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ABSTRACT 

Cyanobacteria show much promise in reducing biodegradable thermoplastic production costs; however, 

most currently characterized strains are ill-equipped to do so. The result of Objective I produced a high-

throughput assay designed to discover existing cyanobacterial strains and rapidly characterize them as 

PHA-producers or potential PHA-producers. This assay will play an instrumental role in the attainment of 

a novel cyanobacteria environmental isolate capable of accumulating high levels of PHA naturally. 

Objective II produced an open source computer program which dramatically speeds the design of similar 

assays for any arbitrary genetic screening purpose. The program is not limited to this implementation alone. 

In fact, there are as many uses for this program as there are consensus and/or degenerate oligonucleotide 

probe applications. The project was released as open source in order to provide a means of constant growth 

and development by those who need it most. The case studies investigated during the preliminary research 

of Objective III provided key insights into the complex mechanisms involved in in vitro PHA synthase 

polymerization kinetics. Additionally, multiple hypothetical physical phenomena are proposed, as inferred 

from data from literature, which are capable of explaining the kinetic model behavior. All difficulties 

encountered during the course of Objective III, namely the recombinant protein expression and purification 

failures, are detailed so that the methods used may be avoided in future experiments. Even though Objective 

III was completed using an impure PHA synthase sample, it was still found conclusively that the conserved 

cyanobacteria-specific insertion of the model cyanobacterium PHA synthase is required for proper 

functionality. This conclusion is significant because it is evidence that the PHA synthase of cyanobacteria 

may possess a unique catalytic mechanism or method of interaction for multimerization. 
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CHAPTER 1. INTRODUCTION 

1.1 Chapter Preface 

This chapter is intended to introduce the thesis of this work in the broadest of terms.  This 

introduction presents the fundamental motivation behind the investigation of bioplastic production in 

cyanobacteria and the significance of the associated conclusions of this work.  Specific examples and 

supporting information of the rationale will be detailed within the subsequent chapters. 

1.2 Rationale 

Plastics are a staple non-durable good material consumed in many end-use markets.  One of the major 

benefits of plastic materials is that it can be used to reduce the weight of a component.  According to the 

American Chemistry Council, many plastic components weigh half as much as their non-plastic 

counterparts (2013).  The high rate of strength to density exhibited in plastic resins makes them an attractive 

class of materials to industries where the weight of the end product is a significant factor in the overall 

design efficiency.  This phenomena is highlighted in the packaging and light-vehicle industries, where the 

use of plastic resins has consistently increased since their introduction to the market (ACC, 2013). 

As it stands, the plastics market is dominated by petroleum-based synthetic polymers (ACC, 2013; 

Philip, Keshavarz, & Roy, 2007).  The use of petroleum products in synthetic plastic production process 

has a significant impact on the petroleum consumption in the United States.  The U.S. is currently a net 

importer of petroleum products and the amount used for plastic production is equivalent to eight percent of 

the annual net import value (US-EIA, 2014a, 2014c).  An alternative source of plastic materials could 

significantly alleviate the dependence of the U.S. on foreign petroleum. 

Additionally, synthetic plastics are an increasing environmental burden.  This phenomena is 

primarily due to difficulties associated with synthetic plastic degradation.  Some plastics are 

recoverable/recyclable, yet less than nine percent of the total generation of plastics is recovered in the U.S. 

annually (US-EPA, 2014).  The amount of unrecovered plastics will only increase if this this issue is left 

unaddressed.  The detrimental ecological impact of synthetic plastics will only continue to increase as the 
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annual generation rate is increasing over 7-times faster than the annual rate of recovery (confer Figure 1, 

page 10). 

Furthermore, the number of landfills in the U.S. has plummeted by 70% over the last 25 years (US-

EPA, 2014).  The lack of available landfills means plastic wastes are typically either thermally degraded, 

or exported.  The thermal degradation of synthetic plastics releases toxins into the atmosphere (Reddy, 

Ghai, Rashmi, & Kalia, 2003; Suriyamongkol, Weselake, Narine, Moloney, & Shah, 2007).  And 

exportation of plastic wastes is a simply a method of reallocating the problem, and one which is becoming 

increasingly expensive (Miller, 2014).  Both of these solutions address the symptoms of the problem, 

ignoring the cause.  For this reason industry is being prompted to research and implement new 

environmentally favorable forms of plastics. 

A biological alternative to petroleum-based polymers, polyhydroxyalkanoates (PHAs) encompass a 

diverse class of biodegradable polyesters capable of mitigating the ecological consequences in meeting the 

ever-growing demand for plastic commodities.  PHAs are most commonly produced using heterotrophic 

microorganisms, which require expensive cultivation media (Choi & Lee, 1999; Ducat, Way, & Silver, 

2011; Ienczak, Schmidell, & Aragão, 2013).  The production costs associated with PHA production are the 

main obstacle to their application in industry (Bengtsson, Pisco, Johansson, Lemos, & Reis, 2010). 

Photosynthetic prokaryotes capable of PHA accumulation, cyanobacteria possess the ability to 

harness light energy and fix atmospheric carbon dioxide in order to form these environmentally favorable 

bioplastics.  The use of cyanobacteria to produce PHA would effectively eliminate the main contributor to 

PHA production costs – carbon feedstock (Choi & Lee, 1999).  Unfortunately, these microalgae typically 

yield significantly less PHA than their heterotrophic counterparts.   

A strain of cyanobacteria capable of high yields of PHA would be instrumental in the development 

of a more environmentally friendly, economically competitive, and sustainable form of plastic production.   
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1.3 Purpose 

The purpose of this study is primarily to attain a more economically-viable strain of cyanobacteria 

for the design of a carbon-neutral bioplastic production process.  A secondary goal, efficient consensus 

degenerate PCR primer design, presented itself during the course of this work and is also detailed herein. 

1.4 Specific Objectives 

Objective I. Design a PCR-based assay instrumental in the discovery of a cyanobacteria strain 

capable of natively accumulating high levels of PHA.  

i) Devise robust quality assurance of cyanobacterial genomic DNA. 

ii) Identify gene(s) necessary to polymerize PHA. 

iii) Validate assay through comparison with traditional detection methods. 
 

Objective II. Develop an efficient consensus degenerate PCR primer design computer 

application for amplification of arbitrary homologous DNA sequences. 

i) Develop the application including methodology from previous work and 

DNA hybridization algorithms. 

ii) Elucidate characteristics of a “good” primer set as described through 

hybridization algorithms.  

iii) Test applicability of consensus primers. 

iv) Allow selective addition of degeneracy.  
 

Objective III. Investigate potential causes of low PHA accumulation in cyanobacteria via rational 

mutagenesis of PHA polymerization enzyme. 

i) Analyze PHA synthase in cyanobacteria. 

ii) Locate potential region(s) which may affect polymerization. 

iii) Rationally mutate said region(s) using recombinant DNA methodologies. 

iv) Study the impact of each mutation via in vitro enzymatic kinetics. 

 

1.5 Significance of Study 

Cyanobacteria show much promise in reducing biodegradable thermoplastic production costs; 

however, most currently characterized strains are ill-equipped to do so.  The result of Objective I produced 

a high-throughput assay designed to discover existing cyanobacterial strains and rapidly characterize them 
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as PHA-producers or potential PHA-producers.  This assay will play an instrumental role in the attainment 

of a novel cyanobacteria environmental isolate capable of accumulating high levels of PHA naturally. 

Objective II produced an open source computer program which dramatically speeds the design of 

similar assays for any arbitrary genetic screening purpose.  The program is not limited to this 

implementation alone.  In fact, there are as many uses for this program as there are consensus and/or 

degenerate oligonucleotide probe applications.  The project was released as open source in order to provide 

a means of constant growth and development by those who need it most. 

The case studies investigated during the preliminary research of Objective III provided key insights 

into the complex mechanisms involved in in vitro PHA synthase polymerization kinetics.  Additionally, 

multiple hypothetical physical phenomena are proposed, as inferred from data from literature, which are 

capable of explaining the kinetic model behavior.  All difficulties encountered during the course of 

Objective III, namely the recombinant protein expression and purification failures, are detailed so that the 

methods used may be avoided in future experiments.  Even though Objective III was completed using an 

impure PHA synthase sample, it was still found conclusively that the conserved cyanobacteria-specific 

insertion of the model cyanobacterium PHA synthase is required for proper functionality.  This conclusion 

is significant because it is evidence that the PHA synthase of cyanobacteria may possess a unique catalytic 

mechanism or method of interaction for multimerization. 
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CHAPTER 2. REVIEW OF RELATED LITERATURE 

2.1 Chapter Preface 

The goal of this chapter is to provide the reader with a comprehensive collection of the history, 

phenomena, theories, and vocabulary associated with this work.  This work encompasses the fundamental 

fields of polymers, cyanobacteria, and molecular biotechnology.  Specifically, this work focuses on 

attaining a more economically-viable strain of cyanobacteria for the design of a carbon-neutral and 

biodegradable bioplastic production process.  Therefore, this chapter will define and discuss terminology 

related to plastics, bioplastics, and biodegradation as well as, the significance of these articles in the 

economy and the environment.  Cyanobacteria, and their bioplastic synthesis and accumulation mechanisms 

are also detailed herein.  Finally, a synopsis of relevant molecular biotechnologies and theories thereof are 

provided.  

2.2 Background 

2.2.1 Polymers 

The term polymer describes an entity of chain-like repeating unitary molecules (monomer) linked by 

primary valence bonds to form a macromolecule.  A polymer’s primary structure is defined by the chemical 

structure and the atomic composition of the monomer units.  This term describes the nature, functionality, 

linking mode, and conferred chemical compositions of the monomers within the polymer (Ebewele, 2000). 

The secondary structure describes the physiochemical properties of an isolated polymer molecule 

(i.e., polymer intra-molecular actions).  The order in which the configuration units of a polymer are linked 

together is the configuration, which can only be altered through the breaking and reforming of valence 

bonds.  In contrast, the conformation of the polymer is the rotation of the configuration units about the 

valence bonds.  A polymer’s conformation may be altered without the breaking of valence bonds (Ebewele, 

2000).  Polymers are either composed of a singular monomer type (homopolymer) or multiple monomer 

types (copolymers).  Copolymer types include random, alternating, and block (Allcock, Lampe, & Mark, 
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2003).  Polymers which are limited to one dimension are referred to as linear polymers, while branched 

polymers possess side chains of the same basic structure. 

The tertiary structure of a polymer describes the physiochemical properties of the polymer molecules 

when in aggregate form (i.e., polymer inter-molecular actions).  The aggregation of a polymer is the result 

of secondary binding forces and forms one of two essential states: an amorphous material or a crystalline 

material (Ebewele, 2000). 

An amorphous material is composed of randomly coiled and intertwined polymers.  Upon heating a 

solid state amorphous polymer, a transition occurs from a solid/brittle state to a molten/viscous state.  The 

point at which this transition occurs is called the glass transition temperature (Tg), and any material 

exhibiting this property is considered a glass. 

A crystalline material is composed of polymers, often folded upon themselves, ordered and packed 

as crystalline units.  A polymer material rarely forms a perfect crystalline material due to the high levels of 

disorder inherent in molecules of this size and morphology (Ebewele, 2000).  Therefore, the materials 

formed are actually semi-crystalline and the degree of crystallinity (or % crystallinity) is used to quantitate 

the similarity to the crystalline state.  As a crystalline or semi-crystalline polymer is heated, it will undergo 

a transition to the amorphous state.  The temperature at which this transition occurs is called the melting 

temperature (Tm). 

An aggregated polymer may form cross-links or the linking of polymer chains via secondary valence 

bonds.  Cross-links can be either intra- or inter-molecular relative to the initial molecular state.  The 

presence of cross-links typically increases the degree of crystallinity of a polymer.  Cross-linked polymers 

do not dissolve because the molecules cannot be separated, but they will swell in the presence of an 

unreactive solvent (Ebewele, 2000). 

Polymer degradation is defined as the changes in the polymer’s properties due to chemical, physical, 

or biological reactions resulting in bond scissions and subsequent chemical transformations.  Polymer 

degradation can be classified as photo-oxidative, thermal, ozone-induced, mechanochemical, catalytic, or 

biodegradation, depending upon the degradation agent (Singh & Sharma, 2008).  
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2.2.2 Plastics 

Plastics are organic polymeric materials.  Two families of plastics, thermosets and elastomers, are 

typically composed of cross-linking branched polymers.  The side chains allow for cross-links to form 

during vulcanization.  For thermosets, this causes a high degree of crystallinity and rigidity.  Elastomers, 

however, typically tend to have rather loose cross-link networks.  The formation of these side-chain 

networks is irreversible and causes the local networking regions to lose their plastic properties. 

On the other hand, thermoplastics are a family of resins composed of linear polymers or non-linking 

branched polymers.  Amorphous thermoplastics do not have a distinct melting temperature.  Therefore, the 

phase morphology demonstrated is liquid, gum, and rubber phase regimes above the glass transition 

temperature and only a glass phase below (Allcock et al., 2003).  Semi-crystalline thermoplastics (micro-

crystalline or crystalline thermoplastics) contain domains of highly ordered molecular arrays and domains 

of random dispersion.  These polymers demonstrate a distinct melting temperature.  Under the glass 

transition temperature crystalline and glassy domains form, above the Tm a molten phase is formed, and 

between these two temperatures resides the flexible thermoplastic phase regime. Thermoplastics are better 

known as the recyclable plastics.  They can be melted and reformed for a given number of cycles before 

the polymer structure begin to degrade. 

Due to the inherent stability of plastics, degradation is an energy intensive process.  Since UV 

radiations possess energy sufficient to cleave C-C bonds, the principal degradation agent of plastics at 

ambient conditions is UV and visible light (Singh & Sharma, 2008).  Thus, the lifetime of plastics for 

outdoor applications is assessed under light ranging from 290nm to 400nm (Singh & Sharma, 2008).  Under 

normal conditions, photodegradation and thermal degradation are similar enough to both be classified under 

oxidative degradation.  The main difference between the two degradation processes is that the thermal 

degradation mechanisms can occur in the bulk of the material, whereas photochemical degradation 

mechanisms are limited to the surface (Singh & Sharma, 2008).  The presence of ozone in the atmosphere, 
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even trace amounts, causes strong degradation on plastic materials.  Ozone-induced degradation can occur 

even under conditions where other oxidative degradation processes are slow (Singh & Sharma, 2008). 

Biodegradation has many definitions, however, it essentially encompasses a process which utilizes 

the enzymatic action of microorganisms to break down materials into common metabolic products under 

conditions which accurately reflect the available disposal conditions. 

2.2.3 Synthetic Plastics 

2.2.3.1 Introduction 

Plastics are an attractive material for a number of industrial processes because they can be tailor-

made to suit a specific purpose.  For example, if a more rigid material is required, then a polymer that 

incorporates a high degree of chain branching and cross-linking should be used.   If transparency is desired, 

then a polymer which exhibits a glass transition temperature should be used.  Plastics can also be blended 

to achieve desired material properties. 

Plastics produced today are lightweight, durable, and inexpensive to produce.  Polypropylene, for 

example, has an estimated production cost of $0.185 kg-1 (Salehizadeh & Van Loosdrecht, 2004).  In order 

for industrial processes to retain their low production costs, they require a readily available hydrocarbon 

source, most commonly fossil fuels. 

The most prevalent industrial thermoplastics include polyethylene terephthalate (PET), low and high 

density polyethylene (LDPE and HDPE), polyvinyl chloride (PVC), polypropylene (PP), and polystyrene 

(PS) (ACC, 2007).  Industrial thermoplastics exhibit high resistances to degradation at ambient conditions.  

This can be beneficial for uses such as packaging and storage, where an indefinite shelf-life may be 

required. 

Polyolefins (CnH2n polymers), such as HDPE, LDPE, and PP, are prevalent in industry due to their 

low complexity and broad range of material properties (see Table 3).  They are commonly manufactured as 

blown films and injection molds for wraps and storage containers. 
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2.2.3.2 Economic Influence in the United States 

In the United States, the plastic resin manufacturing industry generates $87.1 billion in revenues and 

exports $30.5 billion of plastic resins annually while directly employing 50-60 thousand employees (ACC, 

2013).  The plastics and rubbers sector accounts for nearly nine percent of the non-durable goods 

manufacturing sector of the U.S. gross domestic product (US-BEA, 2014).  Fossil fuels provide the vast 

majority of hydrocarbon raw materials for plastic resins in the U.S. (ACC, 2013).  In 2010, the U.S. 

consumed 190 million barrels of liquid petroleum products for use as plastic resin feedstock – three percent 

of the total liquid petroleum product consumption for that year (US-EIA, 2014a).  The United States is a 

net-importer of petroleum products at a rate of 6.2 million barrels per day (US-EIA, 2014c).  In summary, 

the synthetic plastics industry is a crucial contributor to U.S. GDP and is heavily dependent on a 

hydrocarbon feedstock, which is unsustainable long-term. 

2.2.3.3 Environmental Impact 

32 million tons of plastic solid wastes were generated in the United States in 2012, yet only 

2.8 million tons were recovered for recycling (US-EPA, 2014).  High molecular weight polyolefins such as 

those used in plastic materials, are considered xenobiotic (Steinbüchel, 2005).  Xenobiotics are compounds 

that do not occur within any known natural metabolic pathway; these compounds are predominantly non-

biodegradable.  The majority of these plastic wastes can persist in the environment for extended periods of 

time (Andrady & Neal, 2009).  The U.S. is steadily increasing the generation of these plastic solid wastes 

(see Figure 1).  The increase in the annual rate of generation from 1990-2012 is estimated to be 

740(±60) thousand tons per year, while the increase in the annual rate of recovery is only estimated to be 

100(±6) thousand tons per year (regressed from Figure 1).  Compared to the municipal recovery of the same 

year (8.9%), industrial recovery of thermoplastics also leaves much room for improvement, as can be 

observed in Table 1. 
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The number of U.S. landfills has also substantially decreased from 6,326 landfills in 1990 to 1,908 

landfills in 2012 (US-EPA, 2014).  The remainder of plastic wastes that do not enter the landfills undergo 

thermal degradation.  The thermal degradation of halo-polymers, such as PVC, results in the formation of 

toxic halogenated hydrocarbons or inorganic chlorides (Bhaskar et al., 2003).  Thermal degradation of non-

chlorinated plastic polymers also results in the release of hazardous components in the form of airborne 

particulates (Michal, Mitera, & Tardon, 1976).  Any plastic waste surplus undergoes exportation.  Foreign 

government actions, such as China’s “Green Fence” act of 2013, are increasing exportation costs and 

decreasing the speed at which plastic wastes can be exported (Miller, 2014). 
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Figure 1: Total plastic materials generated in the municipal solid waste (MSW) and the total plastics recovery 

(recycling) from the plastics in MSW as adapted from the United States Environmental Protection Agency 

(US-EPA, 2014). 

Table 1: Estimated recovery as percent generation of thermoplastic materials in the packaging industrial 

sector during 2012 (ACC, 2014). NA – Not Available. 

Packaging Sector HDPE LDPE PET PP PS 

Beverage containers, bottles, jars 27.5% NA NA 8.33% 29.2% 

Caps and closures 6.67% NA NA NA 5.88% 

Carrier bags/stretch and shrink 4.35% 17.6% NA NA NA 

Other rigid 19.3% NA 16.4% 8.33% 5.88% 

Other flexible 6.67% NA NA 1.8 5.88% 
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Improper disposal of these non-biodegradable plastics leads to worldwide effects.  The majority of 

the improperly disposed plastic eventually washes into the ocean. Unfortunately, the degradation of plastics 

in the marine environment is severely retarded and the accumulation of this anthropogenic debris has 

numerous detrimental effects on the ecosystem (Andrady, 1989).  There are many documented cases of 

animals ingesting the materials or becoming entrapped in them, severely impeding proper development 

(Webb , Arnott, Crawford, & Ivanova, 2013).  The debris also provides a means of safe transport for marine 

life over previously unreachable distances.  The introduction of opportunistic travelers into a new ecosystem 

immediately increases the local available biodiversity and can have catastrophic effects on the indigenous 

biota (Barnes, 2002). 

2.2.4 Bio-based Plastics 

Viewed as a more sustainable approach to synthetic plastic production, bio-based plastics are 

generated using biological renewable resources, such as carbohydrate feedstock.  While this method 

addresses the sustainability issues regarding fossil fuels, the environmental concerns associated with most 

of these plastics may remain. 

However, one bio-based plastic has gained attention recently as a biodegradable alternative to 

polyolefins: poly(lactic acid) or PLA (Steinbüchel, 2005).  PLA is typically produced using lactic acid 

generated via fermentation (Mecking, 2004).  However, due to its simple primary structure (Figure 2), the 

material properties of the products are limited in comparison to existing synthetic plastics (see Table 3). 

 
Figure 2: Chemical structure of poly(lactic acid) (PLA). 
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2.2.5 Biopolymers 

Polymers produced by living organisms are known as biopolymers.  These polymers host a plethora 

of functions, from catalytic activity to cell structure to energy and even information storage.  The eight 

known classes of biopolymers are listed below in Table 2. 

 

Polymerases are the catalytically active proteins (enzymes) responsible for generating the primary 

covalent bonds of a biopolymer using a monomer or its precursor as substrate. 

2.2.6  Bioplastics 

 Bioplastics are plastic materials derived from biopolymers.  Naturally occurring bioplastics can be 

created from two types of biopolymers: polythioesters (PTEs) and polyhydroxyalkanoates (PHAs).  It 

should be noted however, that PLA biosynthesis can be achieved in recombinant organisms (Yang et al., 

2010).  PTEs encompass an interesting class of biopolymers, most which are non-biodegradable 

(Steinbüchel, 2005).  PTEs show promise as long-life bioplastics; however, large-scale degradation of this 

class of biopolymer still requires further investigation.  In contrast, PHAs are a promising biodegradable 

alternative to polyolefins with a wide range of material properties (Rehm, 2007). 

Table 2: Eight known classes of biopolymers as adapted from Lütke-Eversloh et al. (2001). 

Class Polymerase substrate(s) Producers 

Nucleic acids Nucleoside triphosphates Prokaryotes, Eukaryotes, Archaea 

Proteins Aminoacyl-transfer ribonucleic 

acids; amino acids 

Prokaryotes, Eukaryotes, Archaea 

Polysaccharides Sugar-nucleoside diphosphates, 

sucrose 

Prokaryotes, Eukaryotes, Archaea 

Polyhydroxyalkanoates Hydroxyacyl coenzyme A Prokaryotes, Eukaryotes, Archaea 

Polythioesters Mercaptoacyl coenzyme A Prokaryotes  

Polyphosphates Adenosine triphosphate Prokaryotes, Archaea  

Polyisoprenoids Isopentenylpyrophosphate Plants, Fungi 

Lignin Radical intermediates Plants 
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2.3 Polyhydroxyalkanoates 

2.3.1 Introduction 

Polyhydroxyalkanoates (PHAs) are a class of optically-active organic polyoxoesters which can be 

composed of over 150 known hydroxyalkanoic acid monomers (Anderson & Dawes, 1990; Rehm, 2007) 

(Figure 3).  PHAs encompass a class of biopolymers which are both biocompatible and biodegradable 

(Chen & Wu, 2005; D. Jendrossek, Schirmer, & Schlegel, 1996).  PHAs are categorized based on the size 

of their hydroxyl fatty acid monomers into short chain length (SCL) PHAs, medium chain length (MCL) 

PHAs, or long chain length (LCL) PHAs, each with monomers consisting of 3-5, 6-14, and >14 carbon 

atoms, respectively. 

 

The potential for customization is what makes PHAs such an attractive class of biomaterials because 

like synthetic plastics, they too can be tailor-made to accommodate specific utilization.  Organisms have 

been found which can produce copolymers containing multiple chain length monomer units (Doi, Kitamura, 

& Abe, 1995; A. K. Singh & N. Mallick, 2009).  Because PHAs can be composed of over 150 known 

monomers and form copolymers, this class of polymers can exhibit a diverse range of material properties 

rivaling those of synthetic plastics (see Table 3).  PHAs are being applied in industry to produce 

biodegradable water-resistant surfaces, tissue scaffolding, medical devices, mulch films, controlled 

Figure 3: Chemical structure of polyhydroxyalkanoate copolymer.  R1 and R2 represent alkyl groups 

from each respective monomer type.  For short chain length, these groups will contain 0-2 carbons, 

medium chain length will contain 0-11 carbons in length, and large chain length will always contain a 

minimum of 8 carbons.  The number of main chain methyl groups (p and q) can vary from 1 to 4. And 

the total number of monomers (Ntot = n + m) varies from 100 to 30,000 (Rai, Keshavarz, Roether, 

Boccaccini, & Roy, 2011). 
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pesticide delivery, nanocomposite materials, and various other plastic packaging and consumables (Philip 

et al., 2007). 

Poly(hydroxybutyrate) (PHB) is the most commonly observed PHA.  PHB is commonly compared 

to polypropylene because they possess similar melting temperatures, glass-transition temperatures, and 

degrees of crystallinity (Table 3).  However, the chemical properties of the two differ significantly.  PHB 

possesses less resistance to solvents than polypropylene, but exhibits a higher natural resistance to 

photodegradation (Holmes, 1985). 

 
Polymer Tm [°C] Tg [°C] E [GPa] σ [MPa] εb [%] 

HDPE1 130 – 137  1.0 – 1.1  22 – 31 10 – 1200 

LDPE1 98 – 115 (-25) 0.17 – 0.28  8.3 – 31 100 – 650 

PET1 212 – 265 68 – 80 2.8 – 4.1  48 – 72 30 – 300 

PP1 160 – 175 (-20) 1.1 – 1.6  31 – 41 100 – 600 

PS1  74 – 105 2.3 – 3.3 36 – 52 1.2 – 2.5 

PVC1  75 – 105 2.4 – 4.1 41 – 45  40 – 80 

PLA4 100 – 180 55 3.0 50 – 70 4 

P(3HP)3 78 (-18) 2.2 – 3.6 32 – 34 490 – 500  

P(3HB)2 162 – 181 (-4.0) – 18 1.2 – 4.0 8 – 40 0.8 – 8.0 

P(4HB)3 61 (-47) 0.12 – 0.24 12 – 15 650 – 740 

P(3HB-co-3HV)2 64 – 172 (-13) - 13 0.082 – 8.7 1.8 – 50 0.17 – (>1200) 

P(3HB-co-4HB)2 49 – 169 (-48) – (-2.0) 0.024 – 1.2 10 – 104 11 – 1300 

P(3HB-co-3H4MV)2 126 – 162 (-2.0)  17 – 25 19 – 440 

P(3HB-co-3HHx)2 96 – 142 (-2.0) – 0.0 0.14 – 0.99 4.5 – 26 3.0 – 850 
1(Harper & Baker, 2000), 2(Laycock, Halley, Pratt, Werker, & Lant, 2014), 3(Tripathi, Wu, Meng, Chen, & Chen, 

2013), 4(Södergård & Stolt, 2002) 

Tm – melting temperature, Tg – glass transition temperature, E – Young’s modulus,  σ – tensile strength,  εb – elongation 

at break 

 

2.3.2 Polyhydroxyalkanoate Metabolism 

2.3.2.1 Introduction 

PHAs are the only known polyesters existing in living organisms besides the water-soluble 

poly(malic acid) which occurs in lower level eukaryotes and the water-insoluble polyesters suberin and 

cutin which occur in plants (Steinbüchel & Hein, 2001).  PHAs are produced as water-insoluble inclusions 

Table 3: Material properties of various synthetic plastics (PE, PET, PP, PS, PVC), bio-based plastics (PLA), and 

bioplastics (PHAs). 
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known as granules in the cytoplasm of many microorganisms.  These granules are produced as a form of 

carbon storage during times of carbon surplus and nutrient deficiency, although this is not a requirement in 

all PHA producers. 

Aside from the source and availability of  carbon, the degree of PHA accumulation can also be 

dependent on the relative levels of many elements in the producer’s growth medium, such as oxygen, 

nitrogen, sulfur, phosphate, iron, magnesium, and potassium (Kessler & Witholt, 2001).  Ionic strength can 

also impact PHA accumulation performance significantly; however, cultivation temperature has shown to 

have no notable effect on PHA accumulation (Grothe, Moo-Young, & Chisti, 1999). 

2.3.2.2 Polyhydroxyalkanoate Biosynthesis 

PHA biosynthesis can take many routes.  For example, in polyhydroxybutyrate biosynthesis the 

upstream precursors to the hydroxybutyryl-CoA monomers are formed from the acetylation and reduction 

of acetyl-CoA by β-ketothiolase (PhaA) and acetoacetyl-CoA reductase (PhaB) respectively.  An example 

metabolic pathway for the production of PHB is shown in Figure 4.  Alternatively, MCL PHAs are typically 

formed utilizing fatty acid β-oxidation or de novo synthesis intermediates (Rehm, 2007).  The single 

committed step in this pathway is the polymerization of the hydroxyacyl-CoA thioester monomers by PHA 

synthase (PhaC) (Rehm, 2007; Steinbüchel & Lütke-Eversloh, 2003).  PHA production also requires non-

catalytic proteins for stabilization of the intracellular granule (phasins).  Excluding the phasin genes, the 

primary PHA biosynthesis genes are coded for within a single operon (Rehm, 2003). 

2.3.2.2.1 PHA Synthase 

PHA synthases have the most direct involvement in PHA production as they are solely responsible 

for PHA polymerization.  Sequence alignments of the primary structures of PHA synthases show they are 

homologous to lipases and α/β hydrolase protein family members (Jia, Kappock, et al., 2000).  PHA 

synthases are divided into four major categories (types I – IV) based on primary structure, subunit 

composition, and substrate specificity (Rehm, 2007). 
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Type I PHA synthases are comprised of a single enzymatic subunit (PhaC) which is typically 

61-73 kDa in size (Rehm, 2007).   All type I PHA synthases are homologous to the polyester synthase found 

in Ralstonia eutropha.  These synthases catalyze the polymerization of hydroxy fatty acid monomers with 

3-14 carbon atoms, thereby producing SCL to MCL polymer and copolymers (Nomura & Taguchi, 2007).   

All type II PHA synthases are homologous to the synthase of Pseudomonas aeruginosa.  Type II 

PHA synthases are comparable in size to type I PHA synthases.  Type II synthases catalyze only coenzyme 

A thioester substrates with hydroxyl fatty acid components of 3-14 carbons atoms.  While both SCL and 

MCL sized monomers can be incorporated, this type of enzyme has a strong selectivity to polymerize MCL 

Figure 4: Poly(hydroxybutyrate) biosynthesis 

pathway. 
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CoA thioesters (Nomura & Taguchi, 2007).  Type II PHA synthases therefore generate predominantly MCL 

PHAs. 

Type III PHA synthases are the first of the hetero-multimeric sub-classifications of polyester 

synthases.  These type III synthases consist of two main subunits of relatively equal mass (~40 kDa ea.): 

the catalytic subunit ‘PhaC’ and the non-enzymatic subunit ‘PhaE’ (Rehm, 2007).  The PhaC subunit shows 

21-28% primary structure similarity to the type I and type II PHA synthases, while the PhaE subunit shows 

no similarity (Rehm, 2003).  All type III PHA synthases are homologous to that found in Allochromatium 

vinosum (previously Chromatium vinosum).  These synthases catalyze the polymerization of hydroxy fatty 

acid monomers with 3-5 carbon atoms, thereby producing SCL PHAs. 

Type IV PHA synthases are the second of the hetero-multimeric sub-classifications of polyester 

synthases.  Type IV synthases are composed of two subunits: the catalytic subunit ‘PhaC’ of similar size to 

type III PhaC subunits and ‘PhaR’ a 20 kDa non-enzymatic subunit (Rehm, 2003).  All type IV synthases 

are homologous to the polyester synthase found in Bacillus megaterium. 

Phylogenetically-related organisms commonly express the same type of PHA synthases.  For 

example, Pseudomonas predominantly express type II and the Bacillus genus exclusively possesses type 

IV PHA synthases (Rehm, 2003). 

It is believed that because the PHA synthase structure is so similar to that of lipases, it may also 

possess a similar catalytic mechanism.  Lipases contain a catalytic triad of serine (S, Ser), histidine (H, 

His), and aspartate amino (D, Asp) acid residues.  The catalytic serine is enclosed within a conserved region 

glycine (G, Gly) and alanine (A, Ala) residues.  This conserved lipase box is approximately 6 amino acids 

in length, GxSxG[G|A] (Marchler-Bauer et al., 2015).  In lipases, the histidine activates the serine for 

nucleophilic attack and subsequent covalent catalysis.  PHA synthases contain a lipase-box variant, or 

“lipase-like box” which replaces the catalytic serine with cysteine (C, Cys).  It is believed that for PHA 

synthases, the histidine forms a catalytic diad with cysteine, and activates it for a nucleophilic attack.  While 
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it has proven necessary, the exact function of the aspartate residue is still open for debate (Jia, Kappock, et 

al., 2000).  PHA polymerization requires dimers of PHA synthase (Jia, Kappock, et al., 2000).  This 

mechanism is outlined in Figure 5. 

 

2.3.2.3 Polyhydroxyalkanoate Biodegradation 

Because PHAs function as energy storage within an organism, they must also be capable of 

degradation by said organism in times of energy deficiency.  PHAs can be degraded through multiple 

enzymatic mechanisms.  PHA hydrolases hydrolyze the primary bonds of PHA, degrading the polymer into 

shorter chain lengths.  PHA depolymerases cleave the primary bonds of PHA and create hydroxyl fatty acid 

dimer products, which can subsequently be converted into the monomer substituents (Figure 6). 

Both intracellular and extracellular PHA depolymerases have been observed.  Extracellular PHA 

depolymerases allow for the metabolism of extracellular PHA from the surrounding lysed cells (Dieter 

Jendrossek, 2007).  Organisms incapable of producing PHAs may still naturally express extracellular 

depolymerases (Dieter Jendrossek, 2007). 

Once the hydroxyalkanoate monomers have been formed, they can enter either the pathway for 

ketone body synthesis/degradation or fatty acid degradation. 

Figure 5: Proposed polymerization mechanism of PHA synthase (‘PhaC’) (Jia, Kappock, Frick, Sinskey, & 

Stubbe, 2000).  Note that the PHA synthase ‘C’ structure may be bound to an additional subunits for types 

III and IV synthases.  
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2.3.2.4 Polyhydroxyalkanoate Accumulation 

PHAs are formed as water insoluble inclusions within a cell.  The inclusion is stabilized by phasin 

proteins and phospholipids.  PHA synthases, depolymerases, and regulator proteins are all located on the 

surface of the granule (Figure 7).  There are two proposed mechanisms of granule formation: micelle 

formation and budding formation. 

After initiation of the hydrophobic PHA polymers, the polymer remains covalently bound to the 

hydrophilic PHA synthase as depicted in Figure 5.  This complex acts as a single amphipathic molecule 

and allows for traditional micelle formation to occur (Figure 8, top). This formation has been observed in 

reactions containing only PHA synthase and the hydroxyacyl-CoA monomers (Gerngross & Martin, 1995).  

Micelle formation represents the formation observed in vitro in the absence of phospholipids and may occur 

in vivo as well. 

In the budding model (Figure 8, bottom), it is proposed that PHA synthase molecules are localized 

around/within the cytoplasmic membrane of the cell and as the polymer aggregate increases in size, the 

insoluble granule buds from the membrane.  This model is supported by the work of Peters et al., who 

observed that PHA synthase localizes at cell poles (2005). 

Figure 6: Poly(hydroxybutanoate) depolymerization.  Reaction one, catalyzed by PHB 

depolymerase, depicts the hydrolysis of PHB to form 3-(3-Hydroxybutanoyloxy)butanoate.  

Reaction two, catalyzed by hydroxybutyrate-dimer hydrolase, shows the hydrolysis of the 

hydroxybutanoate dimer into its monomer constituents. 
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In contrast, the observations of Tian and coworkers document that PHA granule formation only occur 

in the center of cells and away from the membrane (2005).  They also record observations of dark structures 

near the PHA granule localization sites; these structures are believed to be mediation elements.  The work 

of Tian et al. suggests that a third mechanism of PHA granule formation may be required to accurately 

describe this process. 

2.3.3 Polyhydroxyalkanoate Production Limitations 

PHA production research is predominantly focused on the use of recombinant or native heterotrophic 

microorganisms, such as Bacillus megaterium, Cupriavidus necator, Escherichia coli, Pseudomonas 

Figure 7: Intracellular PHA granule schematic 

with the type III PHA synthase depicted. 50-

500nm diameter.  Exterior area of granule is coated 

in phasin proteins and phospholipids.  PHA 

synthase polymerizes PHA inwards, towards the 

bulk of the granule. 

Figure 8: (TOP) Micelle formation of PHA granules in the 

absence of phospholipids. (BOTTOM) Budding formation 

of PHA granules from within the cytoplasmic membrane 

(Tian, Sinskey, & Stubbe, 2005).  
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aeruginosa, Ralstonia eutropha, or Saccharomyces cerevisiae (Agnew, Stevermer, Youngquist, & Pfleger, 

2012; Breuer, Terentiev, Kunze, & Babel, 2002; Ienczak et al., 2013; Kahar, Tsuge, Taguchi, & Doi, 2004; 

RamKumar Pandian et al., 2010; A. Singh & N. Mallick, 2009).  However these fermentation methods 

typically involve production costs substantial enough to limit their applicability in industry (Bengtsson et 

al., 2010).  For example, industrial scale processes are currently producing PHAs at a cost of $2.50 kgPHA
-1 

("DaniMer scaling up production of bio-based PHA resins," 2011). 

The carbon source is a major contributor to the overall PHA production costs and many methods are 

being investigated to improve the cost-effectiveness of processes utilizing chemoheterotrophic organisms 

(Choi & Lee, 1999; Ducat et al., 2011; Ienczak et al., 2013).  The use of agricultural/industrial wastes and 

other low-cost carbon sources improves carbohydrate feedstock costs, but unfortunately either 

compromises productivity or demands unit operation redesign (e.g., recycle), due to low specific yields 

(Ienczak et al., 2013). 

To form a frame of reference for the impact of the carbon source costs, one can use the multi-stage 

bioreactor cascade described in Atlić et al., which utilizes Cupriavidus necator to obtain a specific 

productivity comparable to what is required in industry (1.85 g L-1 day-1) (2011).  This process consumes 

glucose as its carbon source at a rate of 0.057 kg h-1 and produces PHB at a rate of 0.019 kg h-1, bringing 

the rate of glucose-to-PHB to 3.0 kgglu kgPHB
-1.  Applying the industrial cost of glucose, $0.493 kgglu

-1 

(Salehizadeh & Van Loosdrecht, 2004), the contribution of the carbon source cost is $1.5 kgPHB
-1. 

2.4 Cyanobacteria 

2.4.1 Introduction 

Over 2.8 billion years old, cyanobacteria are a diverse group of prokaryotic primary producers 

flourishing in both limnic (freshwater) and marine (saline) environments yet can be found in nearly every 

conceivable habitat on Earth (Abed, Dobretsov, & Sudesh, 2009; Buick, 2008).  These robust organisms 

also exhibit high levels of biodiversity relative to the other Prokaryote sub-classifications (Garcia-Pichel, 
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Nübel, Muyzer, & Kühl, 1999).  Although all cyanobacteria carry out oxygenic photosynthesis, some have 

proven capable of photomixotrophic and even heterotrophic growth (Rippka, Deruelles, Waterbury, 

Herdman, & Stainer, 1979; Stal & Moezelaar, 1997). 

2.4.2 Morphology 

The high level of biodiversity within Cyanobacteria is exemplified by the morphologies observed 

within this phylum.  Cyanobacteria are generally considered to have a Gram-negative cell envelope, 

however many cyanobacteria exhibit various features of Gram-positive membranes (Hoiczyk & Hansel, 

2000). 

