 

cells and producing cell type–specific agonists (McIntyre & Hazen, 2010).  The vascular 

endothelial cells will generate stimuli or plague by the activation of those agonists that 

are associated with atherosclerosis, heart attack, Alzheimer’s disease, rheumatic arthritis 

and other chronic diseases (McIntyre & Hazen, 2010).  



5 

 

In addition, there was a strong relationship between lipid peroxides and DNA 

damage or development of cancer in humans (De Bont & van Larebeke, 2004).  The 

epoxy aldehydes from lipid oxidation are reactive in cross-linking reactions with proteins 

and easily attack electron-rich centres in DNA, generating chemically altered bases 

known as DNA adducts (Luczaj & Skrzydlewska, 2003).  A group of lipid oxidation 

derived compounds such as propeno and substituted propano adducts of deoxyguanosine 

with malondialdehyde (MDA), acrolein, crotonaldehyde and etheno adducts, leads to 

promutagenic lesions, responsible for the mutagenic and carcinogenic effects (Luczaj, & 

Skrzydlewska, 2003).  The lipid oxidized products will further alter protein properties by 

the reaction with lysine amino, cysteine sulfhydryl, and histidine imidazole groups 

(Esterbauer, 1996).  Thus, the modifications of protein result in neurodegenerative 

disorders, kinases activation and nuclear transcription inhibition (Uchida, 2003; 

Camandola et al., 2000). 

1.2 Antioxidant 

Naturally, there is a dynamic balance between pro-oxidants and antioxidants to allow the 

body to maintain the normal physiological conditions (Rahal et al., 2014).  The 

interference of the balance in any direction in the redox potential will lead to deleterious 

results for organelle and biological site (Repetto et al., 2012).  The oxidative damage that 

occurs by an increase in the pro-oxidant over the capacity of the antioxidant is defined as 

oxidative stress; while the reductive stress is a result of an increase in the reducing power 

(Repetto et al., 2012).  However, the protective antioxidant is only available to deal with 

physiological rate of free-radical generation.  In other words, the external and excessive 

free radicals which generated from living environment that cannot be eliminated in time 
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and damage biologically relevant molecules such as proteins, lipid or carbohydrates 

(Ashok & Sushil, 2005).  Therefore, the antioxidant molecule or enzymatic systems play 

important roles against, retard or avoid undesired oxidations in the body defense system 

(Vivek & Surendra, 2006).  

1.2.1 Categories of antioxidants 

1.2.1.1 Synthetic antioxidants 

Owing to the low cost and efficient performance, synthetic antioxidants are commonly 

used during the storage and distribution of food products.  Based on their action mode, 

the synthetic antioxidants could be defined as primary antioxidants, which play important 

roles in breaking the chain reaction of oxidation by hydrogen donation and generating 

more stable radicals; while the secondary antioxidants which slow the oxidation rate by 

metal chelation, primary antioxidant regeneration, decomposition of hydroperoxides, 

singlet oxygen deactivation, ultraviolet radiation absorption, and oxygen scavenging 

(Flora, 2009; Barbut, 2010).  Butylated hydroxyanisole (BHA), butylated hydroxytoluene 

(BHT), tert-butylhydroquinone (TBHQ), and propyl gallate (PG), dodecyl gallate (DG) 

and octyl gallate (OG) are a group of free radical terminators (Figure 1.1).    

                                         

 

Butylated hydroxytoluene (BHT) Butylated hydroxyanisole (BHA) 

BHA 
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Figure 1.1 Chemical structures of the synthetic antioxidants 

Among them, BHA is most effective in preserving food color and flavor as well 

as animal fats with short chain fatty acids during baking and frying (Devlieghere, 

Vermeiren, & Debevere, 2004).  The combination use of BHA and BHT are shown to 

have synergistic effects, especially in nut products (Shahidi et al., 1992).  TBHQ is an 

effective supplement in color improvement and helps to increase oxidative stability in the 

process of liquid oil hydrogenation and fried food (Shahidi & Zhong, 2005). Along with 

citric acid, PG is commonly used in stabilizing vegetable oil or animal fats and chewing 

gum bases (Shahidi & Zhong, 2005).  Octyl gallate (OG) and dodecyl gallate (DG) are 

the other two gallate antioxidants used as food additives in shortening, baked goods, 

candy, chewing gum and dried milk (van der Heijden, Janssen, & Strik, 1986).  As for the 

chelating agent, EDTA could form complexes with pro-oxidative metal ions and is 

mostly used in processed fruits and vegetables, salad dressings, soft drinks, margarine 

and canned fish (Rangan & Barceloux, 2009).   

However, an excessive dose of synthetic antioxidants implicates carcinogenicity, 

liver lesion, haemorrhaging, etc., which are harmful to human health, thus, they are 

tert-Butylhydroquinone (TBHQ)   Propyl gallate (PG) 

Dodecyl gallate (DG) Octyl gallate (OG) 
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strictly limited in food applications (Augustyniak et al., 2010).  Even at a normal level 

but long term of ingestion, the synthetic antioxidant would assist in modifying acute 

toxicity of carcinogenic and mutagenic effect depending on their pattern of metabolism 

(Ames, Profet, & Gold, 1990).  For example, BHA has been evidenced to cause 

hypertrophy of liver, thyroid, adrenals and lungs and cell lysis or alteration of lipid 

composition in serum and platelets (Gould, 1995).  On the other hand, BHT could inhibit 

DNA repair in human lymphocytes and cause introduction of chromosomal and sperm 

abnormalities along with the interference with leukemia cell differentiation (Chun et al., 

2006).  In addition, a morphological observation showed cell loss and the induction of 

cell death by necrosis and apoptosis with the treatment of certain amount of PG (Zurita et 

al., 2007).  Therefore, each synthetic antioxidant has a limitation for consumption and the 

potential common sources are also listed in Table 1.2. 

    Table 1.2 Morphology, and limits of synthetic antioxidants used in foods 

Name Morphology Limit in food Found in Banned in 

BHA 
White waxy 

flakes 
<200mg/kg 

Cereal, chewing 

gum, potato chip, 

vegetable oil 

Japan 

BHT 
White crystalline 

powder 
<100mg/kg 

Honey, cakes, meat 

products 
None 

PG 
White crystalline 

powder 
<200mg/kg 

Spices, sugar, milk 

product 
None 

TBHQ 
Beige colored 

powder 
Not allowed 

Cheese, honey, 

sea food 

Canada, Japan, 

European countries 

OG 

White to creamy 

white crystalline 

solid 

<200mg/kg 
Oil, meat product, 

cereals, honey, 
None 

DG 

White to creamy 

white crystalline 

solid 

<200mg/kg 
Dairy and meat 

products 
None 

EDTA 
White crystalline 

powder 
 

Salad dressing, soft 

drink, mayonnaise 
None 

 

Source: Goodman (1980); Morton et al. (2000) 
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1.2.1.2 Natural antioxidants 

Different from synthetic antioxidants, most of the natural antioxidants originate from 

plant sources such as fruits and vegetables which are much safer than the synthetic ones 

(Tayel & El-Tras, 2012).  Commonly, vitamins, carotenoids, phenolic acids, and 

flavonoids are the primary four types of natural antioxidants.   

As one of the most important vitamins, ascorbic acid (vitamin C) is a water 

soluble antioxidant and particularly abundant in citrus fruits (Marti, Mena, Canovas, 

Micol, & Saura, 2009).  It has been proved that the absorption of dietary vitamin C could 

be up to 50% at a relatively lower dose of intake (< 39 mg) (Levine et al., 1996). The 

participation of vitamin C in numerous oxidation-reduction reactions involves synthesis 

of connective tissue of sulfate and collagen and improvement of iron adsorption in 

gastrointestinal (GI) tract (Houglum, Brenner, & Chojkier, 1991).  Deficiency of vitamin 

C results in chronic alcoholism, scurvy, inflammatory bleeding gums, loss of teeth, 

arrested skeletal development, dry skin, joint pain and increased susceptibility to the 

infections (Hacisevkd, 2009).  Vitamin E, a group of tocopherols, is a lipophilic 

antioxidant which is abundant in cereal grains, nuts, spinach, oliver or flaxseed oil 

(Urquiaga, & Leighton, 2000).  It encompasses four types of four tocopherols (α, β, γ, δ) 

and four tocotrienols (α, β, γ, δ), among which, α-tocopherol has the biggest poportion in 

nature source and the highest biological activity based on fetal resorption assays (Figure 

1.2) (Weiser, Riss, and Kormann, 1996).  In general, the availability of vitamin E is 

relatively low which is about 20-40% of the dietary intake; however, its bioavailability 

could be enhanced by taking it in conjunction with dietay fats (Daniel, 1986).  The 
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symptoms of vitamin E deficiency appear as neuromuscular abnormalities characterized 

by spinocerebellar ataxia and myopathies (Brigelius-Flohé & Traber, 1999). 

 

Figure 1.2 The chemical structures of four tocopherols and tocotrienals Source: 

(Brigelius-Flohé & Traber, 1999) 

Carotenoids are a group of natural pigments of the polyene type, consisting of a 

ubiquitous group of isoprenoid (Figure 1.3) (Fiedor & Burda, 2014).  As lipophilic 

molecules, β-carotene and lycopene with  strict hydrocarbons in their studctures are 

located within the inner section of the lipid bilayer, while lutein and zeaxanthin with 

attached oxygen atoms are arranged roughly perpendicular to the membrane surface 

(Wiśniewska, & Subczyński, 1998; Wiśniewska, & Subczyński, 2006).  Also, β and α-

carotene and β-cryptoxanthin perform as provitamin A precursors which have the 

capacity to be converted to vitamin A, helping growth and reproductive efficiency, 

maintenance of epithelial tissues and immune response (Scott & Rodriquez-Amaya, 
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2000).  The major dietary sources of carotenoids include pumpkins, sweet potatoes, 

oranges, tomatoes, mangoes, papayas and yellow or red bell peppers, etc. (Xu, 2012).  

The intestinal absorption of carotenoids undergoes initially incorporation into mixed lipid 

micelles in the lumen, then, followed by the uptake into intestinal mucosa (Deming, & 

Erdman, 1999).  After incorporation into chylomicrons, the carotenoids will be released 

into the lymph (Harrison, 2010).  It has been reported that only about 5% of the 

carotenoids could be absorbed by the intestine, whereas more than 50% are from micellar 

solution (Olson, 1994).  However, the deficiency of carotenoids has the consequences of 

xerophthalmia, blindness and premature death (Sommer, 2008). 

 

 

Figure 1.3  The chemical structures of caroteinoids 

Source: Fiedor & Burda  (2014) 

Phenolic acids are referred to the aromatic secondary plant metabolites, 

possessing one carboxylic acid group; they are found in fruits, vegetables and product 

derivatives (Saxena et al., 2012).  Generally, they are subdivided into two major groups: 
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hydroxybenzoic acids and hydroxycinnamic acids (Manach, Scalbert, Morand, Rémésy & 

Jiménez, 2004).  Hydroxycinnamic acid is a simple ester with glucose or hydroxy 

carboxylic acid, consisting of a phenylpropanoid C6-C3 structure, and considered to be 

the major subgroup of phenolic acids (Table 1.3) (Teixeira et al., 2013).  

Hydroxycinnamic acids mainly consist of p-coumaric, caffeic, ferulic, and sinapic acids 

etc., and are important in the biosynthesis of complicated phenolic systems in food and 

beverage such as tea leaves, coffee, red wine, and various fruits, vegetables and whole 

grains (Teixeira et al., 2013).  Hydroxycinnamic acids exist either in free form or in 

conjugated forms, including mono- or polyamines, amino acids, peptides and esters as 

well as glycosides (Teixeira et al., 2013).  The variety of hydroxycinnamic acid in plants 

depends on the species of the plants; however, their levels are up to 75% of the totoal 

phenolic acids (Terry, 2011).  Also, it was found that derivatives of cinnamic acid are 

much higher in the outer parts of ripen fruits than in other parts (Ribera et al., 2010).  The 

association of hydroxycinnamic acids with the reduced risks of cardiovascular disease, 

cancer and other chronic diseases could be explained by the ability to scavenge free 

radicals and pro-oxidant metals ability as well as as modulation of the specific enzymes 

activiy and inhibition of cell proliferation (Spencer et al., 2008; Manach, 2004).  The 

performance of general antioxidant capability of the hydroxycinnamic acids in some lipid 

peroxidation systems can be expressed by  the inhibition of malondialdehyde formation 

(Laranjinha et al., 1994). 

On the other hand, the hydroxybenzoic acids are a group of tannins and lignins 

which with  either hydroxylations or methoxylations of the aromatic ring (Manach et al., 



13 

 

2004).  The benzoic acid derivatives stem from the side chain degradation by lossing an 

acetate of the corresponding hydroxycinnamic acid derivatives, or from an intermediate 

Table 1.3 Hydroxycinnamic acids and ester derivatives. 

 

 

  R1 R2 R3 
 

p-Coumaric H H H 

Caffeic acid OH H H 

5-Bromocaffeic acid OH Br H 

Methyl caffeate OH H CH3 

Ethyl caffeate OH H CH2CH3 

Ethyl 5-bromocaffeate OH Br CH2CH3 

Propyl caffeate OH H CH2CH2CH3 

Butyl caffeate OH H CH2(CH2)2CH3 

Hexyl caffeate OH H CH2(CH2)4CH3 

3,4,5-Trihydroxycinnamic acid OH OH H 

Ethyl 3,4,5-trihydroxycinnamate OH OH CH2CH3 

Ferulic acid OCH3 H H 

5-Bromoferulic acid OCH3 Br H 

Methyl ferulate OCH3 H CH3 

Ethyl ferulate OCH3 H CH2CH3 

Ethyl 5-bromoferulate OCH3 Br CH2CH3 

Propyl ferulate OCH3 H CH2CH2CH3 

Butyl ferulate OCH3 H CH2(CH2)2CH3 

Hexyl ferulate OCH3 H CH2(CH2)4CH3 

Sinapic acid OCH3 OCH3 H 

Methyl sinapate OCH3 OCH3 CH3 

Ethyl sinapate OCH3 OCH3 CH2CH3 

Propyl sinapate OCH3 OCH3 CH2CH2CH3 

Butyl sinapate OCH3 OCH3 CH2(CH2)2CH3 
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in the shikimate pathway, involving in a series of enzymatic reactions (Herrmann, 1995).  

Its derivatives mainly refer to p-hydroxybenzoic, protocatechuic, salicylic, vannilic, 

syringic and gallic acids (Figure 1.4) (Rocha, Monteiro, & Teodoro, 2012).  Gallic acid 

may be conjugated as its dimer, and trimer, and are able to be esterified to glucose in 

hydrolysable, condensed, or derived tannins and quinic acid (Clifford, & Scalbert, 2000).  

Protocatechuic acid is considered to be a therapeutic compound which generates potential 

antioxidant, antiulcer, antiageing, antihyperlipidemic, antifibrotic and anti-inflammatory 

activities (Kakkar & Bais, 2014).   The biological properties of p-hydroxybenzoic include 

antiviral, antimutagenic, and anti-inflammatory activities, and it has been used as 

hypoglycemic or terarogenic agent (Manuja et al., 2013).   

                                  

                

 

Figure 1.4 The chemical structure of hydroxybenzoic acids 

Source: Khadem & Marles  (2010) 

Gallic acid Protocatechuic acid p-Hydroxybenzoic acid 

Salicylic acid Vanillic acid Syringic acid 
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Flavonoids are a special class of phenolics in which flavonoid groups have low 

toxicity in mammals and are widely distributed in plant kingdom (Manach et al., 2004).  

All flavonoids have the common C6-C3-C6 structural skeleton, consisting of two 

aromatic rings (A and B) linked through a heterocyclic pyrane ring (C) with one oxygen 

atom (Figure 1.5).  

 

Figure 1.5 The basic structure of flavonoid 

Primary dietary sources of flavonoides could be subdivided into six subclasses in 

the form of flavonols, flavones, isoflavones, flavonones, flavan-3-ol and flavanol which 

could be easily found in a variety of fruits and vegetales such as berries, soybeans and 

purple onion and cabbage (Figure 1.6) (Beecher, 2003). 

           



16 

 

                

 

                      

Figure 1.6 Different classes of flavonoids and their substitution patterns 

Source: Beecher (2003) 

The role of flavonoids is not only to provide attractive colors to plant but also to 

help promote physiological survival by regulating hormones, morphogenesis and 

photosynthesis as well as preventing from fungal pathogens and UV-radiation (Harborne 

& Williams, 2000).  Recently, many studies have shown that flavonoids maintain broad 

biological and pharmacological effect on blood vessels, platelets, and lipoproteins and 

may exhibit an excellent performace of reducing the risks of coronry heart disease by 

modulating cardiac antioxidant defenses (Mazza, 2007).  Moreover, the digestion of 

flavanoids assists improvement of antioxidant status and displays cholesterol-lowering 
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and distinct hypoglycemic actions (Prior, & Wu, 2012).  In addition, flavanoids has the 

potential to ameliorate hyperglycemia and enhance insulin sensitivity via activation of 

AMP-activated protein kinase (AMPK) (Taikanwa et al., 2010) 

1.3 Antioxidant Rich Food  

Generally, agricultural products are recognized as important sources of a wide array of 

phytochemicals and dietary micronutrients (Yahia, 2010).  They are able to generate 

favorable effects on the control of various chronic diseases and play a protective role in 

health maintenance (Stea et al., 2008).  Obtained from diet, antioxidants could neutralize 

excessive ROS produced during physiological processes such as increased physical 

activity, tissue ischemia, reperfusion, inflammation, and mental stress or depression 

(Singh, Shashwat, & Suman, 2004).  Therefore, the intake of antioxidant-rich food is 

necessary to improve health and quality of life. 

1.3.1 Fruits, vegetables and herbs 

Berry fruits (blackberries, raspberries, blueberries, cranberries, bilberries, strawberries, 

crowberries, cloudberries etc.) with purple, black or red color are abundant in 

anthocyanins and flavan-w3-ols hydroxybenzoic or hydroxylcinnamic acid derivatives, 

condensed and hydrolyzable tannins, etc. (Howard & Hager, 2007).  Those bioactive 

compounds have been evidenced to contribute to antioxidant capability in a LDL (Low-

density lipoprotein) oxidation model (Heinonen et al., 1998).  Also, in the study of Tsuda 

et al. (2003), induced by the high-fat diet, the mice fed up with cyaniding-3-O-glucoside 

have lower body weight gain and white and brown adipose tissue weights compared with 

control groups.  Grapes maintained a significant quantities of anthocyanins, catechin, 

gallic acid,and resveratrol and their levels are correlated with anti-lipid-oxidation 
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capabilities in human body (Frankel et al., 1998).  Catechin, procyanidins, flavonols, 

hydroxycinnamic acid and dihydrochalcones are primary phytochemicals ranging from 

0.5-2.7% on dry weight basis in apples (Xu, 2012).  In an animal study, the extract of 

apple flesh and peels were reported to prevent macro- and microscopic damage and 

barrier dysfunction along the gastrointestinal tract (Carrasco-Pozo et al., 2011).  Color 

peppers commercial available in markets contain carotenoids, vitamin A, C and E, ferulic 

acid, sinapic acid, quercetin, luteolins and apigenins (Frank et al., 2001).    The presence 

of those bioactive compounds enables the color peppers to have capability of preventing 

free radical oxidation, cardiovascular disease, cancer and neurological disorders (Xu, 

2012).  Similarly, the culinary herbs such as basil, ginger, thyme and rosemary are used 

to enhance and complement the flavors of various foods (Xu, 2012).  Having various 

kinds of phenolic acids, including carnosic acid, carnosol, rosmarinic acid, curcumin, 

eugenol etc., the culinary herbs showed strong antioxidant potential and medicinal 

benefits (Shan et al., 2005). 