Cyanobacteria are currently categorized by their morphology, although genetic classification is 

becoming increasingly useful.  They are categorized into five sections, or types, based on their cellularity 

and organization (Schirrmeister, Antonelli, & Bagheri, 2011).  The simplest morphology is unicellular 

growth with random dispersion of cell aggregation, such as in the model cyanobacterium – Synechocystis 

sp. PCC6803.  This growth more closely resembles typical bacterial growth.  In some cases, as 

cyanobacteria cells divide, they remain enclosed in a gelatinous or mucilaginous sheath.  This leads to the 

formation of filaments, which can be either linear or branched (Flores & Herrero, 2010).  Furthermore, 

some of these filamentous cyanobacteria possess the capability to differentiate.  For example, Nostoc 

possesses the ability to form nitrogen-fixing heterocysts (C.-C. Zhang, Laurent, Sakr, Peng, & Bédu, 2006).  

Heterocyst formation can be induced by the depravation of combined nitrogen.  Additionally, akinetes or 

cells differentiated for storage and survival can also be formed (Flores & Herrero, 2010).  Cyanobacterial 

colonies can exhibit morphologies ranging from standard unicellular growth to sets of highly organized 

multicellular filaments forming macro-level aggregates. 

2.4.3 Photosynthesis 

The primary enzyme responsible for all photosynthetic carbon-fixation, ribulose bisphosphate 

carboxylase-oxygenase (RuBisCo), possesses low selectivity for CO2 versus O2.  It is believed this is due 
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to the lack of atmospheric O2, and thereby evolutionary pressures, in the environment during the 

development stages of this metabolic pathway.  Approximately 350 million years ago levels of atmospheric 

O2 increased substantially, triggering the arise of CO2 concentrating mechanisms (CCM) (Price, 

Sültemeyer, Klughammer, Ludwig, & Badger, 1998). 

CCMs implement active transport to control the concentrations of inorganic carbon (mainly CO2 and 

HCO3
-) within the cell.  For these mechanisms, HCO3

- accumulates within the cell in concentrations in 

excess of 1000x equilibrium concentrations (Price et al., 1998).  RuBisCo is encapsulated within a 

carboxysome allowing for increased local concentration of CO2 surrounding the carboxylase which 

improves functionality.  Both CCMs and RuBisCo are highly important factors in the overall inorganic 

carbon fixation rate of a photoautotroph. 

Similar to plant photosynthesis, cyanobacterial photosynthesis utilizes water as the electron donor 

and chlorophyll a in combination with phycobilisomes to harvest light energy (Stal & Moezelaar, 1997).  

Phycobilisomes are phycobiliprotein complexes which act as light-harvesting antennae anchored to the 

thylakoid membrane within the chloroplast, directing energy to chlorophyll a (Robert  MacColl, 1998).  

Cyanobacteria utilize two types of biliproteins: phycocyanin (blue pigment) and phycoerythrin (red 

pigment).  Cyanobacteria have been deemed “blue-green algae” due to this abundance of phycocyanin.  The 

electron flow generated from this light energy is used to drive inorganic carbon transport. 

Naturally, Cyanobacteria exhibit the ability to regulate their local light conditions via movement, 

implementing both positive and negative phototaxis, typically by type IV pili (Bhaya, 2004).  In order to 

do this, the cyanobacteria must possess a method of light-energy signal transduction. 

Phytochromes are light harvesting complexes which function as light sensory complexes in plants.  

These complexes are also found in cyanobacteria (Hughes et al., 1997).  They allow the cell to essentially 

sense where it is in relation to a light source.  A remarkable characteristic of the phytochromes is their 

reversible photochromism.  The inactive conformation (Pr) absorbs a photon at one periodicity (λ = 665 
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nm) which causes a shift to the active signaling conformation (Pfr).  Pfr absorbs a photon at a different 

periodicity (λ = 730 nm) which results in the reversion back to the original conformation. 

2.4.4 Cyanobacteria in Industry 

The ability of cyanobacteria to fix atmospheric carbon through photosynthesis in order to produce a 

value-added products has been well documented and makes them attractive candidates in bioprocesses 

(Abed et al., 2009; Ducat et al., 2011; Simmons, Andrianasolo, McPhail, Flatt, & Gerwick, 2005; L. T. Tan, 

2007).  These organisms produce a variety of bioactive metabolites and commodity ‘bio-products’ such as 

isoprene, biofuels, and biopolymers at nearly carbon-neutral conditions (Ducat et al., 2011).  These 

metabolites exhibit a variety of properties from anti(-viral, -fungal, -bacterial) to immunosuppressive and 

even anti-cancer properties (Abed et al., 2009; Simmons et al., 2005). 

Cyanobacteria provide a promising platform for lessening PHA production costs due to expensive 

carbon sources because they are the sole prokaryotic native producers of PHA via oxygenic photosynthesis 

(Asada, Miyake, Miyake, Kurane, & Tokiwa, 1999; Sharma, Kumar Singh, Panda, & Mallick, 2007).  A 

PHA production process utilizing cyanobacteria would essentially be creating biodegradable bioplastics 

while sequestering atmospheric carbon dioxide as a cost-free carbon source. 

2.5 Polyhydroxyalkanoate Production in Cyanobacteria 

The work of Hai et al. suggests that the PHA biosynthesis pathway within cyanobacteria occurs in a 

widespread and general fashion, and thus far, only type III PHA synthases have been observed in this 

phylum (2001). 

Unfortunately, typical PHA accumulation observed in cyanobacteria under photoautotrophic growth 

is less than 10% dry cell weight (DCW),  if detected at all (Bhati, Samantaray, Sharma, & Mallick, 2010; 

Ducat et al., 2011), an amount far lower than the yields observed in heterotrophic high-density processes, 

which can approach 87% DCW (Ienczak et al., 2013).  However, Nishioka et al. demonstrated wild-type 
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cyanobacteria strains are capable of exhibiting significantly higher yields,  55% DCW PHA during 

photoautotrophic cultivation (2001). 

Functional diversity, including this large deviation in PHA accumulation, is not a rarity within 

Cyanobacteria (Garcia-Pichel et al., 1999).  With Cyanobacteria’s rich biodiversity, it is likely that there 

are undiscovered high-yielding cyanobacteria strains with PHA production capabilities rivaling those of the 

costly heterotrophs. 

2.6 Synopsis of Relevant Molecular Biology 

2.6.1 DNA 

Deoxyribonucleic acid (DNA) is arguably the single most important biomolecule (Figure 9).  It 

belongs to the nucleic acid class of biopolymers, and its unique structure allows for the storage and transfer 

of information.  Single-stranded DNA (ssDNA) is a polymer of deoxyribonucleotides linked together by 

primary phosphodiester bonds.  This structure acts as a backbone, where the nitrogenous base of each 

deoxyribonucleotide can vary.  The nitrogenous bases can allow for antiparallel linking of ssDNA 

molecules via hydrogen bonding.  However, the stability of this duplexed double-stranded DNA (dsDNA) 

is highly dependent upon the configuration of the polymers.  The breaking of a dsDNA duplex at the 

hydrogen bonds to form two ssDNA molecules is known as denaturation.  For dsDNA duplexes, the term 

melting temperature (Tm) describes the temperature at which half of the dsDNA denatures.  Each 

nitrogenous base interacts with its neighboring base of the opposite strand, known as base pairing, in a way 

which can have either a stabilizing effect or a destabilizing effect.  As expected, the more stable a duplex 

is, the more energy it will require to denature and the higher its Tm will be. 
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DNA containing information is primarily composed of four nitrogenous bases: adenine (A), cytosine 

(C), guanine (G), and thymine (T).  The most stable base pairs of coding DNA are referred to as Watson-

Crick base pairs and are A-T/T-A and C-G/G-C.  These base pairs are observed so frequently in coding 

DNA that DNA is said to exhibit complementarity.  For example, in complementary dsDNA if one position 

of strand one is A, then the respective nucleobase of strand two (the complement of A) would be T.  In other 

words, A complements T and C complements G and vice versa.  This means if the configuration/sequence 

of one strand of DNA in a complementary dsDNA duplex is known, then the opposite strand is also known 

by definition. 

Any base pair variant other than Watson-Crick pairs (e.g., A-A or G-T) are known as mismatches.  

Mismatches generally contribute destabilizing effects, however a few have been observed which remain 

relatively stabilizing such as G-T (Allawi & SantaLucia, 1997; Hatim T. Allawi & John SantaLucia, 1998a, 

1998c; H. T. Allawi & J. SantaLucia, 1998; Peyret, Seneviratne, Allawi, & SantaLucia, 1999). 

DNA polymerases are key enzymes for the replication of DNA.  These polymerases generate 

complementary dsDNA from a ssDNA template.  The mechanism of this process is highly complex, 

Figure 9: Chemical structure of Watson-Crick complementary DNA base pairs and ssDNA and B-form 

dsDNA duplex. 
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however for the sake of brevity, only essential concepts are discussed here.  DNA polymerases require a 

short complementary single stranded nucleic acid sequence, known as a primer, bound to the template.  The 

polymerase then consumes deoxynucleoside triphosphates to append new complementary DNA nucleotides 

to the primer beginning at the 3’ (“three-prime”) end.  The product of this synthesis is a complementary 

dsDNA duplex with the primer incorporated into the helix.  Application of this synthesis to both strands of 

a genome will result in two copies of said genome, allowing an organism to divide with both progeny 

containing genomic replicates. 

2.6.2 Gene Expression 

Living organisms utilize DNA as a central database, where discrete packets of information (genes) 

encoding proteins and other functional nucleic acids can be stored and passed along to progeny.  The entire 

collection of all of the discrete packets of information is defined as an organism’s genome.  Gene expression 

is the process in which the information stored within a gene is used to synthesize the gene product. 

2.6.2.1 Protein Expression and Degenerate Codons 

In the case of proteins, first a complementary strand of ribonucleic acid (RNA) is synthesized using 

the gene as a template – the process known as transcription.  RNA incorporates the modified nucleobase 

uracil (U) in lieu of thymine.  At this point the RNA may undergo posttranscriptional modifications and 

when complete, this entity is referred to as mature messenger RNA (mRNA).  Next, ribosomes utilize 

aminoacyl transcription RNA to parse the gene three nucleotides at a time – the process known as 

translation.  With each parsing instance of three nucleotides, or codon, the ribosome appends a new amino 

acid onto the growing polypeptide until a termination codon is reached (Figure 10). 
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Because there are three positions within a codon and four possible permutations of nucleobases, there 

are 43 = 64 syntactic entities which need to be recognized by ribosomes.  The relationship of codons and 

their amino acid translations are recorded as genetic codes or translation tables.  And because there are 

only 20 naturally occurring amino acids coded by 64 codons, multiple codons may code for the same amino 

acid.  Degenerate nucleotide nomenclature is a result of this phenomena to more easily express multiple 

permutations of a single DNA sequence.  For example, under the standard genetic code (Appendix A.5) 

tyrosine (Tyr) can be coded for by TAT and TAC (TA[T|C]), which can be expressed more easily as or 

TAY. 

Organisms parse genetic information differently.  There have been more than 27 proposed translation 

tables since the discovery of the standard code (Sayers et al., 2009).  These codes usually differ only slightly 

from the standard code. 

2.7 Polymerase Chain Reaction 

2.7.1 Introduction 

The polymerase chain reaction (PCR) is a versatile utility which allows for the in vitro amplification 

of nucleic acids and underlies almost all of modern molecular biology (Sambrook & Russell, 2001).  The 

speed, robustness, and flexibility of this molecular biotechnology are what rightfully grant its vast 

Figure 10: Simple schematic of gene expression using the standard genetic code.  
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popularity.  There are numerous variations of PCR and a comprehensive list of these variants can be found 

in A.1.  Some notable implementations include genetic detection, nucleic acid sequencing, whole genome 

assembly, and nucleic acid quantitation. 

PCR requires seven essential components: (i) thermostable nucleic acid polymerase, (ii) pair of 

synthetic oligonucleotide primers, (iii) deoxynucleoside triphosphates, (iv) divalent cations, (v) monovalent 

cations, (vi) buffer to maintain pH, and (vii) a nucleic acid template.  Once the seven essential components 

of PCR are combined, the reaction possesses everything required to synthesize new nucleic acids.  The 

cations serve to promote dsDNA formation, divalent cations tend to dominate the contribution under 

standard conditions (Owczarzy, Moreira, You, Behlke, & Walder, 2008).  The deoxynucleoside 

triphosphates provide substrate for polymerization beginning at the 3’ end of each primer via the 

polymerase.  The primers are typically used in excess to prevent this component from being the limiting 

reagent, however this is not always the case (confer A.1). 

The central idea of PCR is the thermal cycle.  First, the reaction temperature is increased to the point at 

which the template DNA is denatured.  Next, the temperature is decreased to a point at which the primers 

are likely to anneal to the newly formed ssDNA template strands – known as the annealing temperature 

TA.  Finally, the temperature is raised once more to a degree at which the enzymatic activity of the 

polymerase is optimal to promote synthesis.  Repetition of this thermal cycle will produce a short product 

spanning the region of the template bounded by the primers (Figure 11). 

After initial short product formation, the short product will amplify exponentially and out compete 

other products.  This results in essentially millions of copies of a single nucleic acid duplex. 
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2.7.2 Basic Primer Design Considerations 

There are many detailed reviews available on this matter, including Sambrook et al. (2001).  

However, some of the essential influencing factors will be covered here.  Since PCR will amplify fragments 

of DNA exponentially, any undesired byproduct formation will greatly affect the product composition.  

Thus, specificity is key in the design of a PCR primer.  In other words, the sequence which the primer 

complements should not occur anywhere else in the template DNA; otherwise primer extension will occur 

at multiple locations. 

Thermodynamics also play a key role in primer design.  In order for a primer to bind, it requires a 

certain degree of stability.  This stability can be estimated by calculating the change in Gibbs free energy 

Figure 11: Graphic depiction of standard PCR 

initial product formation. 
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(ΔG) of annealing for the primer-template duplex.  This is typically performed using nearest-neighbor 

thermodynamics; for an in depth review on the subject read SantaLucia et al. (2004).  This quantity is 

reflected in the melting temperature, length, and G|C content of the primer. 

The melting temperatures are typically estimated using the nearest-neighbor thermodynamic 

parameters.  A derivation of melting temperature with the relation to these parameters can be found in 

appendix section A.2.  The melting temperature of the annealing region should typically be between 50°C 

and 70°C for a standard primer.  Additionally, for a primer set, the two melting temperature values should 

not deviate by more than 5°C from one-another to prevent non-specific annealing of the more stable primer.  

While the length of a primer may vary depending on the application, it is typically held to 18-32bp.  This 

range typically allows for proper and specific annealing within a template under standard PCR conditions. 

G|C content is a quick approximation of the relative strength of the DNA duplex because as 

discussed earlier, the G-C base pair forms three hydrogen bonds while the A-T base pair only forms two.   

Thus, a DNA duplex of only G-C base pairs will require more energy to denature than an A-T DNA duplex 

of equivalent length.  For this reason, the G|C content is typically held between 40-60%, and consecutive 

runs of G-C base pairs are typically held below five. 

Finally, the primers should not be complementary to one another in any regions and should not be 

complementary to themselves.  If this condition is not adhered to, the primers can anneal to one another 

and during synthesis the overhanging fragments will be complemented, forming short, non-functional 

primer-dimers.  This can lead to numerous issues including primer consumption, weak amplification, and 

non-specific binding not previously possible. 

Extra precaution should be taken in the design of the 3’ end of the oligonucleotide primer.  Since 

polymerase extension is facilitated on this end, it must bind completely and specifically.  In other words, a 

long primer with a 5’ end unbound to template DNA may still successfully synthesize a new strand if the 
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3’ end forms a stable hybridization.  In fact, this phenomena is actually exploited in overlap extension PCR 

and polymerase chain assembly. 

2.7.3 Optimization considerations 

The ideal end product of a standard PCR is a desired number of replicates of a singular nucleic acid 

product.  In practice, this can be a difficult result to obtain.  As stated earlier, the key to successful PCR 

amplification is specificity.  Some applications of PCR require the design of primers overlapping a specific 

portion of the template DNA.  In these cases specificity may not be readily tailored through primer sequence 

alone. 

Once primer design is complete, the specificity of a given reaction can be tuned through the annealing 

temperature.  As the annealing temperature increases, the stability of a given primer-template hybridization 

decreases.  If non-specific binding is occurring and forming a less stable hybrid than the desired primer-

template duplex, then raising the annealing temperature may prevent the undesired annealing while still 

allowing desired annealing to occur.  For this reason, the annealing temperature used in standard PCR is 

near the lowest melting temperature in the primer set, typically 5 °C less than Tm, low. 

The secondary optimization parameter for standard PCR is the divalent cation concentration.  

Standard reactions utilize magnesium ions for this purpose.  Cations tend to stabilize the dsDNA duplex 

formation by interacting with the negatively charged phosphate backbones of the nucleic acids.  The 

specificity of a PCR amplification is inversely proportional to the magnesium concentration.  This 

concentration is typically held between 1.0 mM and 3.0 mM. 

The final standard PCR optimization parameter is the number of thermal cycles the reaction is 

subjected to.  For standard PCR, increasing the number of thermal cycles increases the number of products 

according to: X = (1+η)n, where X is the yield of PCR product copies, η is the efficiency of amplification 

per cycle, and n is the number of cycles (Booth et al., 2010).  However, this parameter exhibits diminishing 
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returns typically after 35 cycles (Sambrook & Russell, 2001).  After this point, the reaction becomes limited 

either due to polymerase thermal deactivation or primer availability. 

2.8 Consensus Degenerate PCR Probe Design 

In many applications it can be beneficial to design PCR primers capable of amplifying homologous 

sequences (Figure 12).  The central idea in consensus primer design is that the primers can be designed 

within a common region shared by the target sequences so that the annealing ability of the primers remains 

relatively unchanged across multiple templates. 

 

Multiple sequence alignment (MSA) algorithms analyze protein or nucleic acid homologous 

sequences and determine an optimal form of alignment of those sequences.  MSAs allow for the 

visualization of regions conserved in a set of biological sequences.  Alignments can grant insight on 

evolutionary relationships of the genes within the alignment and potential functional motifs of the sequence 

family.  MSAs are an invaluable tool in the design of PCR primers for detection across homologous nucleic 

acid sequences. 

Figure 12: Example of consensus primer applications.  Colored regions 

depicted are arbitrary consensus primer loci in the arbitrary gene geneX.  

Here the primer sets 1-4 could be used to discriminate groups of geneX 

variants.  Primer set 5 could be used to detect the presence of any form 

of geneX and could potentially lead to isolation and characterization of 

the currently unknown geneX Variant D. 
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In many cases a simple consensus primer set is not a viable option.  Nucleotide variations are too 

numerous between the sequences for a consensus primer to effectively bind the templates in all sequences.  

For instance, if it is desired to design a four nucleotide primer across the following sequences: AATG, 

AAAG, AATG, and AATG.  Then the consensus primer would be AATG, which may fail to amplify in the 

sequence AAAG.  To account for this polymorphism one could use a small set of similar primers which 

represent some or all of the sequence permutations, known as a degenerate primer.  The degenerate primer 

in the example above would be AA[A|T]G, also denoted as AAWG, and would possess a degeneracy of 

two (see Appendix A.6).  Degenerate primers are a pragmatic approach to amplifying target sequences 

which may be unknown or are highly variable in nature.  However, due to the inherent nature of 

incorporating multiple permutations of a sequence, there is a reduction in overall primer specificity as the 

degeneracy increases.  The extreme case for the example above is NNNN, which has a degeneracy of 256 

and is capable of annealing anywhere within any target sequence.  Additionally, the initial concentration of 

primers in standard PCR is typically held constant. Because the overall concentration does not change, the 

initial concentration of the viable primer permutation is reduced under stringent conditions.  In other words, 

if a primer has a degeneracy of two, the initial concentration of each permutation is reduced by half. 

A consensus degenerate primer set allows for a single reaction condition across all template 

sequences and can greatly increase the likelihood of a successful amplification of an unknown targeted 

sequence.  Currently, there are two primary methods of designing primers across multiple sequences. 

2.8.1 Direct Alignment of Target DNA Sequences 

The most direct approach is to simply subject the template sequences of DNA to multiple sequence 

alignment algorithms such as Clustal (Larkin et al., 2007).  This is a readily available method and is best 

suited for cases when: 

i) the target DNA is not a coding sequence 

ii) there are many sequences available (large sample size, n) 

iii) all of the sequence information for the experimental samples are known. 
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Directly aligning DNA sequences to produce an MSA is simple and rapid.  Analysis of this MSA 

for primer design can yield low degeneracy primers based off of the consensus sequence.  Unfortunately, 

many DNA MSA algorithms do not assume that the input DNA sequences are protein coding.  Thus, 

application of these algorithms directly on the DNA sequences may result in alignments which lose 

nucleotide-grouping/codon information.  Additionally, because DNA has a relatively low number of 

potential permutations (A, C, G, T, and deletion or Δ), a MSA of DNA may suggest conservation of a 

residue where it may not actually be present when provided with a larger sample size. 

For example, under the equiprobability assumption for a random coordinate within an alignment 

of n sequences, the probability that the each residue element within that alignment column will match the 

residue of the first sequence due to random chance alone can be described by the equation: P = 5(1-n).  Such 

an event would represent a sort of Type I error where the conservation would be present, but due only to 

random chance and not from evolutionary pressures.  This sort of conservation is undesirable in probe 

design because it has no influencing factors to remain conserved.  Furthermore, the use of primers based 

on these regions on an unknown DNA sequence may result in a loss of primer annealing ability and a false 

negative amplification result. 

This method of consensus primer design has been implemented by applications such as PrimaClade 

and PriFi (Fredslund, Schauser, Madsen, Sandal, & Stougaard, 2005; Gadberry, Malcomber, Doust, & 

Kellogg, 2005).  These applications are proficient in returning low-degeneracy consensus primers for 

nucleic acid MSAs; however, the methods used to align sequences risks losing vital codon grouping 

information since the alignments may not be designed with a focus on coding sequences.  Because the 

codon information is lost for coding sequences in these methods, prediction of possible permutations of a 

given residue position is limited to the residues observed within the alignment column, unlike the known 

potential translations of a codon position.  This can lead to a potential loss in robustness for a given primer 

set. 
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2.8.2 Protein-based Indirect Speculation of the Possible Nucleic Acid Sequences 

The likelihood of a given alignment position appearing conserved due to random chance alone in 

a protein MSA is far less than that of a DNA MSA.  Assuming equiprobability, the probability that the each 

residue element within that alignment column will match the residue of the first sequence due to random 

chance alone can be described: P = 21(1-n).  Thus, one can be more confident that a conserved amino acid in 

a MSA is conserved due to evolutionary pressure than a conserved nucleic acid in a MSA. 

This method of design requires the target DNA sequences be protein coding.  The key theory behind 

this method is that one can analyze a MSA of protein sequences for possible regions of conservation then 

essentially guess what the nucleic acid sequence may be based off of a specific translation table. 

For instance, a conserved protein region is found to be CHES.  Using the standard translation table 

(Appendix A.5), one could obtain the possible codons for each amino acid.  In this example, those would 

be TGY, CAY, GAR, and WSN for C, H, E, and S respectively.  Thus, a degenerate primer for this example 

would be TGYCAYGARWSN, with a degeneracy of 128.  Primers designed using only this method can 

result in highly degenerate primers.  This method is highly robust and will likely amplify the intended 

target; however, due to the loss in specificity, it will also likely amplify undesired products.  Therefore, 

amplification using primers designed through this method will likely require additional PCR product 

validation via DNA sequencing or nested PCR.  Protein-level degenerate primer design is best suited when: 

i) genes of interest are homologous globally 

ii) genes of interest contain local homologous regions (conserved domains) 

iii) there are few sequences available (small sample size, n) 

iv) attempting to amplify homologues in a group organisms with high 

biodiversity 

CODEHOP exemplifies the implementation of this methodology (Rose, Henikoff, & Henikoff, 

2003).  This application utilizes protein MSAs and codon frequency tables to generate moderate-to-high 

degeneracy primers.  Because codon frequency tables are used in lieu of actual CDS information, it is quite 

possible that the consensus template sequence corresponding to a given primer was not represented as 
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accurately as possible.  An additional downside to this method of design is the amount of noise produced 

in its output.  This application typically results in numerous primer sets to sift through before the user 

obtains their desired primer set. 

2.9 Summary 

To reiterate, this chapter was intended to provide the reader with an in depth overview of the 

history, phenomena, theories, and vocabulary associated with this work.  The applications, relevance, and 

influence of plastics in large-scale social and economic settings were examined.  Polyhydroxyalkanoates 

were defined as a biodegradable class of biopolymers and a potential alternative to polyolefins and covered 

from the initial scope of polymers, including the degradation thereof.  Next, current PHA production 

methods and limitations were discussed and cyanobacteria were introduced as a potential method to reduce 

production costs.  Mechanisms of cyanobacterial PHA biosynthesis were presented to provide a basis of 

the contributing factors influencing PHA accumulation in cyanobacteria.  Finally, a review of the 

information supporting the tangent work involving consensus degenerate PCR primer design was given.
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CHAPTER 3. CYANOBACTERIA METHODS 

3.1 Chapter Preface 

This chapter details the general techniques applied throughout Objective I (section 1.4).  The work 

contained herein is only of secondary importance to the overall scope of this dissertation; however, the 

inferences derived within this chapter may prove valuable to any reader interested in studying 

cyanobacteria. 

3.2 Materials and Methods 

3.2.1 Strains and Cultivation Conditions 

In order to characterize Cyanobacteria in any respect, a representative culture collection needed to 

be obtained.  According to the National Center for Biotechnology Information Taxonomy database 

(accessed February, 2015), over 90% of the 13,000 classified entries in Cyanobacteria can be accounted for 

by only 2 classes: Nostocales and Oscillatoriophycideae (Benson, Karsch-Mizrachi, Lipman, Ostell, & 

Sayers, 2009; Sayers et al., 2009).  Therefore, representative cyanobacteria were chosen from these main 

classes. 

Plectonema sp. UTEX 1541, Nostoc muscorum UTEX1037, Nostoc punctiforme UTEXB1629, 

Spirulina platensis UTEX LB 2340 (alias Arthrospira plastensis), Synechococcus leopoliensis UTEX 2434, 

Synechocystis sp. PCC 6803, and Synechocystis sp. UTEX 2470 were chosen for study (Figure 13).  These 

cyanobacteria were cultivated in a Forma Scientific Plant Tissue Culture Incubator Model 3750 at 29°C 

under fluorescent lighting at 60 µmol m-2 s-1 in BG-11 medium (Rippka et al., 1979) supplemented with 

100 mmol TES buffer l-1 (pH 8.2).  Cultures were agitated once daily.  This collection allowed for a 

representative sample of the cyanobacteria phylum which could be tested and grown simultaneously at a 

single general mesophilic condition. 
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3.2.2 Cell Concentration Estimation 

In order to approximate yields from DNA isolation, an estimate of the cell concentration is required.  

Since cyanobacteria possess such diverse morphology, high-throughput methods such as flow cytometry 

cannot be utilized.  Instead, the traditional hand tallying via microscopy (ZWR Vistavision Inverted 

Microscope, 40x magnification) was performed.  To accomplish this task, a Hausser Scientific 

hemocytometer with improved Neubauer ruling (0.1 mm chamber depth) and hand tally counter (Fisher 

Scientific) was implemented.   The hemocytometer provides a ruled chamber of known volume from which 

the cells can be counted in order to estimate a cell density. 

Equation 1: Regression equation for cell concentration as a function of optical density at 730nm (x). 

𝐶(𝑥) [
𝑐𝑒𝑙𝑙

𝑚𝐿
] = 𝛽1𝑥 

These calculated concentrations were correlated to spectrophotometric absorbance targeting the 

far-red phytochrome (Pfr) at a 730 nm (OD730) wavelength using a Beckman Coulter DU730 UV/Vis 

spectrophotometer.  No-intercept linear regression (Equation 1) was performed using calculated cell 

concentrations as the dependent variable.  

Figure 13: Abbreviated phylogenetic tree of organisms used in this study.  Percentages depicted are of the 

relative number of taxonomic entries in the NCBI database compared to all classified entries of the parent 

node. 
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3.2.3 Growth Kinetic Modelling 

The estimation of a bacterial growth phase is important in many microbiological applications.  For 

example, when DNA is isolated during the exponential growth phase, many cells are undergoing DNA 

synthesis in preparation for cell division, which leads to higher mean DNA content per cell and 

subsequently higher yields (Figure 14).   

Growth data was recorded by measuring the OD730 at various time intervals for at least 3 biological 

replicates.  These readings were normalized to their respective initial OD730.  The natural log of this 

normalized OD730 was then plotted against time for modeling.  A simple logistic model with biologically 

relevant fitting parameters was obtained through an analogous derivation of Zwietering et al. (Equation 2) 

(1990). 

Equation 2: Logistic model for cell growth (Zwietering et al., 1990).  

y∞ – stationary phase value (t→∞); µm – maximum specific growth rate; λ – lag time. 

𝑙𝑛 (
𝑂𝐷730|𝑡
𝑂𝐷730|𝑡=0

) = 𝑦(𝑡) =
𝑦∞

(1 + 𝑒𝑥𝑝 [
4𝜇𝑚
𝑦∞

(𝜆 − 𝑡) + 2])
 

3.2.4 DNA Isolation 

Due to the diverse morphologies of cyanobacteria, a generalized DNA isolation method is not 

always applicable.  However, Neilan proposed a particularly practical general DNA isolation protocol 

Figure 14: Example bacterial growth phase depicting lag phase, exponential phase, and 

stationary phase.  The y-axis values are a measure of bacterial quantity and the x-axis 

values measure the fundamental dimension of time.  The cell death phase following 

stationary phase is not depicted. 
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(2002).  Six replicates of all cyanobacteria strains were subjected to this protocol with a minor modification 

(nucleic acid precipitation was performed in 0.2M NaCl final concentration).  All DNA isolates were 

analyzed via spectrophotometry using the Beckman Coulter NanoVette (0.2-mm path length) at 4 fixed 

wavelengths: 260nm, 280nm, and 230nm, and a 320nm background correction. 

3.3 Results 

3.3.1 Cell Concentration Estimation 

The hemocytometer measurements of the unicellular cyanobacteria were performed with no notable 

complications; however, the cell counts of the filamentous cyanobacteria (UTEX 1541, UTEX LB2340) 

proved more difficult.  In order to estimate the number of counted cells, an average cell length was 

correlated via microscopy (Zeiss AxioObserver, 40x magnification) using the estimated length of each 

filament versus its respective number of cells (Figure 15).  Then linear regression (no intercept) was 

performed in order to obtain an average cell length parameter.  The resultant parameters for UTEX 1541 

and UTEX LB2340 were 2.1(±0.45) and 6.0(±0.62) μm cell-1, respectively (α=0.05).  The regressor was 

then used to relate filament length measurements to cell count estimations.  Error introduced from the cell 

length correlation was propagated into subsequent calculations. 

UTEX 1037 proved even more difficult due to filament aggregation.  Each individual cell in this 

filamentous cyanobacterium is readily observed; however, an effective method of disaggregating the 

filaments without causing significant cell lysis remains to be found.  Repeated aspiration of sample using a 

25 gauge syringe was used in this work.  Due to the high difficulty of precisely quantifying the matting 

cyanobacteria, UTEX B1629 was assumed analogous to UTEX 1037 as these two strains have highly 

similar morphology and only order of magnitude estimates of cell concentration were necessary to perform 

DNA isolations. 
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Grouped measurements were first subjected to multiple comparisons testing, holding the family-

wise error rate to 0.05, in order to ensure each representative data point was significantly different than the 

others (Initial Measurement Groups, Table 4).  If these conditions were not met, measurements were pooled 

and analysis was repeated until all groups were significantly different from one-another (Significant 

Measurement Groups, Table 4).  All error from filament length correlation was propagated in estimation of 

the regressor, when applicable (β1, see Equation 1). 

Table 4: Statistical summary of each independent cyanobacteria cell concentration regression from Equation 1. All 

error was propagated for confidence intervals (±(1-α)CI).  α=0.05 

Strain β1 x10-6 Adj. R2 GInitial GSignificant OD730MIN OD730MAX 

PCC6803 85(±13) 0.66 5 4 0.065 0.82 

UTEX1037 25(±9.6) 0.49 10 3 0.053 0.81 

UTEX1541 10(±0.01) 0.74 5 5 0.026 0.65 

UTEXLB2340 15(±7.0) 0.48 4 3 0.093 0.35 

UTEX2434 180(±10) 0.83 7 7 0.067 0.66 

UTEX2470 170(±7.6) 0.83 7 7 0.049 1.0 

GInitial – Initial Measurement Groups; GSignificant – Significant Measurement Groups. 

3.3.2 Growth Kinetic Modelling 

Nonlinear regression was performed minimizing a sum-of-squares objective function using the 

Gauss-Newton method, held to the constraints that all parameters must be positive or zero.  If regression 

parameters were not statistically significant under 95% approximate confidence intervals, then regression 

was repeated on the nested model.  In other words, the insignificant parameter was omitted from the full 

model and the regression was reiterated.  These nested models were then compared using an F-test, 

Figure 15: Example average cell length measurements of UTEX1541 

(TOP) and UTEXLB2340 (BOTTOM) obtained using a Zeiss 

AxioObserver at 40x magnification. 
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accounting for regression sum of square error (RSS) and regression degrees of freedom.  A significance of 

0.05 was used in hypothesis testing and the full model was used as the null hypothesis. 

Table 5: Summary of the biologically relevant regressed parameters of the logistic model (Equation 2).  Parameters 

and approximate confidence intervals given (±(1-α)ACI). NS: Not Significant. α=0.05. 

Strain y∞ µm [day-1] λ [day] Δtexp [day] AIClog 

PCC6803 2.06(±0.06) 0.21(±0.01) NS 10 -638 

UTEX1037 1.05(±0.23) 0.07(±0.02) NS 15 -75.2 

UTEX1541 2.57(±0.12) 0.16(±0.01) NS 16 -240 

UTEXLB2340 0.62(±0.04) 0.12(±0.03) 0.8(±0.7) 7 -123 

UTEX2434 2.07(±0.06) 0.15(±0.01) NS 14 -120 

UTEX2470 1.83(±0.13) 0.13(±0.01) NS 14 -138 

y∞ – stationary phase value (t→∞); µm – maximum specific growth rate; λ – lag time;  

Δtexp – duration of exponential growth phase. 

It was observed that the growth kinetics were not well represented by the logistic model.  Since 

lag-time had proven to be negligible in most cases, a simple saturation model was investigated (Equation 

3).  An analogous derivation of biologically relevant fitting parameters was performed as before (Appendix 

A.4).  Akaike's Information Criterion (AIC) for sum-of-squares likelihood was used for non-nested model 

comparison.  Based on information-theory, AIC is a measure of the relative quality of a statistical model 

(Burnham & Anderson, 2002).  In this case, the AIC is proportional to the log of the RSS, so as RSS 

decreases (less residual error), AIC becomes more negative.  AIC comparisons can only be performed 

between similar strains. 

Equation 3: Saturation model for cell growth where lag time is insignificant (λ = 0). 

y∞ – stationary phase value (t→∞); µm – maximum specific growth rate; 

𝑙𝑛 (
𝑂𝐷730|𝑡
𝑂𝐷730|𝑡=0

) = 𝑦(𝑡) = 𝑦∞ (1 − 𝑒𝑥𝑝 [−
𝜇𝑚
𝑦∞

𝑡]) 

In each strain, the 2 parameter saturation model was a better fit than the 2 parameter logistic model 

(confer ΔAIC(sat-log) Table 6).   The 3 parameter model of 2340 was marginally better than the saturation 

model.  However, UTEXLB2340 and UTEX 1037 showed markedly higher variation in optical density 

measurements than the other strains most likely due to aggregation (non-uniform cell suspensions).  

Additionally, in some cases (PCC 6803, UTEX 2434, and UTEX 2470) the biologically relevant 

parameters were statistically different than those estimated with the logistic model based off of the 
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approximate confidence intervals.  A plot comparing the two models for the growth data in strain PCC 6803 

is shown in Figure 16. 

Table 6: Summary of the biologically relevant regressed parameters of the saturation model (Equation 2).  Parameters 

and approximate confidence intervals given (±(1-α)ACI). NS: Not Significant.  α=0.05. 

Strain No. y∞ µm [day-1] Δtexp [day] AICsat ΔAIC(sat-log) 

PCC6803 2.33(±0.06) 0.32(±0.01) 7 -867 -229 

UTEX1037 1.37(±0.69) 0.10(±0.04) 14 -75.4 -0.2 

UTEX1541 3.14(±0.09) 0.22(±0.01) 14 -382 -142 

UTEXLB2340 0.85(±0.22) 0.12(±0.03) 7 -122 1 

UTEX2434 2.54(±0.13) 0.20(±0.01) 12 -171 -51 

UTEX2470 2.13(±0.24) 0.19(±0.03) 11 -154 -16 

y∞ – stationary phase value (t→∞); µm – maximum specific growth rate;  

Δtexp – duration of exponential growth phase. 

 

Figure 16: Plot of the growth kinetic models for the same Synechocystis sp. PCC 6803 data set.  Comparison of logistic 

model on the left (Equation 2) and the saturation model on the right (Equation 3). Confidence and prediction intervals 

are depicted as red and black dotted lines respectively. Lines depicting relevant biological parameters are shown in 

blue (see Figure 14). 

3.3.3 DNA Isolation 

Spectrophotometric and agarose gel electrophoresis showed the DNA isolation protocol described in 

section 3.2.4 yields a sufficient quantity of DNA isolate for general molecular biological purposes.  The 

DNA isolate yields can be observed in Figure 17. 

However, the PCR genomic DNA quality assurance test, discussed in CHAPTER 4, indicated this 

method does not produce DNA isolate of high enough quality for general molecular biological purposes in 
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UTEX LB2340.  A method optimized for Arthrospira (alias Spirulina) was required for this particular strain 

(Morin, Vallaeys, Hendrickx, Natalie, & Wilmotte, 2010). 

 
Figure 17: DNA isolation yields (µg Mcell-1) of generalized protocol across applicable cyanobacteria strains. 

UTEX LB2340 is not depicted as it was determined to be of sufficiently low quality.  Error from cell concentration 

regression was propagated (see section 3.3).  Individual confidence intervals are depicted. (n = 6, α = 0.05) 

3.4 Summary 

It can be concluded that the specific absorbance (i.e., the amount of light, absorbed by a fixed number 

of cyanobacteria cells) at a wavelength of 730 nm, will vary from strain to strain.  Therefore, it is of the 

upmost importance to calibrate each strain individually when an experiments measurements are dependent 

on the cell count.  It can also be concluded that under these growth conditions, the simple saturation model 

describes the observed growth kinetics of these cyanobacteria.  Additionally, it can be concluded that most 

typical DNA isolation methods will work for a majority of cyanobacteria; however, more robust methods 

may be required for specific strains due to the cellular composition diversity observed in cyanobacteria. 
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CHAPTER 4. CYANOBACTERIA DNA CONTROL 

4.1 Chapter Preface 

This chapter details the development and testing of a cyanobacteria-specific PCR primer set for 

testing the quality of an arbitrary DNA isolation sample, a crucial element of Objective I (section 1.4).  

Much of this chapter has been reprinted from the original article in Letters in Applied Microbiology (C. E. 

Lane, Gutierrez-Wing, Rusch, & Benton, 2012). 

4.2 Introduction 

DNA-based techniques such as PCR are complicated when dealing with cyanobacteria, because 

cyanobacteria are morphologically diverse, and typical DNA isolation techniques are not always effective.  

Therefore, before PCR can be successfully used for cyanobacteria screening, verification that intact, 

genomic cyanobacterial DNA has been successfully isolated is a must. 

Traditionally in PCR, check primers are used to verify successful DNA isolation.  If a PCR primer 

binds successfully and amplification occurs, one can be confident that a valid template strand (often 

genomic DNA) is present.  Often, there is a single housekeeping gene used to generate check primers, 

thereby serving as a positive control for multiple strains within a given organism class.  For example, 18S 

rRNA genes are commonly used in yeast (Lantz, Stålhandske, Lundahl, & Rådström, 1999) and the 

glutamate decarboxylase and β-D-glucuronidase genes in E. coli (McDaniels et al., 1996).  Generally, 

housekeeping genes targeted in PCR include those encoding ribosomal RNA, actin, tubulin, ubiquitin, and 

elongation factors (Filby & Tyler, 2007; Garg, Sahoo, Tyagi, & Jain, 2010; Jain, Nijhawan, Tyagi, & 

Khurana, 2006). 