1.3.2 Cereals 

Different from fruits and vegetables, vitamin E (mainly tocopherols and toctrienols) is the 

most abundant antioxidant and within the germ of whole-grain cereals (Souci et al., 2000).  

For example, rice, containing α- and β-tocopherol, α- and β-tocotrienol, and γ-orazanol 

are demonstrated to reduce serum cholesterol level, the risk of tumor formation and 

inflammatory action (Tsuji et al., 2003).  Similar to other cereal grains, oats have 

relatively high amount of vitamin E, while it is also a great source of phenolic acids such 

as vanillic and p-hydroxylbenzoic acid (Peterson, 2001).  The lipophilic extract of oats 

could effectively inhibit oxidation of unsaturated long chain fatty acids and prevent 
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production of toxic cholesterol oxidized products, and is used as the natural food 

preservatives (Sun et al., 2006).  Additionally, corn is confirmed as a common raw 

material for producing edible oil, in which, the concentration of vitamin E could be up to 

900 mg/kg (Xu, 2012).  Apart from tocopherols and phenolic acids, corn is a rich source 

of carotenoids such as α- and β-carotene, β-cryptoxanthin, and zeaxanthin, having a 

major function to prevent age-related macular degeneration (AMD) and cataracts and cell 

mutation (Johnson, 2000).    Soybean is another cereal family in possess of various types 

of isoflavones with β-glucoside, daidzin, glycitin and genistin (Xu, 2012).  They have 

been reported to show the capability of retarding the progression of Alzheimer disease 

and osteoporosis, and preventing harmful proliferation of cells (Zhao, et al., 2002). 

1.3.3 Root vegetables 

As the most common root vegetables, potatoes and sweet potatoes are two staple crops in 

tropical and subtropical areas (Mark et al., 2009).  Currently, it occupies a dominant place 

in the agricultural production of Asia and Africa countries.  The nutritional values of 

sweet potato are listed in Table 1.4.  Specially, carbohydrates of sweet potato could 

provide energy in the human diet with a lower intake of lipids (Oke, & Workneh, 2013).  

The dietary fiber is believed to reduce the incidence of colon cancer, diabetes, heart 

diseases and digestive disturbances (Vimala, Nambisan, & Hariprakash, 2011).  The flesh 

color of the sweet potato varies from yellow to dark-orange depending upon the levels 

and types of carotenoids (Vimala, Nambisan, & Hariprakash, 2011). 

Carotenoids are reported to be responsible for the enhancement of immune system 

and inhibition of age-related macular degeneration and cataract formation (Byers & Perry 

1992).   Also, the purple sweet potato becomes more and more popular due to the unique  
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Table 1.4 Sweet potato chemical composition 

 

and abundant anthocyanins which have been reported to suppress the development of 

atherosclerotic lesions and oxidative stress in an in vivo study (Miyazaki et al., 2008).  

Furthermore, both sweet potatoes and potatoes contain diverse phenolics such as 

chlorogenic, gallic, protocatechuic and caffeic acid as well as quercetin 3-O-rutinoside, 

kaempferol 3-O-rutinoside and (+)-catechin (Xu, 2012).  Lotus root is an herbaceous, 

perennial sacred aquatic plant belonging to Nelumbonaceae family (Du et al., 2010).  It is 

well known from its medical functions such as the treatment of all manners of bleeding 

and hematemesis, anti-inflammatory, antipyretic and antianxiety properties and hepatic 

protection (Mukherjee et al., 2009).  Although carrots and radish are another commonly 

consumed root vegetables, their phytochemical profile and antioxidant activity are 

relatively lowered than other roots.  

1.4 Evaluation of Antioxidants Activity 

1.4.1 In vitro methods 

1.4.1.1 Spectrophotometric assay 

The antioxidant compounds have been well extracted, determined and quantified.  

Recently, their antioxidant potential and effectiveness have raised scientists and 
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consumers’ concern.  As a result, various in vitro assessments of antioxidant activities 

have been developed (Table 1.5).  Based on the mechanisms, the antioxidant evaluation 

methods could be generally catalogued into hydrogen atom transfer methods (HAT) and 

electron transfer methods (ET) (Badarinath et al., 2010).  HAT is a ubiquitous reaction 

involves the transfer of proton and electron for further measuring the free radical 

quenching by hydrogen donation and analyzing the destructive effects of reactive oxygen 

species (Mayer, 2011).  The ET method aims at determining the ability to transfer one 

electron to reduce any compounds such as metals, carbonyls, and radicals (Prior, Wu, & 

Schaich, 2005). 

DPPH free radical scavenging activity  The molecule 1, 1-diphenyl-2-picrylhydrazyl 

(a,a-diphenyl-bpicrylhydrazyl; DPPH) is characterized as a relatively stable free radical 

with deep violet color by virtue of the delocalization of the spare electron over the 

molecule which is not associated with a single atom or covalent bond (Alam, Bristi, & 

Rafiquzzaman, 2013).  The change in optical density of the DPPH free radical caused by 

the donation of hydrogen atom from a potential antioxidant could be determined under 

the wavelength of 517 nm (Alam, Bristi, & Rafiquzzaman, 2013). 

2,2’-Azinobis-(3-Ethyl-Benzothiazoline-6-Sulphonic Acid)/ Trolox equivalent 

antioxidant capacity (ABTS/TEAC) In the ABTS assay, ABTS is incubated with a 

peroxidase and a relatively stable radical cation, and ABTS+ is formed, producing a 

relatively stable blue-green color, which can be measured at 600nm.  Similar to the 

DPPH assay, TEAC is based on the ability of molecules to scavenge the stable free 

radical of 2,2’- azinobis (3- ethylbenzothiozoline-6-sulfonic acid)  and expressed as the 

Trolox equivalent (Badarinath et al., 2010).  
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Table 1.5 List of in vitro antioxidant evaluation method 

 
Source: Badarinath, Rao, Chetty, Ramkanth, Rajan, & Gnanaprakash, 2010. 

 

 

 

Figrue 1.7 Reduction of Fe3+-TPTZ to Fe2+-TPTZ 

Ferric reducing-antioxidant power (FRAP) assay It is based on the mechanism of 

reducing intense blue ferric tripyridyltriazine complex to the ferrous form as showed in 
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Figure 1.7 (Gupta, 2015).  The reducing power of the target antioxidant could be reflected 

by the color change monitored under the wavelength of 593nm. 

Cupric ion reducing antioxidant capacity (CUPRAC) CUPRAC method is designed to 

demonstrate the ability of scavenging hydroxyl radicals.  The chromogenic oxidizing 

reagent, bis(neocuproine)copper(II) chloride [Cu(II)-Nc], reacts with polyphenols 

[Ar(OH)n] (as shown in the equation below). 

 

It is applicable to both hydrophilic and lipophilic and will not be affected by the sugars 

and citric acid commonly present in foods since it has a selective action on antioxidant 

compounds (Alam, Bristi, & Rafiquzzaman, 2013).  

Folin-Ciocalteu method  The reaction involves a chemical reduction of the mixture of 

tungsten and molybdenum oxides, in which, the molybdenum centre in the complex 

reagent is reduced from Mo (VI) to Mo (V), generating a blue color at 750 nm.  The 

intensity of color is proportional to the concentrations of phenol compounds, thus, it is 

often used for the assessment of total phenolic content (Gupta, 2015). 

Oxygen radical absorbing capacity (ORAC) assay   Using Trolox as the reference, a 

test sample is applied to inhibit the oxidation of B-phycoerythrin initiated by thermal 

decomposition of azo compounds such as AAPH in the ORAC assay (Glazer, 1990).  The 

peroxyl radical reacts with a fluorescent probe to form a non-fluorescent product; thus, it 

reflects classical radical chain breaking antioxidant activity by H atom transfer (Ou et al., 

2001). 
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2,2'-Azino-bis(3-ethylbenzothiazoline-6-sulphonic acid (ABTS) Assay: In this method, 

the treatment of 2, 2’-azino-bis(3-ethylbenzthiazoline-6-sulphonic acid) with K2S2O8 or 

MnO2 provides a bluish-green radical cation (ABTS+) (Re, Pellegrini, Proteggente, 

Pannala, Yang, & Rice-Evans, 1999).  The ABTS radical cation could be further changed 

back to colorless neutral form in the presence of both lipophilic and hydrophilic 

compounds such as flavonoids, hydroxycinnamates and carotenoids (Gupta, 2015).  Due 

to the high reactivity of ABTS radical cation, it could be scavenged by most antioxidants 

including phenolics, thiols and vitamin C (Walker & Everette, 2009).   

Total radical trapping antioxidant parameter (TRAP) Assay   Induced by AAPH (2’-

azobis(2-amidinopropane) hydrochloride), the degree of peroxidation is monitored by 

screening of the loss of fluorescence from the protein R-phycoerythrin (R-PE) 

(Badarinath et al., 2010).  It is especially good for the determination of in-vivo 

antioxidant capacity in serum or plasma since it measures nonenzymatic antioxidants 

(Huang, Ou, & Prior, 2005). 

 1.4.1.2 Model system 

The existing spectrophotometric system is easy to carry out; however, direct analysis fails 

to predict the mechanism of antioxidants in inhibiting the oxidation in the complex food 

matrix (Frankel, 1993).  Also, the free radicals used in each assay are non- physiological; 

therefore, it is difficult to capture the different modes of action of antioxidant.  Currently, 

a few model systems such as ground meat, fish oil, cholesterol and β-carotene linoleate 

model systems have been developed (Rojas and Brewer 2007; Jayaprakasha et al. 2001; 

Shen et al., 2013; Zhang et al., 2013).   
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Meat model   Since a big amount of iron could be released from denatured myoglobin 

and hemoglobin, they are able to catalyze the oxidation rapidly in cooked meats.  

Therefore, natural or synthetic antioxidants can be applied in the model for the evaluation 

of anti-lipid-oxidation capability through determining the production of malondialdehyde 

(MDA) (Rojas and Brewer, 2007). 

Fish oil model The fish oil emulsion consists of water, lipid micelles, and other 

components which could mimic the biological fluids.  Also, the ubiquitous 

polyunsaturated fatty acids (PUFAs) such as EPA and DHA would oxidize rapidly and 

are critical to indicate antioxidant efficacy.  Thus, the results of these emulsion models 

could closely reveal the antioxidant power in preventing lipid oxidation in biological 

fluids and cells (Zhang et al., 2013).    

Cholesterol model   Cholesterol is the main components in the cell membrane and blood 

serum of mammals and can be oxidized under oxidative stress. The primary oxidized 

product of cholesterol is 7-ketocholesterol which is determined to predict the degree of 

emulsion oxidation. By comparing the efficiency of the antioxidant in retarding oxidation 

in the cholesterol emulsion, the result of the antioxidant potential would be more 

convinced (Shen et al., 2013). 

1.4.2 In vivo methods  

The in vivo studies usually use the test animals such as mice, rats, and rabbits etc. to 

evaluate the antioxidant effect of target food extract in specific organs or cells based on 

different administration and dose (Alam, Bristi, & Rafiquzzaman, 2013).  After a certain 

period of time, the animals are sacrificed and blood or tissues are used for the 

determination. 
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Reduced glutathione (GSH) estimation GSH is an intra-cellular reductant and helps to 

protect cells against free radicals, peroxides and other toxic compounds in catalysis, 

metabolism and transport (Sapakal et al., 2008).  As the irreplaceable role in transport 

system in the kidney, it is an essential indicator to reveal the in vivo antioxidant defense.  

The prepared sample supernatant is added with the Ellman’s reagent (5,50-dithiobis-2-

nitrobenzoic acid in phosphate buffer solution), then, the absorbance of the solution is 

read at 412 nm against blank after completion of the reaction (Alam, Bristi, & 

Rafiquzzaman, 2013).   

Superoxide dismutase (SOD) method   Similar to GSH, SOD is an enzyme which is 

able to remove the free-radicals caused by environmental adversity, and improve stress 

tolerance (Kong, Zhao, Liu, He, Tian, & Zhou, 2012).  SOD dismutes the superoxide 

anion and thereby inhibits the reduction of a small hemeprotein cytochrome-c.  Its 

antioxidant efficiency is estimated by an increase in absorbance recorded at 420 nm and 

expressed as units/mg protein (Alam, Bristi, & Rafiquzzaman, 2013).   

Catalase (CAT) method   

It is a tetrameric heme-containing enzyme that catalyzes the dismutation of H2O2 into 

water and oxygen molecules. It has high specificity for a high level of the presented H2O2 

(Sharma, Jha, Dubey, & Pessarakli, 2012).  The catalase activity of the hemolysate is 

determined by adopting the erythrocyte lysate method at 240 nm.  One unit of activity 

represents the degradation of 1 mM of H2O2 /min and is expressed as units per milligram 

of protein (Alam, Bristi, & Rafiquzzaman, 2013).   

Cell culture 

A cellular antioxidant activity (CAA) assay was developed to evaluate the antioxidant 
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capability of bioactive compounds from food and plant products (Wolfe & Liu, 2007).  

Human hepatocarcinoma Hep-G2 cells are mixed with the redox sensor 

dihydrodichlorofluorescein (DCFH2) to oxidized to fluorescent dichlorofluorescein (DCF) 

by ROO• radical induced by 2,2'-Azobis(2-amidinopropane) dihydrochloride (AAPH).  It 

aims at measuring the ability to inhibit the intracellular DCFH2 oxidation determined by 

fluorescence at λexc 485 nm and λem 535 nm.  The obtained results are expressed in μM 

of quercetin equivalents. Therefore, the CAA assay could be used for screening 

antioxidant activity in natural product extracts at the cellular level. 
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CHAPTER 2. PHYTOCHEMICALS IN SWEET SORGHUM (DURA) AND 

THEIR ANTIOXIDANT CAPABILITIES AGAINST LIPID OXIDATION  

 

2.1 Introduction 

Sweet sorghum is widely cultivated around the world and utilized for food or animal feed 

(Afify et al., 2012).  In the US, sorghum is mainly used for animal feed after the stalks 

are removed during post-harvest processing.  Recently, sorghum millets have been found 

as an economical biofuel material for producing ethanol (Vasilakoglou et al., 2011).  This 

potential application in bioenergy has raised the value of sorghum and led to its 

increasing production in the US annually.  Although the color and texture of sorghum 

millets is not as desirable as other cereals such as wheat and oats for food applications, it 

has been reported to possess a variety of antioxidant phytochemicals including 

polyphenols, anthocyanins, carotenoids and tocopherols (Dykes & Rooney, 2006).  Daily 

consumption of these antioxidants could help reduce the risk of developing chronic 

diseases associated with the oxidation of cholesterol and fatty acids (Parr, & Bolwell, 

2003).  For hydrophilic soluble antioxidants, they are usually extracted by water or 

alcohols and leave the major sorghum biomass intact for biofuel production.  Therefore, 

the hydrophilic antioxidants extraction could be a pre-treatment in the biofuel production 

of sorghum.  As the extract has great potential in health promoting application, the 

treatment can increase the economic value of sorghum used as a biofuel material. 

The profiles and levels of phytochemicals in sorghum millets are dependent on 

the varieties and growth environments of sorghums.  In this study, antioxidant  

This chapter previously appeared as Shen, Y., Zhang, X., Prinyawiwatkul, W., & Xu, Z., 

Phytochemicals in Sweet Sorghum (Dura) and Their Antioxidant Capabilities against 

Lipid Oxidation. (2013). Journal of Agricultural and Food Chemistry, 61, 12620-12624. I 

is reprinted by permission of copyright (2013) American Chemical Society- see the 

permission letter for proper acknowledgment phrase. 
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phytochemicals and their antioxidant activity in the sweet sorghums harvested in 

Louisiana were identified and evaluated.  The results would be helpful in utilizing 

Louisiana sorghum millets as a potential health promoting source and biofuel material at 

the meantime.  To identify the major phytochemicals responsible for the activity and 

health benefits of sorghum millets, the hydrophilic and lipophilic phytochemicals in 

millets were extracted and evaluated individually.  In addition to using common 

antioxidant activity assay methods, the antioxidant capabilities of both extracts were 

evaluated by using an emulsion model which consisted of cholesterol and linoleic acid at 

the same level as found in the human blood serum.  

Cholesterol and fatty acids are the primary components in the cell membrane and 

blood serum of mammals and can be oxidized under oxidative stress.  The oxidation of 

cholesterol and fatty acids results in generation of lipid oxidation products which are 

toxic to the endothelial cells of blood vessels and cell membranes.  For example, 7-

ketocholesterol, the primary cholesterol oxidation product could display pro-apoptotic, 

pro-inflammatory activities and cause degenerative diseases or lipid metabolism disorders 

(Biasi et al., 2009;   Osada et al., 2012; Otaegui-Arrazola et al., 2010).  The fatty acids, 

especially unsaturated fatty acids likely undergo lipid peroxidation and yield short chain 

inflammatory mediators, such as aldehydes and hydroperoxides which are associated with 

cellular damage, arthritis, cerebral arteries and other coronary diseases (Romero et al., 

1998).  Thus, inhibition of cholesterol or fatty acid oxidation in the serum is crucial to 

maintain normal lipid metabolism and integrity or permeability of cell membranes in the 

body.  However, evidence of the function of antioxidant phytochemicals present in sweet 

sorghum millets in inhibiting cholesterol and fatty acid oxidation has not been 
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documented.  The performance of antioxidants in sorghum millets in the cholesterol and 

linoleic acid emulsion model could closely reflect their antioxidant activity in the human 

blood serum. 

2.2 Material and Methods 

2.2.1 Chemicals and materials 

HPLC grade methanol, hexane, acetic acid and sodium phosphate dibasic (anhydrous) 

were purchased from Fisher Chemicals (Fair Lawn, NJ, USA).  Sodium phosphate 

monobasic (anhydrous) was obtained from Amresco (Solon, OH, USA).  Isopropanol and 

sodium bicarbonate were obtained from Mallinckrodt Co. (Paris, KY, USA).  Ethyl 

acetate and hydrochloride acid were purchased from EM Science (Gibbstown, NJ, USA).  

Tween 20, 2,2-diphenyl-l-picrylhydrazyl (DPPH), Trolox, Folin-Ciocalteau reagent, 2,2’-

azobis(2-methylpropionamidine) dihydrochloride (AAPH), cholesterol, 7-ketocholesterol, 

linoleic acid, heptadecanoid acid (C17:0), boron trichloride in methabol (BCl3-methanol), 

α-tocopherol, -tocopherol, apigeninidin-chloride and all the phenolic standards (ferulic 

acid, p-coumaric acid, cinnamic acid, catechin, gallic acid, syringic acid, kaempferol and 

quercetin ) were provided by Sigma-Aldrich (St. Louis, MO, USA).  Sweet sorghum 

millets (Dura) were obtained from the Sugar Research Station, Louisiana State 

University Agricultural Center (St. Gabriel, LA, USA). 

2.2.2 Extraction and determination of the antioxidants in sweet sorghum millets  

The extraction method was described in the study of Jang and Xu (2009).  The sweet 

sorghum millets were ground using a kitchen blender.  The ground powder was screened 

by using a 1 mm brass sieve.  Ten grams of the sifted powder sample was extracted using 

50 mL of acidified methanol (pH 1) twice at 60C.  The methanol layers were combined 
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and evaporated by a vacuum centrifuge evaporator (Labconco, Kansas City, MO, USA) 

to obtain the hydrophilic extract (HPE).  The same procedure was applied to extract 

lipophilic compounds in the millet powder by using hexane solvent instead of methanol.  

Both hydrophilic and lipophilic extracts were weighed (dry weight basis) and used to 

prepare the stock solution (10 mg/mL) in methanol or hexane, respectively.  

Anthocyanins and other phenolic compounds in the hydrophilic extract (HPE) 

were determined by the HPLC method described by Jang and Xu (2009).  Carotenoids in 

the HPE were determined by the method as described by Sun et al (2007). Tocopherols in 

the lipophilic extract (LPE) were measured by using a normal phase HPLC system with a 

fluorescence detector.  The HPLC analysis conditions were as described by Jang and Xu 

(2009). 

2.2.3 Determination of total phenolic contents of the hydrophilic and lipophilic 

extracts  

The total phenolic content method was described in the study of Jang and Xu (2009).  

Ten-fold diluted Folin-Ciocalteau reagent (0.75 mL) was reacted with 0.1 mL of the 

extract stock solution.  After 5 min, 0.75 mL of sodium bicarbonate (60 g/L) was added 

to the mixture and incubated at 25°C for 90 min.  The absorbance was recorded by a UV-

visible SpectraMax Plus384 spectrophotometer (Molecular Devices, Sunnyvale, CA, 

USA) at 750 nm.  Catechin (0.05, 0.1, 0.2 mg/mL) was used to plot a standard curve.  

The total phenolic content of the extract was expressed as µg catechin equivalent /gram 

of sweet sorghum millets. 
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2.2.4 Determination of antioxidant activities of the hydrophilic and lipophilic 

extracts using DPPH method 

The DPPH method was carried out using a modification of the procedure by Yue and Xu 

(2008).  DPPH solution (0.1mM, 1.8 mL) was mixed with 0.2 mL of the hydrophilic 

extract stock solution or the lipophilic extract stock solution which was first evaporated to 

dryness and then re-dissolved by 0.2 mL of methanol.  The reaction was carried out at 

25°C for 30 min in the dark.  The absorbance of the mixture at 515 nm was monitored at 

zero time (Ab0) and after 30 min incubation (Ab30), respectively.  The inhibition rate was 

calculated as:  

Inhibition rate (%) = [(Ab0 – Ab30) / Ab0] × 100 

Different concentrations of Trolox (0.05, 0.10, 0.20 and 0.50 mM) versus their 

corresponding inhibition rates were plotted to obtain a standard curve.  The inhibition rate 

of the testing sample was calculated and converted to μmol Trolox equivalent /gram of 

sweet sorghum millets. 

2.2.5 Preparation of cholesterol - linoleic acid oxidation emulsion 

The cholesterol - linoleic acid oxidation emulsion consisted of cholesterol (1000 µg/mL), 

linoleic acid (500 µg/mL), AAPH (300 µg/mL), and Tween 20 (10 µL/mL) in phosphate 

buffer solution (PBS, pH 7.2).  The emulsion was homogenized by a microfluidizer 

materials processor (M-110P, Microfluidics, Newton, MA, USA).  The hydrophilic or 

lipophilic extract stock solution (40 or 80 µL) was added to a 40-mL vial and dried.  Then, 

it was mixed and homogenized with 20 mL of the emulsion, resulting in the antioxidant-

containing emulsion having either 20 or 40 µg/mL of the extract.  The emulsion without 

the extract served as a blank group.  Each treatment and the blank group had three 
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replications.  All the vials were incubated in a 37C water bath and continually agitated 

by a multiple magnetic stirrer (Multistirrer, VELP Company, Italy) for 48h.  

2.2.6 Extraction and determination of 7-ketocholesterol 

One milliliter of the emulsion sample was collected from each vial at different time (0, 24 

and 48 h) and mixed with 2 mL of hexane.  The solution was vortexed and centrifuged at 

5000 x g for 15 min.  The upper hexane layer was separated and transferred to a clean test 

tube with 0.1 g of anhydrous NaSO4.  The primary oxidation cholesterol product, 7-

ketocholesterol, was analyzed by an HPLC with normal phase column (id 250× 4.60 mm 

5 micron, Supelco, Bellefonte, PA) and a UV detector.  The mobile phase composition 

and gradient program were described in the studies by Xu et al (2005) and Zhang et al 

(2013).  The inhibition rate of the extract for preventing cholesterol oxidation at each 

sampling time was calculated using the following equation: 

Inhibition rate (%) = [(Cb – Ct) / Cb] × 100 

where Cb was the concentration of 7-ketocholesterol in the blank at a sampling time; Ct 

was the concentration of 7-ketocholesterol in the treatment group at the same sampling 

time.   

2.2.7 Extraction and determination of linoleic acid 

One milliliter of the emulsion sample was collected and mixed with 2 mL of hexane 

containing internal standard C17:0 (100 µg/mL).  The hexane supernatant was separated 

by centrifugation and transferred to a clean test tube.  The hexane was evaporated by 

nitrogen flow to obtained dried sample.  Two milliliters of BCl3-methonal was added to 

the dried sample for esterification at 60°C for 30 min.  Then, 1 mL of water and 1mL of 

hexane were mixed with the reaction solution and vortexed.  After centrifugation, the 
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upper hexane layer was mixed with anhydrous NaSO4 and transferred to a GC vial.  The 

operating condition of GC analysis was as described by Zhang et al (2013).  The retention 

rate of linoleic acid in the emulsion was calculated as follows: 

Retention rate (%) = (Ct  / C0) × 100  

where C0 was the concentration of linoleic acid at 0 h; Ct was the concentration of 

linoleic acid at 24 or 48 h in the same emulsion.   

2.2.8 Data analysis 

The concentrations of bioactive components, total phenolic contents, and antioxidant 

activities of each extract were expressed as the mean and standard error from three 

independent extractions and analysis.  The inhibition rate of cholesterol and retention rate 

of linoleic acid were expressed as the mean ± standard error of three replications as well.  

All calculations were done using Microsoft Excel (Redmond, WA, US) and one-way 

ANOVA was used to evaluate significant differences between treatment means using the 

statistical analysis software (SAS, 9.1.3, Cary, NY, US). 

2.3 Results and Discussion 

2.3.1 Antioxidant phytochemicals in sweet sorghum millets 

In addition to its protein, starch, and other macronutrients related to the body energy 

supply, sorghum millet offers a rich source of antioxidant phenolics with potential health 

benefits of preventing various chronic diseases.  However, the profile and levels of 

phenolics in a crop usually varies by crop variety and growth environment (Afify et al., 

2012).  In this study, sweet sorghum (Dura) samples were harvested in Louisiana where 

annual average climate temperatures are much higher than in most traditional sorghum 

growing areas.  The local environmental factors such as the higher average temperature 
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(25˚C) or the average rainfall (5-6 inches/month) during growing season (May to October) 

may result in the antioxidant profiles and levels of Dura sorghum millets that differ from 

those harvested in cold and dry areas.  In our study, the total phenolic content of HPE was 

768.9 ± 46.7 µg of catechin equivalent/g of sorghum millets which was eight times higher 

than that of LPE (97.6 ± 8.2 µg of catechin equivalent/g of sorghum millets) (Table 2.1). 

The dominant phenolic sorghum millets was apigeninidin at a level of 1.57 mg/g which 

is lower than that reported in black (4.0-9.8 mg/g) and red (3.3 mg/g) sorghum bran by 

Awika and Rooney (2004).
 
 The grain bran usually contains higher level of antioxidant 

phenolics than its kernels.   

Table 2.1 Total phenolic content and DPPH free radical scavenging capability (TEAC) of 

hydrophilic (HPE) and lipophilic (LPE) extracts from the sweet sorghum millets 

 

        HPE            LPE 

Total phenolic content (µg of catechin equiv/g) 768.9 ± 46.7 97.6 ± 8.2 

TEAC (µmol of trolox equiv/g)  6.5 ±   0.1 0.8 ± 0.1 

 

Other phenolics such as ferulic, p-coumaric, cinnamic, gallic and syringic acid, catechin, 

kaempferol and quercetin were identified and quantified in the sorghum millet sample 

(Table 2.2).  The level of catechin was 144.9 ± 3.7 µg/g and much higher than that in the 

millets reported (6.2-84.7 g/g) by Bröhan et al (2011).  Also, kaempferol, gallic and 

ferulic acid were the major phenolics in the sweet sorghum millets at levels of 133.7 ± 

6.7, 130.6 ± 8.1 and 107.6 ± 10.1 µg/g, respectively.  In a previous study, the levels of 

gallic and ferulic acid ranged from 13.2-46.0 and 8.9-95.7 µg/g, respectively, in different 

sorghum varieties (Dykes & Rooney, 2006).  The differences in phenolic composition 

and concentration of the sweet sorghum from other studies may be due to differences in 
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the light intensity, relative humidity, an average temperature of growing environment as 

well as the genetic background of the sorghum species.  The combination of these 

phenolics has been reported to have pharmacological potential in preventing cell 

inflammatory and cardiovascular diseases (Calderon-Montano et al., 2011; Kalender et al., 

2012).  Although the carotenoids in fruits and vegetables and their health benefits in 

preventing retina-aging and prostate and breast cancer are widely reported, their levels 

and profile in sweet sorghum millets have not been well documented.  Concentration of 

lutein and β-carotene in the sorghum millets was of 4.8 ± 0.2 and 18.8 ± 1.1µg/g, 

respectively (Table 2.2).   

Table 2.2 The concentrations of bioactive components in sweet sorghum millets 

Name Concentration (µg/g) 

Ferulic acid 

p-couramic acid 

Cinnamic acid 

Catechin 

Gallic acid 

Syringic acid 

Kaempferol 

Quercetin 

Apigeninidin 

107.6 ±10.1 

17.9 ±  1.4 

8.9 ±  0.5 

144.9 ±  3.7 

130.6 ±  8.1 

38.8 ±  4.0 

133.7 ±  6.7 

22.1 ±  0.9 

1570.0 ±  9.3 

Lutein 

-carotene 

4.8 ±  0.2 

18.8 ±  1.1 

α-tocopherol 

-tocopherol 

7.7 ±  0.7 

145.7 ±12.7 

 

2.3.2 Evaluation of antioxidant activities of the hydrophilic and lipophilic extracts 

In the DPPH assay, the antioxidant activity of HPE was 6.5 ± 0.1 µmol of Trolox 

equivalent/g of sorghum millets, while it was only 0.8 ± 0.1 µmol of Trolox 

equivalent/gram of sorghum millets for LPE (Table 2.1).  Although the DPPH assay is a 

common method for evaluating the antioxidant activity of phenolics in plant extracts, the 
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absorbance at 515 nm for measuring DPPH change is prone to the interference by other 

components, such as anthocyanins in the extract which has absorbance in that wavelength 

range as well.  Thus, the DPPH method is not an ideal assay for determining the 

antioxidant activity of anthocyanins-rich extract.  As the antioxidant activity determined 

by DPPH assay is the activity of quenching free radicals or H-donor capability of the 

antioxidant, it may not be actually associated with the required antioxidant function in the 

body.  In fact, not only the activity of an antioxidant but also the properties of the 

surrounding media and lipid substrates could affect the performance of antioxidant 

capacity. 

In our study, cholesterol and fatty acids, which were the key protecting targets of 

a health promoting antioxidant, were used as the substrates in the antioxidant activity 

evaluation model.  Compared with DPPH assay, the activity obtained in this model is 

much correlated to the capability of the antioxidant in stabilizing lipids in a biological 

system and preventing hyperlipidemia stress. In this study, an in vitro cholesterol-linoleic 

acid emulsion model which simulated the blood serum environment was used to 

determine antioxidant activity of the sorghum millet extracts.  Cholesterol is an important 

component of LDL and HDL in the serum.  Cholesterol and linoleic acid are also the 

major lipids of the cell membrane.  However, they are vulnerable to oxidation under 

oxidative stress or attack by free radicals.  During oxidation, the generation and 

accumulation of cholesterol oxidation product 7-ketocholesterol, could lead to plague 

formation in the blood vessel wall and development of coronary atherosclerosis (Tian et 

al., 2011).  Also, linoleic acid could be oxidized to produce cytotoxic short chain 

aliphatic compounds (Spiteller, 1998).  In the cholesterol-linoleic acid emulsion, an 
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increase in 7-ketocholesterol and decrease in linoleic acid were measured to assess the 

degree of cholesterol and fatty acid oxidation in the system, individually. 

After 24 h oxidation, 7-ketocholesterol in the blank increased to 2.85 µg/mL from 

undetectable levels (Figure 2.1).  Meanwhile, the treatments with 20 and 40 µg/mL of 

LPE had 7-ketocholesterol at 1.86 and 1.48 µg/mL, respectively.  For the two HPE 

treatments, the level of 7-ketocholesterol was below 1 µg/mL.  After 48 h oxidation, HPE 

showed higher antioxidant activity with an inhibition rate of 88.5% for HPE1 (20 µg/mL) 

and 92.2% for HPE2 (40 µg/mL), while it was 45.2 and 65.4% for LPE1 (20 µg/mL) and 

LPE2 (40 µg/mL), respectively (Figure 2.1).  For linoleic acid oxidation, only 33.6% of 

linoleic acid was retained in the blank after 24 h oxidation.  The retention rate from low 

to high was in the order of LPE1 40.1%, LPE2 45.7%, HPE1 61.7%, and HPE2 83.3% 

(Figure 2.2).   After 48 h oxidation, the retention rate of linoleic acid in the blank was 

only 15.5%.  HPE2 still exhibited the highest retention rate (70.4%) compared to HPE1 

(52.8%), LPE1 (22.0%), and LPE2 (33.6%).  Although both HPE and LPE exhibited 

inhibiting activity against cholesterol and linoleic acid oxidation in a dose-dependent 

property, HPE had higher antioxidant activity than LPE in the emulsion model.  The 

abundant apigeninidin and other phenolics could be responsible for the high antioxidant 

activity of HPE.  Most of the hydrophilic phenolics possess at least two hydroxyl groups 

that could greatly contribute to the protection of lipid substrates from oxidation.  The 

results (Figure 2.1) are agreement with the study of Zhang et al (2013).   In that study, 

hydrophilic anthocyanins extract had a higher capability in inhibiting cholesterol 

oxidation than tocols extract.  Since apigeninidin has multiple cyclic rings and its 

molecular structure is similar to that of cholesterol, it may have better accessibility than  
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Figure 2.1 The 7-ketocholesterol levels and cholesterol oxidation inhibition rates in blank, 

HPE1 (20µg/mL), HPE2 (40µg/mL), LPE1 (20µg/mL) and LPE2 (40µg/mL) after 24 and 

48h oxidation.  

*Different letters represent significant differences among the five treatments at P< 0.05. 

 

    

Figure 2.2 The retention rates of linoleic acid in blank, HPE1 (20µg/mL), HPE2 

(40µg/mL), LPE1 (20µg/mL) and LPE2 (40µg/mL) after 24 and 48h oxidation. 

*Different letters represent significant difference among the five treatments at P < 0.05. 
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other long carbon chain antioxidants in contacting and protecting cholesterol against 

oxidation. Although LPE had a high level of γ-tocopherols, the lower level and diversity 

of other phenolics in LPE were responsible for the lower overall capability in stabilizing 

lipid.  In general, HPE played an important role in preventing lipid oxidation in the 

emulsion system.  In other words, the antioxidant capacity of the sweet sorghum millets 

is mainly contributed by the hydrophilic phenolic antioxidants. 

 
2.4 Conclusion 

In this study, the levels and profiles of hydrophilic and lipophilic antioxidant 

phytochemicals in sweet sorghum millets were evaluated.  The dominant hydrophilic and 

lipophilic antioxidant was apigeninidin and -tocopherol, respectively.  The hydrophilic 

antioxidants showed higher antioxidant activity than lipophilic antioxidants in both the 

DPPH assay and cholesterol-linoleic acid oxidation model.  Therefore, the health benefits 

of sweet sorghum may be mainly attributed by its hydrophilic antioxidant phytochemicals.  

Thus, with its high biomass and diverse antioxidants, sweet sorghum (Dura) could be a 

valuable biomaterial for both biofuel and health promoting applications. 
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3.1 Introduction 

Basil, originating from India and other regions of Asia, is well known for its distinct 

aroma which was mainly contributed by 1,8-cineole, methyl cinnamate, methyl chavicol, 

and linalool (Lee et al., 2005; Klimánková et al., 2008).  Among nearly 150 varieties, 

Thai holy basil (Ocimum sanctum Linn.) and Thai sweet basil (Ocimum basilicum 

var.thyrsiflora) leaves were commonly used as flavorful additives in Thai cuisine such as 

stir-fried dishes and spicy soups (Juntachote et al., 2007).  On the other hand, the basil 

seed extract could be used in preparing edible films, or emulsifying solutions because of 

abundant polysaccharides (Khazaei et al., 2014). 

Recently, the aromatic compositions of basils have been widely studied, while it 

is also noted for its antioxidant values.  The determination of phytochemical phenolics 

present in basils is important in studying the relationship with some health promoting 

functions, including protection of cells from damage inflicted by free radicals, 

improvement of immune system, and anti-inflammatory properties (Zhang et al., 2013). 

For example, it has been reported that basil leaves were promising immunostimulants 

which could increase the serum protein and globulin in the blood of the fish; this was 

considered as a sign of improvement in both specific immune response and non specific 

immune responses (Nahak & Sahu, 2014). However, the current information of 

This chapter previously appeared as Shen, Y., Prinyawiwatkul, W., Lotrakul, P., & Xu, Z. 

Comparison of phenolic profiles and antioxidant potentials of the leaves and seeds of 

Thai holy and sweet basils. (2015). International Journal of Food Science & Technology, 

50, 1651-1657). It is reprinted by permission of copyright (2015) Copyright © 1999-2015 

John Wiley & Sons, Inc- see the permission letter for proper acknowledgment phrases. 

CHAPTER 3.  COMPARISON OF PHENOLIC PROFILES AND ANTIOXIDANT
POTENTIALS OF THE LEAVES AND SEEDS OF THAI HOLY AND SWEET

BASILS 
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antioxidant capability of basil leaves or seeds was relatively general and limited in the 

results of total phenolic content, reducing power, DPPH free radical scavenging activity, 

superoxide anion and hydrogen peroxide assays (Yeşiloğlu & Şit, 2012).  There was no 

study on comparing phenolic profiles and the lipid or cholesterol oxidation inhibition 

capabilities of both seeds and leaves of basils.  The information is very important to 

understand the antioxidation and health promoting function mechanisms of basils. 