Check primers for the cyanobacteria phylum have been designed in one of two ways.  The first 

method is to target a gene or operon which is uniquely specific to the phylum of interest.  For example, in 

cyanobacteria the abundance of the phycobiliprotein phycocyanin (C-PC), one of two blue photosystem 

accessory pigments, aids chlorophyll a in energy harvesting in photosynthesis (Robert  MacColl, 1998).  In 
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the model cyanobacterium Synechocystis sp. PCC 6803, it is encoded by a five gene operon (Ughy & Ajlani, 

2004).  Two genes of importance (cpcA and cpcB) code for the phycocyanobilin-binding subunits (αPC and 

βPC respectively), while the other three genes code for rod linker polypeptides (Ughy & Ajlani, 2004).  The 

amino acid which binds the chromophore via thioester linkage is very well conserved (Cys84 in αPC) 

(Robert  MacColl, 1998).  This operon is found primarily in cyanobacteria, but also in some cryptophyta 

and rhodophyta plastids (Eriksen, 2008; Robert MacColl et al., 1999).  Neilan et al. have shown the α/β  

inter-genic spacer (IGS) is a novel region to investigate for phylogenetic classification of cyanobacteria due 

to its variability (1995).  However, they report heterogeneity in amplification products across cyanobacterial 

strains (500-740 bp product) and no amplification product in Nostoc punctiforme PCC 73102 and Nostoc 

commune NIES 24 despite multiple reaction conditions (Neilan et al., 1995). 

The second method targets a universal gene and achieves specificity through exploitation of 

cyanobacteria-specific consensus regions.  An excellent example is the 16S ribosomal RNA primer sets 

developed by Nübel et al. (1997).  The original intent of these sets, similar to those of Neilan and coworkers, 

was to show diversity within cyanobacterial populations using denaturing gradient gel electrophoresis 

(DGGE) of the PCR product fragments and for this purpose included up to 40-mer regions of GC-rich 5’ 

tails in up to 62 bp primer length (Nübel et al., 1997).  While the CYA359F/CYA781R(a and b mixture) 

set have been proven discriminant for cyanobacteria and plastids (Nübel et al., 1997), direct amplification 

using these primers have been shown to produce weak signal when investigated by Boutte et al. (2006).  As 

a consequence of this weak signal, it has become typical when using these primers to perform semi-nested 

PCR with additional oligos in order to increase the product amplification (Boutte et al., 2006; 

Lymperopoulou, Kormas, Moustaka-Gouni, & Karagouni, 2011).  It should be noted that a variation of the 

primer set developed by Nübel et al. has been proposed by McGregor and Rasmussen; however, to our 

knowledge, there has been no evidence of it recently being used as a cyanobacteria-specific PCR control 

(McGregor & Rasmussen, 2008).  Also, an oxyphotobacteria-specific 16S ribosomal RNA primer set has 

been proposed by Rudi et al. (1997). While they observed positive amplification in cyanobacteria, including 
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Nostoc, they too observed best results when performing semi-nested PCR (Rudi et al., 1997).  The two sets 

developed by Neilan et al. and Nübel et al. are among the most commonly used controls in cyanobacteria-

related PCR (Saker, Welker, & Vasconcelos, 2007; Vaitomaa et al., 2003). 

For high-throughput genetic screening and/or development of novel DNA isolation techniques for 

problematic strains, the primer sets described above have limitations when considered collectively.  For 

example, some sets have shown weak signals, which can lead to false negatives or inconclusive results.  

Although this weakness is sometimes overcome with semi-nested PCR, this also is not ideal since semi-

nested PCR requires two separate (non-tandem) reactions, a more expensive and time consuming process.  

Also, the sets have failed to detect certain species, limiting their utility as check primers for general 

cyanobacterial applications, especially with non-identified strains. 

To address some of the limitations associated with the check primers above, a new primer set was 

developed capable of detecting high quality cyanobacterial DNA in a single-step reaction, even when little-

to-no sequence information is available.  The proposed set amplifies the majority of the αPC coding gene 

(cpcA). 

4.3 Materials and Methods 

4.3.1 Consensus PCR Primer Design 

The primary structure for both αPC and cpcA from 22 various cyanobacteria were obtained from 

the NCBI RefSeq database (Sayers et al., 2009) and are listed in Appendix Table 2.  A multiple alignment 

on the αPC amino acid sequences was performed using ClustalW2 (Larkin et al., 2007) with Gonnet 

weighting matrices (Gonnet, Cohen, & Benner, 1992) to determine areas containing highly conserved 

residues.  Global alignment was chosen since the αPC sequences were highly related.  The complete cpcA 

ORF sequences were then manually aligned in GeneDoc (Nicholas & Nicholas, 1997) to obtain a CEMA.  

For the initial primer design, Primer3 (Rozen & Skaletsky, 2000) was used on the consensus sequence to 

obtain primers in locations of both high amino acid residue conservation and codon bias. The forward 
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primer required redesign by inspection and included deoxyinosine modified bases at positions of high 

degeneracy (Ohtsuka, Matsuki, Ikehara, Takahashi, & Matsubara, 1985).  Primer-BLAST was then 

performed with this detection set as an input and no specified template against the non-redundant 

cyanobacteria sequence library as a form of in silico PCR (Ye et al., 2012). 

Next, 35 reference sequences of the 18S SSU gene of various fungi, green plants, and cryptomonads 

were obtained and are listed in Appendix Table 3.  These nucleotide sequences were then aligned in 

ClustalW2.  This is an example of consensus primer design via the method described in section 2.8.1. The 

consensus sequence was then subjected to Primer-BLAST with cyanobacteria mispriming library and again 

for in silico PCR against Chlorophyta (Ye et al., 2012). 

4.3.2 PCR Conditions 

To test the cpcA detection capabilities across all organisms in this study, 50 μl reactions consisting 

of 1.25 U Taq polymerase (Invitrogen), 20 mmol l-1 Tris-HCl (pH 8.4), 50 mmol l-1 KCl, 2.0 mmol l-1 

MgCl2, 0.2 mmol l-1 dNTPs (ea.), 0.5 μmol l-1 each primer, and 50 ng DNA template were prepared in 200 

μl polypropylene tubes.  These reactions underwent one cycle of [94°C for 3:00], 32 cycles of [94°C for 

0:45, 53°C for 0:30, 72°C for 0:45], one cycle of [72°C for 10:00] and a final incubation at four centigrade 

in a Bio-Rad DNA Engine Peltier Thermal Cycler (model PTC0200). 

As a positive control for the presence of PCR-quality DNA template in E. coli, the gadA/B detection 

primer set described by McDaniels (McDaniels et al., 1996) was used in four 50 μl reactions with 2.0 mmol 

l-1 MgCl2. These reactions underwent one cycle of [94°C for 3:00], 30 cycles of [94°C for 0:45, 50°C for 

0:30, 72°C for 0:45], one cycle of [72°C for 10:00] and a final incubation at four centigrade. 

DNA extraction, amplification via PCR, and gel electrophoresis was performed at least twice for 

each species/primer combination tested. 
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4.3.3 Electrophoresis of PCR Products 

PCR products were verified via agarose electrophoresis.   Five microliters of each reaction product 

and one microliter of 6x Orange DNA Loading Dye (Fermentas #R0631) were loaded into a two percent 

low EEO agarose (US Biological #A1016) gel stained with 0.5 μg ml-1 ethidium bromide.  An electric 

tension of 50 V was applied for 10 min to set samples in the gel and immediately followed by 100 V for 60 

min in 0.5x TBE (Sambrook, 2001).  Visualization was performed with a UVP Bioanalyzer in conjunction 

with UVP Visionworks LS (v6.5.2) Acquisition and Analysis for product molecular weight and 

concentration estimation. 

4.4 Results 

4.4.1 Alignment and Oligonucleotide Primer Results 

The ClustalW2 multiple sequence alignment of the accessed sequences for αPC (Appendix Table 2) 

showed high conservation with limited gaps (Figure 19).  Use of conserved areas allowed for the design of 

primers producing expected products of virtually equal length throughout these sequences (G. violaceus 

being the only exception, with a six bp gap) whose 5’ termini locations are 0 and 423 with respect to 

cpcASyn6803.  The amplified region includes the Cys84 phycocyanobilin-binding residue codon.  Since single 

degeneracy was desired, some mismatching occurs within the annealing region.  The mean number of 

mismatches over the 22 sequences was calculated (omitting modified bases) to be 1.45 for cpcA-F2, 2.50 

for cpcA-R1, and 3.95 for the set.  The multiple alignment and respective CEMA for the cpcA-F2 region 

for αPC/cpcA is shown in Figure 19. 

Even under lax conditions in Primer-BLAST, the 18S detection set showed no potential mispriming 

of expected length in cyanobacteria. The overwhelming majority of expected in silico products were 550-

560 bp in length.  The forward and reverse primer 5’ termini locations are 894 and 1450 with respect to the 

S. cerevisiae accession sequence (Z75578.1). 
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4.4.2 PCR Optimization  

Under more specific reaction conditions during preliminary testing, cpcA was detected in all 

cyanobacteria strains with the exception of the currently un-sequenced Plectonema sp.  Optimization was 

performed to maximize the amplification of cpcA product in this strain.  The reaction products were 

subjected to typical gel quantitation with the results depicted in Figure 18.  As expected, some mispriming 

did occur under low annealing temperature and high salt concentrations (indicated in Figure 18 by *). 

Optimal conditions were used in all cpcA experiments and can be found in section 4.3.2 or 

abbreviated in Table 7. 

 Table 7: Sequences of the primers designed and abbreviated reaction conditions utilized. 

Oligo  PCR Conditions 

Primer Sequence TAnneal [°C] Mg++ [mM] Ncycles 

cpcA-F2 ATGAAAACCCCICTIACIGAAG 
53.0 2.00 32 

cpcA-R1 ACCGTGGTTAGCTTTGATGT 

18SrDNA-F1 TGTCAGAGGTGAAATTCTTGGA 
50.0 1.50 30 

18SrDNA-R1 ACATCTAAGGGCATCACAGACC 

 

 
Figure 18: Resulting cpcA detection set PCR amplification products (8 μl from 50 μl reactions) from UTEX 1541 

approximation of band mass from gel electrophoresis quantitation. 

*Denotes non-negligible mispriming observed. 

 †55°C and 57°C were also tested under same Mg++ gradients and no products were observed (not depicted). 
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Figure 19: ClustalW2 multiple sequence alignment of αPC from the cyanobacteria sequences obtained through NCBI and listed in Appendix Table 2.  A 

codon-equivalent alignment (CEMA) for the cpcA gene was produced in GeneDoc (Nicholas & Nicholas, 1997) to obtain regions of high codon bias.  

Primers were designed off of this CEMA in areas of high conservation.  The cpcA-F2 (forward primer) region of the CEMA is shown (cpcA-F2 sequence 

is shown below) with respect to position of the αPC multiple alignment. 
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4.4.3 PCR Amplification Results 

Electrophoresis results of the PCR products confirmed cpcA detection in cyanobacteria strains, as 

observed in (lanes 2-6, Figure 20, cpcA).  No amplification was observed in any non-cyanobacteria, as 

observed in (lanes 8-10, Figure 20, cpcA).  Under these conditions, we estimated the amplified cpcA PCR 

products final concentrations to be between nine and 20 ng μl-1 via gel quantitation.  The PCR results for 

the 18S detection showed no amplification in cyanobacteria (lanes 2-6, Figure 20, 18S) and E. coli (lane 

10, Figure 20, 18S) as was expected for prokaryotes.  Positive detection was observed in S. cerevisiae (lane 

9, Figure 20, 18S) and Chlorella vulgaris (lane 8, Figure 20, 18S) at the expected band lengths with final 

product concentrations of 10 and five ng μl-1 respectively.  Additionally, no other products were observed 

for these two strains.  The E. coli gadA/B control showed positive results for quadruplicate reactions (data 

not shown). 

It should be noted that successful amplification of homologous products were also observed in 

cyanobacteria strains Arthrospira maxima UTEX LB2342 (CS-328), Microcoleus vaginatus PCC 9802 

(FGP-2), Microcystis aeruginosa NIES-843, Synechococcus leopoliensis UTEX 2434, Synechococcus sp. 

PCC 9742, and Synechocystis sp. UTEX 2470 in subsequent experiments (CHAPTER 5). 

4.5 Discussion 

Cyanobacteria show much potential in driving down the production costs of many ecologically sound 

bioproducts.  However, due to the low yields currently observed from products produced by these 

microorganisms improvements are needed before these processes can be considered economically sound.  

The difficulties associated with the high-throughput screening process make a robust check primer set 

prerequisite.  Here, we have demonstrated the effectiveness of such a primer set.  

Through the multiple alignment of a large population of cyanobacteria sequences, a detection primer 

set with single degeneracy was shown to amplify the cpcA target sequence specifically in 5 different 

cyanobacteria from 3 different classes.  Three cyanobacteria (Synechocystis sp., N. punctiforme, and S. 

platensis) with known sequences for this gene were tested and successful detection was observed with as 
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high as 4 mismatches in the set.  Notably, the primers were successful at N. punctiforme amplification, 

where other primers had failed on similar strains (Neilan et al., 1995).  This set has the potential to be a 

valuable tool in the future high-throughput screening of cyanobacteria that the high-production bio-

commodity field desperately requires.  The cpcA detection primer set was demonstrated to be a robust tool 

for the detection of cyanobacterial DNA of adequate quality for routine molecular biology purposes. For 

axenic and unicyanobacterial cultures, the cpcA set alone is sufficient and recommended in regards to a 

DNA control.  However the two sets proposed in this paper combined possess a wider variety of uses than 

just high throughput DNA control. 

 

Figure 20: Brightfield microscopy images and agarose electrophoresis (2% standard agarose, 0.5 μg ml-1 ethidium 

bromide stain, 0.5xTBE) results of 5 μl of each PCR amplification products using the primer sets developed in this 

work.   The first set (cpcA) detects the phycocyanin alpha-subunit coding gene and the second set (18S) 18S ribosomal 

RNA coding sequence (n = 2). 

Lanes:   (M) 5 μl 100bp O’GeneRuler DNA ladder, (1) Synechocystis sp. PCC 6803, (2) Plectonema sp. UTEX 1541, 

(3) Nostoc muscorum UTEX 1037, (4) Nostoc punctiforme UTEX B1629, (5) Spirulina platensis UTEX LB2340, 

(M), (6) Chlorella vulgaris, (7) Saccharomyces cerevisiae BY4741, (8) Escherichia coli DH5α. 

*E. coli positive control performed in quadruplicate using gadA/B amplification primers (McDaniels et al., 1996). 

(data not shown) 

The result of cpcA+/18S+ could have multiple initial conditions since it only detects the presence of 

eukaryotic DNA, which could result in axenic algae cultures, mixed cultures of algae and cyanobacteria, 

and cyanobacteria with non-algae eukaryotic contamination (e.g., fungi).  As a consequence, the primer 

sets proposed in this study could further be implemented in isolation of cyanobacteria from environmental 
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samples containing higher algae and other various eukaryotes such as the many common fungal 

contaminants.  Implementation of this isolation procedure would involve a combination of streak plating 

and colony PCR in conjunction with traditional microscopy.  This could ensure with higher degree of 

confidence than microscopy alone that a colony lacks any eukaryotic organisms.  This pair of primer sets 

could be a valuable tool for any field of research involving environmental samples of cyanobacteria, such 

as the screening of toxic cyanobacteria in potable waters. 

The cpcA controls could streamline many high-throughput methods involved in cyanobacteria 

research that will become more important in the near future as the interest in these unique organisms is 

consistently increasing.  The current production capabilities of these organisms with respect to bioindustrial 

products of high value, has yet to approach their production potential.
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CHAPTER 5. PCR-BASED PHA SYNTHASE DETECTION 

5.1 Chapter Preface 

This chapter presents the realization of Objective I (section 1.4) and includes the work originally 

published in Molecular and Cellular Probes (Courtney E. Lane & Benton, 2015).  An additional section 

has been appended to expand upon the subject using the computer application described in CHAPTER 6. 

5.2 Introduction 

A biological alternative to petroleum-based polymers, polyhydroxyalkanoates (PHAs) encompass 

a diverse class of biodegradable polyesters capable of mitigating the ecological consequences in meeting 

the ever-growing demand for plastic commodities.  This polymer class is well-studied and many 

informative reviews are available (Anderson & Dawes, 1990; Rehm, 2007; K. Sudesh, Abe, & Doi, 2000).   

Currently, PHA production research is focused mainly on recombinant or native heterotrophic 

microorganism bioprocesses (Agnew et al., 2012; Atlić et al., 2011; Breuer et al., 2002; Kahar et al., 2004; 

RamKumar Pandian et al., 2010; A. Singh & N. Mallick, 2009).  The industrial applicability of 

chemoheterotrophic processes is limited by the high production costs associated with the external carbon 

source (Bengtsson et al., 2010; Choi & Lee, 1999).  The use of agricultural/industrial wastes and other low-

cost carbon sources improves carbohydrate feedstock costs but unfortunately either compromises 

productivity or demands unit operation redesign (e.g., recycle) (Ienczak et al., 2013).  A photoautotrophic 

PHA bioproduction process can exploit a phototroph’s inherent photosynthetic carbon-fixation ability to 

consume atmospheric carbon dioxide, water, and light energy in order to produce PHAs, eliminating the 

requirement of a carbohydrate feedstock and the related costs.  

Cyanobacteria are a diverse phylum of photoautotrophic prokaryotes inhabiting limnic and marine 

environments.  These microalgae are the sole prokaryotic native producers of PHA via oxygenic 

photosynthesis (Asada et al., 1999; Sharma et al., 2007), along with a variety of other value-added products 

(Abed et al., 2009; Ducat et al., 2011; Simmons et al., 2005; L. T. Tan, 2007), making them attractive 
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candidates for phototrophic PHA bioproduction.  Unfortunately, typical PHA accumulation observed in 

cyanobacteria under photoautotrophic growth is < 10% dry cell weight (DCW), if detected at all (Bhati et 

al., 2010; Ducat et al., 2011).  This is far lower than the yields observed in heterotrophic high-density 

processes which can approach 87% DCW (Ienczak et al., 2013).  However, Nishioka et al. demonstrated 

wild-type cyanobacteria strains are capable of exhibiting significantly higher yields – up to 55% DCW PHA 

during photoautotrophic cultivation (2001).  Functional diversity, including this large deviation in PHA 

accumulation, is not a rarity within Cyanobacteria (Garcia-Pichel et al., 1999).  With Cyanobacteria’s rich 

biodiversity, it is likely that there are undiscovered high-yielding cyanobacteria strains with PHA 

production capabilities rivaling those of the costly heterotrophs.  Finding such species out of potentially 

millions of possibilities is certainly a logistical challenge, especially when accounting for the tedious culture 

optimization each strain requires to obtain the unique conditions for maximum PHA production.  Since 

optimization is a laborious-but-necessary step, a high-throughput design implementing preemptive 

screening for strains ill-equipped for PHA production would greatly decrease avoidable costs. 

Traditional qualitative screening of PHA accumulation in cyanobacteria involves the staining of 

the intracellular granules with basic oxazine/oxazone dyes, typically Nile blue/red, which bind to the PHA 

granule and allow for visualization through epifluorescence microscopy (Ostle & Holt, 1982).  The 

fluorescent staining process first requires the growth of the isolate into the late-exponential phase (~10 

days), followed by nutrient-limiting cultivation (~15 days), meaning it could take a month before the 

staining and visualization have been completed (Jau et al., 2005).  It should be noted that the length of the 

nutrient deficient cultivation could potentially be shortened; however, cyanobacteria accumulate PHA at 

different rates (Bhati et al., 2010).  Therefore, the minimum time required before PHA accumulation could 

be detected via staining would be strain dependent, and an assay implementing an insufficient nutrient 

deficient cultivation period would risk an increased rate of type II error.  Since cyanobacteria have relatively 

slow growth rates (td ≥ 12 hr), an assay with a lower detection limit, with respect to number of cells, would 

better conform to the demands of a high-throughput assay.  PCR amplification is sensitive enough to detect 



 

58 

 

a single copy of a targeted DNA sequence, meaning the DNA of a single cell is sufficient in theory (Hahn 

et al., 2000).  Using PCR to detect a gene necessary for PHA production would greatly reduce the number 

of generations an isolate requires before it can undergo downstream optimization.  Such a process could 

efficiently decrease avoidable costs while advancing the attainment of a more environmentally friendly 

plastic production process.   

PHA biosynthesis can take many routes.  For example, in polyhydroxybutyrate biosynthesis the 

upstream precursors to the hydroxybutyryl-CoA monomers are formed from the acetylation and reduction 

of acetyl-CoA by β-ketothiolase (phaA) and acetoacetyl-CoA reductase (phaB) respectively.  Alternatively, 

medium chain length PHAs are typically formed utilizing fatty acid β-oxidation or de novo synthesis 

intermediates (Rehm, 2007).  The single committed step in this pathway is the polymerization of the 

hydroxyacyl-CoA thioester monomers by PHA synthase (Rehm, 2007; Steinbüchel & Lütke-Eversloh, 

2003).  It is also important to note that this enzyme is not the limiting factor in PHA accumulation in 

cyanobacteria.  Numata et al. have demonstrated that the activity of the Synechocystis sp. PCC 6803 PHA 

synthase is comparable to that of a high-yielding heterotroph – Ralstonia eutropha (Numata et al., 2015).  

This suggests that in a hypothetical high-yielding cyanobacteria, the determining factor will not be the 

synthase itself, but will likely involve upstream metabolic elements.  Some potential elements include the 

RNA Polymerase Sigma Factor SigE (Osanai et al., 2013) and nutrient dependent regulators (Hauf et al., 

2013; Schlebusch & Forchhammer, 2010). 

The PHA synthase protein family is divided into four major types (I – IV), under the basis of 

primary structure, subunit composition, and substrate specificity (Rehm, 2007).  The work of Hai et al. 

suggests that the PHA biosynthesis pathway in Cyanobacteria occurs in a widespread and general fashion, 

and only type III PHA synthases have been observed (2001).  Type III PHA synthases are a hetero-

multimeric sub-classification of polyester synthases consisting of two main subunits with relatively equal 

mass (~40 kDa), PhaC and PhaE, typically coded in a single operon (Rehm, 2007).  The type III PhaC 

subunit is capable of in vitro PHA polymerization in the absence of PhaE, albeit inefficiently (Müh et al., 
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1999), and exhibits higher degrees of conservation than its counterpart, making it the ideal target for PCR-

based PHA genetic characterization.  If the gene encoding PhaC, phaC, is not present within an organism, 

then the organism is incapable of polymerizing PHA through any known mechanism. 

In this work a simple and rapid PCR-based phaC detection assay was developed.  Following an 

extensive sequence analysis of 29 cyanobacteria phaC sequences, a single low-degeneracy primer set was 

designed within regions of high conservation.  This method of design was implemented in order to increase 

the probability of amplifying unknown sequences, while reducing the intrinsic probability of non-specific 

amplification associated with high-degeneracy primer sets.  Such a design allows for the simultaneous 

testing of multiple cyanobacteria strains with minimal strain-dependent reaction alterations.  In order to 

demonstrate how the presence of the phaC gene has the potential to be a good indicator for the ability to 

accumulate PHA, the PCR-based assay was then tested against five cyanobacteria strains alongside 

traditional staining methods.  Next, a high-throughput screening assay was developed in the form of 

colony/quick prep PCR, which was then tested against nine diverse strains of cyanobacteria.  This assay 

will help to rapidly categorize cyanobacteria as either potential producers or non-producers of PHA and is 

a major step in attaining a more economically-viable strain of cyanobacteria for the design of a carbon-

neutral PHA production process. 

5.3 Materials and Methods 

5.3.1 Bacterial Strains and Media 

Plectonema sp. UTEX 1541, Spirulina platensis UTEX LB2340, Synechococcus leopoliensis 

UTEX 2434, Synechocystis sp. PCC 6803 as donated by Terry Bricker, and Synechocystis sp. UTEX 2470 

were cultivated in a Forma Scientific Plant Tissue Culture Incubator Model 3750 at 29°C under constant 

fluorescent lighting (60 µmol m-2 s-1) in BG-11 medium (Rippka et al., 1979) supplemented with 

100 mmol l-1 2-[tris(hydroxymethyl)methylamino]-1-ethanesulfonic acid (TES) buffer (pH 8.2).  Cultures 

were agitated once daily. 
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5.3.2 Nucleic Acid Isolation 

Total DNA was isolated from PCC 6803, UTEX 1541, UTEX 2434, and UTEX 2470 using a 

slightly modified DNA isolation method originally designed for Saccharomyces cerevisiae through 

mechanical lysis (Harju, Fedosyuk, & Peterson, 2004).  An additional chloroform/isoamyl alcohol (24:1) 

separation step was added to this protocol and performed on all of these isolates.  An alternative method of 

DNA isolation, which was optimized for the Arthrospira (Spirulina) genus, was used for UTEX LB2340.  

This DNA isolation protocol included both mechanical and enzymatic lysis steps (Morin et al., 2010).  All 

DNA template samples were analyzed through spectroscopy (Beckman Coulter, DU730; NanoVette, 

A44097). 

5.3.3 Synthetic Oligonucleotide Primers 

Primers were designed utilizing methodology from previous works (C. E. Lane et al., 2012) applied 

to the sequence accessions listed in the appendix (Appendix Table 4).  The primer sequences used in this 

study were 5’-GGGATGTCTATTTGATTGAYTGG and 5’-GGTCGGGACTATCAAAAATCCA for the forward 

(phaC(3.1)-F) and reverse (phaC(3.1)-R) primers respectively.  The reported melting temperatures were 

52.5°C for phaC(3.1)-F and 54.7°C for phaC(3.1)-R (Integrated DNA Technologies).  The forward and 

reverse primer annealing regions correspond to positions 344-366 and 805-826 of the Synechocystis sp. 

PCC 6803 accession (CP003265.1: (933155..933177, 933616..933637)).  The standard free-energy 

deviations (ΔG°37°C,1M NaCl) of annealing were calculated using nearest neighbor thermodynamics for the 

longest consecutive complementary sequence of each primer-accession pair.  The calculated values were 

then normalized against the sum of the complementary standard free-energy of annealing of the primers 

(perfect annealing, 100%) (SantaLucia, 1998).  The normalized deviation in free-energy was used to 

represent the relative annealing ability of the primer set to each sequence in the alignment. 

5.3.4 Standard PCR Amplification 

Each 50 μl phaC detection reaction was prepared in a 200 μl polypropylene tube and consisted of 

1.25 U Taq polymerase (Invitrogen, 10342), 20 mM Tris-HCl (pH 8.4), 50 mM KCl, 1.5 mM MgCl2, 

http://www.ncbi.nlm.nih.gov/nuccore/CP003265.1
http://www.ncbi.nlm.nih.gov/nuccore/451779298?report=fasta&from=933155&to=933177
http://www.ncbi.nlm.nih.gov/nuccore/451779298?report=fasta&from=933616&to=933637


 

61 

 

0.2 mM dNTPs (ea.), 1.0 μM phaC(3.1)-F,  0.5 μM phaC(3.1)-R, and approximately 50 ng DNA template.  

Annealing temperature optimization was performed using PCC 6803, UTEX LB2340, and UTEX 1541 

DNA templates.  After the annealing temperature was determined, each reaction underwent an initial 

denaturation [94°C for 3:00], 32 thermal cycles [94°C for 0:45, 54°C for 0:30, 72°C for 0:45], a final 

elongation [72°C for 10:00], then maintained at 4°C in a Peltier thermal cycler (Bio Rad, PTC0200) until 

storage at 4°C.  As a DNA quality control, all DNA isolates were checked for amplification using the 

phycocyanin α-subunit, cpcA, detection primer set previously described (C. E. Lane et al., 2012). 

5.3.5 Electrophoresis of Standard PCR Product 

Five microliters of each reaction product and one microliter of 6x Orange DNA Loading Dye 

(Fermentas, R0631) were loaded into a two percent standard agarose (US Biological, A1016) gel stained 

with 0.5 μg ethidium bromide ml-1.  Five microliters of 100 bp O’GeneRuler DNA ladder (Fermentas, 

SM1143) was used for each molecular weight marker.  Visualization was performed with a UVP 

Bioanalyzer and UVP Visionworks LS Acquisition and Analysis (v6.5.2). 

5.3.6 Standard PCR Product Sequence Confirmation 

The respective biological replicates were combined for each strain that successfully amplified with 

the phaC detection set and the pooled reaction was then purified using a DNA cleanup micro kit (Thermo 

Scientific, K0831).  Each of these pooled samples was then subjected to DNA sequencing using the Applied 

BioSystems BigDye Terminator (v3.1) on an ABI Prism 3130 using both primers independently.  The 

consensus of the two sequencing runs, not including the primer regions, was then deposited into GenBank 

when it represented a unique variant of the phaC partial coding sequence (Benson et al., 2009). 

5.3.7 Nutrient-Limited Growth 

Three BG-11 media variants were used for nutrient-limited growth.  For nitrogen-limited 

conditions, BG-11 was prepared with sodium nitrate omitted.  For phosphate-limited conditions, BG-11 

consisting of  5 mg dipotassium phosphate l-1 was used (Sharma et al., 2007).  For both nitrogen-limited 



 

62 

 

and phosphate-limited conditions, media was prepared using both conditions above.  All nutrient-limiting 

media were supplemented with 0.17% (w/v) sodium acetate as carbon source to accelerate accumulation 

(Sharma et al., 2007).  Cyanobacteria strains were first washed and transferred from the normal medium to 

the 3 nutrient-limited media types in triplicate (n = 3) during exponential growth phase and cultured 

5-10 days before sample collection and staining. 

5.3.8 PHA Granule Visualization 

Samples were heat-fixed and subjected to a Nile blue A fluorescent stain (Ostle & Holt, 1982) and 

visualized via epifluorescence microscopy (Zeiss AxioObserver.Z1) using filter-set 20 (excitation: BP 

546/12, beam splitter: FT 560, emission: BP 575-640).  Images were recorded using an Axiocam MRm. 

5.3.9 Gas Chromatography-Mass Spectroscopy Confirmation 

Cells grown under nutrient limiting conditions were acetone dried and subjected to methanolysis 

using a mixture of equal volumes of chloroform and acidified methanol (15% (v/v) sulfuric acid) and then 

heated to 100°C for 2 hours.  Hydroxyalkanoate methylester content was assessed as described in Tan et 

al. (2014). 

5.3.10 Colony/Quick Prep PCR 

To demonstrate the use of PCR as a high-throughput screening method, whole cell PCR 

amplification was utilized.  Additional genotyped strains were procured in order to further test the 

robustness of the primer sets while developing this assay.  Arthrospira maxima UTEX LB2342 (CS-328), 

Microcoleus vaginatus PCC 9802 (FGP-2) as donated by Ferran Garcia-Pichel, Microcystis aeruginosa 

NIES-843 as donated by Christopher Gobler, and Synechococcus elongatus PCC 7942 as donated by Terry 

Bricker were all obtained for testing in addition to UTEX 1541, UTEX LB2340, UTEX 2434, UTEX 2470, 

and PCC 6803. 

In addition to standard colony PCR, a method of quick template preparation was developed.  First, 

samples were extracted (≤1 ml of OD730nm~0.6) and cells were centrifuged at 10,000xg for five minutes to 
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obtain a pellet approximately one millimeter in diameter.  Next, cells were washed in 200 µl TE buffer (pH 

8.0) and pelleted again.  Cells in the wet pellet were then mechanically lysed via micropipette in 10 µl 

dimethyl sulfoxide (DMSO).  90 µl of TE buffer (pH 8.0) was then added, well mixed via pipette, and the 

solution was centrifuged at 18,000xg (maximum) for five minutes to remove insoluble debris.  The clarified 

lysate was then transferred to a fresh tube and used directly in amplification reactions as template.  The 

clarified lysate was stored at −20°C. 

PCR amplification was performed as described in the standard PCR methods section; however, the 

number of thermal cycles was increased from 32 to 35 for both cpcA and phaC reactions.  The 

amplifications were carried out using whole cells, one, five, or 10 µl of the clarified cell lysate as template.  

10 µl of the unpurified reactions were visualized via one percent agarose gel electrophoresis using five 

microliters of GeneRuler 1kb plus (Life Technologies, SM1333) as standard. 

5.4 Results 

5.4.1 PhaC Multiple Sequence Alignment 

To investigate the level of conservation of the PHA synthase PhaC subunit within Cyanobacteria, 

the primary protein structures of 29 cyanobacteria (see Appendix Table 4) were globally aligned using 

Clustal Ω (Goujon et al., 2010; Sievers et al., 2011).  The full alignment, with relevant annotations, is 

available in the appendix (Appendix Figure 1, A.7).  256 residue positions within the alignment showed 

conservation, with 155 of those positions showing identity-level conservation.  As expected, the alignment 

showed little N-terminus conservation, high C-terminus conservation.  The catalytic lipase-like box region 

(Rehm, 2007) (AGF51119.1:162..166) showed high conservation (G[I|V]CQG) throughout all 

sequences.  The “Cyanobacterial box” described by Hai et al. (AGF51119.1:203..212) also exhibited 

conservation, although it was observed that both ends of this region contained positions with low levels of 

conservation (2001).  In comparison with a previous alignment of 59 polyester synthase sequences from 

various organisms including one cyanobacterium (Synechocystis sp. PCC 6803) (Rehm, 2003), only amino 

http://www.ncbi.nlm.nih.gov/protein/451780150
http://www.ncbi.nlm.nih.gov/protein/451780150?report=fasta&from=162&to=166
http://www.ncbi.nlm.nih.gov/protein/451780150
http://www.ncbi.nlm.nih.gov/protein/451780150?report=fasta&from=203&to=212
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acids AGF51119.1: 205..209 bounded the cyanobacteria-specific insertion in the other type III PHA 

synthase sequences.  This subregion remained well conserved (GC[S|T][L|I]G).  This primary protein 

structure alignment, along with each respective genetic coding sequence, was used to generate a codon-

equivalent multiple alignment. 

5.4.2 phaC Codon-Equivalent Multiple Alignment and Primers 

Using the coding sequences (Appendix Table 4) a codon-equivalent multiple alignment was 

generated in order to design a generalized set of primers.  The full alignment, with relevant annotations, is 

available in the appendix (Appendix Figure 2, A.8).  415 positions within the alignment were completely 

conserved throughout all sequences.  The 3’ end of phaC(3.1)-R complemented a tryptophan codon which 

is believed to be involved in protein-protein interaction and was completely conserved throughout all 59 

polyester synthase sequences of the Rehm alignment (Rehm, 2003). Within the alignment, the total number 

of mismatches ranged from 2-11 with a mean of 5.  All of the mismatches occurred at least 6 nucleotides 

from the 3’ end of phaC(3.1)-F and at least 5 nucleotides from the 3’ end of phaC(3.1)-R.  The average 

relative annealing ability was found to be 61% and ranged from 21-91%.  The Synechocystis sp. PCC 6803 

sequence (CP003265.1) possessed 5 total mismatches within the primer set and 60% of the relative 

annealing ability, placing it in the 31st percentile of the sequences (i.e., 69% of the sequences in the 

alignment had a higher relative annealing ability). 

5.4.3 Standard PCR 

Strains PCC 6803, UTEX 1541, and UTEX LB2340 were chosen for initial testing as these strains 

have known PHA production capabilities (Bhati et al., 2010; Hein, Tran, & Steinbüchel, 1998; Jau et al., 

2005).  In order to establish effective PCR amplification conditions, the cyanobacteria DNA isolates from 

UTEX 1541, UTEX LB2340, and PCC 6803 were used to optimize the annealing temperature.  The product 

concentrations were estimated through gel quantitation.  Undesired product formation occurred in the 

negative control (UTEX 1541) reactions only at annealing temperatures below 48°C; this artifact was 

approximately 360 bp in length and can be observed in Figure 21.  Both PCC 6803 and UTEX LB2340 

http://www.ncbi.nlm.nih.gov/protein/451780150
http://www.ncbi.nlm.nih.gov/protein/451780150?report=fasta&from=205&to=209
http://www.ncbi.nlm.nih.gov/nuccore/CP003265.1
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product formation followed comparable trends in desired product concentration at temperatures above 

48°C, and the mean results are depicted in Figure 21.  The experimental reaction annealing temperature 

selected was 54°C.  The triplicate amplification results for UTEX 1541, UTEX LB2340, and PCC 6803 at 

these conditions can be observed in the right column of Figure 22 (a), (b), and (d) respectively.  UTEX 1541 

exhibited no amplification using the phaC detection primers, but showed positive amplification for the cpcA 

detection control.  Both UTEX LB2340 and PCC 6803 exhibited positive amplification for both phaC and 

cpcA primer sets.  The phaC product sequence of PCC 6803 confirmed the entirety of the expected accessed 

sequence.  The phaC product sequence of UTEX LB2340, deposited under accession KR824842, was 

compared to the accession for strain NIES-39 and was confirmed with 11 single nucleotide discrepancies.  

Alignment of the translations from the experimental UTEX LB2340 and accessed NIES-39 sequences 

revealed only two of the single nucleotide polymorphisms would result in missense mutations (V200I and 

I202V).  The characteristic lipase-like box region was confirmed for both phaC amplification product 

translations. 

5.4.4 PHA Visualization 

In order to verify PHA production capabilities, strains were subjected to nutrient-limited growth 

and fluorescent staining.  A representative Nile blue A staining and visualization of UTEX 1541, 

UTEX LB2340, and PCC 6803 can be observed in the center column of Figure 22 (a), (b), and (d) 

respectively.  PHA accumulation was not observed in UTEX 1541 under any of the conditions.  PHA 

accumulation was exhibited in UTEX LB2340, and PCC 6803 under all three conditions.  The presence of 

methyl 3-hydroxybutanoate in UTEX LB2340 and PCC 6803 was confirmed through gas chromatography-

mass spectroscopy (Appendix Figure 3, A.9). 

5.4.5 Screening of Unknowns 

In the interest of testing the efficacy of a PCR-based PHA detection assay, two cyanobacteria in 

which PHA synthase presence, sequence information, and activity were unknown were assayed.  PCR was 

performed on UTEX 2434 and UTEX 2470 at the conditions described in Materials and Methods.  Product 
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amplification of the positive genomic control, cpcA, was observed in both strains.  The type III PHA 

synthase phaC detection primer set failed to amplify in UTEX 2434, but successfully amplified in 

UTEX 2470 (Figure 22 (c) and (e), right column).  The phaC product sequence of UTEX 2470, deposited 

as KR824841, was compared to the accessed sequence of PCC 6803 and 47 discrepancies occurred out of 

438 residues.  Alignment of the translations from the experimental UTEX 2470 and the accessed PCC 6803 

sequences revealed five polymorphisms (N144T, I148V, D179E, G197S, and G255E).  Upon comparison 

with the PhaC multiple sequence alignment, the N144T mutation of UTEX 2470 is the first non-asparagine 

residue observed in this position.  The characteristic lipase-like box was confirmed within the detected 

UTEX 2470 PCR product.  The PHA granule visualization experiment revealed no detectable PHA 

accumulation in UTEX 2434 under any conditions.  PHA accumulation was observed in UTEX 2470 for 

all nutrient-limiting media types (Figure 22 (c) and (e), center column).  The presence of methyl 

3-hydroxybutanoate in UTEX 2470 was confirmed through gas chromatography-mass spectroscopy 

(Appendix Figure 3, A.9). 

5.4.6 Colony/Quick Prep PCR 

During the initial testing of the colony PCR protocol, it was determined that the number of thermal 

cycles needed to be increased by three in order to obtain yields comparable to those we found in 

amplification of high quality DNA isolates.  Once the number of cycles had been determined, the colony 

PCR experiments were performed simultaneously for a given strain.  The cpcA PCR amplification of whole 

cells unexpectedly failed in multiple cases (UTEX 1541, UTEX 2434, and UTEX LB2340), and there were 

similar unexpected failures for phaC whole cell amplification (UTEX LB2340, UTEX 2470, and 

PCC 6803).  PCR amplification using 1 µl of the DMSO/TE clarified lysate exhibited more replicable 

results than the whole cells, but still exhibited a single unexpected failure (NIES-843). 
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A significant improvement in the reliability of the assay was observed with an increase in the 

amount lysate template added to the reaction.  PCR amplifications using both five and 10 µl of the 

DMSO/TE lysate showed no unexpected failures.  The mean PCR product concentrations for these reactions 

can be observed in Figure 23 and electrophoresis images can be found in the appendix (Appendix Figure 4, 

A.10).  There was no undesired byproduct formation, aside from primer-dimers, observed across all nine 

of the cyanobacterial genomes as can be observed in the appendix. 
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Figure 21: (LEFT) Mean phaC(3.1) amplification product concentrations from Synechocystis sp. 

PCC6803 and Spirulina platensis UTEX LB 2340. Shaded bars depict conditions which undesired 

byproduct formation was observed.  Confidence intervals on pooled variance are depicted (α = 0.10). 

(RIGHT) Agarose gel electrophoresis (two percent standard agarose, 0.5 µg ml
-1

 ethidium bromide stain, 

0.5xTBE) of 6 µL of the raw PCR phaC detection primer set amplification product at an annealing 

temperature (T
A
) of 44°C.  

Lanes: 
(M) Low DNA Mass Ladder (Invitrogen, 10068-013), (1) Synechocystis sp. PCC 6803, (2) Spirulina 

platensis UTEX LB2340, (3) Plectonema sp. UTEX 1541. 
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Figure 22: (LEFT and CENTER) Brightfield microscopy images (left) and epifluorescence microscopy 

images (center) of cyanobacteria stained with Nile blue A and grown in nutrient-limiting medium for PHA 

granule detection.  Scale bar represents 5 µm.  

(RIGHT) Agarose gel electrophoresis (2% standard agarose, 0.5 µg ml-1 ethidium bromide stain, 0.5xTBE) 

of 5 µL of each PCR amplification product using the primer set developed in this work for three samples 

(n = 3) (1-x, 2-x, 3-x) in triplicate for each respective cyanobacteria. 

 

Lanes: (M) 5 µL of 100 bp O’GeneRuler DNA ladder, (y-1) cpcA control primer set, (y-2, y-3, y-4) phaC 

detection set developed in this work. 

 

Rows: (1541) Plectonema sp. UTEX 1541 (2340) Spirulina platensis UTEX LB 2340, (2434) Synechococcus 

leopoliensis UTEX 2434, (6803) Synechocystis sp. PCC 6803,  

(2470) Synechocystis sp. UTEX 2470. 
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5.5 Discussion 

The analysis of the type III PHA synthase PhaC subunit multiple sequence alignment showed high 

conservation in these enzymatic subunits throughout the characterized cyanobacteria.  The conservation 

observed in the alignment is further support to the claims of Hai et al. that this enzyme class is widespread 

and general in PHA-accumulating cyanobacteria.  The cyanobacteria-specific insertion, which was first 

described with four cyanobacteria sequences, was further analyzed with 29 sequences and proved to remain 

well conserved. 

The results from the PCR-based assay were in agreement with the results observed in the traditional 

staining method, indicating that the presence of the phaC gene shows some merit in being a potential 

indicator of PHA accumulation abilities in cyanobacteria.  The confirmed positive detection of phaC in 

PCC 6803 showed that this low degeneracy primer set is quite robust, since the majority (69%) of the 
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Figure 23: (LEFT) Mean PCR amplification product concentrations from the nine cyanobacteria strains tested 

using various template DNA sources from this study. Shaded bars depict conditions which unexpected 

failures were observed.  Confidence intervals are depicted (α = 0.05). (RIGHT) Agarose gel electrophoresis 

(one percent standard agarose, 0.5 µg ml-1 ethidium bromide stain, 0.5xTBE) of 10 µL of the raw colony 

PCR amplification products of Synechocystis sp. PCC 6803.  Note that volumes associated with DMSO/TE 

describe the amount of lysate used as PCR template and do not denote volume loaded into gel. 

Lanes: 

(M) 5 µL GeneRuler 1kb plus DNA ladder, (1) WC cpcA, (2) 1 µL DMSO/TE cpcA, (3) 5 µL DMSO/TE 

cpcA, (4) 10 µL DMSO/TE cpcA, (5) WC phaC, (6) 1 µL DMSO/TE phaC, (7) 5 µL DMSO/TE phaC, (8) 

10 µL DMSO/TE phaC. 

WC – whole cells. 
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sequences within the alignment had a higher relative annealing ability.  It should also be noted that the 

successful amplification of NIES-843 suggests this primer set should be viable for the 12 other 

Microcystis species in the phaC alignment because all of these accessed sequences possess identical primer-

template annealing regions to NIES-843.  Together, these conclusions suggest that this rapid PCR assay 

would make a worthwhile addition to any cyanobacteria PHA accumulation capability assay in order to 

greatly decrease avoidable costs in downstream optimization. 

The DMSO/TE method of quick preparation for colony PCR proved far more reliable than whole 

cell colony PCR amplification, especially when using five or 10 µl for template.  Additionally, the 

DMSO/TE method of preparation provides approximately 20x 50 µl-reactions-worth of testable DNA 

template, meaning this assay could be expanded with more primer sets to simultaneously test for other key 

PHA metabolism associated genes/regulatory sequences of interest as they are discovered. 

Algae strain isolation can be a difficult and time consuming task which is typically accomplished 

by serial dilution and plating (Yeesang & Cheirsilp, 2011).  This PCR assay could be implemented on small 

polyalgal colonies to detect if any of the algae possess the phaC gene and warrant further isolation steps.  

Since this PCR assay is inherently sensitive, it could be a valuable tool in the very early in the stages of 

strain isolation. 

Following the discovery of desirable PHA producing cyanobacteria, typical culture condition 

optimization could improve PHA yields.  Genetic modification could also be employed since some 

cyanobacteria have proven readily, if not spontaneously, transformable (Kufryk, Sachet, Schmetterer, & 

Vermaas, 2002; Vermaas, 1996).  Antibiotic-free genetic modifications are already being implemented in 

typical PHA producers (Akiyama et al., 2011).  These steps could ultimately lead to the discovery of an 

environmentally friendly and economically viable plastic production process.  A carbon-neutral bioplastic 

production process would not only lessen dependence on petrochemicals, but also play a key role in slowing 

the accumulation of non-biodegradable solid wastes 
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5.6 (ex post facto) In Silico Analysis 

Since the work performed in the previous sections of this chapter was completed before the existence 

of the computer application developed in CHAPTER 6, it was decided to try to gain more insight on the 

robustness of the phaC(3.1) primer set using the computer application and newly available phaC sequences 

(if extant). 

Four additional cyanobacteria PhaC/phaC sequences were obtained.  Two reference accessions: 

Microcystis aeruginosa NIES-44 (GAL94730.1) and Microcystis aeruginosa SPC777 (EPF22606.1), and 

two hypothetical proteins: Nostoc punctiforme PCC73102 (ACC80869.1) and Xenococcus sp. PCC7305 

(ELS02364.1).  These new sequences were included with the sequences used to construct the previous PhaC 

MSA and aligned using Clustal Ω (Sievers et al., 2011).  The hybridization algorithm was implemented 

across all templates using the actual PCR conditions described in section 5.3.  Statistical analysis was 

applied using R and Statistical Analysis System (SAS v9.4). 

In order to gain further insight on the phaC(3.1) primer set ex post facto, the Gibbs free energies of 

annealing were estimated using the computer application designed in CHAPTER 6. 

5.6.1 Alignment Results 

The protein MSA including the newly accessed sequences can be found in the appendix section 

A.7.  Interestingly, the two hypothetical proteins (Nostoc punctiforme and Xenococcus sp. accessions) show 

very little conservation in comparison to all other cyanobacterial PhaC sequences.  These hypothetical 

proteins even lack the “Cyanobacterial-box”, which could reshape what is known about PhaC in 

cyanobacteria.  After similarity searches, it was found that these PhaC sequences more closely resemble 

those found in proteobacteria.  These two accessions were omitted from further calculations since the 

existence of these protein sequences has yet to be validated. 

http://www.ncbi.nlm.nih.gov/protein/GAL94730.1
http://www.ncbi.nlm.nih.gov/protein/EPF22606.1
http://www.ncbi.nlm.nih.gov/protein/ACC80869.1
http://www.ncbi.nlm.nih.gov/protein/ELS02364.1
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5.6.2 Hybridization Results 

It was observed that estimation of ΔG at actual reaction conditions, in lieu of the conditions of 

section 5.3.3 (37°C, 1.0 M NaCl), had little impact on the overall results.  The new hybridization method 

estimated the phaC(3.1)-PCC 6803 hybrid to be within the 32nd percentile, a decrease from the 31st 

percentile obtained in previous calculations.  In other words, the primers anneal to 68% of the accessed 

sequences in a more stable fashion than PCC6803, which was proven to successfully amplify.  The most 

stable primer-template hybridization (ΔGi, MIN) of all permutations of the primers ranged 

between -13 ≤ ΔGi, MIN ≤ -2.0 kcal mol-1 for phaC(3.1)-F, -15 ≤ ΔGi, MIN ≤ -1.0 kcal mol-1 for phaC(3.1)-R, 

and -27 ≤ ΔGi, MIN ≤ -4.6 kcal mol-1 for the set. 

5.6.3 Proposed Alternative Primer Set 

It was observed that many primer-template hybrids would flag as “unlikely to amplify” under the 

CEMAsuite default conditions (ΔGF|R > -6 kcal mol-1
, ΔGF+R > -16 kcal mol-1, confer section 6.6), including 

the PCC 6803 accession, which successfully amplified.  However, as an exercise of the application, an 

alternative primer set was designed and proposed with slightly increased degeneracy to potentially improve 

the stability of the primer set across all accessed templates. 

The proposed forward primer, phaC(3.1)-F*,  sequence is 

5’-GGCTTAGATATCTAYTTYATTGAYTGG and the proposed reverse primer, phaC(3.1)-R*, sequence 

is 5’-GCATAAACTAAAGGTTCCNCCYTGRCA.  The forward and reverse primer annealing regions 

correspond to positions 340-366 and 490-516 of the Synechocystis sp. PCC 6803 accession (CP003265.1: 

(933151..933177, 933301.. 933327 )).  The 3’ end of phaC(3.1)-R* falls exactly on the CQG residues within 

the lipase-like box.  Hybridization was also performed on this set at identical conditions as phaC(3.1).  The 

results from each set are displayed in Figure 24.  The ΔGi, MIN value for phaC(3.1)* ranged 

between -12 ≤ ΔGi, MIN ≤ -2.5 kcal mol-1 for phaC(3.1)-F*, -20 ≤ ΔGi, MIN ≤ -10 kcal mol-1 for phaC(3.1)-R*, 

and -32 ≤ ΔGi, MIN ≤ -14 kcal mol-1 for the set.  The proposed set dramatically increased the minimum 

http://www.ncbi.nlm.nih.gov/nuccore/CP003265.1
http://www.ncbi.nlm.nih.gov/nuccore/451779298?report=fasta&from=933151&to=933177
http://www.ncbi.nlm.nih.gov/nuccore/451779298?report=fasta&from=933301&to=933327
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observed ΔGF+R estimate from -4.6 to -14 kcal mol-1.  The proposed set reduced the number of individual 

primers warnings in CEMAsuite from 21 to 9 and the primer set warnings from 5 to 4. 

The mean ΔGi, MIN value for each respective primer category was estimated to be more stable in 

phaC(3.1)* when compared to phaC(3.1) (pF = 0.0013, pR = 0.0018, pF+R = 0.0002). 

 
Figure 24: Gibbs free energies of annealing estimated via CEMAsuite hybridization algorithm on 33 cyanobacteria 

phaC sequences.  Confidence intervals depicted as error bars (α = 0.05).  Confer Figure 30 for ΔG estimates. 

The mean minimum predicted stability of the new primer set is significantly more stable than the 

original low degeneracy set for any case.  The minimum predicted ΔGi, MIN, F+R for the set was reduced 

from -1.0 to -14 kcal mol-1, which should result in a dramatic increase in the stability of the primer-template 

interaction.  Because of the loss of specificity due to the increase in degeneracy for the new primer set, 

these results do not suggest the new primer set is better suited for a high-throughput assay.  Before this 

conclusion can be tested, the effects of the added degeneracy should be studied experimentally. 
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5.7 Summary 

The PCR primers designed within this section proved to be a robust primer set capable of detecting 

cyanobacteria which have the potential to produce PHA.  The PCR-based assay was hastened though the 

implementation of the colony PCR method developed in this work.  Ex post facto analysis revealed the PCR 

primers designed within this work, while proven experimentally, where not optimal in regards to the default 

CEMAsuite hybridization criterion and a second, potentially more robust, primer set was proposed.  The 

proposed set was found to be more stable across the cyanobacteria phaC sequences than the original set, 

but the specificity of the proposed set remains to be tested.
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CHAPTER 6. CEMASUITE 

6.1 Chapter Preface 

This chapter discusses the end product of Objective II (section 1.4) – CEMAsuite. CEMAsuite is 

the consensus degenerate primer design computer application first described in Oxford Journals’ 

Bioinformatics (Courtney E. Lane, Hulgan, O’Quinn, & Benton, 2015).  Due to the brief nature of said 

publication, this chapter expands upon the key dynamics and implementations of CEMAsuite.  For an 

overview of existing consensus degenerate primer design software confer section 2.8. 

6.2 Introduction 

It was observed that the CEMA-based primer design methodology implemented throughout 

Objective I was applicable to any arbitrary set of homologous genes.  So, in order to reduce the time and 

effort required for similar primer design, a computer application was developed.  This application, named 

CEMAsuite, was written in the Java™ coding language (Java 7 SDK) and developed in the NetBeans 

integrated development editor (v. 8.0).   

CEMAsuite was developed in an attempt to find a compromise between the two consensus primer 

design methods described in section 2.8.  Its intent is to aid in the design of a sort of minimum-degeneracy 

primer set which is robust enough for the assay at hand, while retaining as much specificity and product 

homology (i.e., little variance in product length) as possible.  It was desired to grant the user total control 

over the degenerate primer construction process, which in turn allows the balancing of the specificity and 

sensitivity of the consensus degenerate PCR primers.  
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CEMAsuite possesses the following capabilities: 

(i) Construction of a CEMA from protein MSA file  

(ii) Generation and scoring of each position in the consensus DNA sequence using 

multiple algorithms 

(iii) Design of single-degeneracy primer backbones using Primer3 (Untergasser et 

al., 2012) 

(iv) Estimation of degenerate primer stability on each of the coding sequences 

within the CEMA 

(v) Manual editing of primer residue degeneracy 

(vi) Intuitive presentation to allow for rapid analysis of alignments and speculation 

of primer degeneracy incorporation 

 

6.3 CEMA Construction 

Under the equiprobability assumption, the probability that all residues of an arbitrary column in an 

arbitrary MSA will match the first residue in that column due to random chance alone can be described by 

Equation 4, where R is the number of observed residue states (+1 for deletion), and n is the number of 

sequences in the MSA. This type of conservation can be considered a sort of Type I error where the 

conservation is present, but due to random chance alone, and not necessarily from evolutionary pressures. 

This conservation is undesirable in probe design since it has no influencing factors to remain conserved, 

meaning the use of primers based on these regions on a homologue with unknown sequence may result in 

a loss of primer annealing ability. For this reason, CEMA-suite begins the conservational analysis for primer 

design on the protein level, where R = 20, as opposed to coding DNA, where R = 4.  

Equation 4: Probability that all residues of an arbitrary column in an arbitrary MSA will match the first residue in that 

column due to random chance alone under the equiprobability assumption. 

P = (𝑅 + 1)(1−𝑛) 

A CEMA is generated by obtaining the primary coding sequences of proteins in an extant MSA and 

expanding each position within the protein MSA to the observed codon representing each amino acid.  For 

example, a protein sequence CLANE is encoded by TGC CTA GCA AAC GAA.  In a protein MSA 

including CLANE, the following gaps are included C-LANE-.  The resulting analogous CEMA sequence 
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generated would be TGC---CTAGCAAACGAA---.  This process is repeated for all sequences within 

the input alignment to generate a CEMA. 

A consensus sequence is then generated from the CEMA.  This consensus sequence will not allow 

residue values for alignment positions containing gaps.  In other words, if a gap occurs anywhere within a 

given column of the CEMA, the consensus residue of that column will be a gap value. 

6.4 CEMA Positional Scoring 

Since many primer design applications can account for positional quality in their objective 

functions, CEMAsuite can score each position within a CEMA’s consensus sequence by one of four 

algorithms.  The Percent Identity algorithm scores each position based on the normalized frequency of the 

consensus nucleotide.  The Identity Runs algorithm scores positions on identity and then adjusts the value 

based on the number of consecutive completely conserved positions within the location.  The Potential 

Degeneracy algorithm scores positions on identity and then adjusts the value based on the potential 

degeneracy of the consensus codon positions according to one of 18 translation tables.  The final algorithm, 

Runs & Degeneracy, scores values sequentially using each of the three methods described above.  

 

6.4.1 Percent Identity 

In this method, CEMA positions are scored simply on the normalized frequency of the consensus 

nucleotide throughout the sequences (Figure 26).  This method is most useful when many sequences are 

Figure 25: Region of example protein MSA (TOP) and respective CEMA (BOTTOM) covered within the 

following score examples.  Regions depicted in score examples are highlighted in yellow above. 
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available/within the alignment OR when the amplification of unknown sequences will likely not be 

attempted. This is the default scoring method. 

 

6.4.2 Identity Runs 

In this method, CEMA positions are scored on Percent Identity and then the scores are adjusted 

based on the number of consecutive completely conserved positions within the location (Figure 27).  The 

score adjustment value is specified by the user.  The run weight should always be a positive integer less 

than or equal to 100. 

To illustrate how this algorithm adjusts a score, a simple example will be discussed.  Using a block 

weight of BW and an isolated region of n completely conserved nucleotides, the value of n×BW will be 

added to the score of each nucleotide within that locus.  No value is added to any region which is not 

completely conserved.  Once all conserved regions have been adjusted throughout the sequence, all position 

scores within the sequence are then normalized to the new maximum position score.  For example, note the 

scores of GACTTTGC and AATGC in Figure 27, which were calculated with a block weight of 10.  Here 

GACTTTGC (n = 8) is the largest region of the most consecutive completely conserved residue positions 

within the entire CEMA.  The region’s score was calculated via 100 × ((100 + 8×10) ÷ (100 + 8×10)) = 

100.  Meanwhile, AATGC (n = 5) possesses less weighting even though it is a completely conserved region.  

This regions score was calculated via 100 × ((100 + 5×10) ÷ (100 + 8×10)) = 83⅓.   

Figure 26: Plot of quality from highlighted region of Figure 25 scored using the Percent Identity method. The 

CDS residue for each position is printed on top of the bar, while the conserved amino acid is printed below 

the bars. 
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This method is most useful when many sequences are available and/or implemented within the 

alignment.  This scoring method can be used to filter out the regions where runs of perfect matches will not 

occur.  The regions of high quality are key regions to investigate for the 3’ end of the primer.  

6.4.3 Potential Degeneracy 

In this method, CEMA positions are scored on Percent Identity and then then the scores are adjusted 

based on the potential degeneracy of the consensus codon positions according to 18 translation tables 

(Figure 28).  In other words, if the consensus codon within the alignment is CGT and it is desired to adjust 

scores using the standard translation table (CGT codes for Serine which can be coded by [CGN, AGR] ~ 

MGN), then the quality of C’s position will be divided by 2, the quality of G’s position will be divided by 1, 

and the quality of T’s position will be divided by 4. 

 

This method is most useful when there are few sequences available/within the alignment as it 

attempts to filter out regions of low conservation and high potential degeneracy.  This is a method which 

can be useful for the cases where the primers will be used to try to amplify on organisms with unknown 

target sequences. 

Figure 27: Plot of quality from highlighted region of Figure 25 scored using the Identity Runs method and a 

run weight of 10. The CDS residue for each position is printed on top of the bar, while the conserved amino 

acid is printed below the bars.  Note that positions of 100% conservation (denoted by capital letters) possess 

quality scores of less than 100. 

Figure 28: Plot of quality from highlighted region of Figure 25 scored using the Potential Degeneracy method 

and the standard translation table.  The CDS residue for each position is printed on top of the bar, while the 

conserved amino acid is printed below the bars.  Note that positions of 100% conservation (denoted by capital 

letters) possess quality scores of less than 100. 
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6.4.4 Identity Runs & Potential Degeneracy 

In this method, CEMA positions are scored using each of the 3 scoring methods described above 

(Figure 29).  This method can help to discover regions of high conservation (from Identity Runs) with low 

potential degeneracy (from Potential Degeneracy). 

 

6.5 Consensus Primer Design 

CEMAsuite incorporates a compiled Primer3 (v 2.3.6) executable and offers a streamlined user 

interface (Untergasser et al., 2012).  Briefly, Primer3 is an open source primer design project which 

efficiently produces a list of potential primer sets for a given DNA template.  Primer3 allows for the input 

of a DNA template sequence and the positional quality of that sequence which is typically implemented for 

DNA sequencing trace files.  CEMAsuite utilizes this capability for a different purpose.  CEMAsuite inputs 

the consensus sequence generated from the CEMA and inputs the scoring algorithm results for each 

positional quality input. 

For a complete list of inputs, please reference the Primer3 documentation. One notable input is the 

MIN_END_QUALITY.  Briefly, the MIN_END_QUALITY input will set a threshold on the minimum 

quality score allowed in the 3’ end of the primer.  This will only allow the output of primer sets which 

possess a 3’ end with qualities greater than the specified value. 

Implementation of this process should result in a single degeneracy primer of high quality for the 

consensus CEMA sequence.  However, it should be noted that the score plot (Figure 26 - Figure 29) can 

greatly speed up the process of primer design by inspection if desired. 

Figure 29: Plot of quality from highlighted region of Figure 25 scored using the Runs & Degeneracy method 

with a block weight of 10 and the standard translation table.  The CDS residue for each position is printed 

on top of the bar, while the conserved amino acid is printed below the bars.  Note that positions of 100% 

conservation (denoted by capital letters) possess quality scores of less than 100. 

http://primer3.sourceforge.net/primer3_manual.htm
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6.6 Hybridization Stability Estimation 

One of the key elements of CEMAsuite is the ability to anneal the primers to each template and 

output an estimated Gibbs free energy for the designated conditions. This allows the user to pinpoint cases 

where the primer set is likely to fail and improve the primers as they see fit.  It is recommended that the 

conditions set are the actual PCR reaction conditions and the annealing temperature of the thermal cycles. 

The algorithm for the thermodynamic parameter estimation first locates the primer-template region 

(columns) with the least mismatches throughout ALL sequences for each primer.  Next, it simulates 

annealing for each primer-template pair in this region (i.e., iterates down through the columns for new 

templates) utilizing the nearest-neighbor parameter estimation methods described by Allawi, Bommarito, 

Peyret, and SantaLucia and their respective coworkers (Allawi & SantaLucia, 1997; Hatim T. Allawi & 

John SantaLucia, 1998a, 1998c; H. T. Allawi & J. SantaLucia, 1998; Bommarito, Peyret, & Jr, 2000; Peyret 

et al., 1999; SantaLucia, 1998; SantaLucia & Hicks, 2004; SantaLucia J Jr & N., 2001).  In order to account 

for the entropic dependence of hybridization on the cationic concentration, two methods of adjustment have 

been implemented (Owczarzy et al., 2008; SantaLucia & Hicks, 2004). 

If a primer is degenerate, each permutation of that degenerate primer is simulated individually, and 

the most stable conformation is used to populate the mean/min/max Gibbs free energy values. The mean 

value is the average of the most stable conformation of all permutations of a primer annealing.  The 

minimum value is the most stable conformation of the most stable permutation of a degenerate primer. The 

maximum value is the most stable conformation of the least stable permutation of a degenerate primer. This 

part of the algorithm is outlined in Figure 30. 

In order to obtain some insight on exactly what constituted a “good” primer set based on our 

hybridization algorithms, 94 data points were obtained through literature and subjected to the stability 

analysis at the specified conditions (de Roda Husman, Walboomers, van den Brule, Meijer, & Snijders, 

1995; Ishii & Fukui, 2001; Snijders et al., 1990; Yamamoto & Harayama, 1995).  For these calculations, 
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the annealing temperature (TA) of the thermal cycles was used as the input temperature and positive 

detection was taken as it was cited within the literature (as were failures).  Overall, there were 29 

observations of failures and 65 observations of strong amplification. 

The stability of the individual primers was analyzed first, these were sorted based on the relative 

stabilities of the oligos within the set (i.e., one deemed “more stable” and one deemed “less stable”).  The 

resulting ΔGi(TA) values of the individual primers were binned into 1.0 kcal mol-1 bins and plotted on a 

histogram. 

To see the effects of the overall binding ability of the primer set, the sum of the two binding energies 

(ΔG(TA) = ΔGF(TA) + ΔGR(TA)) was estimated and plotted on a 2.5 kcal mol-1 binned histogram. 

In order to discern potentially “good” primers from potentially “bad” primers, the hybridization 

algorithm in CEMAsuite was implemented on samples from literature.  The stability estimations were 

calculated using both entropic adjustment methods (Owczarzy et al., 2008; SantaLucia & Hicks, 2004). 

To attempt to describe failed PCR amplifications due to the annealing ability of a single primer, 

the estimated Gibbs free energy of annealing was calculated for each primer in the set at the conditions 

stated in literature.  These values were then categorized by their predicted stability for each set.  The results 

of this analysis are depicted in Figure 31. 

It was observed that the Owczarzy et al. adjustment method generally predicts more stable 

hybridizations than that of SantaLucia and Hicks.  This is believed to be due to the ability of the Owczarzy 

correction to account for stabilization effects of the divalent cations in solution.  The Owczarzy et al. 

adjustment was chosen as the default correction since there was less observed overlap between the less 

stable primers from the failed and successful amplifications as observed by the red bars in Figure 31. 
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Figure 30: Primer-template annealing algorithm.  First, all possible single-degeneracy permutations of a 

degenerate primer are created.  Next, each of these single-degeneracy primers is used to simulate annealing 

to the template region.  The stability of each potential hybridization conformation is estimated for each single-

degeneracy primer via nearest neighbor thermodynamics (see text for details).  Each possible primer-template 

hybridization confirmation hydrogen bonding is depicted using ‘|’ and ‘:’.  The result is a Gibbs free energy 

value (kcal mol-1) at the specified conditions as indicated by the numbers in parentheses next to each possible 

conformation.  Statistical analysis is then performed on the most stable conformation of each single-

degeneracy primer-template hybridization and returned as the output values associated with that particular 

degenerate primer-template hybridization.   

‘|’ – Watson-Crick base pairing, ‘:’ – interacting mismatch, ‘ ’ – no interaction. 
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It was also observed that strong amplification begins to fail when the weaker of the two oligos had 

a ΔGi(TA) value approximately −6.0 kcal mol-1 when applying the default correction.  This value was then 

used as the default individual primer warning threshold in CEMAsuite.  In other words, if a predicted 

primer-template hybridization ΔGi(TA) value is less stable (more positive) than the individual primer 

warning threshold value, then that primer set will be flagged. The mean ΔGi(TA) value of the weaker oligos 

for successful amplifications was −9.5 (±0.7) kcal mol-1 and −5.9 (±0.7) kcal mol-1 when applying the 

Owczarzy et al. and SantaLucia and Hicks corrections, respectively. 

To investigate the effects of the overall binding ability of the primer set, the sum of the two binding 

energies (ΔG(TA) = ΔGF(TA) + ΔGR(TA)) was estimated and analyzed.  It was observed that this value 

approached approximately −16 kcal mol-1 before failures became prevalent when applying the default 

correction.  This value was used as the default primer set warning threshold.  The mean sum binding energy 

for successful amplification was −24 (±1.2) kcal mol-1 and −16 (±1.2) kcal mol-1 when applying the 

Owczarzy et al. and SantaLucia and Hicks corrections respectively.  The results of this analysis are depicted 

in Figure 32. 

6.7 Usage 

A Java swing-based interface is deployed containing tabs that allow the user to visualize the 

stepwise primer design process.  Before using CEMAsuite, the user must first possess a clustal format 

protein MSA file of the homologue-of-interest.  This file can be imported and displayed under the Protein 

MSA tab. 

Next, the user may choose to either upload the coding sequences from a local file, or attempt to 

retrieve them from the National Center for Biotechnological Information (NCBI) database using the Entrez 

programming Efetch utility (Geer et al., 2010).  Once the sequences have been successfully uploaded, they 

will be displayed under the CDS tab.  
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Figure 31: Histograms of the estimated ΔGi(TA) values from data taken from literature and calculated 

using the hybridization algorithm within CEMAsuite.  Detection value was based off of considerations 

listed within literature.  The colored lines on the plot represent the normal density of each sample 

population. 
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Figure 32: Histograms of the sum of the forward and reverse ΔG(TA) values from data taken from 

literature and calculated using the hybridization algorithm within CEMAsuite.  Detection value was 

based off of considerations listed within literature.  The colored lines on the plot represent the normal 

density of each sample population. 
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The CEMA can be generated and displayed under the CEMA tab (Figure 33, left).  The user may 

select one of the four consensus scoring methods described in section 6.4.  At this point, the scored 

consensus sequence will be visible as a bar plot underneath the tabs (Figure 33, left). 

Once a scored consensus sequence has been obtained, CEMAsuite can access a compiled Primer3 

executable which can return potential primer sets for the consensus sequence displayed under the Primer 

Design tab.  This functionality is limited to Windows systems, however the scored consensus information 

can be readily exported for input into alternative design applications if required. 

After the primers have been designed, each primer-template hybridization combination can be 

calculated and displayed under the Hybridization tab (Figure 33, right).  The program will highlight primer-

template pairs which are unlikely to successfully amplify as shown in Figure 33.  94 PCR experimental 

results were collected from literature and subjected to the CEMAsuite hybridization algorithm to obtain the 

default values of the warning thresholds; however, these values can be adjusted readily.  Selective 

degeneracy can be added by the user to increase the stability of the primer-template pairs.  CEMAsuite 

simplifies this task by also highlighting the regions of the plot and CEMA which correspond to the primer 

locations.  This allows the user to quickly account for the overall amino acid conservation and/or nucleic 

acid conservation for each degeneracy position to add. 
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Figure 33: Screenshots of the CEMAsuite application for a sample project.   

(LEFT) CEMAsuite CEMA tab with a successfully generated CEMA, scored using the Percent Identity algorithm shown in the bar plot.  The forward primer 

region is highlighted (gold) in the plot and the first line of the CEMA alignment text.  

(RIGHT) CEMAsuite Hybridization tab with each calculated Gibbs free energy value at the specified conditions for each primer-template pair.  Primer-template 

pairs which the user would like to flag as “likely to fail amplification” are highlighted if they possess an individual primer less stable than the user input Individual 

Primer Warning threshold (yellow) and/or the sum of the stability values of both primers is less stable than the Primer Set Warning Threshold (red).  Selective 

addition of degeneracy via the popup menu is shown in the forward primer input region. 
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6.8 Investigation of Primer3 for Consensus Primer Design 

6.8.1 Introduction 

In order to test the efficacy of primers developed in Primer3 (Untergasser et al., 2012) from a 

CEMA consensus sequence, an arbitrary homologous gene was selected for primer design. 

The targeted gene, named ftsZ, encodes a tubulin-like cell division protein (FtsZ).  FtsZ is the major 

cytoskeletal protein involved in prokaryotic cytokinesis, meaning its functionality is essential for cell 

propagation.  Since the targeted gene was chosen arbitrarily, the functionality will not be discussed in detail.  

For an informative review of FtsZ functionality in cytokinesis, please confer Erickson et al. (2010).  67 

FtsZ and ftsZ sequences were obtained through the NCBI database and are listed in Appendix Table 5 

(Sayers et al., 2009). 

Figure 34: CEMAsuite example output after some degenerate nucleotide positions have been incorporated 

into the active primer set. 
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6.8.2 Materials and Methods 

6.8.2.1 Experimental Design 

As stated in section 2.8, the likelihood of MSA conservation type I error is inversely proportional 

to the alignment sequence sample size.  So, to investigate the effects of sample size on consensus PCR 

primer design, three alignments of 5, 20, and 67 sequences were generated using the obtained accessions.  

CEMAs were generated in a preliminary version of CEMAsuite which lacked hybridization functionality.  

The consensus sequence of each alignment was subjected to primer design via Primer3 (Untergasser et al., 

2012).  Two primer sets were designed from each alignment, one implementing the Primer3 quality score 

capabilities, and one without (Table 9). 

Table 8: Primer set nomenclature used throughout this work. 

Number of Sequences Positional Scoring − Positional Scoring + 

5 FtsZ5.0 FtsZ5.1 

20 FtsZ20.0 FtsZ20.1 

67 FtsZ67.0 FtsZ67.1 

Next, various bacterial DNA isolates from strains Escherichia coli DH5α, Nostoc muscorum 

UTEX1037, Plectonema sp. UTEX1541, Synechococcus sp. UTEX2434, Synechocystis sp. UTEX2470, 

and Synechocystis sp. PCC6803 were subjected to PCR using the primers.  Each primer-template 

combination was performed in triplicate.  The eukaryotic genomic DNA of Saccharomyces cerevisiae 

BY4741 was used as a negative control in conjunction with a reaction containing no template DNA. 

6.8.2.2 PCR Conditions 

To test the ftsZ amplification capabilities of each primer set, PCR was performed using 50 μl 

reactions consisting of 1.25 U Taq polymerase (Invitrogen), 20 mmol l-1 Tris-HCl (pH 8.4), 50 mmol l-1 

KCl, 2.0 mmol l-1 MgCl2, 0.2 mmol l-1 dNTPs (ea.), 0.5 μmol l-1 each primer, and 50 ng DNA template 

prepared in 200 μl polypropylene tubes.  These reactions underwent a standardized method of touchdown 

PCR which consisted of one cycle of [94°C for 3:00], 10 cycles of [94°C for 0:45, TA for 0:30(-1°C cycle-

1) , 72°C for 0:45] where TA = Tm,low(1M NaCl) + (5°C – Ncycles × 1°C cycle−1), followed by 32 cycles of [94°C 
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for 0:45, TA,final for 0:30, 72°C for 0:45], one cycle of [72°C for 10:00] and a final incubation at four 

centigrade in a Bio-Rad DNA Engine Peltier Thermal Cycler (model PTC0200). 

6.8.2.3 Electrophoresis of PCR Products 

Five microliters of each reaction product and one microliter of 6x Orange DNA Loading Dye 

(Fermentas #R0631) were loaded into a 1.5 percent standard agarose (US Biological #A1016) gel stained 

with 0.5 μg ethidium bromide ml-1.  Five microliters of 100 bp O’GeneRuler DNA ladder (Fermentas # 

SM1143) was used for each molecular weight marker.  Visualization and analysis was performed with a 

UVP Bioanalyzer and UVP Visionworks LS Acquisition and Analysis (v6.5.2). 

6.8.2.4 In Silico Analysis 

In order to obtain further insight on the influence of various factors on consensus primer design using 

Primer3, primers were designed using alignments of the FtsZ5, FtsZ20, and FtsZ67 sequence groups and 

subjected to hybridization analysis via the CEMAsuite algorithm.  The hybridization acted as a method to 

qualitatively describe the ability of primers to anneal for comparisons. 

First, the influence of the method of nucleic acid MSA generation was investigated.  Using traditional 

direct nucleic acid multiple sequence alignment, as described in section 2.8, each set of ftsZ sequences was 

aligned using Clustal Ω (Sievers et al., 2011).  The CEMAs used in section 6.8.1 were recycled for this 

work. 

In order to test the consensus sequence generation method, two consensus sequences were generated 

for each alignment.  The first consensus sequence was generated by appending the mode residue for each 

column within the alignment, treating a gap as a residue.  The second consensus sequence was generated 

using the CEMAsuite consensus sequence generation method, where only fully populated 

positions/columns of an alignment will append residue values and all others will be treated as gaps.  Three 

primer sets were designed for each consensus sequence using Primer3. 
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Next, in order to test the impact of score weighting on Primer3 output, each scoring algorithm 

available in CEMAsuite was used to score each CEMA gap excluded consensus sequence, as would be the 

output of a typical CEMAsuite implementation.  Only the score weighting inputs were varied and three 

primers were designed using the Percent Identity scoring method.  Then three primers were designed using 

Identity Runs with the default run weight of 10.  Finally, three primers were designed using Potential 

Degeneracy.  

Once primers were designed using all methods outlined in Figure 35, they were subjected to 

hybridization analysis using the CEMAsuite algorithm and all ftsZ sequences collected.  The hybridization 

was used to simulate the effects on primer design when limited sequence information is available.  In other 

words, if one designs a primer set using only a five sequence MSA, such as in FtsZ5, how efficiently can 

those primers anneal unknown sequences?  The remaining 62 sequences in the FtsZ collection act as 

unknown cases in this investigation. 

The hybridization conditions implemented for each set were standard PCR conditions: 70 mM 

monovalent cations and 1.5 mM magnesium ions.  In order to prevent minor variations in primer length and 

G|C content from influencing the results, the annealing temperature for each primer set hybridization was 

standardized.  The TA used for each set was equal to the estimated Tm, low output by Primer3 minus five 

centigrade, which is a standard initial annealing temperature.  Next, the ΔGi,j(TA) values of the least stable 

primer within a set were then normalized against the Gibbs free energy value representing perfect annealing 

of that primer (ΔGi(TA)*).  This value was used to describe the minimum relative annealing ability of a 

single primer within a primer set (Equation 5).  In other words, a value representing the likelihood of a PCR 

amplification failing due to a single primer only.  The same calculations were performed on the sum of the 

primers to determine a relative annealing ability of the primer set (Equation 6). 
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Equation 5: Minimum relative annealing ability of a single primer within a primer set to template j.  

𝜑 = (100%)

{
 
 

 
 
ΔGF,j

ΔGF
∗  where ΔGF,j > ΔGR,j

ΔGR,j

ΔGR
∗  where ΔGF,j < ΔGR,j

}
 
 

 
 

 

Equation 6: Relative annealing ability of a primer set to template j. 

Φ = (100%)
(ΔGF,j + ΔGR,j)

(ΔGF
∗ + ΔGR

∗ )
 

This analysis resulted in 4,217 data points.  This data collection was then analyzed using Statistical 

Analysis System (SAS v9.4) for comparisons. 

Figure 35: Flowchart depicting factorial relationships of primers designed in this study.  Red shading 

indicates a primer design stage. 
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6.8.3 Results 

6.8.3.1 Alignment Results 

The FtsZ5 protein alignment contained 151 identity-level conserved residues and 267 conserved 

residues in all and the resulting CEMA contained 421 identity-level conserved residues.  Next, the FtsZ20 

protein alignment contained 123 identity-level conserved residues and 222 conserved residues and the 

respective CEMA contained 325 identity-level conserved residues.  Increasing the number of sequences 

within the alignment showed a decrease in conservation.  Finally, the FtsZ67 protein alignment contained 

97 identity-level conserved residues and 202 conserved residues and the resulting CEMA contained 280 

identity-level conserved residues.  Again, an increase in the number of sequences within the alignment 

showed a decrease in conservation. 

6.8.3.2 PCR Amplification Results 

In order to analyze the non-degenerate consensus primer design capabilities of Primer3 via the 

CEMA consensus sequence, primers were designed targeting the prokaryotic ftsZ gene.  Primers were 

designed both with (FtsZX.1) and without (FtsZX.0) the implementation of CEMA positional scores.  