It is well known that reactive oxygen species (ROS) and free radicals could be 

produced by the potential environmental pollutions or unhealthy living habits such as 

smoking or consumption of lipid-oxidized food (Lushchak, 2011).  Thus, the latent 

adverse compounds in environment and oxidized food products could act as 

inflammatory mediators, invade the body circulation system and accelerate 

atherothrombotic and other cardiovascular diseases (Sun et al., 2005).  Generally, various 

synthetic and natural antioxidants have been widely used to inhibit lipid oxidation in food 

products and assist to prevent the development of pathological events associated with 

lipid oxidation in body (Sgherri et al., 2010).  However, the long-term consumption of 

synthetic antioxidants in food products may cause potential health hazards (Lobo et al., 

2010).  Thus, except the flavor enhancing characteristic, basil leaves may be an edible 

plant with existing ideal antioxidant properties to extend food shelf life and reduce the 

risks of lipid-oxidation-related diseases in human body (Shimizu et al., 2013; Abo et al., 

2008). 

To our knowledge, this is the first study reporting the anti-cholesterol-oxidation 

efficiency of the selected basils in an emulsion model.  Also, the phenolic profile and 

antioxidant potential of basil seeds and leaves were evaluated and compared.  In general, 
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the results obtained from this study revealed the abundant phenolics and effective anti-

lipid-oxidation capability of common Thai basils.  The information could be useful for 

utilizing the basil or its extract as a food preservative or potential health promoting 

ingredient in food products.  

3.2 Materials and Methods 

3.2.1 Chemicals and materials 

HPLC grade acetonitrile, methanol, hexane, acetic acid and sodium phosphate dibasic 

(anhydrous) were purchased from Fisher Chemicals (Fair Lawn, NJ, USA). Sodium 

phosphate monobasic (anhydrous), isopropanol and sodium bicarbonate were obtained 

from Amresco (Solon, OH, USA) and Mallinckrodt Co. (Paris, KY, USA), respectively.  

Tween 20, 2,2-diphenyl-l-picrylhydrazyl (DPPH), 2,2-azobis(2-methylpropionamidine) 

dihydrochloride (AAPH), Trolox, Folin-Ciocalteau reagent, cholesterol, 7-ketocholesterol 

and the phenolic standards (rosmarinic, caftaric, chicoric, protocatechuic, caffeic, p-

coumaric and p-hydroxybenzoic acid, rutin, and catechin) were purchased from Sigma-

Aldrich (St. Louis, MO, USA).  Thai holy and sweet basil leaves and seeds were 

harvested from a local horticultural garden during summer season (July) (Baton Rouge, 

LA, USA). 

3.2.2 Extraction and determination of antioxidants in basil leaves and seeds extracts 

Fifty grams of Thai holy basil (Ocimum sanctum Linn.) or Thai sweet basil (Ocimum 

basilicum var. thyrsiflora) leaves and seeds were freeze dried and then ground.  Five 

grams of the ground sample was then mixed with 10 mL of methanol and incubated in a 



55 

 

60℃  water bath for 30 min prior to extraction.  After centrifuged for 20 min, the 

supernatant of the extraction mixture was collected.  The extraction was repeated twice.   

Both of the supernatants were combined and evaporated to dryness.  Each dried extract 

was prepared as a stock solution of 100 mg/mL in methanol. 

3.2.3 Identification and determination of individual phenolic by using HPLC 

One milliliter of the diluted basil leaves or seeds extract stock solution (20 mg/mL) was 

transferred to an HPLC vial.  The determination was carried out by using an high 

performance liquid chromatography system (2690, Waters, Torrance, USA) with a C18 

column (id 250×4.60 mm 5micron, Phenomenex, Torrance, USA) and a photodiode array 

detector.  The HPLC running condition was based on the study of Du et al (2014).
  
The 

phenolics were identified and quantified by comparing the retention times and spectrums 

and calibration curves obtained from their corresponding standards, respectively. 

3.2.4 Total phenolic content 

Folin- Ciocalteau method was used for the measurement of TP content based on the 

description in the study of Du et al (2014).  The Folin reagent (0.75 mL) was diluted ten 

times with distilled water and mixed with 0.1 mL of the diluted stock solution (5 mg/mL).  

Then, 0.75 mL of sodium bicarbonate (60 g/L) was added to the mixture and incubated at 

25 °C for 90 min.  The absorbance was measured at 750 nm by an UV-visible 

SpectraMax Plus384 spectrophotometer (Molecular Devices, Sunnyvale, CA).  The TP 

content of each extract was expressed as µg catechin equivalent (CE)/g dry weight (DW) 

based on the calibration curve of catechin. 
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3.2.5 Scavenging DPPH free radical activity 

The scavenging DPPH free radical ability was determined by using the procedure with 

minor modification in the study of Yue & Xu (2008).  DPPH solution (0.1 mM, 1.8 mL) 

was mixed with 0.2 mL of each diluted basil extract stock solution (5 mg/mL) and 

incubated in dark for 30 min at 25 °C.  The absorbance before (Ab0) and after (Ab30) the 

incubation were recorded at 515 nm, respectively.  The scavenging DPPH free radical 

ability was expressed as µmol Trolox equivelant (TE)/g dry weight (DW) based on the 

calibration curve of Trolox. 

3.2.6 Evaluation of anti-lipid-oxidation capability by using cholesterol emulsion 

model  

The cholesterol emulsion which contained 1% cholesterol, 0.1% of Tween 20 and 2% of 

AAPH was homogenized by using a microfluidizer materials processor (M-110P, 

Microfluidics, Newton, MA, USA).  The Thai holy basil or sweet basil leave and seed 

extract (250 µg/mL of the emulsion) was mixed with 20 mL and prepared as the 

treatment group, respectively, while the emulsion without any extract was used as a 

control group.  Each of the emulsions was placed in a 40 mL vial and incubated in a 37°C 

water bath and continually agitated by a multiple magnetic stirrer (Multistirrer, VELP 

Company, Italy) for 144h.  The major cholesterol oxidation product 7-ketocholesterol in 

the emulsion was determined every 48h to assess the degree of cholesterol oxidation by 

the HPLC method described in the study of Zhang et al (2013). 

3.2.7 Data analysis 

The levels of phenolics, total phenolic contents, scavenging free radical activities and the 

anti-lipid-oxidation capability were expressed as the mean ± standard error from three 

independent determinations.  All the data was calculated by using Microsoft Excel 
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(Redmond, WA), and one-way analysis of variance ANOVA (SAS, 9.1.3, Cary, NY) was 

used to evaluate significant differences at p<0.05. 

3.3 Results and Discussion 

3.3.1 Phenolic profiles of the basil leaves and seeds 

In this study, a total of eight primary phenolics including rosmarinic, caftaric, chicoric, 

protocatechuic, caffeic, p-coumaric and p-hydroxybenzoic acid and rutin were identified 

and determined in the Thai holy and sweet basil leaves and seeds (Figure 3.1).  Chicoric 

acid was the most dominant phenolic in both THBL and TSBL (Table 3.1).  Compared 

with ten commercial basil varieties with chicoric acid levels (µg/g DW) ranging from 

64.8 ± 0.3 to 162.4 ± 0.1 in the study of Lee & Scagel (2010), THBL and TSBL 

contained much higher concentrations of 439.85 ± 5.28 and 224.17 ± 0.34, respectively 

(Table 3.1).  Although rosmarinic acid has been consistently noted as the primary 

phenolic acid in most basil varieties, it was about 1.5 and 2 times lower than chicoric acid 

in THBL and TSBL, respectively (Table 3.1) (Lee & Scagel, 2010; Hakkim et al., 2007).  

Also, the following caftaric acid (µg/g DW) at the level of 202.18 ± 0.66 for THBL and 

59.00 ± 2.31 for TSBL was more abundant than the ten selected basil samples ranging 

from 22.8 to 3.5 µg/g DW in the study of Lee & Scagel (2010).  The abundant phenolic 

profile of the basils in this study might be due to the optimal growing condition where 

average temperature in summer was 25 to 32C with sufficient sunlight.  Shiga et al. 

(2009) stated that it may be possible to increase the phenolic content of sweet basil by 

manipulating light conditions. 

However, caffeic acid was only identified in Thai holy basils.  It has been 

reported that caftaric acid was the secondary metabolites of caffeic acid in plants (Crozier 
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et al., 2006).  The higher amount of caftaric acid and lower amount of caffeic acid in 

basil leaves could be explained that most caftaric acid was derived from caffeic acid  

 
Figure 3.1 A typical chromatogram of phenolics in Thai holy basil leaves: 1, 

protocatechuic acid; 2, caftaric acid; 3, caffeic acid; 4, chicoric acid; 5, rosmarinic acid; 6, 

p-hydroxybenzoic acid. 

during growth by phytochemical and microbial conversion (Wu et al., 2007).  Thus, 

relatively high level of caftaric acid was found in THBL, while its caffeic acid was much 

lower than that of THBS (Table 3.1).  Based on various in vivo or in vitro studies, the 

phenolics, chicoric, rosmarinic, caftaric and caffeic acids have been confirmed to provide 

various health promoting functions (Khair-ul-Bariyah et al., 2012).  For example,chicoric 

acid was reported to prevent hyperglycemic and obesity through attenuating hepatic 

steatosis, while, rosmarinic, caffeic and caftaric acid were responsible for anti-

inflammatory, antitumor and antimutagenicity functions, respectively (Zhang et al., 2011; 

Xiao et al., 2013; Boonyarikpunchai et al., 2014).  Additionally, compared with other 

studies on the phenolic profile of different basil varieties, protocatechuic and p-

hydroxybenzoic acids were only detected in Thai sweet and holy basil leaves (Kwee & 
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Niemeyer, 2011).  The protocatechuic acid, which has been evidenced to offer 

antiatherosclerotic, hyperlipidemic and cardiac protective functions, was approximately 

twice higher in TSBL than in THBL (Table 3.1) (Borate, Suralkar, Birje, Malusare, & 

Bangale, 2011).  Thus, as a culinary seasoning, the basil leaves could not only enhance 

food flavors but also potentially provide health benefits. 

Table 3.1 Phenolic profiles of Thai holy and sweet basil leaves and seeds 

*Mean values with different letters are significantly different (p<0.05). 

*N.D. not detected. 

 

For basil seeds, the information of their phenolic profiles is very limited.  

Generally, basil seeds were processed into essential oil products or prepared as the 

thickening and stabilizing ingredient in food system because of the abundant 

polysaccharides (Rafe et al., 2012).  In this study, THBS had caffeic acid which was the 

dominant phenolic and at a level above 200 µg/g DW.  The following phenolics were 

 

Phenolics 

(µg/g DW) 

Thai Holy Basil Thai Sweet Basil 

Seeds Leaves Seeds Leaves 

Rosmarinic Acid 17.00 ± 0.27c 303.83 ± 4.55a N.D. 116.18 ± 4.11b 

Caftaric Acid N.D. 202.18 ± 0.66a N.D. 59.00 ± 2.31b 

Caffeic Acid 200.52 ± 8.80a 70.22 ± 2.79b N.D. N.D. 

Chicoric Acid 27.57 ± 1.25c 439.85 ± 5.28a N.D. 224.17 ± 0.34b 

p-Hydroxybenzoic Acid 32.52 ± 2.20b 52.09 ± 0.64a 22.59 ± 5.27c  26.06 ± 0.60c 

p-Coumaric Acid 59.32 ± 2.18a N.D. N.D. N.D. 

Protocatechuic Acid 47.70 ± 2.49c 81.14 ± 0.66b N.D. 152.64 ± 1.80a 

Rutin 24.66 ± 2.25a N.D. 26.26 ± 5.08a N.D. 

Overall Level 409.29 1149.31 48.85 578.05 
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chicoric, p-coumaric, protocatechuic, and p-hydroxybenzoic acid with the concentrations 

ranging from 27.57 ± 1.25 to 59.32 ± 2.18 µg/g DW (Table 3.1), while the level of 

rosmarinic acid and rutin was below 25 µg/g DW.  However, TSBS only contained p-

hydroxybenzoic acid and rutin with the concentration of 22.59 ± 5.27 and 26.26 ± 5.08 

µg/g DW, respectively.  The overall levels of phenolics in THBL, TSBL, THBS and 

TSBS were 1149.31, 578.05, 409.29 and 48.85 µg/g DW, respectively.  THBL had the 

greatest diversity and highest overall level of phenolics. 

3.3.2 Total phenolic contents and scavenging DPPH free radical activities of the 

basil leaves and seeds extracts 

Basil variety had a statistically significant effect on the TP content of leaves which was 

based on the reducing power contributed by the compounds in the sample.  For example, 

the TP content (µg CE/g DW) was significantly higher in TSBL (304.01 ± 12.46) than 

THBL (212.05 ± 4.90) while it was below 10 (µg CE/g DW) in THBS and TSBS.  In a 

previous study, TP content of the selected basil was only 20.25 ± 0.85 µg CE/g DW 

which was fifteen and ten times lower than that of TSBL and THBL, respectively (Kim et 

al., 2011).  Even compared with some related herb species which TP content ranged from 

7.78 ± 0.31 to 108.28 ± 7.11 µg CE/g DW, the TP contents of TSBL and THBL was still 

much higher (Kim et al., 2011).  However, the TP contents of the basil extracts were not 

consistent with their overall phenolic levels.  For instance, TSBL had significantly higher 

TP content than THBL.  However, the overall phenolic level in TSBL was twice lower 

than that of THBL (Table 3.1 & Figure 3.2).  The disparity of TP content and overall 

phenolic level in the basil extracts may be due to some interference such as reducing 
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sugar in TP content assays (Table 3.1 & Figure 3.2).  Except phenolics, other non-

antioxidant compounds such as reducing sugar, or aromatic amines in a test sample could 

also exhibit reducing power and contribute to the total phenolic content (Dai & Mumper, 

2010).  As Thai sweet basil has significantly higher sugar content than Thai holy basil, 

the higher TP content in TSBL may be due to its high reducing sugars responsible for the 

sweet taste of the basil (Luthria et al., 2006).  

 

Figure 3.2 Scavenging DPPH free radical activities and total phenolic contents of Thai 

holy and sweet basil leaves and seeds (n=3).  DPPH or TP content bars with different 

letters indicate significant difference (P < 0.05). 

The DPPH assay reflects the scavenging metastable free radicals capability 

(DPPH) which could incorporate with the hydrogen radicals from potential antioxidants 

(Kwee & Niemeyer, 2011).  In this study, the free radical quenching activity of each basil 

extract was correspondingly in the same order with the overall phenolic level rather than 

TP content (Table 3.1 & Figure 3.2).  In general, the basil leaves had greater performance 
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than the seeds in scavenging DPPH free radicals since most phytochemical synthesis 

occurs in the leaves during plant growth (Rosa et al., 2009).  THBL dominated in the 

DPPH assay with the free radical scavenging activity of 51.56 ± 0.35 µmol TE/g DW 

(Figure 3.1).  It was at the similar level as Genovese basil (54.0 µmol TE/g DW), but 

significantly higher than Dark Opal or Sweet Thai basil in the study of Nguyen et al 

(2010).  The following TSBL was 37% lower than THBL in scavenging DPPH free 

radicals activity, however, it was approximately three and five times higher than THBS 

and TSBS, respectively (Figure 3.2).  The free radical quenching ability of THBL and 

THBS were approximately twice and one and a half times higher than the white and red 

holy basil in the study of Wangcharoen & Morask (2007), respectively. 

3.3.3 Capability of basil leaves and seeds extracts in inhibiting cholesterol oxidation 

Apart from the DPPH and TP content assays, a cholesterol emulsion model was 

established to provide complementary insight into the antioxidant capacity of basil leaves 

and seeds.  The level of 7-ketocholesterol in the emulsion was determined by a normal 

phase HPLC method to predict the degree of cholesterol oxidation and antioxidant 

efficiency of each extract.  At the beginning of 48h, the four treatments and control group 

generated a similar level of 7-ketocholesterol (approximately 0.5 µg/mL) (Figure 3.3).  

Among all the four treatments, TSBL and THBL exhibited the greatest anti-lipid-

oxidation capabilities.  Their concentrations of 7-ketocholesterol were below 1.0 µg/mL 

after 96h without significant difference (Figure 3.3).  However, it was 7.18 ± 0.71 µg/mL 

after 96h in the control group which was twice higher than that in THBS and TSBS 
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(Figure 3.3).  After 144h oxidation, TSBL and THBL contained much lower levels of 7-

ketocholesterol at 4.5 ± 0.3 and 2.7 ± 0.3 µg/mL, respectively. 

 
Figure 3.3 Capabilities of inhibiting 7-ketocholesterol cholesterol oxidation product of 

Thai holy and sweet basil leaves and seeds (n=3).  Values at the same sampling time with 

different letters are statistically different (P< 0.05). 

 

It is well known that the free radicals are ubiquitous and could initiate and 

accelerate oxidative stress which further causes food deterioration or excessive free 

radical injury in human bodies (Lobo et al., 2010).  In order to simulate the oxidative 

environment, AAPH was used in this study to generate free radicals through interacting 

with carbon-centered radicals and molecular oxygen (Yokozawa et al., 2000).  Then, the 

yielded peroxyl radicals from the reaction could attack other lipid molecules to form lipid 
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hydroperoxide and new radicals repeatedly and result in the damage in physical or 

chemical alterations, cellular damage and a diverse array of pathological changes 

(Yokozawa et al., 2000).  In this study, the presence of basil leaves extracts in the 

cholesterol emulsion demonstrated effective inhibition capability against the cholesterol 

oxidation and production of 7-ketocholesterol.  It was in accordance with the results 

obtained in DPPH assay (Figure 3.2) and the overall phenolic contents (Table 3.1).  The 

capability of inhibiting cholesterol oxidation was correspondingly in the same order with 

the overall phenolic level of each basil extract rather than its TP content.  The abundant 

phenolics in basil leaves were responsible for inactivating the catalytic cations or 

scavenging free-radical chain reactions. 

Compared with the seeds, the basil leaves contained at least five phenolics 

including rosmarinic, caftaric, chicoric, p-ydroxybenzoic and protocatechuic with O-

dihydroxy structure in the B ring which is regarded as the key site to contribute to the 

great antioxidative potential (Yokozawa et al., 2000).  Similarly, although the phenolic 

diversity in Thai holy basil seeds was similar to its leaves, the relatively low 

concentrations and the lack of important chicoric and caftaric acids which are associated 

with anti-inflammatory effects made the seeds not as competitive as the leaves (Lee & 

Scagel, 2009; Casanova et al., 2014).  Thus, the combination of multiple phenolics and 

higher levels of certain phenolics with great lipid oxidation suppression capability could 

provide synergistic and efficient antioxidant effect. 

Additionally, based on the concentration of 7-ketocholesterol, either Thai holy 

basil leaves or seeds had better performance in inhibiting cholesterol oxidation than Thai 

sweet basil.  For instance, THBS had twice lower level of 7-ketocholesterol than TSBS at 
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144h which may result from the poor diversity and low overall level of the phenolics in 

TSBS.  On the other hand, despite both types of basil leaves having 7-ketocholesterol 

below 5.0 µg/mL, the oxidation product in THBL was twice lower than that in TSBL.  

Except for protochatchuic acid, other phenolic acids determined in the Thai holy basil 

leaves were several folds higher than those in Thai sweet basil leaves, especially the top 

two important phenolics, chicoric and rosmarinic acid (Table 3.1). For example, 

rosmarinic acid contains a caffeoyl group which has been reported to contribute to the 

potent superoxide anion scavenging activity by an electron spin resonance (ESR) method 

(Yagi et al., 2002). Also, rosmarinic acid was evidenced to spontaneously penetrate 

membranes to inhibit lipid peroxidation and prevent the alteration of lipid membranes by 

oxidative stress and reduce the atherogenic index in an in vitro study (Fadel et al., 2011).  