Additionally, in order to test the impact of the sample size of the alignment, three alignments of five, 20, 

and 67 sequences were generated for each alignment method and non-degenerate primers were designed 

from each (Table 9).  These were then tested across six prokaryotic (ftsZ+) DNA templates utilizing two 

negative controls: eukaryotic (ftsZ−) DNA template and no DNA template.  Of the six prokaryotic DNA 

templates only Synechocystis sp. PCC6803 and Escherichia coli DH5α possessed known ftsZ sequences. 

Table 9: Non-degenerate primer sequences designed from ftsZ MSA consensus sequences.  

Primer Set Forward Sequence Reverse Sequence 

FtsZ5.0 AAGACAAACGCTCCGAATCG AACAGTCAAAGCGCCCATTT 

FtsZ5.1 TGGTGTTGGCGGAGGTGGTGGTAATGC ATCACCGCCCGCACGTCAGCAAAGT 

FtsZ20.0 CGCATTGCTGATGATGTTCT TCCAGCAGCGGAGAAGTAAT 

FtsZ20.1 TGGTCTTTATCGCCGCTGGCATGGG TCGGCCATCACCGAGCGCACGTC 

FtsZ67.0 TCAAAAAGCAGCCGAAGAAT TAAAGGGACGGGTGACTACG 

FtsZ67.1 GCTGGCATGGGTGGCGGTACTGG ACCGCCCGCACATCGGCAAAGT 



 

95 

 

The FtsZ5.0, FtsZ5.1, FtsZ20.0, FtsZ20.1, FtsZ67.0, and FtsZ67.1 primers correspond to positions 

X55034.1:(21985..22005,22200..22566), X55034.1:(21882..21909,22460..23086), 

X55034.1:(22381..22401,22564..23294), X55034.1:(22124..22149,22468..23102), 

X55034.1:(22065..22085,22221..22608), and X55034.1:(22138..22161,22460..23086)  in reference to the 

E. coli accessed sequence. 

PCR amplification using the FtsZ5.0 primers yielded a single product of slightly varying size, 

approximately 140 – 160 bp in length for all reactions.  This was unexpected, as the products were relatively 

uniform and were present in both negative controls.  To ensure the observed products were not due to 

contamination, the triplicate experiment was repeated with fresh reagents.  The same products were 

observed in all cases for the repetition as well.  The experiment was repeated using new reagents and fresh 

container sources and again yielded a uniform product.  Due to the presence of the product in the no-

template control reaction, it is believed to be due to auto-extension of the primers.  Desired product 

formation, ~240 bp, was not observed for any FtsZ5.0 primer reactions. 

PCR amplification using the FtsZ5.1 primers yielded desired products, ~600 bp, for five of the six 

prokaryotic templates, only UTEX2434 failed to amplify.  Product concentrations ranged between 1.5 ng 

μl-1 and 25 ng μl-1.  Only a single byproduct was observed throughout all reactions (observed in 

UTEX2470), and neither negative control exhibited any product formation. 

PCR amplification using the FtsZ20.0 primer set successfully amplified the desired product, ~200 

bp, in DH5α, UTEX 1541, and UTEX2470.  Product concentrations ranged between 0.7 ng μl-1 and 4.9 ng 

μl-1.  A single byproduct was observed for both the PCC6803 and DH5α templates, and neither negative 

control exhibited any product formation. 

PCR amplification via the FtsZ20.1 primer set yielded the desired products, ~390 bp, in PCC6803 

and UTEX2434 at concentrations ranging from 0.6 ng μl-1 to 22 ng μl-1.  No other products were observed 

in any other reactions. 

http://www.ncbi.nlm.nih.gov/nuccore/40841
http://www.ncbi.nlm.nih.gov/nuccore/40841?report=fasta&from=21985&to=22005
http://www.ncbi.nlm.nih.gov/nuccore/40841?report=fasta&from=22200&to=22566
http://www.ncbi.nlm.nih.gov/nuccore/40841
http://www.ncbi.nlm.nih.gov/nuccore/40841?report=fasta&from=21882&to=21909
http://www.ncbi.nlm.nih.gov/nuccore/40841?report=fasta&from=22460&to=23086
http://www.ncbi.nlm.nih.gov/nuccore/40841
http://www.ncbi.nlm.nih.gov/nuccore/40841?report=fasta&from=22381&to=22401
http://www.ncbi.nlm.nih.gov/nuccore/40841?report=fasta&from=22564&to=23294
http://www.ncbi.nlm.nih.gov/nuccore/40841
http://www.ncbi.nlm.nih.gov/nuccore/40841?report=fasta&from=22124&to=22149
http://www.ncbi.nlm.nih.gov/nuccore/40841?report=fasta&from=22468&to=23102
http://www.ncbi.nlm.nih.gov/nuccore/40841
http://www.ncbi.nlm.nih.gov/nuccore/40841?report=fasta&from=22065&to=22085
http://www.ncbi.nlm.nih.gov/nuccore/40841?report=fasta&from=22221&to=22608
http://www.ncbi.nlm.nih.gov/nuccore/40841
http://www.ncbi.nlm.nih.gov/nuccore/40841?report=fasta&from=22138&to=22161
http://www.ncbi.nlm.nih.gov/nuccore/40841?report=fasta&from=22460&to=23086
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PCR amplification using the FtsZ67.0 primer set yielded the desired products, ~180 bp, in PCC6803, 

UTEX1037, UTEX2434, and UTEX2470 at concentrations ranging between < 0.1 ng μl-1 to 3.6 ng μl-1.  

Byproduct formation was observed in all prokaryotic reactions at varying lengths and concentrations, and 

neither negative control exhibited any product formation. 

PCR amplification using the FtsZ67.1 primer set yielded the desired products, ~350 bp, in PCC6803, 

UTEX1037, UTEX1541, and UTEX2470 at concentrations ranging between < 4.5 ng μl-1 to 27 ng μl-1.  

Byproduct formation was observed in DH5α and UTEX2470, and neither negative control exhibited any 

product formation. 

Statistical analysis was performed on the results of all experiments and can be found in Figure 37.  

The binomial probability of successful PCR amplification for each primer set was estimated from the 

detection results.  Comparison of binomial proportions was performed using a chi-squared test and the more 

conservative Fisher’s exact test.  In both cases the proportion of successes in the score weighted treatment, 

Figure 36: Brightfield microscopy images (5 μm scale) and PCR amplification results of primer set FtsZ5.1. 

Images depicted in green indicate organisms with known ftsZ sequences, red indicates negative control, and 

blue indicates a sample with unknown ftsZ sequence.  Agarose gel electrophoresis was performed using 1.5% 

standard agarose, 0.5 µg ml-1 ethidium bromide stain, 0.5xTBE, 5 µL product, and 5 µL 100 bp O’GeneRuler 

DNA ladder.   

(A) Saccharomyces cerevisiae BY4741, (B) Escherichia coli DH5α, (C) Synechocystis sp. PCC6803, 

(D) Nostoc muscorum UTEX1037, (E) Plectonema sp. UTEX1541, (F) Synechococcus sp. UTEX2434, 

(G) Synechocystis sp. UTEX2470, (H) No template control. 
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“+”, were significantly higher than those in the unweighted treatment, “−” (χ2: p = 0.0209, F: p = 0.0338).  

It was also observed that the product concentrations used in the score weighted design were significantly 

higher than when score weighting was not used (p < 0.0001).  Additionally, when score weighting is not 

used, the product concentration was actually not significantly different from zero.  There were significantly 

more undesired products formed than the score weighted treatment (p < 0.0001). 

 

Fisher’s exact test comparisons accounting for alignment size indicate only FtsZ5 shows a 

significantly different probability of successful amplification, such that P5− < P5+ (p5 < 0.0001, p20 = 0.4998, 

p67 = 1.0).  Within the five- and 67-sequence cases, the score weighted product concentration was 

significantly higher than when score weighting was not implemented, such that μ 5− < μ 5+ and μ 67− < μ 67+ 

Figure 37: Descriptive statistics of the results from PCR amplification using the primers developed in this 

work.  Exact confidence intervals are shown (α = 0.05). 
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(p < 0.0001 each).  The 20-sequence case however showed no significant increase: μ 20− = μ 20+ (p = 0.2075).  

Again, within the five- and 67-sequence cases, significantly more byproducts were observed for no score 

weighting, μ 5− > μ 5+ and μ 67− > μ 67+ (p5 = 0.0006, p67 < 0.0001).  The 20-sequence case showed no 

significant difference in byproduct formation: μ 20− = μ 20+ (p = 0.5303). 

6.8.3.3 In Silico Analysis 

The relative annealing abilities of PCR primers designed in Primer3 were calculated for various 

inputs.  First, the cases of consensus sequence gap exclusion and MSA method of generation were 

investigated.  Using 2,412 data points, the factors of gap exclusion, number of sequences in the alignment, 

and the alignment method were investigated under a significance of 0.05.  A depiction of the results can be 

observed in Figure 38. 

It was observed that the minimum relative annealing ability (φ) of a single primer within a set was 

significantly higher in cases where gap exclusion was implemented in the consensus sequence construction, 

such that φ− < φ+ (p = 0.0026).  This was also observed for the relative annealing ability of the primer set 

(Φ) (Φ− < Φ+, p = 0.0093).  With gap exclusion, the relative annealing abilities increased by 

0.8% ≤ Δφ ≤ 4.0% and 0.5% ≤ ΔФ ≤ 3.3%.  Additionally, when a CEMA was used to construct the 

consensus sequence, both φ and Φ were significantly higher than when the nucleic acid sequences were 

aligned directly, such that φNAMSA < φCEMA and ΦNAMSA < ΦCEMA (p < 0.0001 each).  With CEMA 

consensus sequences, the relative annealing abilities increased by 2.3% ≤ Δφ ≤ 5.5% and 

2.2% ≤ ΔФ ≤ 5.0% in comparison to direct NAMSA consensus sequences.  It was observed that φ is 

exhibits two alignment sequence size groupings under the Tukey’s range test: φ20 = φ67 < φ5 = φ20 

(p = 0.0165); Φ showed a significant decrease for the 20 sequence treatment (Φ20 < Φ5 = Φ67, p < 0.0001).  
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Figure 38: Effects observed from the method used to generate the consensus sequence on the relative annealing ability 

of a primer set.  Confidence intervals are depicted (n = 2412, α = 0.05). 

Next, the effects of the number of sequences and the effects of score weighting on primer design 

were investigated using a separate collection of 2,412 data points and a significance of 0.05.  Score weighted 

design included equally sized samples of the three scoring algorithms stated in section 6.8.2.4.  Only gap-

excluded CEMA consensus sequences were used in primer design for this data due to lack of availability 

and/or applicability of scoring algorithms on data.  A summary of this analysis is depicted in Figure 39. 

It was observed that the minimum relative annealing ability was independent of the number of 

sequences for the pooled data (φ5 = φ20 = φ67, p = 0.1064), but Φ showed a significant increase for the 

highest sequence treatment (Φ5 = Φ20 < Φ67, p < 0.0001).  Both φ and Φ showed a significant increase when 

score weighting was implemented in the primer design (φ− < φ+ and Φ− < Φ+, p < 0.0001 each).  This 

increase observed in the relative annealing abilities were 5.3% ≤ Δφ ≤ 9.0% and 3.0% ≤ ΔФ ≤ 6.4%, which 

is a dramatic improvement for the minimum relative annealing ability.  Next the interactions of scoring and 

sequences were observed under a significance of 0.05. 

For the five-sequence alignment, the score weighting treatment showed a significant increase in 

both relative annealing abilities (p < 0.0001 each).  The increase observed in the relative annealing abilities 
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were 8.0% ≤ Δφ ≤ 17% and 3.0% ≤ ΔФ ≤ 12%, which is a substantial improvement in both cases.  When 

score weighting is used, the effects of the number of sequences on φ are not readily observed, which is 

qualitatively demonstrated in Figure 39 and quantitatively described in the Tukey’s range test groupings of 

φ5 = φ20 < φ5 = φ67 and Φ20 < Φ5 = Φ67 (pφ = 0.0228, pФ < 0.0001).  There were no significant differences 

between the score weighting treatments observed for the 20-sequence alignment.  For the 67-sequence 

alignment, both relative annealing abilities increased (φ− < φ+, p < 0.0001 and Φ− < Φ+, p = 0.0074).   The 

increases observed in the relative annealing abilities were 2.6% ≤ Δφ ≤ 12% and 1.0% ≤ ΔФ ≤ 10%. 

 
Figure 39: Effects observed from the implementation of score weighting on the relative annealing ability of a primer 

set.  Confidence intervals are depicted (n = 2412, α = 0.05). 

Next, the previous dataset was analyzed accounting for the Percent Identity (ID), Identity Runs (IR), and 

Potential Degeneracy (PD) algorithms.  This data was then subjected to statistical analysis via a two-factor 

ANOVA implementing Tukey’s range test for multiple comparisons of specific algorithms to the no score 

weighting treatment.  Finally the score weighting treatment subset of the previous data was reanalyzed for 

comparisons between scoring algorithms.  The results from this analysis are depicted in Figure 40. 

In comparison with the no score weighting treatment, the relative annealing abilities of the Percent 

Identity scoring algorithm were significantly higher (pφ < 0.0001, pФ < 0.0001).  The respective increments 
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observed were 6.5% ≤ Δφ ≤ 11% and 4.4% ≤ ΔФ ≤ 8.5%.  The Potential Degeneracy scoring algorithm 

showed no significant difference from the no score weighting treatment (pφ = 0.0785, pФ = 0.4124).  The 

Identity Runs algorithm showed a significant increase in both relative annealing abilities (pφ < 0.0001, 

pФ < 0.0001).  The respective increments observed were 8.5% ≤ Δφ ≤ 13% and 6.5% ≤ ΔФ ≤ 10%. 

The Tukey’s range test resulted in two groupings of sequence treatments for the minimum relative 

annealing ability, where φ5 = φ20 < φ5 = φ67, implying resolution of these groups can be achieved through 

further data acquisition.  For the total relative annealing ability, the test resulted in two distinct groups, 

where Φ20 < Φ5 = Φ67 (p < 0.0001).  Testing the effects of the algorithm showed two distinct groups for 

both relative annealing abilities.  In both cases, the PD algorithm shows a significant decrease in the relative 

annealing ability in comparison with the other two algorithms (φPD < φID = φIR and ΦPD < ΦID = ΦIR, 

p < 0.0001 each).  Next the interactions of the algorithm and sequences were observed under a significance 

of 0.05. 

For the five sequence alignment, there was no significant difference in the three scoring algorithms 

for the minimum relative annealing ability, but the total relative annealing ability exhibited the same trend 

as the overall groupings.  For the 20 sequence alignment, both relative annealing abilities exhibited the 

same trend observed overall (PD < ID = IR).  The 67 sequence alignment exhibited the most resolved 

results of the three sequence groups.  In both cases, the relative annealing ability for the Identity Runs 

algorithm was higher than the other two algorithms.  Additionally, the minimum relative annealing ability 

of the Percent Identity scoring algorithm was significantly higher than that of the Potential Degeneracy 

algorithm.  The relationships observed for the largest alignment were φPD < φID < φIR and ΦPD = ΦID < ΦIR. 
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Figure 40: Effects observed from the scoring algorithm used on the relative annealing ability of a primer set.  

Confidence intervals are depicted (n = 1809, α = 0.05). ID – Percent Identity, IR – Identity Runs, PD – Potential 

Degeneracy. 

6.8.4 Discussion 

The consensus primer PCR amplification experiments demonstrated Primer3’s efficacy as a 

consensus primer design tool.  The experimental results also suggest that the implementation of positional 

scoring can play a major role in the efficacy of the returned primer set.  The in silico analysis helped to 

elucidate the important influencing factors in consensus primer design using Primer3.  Primers designed 

from of a simple nucleic acid multiple sequence alignment showed a significantly lower relative annealing 

ability than those designed from a CEMA.  Additional evidence supporting the benefits of positional scoring 

when using Primer3 for consensus primer design was observed in the in silico analysis.  The potential 

degeneracy scoring method proved to provide no significant benefits over the other studied design methods, 

suggesting it should be used as a “design by inspection” visual aid only.  In contrast, the identity runs 

scoring method proved to return the best observed primers when the number of sequences was highest, 

suggesting it should be the method of choice for primer design using large CEMAs. 
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6.9 Summary 

The methodologies behind the CEMAsuite consensus degenerate primer design algorithms were 

shown to increase the efficacy of a primer set through experimental and simulated results.  CEMAsuite has 

successfully found a compromise between the two traditional consensus degenerate primer design 

methodologies, which was the initial goal of this project.  It is important to note that even though 

CEMAsuite incorporates Primer3 functionality, the scoring algorithms and output graphics significantly 

speed up the process of primer design by inspection for those with moderate primer design experience.  

CEMAsuite is expected to be a valuable assay design tool for applications such as genetic/environmental 

screening, working with highly variable sequences, and DNA quality control via PCR.
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CHAPTER 7. IN VITRO PHA SYNTHASE KINETICS 

7.1 Chapter Preface 

This chapter records the preliminary investigations of data from literature required for Objective III 

(section 1.4) and includes work currently submitted for publication under the title of “Novel Interpretations 

of In Vitro Polyhydroxyalkanoate Polymerization Phenomena”.  This chapter holds the theory, derivations, 

and comparisons of meso-scale in vitro PHA polymerization mechanics. 

7.2 Introduction 

Polyhydroxyalkanoates (PHAs) are a class of biologically derived polymers spanning a diverse range 

of polyesters capable of reducing the ecological impact of the plastics industry (Anderson & Dawes, 1990; 

Laycock et al., 2014; Rai et al., 2011; Rehm, 2007; Stubbe & Tian, 2003; K. Sudesh et al., 2000).  These 

biodegradable polymers are promising replacement materials for short- to mid-life polyolefin plastics and 

also hold potential for biomedical applications due to their biocompatibility (Chen & Wu, 2005; D. 

Jendrossek et al., 1996). 

PHAs are the only known polyesters existing in living organisms besides water-soluble poly(malic 

acid), which occurs in lower level eukaryotes, and the water-insoluble polyesters, suberin and cutin, which 

occur in plants (Steinbüchel & Hein, 2001).  PHAs are produced as water-insoluble inclusions known as 

granules in the cytoplasm of many microorganisms.  These granules are produced as a form of carbon 

storage during times of carbon surplus and nutrient deficiency, although this is not a requirement in all PHA 

producers. 

The major obstacles facing industrial-scale PHA bioproduction are the costs associated with their 

production (Bengtsson et al., 2010; Choi & Lee, 1999).  There are many logical routes to reducing the 

production costs, such as reducing expensive feed costs by using low-cost carbon feed stocks or 

photosynthetic bioproduction (Bengtsson et al., 2010; Choi & Lee, 1999; Ienczak et al., 2013; Courtney E. 

Lane & Benton, 2015).  An increase in the speed and yield of PHA production, and subsequent 
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accumulation, would lead to reduced specific costs no matter the production system design.  For this reason, 

much research is focused on the key enzyme class responsible for PHA polymerization – PHA synthases 

(Bhubalan et al., 2011; Fukui et al., 1976; Gerngross & Martin, 1995; Gerngross et al., 1994; Hooks & 

Rehm, 2015; Jia, Kappock, et al., 2000; Jia, Yuan, et al., 2000; Kikkawa et al., 2005; Liebergesell, Rahalkar, 

& Steinbüchel, 2000; Lu, Han, Zhou, Zhou, & Xiang, 2008; Müh et al., 1999; Numata et al., 2015; Peters 

& Rehm, 2005; Rehm, Antonio, Spiekermann, Amara, & Steinbüchel, 2002; Rehm & Steinbüchel, 1999; 

Takase, Matsumoto, Taguchi, & Doi, 2004; Ushimaru et al., 2013; B. Zhang, R. Carlson, F. Srienc, 2006; 

S. Zhang, Kolvek, Goodwin, & Lenz, 2004; S. Zhang, Yasuo, Lenz, & Goodwin, 2000; W. Zhang et al., 

2014). 

In order to tune the material properties of PHA to mimic various polyolefins, the primary structure 

and configuration of the polymer must be controlled.  The PHA synthase dictates the range of hydroxyacyl-

co-enzyme A thioester monomers that can be recognized and incorporated into the covalently-bound 

growing polymer.  As a consequence, if PHA polymers, or co-polymers, with a specified composition are 

desired, then a PHA synthase capable of catalyzing all desired hydroxyacyl-CoA monomers is required.  

This means that the quantity of viable PHA co-polymer types that can be synthesized is limited by the 

current number of PHA synthases that are characterized. This also means that continual characterization of 

novel PHA synthases is required to take full advantage of this polymer class’ versatility.  Additionally, the 

PHA synthase is the only commonality between the wide variety of PHA metabolic routes, securing its 

relevance in bioplastic research (Rehm, 2007; Steinbüchel & Lütke-Eversloh, 2003).  The classification, 

structure, and function of these enzymes is described in detail in many of the reviews mentioned previously.   

In vitro PHA synthase assays, via spectroscopic quantitation of the hydoxyalkyl-CoA monomer 

consumption rate during the polymerization process, are used to quantify key enzyme characteristics.  One 

approach for measuring the substrate consumption rate is to observe the decrease in the amount of unreacted 

substrate by analyzing its thioester bond at 232-236 nm wavelength (Fukui et al., 1976; Ushimaru et al., 

2013; S. Zhang et al., 2000).  A more common approach is to monitor the release of free co-enzyme A 



 

106 

 

(CoA) using 5,5'-dithiobis-(2-nitrobenzoic acid) (DTNB) (Bhubalan et al., 2011; Gerngross & Martin, 

1995; Gerngross et al., 1994; Müh et al., 1999; Ushimaru et al., 2013; W. Zhang et al., 2014).  DNTB is a 

colorimetric substrate for quantitating free thiols in solution.  It covalently reacts with a free thiol to produce 

2-nitro-5-thiobenzoate, which can be analyzed at a wavelength of 412 nm. 

Some DNTB PHA synthase enzymatic activity assays are performed continuously (Bhubalan et al., 2011).  

For continuous assays, the reaction solution contains DTNB before any PHA synthase is added and the 

DNTB reacts with CoA (a thiol polymerization byproduct) as it is generated.  Müh and coworkers 

demonstrated that this experimental design leads to misrepresentative observations (1999).  In their work, 

they implemented a discontinuous assay, which eliminates DTNB from the polymerization reaction, and 

then removed aliquots from the reaction over time to perform DTNB quantitation of free CoA.  This assay 

design proved to have a significant effect on the observed data compared to the continuous assay (Müh et 

al., 1999).  The substantial effect DNTB had on the apparent polymerization rate led these researchers to 

conclude that only discontinuous assays should be implemented in quantitative studies. 

Research into in vitro PHA synthase enzymatic activity assays reveals that the behavior of the 

polymerization reaction depends heavily on the reaction design.  In vitro PHA synthase polymerization 

reaction behavior can potentially exhibit multiphasic, inhibited, or a combination of these behaviors 

(Gerngross et al., 1994; Müh et al., 1999; S. Zhang et al., 2000).  The observed kinetics are highly dependent 

on the initial reaction conditions, and it is vital to understand the contributing factors prior to experimental 

design.  This work discusses observed behaviors and their associated initial conditions individually.  

Hypothetical mechanisms for each observed behavior are proposed and subjected to an evidentiary 

assessment based on available literature.  Mathematical models are derived for the hypothetical mechanisms 

and fit to data from literature.  The fundamental causes of the observed behaviors are elucidated using 

minimalistic kinetic models, rigorous statistical analysis, and multi-model inferences. 
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7.3 Modelling Theory and Procedure 

7.3.1 Unprimed Polymerization 

A lag phase, or delayed activity, is a multiphasic behavior typically observed in multimeric 

enzymes.  When unassembled PHA synthase monomers are used to initialize the polymerization reaction, 

a lag phase is observed.  The unassembled monomers require a “priming” phase, where the enzymes 

undergo the formation of the active complexes (Gerngross et al., 1994).  This behavior has led to initially 

contradictory results.  For example, when the PHA synthase is produced as an exogenous protein (e.g., in 

an expression system such as E. coli), the monomers will not be in the active state and a lag phase will be 

observed in the initial polymerization reaction.   In contrast, reports of PHA synthases extracted from their 

native organism appear to be isolated in a primed state, meaning no lag phase is observed in the initial 

reaction (Gerngross et al., 1994).  Several theories have been proposed involving dimerization or micelle 

formation, but atomic force microscopy surface reaction experiments reveal that it is very likely a 

combination of the two phenomena (Kikkawa et al., 2005; Sato et al., 2008).  The kinetics of this priming 

phase are quite complex; however, some key observations have been recorded which offer a glimpse into 

this complicated process. 

First, the duration of the lag phase has proven to be inversely dependent on the concentration of 

PHA synthase (Gerngross et al., 1994).  This trait is evidence that traditional enzymatic multimerization 

governs this behavior.  Secondly, it has been found that monomeric PHB synthase, whose specific substrate 

should be (R) β-hydroxybutyryl-CoA, can be primed using oligomeric CoA derivatives (Figure 41) (1996). 

These primed reactions do not proceed past initiation of the complexes because the oligo-CoA molecule is 

no longer recognized as substrate by the active enzymatic complex.  Wodzinska et al. demonstrated that the 

optimal length of oligo-CoA derivatives used to prime the polymerization reaction, and subsequently reduce 

the observed lag phase, is a trimer primer (where n = 2 in Figure 41) (1996).  This suggests that the majority 

of the lag observed for an unprimed reaction occurs while the polymer of a given synthase-polymer complex 

has less than six hydroxyacyl monomers incorporated.  Because it is believed that only two substrate 
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molecules are required for the initial dimerization of the PHA synthase proteins, these results suggest that 

the complex must also become sufficiently amphipathic prior to full activation.  Further evidence for this 

phenomena is given by unprimed reactions containing non-ionic detergents, such as TritonX-100 or 

Hecameg.  The optimal presence of these detergents removes the lag phase entirely from unprimed reactions 

(Ushimaru et al., 2013).  It is unclear if the presence of the detergent directly aids activation, or if it affects 

indirectly via alteration of the micelle formation rate. 

 

A simple dimerization kinetic model has been derived in an attempt to elucidate the role of 

dimerization kinetics in lag phase behavior as observed in in vitro PHA synthase polymerization reactions.  

Two data sets, investigating the wild-type type I PHA synthase of Cupriavidus necator, were used for the 

analysis of this model (Ushimaru et al., 2013; Yuan et al., 2001).  Because lag phase behavior is 

commonplace for multimeric enzymes, the effects of the more physical phenomena will be supported via 

exclusion.  In other words, if the analytical dimerization model does not represent the literature data well, 

the effect of the lipophilic polymer size (i.e., micelle formation) on the observed lag phase may contribute 

significantly to the overall lag phase behavior. 

Table 10: Dimerization kinetic model derived for this work. Derivation can be found in appendix section A.13.  

E – monomeric synthase; E2Pn – dimeric synthase with bound polymer of length n; S – substrate (hydroxyacyl-CoA); 

C – byproduct (CoA). 

Mechanism Fractional Conversion X(t) Fractional State θ(t) 

E + S 
k1
→ 

1

2
E2P2 + C

  E2Pn  +  S 
k2
→ E2Pn+1  +  C

 1 − exp [−
[E]∅
[S]∅

(1 −
k2
2k1

)θ(t) − 
k2[E]∅
2

t] 1 − exp[−k1[S]∅t] 

 

Figure 41: Oligomeric CoA derivatives used for 

priming PHA synthase polymerization reactions.  

Where n = 0, this figure depicts the PHB synthase 

substrate – β-hydroxybutyryl-CoA. 
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7.3.2 Primed Polymerization 

Definitive biphasic behavior of the PHA synthase polymerization reaction is exclusively observed 

for primed in vitro reactions and, to the authors’ knowledge, there is only one published instance of this 

behavior.  Using the primed PHA synthase of Allochromatium vinosum, the model type III PHA synthase, 

Müh et al. observed that the in vitro polymerization reaction undergoes a phase of high activity followed 

by reduced activity (1999).  Because the in vitro reaction conditions are well controlled and the active 

complex assembly is complete upon initiation, the main causes of this observed phenomena are limited.  

For brevity, Phase I will be defined as the transient, highly active phase and Phase II will be defined as the 

final phase with less apparent enzymatic activity. 

A logical focus would be the investigation of granule/micelle formation (Figure 42).  One could 

hypothesize that Phase I is best represented by free-floating, soluble enzyme complexes actively 

polymerizing PHA with the increased enzymatic activity attributed to the high mobility/diffusivity 

associated with the dissolved molecules.  After the polymer-synthase molecule becomes sufficiently 

amphipathic, it combines with other complexes and assembles into a PHA granule (Phase II).  The source 

of the apparent decrease in the enzymatic activity could be a result of decreased diffusivity (i.e. mass-

transfer limiation) as the molecule transitions from soluble to agglomerated.  While not definitive, 

experimental results of a type I synthase contradict such a model.  Gerngross and Martin successfully 

isolated soluble PHA synthase-polymer complexes from granule-bound PHA-synthases and determined 

that the soluble enzymes possessed a significantly lower activity than that of the granule-bound PHA 

synthases (1995).  This increase in enzymatic activity for the granule-bound synthases is likely due to the 

fixed orientation of the catalytic site, which is normal to the granule surface and provides a higher rate of 

substrate/catalytic-site interaction in comparison with the more random orientation of the dissolved state. 
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An alternate source of activity reduction could be granule/micelle growth.  In this case, one could 

hypothesize that when the agglomerations are small, relative to the PHA synthase, the two subunits possess 

optimal interaction sterics.  As the radius of the granule increases, the hydrophobic surface interacting with 

the hydrophobic domains of the PHA synthase multimer becomes less convex, leading to sub-optimal 

sterics for the interactions required for polymerization (Figure 43).  Surface-binding proteins are known to 

be affected by the surface curvature, but experimentation is needed to investigate the hypothesis in this 

context (Gill et al., 2015). 

 

A third possible explanation for the reduced apparent polymerization rate is not a reduction in 

specific activity but a loss of active enzyme.  In vitro polymerization reactions are typically not performed 

with phospholipids and/or stabilization proteins, which are utilized in vivo, meaning the granules are 

consequently more suceptable to coalescence.  If a loss of active enzyme were to occur when inhibitory 

effects are negligible, namely the presence of excess substrate and low fractional conversion, the cause 

Figure 42: Formation – Hypothetical reduction in specific enzymatic activity due to the formation of the 

PHA granule.  This hypothesis states the reduction in the apparent activity is a consequence of the relative 

diffusivities of the soluble (left) and granule-bound (right) enzyme states. 

Figure 43: Growth – Hypothetical reduction in specific enzymatic activity due to the size of the PHA granule.  

The hydrophobic (shaded) regions of the PHA synthase possess significant interactions with the hydrophobic 

granule.  As the granule increases in size the optimal energetic states of the protein-protein interaction sites 

(dashed lines) are altered. 
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could result from the coalescence of the amorphous PHA granules.  The same work that contradicts the 

hypothesis of Figure 42 reports observing the coalescence of PHA granules (Gerngross & Martin, 1995).  

Further support comes from the work of Nobes et al., who observed this phenomena exactly during 

transmission electron microscopy studies (2000).  Nobes and coworkers noted a rapid decrease in the 

number of individual PHA granules in the early stages of polymerization, followed by a continual decrease 

in the number of PHA granules thereafter (Nobes et al., 2000). In this hypothetical system Phase I is best 

represented by a population of smaller and more active PHA granules.  As these granules increase in size, 

the likelihood of coalescence also increases and rapidly leads to a population of significantly larger PHA 

granules.  The reduction in enzymatic activity would be the result of either a lowered synthase activity on 

the larger granules, or the loss of surface bound enzyme during the coalescence process due to the incidental 

engulfment and subsequent entanglement of the polymer covalently bound to the enzyme (Figure 44).  The 

enzyme would then work its way back to the more energetically favorable state at the granule surface, if 

possible. 

  

The hypotheses discussed above are not mutually exclusive of the actual kinetic driving forces, nor 

are they totally inclusive when combined.  The only certainty is that some fundamental state change is 

occurring, causing a significant decrease in the apparent enzymatic activity.  An attempt to describe the 

primary mechanisms contributing to this phenomena has been performed by implementing four generic 

first-order state change models provided in Table 11.  The first model is a first-order model describing only 

Figure 44:  Coalescence – Hypothetical coalescence-mediated PHA synthase shielding.  PHA synthases are 

incidentally engulfed within the PHA granule at the point of contact during coalescence and cannot 

immediately return to the surface of the PHA granule because the attached polymer has become entangled 

within the amorphous granule.  The shielded enzyme can no longer encounter hydrophilic substrate from 

within the lipophilic granule. 
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polymerization.  The second model represents the case similar to the depiction in Figure 43, where after the 

state change occurs, all enzymes remain capable of polymerization at a new reduced activity.  The third 

model represents the case where an irreversible deactivation is occurring to the enzyme.  The final model 

represents a case befitting the coalescence-mediated PHA synthase shielding (Figure 44), where a 

temporary/reversible deactivation occurs.  

7.4 Results and Discussion 

7.4.1 Unprimed Polymerization 

The dimerization model was fitted to the data using residual sum of squares optimization for non-

linear regression.  The model significantly represented both sets of data (p < 0.0001 ea.) (Figure 45).  The 

dimerization constant (k1) varies significantly between the two sets.  This result could be expected for such 

a comparison because these experiments were performed under different conditions, but it should be noted 

that statistical resolution of k1 with this model will be rather difficult due to the nature of the kinetics being 

described. 
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Figure 45: Dimerization model fit to data from literature.  Regressor values are shown.  (LEFT) Fractional 

conversion of the C. necator PHB synthase mediated polymerization reaction [S]∅ = 1,600 µM, 

[E]∅ = 0.12 µM (Yuan et al., 2001).  (RIGHT) Transient CoA release of the C. necator PHB synthase 

mediated polymerization reaction [S]∅ = 100 µM, [E]∅ = 0.21 µM (Ushimaru, Sangiambut, Thomson, 

Sivaniah, & Tsuge, 2013). 
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Table 11: State change kinetic models derived for this work. The first-order model has been omitted due to its simplicity.  Derivations can be found in the appendix 

sections A.14, A.15, and A.16.  E2Pn – Dimeric synthase with bound polymer of length n; E2Pn
* – E2Pn in lesser active, or inactive state; S – Substrate (hydroxyacyl-

CoA); C – Byproduct (CoA). 

Phenomena Mechanism Fractional Conversion X(t) Fractional State θ(t) 

Activity 

Reduction 

E2Pn + S 
k1
→ E2Pn+1 + C

E2Pn  
k2
→ E2Pn

∗

E2Pn
∗ + S 

k3
→ E2Pn+1

∗ + C

 1 − exp [−
[E]∅
2
(
k1 + k3
k2

θ(t) + k3t)] 1 − exp[−k2t] 

Irreversible 

Deactivation 

E2Pn + S 
k1
→ E2Pn+1 + C

E2Pn  
k2
→ E2Pn

∗
 1 − exp [−

k1[E]∅
2k2

θ(t)] 1 − exp[−k2t] 

Reversible 

Deactivation 

E2Pn + S 
k1
→ E2Pn+1 + C

E2Pn  
k2
↔ E2Pn

∗
 1 − exp [−

k1[E]∅
2

(
θ(t)

k2 + k−2
+ (1 − 

k2
k2 + k−2

) t)] 
k2

k2 + k−2
(1 − exp[−(k2 + k−2)t]) 
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The regressed polymerization rate constant (k2) from the data recorded by Yuan et al. (Yuan et al., 

2001) proved to have no significant difference from the constant regressed from the data recorded by 

Ushimaru et al. (Ushimaru et al., 2013) (i.e., 6.2 ≤ k2, Ushimaru et al. ≤ 7.8 µM-1 min-1).  This suggests the model 

may allow for the elucidation of a more accurate polymerization rate constant for comparison of PHA 

synthase enzymatic activities. 

One limitation of the dimerization model observed during the fitting of these data was that in order 

to produce resolved parameter values, the data should well represent the post-dimerization polymerization 

phase, meaning some downward curvature in the late region.  The data of Yuan et al. lacks these 

measurements, so while the residual sum of squares value for this fit is very low, it remains difficult to 

resolve the fitting parameters k1 and k2, which is essential for experimental comparisons through traditional 

statistical analysis. 

A second limitation of this model is the requirement of [S]∅ >> [E]∅.  The consequences of the 

violation of this assumption can be observed in the fit to the data of Ushimaru et al. in the right-hand panel 

of Figure 45.  Here we can see the reaction slowing soon after dimerization is complete, which is edging 

on violation of the stated assumption.  Because the fractional conversion remains so low as the reaction rate 

slows (Xfinal = 0.55), this effect might be caused by competitive inhibition of the free CoA (S. Zhang et al., 

2000).  This inference suggests that future experiments implementing this model to elucidate the 

polymerization rate constant should employ a substrate-to-enzyme ratio of greater than 500:1 (S:E) in order 

to avoid potential inhibition. 

Overall these case studies provide keen insights into the factors influencing lag during PHA 

synthase in vitro polymerization.  Under conditions typical of an enzymatic assay, namely substrate excess, 

the bulk of the complex assembly kinetic behavior can be captured through PHA synthase dimerization 

kinetics.  These results indicate that dimerization, or an analogous first-order enzyme-dependent reaction, 

is the main factor influencing the lag phase kinetics in an excess of substrate.  Additionally, because the 

two polymerization rate constant (k2) values were comparable between discrete experiments with unique 
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reaction compositions, this model may be a useful tool to elucidate and compare accurate PHA synthase 

polymerization rate constants.  The dimerization rate constant, k1, provides qualitative insight into an 

enzyme’s readiness to form an active complex; however, this parameter should not be acknowledged as 

anything more than a semi-quantitative measure because this model fails to address the dependence of the 

complex formation on the size of the lipophilic chain.  In particular, it fails to address how the activity of 

the synthase-polymer complex changes as its polymer progresses between two to six monomers in length. 

7.4.2 Primed Polymerization 

The models listed in Table 11 were fitted to the data using residual sum of squares optimization for 

non-linear regression.  Additionally, a simple first-order polymerization model under the same assumptions 

was fitted to the data for comparison to the state change model.  This comparison was used to investigate 

if biphasic behavior is significantly different from monophasic behavior.  The first-order model also proved 

useful in providing the initial polymerization rate constant values for nonlinear regression.  

All models significantly represented the observed data (p < 0.0001 ea.).  The fitted data can be 

observed in Figure 46.  The Akaike's Information Criterion (AIC) for sum-of-squares likelihood was used 

for non-nested model comparisons.  AIC is a measure of the relative quality of a statistical model (Burnham 

& Anderson, 2002).  The calculated value depends upon the number of fitted observations (n) and the log 

of the residual sum of squares (RSS), so as n increases or RSS decreases (less residual error), AIC becomes 

more negative.  The first-order model AIC value was found to be -97, while both the reduced activity and 

reversible deactivation models were -134, and the irreversible deactivation model was -101.  The relative 

ability of the models to describe the data is illustrated in Figure 46.  Comparing AIC, RSS, F-statistic, and 

graphical representation shows both the activity reduction model and the reversible deactivation models are 

significantly better at describing the observed phenomena than the first-order and irreversible deactivation 

models. 
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During analysis of the activity reduction and reversible deactivation models, it was observed that 

the fit descriptors were identical within the resolution of the statistical tests.  In other words, the RSS for 

each model was 0.001144 and both F-statistics were 6691.  For any given predicted value the difference 

between the models was negligible (𝒪(-6) to 𝒪(-8)).  Comparison of the two models showed that they both 

belong to the same function family (Equation 7), where the constants are differing functions of the model-

Figure 46: Fractional conversion models derived in this section and fit to the data from literature (Müh, 

Sinskey, Kirby, Lane, & Stubbe, 1999). Dashed lines indicate 95% approximate confidence intervals on the 

mean (red) and 95% approximate prediction intervals (black).  Regressor expected values given for each 

respective model. 
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specific rate constants (Table 12).  Because these two models both fit the same function family, it will be 

difficult to discern which one better represents this observed phenomena through analysis of similar kinetic 

experiments in the future. 

Equation 7: Generic function describing the reduced activity and reversible deactivation model fractional conversions.  

A, B, and C are constants which are functions of the model-specific rate constants.  Relationships are listed in Table 

12. 

Χ(t) = 1 − exp[A(1 − exp[Bt]) + Ct] 

Table 12: Relationship between the model-specific rate constants and generic family constants for the reduced activity 

and reversible deactivation models. 

Activity Reduction Reversible Deactivation 

k1[E2Pn]∅ = AB + C k1[E2Pn]∅ = AB − C 

k2 = −B k2 =
−B

1 −
C
AB

 

k3[E2Pn]∅ = −C k−2 = B(
1

1 −
C
AB

 −  1) 

 

The activity reduction and reversible deactivation models successfully capture the initial high 

activity phase region and the relative optima values of the activity reduction polymerization rate constants, 

k1 and k3 (i.e., k1 > k3).  Under approximate 95% confidence intervals, the activity reduction initial 

polymerization rate constant k1 (-4.1 ≤ k1 ≤ 77 µM-1 min-1) and the reversible deactivation rate constant k2 

(-0.44 ≤ k2 ≤ 11 min-1) are the only parameters not significantly different from the null.  However, when 

Equation 7 is fit to the data, all regressors are significant. Because each rate expression possesses three rate 

constants that are independently related to the three significant regressors, the rate expression constants 

should also be significant.  It was found that k1 and k2 were also the regressors of highest bias (17% ea.) for 

each respective model, suggesting the approximate standard deviation is not a good estimator of error in 

these cases (Box, 1971).  For biased parameters, the error is not balanced above and below the expected 
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value, and the model requires transformation (e.g., linearization) in order to provide balanced deviations 

from the expected value.   

Limiting the fitting of the first-order model to the data of Phase I (n = 8, AIC = -56), a higher 

polymerization rate constant was obtained (19 ≤ k ≤ 27 µM-1 min-1, α = 0.05).  The resulting fit was poor 

(Figure 47) and possessed a RSS value an order of magnitude higher than the Phase I RSS of the activity 

reduction and reversible deactivation models.  The reduction and reversible deactivation models represent 

the Phase I data better than the first-order approximation, and the first-order approximation of 

polymerization alone does not represent Phase I kinetic behavior well. 

In contrast, the fitting of the first-order model to the Phase II data (n = 7, AIC = -54) describes the 

phenomena relatively well.  The RSS of the Phase II first-order model (0.0017) was comparable to the 

Phase II RSS of the state change model (0.0011), suggesting that the AIC value suffers from a low number 

of data points.  The only model which cannot describe the phenomena well in Phase II is the irreversible 

deactivation model. 

The fractional state, θ(t), of the state change models can provide useful insights into the 

composition of the in vitro reaction, such as: Is this fraction bounded between zero and one? When does it 

significantly change? What is the final extent?  All of these questions can yield useful insight into the state 

of the enzymes within the reaction according to the given model.  The comparison of fractional states of 

the state change models can be observed in Figure 49. 

It was found that under the activity reduction model, nearly all of the enzyme is in the lesser-active 

state before the end of Phase I.  The reversible deactivation model suggests that even though the deactivation 

can be reversed, the polymerization observed in Phase II would be performed by only 25% of the initial 

enzyme concentration.  The irreversible deactivation model shows that the fraction of enzyme deactivated 

is steadily increasing, as would be expected of an irreversible deactivation; however, this phenomena likely 



 

119 

 

 

does not occur because this model does not represent the data well.  This unique case study offered an 

interesting perspective into the in vitro PHA synthase polymerization kinetics.  The results clearly indicate 

that the Phase I region is not represented well by either first-order polymerization kinetics or irreversible 

deactivation kinetics.  The degree to which the activity reduction and reversible deactivation models 

describe the entirety of the data suggests that some form of state change is occurring to the active enzyme 

Figure 47: The first-order model fit only to points within Phase I (n = 8) of the data in Figure 46.  The original 

fits of the activity reduction, irreversible deactivation, and reversible deactivation models are depicted in the 

same scale for comparison.  Dashed lines indicate 95% confidence intervals on the mean (red) and 95% 

prediction intervals (black). 
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complex throughout the polymerization process, which is not dependent on the substrate or byproduct 

concentrations.  The work of Nobes et al. provides strong evidence that this observed state change may be 

caused by coalescence (2000). 

 

Figure 48: The first-order model fit only to points within Phase II (n = 7) of the data in Figure 46.  The 

original fits of the activity reduction, irreversible deactivation, and reversible deactivation models are 

depicted in the same scale for comparison.  Dashed lines indicate 95% confidence intervals on the mean (red) 

and 95% prediction intervals (black). 

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

0 5 10

X
(t

)

t [min]

Local First-Order

Phase II

k = 17 µM-1 min-1

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

0 5 10

X
(t

)

t [min]

Activity Reduction

Phase II

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

0 5 10

X
(t

)

t [min]

Reversible Deactivation

Phase II

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

0 5 10

X
(t

)

t [min]

Irreversible Deactivation

Phase II



 

121 

 

 

7.5 Previous Kinetic Studies 

Here we examine some previously reported PHA synthase kinetic investigations.  We exemplify the 

consequences of non-ideal in vitro polymerization assay design and how the undesirable effects may be 

avoided. 

Burns et al. proposed one of the few, and rather ambitious, mathematical models attempting to 

describe in vitro PHA synthase polymerization kinetics (2007).  The complex model attempts to describe 

the three-enzyme PHA biosynthesis pathway (PhaA, PhaB, and PhaC) of C. necator.  Unfortunately, due 

to the nature of this complex experiment, they may have had to compromise on accuracy for efficiency 

during data acquisition.  A major item called into question is the method of PHA synthase enzymatic activity 

quantitation.  A continuous DNTB assay was utilized and corrected for background due to DNTB-PHA 

synthase interaction.  Müh et al. showed that a continuous DNTB assay significantly underestimates the 

actual activity of PHA synthase (1999).  Performing a continuous DNTB assay and subtracting a 

background value could lead to a severely underrepresented PHA synthase activity data set.  A 

Figure 49: Transient enzymatic fractional states as defined in the models derived in this work.  Reduced 

activity fractional state represents the fraction of enzyme in the lesser-active state.  The reversible and 

irreversible deactivation fractional states represent the fraction of enzyme currently deactivated. 
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discontinuous assay may have provided more accurate results for Burns and co-workers, if the overall 

experimental design allowed for such a measurement. 

Nobes et al. also performed kinetic analysis on their in vitro PHA synthase polymerization reaction 

during their coalescence studies.  They report using Michaelis-Menten kinetics for a single substrate 

reaction (Nobes et al., 2000).  Unfortunately, they assayed an unprimed polymerization reaction and failed 

to account for the lag phase assembly kinetics, leading to initial rates that do not represent polymerization 

well.  Fortunately, the results of the kinetic analysis have no effect on their observed coalescence results.  

Multimerization assembly kinetics may provide more accurate regression values for the polymerization rate 

constants of unprimed reactions.  Alternatively, the reactions could be trimer-primed, if available.  

Omission of the lag phase by non-ionic detergents may not yield consistent results across PHA synthase 

variants, so it should be avoided when attempting to present accurate and comparable quantitative data. 

7.6 Conclusions 

Great precaution should be taken during the experimental design of an in vitro PHA synthase 

enzymatic activity assay in order to avoid potential misrepresentation of the active form of the enzyme.  

The presence of non-ionic detergents and the use of native synthase can each yield reactions lacking the lag 

phase behavior.  The in vitro PHA synthase polymerization reaction possesses many complex mechanisms, 

which combined produce an apparent behavior that cannot (exactly) be modelled analytically.  Dimerization 

kinetics were found to describe the majority of observed lag phase behavior well, suggesting it is a key 

contributor to the active complex assembly step.  The biphasic behavior observed by Müh et al. was 

described by an enzyme-dependent first-order state change model (Müh et al., 1999).  Furthermore, there 

is strong evidence that the state change is related to coalescence of growing PHA granules (Nobes et al., 

2000). 

A pictographic summary of the observed behavioral phenomena is given in Figure 50. It is very likely 

that a well-defined Phase I behavior is not observed in unprimed reactions because the increase in specific 
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enzymatic activity for granules in this state is greatly offset by the reduction in specific activity from 

enzymes in the Priming Phase state.  It will be a difficult task to discern, through kinetic analysis, whether 

this state change of Phase II is actually due to reversible deactivation, which represents the hypothesized 

shielding discussed in Figure 44, or a reduction in the enzymatic activity, a more fundamental state change.  

A physical experiment could be performed to test if any PHA synthase can be located within the PHA 

granule after in vitro polymerization.  This experiment could be accomplished by exposing the mature 

granules to a non-specific protease, followed by the recovery and detection of any proteins that may have 

been protected by the granule during digestion.  Alternatively, one could fuse fluorescent tags to the PHA 

synthase and quantify the residual enzyme via epifluorescence after digestion. 

The inferences of this work offer a glimpse into the complex PHA synthase polymerization 

mechanisms, and the results from these case studies should aid in the design of future PHA synthase 

enzymatic activity assays. 
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Figure 50: Depiction of major phenomena observed in in vitro PHA synthase polymerization kinetic 

behavior.  The Priming, or lag, phase of the reaction describes the initial formation of the active PHA 

synthase-polymer complex/agglomeration.  Phase I describes the transient state where the PHA synthase 

possess its maximum rate of substrate consumption.  Granules in Phase I will proceed into Phase II once they 

are sufficiently large.  Phase I should be most readily observed in pre-primed polymerization reactions.  

Phase II exhibits a reduction in the observed enzymatic activity as compared to Phase I.  The mechanism of 

this reduction is unclear, but the phenomena is independent of substrate concentration and dependent on the 

concentration of active enzyme.  One certainty is that the observed rate of substrate consumption is inversely 

proportional to the size of the PHA granules. 
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CHAPTER 8. PHA SYNTHASE RATIONAL MUTATION 

8.1 Chapter Preface 

This chapter records the progression of Objective III (section 1.4) – Investigate potential causes of 

low PHA accumulation in cyanobacteria via rational mutagenesis of PHA polymerization enzyme. 

8.2 Introduction 

Even though cyanobacteria generally show lower yields of PHA as compared to heterotrophic 

organisms, there is a lack of effort focused towards answering why.  Instead, current research has turned its 

focus toward recombinant overexpression of an exogenous PHA synthase in order to increase PHA 

synthesis.  In other words, many researchers are working to treat the symptom rather than diagnosing the 

cause.   

Exogenous recombinant metabolic manipulation may not be ideal for industrial-scale operations, as 

these methods typically introduce a form of antibiotic resistance, or other metabolic selector, as a selectable 

marker.  Looking at the case of antibiotic selection as an example, such a method of metabolic alteration 

requires a constant presence of the antibiotic in the cultivation media to ensure preservation of the genotype.  

Antibiotics in a large-scale, continuous bioprocess can increase in-house production costs, limit viable site 

locations, and may increase associated ecosystem contamination prevention costs.  This is especially true 

for organisms as natively robust as cyanobacteria (Akiyama et al., 2011).  Because of the many potential 

consequences of a “designer” cyanobacteria, a PHA bioproduction process should utilize cyanobacteria 

possessing a genotype as close to the wild-type as possible. 

In many cases, exogenous PHA synthase expression has led to an improvement in lab-scale PHA 

accumulation by as much as 4-5-fold (Akiyama et al., 2011; Kumar Sudesh, Taguchi, & Doi, 2002).  This 

suggests that the limiting factor to PHA accumulation in cyanobacteria is likely associated with the PHA 

synthase.  The limiting factor of PHA yield could be the effects from transcription, translation, or product 

functionality, or any combination thereof. 
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After the inception of this work, Numata et al. determined that the enzymatic activity level of the 

PHA synthase in Synechocystis sp. PCC 6803 was indifferent from that of a higher PHA-accumulating 

heterotrophic organism (Numata et al., 2015).  This observation indicates that the enzymatic activity of 

cyanobacterial PHA synthases does not cause the low observed yields of PHA, but it is instead more likely 

the transcription or translational effects (i.e., regulation) which cause the observed low PHA yields in 

cyanobacteria.  In other words, if PHA synthase is the limiting factor of PHA accumulation in 

cyanobacteria, then it is likely due to the quantity of PHA synthase, rather than its aptitude. 

The goal of this work is to investigate the function of cyanobacterial PHA synthase idiosyncrasies, 

when compared to non-cyanobacterial PHA synthases, as they relate to the apparent enzymatic activity.  

While evidence shows these experiments will not help to increase the PHA yields in cyanobacteria directly, 

they still provide key insights into the mechanics of PHA synthase catalysis in cyanobacteria. 

8.3 Materials and Methods 

8.3.1 Loci and Mutant Determination 

The type III PHA synthase of the model cyanobacteria, Synechocystis sp. PCC 6803 was selected for 

investigation in this work.  The PHA synthase conservational analysis performed in CHAPTER 5 provided 

an interesting conserved locus to target for mutation – the cyanobacteria-specific insertion, or 

cyanobacterial box.  This region of the PHA synthase was selected because of its uniqueness to 

cyanobacteria, making it an idiosyncrasy in the PHA synthase protein family. 

Following the analysis of CHAPTER 5, the cyanobacterial box is redefined in this work as the 

residues in the positions of the inclusive range of 205-209 in the Synechocystis sp. PCC 6803 accessed 

sequence (Appendix Table 4).  Each residue of this region was mutated independently. Mutant residues 

were selected based off of the wild-type residue physiochemical properties.  The mutant residues introduced 

varied the chemical properties of the residue and attempted to maintain a comparable molecular weight. 
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8.3.2 Isolation and Cloning of Synechocystis sp. PCC6803 phaC and phaE 

The wild-type strain of Synechocystis sp. PCC6803 was cultivated in a plant tissue culture incubator 

(Forma Scientific, model 3750) at 29°C under constant fluorescent lighting (60 µmol m-2 s-1) in BG-11 

medium (Rippka et al., 1979) supplemented with 100 mmol l-1 2-[tris(hydroxymethyl)methylamino]-1-

ethanesulfonic acid (TES) buffer (pH 8.2).  Three 50 ml cultures, agitated once daily, were grown in 250 ml 

Erlenmeyer flasks to an optical density (λ = 730nm) of six.  Next, two one milliliter samples (~5E8 cells) 

were collected for each culture replicate and the genomic DNA was harvested using the following protocol.  

Cells were pelleted via centrifugation at 3,300xg for 10 min, decanted, and centrifuged again at 9,200xg 

for 3 min to remove residual media.  Cells were then resuspended in 100 µl lysis solution (0.5x TE buffer, 

pH 8.0, supplemented with 50 mmol l-1 sodium chloride).  15 µl of 50 mg ml-1 lysozyme solution 

(100 mmol l-1 Tris, pH 8.0) was then added and samples were incubated at 55°C for 30 min.  Next, 5 µl of 

20 mg ml-1 proteinase K and 20 µl of 10% sodium dodecyl sulfate was added and the incubation was 

repeated for 20 min.  Following lysis, two equal volume organic separations using 

phenol:chloroform:isoamyl alcohol (25:24:1) were performed.  Finally, ethanol precipitation was 
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performed using a final concentration of 0.2 mol l-1 sodium chloride.  Samples were resuspended in TE 

buffer, analyzed via spectroscopy, and stored at -20°C. 

Table 13: Table of primer sequences used in this work.  Relevant restriction enzyme recognition sites are listed and 

cleavage sites are denoted by ‘˅’. Strand is in reference to coding sequence as strand 1. 

Name Sequence Strand Sites 

1829.1 ATTG˅GATC˅CATGGAATCGACAAATAAAACCTGG 1 BamHI, NcoI 

1829.2 AAGG˅TCGACTTAGCCTGGGTTTGCTTCTG 2 SalI 

1829.3 TACT˅GTACACAACATGGAATCGACAAATAAAACCTGG 1 Bsp1407I 

1829.4 CAGA˅AGCTTTTAGCCTGGGTTTGCTTCTG 2 HindIII 

1829.6a AAGC˅TCGAGGCCTGGGTTTGCTTCTG 2 XhoI 

1829.7 CCGA˅GATCTCATGGAATCGACAAATAAAACCTGG 1 BglII 

1830.1 TCAG˅GATCCATGTTTTTACTATTTTTTATCGTTCATTGGT 1 BamHI 

1830.2 GCAG˅TCGACTCACTGTCGTTCCGATAGC 2 SalI 

1830.3 TACT˅GTACACAACATGTTTTTACTATTTTTTATCGTTCATTGGT 1 Bsp1407I 

1830.4 CAGA˅AGCTTTCACTGTCGTTCCGATAGC 2 HindIII 

1830.6a CAGC˅TCGAGTCACTGTCGTTCCGATAGC 2 XhoI 

Once genomic DNA was isolated, high-fidelity PCR amplification was performed using Phusion 

High-Fidelity DNA Polymerase (New England Biolabs, #F530S) for each biological replicate (n = 3).  The 

1829.1 and 1829.2 (see Table 13) oligonucleotides were used to amplify the wild-type phaE gene (slr1829), 

and the 1830.1 and 1830.2 primers were used to amplify the wild-type phaC gene (slr1830).  Each 50 µl 

reaction consisted of approximately 200 ng DNA template, 0.5 µmol l-1 each oligonucleotide primer, 

1x Phusion HF Buffer (New England Biolabs), 0.2 mmol l-1 dNTPs, and 1 U polymerase.  These reactions 

were subjected to [98.0°C for 00:30], followed by 32 cycles of [98.0°C for 00:10, TA for 00:20, 72.0°C for 

00:30] (where TA was 67.5°C for phaC and 65.0°C for phaE), then [72.0°C for 10:00] and immediately 

stored at four centigrade.  Initial target validation of amplification products was performed through partial 

restriction digestion. The combined products were subjected to 1 hour of digestion with SmaI (Thermo 

Scientific, FD0663).  Products and digests were visualized using a one percent agarose gel (0.5xTBE) with 

0.5 µg ml ethidium bromide staining, subjected to an electric tension of 5 V cm-1 for 90 min. 

The PCR amplification products were then independently inserted into the pUC18 vector (Agilent 

Technologies, 200231-42).  This was performed through one hour digestions of both products and vector 

with BamHI (Thermo Scientific, FD0054) and SalI (Thermo Scientific, FD0644), followed by a 3:1 
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(insert:vector) ligation using T4 DNA Ligase (Thermo Scientific, EL0014), and finally, transformation into 

E. coli XL1-Blue (Agilent Technologies, 200130).  Traditional blue-white screening was implemented for 

colony selection for subsequent colony PCR. 

Colony PCR was performed using the universal M13 primers and DreamTaq (Thermo Scientific, 

EP0702).  Colony PCR products were subjected to SmaI digestion again in order to confirm the presence 

of the high fidelity PCR product insert.  Confirmed strains were then stored in 30% glycerol selective 

medium at -80°C.  Next, reserves were continued plasmid for plasmid isolation using a miniprep kit 

(Axygen Biosciences, AP-MN-P-50).  Isolated plasmids were then subjected to DNA sequencing (Applied 

BioSystems BigDye Terminator (v3.1), ABI Prism 3130) using the M13F primer for sequence 

confirmation.  These plasmids were deemed pCL0001 (pUC18(phaE)) and pCL0002 (pUC18(phaC)). 

8.3.3 Site-Directed Mutagenesis of phaC 

Site-directed mutagenesis of the cyanobacteria-specific insertion region of phaC was performed 

using the phosphorylated primers depicted in Table 13.  High-fidelity PCR was performed on pCL0002 

using the two of the primers shown, under the same reaction conditions used for previous high-fidelity PCR 

amplification.  These reactions then underwent the following thermal cycles: [98.0°C for 00:30], followed 

by 24 cycles of [98.0°C for 00:10, 72.0°C for 02:00], and then [72.0°C for 10:00], reactions were then 

immediately stored at four centigrade.  PCR products were then re-circularized using T4 DNA ligase and 

transformed into E. coli XL1-Blue.  

The 1830.205.R primer was used in conjunction with 1830.G205A.F, 1830.C206A.F, and 

1830.T207V.F primers to create the pCL0002(G205A), pCL0002(C206A), and pCL0002(T207V) mutant 

vectors, respectively.  The 1830.209.F primer was used with the 1830.L208S.R and 1830.G209A.R primers 

to create the pCL0002(L208S) and pCL0002(G209A) mutant phaC vectors, respectively.  The deletion 

mutant, pCL0002(Δ205-209), was the re-circularized product of 1830.209.F and 1830.205.R.  Mutant 

pCL0002 derivatives were isolated and subjected to DNA sequencing using the M13F universal primer. 
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8.3.4 Dual ELP-tagged Split Intein Expression Vector Construction 

In order to express and purify an untagged form of the recombinant enzymatic subunits, it was 

decided to use the dual ELP-tagged split-intein system described by Shi et al. (Shi et al., 2013).  For this 

system, a mutant intein has been split into two functional motifs – N-terminus and C-terminus.  The target 

protein is fused to the partial intein C-terminus fragment and can be cleaved selectively through N-terminus 

complementation.  Additionally, both intein fragments are fused to elastin-like proteins for non-

chromatographic separations/purification.  E. coli BLR(DE3) strains harboring the following vectors were 

a gift from the lab of David Wood at Ohio State University: pE/E11I0N, pE/E11I0C(GFP), and 

pE/E11I0C(MBP). 

pE/E11I0C(GFP) was isolated, digested with Bsp1407I (Thermo Scientific, FD0934) and HindIII 

(Thermo Scientific, FD0504), and gel purified in order to obtain the vector with which to insert the PHA 

synthase subunit coding sequences.  The pCL0005 (pE/E11I0C(phaC)) plasmid inserts were obtained 

through the high-fidelity PCR amplification of the respective pCL0002 vector using primers 1830.3 and 

1830.4 (see Table 13).  The pCL0006 (pE/E11I0C(phaE)) plasmid was constructed similarly using primers 

1829.3 and 1829.4 and amplifying the pCL0001 template.  PCR products were cleaned up via spin column 

(Thermo Scientific GeneJet, K0691), digested, ligated into the pE/E11I0C vector, and then transformed into 

E. coli XL1-Blue.  The insert’s location and orientation were confirmed via DNA sequencing using the 

Figure 52: Primer sequences of mutational insertion primers used in this study.  The cyanobacteria-specific 

insertion region of the phaC template sequence is highlighted. 
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upstream primer poly(Asn).Ck.F (TAACAACAACCTCGGGATCG) and downstream universal 

T7terminator primer.  Once sequenced, the same plasmid isolates were transformed into E. coli BLR(DE3) 

using the one-step transformation protocol described by Chung and Miller (Chung & Miller, 1993). 

 

8.3.5 Hexahistidine-Tagged Expression Vector Construction 

As an alternate method of expression, it was decided to perform traditional hexahistidine-tagging 

on the enzymatic subunits.  The pET28a vector was selected because it allowed for N-terminal and C-

terminal tagging of the expressed proteins. 

The pCL0007 (pET28a(phaE)) plasmid insert was obtained through high-fidelity PCR 

amplification of pCL0001 using primers 1829.1 and 1829.6a.  The product was then purified and digested 

using NcoI (Thermo Scientific, FD0574) and XhoI (Thermo Scientific, FD0695).  Because the phaE insert 

possessed an internal NcoI recognition site, the reaction was first digested to completion using XhoI (one 

hour), then one-quarter of the recommended amount of NcoI was added and digested for 15 min before 

being denatured at 80°C for 20 min.  This digest was then subjected to gel purification (Thermo Scientific, 

GeneJET K0831).  The pET28a vector was also digested and gel purified with the same enzymes.  The 

vector and insert were ligated and transformed into E. coli XL1-Blue.  The insert presence and orientation 

were confirmed through DNA sequencing using T7promoter and T7terminator universal primers.  The 
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exact plasmid isolates used for sequencing were then used to transform E. coli BLR(DE3), again using the 

one-step transformation protocol (Chung & Miller, 1993). 

The pCL0008 (pET28a(phaC)) plasmids were derived in an analogous fashion to the pCL0007 

vector.  The primers 1830.1 and 1830.6a were used for PCR amplification of the respective pCL0002 vector 

and the BamHI and XhoI restriction enzymes were used for digestion of both the vector and insert. 

8.3.6 Hexahistidine-Tagged Co-Expression Vector Construction 

As an alternate method of expression, vectors for the co-expression of the PhaC and PhaE subunits 

were designed using the pETDuet-1 vector (Novagen, 71146).  The phaC gene, and respective mutants, 

were inserted into the vector first.  The pCL0010 vectors (pETDuet-1(phaC)) were constructed by digesting 

the respective pCL0008 vectors with XbaI (Thermo Scientific, FD0684) and SalI followed by the digestion 

of pETDuet-1 with BamHI, XbaI, and XhoI.  Next, the 1.3 kb fragment of each pCL0008 digestion was gel 

purified while the 50 bp MCS regions of the pETDuet-1 vector were excluded via column purification.  The 

ligation utilized the XbaI sites and exploited the XhoI/SalI compatible sticky ends. 

Next, the insertion of the PhaE subunit was performed in order to create the pCL0011 (pETDuet-

1(phaC, phaE)) vectors.  As before, PCR amplification of pCL0001 was performed using the primers 

1829.7 and 1829.2 which produced the insert, this product was then digested with BglII (ThermoScientific, 

FD0083) and SalI.  The pCL0010 vectors were digested with BglII and XhoI.  Once again, the ligation 

exploited the XhoI/SalI compatible sticky ends. 

8.3.7 Expression and Purification of PHA Synthase Subunits 

For the protein expression, an overnight culture of selective LB (100 µg ml-1 ampicillin or 

50 µg ml-1 kanamycin, final) was seeded 1:100 in similarly selective TB medium.  Cultures were continued 

at 37°C with rotation at 150 rpm until an optical density of 0.8 was observed at 600 nm wavelength.  At 

this point, a 0.5 ml sample was extracted for expression analysis, pelleted, and stored at −20°C. 
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Figure 54: Flow diagram depicting construction of co-expression vectors.  This process was repeated for 

every mutant derivative.  Blue boxes represent multiple cloning sites.  Promoters and terminators are 

depicted, but not labelled. 
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Next, the cultures were induced to a final concentration of 0.1 mM IPTG and allowed to express overnight.  

Once expression was complete, a sample was diluted to an optical density of 0.8, 0.5 ml of it was pelleted, 

and stored.  Cells were then harvested via centrifugation into 50 ml centrifuge tubes at 3,000xg for 10 

minutes at four centigrade.  Volumes greater than 50 ml were harvested sequentially into the same tube for 

a given cultivar. 

Recombinant protein expression capabilities of the cell lines were analyzed through whole-

cell/total protein visualization using denaturing gel electrophoresis with coomassie staining.  Stored sample 

pellets, obtained in the previous paragraph, were resuspended in 0.25 ml deionized water, aspirated via 

micropipette to aid osmolysis, and used directly as sample to mix with 4x laemmli buffer. 12 µl of sample 

(16 µl total) was loaded for SDS-PAGE visualization. 

Hexahistidine-tagged protein purification and consultation was performed by Drs. Octavia 

Goodwin and Megan Macnaughtan from the Louisiana State University Department of Chemistry.  Briefly, 

harvested cells were resuspended in BugBuster protein extraction reagent and subjected to ultrasonication.  

Lysates then underwent centrifugation at 30,000xg for 30 minutes at four centigrade, where the supernatants 

were deemed cleared lysates.  Cleared lysates were loaded onto nickel-affinity gel media equilibrated to a 

pH value of 8.0 with 50 mM sodium phosphate supplemented with 300 mM sodium chloride, then set up 

for ambient gravity flow.  Once complete, the affinity media was washed with buffer containing 10 mM 

imidazole and subsequently eluted with 300 mM imidazole.  Purified products were visualized via typical 

SDS-PAGE. 

8.3.8 Preparation of Clarified Lysate 

The clarified lysate used in the enzymatic activity experiments was produced from 200 mg of wet 

cells from pellet reserves stored at −80°C.  All of the following steps were performed on ice unless 

otherwise stated.  The wet cells were resuspended in one milliliter of 130 mM potassium phosphate (pH 

7.0) supplemented with 0.1% (v/v) TritonX-100 nonionic detergent.  Cells were lysed via six pulses of 

sonication at 25% for 10 seconds with intermediate breaks of five seconds.  Next, the lysates were 



 

135 

 

centrifuged at 21,000xg for 10 minutes at four centigrade.  One milliliter of the supernatant was then 

transferred to a fresh 1.5 ml polypropylene tube.  The total protein content was estimated using a 

bicinchonic acid colormetric assay (Pierce, 23225).  Lysates were then standardized to five milligrams of 

total protein per milliliter.  

8.3.9 Clarified Lysate Enzymatic Activity Assays 

To observe early-phase phenomena of the PHA synthase polymerization reaction, the consumption 

of 3-hydroxybutyryl-CoA (HBCoA) was monitored spectroscopically at a wavelength of 232 nm during 

the first 15 minutes (Fukui et al., 1976).  Clarified lysates were obtained within a 24 hour period.  The 

HBCoA solution consisted of 130 mM potassium phosphate (pH 5.8) with 50% (v/v) glycerol and was 

stored at −20°C to reduce the amount of incidental hydrolysis. 

At 30°C, each 200 µl early-phase reaction consisted of 179 µl of 130 mM potassium phosphate (pH 

7.0) and 20 µl 10 mM HBCoA (Sigma-Aldrich, H0261) solution.  The reaction was initiated by the addition 

of one microliter of the standardized lysate.  Reactions were performed in triplicate.   

Additionally, an end-point reaction was performed in order to test the case of a complete loss of 

functionality.  These reactions were carried out simultaneously in ambient conditions for one hour.  Each 

100 µl end-point reaction consisted of 59 µl of 130 mM potassium phosphate (pH 7.0) and 40 µl 10 mM 

HBCoA solution. The reaction was initiated by the addition of one microliter of the standardized lysate.  

End-point reactions were performed in triplicate. 

8.4 Results 

8.4.1 Hypothetical Structural Analysis 

The conserved 5 amino acid region (GC[S|T][L|I]G) shows some similarities to a characterized 

helical motif (GxxLG), suggesting that this region may play a role in protein secondary structure.  

Additionally, this region contains a conserved cysteine residue (similar to the active catalytic site) meaning 

its thiol group may affect substrate binding in some way, or may assist in disulfide bridges. 
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Because there is no information currently available on the protein tertiary structure of type III PhaC, 

the closest structural analogue is the lipase.  Using the cited sequence accessions, a multiple sequence 

alignment similar to Jia et. al. was created to approximate the spatial location of the insertion (2000).  An 

annotated rendering of the aligned lipase can be observed in Figure 55.  It was found the insertion may fall 

within an alpha helix (α4) of the α/β-hydrolase domain neighboring the catalytic region.  It is possible that 

this insertion could play a major role in the structure and/or function of cyanobacterial PHA synthases.  

 

8.4.2 Isolation, Cloning, and Mutagenesis of phaC and phaE 

The Synechocystis sp. PCC6803 genomic DNA isolation protocol yielded 40(±20) ng of nucleic 

acids per million cells.  The high fidelity PCR amplification of phaC and phaE genes yielded approximately 

30 ng µl-1 of a unique amplification product for each gene.  The presence and orientation of phaC in 

pCL0002 was confirmed by the DNA sequencing results.  Likewise, the analogous results were obtained 

for phaE in pCL0001. 

Figure 55:  Three dimensional rendering of the Pseudomonas lipase 

crystal structure.  The three catalytic sites are highlighted in cyan, while 

the alpha helix suspected to house the analogous cyanobacterial box is 

highlighted in yellow. 
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The site-directed mutagenesis PCR amplifications of pCL0002 yielded 25(±5) ng µl-1 on average, 

and all reactions contained a single detectable linear amplification product.  Once self-circularized, these 

mutant vectors were transformed into E. coli XL1-Blue with an average efficiency ranging from 1×106 - 

5×106 CFU µg-1.   

The PHA synthase subunit expression vectors each required significant optimization for their 

construction.  Once successfully constructed, the pCL0005 and pCL0006 vectors transformed into E. coli 

BLR(DE3) with an average efficiency of 700 CFU µg-1.  Similarly, the constructed pCL0007 and pCL0008 

vectors transformed into E. coli BLR(DE3) with an average efficiency of 1000 CFU µg-1 and the pCL0011 

vectors transformed with an average efficiency of 400 CFU µg-1.  It was found that the transformation 

efficiency of a similarly obtained and quantified pUC18 isolate into BLR(DE3) was >3×105 CFU µg-1, 

suggesting the low efficiency observed in the PHA synthase subunit expression system was likely not due 

to the procedure itself.   

8.4.3 Dual ELP-tagged Split Intein Expression/Purification 

Development and optimization of the purification process was performed using the GFP expression 

system in communication with Dr. David Wood and Dr. Steven Shi, authors from the original publication.  

In order to test this expression system for the production of PHA synthase, the wild-type subunits were 

used as a test case (pCL0005 & pCL0006).  Both recombinant PHA synthase subunit genes successfully 

expressed when bound to the ELP-split-intein tag (EI0C-PhaC & EI0C-PhaE), as can be observed in lanes 

five and six of Figure 56.  Unfortunately, detectable cleavage was not observed, even after extending the 

seven hour cleavage time to 13 hours.  Figure 56 depicts the results of the 13 hour cleavage time.  In Figure 

56, negligible amounts of detectable protein mass occur at the expected cleaved EI0C molecular weight.  

Additionally, the majority of the EI0C-PhaC and EI0C-PhaE remain in the cleavage reaction insoluble 

phase after purification, which is further evidence of a highly inefficient cleavage (lanes 8 & 9, Figure 56).  

Upon comparison of lanes 5-to-8 and 6-to-9, it is important to note that the observed difference in band 
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mass is due to the 3-fold dilution of the EI0C-tagged product, as per the purification protocol, and not due 

to cleavage. 

 

Additionally, once it was determined that the interaction of these proteins was important for 

desirable expression, purification, and handling purposes, a co-cleavage reaction was attempted.  In other 

words, EI0C-PhaC and EI0C-PhaE were both added to the same reaction and allowed to interact in hopes 

of promoting cleavage efficiency.  Again, no detectable cleavage was observed for either protein. 

8.4.4 Hexahistidine-Tagged Expression/Purification 

Development and optimization of the His6-tagged recombinant proteins was again performed using 

the wild-type phaC and phaE strains (pCL0008 & pCL0007 respectively).  It was found that when 

compared to an empty-vector control (lane 1, Figure 57), the expression of the His6-PhaC subunit was 
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Figure 56: SDS-PAGE results of the phaC and phaE dual ELP-tagged split-intein expression systems with 

13 hour cleavage time.  The red arrow indicates the EI0C-PhaC/EI0C-PhaE expected migration point. 

Lanes: (M) Protein standard,(1) EI0N clarified lysate, (2) EI0C-PhaC clarified lysate, (3) EI0C-PhaE 

clarified lysate, (4) EI0N purified, (5) EI0C-PhaC purified, (6) EI0C-PhaE purified, (7) PhaC cleavage  

soluble phase, (8) PhaE cleavage soluble phase, (9) PhaC cleavage insoluble phase, (10) PhaE cleavage 

insoluble phase. 

Note: EI0C-PhaC and EI0C-PhaE purified protein samples are diluted 3-fold for cleavage.  
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unresolvable via SDS-PAGE visualization (lane 3, Figure 57).  In contrast, the PhaE-His6 protein 

overexpressed quite efficiently (lane 2, Figure 57).   

 

In hopes that His6-PhaC was present in low quantities, 250 ml of expression culture for each mutant 

strain was subjected to column purification.  None of these purification products indicated successful 

overexpression of the His6-PhaC subunit via SDS-PAGE visualization.  The expression experiment was 

repeated using a Rosetta (DE3, pLysS) host strain, which possesses the genetic machinery required to 

efficiently utilize codons rarely observed in E. coli.  It was found that the cause of the inefficient His6-PhaC 

production was not due to difficulties related to the presence rare codons within the phaC coding sequence. 

Interestingly, the purification of the PhaE-His6 expression sample showed negligible yield as well.  

PhaE-His6 remained insoluble during the lysis process and the bulk of which was found in the clarified 

lysate pellet during purification. 

8.4.5 Hexahistidine-Tagged Co-Expression/Co-Purification 

Because the previous purification attempt indicated that PhaE was insoluble, it was decided to 

attempt co-expression of the His6-PhaC and untagged PhaE subunits, allowing for interaction within the 

cell during production.  The goal was to attempt to exploit the PhaC-PhaE interaction to co-purify the 

proteins while keeping both subunits soluble.   
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Figure 57: Total cellular protein SDS-PAGE profiles of the His6-PhaC (3) and PhaE-His6 (2) expression 

strains before (−) and after (+) addition of IPTG to induce recombinant protein expression. 

Lanes: (M) Protein standard, (1) BLR(DE3, pET28a) control, (2) BLR(DE3, pCL0007) strain, (3) BLR(DE3, 

pCL0008) strain 
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The results of the His6-PhaC\PhaE co-expression can be observed in Figure 58.  Comparing Figure 

57 and Figure 58, the His6-PhaC expression level showed an apparent increase during co-expression as 

compared to singular expression.  At this point, the expression levels were believed to be sufficient for 

purification processing.  The purification resulted in dilute recovery of the expected proteins as can be 

observed near the red arrows in Figure 59.  Similar to Numata et al. (2015), a dilute 66 kDa band was also 

observed for our purification (black arrow, Figure 59). 

 

8.4.6 Clarified Lysate Enzymatic Activity Assays 

Because the proteins had proven too difficult to purify efficiently using the methods above, 

enzymatic activity experiments were carried out using clarified lysate.  Lysates were expressed and isolated 

using a standardized protocol to ensure similar treatments to better control relative expression levels 

Figure 58: Total cellular protein SDS-PAGE profiles of the His6-PhaC and PhaE co-expression strains before 

(−) and after (+) addition of IPTG to induce recombinant protein expression. Top and bottom arrows indicate 

perceived induced expression of PhaC and PhaE respectively. 

Lanes: (M) Protein standard, (1) PhaC&PhaE, (2) PhaC(G205A)&PhaE, (3) PhaC(C206A)&PhaE, 

(4) PhaC(T207V)&PhaE, (5) PhaC(L208S)&PhaE, (6) PhaC(G209A)&PhaE, (7) PhaC(205-209Δ)&PhaE. 
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Figure 59: Purification products of co-expression strains.  Red arrows indicate perceived His6-PhaC and PhaE 

proteins.  Black arrow indicates the 66 kDa band observed by Numata et al. (2015).  

Lanes: (M) Protein standard, (1) purified sample, (2) lysate pellet. 
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between groups. The clarified lysates were all also normalized to total protein content.   Short-time kinetics 

were observed by monitoring the consumption of HBCoA spectroscopically at intervals for times less than 

15 minutes.  The results from these experiments can be found in Figure 60. 

 

It was found that no significant HBCoA hydrolysis rate occurred automatically within the reaction 

(p = 0.3680), as evidenced by the Lysate Buffer graph in Figure 60.  Furthermore, no observable 

consumption of substrate could be attributed to the E. coli endogenous proteins present in the clarified 
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Figure 60: Short-time consumption of HBCoA from PHA synthase in clarified lysate.  Each experiment 

performed in triplicate, independent samples are designated by a shape (square, circle, or triangle).  Linear 

regression fit depicted as red line. 
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lysate (p = 0.5885), as evidenced by the BLR(DE3) graph in Figure 60.  In contrast, the wild-type PHA 

synthase lysate exhibited a significant HBCoA rate of consumption within the first 15 minutes (p < 0.0001).  

The C206A (p = 0.0727), T207V (p < 0.0001), and G209A (p < 0.0001) mutants exhibit significant rates 

of consumption; albeit, significantly less than the wild-type (p < 0.0001 ea.).  The remainder of the mutants, 

G205A, L208S, and 205-209Δ, exhibited a lack of any significant observable consumption of 

HBCoA. 

In order to determine the extent of the lost functionality for the mutants, an end-point reaction was 

performed.  The reaction was allowed to proceed one hour at room temperature.  The results from these 

end-point reactions can be observed in Figure 61. 