In fact, the number, orientation, and distance of active caffeoyl group have important 

influence on the molecular antioxidant activity.  Therefore, the diaxial conformations of 

the two caffeoyl residues in chicoric acid could maximize their interactions in scavenging 

free radicals and prevent lipid oxidation according to the study of LeBlanc et al (2012). 

Additionally, based on a study of high-fat-diet-mice, chicoric acid was found to 

lower serum lipid parameters and attenuate hepatic inflammation as well as exhibited 

hypoglycemic activity on type-2 diabetic rats (Xiao et al., 2013).  Thus, the enhanced 

antioxidant performance of Thai holy basil leaves than those of Thai sweet basil leaves 

might be due to the abundant levels and profile of the phenolics.  The result obtained 

from the cholesterol emulsion model could not only be helpful to understand the anti-

lipid-oxidation capabilities of Thai holy and sweet basils, but also provide useful 
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information linking their antioxidant capability with maintaining the body healthy 

antioxidative status and preventing various lipid-oxidation related diseases. 

3.4 Conclusions 

In general, the phenolic profiles of Thai holy and sweet basil seeds and leaves were 

determined in this study.  This is the first study to investigate the anti-lipid-oxidation 

capabilities of Thai holy and sweet basil seeds and leaves by using a cholesterol emulsion 

model.  In this study, rosmarinic, caftaric, chioric, p-hydroxybenzoic and protoatechuic 

acid were detected in both THBL and TSBL. Caffeic acid was only found in Thai holy 

basil.  Additionally, THBS had seven primary phenolics including rosmarinic, caffeic, 

chicoric, p-hydroybenzoic, p-coumaric, protocatechuic acid and rutin, while only p-

hydroybenzoic and rutin were found in TSBS.  In DPPH assay, THBL dominated in 

scavenging free radical activity and was followed by TSBL, THBS and TSBS. The order 

of TP content from high to low TSBL, THBL, THBS and TSBS was not consistent with 

their order in anti-lipid-oxidation and scavenging free radicals activities.  These activities 

were consistent with their overall levels and diversities of phenolics in the basil extracts.  

Thai holy basil leaves exhibited greater anti-lipid-oxidation performance than its seeds or 

Thai sweet basil leaves and seeds.  Therefore, Thai holy basil leaves could be processed 

as an antioxidant ingredient to be applied in various food products.  In our further study, 

animal and cell system will be applied to verify the health promoting function of the Thai 

holy basil leaves. 
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CHAPTER 4  BIOACTIVES IN HYDROPHILIC AND LIPOPHILIC 

BUTTERFLY PEA (CLITORIA TERNATEA) SEEDS AND PETALS EXTRACTS 

AND THEIR CAPABILITIES IN INHIBITING HEP-2 CARCINOMA CELLS 

PROLIFERATION 

4.1 Introduction  

Butterfly pea (Clitoria ternatea), a member of Fabaceae family and Papilionaceae sub-

family, is a perennial leguminous twiner (Al-Asmari et al., 2014).  Approximately 60 

butterfly pea species are distributed within the tropical belt while a few species can be 

found in temperate areas (Al-Asmari et al., 2014).  The abundant dietary anthocyanins in 

butterfly pea petal make it as popular health prompting tea and natural blue colorant in a 

variety of foods (Mukherjee et al., 2008).  Also, triterpenoids, flavonol glycosides, 

alkaloids were reported in butterfly pea leaves, while, pentacyclic triterpenoids, taraxerol 

and taraxerone were identified in the roots (Singh & Tiwari, 2010).  Since butterfly pea is 

both rainfall and drought tolerant and self-pollinated, it is easy to harvest a large quantity 

of its seeds (Morris, 2009).  However, information of the composition of the seeds, 

especially its health promoting constitutes such as phenolics, tocols, and phytosterols was 

limited.  Thus, the hydrophilic and lipophilic phytochemicals in the butterfly pea seeds 

and petals were identified and quantified in this study.   

Except for the antioxidant and antibacterial function in food application, the 

pharmacognostic performance of anti-diabetes, nootropic, anxiolytic, anti-convulsant, 

sedative, antipyretic, anti-inflammatory and analgesic in different parts of butterfly pea 
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also have been investigated (Jain & Shukla, 2011).  However, the anti-cancer potential of 

butterfly pea petal and seed has not been well documented.  Since laryngeal carcinoma 

accounts for 25% of head and neck carcinoma, it becomes the second most common 

respiratory cancer following lung cancer (Mirunalini et al., 2011).  The limitless 

replication of cancer cells and multiple interactions with their microenvironments 

increase the difficulties in cancer treatments (Pienta et al., 2008).  Primary clinical 

treatments for laryngeal cancer include surgery, chemotherapy and radiotherapy, however, 

they would induce adverse side effects or even result in resistance to these therapies 

(Agostinis et al., 2011).  Therefore, attention has recently been devoted to plant-derived 

compounds which have pharmacological functions on tumor with minimum side 

symptoms (Veerabadran et al., 2013).  In order to evaluate the anticancer capabilities of 

butterfly pea petal and seed, the effect of hydrophilic and lipophilic extracts on inhibition 

of laryngeal cancer cell (HEp-2) proliferation was studied.  Therefore, the results of this 

study not only provide specific phytochemical profile in both butterfly pea petal and seed, 

but also are very helpful to understand the connections between the bioactive compounds 

and anti-cancer potential.    

4.2 Materials and Methods 

4.2.1 Chemicals and materials 

HPLC grade acetonitrile, acetic acid, methanol, and hexane were purchased from Fisher 

Chemicals (Fair Lawn, NJ, USA).  Acetone was purchased from Macron (Charlotte, NC, 
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USA).  Ethyl acetate was purchased from EM Science (Gibbstown, NJ, USA).  

trimethylsilyl imidazole (TMSIM), BCl3-methanol and phenolics, fatty acids and 

tocopherol standards were purchased from Sigma-Aldrich (St. Louis, MO, USA).  Fresh 

butterfly pea seeds and petals (Clitoria ternatea) were obtained from a local garden in 

Baton Rouge, LA, USA.  The human carcinoma HEp-2 cell line was purchased from 

American Type Culture Collection (ATCC, Manassas, VA, USA).  Other reagents and 

culture media including fetal bovine serum (FBS), antibiotic (penicillin–streptomycin), 

Cell Titer Blue, dimethyl sulfoxide (DMSO), and phosphate buffered saline (PBS) were 

purchased from Invitrogen (Grand Island, NY, USA).  

4.2.2 Extraction of hydrophilic and lipophilic bioactive compounds in butterfly pea 

seeds and petals 

The freeze dried butterfly pea seeds and petals were ground by a coffee blender 

(Hamilton Beach, Southern Pines, NC, USA).  The hydrophilic compounds of petals or 

seeds (20 g) was obtained by the extraction of using 50 mL of methanol at 60°C for 20 

min.  After centrifugation, the methanol layer was transferred to a clean tube. Then, the 

solid residues was extracted two more times at the same condition and procedure.  The 

dried hydrophilic extract was obtained by evaporating the methanol using a vacuum 

centrifuge evaporator (Labconco, Kansas City, MO, USA).  The dried extracts were 

combined and prepared for a stock solution (50 mg/mL in methanol).  As for the 

lipophilic extract of butterfly pea petals or seeds, 50 mL of a mixture of ethyl acetate and 
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hexane (50:50; v:v) was used to carry out the extraction at the same procedure used for 

obtaining the hydrophilic extract.  After the solvent extract was dried, a stock solution of 

the lipophilic extract (50 mg/mL in hexane) was prepared as well. 

4.2.3 Identification and quantification of hydrophilic and lipophilic phytochemicals 

and fatty acids  

Phenolics Phenolic profiles of the hydrophilic extracts were determined by a reversed 

phase HPLC (2690, Waters, Torrance, USA) coupled with C18 column (id 250×4.60 mm, 

5 micron, Phenomenex, Torrance, USA), a diode array detector and the operation 

condition as same as in the study of Du et al. (2014).  The concentrations of major 

phenolics were calculated based on their corresponding standard curves.  Both of the 

extracts were also subject to an LC-MS analysis to identify the compounds without their 

reference standards available.  The LC-MS consisted of a UPLC apparatus (Thermo 

Scientific Dionex UltiMate 3000, Waltham, MA, USA) and a MS (Q Exactive™ Plus 

Hybrid Quadrupole-Orbitrap™) which had an electrospray ionization source (ESI) and 

was operated in the positive mode with a full MS scan from 150 to 2000 m/z.  The LC-

MS separation was carried out using a reversed phase column (Acclaim® Mixed-Mode 

WAX-1,150 × 2.1 mm, 5 µm).  The mobile phase consisted of A (1% formic acid 

solution) and B (acetonitrile) at a constant flow rate of 0.2 mL/min with a gradient 

program of 0 - 70% B at 0.0 - 8.0 min, 70 - 100% B at 8.0 - 10.0 min, 100 - 0% B at 10 -

15 min.  The MS parameters were set as: electric potential of the ESI source, 3.0 kV; 
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capillary temperature, 300 °C; heater temperature, 200 °C. The concentrations of 

ternatins and delphinidin derivative were calculated by the standard curve of cyanidin 

chloride in molar concentration and then converted to mg/g of sample based on its 

molecular weight. 

Tocopherols A normal phase HPLC (1100 series, Agilent, Santa Clara, CA, USA) with 

Supelcosil LC-Si column (id 250× 4.60 mm 5micron, Supelco, Bellefonte, PA, USA) was 

used for the determination of tocopherols.  The condition of the HPLC analysis was the 

same as the method described in Jang and Xu (2009).   

Fatty Acids each of the lipophilic extracts was reacted with 2 mL of BCl3-methanol to 

carry out methylation after 200 µg of internal standard (C17:0) was added.  The 

methylation reaction mixture was incubated at 60°C for 30 min.  Then, 1 mL of water 

and 1 mL of hexane were added to the reaction solution and vortexed.  After 

centrifugation, the upper hexane layer was transferred to a clean test tube and mixed with 

anhydrous NaSO4 to remove any moisture before it was transferred to a GC vial.  The 

fatty acids were determined by a GC equipped with FID detector with a Supelco SP2380 

(30 m x 0.25 mm) column (Bellefonte, PA, USA).  The GC condition was as same as that 

in the study of Yue et al (2008).    

Phytosterols The determination of phytosterols was based on the study of Xu and 

Godber (1999) with minor revision.  After the lipophilic extract was mixed with 20 µg 

cholesterol internal standard, it was dried and incubated with 200 µL of TMS and 50 uL 
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of acetonitrile at 65 ˚C for 30 min.  The derived products were extracted with 200 uL of 

hexane followed by a GC-MS analysis.  A Varian CP-3800 GC (Valnut Creek, CA, USA) 

coupled with a Saturn 2200 mass spectrometer and a DB-5 column (L60 m × i.d. 0.25 

mm and 0.25 µm thin coating film) (Supelco, Bellefonate, PA, USA) was used in the 

analysis.  The initial oven temperature was 200˚C, then, ramped to 280 ˚C at an rate of 

10
o
C/min and held at the final temperature for 62 min.  Helium was the carrier gas at a 

constant flow rate of 1.5 mL/min.  The injection port temperature and a split ratio were 

set at 280˚C and 1:50, respectively.  The peak area ratios of different levels (5, 10, 20, 50 

and 100 µg) of campesterol, stigmasterol, and β-sitosterol to 20 µg of cholesterol internal 

standard were used to set up a standard curve for quantifying the phytosterols. 

4.2.4 Determination of capability of inhibiting human carcinoma cell (HEp-2) 

proliferation 

The human carcinoma HEp-2 cell line was used to assess the anticancer capability of 

hydrophilic extracts of butterfly pea seed (HBS) and petal (HBP) and lipophilic extracts 

of butterfly pea seed (LBS) and petal (LBP).  The cell line was cultured in 

Dulbecco'smodified eagle's media (DMEM), supplemented with 10% fetal bovine serum 

(FBS) and 1% antibiotic (penicillin–streptomycin) and grown in a 5% CO2 atmosphere 

with 95% humidity at 37 ˚C for 24h.  Then, the cells were harvested, counted (3 × 10
4
 

cells/ml), and transferred into a 96-well plate.  The working solution of each extract was 

prepared by dissolving HBS, HBP, LBS, or LBP with 0.2 % DMSO in PBS culture 
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media.  The HEp-2 cells were incubated with a series of concentrations of HBS or HBP 

working solution (1.0, 0.5, 0.25, 0.12 and 0.06 mg/mL) and LBS or LBP working 

solution (12.0, 9.0, 6.0, 3.0 and 1.5 mg/mL) for 96 h at 37°C for a dose dependent study.  

The cells only mixed with the media and 0.2% DMSO were used as the control.  For 

measure the cell viability, the media was discarded and replaced with 100 µL fresh media 

containing 20% Cell Titer Blue.  After the cells were stained for 4 h, fluorescence 

intensity of the media was read at excitation/emission wavelengths of 570/615 nm using a 

FluoStar Optima micro-plate reader (BMG, Germany).  The anticancer capability of the 

extract at each concentration treatment was expressed by a survival rate which was the 

percentage of the viable cells in the treatment versus the control. 

4.2.5 Data analysis 

The determination of hydrophilic or lipophilic phytochemicals and fatty acids in each 

extract was repeated in triplicate and expressed as means ± standard deviation.  The 

significant differences between the components in two lipophilic extracts were 

determined by one-way ANOVA at P< 0.05 (SAS, 9.1.3, Cary, NY, USA).  The 

determination of anticancer capability of each treatment concentration or control was 

repeated five times and analyzed by GraphPad Prism (version 6.0, GraphPad Software 

Inc., USA).  The differences between the treatments and control were analyzed by two-

way ANOVA at P < 0.05. 
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4.3 Results and Discussions 

4.3.1 Hydrophilic and lipophilic phytochemicals and fatty acids in butterfly pea 

seeds and petals 

The yields of the hydrophilic extracts, HBS and HBP, were 3.66 and 4.05 %, respectively.  

The chromatograms of the hydrophilic phytochemicals in HBS and HBP are shown in 

Figure 4.1 and 4.2, respectively.  In addition abundant ascorbic acid (1.32 ± 0.02 mg/g 

FW), sinapic acid was the dominant phenolic among the fifteen major hydrophilic 

phenolics at a concentration of 1.01 ± 0.07 mg/g FW followed by epicatechin and gallic 

acid in the seeds (Table 4.1).  Compared with the contents in rapeseeds (0.09 - 0.59 mg/g 

FW) and camelina seeds (0.39 mg/g FW) (Nićiforović & Abramovič, 2014), the sinapic 

acid content in butterfly pea seeds was much higher than each of them (Table 4.1).  It was 

reported that sinapic acid could assist to suppress the expression of proinflammatory 

mediators via NF-κB inactivation in regulating inflammatory status and immune response 

(Yun et al., 2008).  Epicatechin, a proanthocyanidin, in the butterfly pea seeds which was 

reported to exhibit immunoregulatory, anti-hypertension effects as well was ten times 

higher (0.56 mg/g FW, Table 4.1) than that reported in the garden pea seeds (Pisum 

sativum) (0.05 mg/g) (Ferraro et al., 2014; Litterio et al., 2015).  Protocatechuic, p-

coumaric, rutin and two hydroxycinnamic acid derivatives in the butterfly pea seeds were 

all above 0.30 mg/g FW, while kaempherol, apigenin, caffeic, syringic, ferulic, 

rosmarinic and cinamic acid were in a range of 0.04 to 0.22 mg/g FW (Table 4.1).  
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Compared with the rutin content in edible Amaranthus seeds which was between 0.0711 

and 0.0775 mg/g DW) (Li et al., 2015), the content in butterfly pea seeds was much 

higher and reached 0.31 mg/g FW (Table 4.1).   

 

Figure 4.1 Chromatogram of the hydrophilic extract of butterfly pea seeds  

1 – Vitamin C; 2 – Gallic acid; 3 – Protocatechuic acid; 4 – Epicatechin; 5 – Caffeic acid; 

6 – Syringic acid; 7 – Sinapic acid; 8 – Hydroxycinnamic acid derivatives; 9 – p-

coumaric acid; 10 – Hydroxycinnamic acid derivatives; 11 – Rutin; 12 – Ferulic acid; 13 

– Rosmarinic acid; 14 – Cinnamic acid; 15 – Kaemferol; 16 – Apigenin.   

 

 

Figure 4.2 Chromatogram of the hydrophilic extract of butterfly pea petals  

1 – Cyanidin-3-sophoroside; 2 – Delphinidin derivative; 3 – Ternatin A1; 4 – Ternatin B3; 

5 – Ternatin D3; 6 – Ellagic acid; 7 – Rutin; 8 - Delphinidin derivative; 9 – Kaempferol-

3- neohesperidoside; 10 – Quercetin-3-(2G-rhamnosylrutinoside); 11 – Ternatin B2; 12 – 

Ternatin C2; 13 – Ternatin D2. 
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Although mung bean, radish, broccoli and sunflower seeds contain gallic, protocatechuic, 

caffeic, p-coumaric, ferulic, chlorogenic, sinapic acid, quercetin and kaempferol (Pająk et 

al., 2014), each of their levels was significantly lower than that in the butterfly pea seeds.   

Table 4.1 Bioactive compounds in the hydrophilic extract of butterfly pea seeds 

 

Peak No. Compounds Concentration (mg/g FW) 

1 Ascorbic acid 1.32 ± 0.02 

2 Gallic acid 0.42 ± 0.00 

3 Protocatechuic acid 0.34 ± 0.01 

4 Epicatechin 0.56 ± 0.03 

5 Caffeic acid 0.22 ± 0.01 

6 Syringic acid 0.14 ± 0.01 

7 Sinapic acid 1.01 ± 0.07 

8 Hydroxycinnamic acid derivative 1 0.57 ± 0.19 

9 p-Coumaric acid 0.30 ± 0.01 

10 Hydroxycinnamic acid derivative 2 0.44 ± 0.02 

11 Rutin 0.31 ± 0.01 

12 Ferulic acid 0.15 ± 0.00 

13 Rosmarinic acid 0.05 ± 0.00 

14 Cinamic acid 0.08 ± 0.00 

15 Kaempherol 0.04 ± 0.00 

16 Apigenin 0.09 ± 0.00 

 

The unique phytochemicals in butterfly pea petals are ternatins, a group of polyacylated 

delphinidin derivatives (Sasaki et al., 2013).  It was reported that Ternatin A1-A3, B1-B4, 

C1-C5 and D1-D3 consist of delphinidin 3, 3’, 5’-triglucoside attached with malonic acid, 

glucose, p-coumaric acid or caffeic acid (Kazuma et al., 2003).  In this study, ternatin C2 

and D2 in the butterfly pea petals were observed at higher concentrations of 1.81 ± 0.09 

and 1.45 ± 0.07 mg/g FW, respectively.  The concentrations of ternatin A1, B3, D3 and 
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B2 were in a range of 0.32 to 0.51 mg/g FW (Table 4.2).  The chemical structures of the 

six types of ternatins are elucidated in Figure 4.3.  Two delphinidin derivatives and  

 

 
Figure 4.3  Chemical structures of Ternatin A1, B2, B3, C2, D2 and D3 

 

Table 4.2  Hydrophilic bioactive compounds in the hydrophilic extract of butterfly pea 

petals 

 

Peak No. Compounds Concentration (mg/g FW) 

1 Cyanidin-3-sophoroside 0.31 ± 0.02 

2 Delphinidin derivative 0.28 ± 0.01 

3 Ternatin A1 0.51 ± 0.03 

4 Ternatin B3 0.50 ± 0.03 

5 Ternatin D3 0.54 ± 0.01 

6 Ellagic acid 0.21 ± 0.01 

7 Rutin 0.89 ± 0.04 

8 Delphinidin derivative 2.13 ± 0.16 

9 Kaempferol 3-neohesperidoside 1.76 ± 0.05 

10 Quercetin 3-(2G-rhamnosylrutinoside) 0.37 ± 0.01 

11 Ternatin B2 0.32 ± 0.01 

12 Ternatin C2 1.81 ± 0.09 

13 Ternatin D2 1.45 ± 0.07 
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cyanidin-3-sophoroside were also identified and responsible for the blue color of the 

petals together with ternatins.  In general, kaempferol 3-neohesperidoside, quercetin 3-

(2G-rhamnosylrutinoside) and rutin were the major flavanol glycoside compounds in the 

petals, while ellagic acid was the only phenolic acid identified in the butterfly pea petals 

(Table 4.2). 