 

Using the traditional null hypothesis, the end-point reactions showed that nearly all of the mutants 

retained some level of enzymatic activity, with the exception of the G205A mutant, which may require 

further data to resolve it from the null.  The detectable enzymatic activity of the L208S mutant showed 

that 15 minutes was insufficient time to detect HBCoA consumption for these lesser-active mutants.  In 

both cases where the G205 position is mutated (the G205A and the 205-209Δ mutants), the enzymatic 

Figure 61: Consumption of HBCoA from PHA synthase in clarified lysate after one hour at ambient 

temperature.  Each experiment performed in triplicate with duplicate technical repetitions. 
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activity is severely hindered.  In fact, these points are not significantly different from either negative control.  

To put it another way, the amount of substrate consumed by the 205-209Δ mutant is significantly 

detectable, but this amount is negligible within the error of the measurements.  Similar to the short-time 

assay, the remainder of the mutants showed significantly lower rates of substrate consumption when 

compared to the wild-type PHA synthase. 

8.5 Discussion 

Because the clarified lysate preparation was strictly standardized, there are only two major 

assumptions from which the conclusions of this work are based.  The first assumption is that the relative 

expression levels were comparable between mutants.  In other words, the ability of the host cell to express 

the PhaC protein did not dramatically change in comparison to the wild-type with the alteration of a single 

codon.  This assumption is supported qualitatively by the results of Figure 58, where the expression levels 

appear quite comparable across all strains.  Additionally, the mutations introduced do not incorporate any 

codons typically identified as rare, or inefficient, in E. coli (AGA, AGG, ATA, CCC, CGG, CTA, and GGA).  

The second assumption is that the interaction between the contaminant E. coli proteins and the exogenous 

PHA synthase proteins was not significantly different throughout all of the cases.  In other words, the 

alteration of a single amino acid in the PHA synthase made a mutant neither more nor less prone to 

interacting with the various contaminant proteins in comparison with the wild-type.  With these assumptions 

in place, it is understood that each reaction received the same amount of PHA synthase and each was 

subjected to the same likelihood of interaction due to the contaminant proteins. 

The results of the enzymatic activity assays provide evidence that the G205 residue is necessary for 

efficient enzymatic activity in the Synechocystis sp. PCC 6803 PHA synthase.  Glycine residues are not 

commonly associated with protein-protein interaction due to the lack of a side chain (confer Figure 51).  

This suggests that the effect of this mutation is likely the disruption of a significant structural element within 

the PHA synthase.  This is an interesting finding because the entire conserved loci is specific to 
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cyanobacteria and this specific residue shows identity-level conservation throughout all cyanobacterial 

PHA synthases (Appendix Figure 1).  This suggests that the cyanobacterial PHA synthase possesses at least 

one structural motif critical to its proper function which does not occur within any other known PHA 

synthases.
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CHAPTER 9. EXPANSION OF THESIS 

9.1 Chapter Preface 

The motive of this chapter is to expand upon each of the major thesis objectives listed within the 

introductory chapter.  Direction, insight, and hypotheses are provided and assessed, which allows this work 

to be carried forward in the most efficient manner possible.  The potential impact of each future work 

relative to its parent objective is graded under the author’s opinion as a minor, moderate, or major level. 

9.2 PCR-based detection of phaC in Cyanobacteria 

Objective I provided a rapid and efficient method of detecting cyanobacteria which possess the gene 

for the active subunit of PHA synthase, phaC.  The assay was developed on diverse cyanobacteria; however, 

only two true implementations of the assay were tested during development – the two unknown cases.  

Because the goal of this objective was to provide a tool which could be used to screen environmental 

isolates, it naturally follows that one should implement this assay for its intended purpose.  As argued in 

CHAPTER 4, a strain of cyanobacteria with the native desired PHA accumulation abilities would be a novel 

subject for a photosynthetic PHA biosynthesis process.  The testing of more cyanobacteria using the PCR-

based assay alone possesses a minor impact level; however, implementing the assay and further assessment 

of the PHA production capabilities to potentially discover a high-yielding cyanobacterium receives a major 

impact level. 

 Because it was determined that PHA yields in cyanobacteria are limited upstream of the PHA 

synthase functionality, it would be beneficial to design PCR primers for the additional regulatory elements 

associated with PHA accumulation.  This would allow for a more thorough and potentially more selective 

screening method.  Such a screening process would likely present new insights into regulator/PHA 

correlation.  The impact level for this project follows that of the previous paragraph. 

Lastly, if a more robust primer set is desired for the detection of phaC, one could begin the 

development of an assay implementing the PCR primers developed at the end of CHAPTER 4.  These 
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primers have greater degeneracy than the original set, leaning the balance of sensitivity and specificity more 

towards the former.  This will be useful if the PhaC subunit shows less conservation than originally thought 

as more sequence information presents itself.  Because the implementation of this primer set not definite, 

this project receives a minor potential impact level. 

9.3 CEMAsuite 

As with most computer programs, there will always be algorithm and interface optimization to be 

performed for this package.  Additionally, an interesting new feature to include in the near future would be 

the ability to detect common restriction endonuclease sites between the PCR products within the alignment 

for a given primer set.  The new feature tab could present the PCR product length for each accession within 

the sequence alignment, followed by the lengths for full and/or partial digestion products for a given 

restriction enzyme.  This would allow for streamlined PCR and restriction enzyme confirmation of the 

desired PCR product and would be relatively simple to implement.  Such a project would return a minor 

impact because the functionality added to the CEMAsuite package is not sufficient material for anything 

more than a short communication.  

A second future work would be to separate the hybridization algorithms into its own executable for 

more modular implementation.  This setup would allow for implementation of this algorithm within other 

similar software packages.  Such a project would allow for easier construction of novel bioinformatic 

programs requiring DNA oligonucleotide hybridization, but by itself results in no apparent change of 

CEMAsuite to the user.  Therefore, this project possesses a minor impact level. 

Finally an ambitious goal would be to implement CEMAsuite as a software as a service (SaaS).  This 

would broaden the user-base and make CEMAsuite truly platform-independent with very limited 

dependencies.  Additionally, regulation of updates and error reporting would be simplified.  This method 

of distribution could even allow for the development of a macro/scripting language which could allow users 
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to author their own custom scoring algorithms.  This project is a large undertaking with high-risk, high-

reward odds; thus, it possesses the potential for a major impact. 

9.4 In Vitro PHA Synthase Polymerization 

As discussed in CHAPTER 7, the in vitro PHA synthase polymerization reaction is highly dependent 

on the initial conditions.  Furthermore, investigators are left with incomparable enzymatic kinetic data when 

researching across authors and publications.  For this reason, a standardized in vitro PHA synthase kinetic 

activity assay should be developed.  In theory, a standardized assay would remove all idiosyncrasies of the 

authors and present truly comparable results.  The review of literature in CHAPTER 7 provides a starting 

place for the development of such an assay.  The experiments would entail the optimization and testing 

PHA synthases from various model organisms.  Recombinant expression strains can be obtained from the 

authors of many of the works in CHAPTER 8 and purification can be followed identical to the published 

works.  This project would provide a standardized activity assay from which insightful model parameters 

can be inferred using the models derived in CHAPTER 7.  This project would provide a major impact to 

the field of PHA synthase enzymatic activity because it would provide a comparative look at the various 

PHA synthase kinetics and present the methods for prospective investigators to follow suit. 

In order to test the existence of the hypothetical coalescence-mediated PHA synthase shielding 

phenomena proposed in CHAPTER 7, one could perform a set of experiments which could be done 

alongside the experiments of the previous paragraph.  This set of experiments would require an in vitro 

PHA synthase polymerization reaction in a late stage of polymerization.  The granules could then be isolated 

via centrifugation, washed to remove soluble protein, and then subjected to non-specific enzymatic protein 

degradation.  Precaution should be taken to avoid disturbing the granule state, so steps like sonication 

should be avoided.  In theory, this step should remove all surface-bound PHA synthase.  Once the naked 

granules have been washed of the protease, the shielded PHA synthase (if any) can likely be freed using a 

nonionic detergent and mechanical mixing (e.g., sonication).  Protein which has been freed can be 

quantitated through any number of means, such as SDS-PAGE, a secondary enzymatic reaction, or 
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spectrophotometry.  The most convenient method may be to fuse a fluorescent label onto one of the PHA 

synthase subunits and quantitate it via epifluorescence.  This project could potentially elucidate the cause 

of the significant decrease in the enzymatic activity of PHA synthase and provide meaningful insights into 

the design of in vitro enzymatic activity assays, therefore it is declared a moderate priority level. 

The purification of the Synechocystis sp. PCC 6803 PHA synthase can be further optimized for 

recombinant expression in Escherichia coli.  There are many difficulties to overcome, as evidenced by 

CHAPTER 8, and little potential reward.  The enzyme has been characterized and proven to possess no 

lesser functionality than other PHA synthases (Numata et al., 2015).  Further investigation of this enzyme 

will likely present minor impact on the field. 

9.5 Continuous In Vitro PHA Production Process Development 

A continuous in vitro PHA synthesis process possesses many benefits, including reduced purification 

costs, a lack of biological limitations (e.g.: toxic or metabolic), and increased process and quality control.  

A novel hypothetical high-efficiency, high-production, and continuous in vitro PHA synthesis process is 

outlined using information gathered throughout the entirety of this author’s studies.  Development and 

assessment of a successful lab-scale process of this kind could potentially have a major impact on the PHA 

production industry. 

The ELP-tagged split-intein protein expression and purification system is a novel vector system for 

continuous recombinant protein production (Shi et al., 2013).  This process is considered readily adaptable 

to a continuous process and would prove quite useful for the purposes of enzyme production.  Because the 

PHA synthase associated genes of Cupriavidus necator possess a single subunit PHA synthase which has 

been well studied, it would be the metabolic system of choice for this process.  An additional benefit to the 

C. necator system is that it expresses efficiently within E. coli systems.  The phaA, phaB, and phaC genes 

of C. necator should each be independently incorporated into the EI0C split-intein vector.  The single-step 

purification process described in the related publication should be sufficient for this process. 
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The hydroxyacyl-CoA monomer will be a major contributor to the production cost and its synthesis 

should be rigorously optimized.  Recombinant Saccharomyces cerevisiae has proven capable of yielding 

cytosolic acetyl-CoA at an unprecedented rate and efficiency when the pyruvate dehydrogenase from 

Enterococcus faecalis, which bypasses the native adenosine-triphosphate-dependent pathway, has been 

incorporated (Kozak et al., 2014).  This should provide for an excellent source of acetyl-CoA. 

Spent CoA can be recycled via the acetyl-CoA synthetase, or Acs (Jossek & Steinbüchel, 1998).  In 

theory, CoA is generated in a 1:1 ratio (CoA:AACoA) with respect to the acetoacetyl-CoA product (Reactor 

A, Figure 62).  CoA is also released in a 1:1 ratio as a hydroxyacyl-CoA monomer is incorporated into the 

PHA polymer (Reactor C, Figure 62).  In order to synthesize acetyl-CoA from CoA, acetate must be 

supplied; however, this is a simple hydrocarbon and can come from any number of relatively inexpensive 

sources.  The source of acetate is left ambiguous to allow for future cost optimization.  This should 

dramatically reduce the input rate of acetyl-CoA production required from the S. cerevisiae source. 

For separations it may be ideal to take advantage of the dual-phase system and allow the granules to 

separate passively.  A settling tank would be sufficient for this purpose.  A multi-chamber settling tank 

would allow for further design optimization.  The smaller PHA granules could be recirculated as a potential 

source of PHA synthase nucleation and/or coalescence sites.  This would also allow for some level of size 

exclusion for product control, leaving less potential process disturbances for the downstream PHA 

purification.  Additionally, because PHA granule size is not limited by a cell envelope in in vitro synthesis, 

a direct recycle from the polymerization reactor could also be implemented to influence a larger granule 

size. 

Lifecycle and economical assessments of this process will yield important information on the 

potential applicability of it in industry.  These assessments should be evaluated throughout the design 

process. 
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This design exploits characteristics of in vitro PHA synthesis inferred during CHAPTER 7 and 

utilizes recombinant protein expression systems used in CHAPTER 8 to produce a potentially high-

efficiency PHA synthesis process.  This process was designed using the skillset unique to a chemical 

engineer.  The development and optimization of this process could potentially be a major step towards an 

environmentally-friendly bioplastic production process. 

 

 
Figure 62: Prototypical continuous in vitro PHA synthesis process.  
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9.6 Conclusion 

In conclusion, there are many ways this work can be continued.  Each objective of this project has 

led to multiple continuations spanning a wide range of potential importance.  The field of PHA production 

still requires attention now more than ever in order for these ecologically-friendly polymers to compete 

with their petroleum-based rivals.  The ideas of this chapter are documented in hopes of further contributing 

to the goal of the sustainable and economically-viable bioplastic production process our ecosystem 

desperately needs.  Thank you for your interest in this work.
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APPENDICES 

A.1 Polymerase Chain Reaction Variants 

Appendix Table 1: List of PCR variations and their applications. 

Variant Description 

Asymmetric PCR Preferentially amplifies one strand of target sequence over the other by limiting one 

primer, method to amplify single stranded nucleic acids. 

COLD-PCR CO-amplification at Lower Denaturation temperature PCR. PCR which exploits 

decreased stability of dsDNA containing mismatches by denaturing at lower temperatures 

to avoid complementary dsDNA denaturing.   

Colony PCR Application of PCR directly on bacterial colonies, omits DNA isolation steps. 

dPCR Digital PCR. Real-Time PCR variant which divides a single reaction into many aliquots 

and analyzes each partition individually. 

Hot-start PCR Method controlling non-specific amplification by either omitting or inhibiting the 

polymerase until after the initial denaturation step. 

Inverse PCR Allows the amplification of sequences surrounding a known region of DNA by cleavage 

and circularization of genomic DNA before amplification with primers extending outward 

from the known sequence. 

ISSR-PCR InterSequence-Specific PCR. Opposite of VNTR-PCR, this method designs primers 

within regions of repeated segments to analyze the variations of the sequences between 

these repeat regions. 

LATE-PCR Linear-After-The-Exponential PCR. Asymmetric PCR variant with more stable limiting 

primer. 

Ligation-mediated 

PCR 

PCR with primers targeting small oligonucleotide 'linkers' which are ligated to the target 

DNA before amplification. 

long PCR Amplification of high molecular weight (20-50 kbp) nucleic acids. 

MSP Methylation-specific PCR. Utilization of PCR to identify patterns of DNA methylation. 

Multiplex-PCR Targets multiple sequences with multiple primer sets in a single reaction. 

Nested PCR Use of successive PCRs. First PCR to increase initial template concentration of the 

subsequent reaction, reduces non-specific binding of primers. 

OE PCR Overlap Extension PCR. Application of primers with overhanging sequences used for 

mutation insertion and splicing of nucleic acids. 

PCA Polymerase Cycling Assembly, Assembly PCR. Use of multiple PCRs, each with 

overlapping products to assemble a large overall product.  

qPCR Quantitative PCR. Real-Time PCR variant used to measure the initial concentration of 

nucleic acid template. 

Real-time PCR Allows the measurement of double stranded nucleic acid concentrations in the reaction in 

real-time. 

RT-PCR Reverse Transcription PCR. Amplification of dsDNA products from RNA template. 
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Variant Description 

Suicide PCR Implements multiple PCR primers targeting the same target and only allows the use of a 

single forward/reverse combination once before it cannot be used again, thus reducing the 

likelihood of false-positive results from contaminating DNA. 

TAIL-PCR Thermal Asymmetric InterLaced PCR. Allows the amplification of unknown sequences 

flanking a known region through the use of a nested pair of primers with differing 

annealing temperatures and a degenerate primer to amplify in the other direction from the 

unknown sequence. 

Touchdown PCR Method controlling non-specific amplification by initially applying high annealing 

temperature during early product formation, then gradually decreasing annealing 

temperature to increase amplification efficiency. 

VNTR-PCR Variable Number of Tandem Repeat PCR. Analysis of PCR products in regions of short 

tandem repeats. 

 

A.2 Derivation of DNA Melting Temperature 

Two-state theory assumes DNA can only exist as either dsDNA or ssDNA, no intermediates at equilibrium. 

Dissociation. 

Reaction:  (r)  𝐷 ↔ 𝑆1 + 𝑆2  𝐾𝑑 = 
[𝑆1][𝑆2]

[𝐷]
 

Material Balance:  (i) [𝐷]∅ − [𝐷] =  [𝑆1] − [𝑆1]∅  =  [𝑆2] − [𝑆2]∅ 

Define dissociation fraction, 𝜃𝐷 = 
[𝐷]∅− [𝐷]

[𝐷]∅
 , and substitute (i) into Kd: 

(ii)  𝐾𝑑 = 
[𝐷]∅(𝜃𝐷+

[𝑆1]∅
[𝐷]∅

)(𝜃𝐷+
[𝑆2]∅
[𝐷]∅

)

1−𝜃𝐷
 

Definition 1:  (iii) ∆𝐺⊝ = ∆𝐻⊝ − 𝑇∆𝑆⊝  

Definition 2:  (iv) ∆𝐺⊝ = −𝑅𝑇 ln(𝐾𝑑)  
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Substitution of (iii) into (iv) and solving for temperature (T): 

(v)  𝑇 = 
∆𝐻⊝

∆𝑆⊝− 𝑅ln(𝐾𝑑)
 

Definition 3:  (vi) 𝜃𝐷|𝑇= 𝑇𝑚 = 
1

2
 

Find (v) at (vi):  

𝑇𝑚 = 
∆𝐻⊝

∆𝑆⊝ −  𝑅ln (2[𝐷]∅ (
1
2
+
[𝑆1]∅
[𝐷]∅

) (
1
2
+
[𝑆2]∅
[𝐷]∅

))

 

Note: for self-complementary dsDNA: 𝑆1 = 𝑆2 = 𝑆 → 𝐾𝑑 =
[𝑆]2

[𝐷]
= 

[𝐷]∅(
𝜃𝐷
2
+
[𝑆]∅
[𝐷]∅

)
2

(1−𝜃𝐷)
  

𝑇𝑚 = 
∆𝐻⊝

∆𝑆⊝ −  𝑅ln (2[𝐷]∅ (
1
4
+
[𝑆]∅
[𝐷]∅

)
2

)

 

Association. 

Assuming [𝑆1]∅ ≥ [𝑆2]∅  – S2 is limiting. 

Reaction:  (r)  𝑆1 + 𝑆2  ↔ 𝐷  𝐾𝑎 = 
[𝐷]

[𝑆1][𝑆2]
 

Material Balance:  (i)  [𝐷] − [𝐷]∅ = [𝑆1]∅ − [𝑆1]  =  [𝑆2]∅ − [𝑆2] 

Define association fraction, 𝜃𝐴 = 
[𝐷]−[𝐷]∅
[𝑆2]∅

 , and substitute (i) into 𝐾𝑎: 

(ii)  𝐾𝑎 = 

[𝐷]∅
[𝑆2]∅

 + 𝜃𝐴

[𝑆2]∅(
[𝑆1]∅
[𝑆2]∅

 − 𝜃𝐴)(1 − 𝜃𝐴)
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𝑇𝑚 = 
∆𝐻⊝

∆𝑆⊝ −  𝑅ln(

2[𝐷]∅
[𝑆2]∅

 +  1

([𝑆1]∅  −
[𝑆2]∅
2 )

)

      𝑤ℎ𝑒𝑟𝑒 [𝑆1]∅ ≥ [𝑆2]∅  

Note: for self-complementary dsDNA: 𝑆1 = 𝑆2 = 𝑆 → 𝐾𝑎 =
[𝐷]

[𝑆]2
= 

[𝐷]∅
[𝑆]∅

+
𝜃𝐴
2

[𝑆]∅(1 − 
𝜃𝐴
4
)
2  

𝑇𝑚 = 
∆𝐻⊝

∆𝑆⊝ −  𝑅ln (
64

49[𝑆]∅
(
[𝐷]∅
[𝑆]∅

+
1
4) )

 𝑤ℎ𝑒𝑟𝑒  𝜃𝐴 = 
2([𝐷] − [𝐷]∅)

[𝑆]∅
  

A.3 Accession Tables 

Appendix Table 2: The primary protein structure (αPC) and genetic coding sequence (cpcA) of the cyanobacterial 

phycocyanin alpha subunit analyzed via multiple sequence alignments for design of PCR primers to act as a 

cyanobacteria genomic DNA quality assurance.   

Taxonomy αPC Accession  cpcA Accession 

Acaryochloris marina MBIC11017 YP_001521631.1 gi|158340280:c148530-148042 

Arthrospira maxima CS-328 ZP_03271568.1 gi|209522890:c153475-152987 

Arthrospira platensis str. Paraca ZP_06380686.1 gi|254349541:1530-2018 

Crocosphaera watsonii WH 8501 ZP_00516609.1  gi|67923114:27350-27838 

Cyanobium sp. PCC 7001 ZP_05045216.1  gi|254430111:1503852-1504340 

Cyanothece sp. PCC 7424 YP_002375498.1 gi|218437013:c178991-178503 

Cyanothece sp. PCC 7425 YP_002482426.1  gi|220905643:c1537801-1537313 

Cyanothece sp. PCC 7822 YP_003886916.1  gi|307149945:c1808486-1807998 

Cylindrospermopsis raciborskii CS-505 ZP_06308539.1  gi|282900552:43296-43784 

Fischerella sp. JSC-11 ZP_08984589.1  gi|354565113:c350240-349752 

Gloeobacter violaceus PCC 7421 NP_926164.1  gi|37519569:3425312-3425800 

Lyngbya majuscula 3L ZP_08428233.1  gi|332708240:c11382-10894 

Microcoleus vaginatus FGP-2 ZP_08490947.1  gi|334116516:c429233-428745 

Microcystis aeruginosa NIES-843 YP_001657460.1  gi|166362741:2210230-2210718 

Nostoc azollae 0708 YP_003722228.1  gi|298489614:c3558921-3558433 

Nostoc punctiforme PCC 73102 YP_001868554.1  gi|186680550:6544141-6544632 

Raphidiopsis brookii D9 ZP_06304364.1  gi|282896246:102383-102871 

Synechococcus elongatus PCC 6301 YP_171210.1  gi|56750010:c559913-559422 

Synechococcus sp. PCC 7002 YP_001735446.1  gi|170076636:2301231-2301719 

Synechocystis sp. PCC 6803 AAA91033.1 gb|U34930.1|SPU34930:856-1344 

Thermosynechococcus elongatus BP-1 NP_682748.1  gi|22297544:2042263-2042751 

Trichodesmium erythraeum IMS101 YP_724429.1  gi|113473942:c7709337-7708849 
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Appendix Table 3: 18S ribosomal RNA small subunit coding sequences obtained and used in the multiple sequence 

alignment used in the design of a PCR primer set intended for eukaryotic DNA detection within a sample to help 

prevent false positives from cryptophyta and rhodophyta plastids. 

Taxonomy 18S rDNA Accession 

Actinastrum hantzschii  FM205884.1  

Archaeospora leptoticha  AB047306.1  

Basidiobolus haptosporus  AF368504.1  

Cercosporella virgaureae  GU214658.1  

Chlorella sorokiniana  FM205860.1 

Chlorella sp. CB 2008/73  HQ111435.1  

Chlorella vulgaris strain CCAP 211/11F  AY591515.1  

Coronastrum ellipsoideum strain UTEX LB1382  GQ507370.1  

Cryptophyceae sp. CCMP2293  GQ375265.1  

Diacanthos belenophorus  AY323837.1  

Dictyosphaerium sp. CB 2008/108  GQ507371.1  

Dothistroma pini strain CBS 116487  GU214532.1 

Endogone lactiflua isolate AFTOL-ID 45  DQ536471.1  

Endogone pisiformis strain DAOM 233144  NG_017181.1  

Hemiselmis virescens  AJ007284.1  

Hindakia fallax strain CCAP 222/30  GQ487224.1  

Hindakia tetrachotoma strain CCAP 222/78  GQ487240.1  

Komma caudata  U53122.1  

Lobosphaeropsis lobophora  FM205833.1  

Marvania coccoides  FR865696.1  

Meliniomyces variabilis strain UAMH 8861  AY762619.1  

Micractinium pusillum  FM205873.1  

Mortierellaceae sp. LN07-7-4  EU688964.1  

Mycosphaerella graminicola strain CBS 115943  GU214540.1  

Neochloris aquatica  FR865697.1  

Passalora fulva strain STE-U 3688  AY251109.2  

Proteomonas sulcata  AJ007285.1  

Pseudocercosporella sp. CPC 10050  GU214685.1  

Ramichloridium cerophilum strain CBS 103.59  EU041798.2  

Rhizophlyctis rosea strain JEL 318  NG_017175.1  

Rhodomonas sp. M1480  AJ007286.1  

Saccharomyces cerevisiae  Z75578.1  

Taphrina alni  AJ495831.1  

Zasmidium anthuriicola strain CBS 118742  GU214595.1  

Zygomycete sp. AM-2008a isolate 105  EU428770.1  
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Appendix Table 4: Accession table for the 29 cyanobacteria type III PHA synthase PhaC subunit primary protein 

structures (PhaC) and respective coding sequences (phaC) incorporated in the multiple sequence alignment used in 

the design of a PCR primer set intended for categorizing cyanobacteria as potential PHA producers and non-producers. 

Strain PhaC Accession phaC Accession 

Arthrospira maxima CS-328 EDZ97226.1 ABYK01000001.1:311680..312774 

Arthrospira platensis C1 ZP_17052183.1 NZ_CM001632.1:1565798..1566892 

Arthrospira platensis NIES-39 BAI94014.1 AP011615.1:6284046..6285140 

Arthrospira platensis str. Paraca ZP_11274489.1 NZ_ACSK02000570.1:6062..7156 

Arthrospira sp. PCC 8005 ZP_09784510.1 NZ_CAFN01000673.1:31405..32526 

Chlorogloeopsis fritschii AAL76316.1 AF371369.1:84..1184 

Cyanothece sp. PCC 7424 YP_002375830.1 NC_011729.1:549481..550575 

Cyanothece sp. PCC 7425 YP_002484732.1 NC_011884.1:4089283..4090383 

Cyanothece sp. PCC 7822 YP_003886606.1 NC_014501.1:1444440..1445534 

Gloeocapsa sp. PCC 73106 ZP_21050948.1 NZ_ALVY01000193.1:19970..21070 

Gloeocapsa sp. PCC 7428 YP_007128633.1 NC_019745.1:3330613..3331650 

Microcoleus vaginatus FGP-2 ZP_08493657.1 NZ_AFJC01000008.1:44091..45143 

Microcystis aeruginosa DIANCHI905 ZP_21132094.1 NZ_AOCI01000120.1:7889..8983 

Microcystis aeruginosa NIES-843 YP_001660017.1 NC_010296.1:4581257..4582351 

Microcystis aeruginosa PCC 7806 CAO90143.1 AM778949.1:31605..32699 

Microcystis aeruginosa PCC 7941 ZP_18828651.1 NZ_HE973143.1:188862..189956 

Microcystis aeruginosa PCC 9432 ZP_18815344.1 NZ_HE972538.1:194502..195596 

Microcystis aeruginosa PCC 9443 ZP_18828448.1 NZ_HE973089.1:234..1328 

Microcystis aeruginosa PCC 9701 ZP_18848456.1 NZ_CAIQ01000501.1:1660..2754 

Microcystis aeruginosa PCC 9717 ZP_18823283.1 NZ_HE972766.1:79055..80149 

Microcystis aeruginosa PCC 9806 ZP_16392283.1 NZ_HE973252.1:48273..49367 

Microcystis aeruginosa PCC 9807 ZP_18837223.1 NZ_HE973368.1:103427..104521 

Microcystis aeruginosa PCC 9808 ZP_18838494.1 NZ_HE973582.1:217172..218266 

Microcystis aeruginosa PCC 9809 ZP_18843815.1 NZ_HE973750.1:126579..127673 

Microcystis aeruginosa TAIHU98 ZP_20934181.1 NZ_ANKQ01000002.1:1395147..1396241 

Microcystis sp. T1-4 ZP_10230362.1 NZ_CAIP01000427.1:5011..6105 

Pleurocapsa sp. PCC 7327 YP_007082717.1 NC_019689.1:4290686..4291846 

Synechococcus sp. MA19 AAK38139.1 AY030295.1:1..1095 

Synechocystis sp. PCC 6803 AGF51119.1 CP003265.1:932812..933948 
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Appendix Table 5: Accession table for 67 tubulin-like cell division protein sequences (FtsZ) and their respective 

coding sequences (ftsZ).  Accessions were implemented in the design of primers using a CEMA consensus sequence 

and a simple nucleic acid MSA (FtsZ67). 20 – Denotes use in alignment of 20 sequences (FtsZ20), 5 – Denotes use in 

alignment of 5 sequences (FtsZ5). 

Taxon FtsZ Accession ftsZ Accession 

Acaryochloris marina MBIC11017 YP_001515164.1 NC_009925.1:782340..783467 

Anabaena cylindrica PCC 7122 YP_007154641.1 NC_019771.1:134488..135774 

Anabaena sp. 90 YP_006998153.1 NC_019427.1:4157260..4158567 

Anabaena variabilis ATCC 29413 20 YP_322354.1 NC_007413.1:2284186..2285472 

Arthrospira platensis NIES-39 5 YP_005071738.1 NC_016640.1:5511062..5512342 

Calothrix sp. PCC 6303 YP_007138691.1 NC_019751.1:4514286..4515578 

Calothrix sp. PCC 7507 YP_007064972.1 NC_019682.1:1815489..1816775 

Chamaesiphon minutus PCC 6605 YP_007095100.1 NC_019697.1:300466..301704 

Chroococcidiopsis thermalis PCC 7203 YP_007091931.1 NC_019695.1:2885696..2886961 

Crinalium epipsammum PCC 9333 YP_007140600.1 NC_019753.1:119446..120702 

Cyanobacterium aponinum PCC 10605 YP_007161808.1 NC_019776.1:1984252..1985514 

Cyanobacterium stanieri PCC 7202 YP_007164315.1 NC_019778.1:775215..776471 

Cyanobium gracile PCC 6307 YP_007045866.1 NC_019675.1:1361486..1362574 

Cyanothece sp. ATCC 51142 YP_001802730.1 NC_010546.1:1312605..1313864 

Cyanothece sp. PCC 7424 YP_002380244.1 NC_011729.1:5582031..5583287 

Cyanothece sp. PCC 7425 YP_002485398.1 NC_011884.1:4819739..4821103 

Cyanothece sp. PCC 7822 YP_003887567.1 NC_014501.1:2581819..2583075 

Cyanothece sp. PCC 8801 YP_002374333.1 NC_011726.1:4465231..4466508 

Cyanothece sp. PCC 8802 YP_003139935.1 NC_013161.1:4458669..4459946 

Cylindrospermum stagnale PCC 7417 YP_007149035.1 NC_019757.1:4819737..4821026 

Dactylococcopsis salina PCC 8305 YP_007171918.1 NC_019780.1:1937757..1938848 

Escherichia coli 5, 20 CAA38872.1 X55034.1:21835..22986 

Geitlerinema sp. PCC 7407 YP_007111279.1 NC_019703.1:4579574..4580857 

Gloeobacter violaceus PCC 7421 20 NP_923244.1 NC_005125.1:306122..307381 

Gloeocapsa sp. PCC 7428 YP_007126104.1 NC_019745.1:378413..379684 

Halothece sp. PCC 7418 YP_007168336.1 NC_019779.1:2144129..2145391 

Leptolyngbya sp. PCC 7376 5 YP_007069850.1 NC_019683.1:674794..676014 

Microcoleus sp. PCC 7113 YP_007120243.1 NC_019738.1:1089558..1090829 

Microcystis aeruginosa NIES-843 YP_001657656.1 NC_010296.1:2391964..2393211 

Nostoc azollae 0708 YP_003721117.1 NC_014248.1:1975022..1976311 

Nostoc punctiforme PCC 73102 YP_001868096.1 NC_010628.1:5952853..5954169 

Nostoc sp. PCC 7107 YP_007052223.1 NC_019676.1:5294895..5296289 

Nostoc sp. PCC 7120 5, 20 NP_487898.1 NC_003272.1:4655902..4657188 

Continued on next page... 

 

 



 

178 

 

Appendix Table 5 continued... 

Taxon  FtsZ Accession ftsZ Accession 

Nostoc sp. PCC 7524 YP_007076972.1 NC_019684.1:4374268..4375557 

Oscillatoria acuminata PCC 6304 YP_007085256.1 NC_019693.1:2029648..2030931 

Pleurocapsa sp. PCC 7327 YP_007079753.1 NC_019689.1:816903..818153 

Prochlorococcus marinus str. AS9601 20 YP_001009898.1 NC_008816.1:1291754..1292869 

Prochlorococcus marinus str. MIT 9215 YP_001484737.1 NC_009840.1:1333132..1334241 

Prochlorococcus marinus str. MIT 9301 YP_001091719.1 NC_009091.1:1264859..1265974 

Prochlorococcus marinus str. MIT 9303 20 YP_001018004.1 NC_008820.1:1755151..1756314 

Prochlorococcus marinus str. MIT 9312 20 YP_397901.1 NC_007577.1:1321567..1322682 

Prochlorococcus marinus str. MIT 9313 20 NP_894152.1 NC_005071.1:365392..366555 

Prochlorococcus marinus str. MIT 9515 20 YP_001011784.1 NC_008817.1:1307400..1308515 

Prochlorococcus marinus str. NATL1A YP_001015549.1 NC_008819.1:1415572..1416669 

Prochlorococcus marinus str. NATL2A 20 YP_292069.1 NC_007335.2:1381065..1382162 

Pseudanabaena sp. PCC 7367 YP_007101792.1 NC_019701.1:1369244..1370530 

Rivularia sp. PCC 7116 YP_007054089.1 NC_019678.1:1229735..1231057 

Stanieria cyanosphaera PCC 7437 YP_007133498.1 NC_019748.1:3422182..3423435 

Synechococcus elongatus PCC 6301 20 YP_172437.1 NC_006576.1:1870459..1871640 

Synechococcus elongatus PCC 7942 20 YP_401395.1 NC_007604.1:2445387..2446568 

Synechococcus sp. CC9311 YP_729948.1 NC_008319.1:684252..685349 

Synechococcus sp. CC9605 20 YP_381169.1 NC_007516.1:815055..816164 

Synechococcus sp. CC9902 20 YP_377546.1 NC_007513.1:1493985..1495130 

Synechococcus sp. JA-2-3B'a(2-13) 20 YP_478319.1 NC_007776.1:2203612..2204727 

Synechococcus sp. JA-3-3Ab 20 YP_473602.1 NC_007775.1:104219..105340 

Synechococcus sp. PCC 6312 YP_007062673.1 NC_019680.1:3005181..3006272 

Synechococcus sp. PCC 7002 YP_001733298.1 NC_010475.1:21115..22362 

Synechococcus sp. PCC 7502 YP_007104976.1 NC_019702.1:715339..716562 

Synechococcus sp. RCC307 YP_001226856.1 NC_009482.1:534057..535229 

Synechococcus sp. WH 7803 YP_001225482.1 NC_009481.1:1612267..1613388 

Synechococcus sp. WH 8102 20 NP_897737.1 NC_005070.1:1581620..1582765 

Synechocystis sp. PCC 6803 5, 20 NP_440816.1 NC_000911.1:1013045..1014337 

Synechocystis sp. PCC 6803 substr. GT-I YP_005382684.1 NC_017038.1:1013147..1014439 

Synechocystis sp. PCC 6803 substr. PCC-N YP_005408560.1 NC_017052.1:1013288..1014580 

Synechocystis sp. PCC 6803 substr. PCC-P YP_005385853.1 NC_017039.1:1013300..1014592 

Thermosynechococcus elongatus BP-1 20 NP_683172.1 NC_004113.1:2491962..2493218 

Trichodesmium erythraeum IMS101 20 YP_723288.1 NC_008312.1:5788222..5789493 
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A.4 Derivation of Saturation Model Biologically Relevant Parameters 

Saturation model:  (i)  ln (
𝐶(𝑡)

𝐶(𝑡=𝜆)
) = 𝑦(𝑡) = 𝐴(1 − exp[𝐵 − 𝐶𝑡]) 

 

Subject to the conditions: (ii)  𝑦(𝑡 = 𝜆) = ln(1) = 0  

    (iii) 𝜇𝑚 = 
𝑑𝑦

𝑑𝑡
|
𝑡=𝜆

 

    (iv) 𝑦∞ = lim
𝑡→∞

𝑦(𝑡) 

 

Application of (ii) yields: (v) 𝐵 = 𝐶𝜆 

Application of (iii) yields: (vi) 𝐴𝐶 = 𝜇𝑚 

Application of (iv) yields:  (vii) 𝐴 =  𝑦∞ 

Solving system of (iv), (v), & (vi): 𝐴 = 𝑦∞  𝐵 =  
𝜇𝑚𝜆

𝑦∞
 𝐶 = 

𝜇𝑚

𝑦∞
 

 

Substitution into (i) yields:  

ln (
𝐶(𝑡)

𝐶(𝑡 = 𝜆)
) = 𝑦(𝑡) = 𝑦∞ (1 − exp [

𝜇𝑚
𝑦∞

(𝜆 − 𝑡)])  
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A.5 Standard Genetic Code 

 

A.6  IUPAC Degenerate Nucleotide Nomenclature 

 

AAT N Asn  CAT H His   GAT D Asp   TAT Y Tyr 

AAC N Asn   CAC H His   GAC D Asp   TAC Y Tyr 

AAA K Lys   CAA Q Gln   GAA E Glu   TAA * Ter 

AAG K Lys   CAG Q Gln   GAG E Glu   TAG * Ter 

          

ACT T Thr  CCT P Pro   GCT A Ala   TCT S Ser 

ACC T Thr   CCC P Pro   GCC A Ala   TCC S Ser 

ACA T Thr   CCA P Pro   GCA A Ala   TCA S Ser 

ACG T Thr   CCG P Pro   GCG A Ala   TCG S Ser 

 

AGT S Ser  CGT R Arg   GGT G Gly   TGT C Cys 

AGC S Ser   CGC R Arg   GGC G Gly   TGC C Cys 

AGA R Arg   CGA R Arg   GGA G Gly   TGA * Ter 

AGG R Arg   CGG R Arg   GGG G Gly   TGG W Trp 

 

ATT I Ile  CTT L Leu   GTT V Val   TTT F Phe 

ATC I Ile   CTC L Leu   GTC V Val   TTC F Phe 

ATA I Ile   CTA L Leu   GTA V Val   TTA L Leu 

ATG M Met   CTG L Leu   GTG V Val   TTG L Leu 

X – initiation. (Sayers et al., 2009). 

A – Adenine 

C – Cytosine 

G – Guanine 

T – Thymine 

 

W - Weak  A,T 

S – Strong  C,G  

M - aMino    A,C  

K - Keto  G,T 

R - puRine  A,G  

Y - pYrimidine  C,T 

B - not A   C,G,T 

D - not C   A,G,T 

H - not G   A,C,T 

V - not T   A,C,G 

N - Any  A,C,G,T 
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A.7 PHA Synthase Protein MSA (29 sequences) 

Appendix Figure 1: Cyanobacteria (Type III) PHA synthase multiple sequence alignment of sequences in Appendix Table 4. 

Analogous primer regions are depicted with “>>” and “<<”. Under/over lines depict the “Cyanobacterial box” described by Hai et 

al. (2001). Catalytic-triad residues are highlighted (Rehm, 2007). 