The yields of the lipophilic extracts, LBS and LBP, were 5.28 and 0.80 %, 

respectively.  Lipophilic phytosterols are chemically characterized as triterpenes and 

considered to be the structural components of plant cell membranes (Moreau, Whitaker, 

& Hicks, 2002).  Similar to the function of cholesterol in animal cells, free phytosterols 

serve to stabilize phospholipid bilayers in the plant cells (Moreau, Whitaker, & Hicks, 

2002).  Although several studies investigated phytosterols in Clitoria Ternatea species, 

most of them only focus on leaves, roots or petals (Kapoor & Purohit, 2013).  In this 

study, β-sitosterol (40.17 ± 3.73 mg/100g FW) in the butterfly pea seeds extract LBS was 

significantly higher than that of the petals extract LBP (6.77 ± 0.19 mg/100g FW) (Table 

4.3).  It was reported that the level in butterfly pea roots and shoots was between 6 and 9 

mg/100g (Kapoor & Purohit, 2013).   Also, the seeds extract LBS contained campesterol 

at a level of 8.07 ± 0.22 mg/100g FW which was several times higher than that of the 

petals extract LBP (1.24 ± 0.02 mg/100g FW) (Table 4.3) and some fruit or vegetable 

seed such as pepper seeds (4.23 - 5.41 mg/100g FW) and tomato seeds (1.08 - 6.56 

mg/100g FW) (Silva et al., 2013; Gupta et al., 2015).  However, the levels of stigmasterol 
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in butterfly pea seeds and petals were similar and 7.95 ± 0.63 and 6.70 ± 0.83 mg/100g 

FW, respectively (Table 4.3) and approximately five and eight times higher than in 

berryfruit (0.50 - 1.60 mg/100g FW) and pepper seeds (0.63 - 0.93 mg/100g FW) (Silva 

et al., 2013; Salvador et al., 2015).  Phytosterols were confirmed to possess 

hypocholesterolimic function and reduce the risks of benign prostatic hyperplasia, 

cardiovascular diseases, colon and breast cancer development, as well as immunological 

effects in macrophages (Hamedi et al., 2014).  

Table 4.3   Lipophilic bioactive compounds in the lipophilic extracts of butterfly pea 

seeds and petals 

 

*N.D. not detected 

**Concentrations in each row with different letters are statistically different at p< 0.05. 

 

As for the tocol contents, the butterfly pea seeds had abundant γ -tocopherol (5.44 

± 0.30 mg/100g FW) compared with the grape seeds (14.1 - 30.2 mg/kg ) and Jatropha 

 Compounds Seeds Petals 

Fatty  Acid 

(mg/g FW) 

Palmitic acid (C16:0) 3.61 ± 0.13b 2.13 ± 0.18a 

Stearic acid (C18:0) 2.85 ± 0.15b 1.99 ± 0.16a 

Petroselenic acid (C18:1n6c) 1.55 ± 0.10b 1.01 ± 0.04a 

Linoleic acid  (C18:2n6c) 8.73 ± 0.61b 4.72 ± 0.51a 

Arachidic  acid (C20:0) 0.46 ± 0.03b 0.36 ± 0.01a 

Behenic acid (C22:0) 0.41 ± 0.02b 0.30 ± 0.03a 

Phytanic acid N.D. 0.81 ± 0.06a 

Phytosterol 

(mg/100g FW) 

Campesterol 8.07 ± 0.22b 1.24 ± 0.02a 

Stigmasterol 7.95 ± 0.63a 6.70 ± 0.83a 

β-Sitosterol 40.17 ± 3.73b 6.77 ± 0.19a 

Sitostanol 5.10 ± 0.05b 1.20 ± 0.03a 

Tocols 

(mg/100g FW) 

α-Tocopherol 0.17 ± 0.06a 0.20 ± 0.01a 

γ-Tocopherol 5.44 ± 0.30b 0.24 ± 0.02a 
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curcas seeds (33.9 mg/kg) reported in the studies of Sabir et al (2012) and Corzo-

Valladares et al (2012), respectively.  However, -tocopherol in the butterfly pea petals 

was twenty times lower than that in the seeds (Table 4.3).  The levels of α-tocopherol in 

butterfly pea seeds and petals were similar and 0.17 ± 0.06 and 0.20 ± 0.06 mg/100g FW, 

respectively (Table 4.3).  These tocols have been evidenced for protecting cell membrane 

against reactive lipid radicals and prevention of atherosclerosis and carcinogenesis (Yang 

et al., 2013).  

For the fatty acids profile, both of the butterfly pea seeds and petals had palmitic 

acid (C16:0), stearic acid (C18:0), petroselenic acid (C18:1), linoleic acid (C18:2) and 

arachidic acid (C20:0) and behenic acid (C22:0) (Table 4.3).  Among them, linoleic acid 

was the most abundant fatty acid and had 8.73 ± 0.61 and 4.72 ± 0.51 mg/g FW in the 

butterfly pea seeds and petals, respectively.  It is well known that linoleic acid is an 

essential fatty acid and required for assisting normal biological activities in the brain and 

heart (Blanchard et al., 2013).  Besides, palmitic, stearic and petroselenic acids were all 

above 1.0 mg/g in the seeds and petals (Table 4.3).  Different from the results of a 

previous study (Mukherjee et al., 2008), arachidic and behenic acids were first time 

observed in the butterfly pea in this study (Table 4.3).  Furthermore, phytanic acid was 

found in the butterfly pea petals and might be derived from a microbial breakdown of 

chlorophyll to release phytol followed by further oxidation to phytanic acid (Jansen & 
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Wanders, 2006).  In the study of Jansen & Wanders (2006), phytanic acid was involved 

in several mechanisms for regulating, triglycerides/cholesterol status in skeletal muscles.   

4.3.2 Capabilities of hydrophilic and lipophilic butterfly pea seeds and petals 

extracts in inhibiting carcinoma cell (HEp-2) proliferation  

Different concentrations of the four extracts HBS, HBP, LBS and LBP in media were 

prepared and used to treat HEp-2 cells to carry out a dose dependent study for each of 

them.  HBS was the most effective extract against the survival rate of HEp-2 cells which 

rapidly decreased from 100.0 to 7.2% at the level of HBS ranging from 0 to 0.25 mg/mL 

(Figure 4.4).  However, the survival rates of HEp-2 in HBP treatment still remained 90.6 

- 100.0 % at the same concentration range (Figure 4.4).  As the concentration of HBP 

increased from 0.25 to 0.50 mg/mL, the survival rate of HEp-2 then rapidly reduced to 

17.2 % (Figure 4.4).  Both HBP and HBS could inhibit 95% of the HEp-2 cell 

proliferation after the concentration was increased to 1.0 mg/mL (Figure 4.4).  On the 

other hand, the inhibition effect was observed in LBS and LBP treatment when their 

concentrations had to be increased to 1.5 mg/mL.  There was no significant difference 

between the two treatments with the concentration lower than 6 mg/mL (Figure 4.4).  At 

a concentration of 9 mg/mL, LBS exhibited approximately 2.5 times higher capability 

than LBP in inhibiting HEp-2 cell growth.  Compared with the lipophilic extracts of 

seeds and petals, the hydrophilic extracts had much higher capability in inhibiting 

carcinoma proliferation (Figure 4.4). 
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Figure 4.4 The survival rates of Hep-2 cells treated by different concentrations of the 

hydrophilic (HBS and HBP) and lipophilic (LBS and LBP) extracts of butterfly pea seeds 

and petals 

Generally, Krebs Cycle is the primary metabolic pathway for providing ATP for 

normal cell growth with the help of mitochondria (Wen, Zhu, & Huang, 2013).  Different 

from normal cells, cancer cells inevitably rely on metabolic reprogramming and undergo 

glycolytic pathway to realize rapid energy generation and macromolecular synthesis 

because of mitochondria dysfunction (Suh et al., 2013).  The high glycolytic fluxes in 

cancer cells further induces apoptosis in neighborhood normal cells, blocks immune 

system and induces tissue invasion by tumors (Suh et al., 2013).  Thus, the inhibition of 

glycolysis is a biochemical basis for designing therapeutic strategies to preferentially 

inhibit cancer cells with minimal residual systemic toxicity.  Since the butterfly pea seeds 

contained abundant phenolics, they might act individually or synergistically to block the 

key enzyme in glycolytic metabolism in cancer cells and inhibit cancer cells proliferation.  

For example, the anti-cancer proliferation mechanism was based on the non-covalent 

interactions between cellular proteins and phenolic compounds (Aslan, Guler & Adem, 
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2015).  Phenolic compounds such as rutin, quercetin , kaempferol, catechin, p-coumaric, 

sinapic, ferulic, syringic, caffeic and gallic acid which were determined in butterfly pea 

seed have been proved to affect important control point enzyme (pyruvate kinase 

isoenzyme M2) or attack glucose transporters (GLUT) in glycolytic pathway and regulate 

cancer cell production (Aslan, Guler & Adem, 2015).  Thus, it may explain the reason 

that HBS exhibited the highest efficiency among the four types of extracts in inhibiting 

HEp-2 cell proliferation.  Furthermore, various anthocyanins such as ternatins and 

cyanidin glycoside could be the primary bioactive compounds in HBP for contributing to 

its anticancer capability.  This finding was in agreement with the results obtained in the 

studies of Wang and Stoner (2008) that anthocyanin extracted from black raspberries 

could counteract cancer cell motility through disruption of an essential mediator 

cyclooxygenase-2 (COX-2) in tumorigenesis. However, Dai et al. (2009) suggested that 

anthocyanin extract alone could less contribute to anticancer ability but may act 

additively or synergistically with other active components in inhibition of cancer cell 

growth which explain the possible reason that HBS had greater anti-cancer potential than 

HBP. 

 Tocopherols and phytosterols were the primary bioactive compounds in LBP and 

LBS.  As reported by Yu et al. (2009), the anticancer actions of γ-tocopherol involved in 

death receptor 5 (DR5) protein upregulation, which could further stimulate tumor 
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necrosis and restrict its proliferation.  Among the four determined phytosterols, β-

sitosterol has been evidenced as the most effective one in inhibiting the growth of cancer 

cells via activation of certain enzymes which in turn induce cellular apoptosis (Bradford 

& Awad, 2007).  Woyengo et al. (2009) suggested that β-sitosterol and campesterol could 

alleviate cancer development by reducing the production of carcinogens in biological 

metabolism.  The levels of β-sitosterol and campesterol in LBS was approximately seven 

and eight times higher than those in LBP, respectively.  Thus, it may be the reason why 

LBS had better performance than LBP in inhibiting HEp-2 cell growth in the 

concentrations ranging from 5 to 12 mg/mL. 

As discussed above, certain phenolic compounds, tocopherols and phytosterols 

could demonstrate inhibitory efficiency by targeting specific enzymes or interfering 

metabolic pathway of cancer cells without affecting other non-tumorigenic counterparts 

and cells.  Similar results were discovered that normal human epidermal keratinocytes 

and astrocytes were able to survive when exposed to flavonoids or green tea leaves rich 

in polyphenols, while they elicited the death of tumor cells (Hsu et al., 2003; Das et al., 

2010).  Therefore, the butterfly pea seed or petal extracts, especially the seeds hydrophilic 

extract, could possibly be an efficient supplement which has anticancer function without 

the adverse side effects as chemotherapeutic drugs and therapy. 
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4.4 Conclusion 

The concentration and profile of phenolics, tocopherols, phytosterols and fatty acids in 

butterfly pea seeds and petals were determined.  HEp-2 carcinoma cell line was used to 

evaluate the anticancer capability of butterfly pea seeds and petals extracts (HBP, HBS, 

LBP and LBS).  The results indicated HBS was the most efficient in inhibiting the 

viability of HEp-2 cells.  Both of HBS and HBP exhibited greater performance than LBS 

and LBP in inhibiting the cells proliferation.  Therefore, the hydrophilic and lipophilic 

butterfly pea seeds and petals extracts possess health promoting function and could be 

used as a functional food ingredient or potential cancer therapy supplement. 
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CHAPTER 5 THE CHANGE OF MICRONUTRIENTS IN SWEET POTATO AND 

THE EFFECT OF DIFFERENT EXTRACT FRACTION ON PC-12 CELL 

PROLIFERATION AFTER FERMENTATION WITH LACTOBACILLUS 

ACIDOPHILUS LA-K 

5.1 Introduction 

Sweet potato is the root of Ipomoea batatas (L.) Lam. (Convolvulaceae) originated from 

the Central America, an important industrial crop, and a good source of useful dietary 

fiber and vitamins (Kim et al., 2013).  It has been considered to be one of the most 

promising economic crops due to its versatility, high production yield and strong 

resistance for various environmental conditions (Wu et al., 2015).  As sweet potato can 

provide necessary nutrients in daily food supplies, it has been concerned by more and 

more people.  In order to obtain the maximum absorption of the bioactive compounds, 

sweet potato is usually boiled, steamed, baked or roasted before consumption.  However, 

the negative correlation between thermal processing and the impairment of the functional 

compounds of sweet potato has been widely reported (Tang, Cai & Xu, 2015).  Currently, 

fermentation becomes a popular processing method which provides the preservation and 

organoleptic properties for the food such as cheese, vinegar, wine and fermented soybean 

with desirable sensory, aromas and textures (Kwon, Nyakudya & Jeong, 2014).  Sweet 

potato has been fermented for the production of bioethanol; however, characterization 

and bioactivities of different fractions of sweet potato extracts have not been well 

documented (Masiero, Peretti, Trierweiler, & Trierweiler, 2014).   
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Generally, most bioactive compounds are in a bound form in the sweet potato 

flesh and they would be gradually metabolized in intestine which contains probiotic 

floras helping the releasing and biotransformation of those health benefit compounds via 

fermentation (Kubow et al., 2016).  However, a number of people with digestion 

problems such as small intestinal bowel infection or a colonic infection are not able to 

metabolize and absorb the nutrients in sweet potato (Gibson, Varney, Malakar, & Muir, 

2015).  Therefore, the pre-digestion is a desirable processing method which would 

improve bioavailability of nutrients and exert new bioactive compounds derived from the 

sweet potato substrates during fermentation (Duangjitcharoen et al., 2008).   

Lactobacillus is one of the normal inhabitants in the human gastrointestinal (GI) 

tract and the dominant probiotic floras in the colon (Ren et al., 2014).  It plays an 

important role in inducing host cells to generate antimicrobial peptides, improving 

gastrointestinal barrier function and competing with pathogens for epithelial adherence 

(Morrow, Gogineni, & Malesker, 2012).  Currently, Lactobacillus was mainly used in 

dairy products for health beneficial effects including the prevention of diarrhea, 

stimulation of immune system and anti-inflammation of intestinal disorders (Ren et al., 

2014).  In fact, Lactobacillus could also convert some carbohydrates to organic acids and 

exhibit cinnamoyl esterase and decarboxylase activities for releasing phenolic 

compounds by taking advantages of food matrix (Barthelmebs, Diviés, & Cavin, 2001).  

As an economic plant, sweet potato is an ideal substrate to provide necessary nutrients to 
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support the growth of Lactobacillus which, in turn, has the potential to release conjugated 

bioactive compounds and produce secondary metabolites with more beneficial nutrition 

values.  In order to evaluate the nutrition value of the fermented sweet potato, the change 

of phenolics, fatty acids, carotenoids and phytosterols in sweet potato after fermentation 

and the effect of different extract fractions on inhibiting pheochromocytoma derived 

cancer cell (PC-12) and normal monkey kidney cell (CV-1) proliferation were 

determined in this study.  Therefore, the fermented sweet potato by efficient pre-digesting 

with Lactobacillus would be an economic and promising functional food product. 

5.2 Materials and Methods 

5.2.1 Chemicals and materials 

HPLC grade acetonitrile, acetic acid and hexane were purchased from Fisher Chemicals 

(Fair Lawn, NJ, USA).  Acetone and ethyl acetate were purchased from Macron 

(Charlotte, NC, USA) and EM Science (Gibbstown, NJ, USA), respectively.  Standards 

of phenolic acids, fatty acids, phytosterols, carotenoids and cholesterol as well as the 

derivatization reagents trimethylsilyl imidazole (TMSIM) and BCl3-methanol were 

purchased from Sigma-Aldrich (St. Louis, MO, USA).  Raw Garnet sweet potato was 

obtained from Whole Food Market in Baton Rouge, LA, US. Frozen cultures of 

Lactobacillus acidophilus LA-K (Lb. acidophilus LA-K) (Chr. Hansen’s Laboratory, 

Milwaukee, WI) were stored at -35°C before use.  The pheochromocytoma derived 

cancer cell (PC-12) and normal monkey kidney cell (CV-1) cell lines were purchased 
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from ATCC® (Manassas, VA, USA).  Fetal bovine serum (FBS), dimethyl sulfoxide 

(DMSO), phosphate buffered saline (PBS), Cell Titer Blue and antibiotic (penicillin–

streptomycin) were ordered from Invitrogen (Grand Island, NY, US).  

5.2.2  Fermentation of sweet potato mash and microbiological analyses 

Five Garnet sweet potatoes were cleaned, peeled and cut into 1 cm cubes and ground by a 

kitchen blender with sterilized water at the ratio of 2:1 (wt/vol).  A series of 250 mL pre-

autoclaved flasks each containing 30g of the sweet potato mash were used for different 

treatments.  Three treatments including boiling, hydrolysis and fermentation were used in 

this study, while the raw sweet potato mash served as the control group.  For the boiling 

group, samples were boiled for 15 min with magnetic stirrer stirring during heating on a 

hot plate (PC-351 Corning, Corning, NY, USA).  For the hydrolysis group, 15 mL 

hydrochloric acid solution (pH 2) was mixed with sweet potato mash (30 g) in the flask 

and the mixture was incubated at 37 °C for 30 min.  Triplications of each treatment were 

carried out.  The fermentation of the sweet potato mash was described as follows: two 

milliliters of freshly thawed Lb. acidophilus LA-K culture was suspended in 20 mL of 

sterile phosphate buffer (10 mM, pH 7.0) to obtain a working solution of 10% (vol/vol).  

Three flasks each containing 30 g sweet potato mash were aseptically inoculated with Lb. 

acidophilus LA-K working solution at 10% (wt/vol) and incubated at 37 ℃ for 24 h.  The 

moisture content of each treatment was recorded for further standardizing the 

concentrations of the bioactive compounds.  The pH of the fermented sweet potato mash 
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was measured using a pH meter (Orion 3 star Benchtop; Thermo Orion, Beverly, MA, 

USA).  The colonies (CFU/mL) of Lb. acidophilus LA-K were counted before and after 

incubation by the standard plate method with Lactobacilli MRS broth after a 24 h 

inoculation at 37˚C.  

5.2.3 Extraction and determination of hydrophilic phenolic compounds and 

lipophilic fatty acids, phytosterols and carotenoids in sweet potato 

Twenty grams of the sweet potato mash prepared from different treatments (boiling, 

hydrolysis and fermentation) and control (raw mash) was extracted with 20 mL of 

methanol three times at 60°C for 20 min.  The methanol layer was combined after being 

centrifuged and transferred to a clean tube which was then subjected to solvent 

evaporation by a vacuum centrifuge evaporator (Labconco, Kansas City, MO, USA).  

The obtained extracts were used for the determination of hydrophilic phenolic 

compounds in control (HR), boiled (HB), hydrolyzed (HH) and fermented sweet potato 

mash (HF), respectively.  While the lipophilic fraction of control (LR), boiled (LB), 

hydrolyzed (LH) and fermented sweet potato mash (LF) used for fatty acid, carotenoids 

and phytosterol determination was extracted with a mixture of hexane and ethyl acetate 

(50:50; v:v) and followed the same procedure as hydrophilic extraction.  A working 

solution (10 mg/mL) of each hydrophilic and lipophilic extract was prepared by being re-

dissolved with methanol and hexane, respectively.   
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For the cellular study, the hydrophilic and lipophilic extracts from raw and 

fermented sweet potato mash were extracted with the same procedure as described above 

but with a larger amount.  While, in order to avoid the influence of carbohydrates on cell 

growth, the sweet potato mash samples (20 g) were purified by being extracted with 

acetone (20 mL) three times and the supernatant was collected and combined after 

centrifugation.  Then, 50 mL of ethyl acetate was added to the solution and the upper 

layer was collected after completely mixed with a vortex.  The ethyl acetate extract of 

raw (PHR) and fermented sweet potato mash (PHF) was further dried and weighed.  All 

types of the extracts were stored in a -80 ºC before use.   

Phenolics Phenolic profile of Garnet sweet potato was determined by a HPLC (2690, 

Waters, Torrance, USA) and a diode array detector.  Separations were carried out using a 

reversed phase column (C18, id 250×4.60 mm, 5 µm, Phenomenex, Torrance, USA) 

based on the method of Du et al. (2014).  The hydrophilic extract (2 mL) was filtered by 

0.45 µm microporous film before injection.  The concentration of each compound was 

calculated based on their standards, while the caffeic acid derivative was obtained by 

using caffeic acid standard. 

Fatty Acid The lipophilic extract (2 mL) was mixed with 200 µg of internal standard 

(C17:0) and 2 mL of BCl3-methanol.  After incubation at 60°C for 30 min, 1 mL of 

hexane was added to the reaction solution and vortexed.  The upper hexane layer was 

collected and transferred to a clean test tube with 0.1 g anhydrous NaSO4 at the bottom to 
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remove the potential moisture and transferred to a GC vial.  GC (hp 5890, Hewlett-

Packard, Wilmington, DE, USA) equipped with FID detector and Supelco SP2380 (30 m 

× 0.25 mm) column (Bellefonte, PA, USA) was employed to determine the fatty acid 

profile.  The GC program was the same as described in the study of Yue et al. (2008).    

Phytosterol The determination of phytosterols was based on the study of Xu and Godber 

(1999) with slight modification.  Two milliliter of the diluted lipophilic extract was 

transferred to a clean test tube and dried again.  Then, 200 µL of TMS and 50 µL of 

acetonitrile were mixed with the extract at 65 ˚C for 30 min for derivatization.  After 

extraction with 200 µL of hexane, 2 µL of the solution was injected.  A Varian CP-3800 

GC (Valnut Creek, CA, USA) interfaced with a Saturn 2200 mass spectrometer and a 

DB-5 column (L60 m × i.d. 0.25 mm and df 0.25 µm thin coating film) (Supelco, 

Bellefonate, PA, USA) was used for analysis.  The oven temperature increased from 

200˚C to 280 ˚C at the rate of 10 ˚C /min and was held at the final temperature for 62 min.  

Helium was the carrier gas at a constant flow rate of 1.5 mL/min with a split mode (1: 50).  

The injection port temperature was set at 280˚C.  

5.2.4 The effect of raw and fermented sweet potato extracts on pheochromocytoma 

derived cancer cell (PC-12) and normal monkey kidney cell (CV-1) proliferation  

The PC-12 cell line derived from a pheochromocytoma of the rat adrenal medulla and 

normal monkey kidney cell CV-1 cell line were used for the antiproliferative study.  The 

cells were maintained in a CO2 incubator with 5% CO2 and 95% humidity and 
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supplemented with Dulbecco's modified Eagle's medium (DMEM) and 10% fetal bovine 

serum (FBS) and 1 % antibiotic (penicillin–streptomycin).  The PC-12 cells or CV-1 

were plated in a 96-well plate at a density of 3.0 × 10
3
 cells/well after incubation for 48 h.  

The dried extracts of raw sweet potato (HR, LR, and PHR) and fermented sweet potato 

(HF, LF, and PHF) were dissolved with 0.2 % DMSO in PBS culture media as the test 

sample.  Then, the PC-12 cell or CV-1 was exposed to a series of concentrations of sweet 

potato mash extracts (0.5, 0.2, 0.1, 0.05, and 0.02 mg/mL for PHR, PHF, LR and LF; 

100.0, 50.0, 20.0, 10.0 and 5.0 mg/mL for HR and HF) and then incubated for 24 h at 

37 °C.  The cells mixed with only medium and DMSO were evaluated as blank.  After 

incubation, the media was discarded and the cells were stained with 100 µL fresh media 

containing 20% Cell Titer Blue.  The fluorescence intensity indicating the cell viability 

was obtained by a FluoStar Optima micro-plate reader (BMG, Germany) at 

excitation/emission wavelengths of 570/615 nm and reflected the number of survived 

cells.  The percentage of survived cells was inversely proportional to the cell proliferation 

inhibition ability of different sweet potato extracts. 

5.5 Data analysis 

The determination of bioactive components of phenolics, fatty acids, phytosterols and 

carotenoids in the extracts was in triplicate and expressed as means ± standard deviation 

by using Microsoft Excel (Redmond, WA).  The significant differences among treatments 

were conducted by one-way ANOVA at P< 0.05 (SAS, 9.1.3, Cary, NY, US).  The 
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results from cellular study were obtained from five repetitions for each treatment and 

analyzed by GraphPad Prism (Version 6.0, GraphPad Software Inc., USA).  Results were 

considered statistically significant at p < 0.05 between treatments or concentrations by 

two-way ANOVA. 

5.3 Results and Discussions 

5.3.1 Fermentation characteristics of the sweet potato mash 

As shown in Table 5.1, the pH dropped from 6.20 to 3.45 in the sweet potato mash after 

fermentation.  This was due to the degradation of granular starch and the conversion of 

glucose via enzymatic pathway of Lb. acidophilus LA-K (Masiero, Peretti, Trierweiler & 

Trierweiler, 2014).  Then, the bacteria would take advantage of glucose to synthesize 

lactic or acetic acids and release CO2 which were responsible for lowering the pH of the 

sweet potato mash (Cui, Liu, Li, & Song, 2011).  On the other hand, the sweet potato had 

protein and carbohydrates which are important elements for providing sufficient source 

of nitrogen and carbon for the bacteria.  As the results showed, the viable cell counts of 

Lb. acidophilus LA-K in the fermented sweet potato increased from 3.80 ± 0.01 × 10
6 

to 

7.48 ± 0.67 × 10
8
 CFU/mL after a 24 h incubation at 37˚C.  Thus, it indicated that the 

sweet potato mash is a great substrate for the growth and biotransformation performance 

of Lb. acidophilus LA-K. 

 



 102 

 

Table 5.1 Change of pH and visible cell of Lactobacillus acidophilus LA-K in Garnet 

sweet potato after fermentation 

 

 

 

 

               Mean values with the different letters are significantly different (p<0.05) 

5.3.2 The changes of hydrophilic phenolic acids in sweet potato after fermentation 

Generally, the phenolic acids found in sweet potato are mainly chlorogenic acid and its 

related derivatives.  Raw Garnet sweet potato contained five phenolic acids including 

chlorogenic, caffeic, 4,5-dicaffeoylquinic, 3,5-dicaffeoylquinic and 3,4-dicaffeoylquinic 

acids.  Their chromatograms are shown in Figure 5.1 and the concentrations listed in 

Table 5.2 showed that 3,4-dicaffeoylquinic acid (29.12 ± 1.68 mg/100g DW) was the 

dominant phenolic acid, while the other phenolic acid was in a range of 2.39 mg/100g 

DW for caffeic acid to 5.00 mg/100g DW for 4,5-dicaffeoylquinic acid.  

With the involvement of fiber, starch, carbohydrate or protein, most 

phytochemicals in sweet potato are trapped in the cores of starch and protein, or in 

bounded and conjugated forms with low bioavailability (Khoddami, Wilkes, & Roberts, 

2013).  In order to release and absorb those health-benefiting compounds, further 

degradation or digestion are needed which would cause extra burdens for gastrointestinal 

system in human body, especially for those who suffer from small bowel infection or 

colonic infection (Gibson, Varney, Malakar, & Muir, 2015).  Generally, boiling is 

Compounds  0h 24h 

pH Value 6.20 ± 0.15a 3.45 ± 0.02b 

Viable cell (cfu/mL) 3.80 ± 0.01 × 10
6
 a 7.48 ± 0.67 × 10

8
 b 
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believed to disrupt the amylose-amylopectin structure of the starch complex, which could 

release some trapped phytochemicals (Bahado-Singh et al., 2011).  As shown in Table 

5.2, a new caffeic acid derivative appeared and the other phenolic acids were 

significantly higher than those in raw sweet potato except 3,4-dicaffeoylquinic acid.  The 

increase of the phenolic content in boiled samples could be attributed to the release of 

bound phenolics and inactivation of polyphenoloxidase by the heat treatment (Truong et 

al., 2007).   

 

Figure 5.1 Typical chromatograms of hydrolyzed (a) and fermented (b) sweet potato 

mash  1) chlorogenic acid; 2) caffeic acid; 3) caffeic acid derivative; 4) p-coumaric acid; 

5) ferulic acid;  6) 4,5-dicaffeoylquinic acid; 7) 3,5-dicaffeoylquinic acid; 8) 3,4-

dicaffeoylquinic acid; 9) cinnamic acid 
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 Table 5.2 Phenolic profiles of raw, boiled, hydrolyzed and fermented sweet potato (n=3) 

 *N.D. not detected. 

 *Values with different lower case letters in a column and capital letters in a row are 

significantly different at p<0.05. 

 

Compared with raw sweet potato, three more phenolic compounds caffeic derivative, p-

coumaric and cinnamic acid were found after acid hydrolysis.  The concentration of 

chlorogenic acid (16.85 ± 0.04 mg/100g DW) in hydrolyzed samples was approximately 

twice and four times higher than that in raw and boiled sample, respectively.  

Additionally, hydrolysis helped release twice and four times of 4,5-dicaffeoylquinic and 

3,5-dicaffeoylquinic acids than raw sweet potato and significantly higher than boiling 

treatment.  The observed increased phenolic acids could be due to the acid solution that 

assisted the release of phenolic molecules which have ester and ether linked with cell 

wall polymers and binding to fibers (Xu, 2012).  

 
Phenolics 

(mg/100g DW) 

Raw  

Sweet Potato 

Boiled   

Sweet Potato 

Hydrolyzed 

Sweet Potato 

Fermented 

Sweet Potato 

1 Chlorogenic acid 4.26 ± 0.05 bD  7.05 ± 0.26 cB 16.85 ± 0.04 bA 5.74 ± 1.25 eC 

2 Caffeic acid 2.39 ± 0.02 dC 3.16 ± 0.55 eB 3.77 ± 0.66 dB 10.22 ± 0.34 dA 

3 Caffeic acid 

derivative 
N.D. 0.98 ± 0.02 fC 1.78 ± 0.25 eB 4.77 ± 1.21 eA 

4 p-Coumaric acid N.D. N.D. 3.52 ± 0.10dB 26.42 ± 2.01 bA 

5 Ferulic acid N.D. N.D. N.D. 19.10 ± 1.87 c 

6 4,5-

Dicaffeoylquinic 

acid 

5.00 ± 0.96 bC 8.29 ± 0.63 bB 10.95 ± 1.43 cA 3.17  ± 0.02 fD 

7 3,5-

Dicaffeoylquinic 

acid 

3.14 ± 0.41 cD 6.08 ± 0.28  dC 11.36 ± 1.16 cB 23.34 ± 0.75 bA 

8 3,4-

Dicaffeoylquinic 

acid 

29.12 ± 1.68 aB  21.13 ± 0.21 aD 23.34 ± 0.40 aC 31.90 ± 1.77 aA 

9 Cinnamic acid 

Total 

   N.D. 

43.91 

   N.D. 

46.69 

 1.23 ± 0.18 fB 

72.80 

 2.70 ± 0.51 gA 

127.36 
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Though boiling and hydrolysis were effective in releasing phenolic compounds 

from sweet potato mash, both types of processing methods easily cause degradation of 

other potential phytochemicals and would be the major limitations applied in food system.  

However, the bio-processing method such as fermentation, is able to improve food 

inherent functional value and bioavailability in human body with the bioconversion of 

microorganisms.  As a common probiotic in intestine, Lactobacillus acidophilus has been 

evidenced to help balancing gut microbiota, inhibiting pathogenic infection, lowering 

blood cholesterol and reducing the risks of colon cancer (Huang et al., 2014).  In this 

study, after fermentation with Lb. acidophilus LA-K, the concentrations of most phenolic 

acids in Garnet sweet potato significantly increased (Table 5.2).  For example, the caffeic 

acid (10.22 ± 0.34 g/100g DW) in the fermented sample was about four times of that in 

raw sample (2.39 ± 0.02 g/100g DW) and three times higher than boiled (3.16 ± 0.55 

g/100g DW) or hydrolyzed sample (3.77 ± 0.66 g/100g DW) (Table 5.2).  However, 

compared with boiled (7.05 ± 0.20 g/100g DW) and hydrolyzed samples (16.85 ± 0.04 

g/100g DW), chlorogenic acid decreased to 5.74 ± 1.25 g/100g DW in fermented sample 

which corresponded to the accumulation of caffeic acid in approximately equivalent 

concentration.  In order to prove the relationship of chlorogenic acid and caffeic acid, the 

chlorogenic acid standard was incubated with Lb. acidophilus LA-K at MSR media for 

24 h and the result demonstrated that Lb. acidophilus LA-K was responsible for the 

biotransformation of chlorogenic acid to caffeic acid (Figure 5.2).  Similar result has been 

reported in the study of Bel-Rhlid et al., (2013), in which, L. johnsonii NCC 533 could 

convert chlorogenic acid to caffeic acid in green coffee extract.  The biotransformation 

might be due to Lb. species that contain chlorogenate esterase and hydroxycinnamate 
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decarboxylase which exhibited high affinity and catalytic efficiency toward aromatic 

compounds such as chlorogenic acids (Bel-Rhlid et al., 2013).  Generally, ferulic and p-

coumaric acid are hydroxycinnamic acids and most of them are in bound form as ester-

linked in the cell wall polysaccharides, organic acids, lipids or protein of plants 

(Szwajgier, 2010).  Among the four treatments, hydrolyzed and fermented samples 

contained p-coumaric acid at levels of 3.52 ± 0.10 and 26.42 ± 2.01 mg/100g DW, 

respectively, while the cinnamic acid (mg/100g DW) was 1.23 ± 0.18 for hydrolyzed and 

2.70 ± 0.51 for fermented samples, respectively (Table 5.2).  However, they were not 

detected in raw and boiled samples (Table 5.2).  Ferulic acid was only found in the 

fermented sample with a concentration of 19.10 ± 1.87 mg/100g DW (Table 5.2).  It has 

been reported that Lactobacillus species secrets active extracellular cellulolytic enzyme 

such as feruloyl esterases, thus, it could de-esterify dietary fiber and release free ferulic, 

p-coumaric and cinnamic acid from plant cell wall (Esteban-Torres et al., 2013).  Also, 

the presence of ferulic acid and increase of p-coumaric acid in fermented sweet potato 

mash could result from their ferulate form via biotransformation of Lb. acidophilus LA-K 

during fermentation (Esteban-Torres et al., 2013).  In the study of Snook et al. (1994), 

hexadecyl, octadecyl, and eicosyl p-coumarates as well as hexadecyl (Z)- and (E)-

ferulates were determined in sweet potato root latex, and they were potential substrates 

for Lb. acidophilus LA-K to generate free ferulic acid or p-coumaric acid from methyl 

ferulate or methyl p-coumarate (Szwajgier, 2010).  Numerous clinic studies have 

demonstrated free caffeic acid could be more easily absorbed in the stomach and small 

intestine than chlorogenic acid (Olthof et al., 2001).  Also, ferulic acid and p-coumaric 

could easily get access to blood plasma (Olthof et al., 2001).  Therefore, the releasing of 
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higher level of phenolic compounds, especially caffeic, ferulic and p-coumaric acids 

would enhance bioactive performance of sweet potato after fermentation.  

 

Figure 5.2 The chromatograms of chlorogenic acid standard fermented Lb. acidophilus 

LA-K at 0h (a) and 24h (b)  

5.3.3 The changes of lipophilic fatty acids, phytosterols and carotenoids in sweet 

potato after fermentation 

The fatty acid composition of the sweet potato with different treatments was investigated 

(Table 5.3).  In raw sweet potato, the most abundant fatty acid was linoleic acid (C18:2n-

6) (85.67± 5.56 mg/100g DW), followed by palmitic acid (C16:0), myristic acid (C14:0), 

linolenic acid (C18:3n-3) and stearic acid (C18:0) ranging from 47.18 ± 3.24 to 17.96 ± 

0.61 mg/100g DW.   
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Table 5.3   Fatty acids, phytosterols and carotenoids in raw, boiled, hydrolyzed and 

fermented sweet potato (n=3) 

 

*Values with different lower case letters in a column and capital letters in a row are 

significantly different at p<0.05. 

However, the level of each fatty acid significantly decreased in boiled sweet potato, 

especially linoleic and linolenic acid with a high degree of unsaturation.  Similar results 

were reported in the study of Longo et al. (2012) that heat treatment (60-100°C) resulted 

in degradation of unsaturated fatty acids in tomatoes which was due to oxidation 

catalyzed by heat.  In addition to free forms, the fatty acids also bind with phytosterols, 

glycerols, phospholipids and sugar-containing glycolipids in plants as important 

membrane constituents in the chloroplasts and mitochondria (Baxter, Harborne, & Moss, 

1998).  In this study, the hydrolyzed sweet potato had higher levels of palmitic, linoleic 

and linolenic acids and a slight increasing amount of the stigmasterol and β-sitosterol 

(mg/100g DW) Compounds  Raw  

Sweet Potato 

Boiled   

Sweet Potato 

Hydrolyzed 

Sweet Potato 

Fermented 

Sweet Potato 

 

 

 

 

 

 

 

 

Fatty  Acid 

    

Myristic acid  

(C14:0) 

44.64 ± 3.67bB 33.62 ± 2.55aC 22.24 ± 2.26cD 80.61 ± 5.96cA 

Palmitic acid      

(C16:0) 

47.18 ± 3.24bC 16.67 ± 0.62bD 54.78 ± 3.17bB 109.29 ± 3.74bA 

Stearic acid 

(C18:0) 

17.96 ± 0.61dB 17.27 ± 0.24bB 12.50 ± 1.17dC 42.86 ± 0.87eA 

Linoleic acid  

(C18:2n-6) 

85.67± 5.56aC 30.98 ± 2.94aD  107.31 ± 6.34aB 171.07 ± 12.77aA 

Linolenic acid 

(C18:3n-3) 

22.08 ± 2.66cC 3.45 ± 0.49cD 24.10 ± 1.46cC 66.05 ± 2.24dA 

 Total 217.53 101.99 220.93 469.88 

 

 

Phytosterol 

 

Campesterol 

Stigmasterol 

β-Sitosterol 

Total 

3.38 ± 0.19bB 

0.74 ± 0.04cB 

9.94 ± 0.58aC  

14.06 

2.98 ± 0.22bB 

0.70 ± 0.03cB 

8.27 ± 0.59aD 

11.95 

3.07 ± 0.12bB 

0.85 ± 0.63cA 

10.86 ± 0.02aB 

14.78 

4.02 ± 0.15bA 

0.86 ± 0.03cA 

12.20 ± 0.85aA 

           17.08 

 Lycopene 17.60 ± 0.39cB 2.49 ± 0.17cD 20.40 ± 2.14cA 12.72 ± 0.72cC 

Carotenoids Lutein 32.51 ± 2.55bA 8.58 ± 1.66bC 34.66 ± 3.17bA 24.58 ± 3.17bB 

 β -carotene 438.64 ± 39.86aA 188.09 ± 3.97aC 445.85 ± 13.25aA 318.82 ± 13.50aB 

                                 Total 488.75 199.16 500.91 356.12 
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compared with the raw sweet potato (Table 5.3).  Therefore, the increment might be 

obtained from release of free fatty acids trapped in the starch granules or the breakdown 

of bindings from phytosterol esters by acid hydrolysis.  After fermented with Lb. 

acidophilus LA-K, the linolenic acid (171.07 ± 12.77 mg/100g DW) was approximately 

three times higher and the other determined fatty acids (ranged from 42.86 ± 0.87 to 

109.29 ± 3.74 mg/100g DW) were approximately twice higher than each of them in raw 

sweet potato.  The increase of the fatty acids might result from enzymatic action based 

de-esterification of bound fatty acids and the contribution of Lb. acidophilus LA-K which 

also produce palmitic, myristic and stearic acid during growth (Johnsson et al., 1995).  

Since the fatty acids, especially unsaturated ones help support brain cells growth, 

neurological development and cognitive function, the accumulation of the fatty acid 

would enhance the nutritional value of the fermented sweet potato (Panickar & Bhathena, 

2010).  Also, raw, boiled and hydrolyzed sweet potato had little difference in campesterol, 

stigmasterol and β-sitosterol contents, while the three phytosterols exhibited increasing 

levels after fermentation (Table 5.3).  Thus, they would help improve the nutrition value 

of fermented sweet potato as the phytosterols were recommended for consumption to 

inhibit intestinal cholesterol absorptions and to control cholesterol concentrations in 

plasma due to the similar structure of cholesterol but with different side chains (Ishida, 

2014).  Among the three determined carotenoids, β-carotene was the dominant (438.64 ± 

39.86 mg/100g DW) which was followed by lutein (32.51 ± 2.55 mg/100g DW) and 
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lycopene (17.60 ± 0.39 mg/100g DW) in raw sweet potato, while each of the carotenoids 

slightly increase in the hydrolyzed samples.  However, different degree of reduction of 

carotenoids profile was observed in boiling and fermentation treatments which were due 

to the long time heat or light exposure (Table 5.3).   

On the other hand, the Lactobacillus acidophilus is a probiotic bacteria species 

which could help reducing overgrowth of pathogens, stimulating an immune response, 

improving the blood lipid metabolism or potentially killing cancer cells in human 

gastrointestinal tract (Sanders & Klaenhammer, 2001).  Therefore, the fermented sweet 

potato would be considered an ideal food system to enhance the bioavailability of the 

bioactive compounds of sweet potato, but also deliver Lactobacillus acidophilus for its 

probiotic performance.  As a result, the hydrophilic and lipophilic raw and fermented 

sweet potato extracts were selected and compared in the following cellular study. 

5.3.4 The effect of raw and fermented sweet potato extracts on pheochromocytoma 

derived cell (PC-12) and normal monkey kidney cell (CV-1) proliferation 

The anticancer potentials of hydrophilic, purified hydrophilic and lipophilic extracts of 

raw sweet potato versus fermented sweet potato were evaluated by the inhibition 

efficiency on cancer cell PC-12 growth.  Figure 5.3a demonstrated that purified 

hydrophilic extracts of raw (PHR) and fermented (PHF) sweet potato caused dose-

dependent inhibition of PC-12 cell proliferation after 24 h incubation.  As the extract 

concentration increased to 0.2 mg/mL, the viable cancer cells dropped to 9.5% in PHF, 
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while there was 63.2% remained in PHR (Figure 5.3a).  The highest inhibitory rate was 

achieved at a concentration of 0.5 mg/mL, at which level, only 30.1% and 2.1 % of the 

cells survived in purified hydrophilic extracts of raw (PHR) and fermented (PHF) sweet 

potato, respectively (Figure 5.3a).  Thus, the greater performance of PHF was due to the 

higher levels and abundant free-form phenolic compounds than those of PHR.  For 

example, there were four more phenolics including caffeic acid derivative, p-coumaric, 

ferulic and cinnamic acids in fermented sweet potato than raw sweet potato (Table 5.2).  

Also, compared with raw sweet potato, the concentration of caffeic acid or 3,5-

dicaffeoylquinic acid in fermented sweet potato was approximately four and seven times 

higher (Table 5.2).  Similar result was found in the study of Rocha et al. (2012), who 

reported that caffeic acid, 3,4-, 3,5- and 4,5- dicaffeoylquinic acid as well as ferulic and 

p-coumaric acid could inhibit colon cancer cell lines including RKO, HT-29 and Caco-2.   

There was no significant difference between lipophilic extract of raw (LR) and 

fermented (LF) sweet potato in inhibiting PC-12 cell growth below 0.1 mg/mL (Figure 

5.3b).  As the extract concentration increased to 0.2 mg/mL, the inhibition efficiency of 

LF was significantly higher than LR (Figure 5.3b).  However, with the same 

concentration of 0.5 mg/mL, LF and LR contained 44.6 and 53.4 % of viable cancer cells 

which was much higher than that of PHF (2.1%) and PHR (30.1%) (Figure 5.3a & 5.3b).   
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Figure 5.3 The inhibition of PC-12 cell proliferation by (a) purified hydrophilic raw 

(PHR) and fermented sweet potato (PHF); (b) lipophilic extracts of raw (LR) and 

fermented sweet potato (LF); and the morphology of normal PC-12 cell (c) and apoptotic 

PC-12 cell (d) 

As reported in the study of Upadhyay et al. (2007), carotenoids could deregulate the 

cancer cell proliferation rate by interfering different phases of the cell cycle, therefore, it 

was possible that the abundant carotenoids (488.75 mg/100g DW for LR and 356.12 

mg/100g DW for LF) in the lipophilic extracts that mainly contributed to the capability in 

inhibiting the cancer cell proliferation.  Although phytosterols also play an important role 

in suppressing the growth of the cancer cell, its total content was only 14.06 and 17.08 

mg/100g DW in LR and LF, respectively, which may have limited its anti-cancer 

efficiency (Table 5.3).  In addition, the fatty acids concentrations rose dramatically in 
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fermented sweet potato, however, they were not the primary factors that were responsible 

for the anticancer performance of the lipophilic extracts.  Thus, the LR and LF exhibited 

relatively weaker anti-cancer potential than PHR and PHF.     

The interaction of lipophilic and hydrophilic bioactive compounds with the cancer 

cell is based on different accessibility and inhibition pathway.  Generally, lipophilic 

compounds could easily pass across the lipid bilayers of biomembranes by simple 

diffusion or special membrane proteins for transferring such no-polar solutes (Alberts et 

al., 2002).  Distinctive from that of lipophilic substances, most hydrophilic compounds 

have difficulties in penetrating the cell membrane.  However, at physiologic pH, the 

multiple hydroxyl groups in small molecule phenolics could interact with the polar head 

groups of phospholipids at the membrane surface via the formation of hydrogen bonds 

(Manach et al., 2004).  It would then increase pH and the penetration of the phenolics 

would be improved by deprotonation of the hydroxyl groups and variations in membrane 

structure and fluidity (Castelli et al., 1999).  Compared with the control cancer cell shown 

in Figure 5.3c, the speeded up apoptotic progress of cancer cells was induced by 

lipophilic or purified hydrophilic sweet potato extracts which resulted in the presence of 

cell shrinkage, apoptotic bodies, and margination of the nucleus indicated by arrows 

(Figure 5.3d).  However, the anti-cancer potential of the hydrophilic phytochemicals 

would be affected since hydrophilic extracts of sweet potato contained a large amount of 
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carbohydrates but much fewer equivalents of phenolic compounds as purified hydrophilic 

extracts.  Thus, it would have side influence on cancer cell growth.  

 As shown in Figure 5.4b, both HR and HF helped to remain the growth of the cancer 

cell at a relatively low concentration (<1 mg/mL).  Similar result was demonstrated in the 

study of Masur et al. (2011) that with progressive tumorigenesis, the promotion of cell 

proliferation, progression of cell cycle, anti-apoptotic signaling and angiogenesis in 

tumor cell lines from several organs were observed at a diabetogenic glucose 

concentration (11 mM) compared to physiological one (5.5 mM).  At the same 

concentration of 0.5 mg/mL with lipophilic (LR and LF) and purified hydrophilic extracts 

(PHR and PHF), HR and HF exhibited much weaker inhibitory efficiency (Figure 5.4a).  

However, the viability of the cancer cell rapidly reduced to 21.11 % in HF and 35.42 % 

in HR as their concentration increased to 50 mg/mL and finally exhibited 100% 

inhibitory efficiency in both HR and HF at the concentrations as high as 100 mg/mL 

(Figure 5.4a).  The significant reduction of the survival rate at high concentrations could 

be explained by osmotic pressure of the high carbohydrate concentration which caused 

the aggregation and morphological variation of the cells as marked with arrow in Figure 

5.4b.   



 115 

 

 

Figure 5.4 The inhibition of PC-12 cell proliferation by hydrophilic extracts of fresh (HR) 

and fermented sweet potato (HF) (a) and the morphology of dead PC-12 cell (b) 

On the other hand, the priority of the applying plant-derived bioactive extracts as 

alternative cancer remedies is to effectively reduce the incidence of cancers but with low 

toxicities and low side effects compared with other cancer treatments such as 

chemotherapeutic agents or radiation.  In this study, the monkey kidney cell lines (CV-1) 

were used for assessing the influence of different sweet potato extracts on the growth of 

normal cells.  Figure 5.5 elucidated that little inhibition effect was observed in CV-1 cells 

treated with the same concentrations of the extract as in PC-12 cell lines.  For example, 

relatively low concentration (0.02 mg/mL) of PHR and PHF slightly assisted the CV-1 

growth.  Even at the maximum concentration of 0.5 mg/mL, only 22.37-24.74% or 16.75-

19.75% of CV-1 cells were inhibited in purified hydrophilic extracts and lipophilic 

extracts, respectively (Figure 5.5).   
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Figure 5.5 The effect of PHR, PHF, LR and LF on CV-1 cell proliferation  

Bars with different letters are significantly different (p < 0.05) 

The high inhibitory efficiency of the plant derived extracts on cancer cell but 

weak influence on normal cells could be explained by their different energy metabolisms.  

Generally, normal cells with competent mitochondria undergo Krebs Cycle metabolic 

pathway and generate the majority of ATP for cell growth (Wen, Zhu, & Huang, 2013).  

However, most cancer cells have dysfunction in mitochondrial, and rely more on the 

glycolytic pathway in the cytosol to generate the metabolic intermediates and ATP (Wen, 

Zhu, & Huang, 2013).  Thus, the key enzymes in glycolytic pathway have been 

considered as potential therapeutic targets for inhibition of cancer cell proliferation.  Due 

to the non-covalent interactions with proteins, phenolic compounds have been reported as 

the inhibitors of key enzymes in glycolytic pathway, such as glucosidases, xanthine 

oxidase and PKM2 activities which further perturb proliferation of the cancer cell (Aslan, 

Guler, & Adem, 2015).  As for the lipophilic phytosterols and carotenoids, they could 
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interrupt balance between cancer cell proliferation and apoptosis by exerting interference 

with protein phosphatase 2A (PP2A) in sphingomyelin cycle and block the cell cycle at 

G0/G1 phase in prostate cancer, hepatocyte, and breast cancer cell lines (Awad & Fink, 

2000; van Breemen & Pajkovic, 2008).  Therefore, phytochemicals could be used as 

either mono-treatments or in association with classical chemotherapeutic drugs, 

increasing the therapeutic efficacy on cancer cells and lowering the toxic side effects on 

normal cells. 

5.4 Conclusion 

In summary, this study demonstrated that fermentation of Garnet sweet potato with 

probiotic Lb. acidophilus LA-K could significantly increase the content of most 

hydrophilic phenolic acids, and lipophilic fatty acids or phytosterols via enzymatic action 

based bio-releasing or bioconversion of the microorganisms.  However, it slightly 

reduced the carotenoids level.  Also, the fermented sweet potato extracts with a higher 

level and abundant phytochemicals exhibited higher efficiency than raw extracts in 

inhibiting the pheochromocytoma derived cancer cell (PC-12) proliferation.  The purified 

hydrophilic extracts of raw or fermented extracts had greater anticancer potential than 

their corresponding lipophilic extracts.  However, there were minimal effects on the 

normal monkey kidney cell (CV-1) growth because those phytochemicals targeted on 

deactivating the key enzymes of glycolytic pathway in cancer cells energy metabolism 
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but has less influence on the Krebs Cycle pathway for normal cells.  Therefore, 

fermentation with Lb. acidophilus LA-K is a valuable biotechnological approach for 

sweet potato nutritional value enrichment, and bioavailability improvement, and the 

fermented extracts could be further applied as promising therapeutic ingredients for 

cancer treatment. 
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CHAPTER 6 SUMMARY AND CONCLUSIONS 

Chapter 2 reported the levels and profiles of hydrophilic and lipophilic antioxidant 

phytochemicals in sweet sorghum millets.  The dominant hydrophilic and lipophilic 

antioxidants were apigeninidin and γ-tocopherol, respectively.  The hydrophilic 

antioxidants showed higher antioxidant activity than lipophilic antioxidants in both the 

DPPH assay and the cholesterol-linoleic acid oxidation model.  Therefore, the health 

benefits of sweet sorghum may be mainly attributed by its hydrophilic antioxidant 

phytochemicals.  Thus, sweet sorghum (Dura) could be a valuable biomaterial for health 

promoting applications. 

Chapter 3 investigated the phenolic profiles of Thai holy and sweet basil seeds 

and leaves.  This is the first study to investigate the anti-lipid-oxidation capabilities of 

Thai holy and sweet basil seeds and leaves by using a cholesterol emulsion model.  In 

this study, rosmarinic, caftaric, chioric, p-hydroxybenzoic and protoatechuic acid were 

detected in both THBL and TSBL. Caffeic acid was only found in Thai holy basil.  

Additionally, THBS had seven primary phenolics including rosmarinic, caffeic, chicoric, 

p-hydroybenzoic, p-coumaric, protocatechuic acid and rutin, while only p-hydroybenzoic 

and rutin were found in TSBS.  Thai holy basil leaves exhibited greater anti-lipid-

oxidation performance than its seeds or Thai sweet basil leaves and seeds.  Therefore, 

Thai holy basil leaves could be processed as an antioxidant ingredient to be applied in 
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various food products.  In our future study, animal and cell system will be applied to 

verify the health promoting function of the Thai holy basil leaves. 

Chapter 4 demonstrated the concentration and profile of phenolics, tocopherols, 

phytosterols and fatty acids in butterfly pea seeds and petals.  HEp-2 carcinoma cell line 

was used to evaluate the anticancer capability of butterfly pea seeds and petals extracts 

(HBP, HBS, LBP and LBS).  The results indicated HBS was the most efficient in 

inhibiting the viability of HEp-2 cells.  Both HBS and HBP exhibited greater 

performance than LBS and LBP in inhibiting the cells proliferation.  Therefore, the 

hydrophilic and lipophilic butterfly pea seeds and petals extracts possess health 

promoting function and could be used as a functional food ingredient or potential cancer 

therapy supplement. 

Chapter 5 summarized that fermentation of Garnet sweet potato with probiotic Lb. 

acidophilus LA-K can significantly increase the content of most hydrophilic phenolic 

acids, and lipophilic fatty acids or phytosterols via enzymatic action based bio-releasing 

or bioconversion of the microorganisms.  However, it slightly reduced the carotenoids 

level.  Also, the fermented sweet potato extracts with a higher level and abundant 

phytochemicals exhibited higher efficiency than raw extracts in inhibiting the 

pheochromocytoma derived cancer cell (PC-12) proliferation.  The purified hydrophilic 

extracts of raw or fermented extracts had greater anticancer potential than their 

corresponding lipophilic extracts.  However, these extracts had minimal impact on the 
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normal monkey kidney cell (CV-1) growth because they targeted on deactivating the key 

enzymes of glycolytic pathway in cancer cells energy metabolism but has less influence 

on the Krebs Cycle pathway for normal cells.  Therefore, fermentation with Lb. 

acidophilus LA-K is a valuable biotechnological approach for sweet potato nutritional 

value enrichment, and bioavailability improvement, and the fermented extracts could be 

further applied as promising therapeutic ingredients for cancer treatment. 
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APPENDIX A: THE LETTER OF PERMISSION OF PUBLISHED PAPER 
“PHYTOCHEMICALS IN SWEET SORGHUM (DURA) AND THEIR ANTIOXIDANT 

CAPABILITIES AGAINST LIPID OXIDATION” 
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APPENDIX B: THE LETTER OF PERMISSION OF PUBLISHED PAPER 
“COMPARISON OF PHENOLIC PROFILES AND ANTIOXIDANT POTENTIALS OF 

THE LEAVES AND SEEDS OF THAI HOLY AND SWEET BASILS” 
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