 

 

CLUSTAL O(1.1.0) multiple sequence alignment  

 

 

gi|209496929|gb|EDZ97226.1|           ----------------------MLPFALQMGLEDLTQEYADLTEKIVHGMDNLSSLREEE 

gi|423063393|ref|ZP_17052183.1|       ----------------------MLPFALQMGLEDLTQEYADLTEKIVHGMDNLSSLREEE 

gi|291571742|dbj|BAI94014.1|          ----------------------MLPFALQMGLEDLTEEYADLTEKIVHGMDNLSSLREEE 

gi|409991206|ref|ZP_11274489.1|       ----------------------MLPFALQMGLEDLTEEYADLTEKIVHGMDNLSSLREEE 

gi|376007312|ref|ZP_09784510.1|       -------------MSLLGGHQAMLPFALQMGLEDLTQEYADLTEKIVHGMDNLSSLREEE 

gi|18644660|gb|AAL76316.1|            ----------------------MLPFLLQIHLEEATHESAQLTHKLVKGMENLSQLREED 

gi|218437501|ref|YP_002375830.1|      ----------------------MLPFLDQIRLEDAVHEYTEITKKMIKGLDNLSRLREED 

gi|220909421|ref|YP_002484732.1|      ----------------------MLPFLLQIHLEEAAHESAQLTHKLVKGMENLSQLREED 

gi|307151222|ref|YP_003886606.1|      ----------------------MLPFLDQIRLEDAVHEYTEITKKMLKGLDNLSRLREED 

gi|443321910|ref|ZP_21050948.1|       ----------------------MLPFWTQISIEDTTCEYIELTKKLLKGIQNLRELRESD 

gi|434393686|ref|YP_007128633.1|      -------------------------------------MLTDL-AELWQRGEVFSRLREED 

gi|334119572|ref|ZP_08493657.1|       ------------------------------------MVTTELTQKLVKGVEIFTRLREED 

gi|443658276|ref|ZP_21132094.1|       ----------------------MWPFLTQVKLEDFTQDYLELTQKNLKGLDNLKRVKEED 

gi|166367744|ref|YP_001660017.1|      ----------------------MWPFLTQVKLEDFTQDYLELTQKNLKGLDNLKRVKEED 

gi|159029277|emb|CAO90143.1|          ----------------------MWPFLTQVKLEDFTQDYLELTQKNLKGLDNLKRVKEED 

gi|425448807|ref|ZP_18828651.1|       ----------------------MWPFLTQVKLEDFTQDYLELTQKNLKGLDNLKRVKEED 

gi|425434880|ref|ZP_18815344.1|       ----------------------MWPFLTQVKLEDFTQDYLELTQKNLKGLDNLKRVKEED 

gi|425448547|ref|ZP_18828448.1|       ----------------------MWPFLTQVKLEDFTQDYLELTQKNLKGLDNLKRVKEED 

gi|425469530|ref|ZP_18848456.1|       ----------------------MWPFLTQVKLEDFTQDYLELTQKNLKGLDNLKRVKEED 

gi|425443051|ref|ZP_18823283.1|       ----------------------MWPFLTQVKLEDFTQDYLELTQKNLKGLDNLKRVKEED 

gi|422304946|ref|ZP_16392283.1|       ----------------------MWPFLTQVKLEDFTQDYLELTQKNLKGLDNLKRVKEED 

gi|425457520|ref|ZP_18837223.1|       ----------------------MWPFLTQVKLEDFTQDYLELTQKNLKGLDNLKRVKEED 

gi|425459008|ref|ZP_18838494.1|       ----------------------MWSFLTQVKLEDFTQDYLELTQKNLKGLDNLKRVKEED 

gi|425464502|ref|ZP_18843815.1|       ----------------------MWPFLTQVKLEDFTQDYLELTQKNLKGLDNLKRVKEED 

gi|440754979|ref|ZP_20934181.1|       ----------------------MWPFLTQVKLEDFTQDYLELTQKNLKGLDNLKRVKEED 

gi|390442356|ref|ZP_10230362.1|       ----------------------MWPFLTQVKLEDFTQDYLELTQKNLKGLDNLKRVKEED 

gi|428204128|ref|YP_007082717.1|      MHFDSPTRKIHLAQLDKEETKDMLPFLTQIRLEDVSHEYTELTKKVLQGIENLSRLREED 

gi|18642978|gb|AAK38139.1|            ----------------------MLPFLMQMRLDDATEEYTELIKKIVKGIENLSRLREED 

gi|451780150|gb|AGF51119.1|           ---------MFLLFFIVHWLKIMLPFFAQVGLEENLHETLDFTEKFLSGLENLQGLNEDD 

                                                                              ::  :     : :  :.*.: 

 

gi|209496929|gb|EDZ97226.1|           IIVGVTPKEAVYQEDKVTLYRFEPKVKK--TLSVPLLIVYALVNRPFMVDLQEGRSLVAN 

gi|423063393|ref|ZP_17052183.1|       IIVGVTPKEAVYQEDKVTLYRFEPKVKK--TLSVPLLIVYALVNRPFMVDLQEGRSLVAN 

gi|291571742|dbj|BAI94014.1|          IIVGVTPKEAVYQEDKVTLYRFEPKVKK--TLSVPLLIVYALVNRPFMVDLQEGRSLVAN 

gi|409991206|ref|ZP_11274489.1|       IIVGVTPKEAVYQEDKVTLYRFEPKVKK--TLSVPLLIVYALVNRPFMVDLQEGRSLVAN 

gi|376007312|ref|ZP_09784510.1|       IIVGVTPKEAVYQEDKVTLYRFEPKVKK--TLSVPLLIVYALVNRPFMVDLQEGRSLVAN 

gi|18644660|gb|AAL76316.1|            IEVGATPREVVFQEDKVKLYRFKSPVDQKKTVKTPILMVYALVNRPFMVDLQEDRSLVAN 

gi|218437501|ref|YP_002375830.1|      IESGVSPKEVVYQEDKVVLYRFKSQVEH--PLPIPLLMVYALVNRPFMVDLQEGRSLVAN 

gi|220909421|ref|YP_002484732.1|      IEVGSTPREVVYQEDKVKLYRFKAPANQGKTVQTPILMVYALVNRPFMVDLQEDRSLVAN 

gi|307151222|ref|YP_003886606.1|      IQSGVSAKEAVYKEDKVILYRFTPQVAQ--PLHIPLLMVYALVNRPFMVDLQEGRSLVAN 

gi|443321910|ref|ZP_21050948.1|       IEIGITPKEVIYQEDKMLLYRFKPMVEN--PLTIPLLIVYALVNRPFMVDLQENRSLVAN 

gi|434393686|ref|YP_007128633.1|      NLIGVTPKEEIYREDKVVLYRFTPQVKN--LLNTPILIVYALVNRPYIVDLQAKRSLVAN 

gi|334119572|ref|ZP_08493657.1|       IQVGVTPKEEVYREDKVLLYHFSPKVEH--SLNIPILIVYALVNRPYIVDLQEGRSLVAN 

gi|443658276|ref|ZP_21132094.1|       IQCGVSEKEAVYREDKIILYHFKPVVEK--PFEIPLLMVYALVNRPYMVDLQEGRSLVAN 

gi|166367744|ref|YP_001660017.1|      IQCGVSEKEAVYREDKIILYHFKPVVEK--PFEIPLLMVYALVNRPYMVDLQEGRSLVAN 

gi|159029277|emb|CAO90143.1|          IQCGVSEKEAVYREDKIILYHFKPVVEK--PFEIPLLMVYALVNRPYMVDLQEGRSLVAN 

gi|425448807|ref|ZP_18828651.1|       IECGVSEKEAVYREDKIILYHFKPVVEK--PFEIPLLMVYALVNRPYMVDLQEGRSLVAN 

gi|425434880|ref|ZP_18815344.1|       IECGVSEKEAVYREDKIILYHFKPVVEK--PFEIPLLMVYALVNRPYMVDLQEGRSLVAN 

gi|425448547|ref|ZP_18828448.1|       IQCGVSEKEAVYREDKIILYHFKPVVEK--PFEIPLLMVYALVNRPYMVDLQEGRSLVAN 

gi|425469530|ref|ZP_18848456.1|       IQCGVSEKEAVYREDKIILYHFKPVVEK--PFEIPLLMVYALVNRPYMVDLQEGRSLVAN 

gi|425443051|ref|ZP_18823283.1|       IQCGVSEKEAVYREDKIILYHFKPVVEK--PFEIPLLMVYALVNRPYMVDLQEGRSLVAN 

gi|422304946|ref|ZP_16392283.1|       IQCGVSEKEAVYREDKIILYHFKPVVEK--PFEIPLLMVYALVNRPYMVDLQEGRSLVAN 

gi|425457520|ref|ZP_18837223.1|       IQCGVSEKEAVYREDKIILYHFKPVVEK--PFEIPLLMVYALVNRPYMVDLQEGRSLVAN 

gi|425459008|ref|ZP_18838494.1|       IECGVSEKEAVYREDKIILYHFKPVVEK--PFEIPLLMVYALVNRPYMVDLQEGRSLVAN 

gi|425464502|ref|ZP_18843815.1|       IQCGVSEKEAVYREDKIILYHFKPVVEK--PFEIPLLMVYALVNRPYMVDLQEGRSLVAN 

gi|440754979|ref|ZP_20934181.1|       IECGVSEKEAVYREDKIILYHFKPVVEK--PFEIPLLMVYALVNRPYMVDLQEGRSLVAN 

gi|390442356|ref|ZP_10230362.1|       IQCGVSEKEAVYREDKIILYHFKPVVEK--PFEIPLLMVYALVNRPYMVDLQEGRSLVAN 

gi|428204128|ref|YP_007082717.1|      IEIGATPKEAVYKEDKVILYRFKPMVEQ--PLSIPLLIVYALVNRPYMVDLQEDRSLVAN 

gi|18642978|gb|AAK38139.1|            IEIGVTPKEAVYREEKLTLYHFQSTVQK--QLRTPVLIVYALVNRPFMVDLQEDRSLVAN 

gi|451780150|gb|AGF51119.1|           IQVGFTPKEAVYQEDKVILYRFQPVVEN--PLPIPVLIVYALVNRPYMVDLQEGRSLVAN 

                                         * : :* :::*:*: **:*   . .   .  *:*:********::****  ****** 

 



 

182 

 

 

 

                                           >>>>>>>> 

gi|209496929|gb|EDZ97226.1|           LLSLGLDVYLIDWGYPTRSDRWLTLDDYINGYINNCVDFLRDHYELDKINLLGVCQGGTF 

gi|423063393|ref|ZP_17052183.1|       LLSLGLDVYLIDWGYPTRSDRWLTLDDYINGYINNCVDFLRDHYELDKINLLGVCQGGTF 

gi|291571742|dbj|BAI94014.1|          LLSLGLDVYLIDWGYPTRSDRWLTLDDYINGYINNCVDFLRDHYELDKINLLGVCQGGTF 

gi|409991206|ref|ZP_11274489.1|       LLSLGLDVYLIDWGYPTRSDRWLTLDDYINGYINNCVDFLRDHYELDKINLLGVCQGGTF 

gi|376007312|ref|ZP_09784510.1|       LLSLGLDVYLIDWGYPTRSDRWLTLDDYINGYINNCVDFLRDHYELDKINLLGVCQGGTF 

gi|18644660|gb|AAL76316.1|            LLKLGLDIYLIDWGYPGRGDRWLTLDDYINGYLNNCVDFIRTSHQLDKVNLLGICQGGTF 

gi|218437501|ref|YP_002375830.1|      LLKLGLDVYLIDWGYPTRADRWLTLDDYINGYINNCVDFIRKQHNLDKINLLGICQGGTF 

gi|220909421|ref|YP_002484732.1|      LLKLGLDIYLIDWGYPGRGDRWLTLDDYINGYLNNCVDFIRASHQLDKVNLLGICQGGTF 

gi|307151222|ref|YP_003886606.1|      LLKLGLDVYLIDWGYPTRADRWLTLDDYINGYIDNCVDYIRKTHNIDKVNLLGICQGGTF 

gi|443321910|ref|ZP_21050948.1|       LLKLGLDIYLIDWGYPTRADRWMNLDDYINGYINNCVEVVRKRHGLEKINLLGICQGGAF 

gi|434393686|ref|YP_007128633.1|      LLKLGVDVYLIDWGYPSRIDRWLTLDDYINGYINNCIDVVCDRHNLAQINLLGICQGGTF 

gi|334119572|ref|ZP_08493657.1|       LLELGLDVYLIDWGYPSRGDRWLTLDDYINGYINNCVDVVRDRHNLEQINLLGICQGGTF 

gi|443658276|ref|ZP_21132094.1|       LLKLGLDIYLIDWGYPTRSDRWLTLDDYINGYVDNCVDFIRQSHHLDKINLLGICQGGTF 

gi|166367744|ref|YP_001660017.1|      LLKLGLDIYLIDWGYPTRSDRWLTLDDYINGYVDNCVDFIRQSHHLDKINLLGICQGGTF 

gi|159029277|emb|CAO90143.1|          LLKLGLDIYLIDWGYPTRSDRWLTLDDYINGYVDNCVDFIRQSHHLDKINLLGICQGGTF 

gi|425448807|ref|ZP_18828651.1|       LLKLGLDIYLIDWGYPTRSDRWLTLDDYINGYVDNCVDFIRQSHHLDKINLLGICQGGTF 

gi|425434880|ref|ZP_18815344.1|       LLKLGLDIYLIDWGYPTRSDRWLTLDDYINGYVDNCVDFIRQSHHLDKINLLGICQGGTF 

gi|425448547|ref|ZP_18828448.1|       LLKLGLDIYLIDWGYPTRSDRWLTLDDYINGYVDNCVDFIRQSHHLDKINLLGICQGGTF 

gi|425469530|ref|ZP_18848456.1|       LLKLGLDIYLIDWGYPTRSDRWLTLDDYINGYVDNCVDFIRQSHHLDKINLLGICQGGTF 

gi|425443051|ref|ZP_18823283.1|       LLKLGLDIYLIDWGYPTRSDRWLTLDDYINGYVDNCVDFIRQSHHLDKINLLGICQGGTF 

gi|422304946|ref|ZP_16392283.1|       LLKLGLDIYLIDWGYPTRSDRWLTLDDYINGYVDNCVDFIRQSHHLDKINLLGICQGGTF 

gi|425457520|ref|ZP_18837223.1|       LLKLGLDIYLIDWGYPTRSDRWLTLDDYINGYVDNCVDFIRQSHHLDKINLLGICQGGTF 

gi|425459008|ref|ZP_18838494.1|       LLKLGLDIYLIDWGYPTRSDRWLTLDDYINGYVDNCVDFIRQSHHLDKINLLGICQGGTF 

gi|425464502|ref|ZP_18843815.1|       LLKLGLDIYLIDWGYPTRSDRWLTLDDYINGYVDNCVDFIRQSHHLDKINLLGICQGGTF 

gi|440754979|ref|ZP_20934181.1|       LLKLGLDIYLIDWGYPTRSDRWLTLDDYINGYVDNCVDFIRQSHHLDKINLLGICQGGTF 

gi|390442356|ref|ZP_10230362.1|       LLKLGLDIYLIDWGYPTRSDRWLTLDDYINGYVNNCVDFIRQSHHLDKINLLGICQGGTF 

gi|428204128|ref|YP_007082717.1|      LLKLGLDVYLIDWGYPSRADRWLTLDDYINGYINNCVDFIREKHGLEKINLLGICQGGAF 

gi|18642978|gb|AAK38139.1|            LLKLGLDIYLIDWGYPTRADRWLTLDDYINGYINNCVDFIRKKHDLDKINLLGICQGGTF 

gi|451780150|gb|AGF51119.1|           LLKLGLDVYLIDWGYPSRGDRWLTLEDYLSGYLNNCVDIICQRSQQEKITLLGVCQGGTF 
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gi|209496929|gb|EDZ97226.1|           SLCYSSLYPEKVQNLITMVAPVNFDMPNTLLNARGGCTLGPEAIDVDLMVEALGNIPGDY 

gi|423063393|ref|ZP_17052183.1|       SLCYSSLYPEKVQNLITMVAPVNFDMPNTLLNARGGCTLGPEAIDVDLMVEALGNIPGDY 

gi|291571742|dbj|BAI94014.1|          SLCYSSLYPEKVQNLITMVAPVNFDMPNTLLNARGGCTLGPEAVDIDLMVEALGNIPGDY 

gi|409991206|ref|ZP_11274489.1|       SLCYSSLYPEKVQNLITMVAPVNFDMPNTLLNARGGCTLGPEAVDIDLMVEALGNIPGDY 

gi|376007312|ref|ZP_09784510.1|       SLCYSSLYPEKVQNLITMVAPVNFDMPNTLLNARGGCTLGPEAIDVDLMVEALGNIPGDY 

gi|18644660|gb|AAL76316.1|            SLCYSSLYPDKVNNLVVMVAPVDFHQPETLLNMRGGCTLGAEAIDVDLMVDALGNIPGDF 

gi|218437501|ref|YP_002375830.1|      SVCYSAIYPEKVKNLIVMVAPIDFRMPGTLLNMRGGCTIGAEALDVDLMIDSMGNVPGDY 

gi|220909421|ref|YP_002484732.1|      SLCYSSLYPDKVNNLVVMVAPVDFHQPETLLNMRGGCTLGAEAIDVDLMVDALGNIPGDF 

gi|307151222|ref|YP_003886606.1|      SVCYSALHPEKVKNLIVMVAPIDFRMPGTLLNMRGGCTIGNEALDVDLMIEAMGNVPGDY 

gi|443321910|ref|ZP_21050948.1|       SLCYSAIYPEKVKNLIVMVTPVDFHIPNAFLNIRGGCSLGKDALDVDLMVDALGNIPGDW 

gi|434393686|ref|YP_007128633.1|      SLCYSALYPAKVKNLIVMVTPVDFHTQEGLLNVWSGCTLGAKALDVDLAIDTLGNVPGDW 

gi|334119572|ref|ZP_08493657.1|       SLCYSSLYPEKVKNLITMVTPVDFHINEGLLNVWGGCTLGSKAVDIDLMVDTLGNIPGDF 

gi|443658276|ref|ZP_21132094.1|       SLCYSSLYPDKVKNLVTMVTPVDFYQTETLLNMRGGCSLGAEALDIDLMVDTMGNIPGDF 

gi|166367744|ref|YP_001660017.1|      SLCYSSLYPDKIKNLVTMVTPVDFYQTETLLNMRGGCSLGAEALDIDLMVDTMGNIPGDF 

gi|159029277|emb|CAO90143.1|          SLCYSSLYPDKVKNLVTMVTPVDFYQTETLLNMRGGCSLGAEALDIDLMVDTMGNIPGDF 

gi|425448807|ref|ZP_18828651.1|       SLCYSSLYPDKVKNLVTMVTPVDFYQTETLLNMRGGCSLGAEALDIDLMVDTMGNIPGDF 

gi|425434880|ref|ZP_18815344.1|       SLCYSSLYPDKVKNLVTMVTPVDFYQTETLLNMRGGCSLGAEALDIDLMVDTMGNIPGDF 

gi|425448547|ref|ZP_18828448.1|       SLCYSSLYPDKIKNLVTMVTPVDFYQTETLLNMRGGCSLGSEALDIDLMVDTMGNIPGDF 

gi|425469530|ref|ZP_18848456.1|       SLCYSSLYPDKIKNLVTMVTPVDFYQTETLLNMRGGCSLGSEALDIDLMVDAMGNIPGDF 

gi|425443051|ref|ZP_18823283.1|       SLCYSSLYPDKVKNLVTMVTPVDFYQTETLLNMRGGCSLGAEALDIDLMVDTMGNIPGDF 

gi|422304946|ref|ZP_16392283.1|       SLCYSSLYPDKVKNLVTMVTPVDFYQTETLLNMRGGCSLGSEALDIDLMVDAMGNIPGDF 

gi|425457520|ref|ZP_18837223.1|       SLCYSSLYPDKVKNLVTMVTPVDFYQTETLLNMRGGCSLGSEALDIDLMVDTMGNIPGDF 

gi|425459008|ref|ZP_18838494.1|       SLCYSSLYPDKVKNLVTMVTPVDFYQTETLLNMRGGCSLGAEALDIDLMVDTMGNIPGDF 

gi|425464502|ref|ZP_18843815.1|       SLCYSSLYPDKVKNLVTMVTPVDFYQTETLLNMRGGCSLGAEALDIDLMVDTMGNIPGDF 

gi|440754979|ref|ZP_20934181.1|       SLCYSSLYPDKVKNLVTMVTPVDFYQTETLLNMRGGCSLGAEALDIDLMVDTMGNIPGDF 

gi|390442356|ref|ZP_10230362.1|       SLCYSSLYPDKIKNLVTMVTPVDFYQTETLLNMRGGCSLGSEALDIDLMVDAMGNIPGDF 

gi|428204128|ref|YP_007082717.1|      SLCYSSLYPEKVKNLIVMVAPVDFNMPNTLLNMRGGCTLGAEALDVDLMVKSLGNIPGDF 

gi|18642978|gb|AAK38139.1|            SLCYSAIYPEKVKNLIVMVTPVDFQISDSLLYMRGGCTLGAEALDIDLMVDCLGNIPGDF 

gi|451780150|gb|AGF51119.1|           SLCYASLFPDKVKNLVVMVAPVDFEQPGTLLNARGGCTLGAEAVDIDLMVDAMGNIPGDY 
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gi|209496929|gb|EDZ97226.1|           LNIEFLMLKPLQLGYQKYLDLPEIMGSRDKLLNFLRMEKWIFDSPDQAGETYRQFLKDFY 

gi|423063393|ref|ZP_17052183.1|       LNIEFLMLKPLQLGYQKYLDLPEIMGSRDKLLNFLRMEKWIFDSPDQAGETYRQFLKDFY 

gi|291571742|dbj|BAI94014.1|          LNIEFLMLKPLQLGYQKYLDLPEIMGSRDKLLNFLRMEKWIFDSPDQAGETYRQFLKDFY 

gi|409991206|ref|ZP_11274489.1|       LNIEFLMLKPLQLGYQKYLDLPEIMGSRDKLLNFLRMEKWIFDSPDQAGETYRQFLKDFY 

gi|376007312|ref|ZP_09784510.1|       LNIEFLMLKPLQLGYQKYLDLPEIMGSRDKLLNFLRMEKWIFDSPDQAGETYRQFLKDFY 

gi|18644660|gb|AAL76316.1|            LNLEFLMLKPQQLGIQEYLDVPDLMDSPEKLLNFLRMEKWIFDSPDQAGETYRQFMKDFY 

gi|218437501|ref|YP_002375830.1|      LNLEFLMLKPLQLGYQKYLDFPDIMENESKLANFMRMEKWIFDSPDQAGEAYRQFMKDFY 

gi|220909421|ref|YP_002484732.1|      LNLEFLMLKPQQLGIQKYLDVPDLMDSPEKLLNFLRMEKWIFDSPDQAGETYRQFMKDFY 

gi|307151222|ref|YP_003886606.1|      LNLEFLMLKPLQLGYQKYLDFPDIMENEDKLTNFMRMEKWIFDSPDQAGEAYRQFMKDFY 

gi|443321910|ref|ZP_21050948.1|       LNWEFLMLKPYQLGIQKYVDFFNIMENKEQMLNFLRMEKWIFDSPEQVGEAYRQFLKDFY 

gi|434393686|ref|YP_007128633.1|      LNFQFLMLKPFQLGVEKYIKFLESSDSEEKIINFFRMEKWIFDSPDLAGEAFRQYMKDFY 

gi|334119572|ref|ZP_08493657.1|       LNLEFLMLKPFQLGVQKYIDLLENIDCESKLINFLRMEKWIFDSPDQAGEAYRQFMKDFY 

gi|443658276|ref|ZP_21132094.1|       LNLEFLELKPLQLGYQKYLDFPDIMEDESKLVNFLRMEKWIFDSPDQAGESYRQFLKDFY 

gi|166367744|ref|YP_001660017.1|      LNLEFLELKPLQLGYQKYLDFPDIMEDESKLVNFLRMEKWIFDSPDQAGESYRQFLKDFY 

gi|159029277|emb|CAO90143.1|          LNLEFLELKPLQLGYQKYLDFPDIMEDESKLVNFLRMEKWIFDSPDQAGESYRQFLKDFY 

gi|425448807|ref|ZP_18828651.1|       LNLEFLELKPLQLGYQKYLDFPDIMEDESKLVNFLRMEKWIFDSPDQAGESYRQFLKDFY 

gi|425434880|ref|ZP_18815344.1|       LNLEFLELKPLQLGYQKYLDFPDIMEDESKLVNFLRMEKWIFDSPDQAGESYRQFLKDFY 

gi|425448547|ref|ZP_18828448.1|       LNLEFLELKPLQLGYQKYLDFPDIMEDESKLVNFLRMEKWIFDSPDQAGESYRQFLKDFY 

gi|425469530|ref|ZP_18848456.1|       LNLEFLELKPLQLGYQKYLDFPDIMEDESKLVNFLRMEKWIFDSPDQAGESYRQFLKDFY 

gi|425443051|ref|ZP_18823283.1|       LNLEFLELKPLQLGYQKYLDFPDIMEDESKLVNFLRMEKWIFDSPDQAGESYRQFLKDFY 

gi|422304946|ref|ZP_16392283.1|       LNLEFLELKPLQLGYQKYLDFPDIMEDESKLVNFLRMEKWIFDSPDQAGESYRQFLKDFY 

gi|425457520|ref|ZP_18837223.1|       LNLEFLELKPLQLGYQKYLDFPDIMEDESKLVNFLRMEKWIFDSPDQAGESYRQFLKDFY 

gi|425459008|ref|ZP_18838494.1|       LNLEFLELKPLQLGYQKYLDFPDIMEDESKLVNFLRMEKWIFDSPDQAGESYRQFLKDFY 

gi|425464502|ref|ZP_18843815.1|       LNLEFLELKPLQLGYQKYLDFPDIMEDESKLVNFLRMEKWIFDSPDQAGESYRQFLKDFY 

gi|440754979|ref|ZP_20934181.1|       LNLEFLELKPLQLGYQKYLDFPDIMEDESKLVNFLRMEKWIFDSPDQAGESYRQFLKDFY 

gi|390442356|ref|ZP_10230362.1|       LNLEFLELKPLQLGYQKYLDFPDIMEDESKLVNFLRMEKWIFDSPDQAGESYRQFLKDFY 

gi|428204128|ref|YP_007082717.1|      LNLEFLMLKPQQLGIQKYLDFPEVMTSEDKLLNFMRMEKWIFDSPDQAGEAYRQFMKDFY 

gi|18642978|gb|AAK38139.1|            LNFEFLMLKPRQLGIQKYLDFPEIMHSEDKLLNFLRMEKWIFDSPDQAGEAYRQFLKDFY 

gi|451780150|gb|AGF51119.1|           LNLEFLMLKPLQLGYQKYLDVPDIMGDEAKLLNFLRMEKWIFDSPDQAGETYRQFLKDFY 

                                      ** :** *** *** ::*:.. :      :: **:**********: .**::**::**** 

 

gi|209496929|gb|EDZ97226.1|           QENKLIKGEVMIGDSRVDLSNITMPVLNLYAEKDHLVPPSSSLALEEYIS-SEDYTAKSF 

gi|423063393|ref|ZP_17052183.1|       QENKLIKGEVMIGDSRVDLSNITMPVLNLYAEKDHLVPPSSSLALEEYIS-SEDYTAKSF 

gi|291571742|dbj|BAI94014.1|          QENKLIKGEVMIGDSRVDLSNITMPVLNLYAEKDHLVPPSSSLALEEYIS-SEDYTAKSF 

gi|409991206|ref|ZP_11274489.1|       QENKLIKGEVMIGDSRVDLSNITMPVLNLYAEKDHLVPPSSSLALEEYIS-SEDYTAKSF 

gi|376007312|ref|ZP_09784510.1|       QENKLIKGEVMIGDSRVDLSNITMPVLNLYAEKDHLVPPSSSLALEEYIS-SEDYTAKSF 

gi|18644660|gb|AAL76316.1|            QGNKLIKNQVKIGDRQVNLLNLTMPILNLYAEKDHLVPPASSLALAKYID-TQDYTAKGF 

gi|218437501|ref|YP_002375830.1|      QSNKLIKNEVVIGNKPVNLQNLTMPILNLYAELDHLVDPASSKALEKYVN-TTDYIVQSF 

gi|220909421|ref|YP_002484732.1|      QGNKLIKNQVKIGDQLVNLLNLTMPILNLYAEKDHLVPPASSVALAKYIG-TQDYTAKGF 

gi|307151222|ref|YP_003886606.1|      QGNKLIKNEVVIGDQRVNLQNLTMPILNLYAEQDHLVDPVSSKALEKYVN-SSDYTLKSF 

gi|443321910|ref|ZP_21050948.1|       QENKLIHNEIQIGDKRVDLGQILMPVLNLYAEKDHLVPPLSSLALEKYVG-TQDYTTQSF 

gi|434393686|ref|YP_007128633.1|      QENKLIKGQLEIGGKRVHLEKIRIPIFNIYAEQDHLVPPASSLALEKYVA-SSEYTVRSF 

gi|334119572|ref|ZP_08493657.1|       QGNKLIQGQVEIGNKRVDLGNIRIPILNIYAEQDHLVAPASSLALKTYIA-SEDYTLRSF 

gi|443658276|ref|ZP_21132094.1|       QQNKLIKGEVMLGDKRVDLHNLTMPILNLYADKDHLVPPASSLALGNYIG-TSDYTACAF 

gi|166367744|ref|YP_001660017.1|      QQNKLIKGEVMLGDKRVDLHNLTMPILNLYADKDHLVPPASSLALGNYIG-TSDYTACAF 

gi|159029277|emb|CAO90143.1|          QQNKLIKGEVMLGDKRVDLHNLTMPILNLYADKDHLVPPASSLALGNYIG-TSDYTACAF 

gi|425448807|ref|ZP_18828651.1|       QQNKLIKGEVMLGDKRVDLHNLTMPILNLYADKDHLVPPASSLALGNYIG-TSDYTACAF 

gi|425434880|ref|ZP_18815344.1|       QQNKLIKGEVMLGDKRVDLHNLTMPILNLYADKDHLVPPASSLALGNYIG-TSDYTACAF 

gi|425448547|ref|ZP_18828448.1|       QQNKLIKGEVMLGDKRVDLHNLTMPILNLYADKDHLVPPASSLALGNYIG-TSDYTACAF 

gi|425469530|ref|ZP_18848456.1|       QQNKLIKGEVMLGDKRVDLHNLTMPILNLYADKDHLVPPASSLALGNYIG-TSDYTACAF 

gi|425443051|ref|ZP_18823283.1|       QQNKLIKGEVMLGDKRVDLHNLTMPILNLYADKDHLVPPASSLALGNYIG-TSDYTACAF 

gi|422304946|ref|ZP_16392283.1|       QQNKLIKGEVMLGDKRVDLHNLTMPILNLYADKDHLVPPASSLALGNYIG-TSDYTACAF 

gi|425457520|ref|ZP_18837223.1|       QQNKLIKGEVMLGDKRVDLHNLTMPILNLYADKDHLVPPASSLALGNYIG-TSDYTACAF 

gi|425459008|ref|ZP_18838494.1|       QQNKLIKGEVMLGDKRVDLHNLTMPILNLYADKDHLVPPASSLALGNYIG-TSDYTACAF 

gi|425464502|ref|ZP_18843815.1|       QQNKLIKGEVMLGDKRVDLHNLTMPILNLYADKDHLVPPASSLALGNYIG-TSDYTACAF 

gi|440754979|ref|ZP_20934181.1|       QQNKLIKGEVMLGDKRVDLHNLTMPILNLYADKDHLVPPASSLALGNYIG-TSDYTACAF 

gi|390442356|ref|ZP_10230362.1|       QQNKLIKGEVMLGDKRVDLHNLTMPILNLYADKDHLVPPASSLALGNYIG-TSDYTACAF 

gi|428204128|ref|YP_007082717.1|      QENKLIKGEVMLGDKRVDLKNVRMPVLNLYAEKDHLVDPESSKALEKYVG-TDDYTVRSF 

gi|18642978|gb|AAK38139.1|            QANKLIKGEVTIGDKQVNLGNIRMPVLNLYAEKDHLVPPRSSIALERYIG-TTDYTVRSF 

gi|451780150|gb|AGF51119.1|           QQNKLIKGEVMIGDRLVDLHNLTMPILNLYAEKDHLVAPASSLALGDYLPENCDYTVQSF 

                                      * ****: :: :*   *.* :: :*::*:**: **** * ** **  *:  . :*   .* 
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gi|209496929|gb|EDZ97226.1|           PVGHIGMYVSGKVQRDLPPTIVDWLKVRE-- 

gi|423063393|ref|ZP_17052183.1|       PVGHIGMYVSGKVQRDLPPTIVDWLKVRE-- 

gi|291571742|dbj|BAI94014.1|          PVGHIGMYVSGKVQRDLPPTIVDWLKVRE-- 

gi|409991206|ref|ZP_11274489.1|       PVGHIGMYVSGKVQRDLPPTIVDWLKVRE-- 

gi|376007312|ref|ZP_09784510.1|       PVGHIGMYVSGKVQRDLPPTIVDWLKVRE-- 

gi|18644660|gb|AAL76316.1|            PVGHIGMYVSGKVQRDLPPVIADWLRNRD-- 

gi|218437501|ref|YP_002375830.1|      PVGHIGMYVSGKVQATLPPTIVEWLTARA-- 

gi|220909421|ref|YP_002484732.1|      PVGHIGMYVSGKVQQDLPPVIADWLRNRD-- 

gi|307151222|ref|YP_003886606.1|      PVGHIGMYVSGKVQKDLPPTIVDWLKARS-- 

gi|443321910|ref|ZP_21050948.1|       PVGHIGMYVSSKVQRDLPQIIVNWIKARSLN 

gi|434393686|ref|YP_007128633.1|      PVGHIGMYVSRKVQKDLPEAIADWLK----- 

gi|334119572|ref|ZP_08493657.1|       PVGHIGMYVSSKVQRDLPPTIVDWLKMRA-- 

gi|443658276|ref|ZP_21132094.1|       PVGHIGMYVSGKVQRDLPPAISDWLKARG-- 

gi|166367744|ref|YP_001660017.1|      PVGHIGMYVSGKVQRDLPPAISDWLKARA-- 

gi|159029277|emb|CAO90143.1|          PVGHIGMYVSGKVQRDLPPAISDWLKARG-- 

gi|425448807|ref|ZP_18828651.1|       PVGHIGMYVSGKVQRDLPPAISDWLKARA-- 

gi|425434880|ref|ZP_18815344.1|       PVGHIGMYVSGKVQRDLPPAISDWLKARA-- 

gi|425448547|ref|ZP_18828448.1|       PVGHIGMYVSGKVQRDLPPAISDWLKARA-- 

gi|425469530|ref|ZP_18848456.1|       PVGHIGMYVSGKVQRDLPPAISDWLKARG-- 

gi|425443051|ref|ZP_18823283.1|       PVGHIGMYVSGKVQRDLPPAITDWLKARA-- 

gi|422304946|ref|ZP_16392283.1|       PVGHIGMYVSGKVQRDLPPAITDWLKARG-- 

gi|425457520|ref|ZP_18837223.1|       PVGHIGMYVSGKVQRDLPPAISDWLKARG-- 

gi|425459008|ref|ZP_18838494.1|       PVGHIGMYVSGKVQRDLPPAISDWLKARA-- 

gi|425464502|ref|ZP_18843815.1|       PVGHIGMYVSGKVQRDLPPAISDWLKARA-- 

gi|440754979|ref|ZP_20934181.1|       PVGHIGMYVSGKVQRDLPPAISDWLKARA-- 

gi|390442356|ref|ZP_10230362.1|       PVGHIGMYVSGKVQRDLPPAISDWLKARA-- 

gi|428204128|ref|YP_007082717.1|      PVGHIGMYVSGKVQRDLPPTIVDWLKARM-- 

gi|18642978|gb|AAK38139.1|            PVGHIGIYVSSKVQRDLPPIIANWLNARE-- 

gi|451780150|gb|AGF51119.1|           PVGHIGMYVSGKVQRDLPPAIAHWLSERQ-- 

                                      ******:*** ***  **  * .*:       
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A.8 PHA Synthase CEMA (29 sequences) 

Appendix Figure 2: Alignment of phaC coding sequences generated from the analogous coding product MSA returned from Clustal Ω.  Top row depicts conserved 

amino acid residues from clustal output.  The bottom row depicts consensus residues.  Primer annealing regions are highlighted.  See Appendix Table 4 for sequence 

accession table. 

 

                                                                                                           

   ABYK01000001.1     ------------------------------------------------------------------ATGTTACCTTTCGCCTTACAAATG 

    NZ_CM001632.1     ------------------------------------------------------------------ATGTTACCTTTCGCCTTACAAATG 

       AP011615.1     ------------------------------------------------------------------ATGTTACCTTTCGCCTTACAAATG 

NZ_ACSK02000570.1     ------------------------------------------------------------------ATGTTACCTTTCGCCTTACAAATG 

NZ_CAFN01000673.1     ---------------------------------------ATGTCTTTGCTTGGAGGACATCAAGCTATGTTACCTTTCGCCTTACAAATG 

       AF371369.1     ------------------------------------------------------------------ATGCTGCCATTTTTATTGCAAATA 

      NC_011729.1     ------------------------------------------------------------------ATGTTACCGTTTTTAGATCAAATT 

      NC_011884.1     ------------------------------------------------------------------ATGCTGCCATTTTTGTTGCAAATA 

      NC_014501.1     ------------------------------------------------------------------ATGTTACCGTTTTTAGATCAGATT 

NZ_ALVY01000193.1     ------------------------------------------------------------------ATGCTTCCCTTTTGGACTCAGATA 

      NC_019745.1     ------------------------------------------------------------------------------------------ 

NZ_AFJC01000008.1     ------------------------------------------------------------------------------------------ 

NZ_AOCI01000120.1     ------------------------------------------------------------------ATGTGGCCATTTTTGACGCAAGTG 

      NC_010296.1     ------------------------------------------------------------------ATGTGGCCATTTTTGACGCAAGTG 

       AM778949.1     ------------------------------------------------------------------ATGTGGCCATTTTTGACGCAAGTG 

    NZ_HE973143.1     ------------------------------------------------------------------ATGTGGCCATTTTTGACGCAAGTA 

    NZ_HE972538.1     ------------------------------------------------------------------ATGTGGCCATTTTTGACGCAAGTA 

    NZ_HE973089.1     ------------------------------------------------------------------ATGTGGCCATTTTTGACGCAAGTG 

NZ_CAIQ01000501.1     ------------------------------------------------------------------ATGTGGCCATTTTTGACGCAAGTG 

    NZ_HE972766.1     ------------------------------------------------------------------ATGTGGCCATTTTTGACGCAAGTG 

    NZ_HE973252.1     ------------------------------------------------------------------ATGTGGCCATTTTTGACGCAAGTG 

    NZ_HE973368.1     ------------------------------------------------------------------ATGTGGCCATTTTTGACGCAAGTG 

    NZ_HE973582.1     ------------------------------------------------------------------ATGTGGTCATTTTTGACGCAAGTG 

    NZ_HE973750.1     ------------------------------------------------------------------ATGTGGCCATTTTTGACGCAAGTG 

NZ_ANKQ01000002.1     ------------------------------------------------------------------ATGTGGCCATTTTTGACGCAAGTA 

NZ_CAIP01000427.1     ------------------------------------------------------------------ATGTGGCCATTTTTGACGCAAGTG 

      NC_019689.1     ATGCATTTTGATAGTCCTACAAGAAAAATTCATCTAGCGCAGTTAGATAAAGAGGAAACAAAAGATATGCTGCCGTTTTTAACTCAGATA 

       AY030295.1     ------------------------------------------------------------------ATGCTGCCATTTTTGATGCAAATG 

       CP003265.1     ---------------------------ATGTTTTTACTATTTTTTATCGTTCATTGGTTAAAAATTATGTTGCCTTTTTTTGCTCAGGTG 

                      ------------------------------------------------------------------------------------------ 
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                                                    e__l__      k__               d__   l__      l__k__E__e__d__ 

   ABYK01000001.1     GGTTTAGAAGACTTAACCCAGGAATATGCAGACCTCACCGAAAAAATTGTTCATGGTATGGACAACCTTAGCAGTTTACGGGAGGAAGAA 

    NZ_CM001632.1     GGTTTAGAAGACTTAACCCAGGAATATGCAGACCTCACCGAAAAAATTGTTCATGGTATGGACAACCTTAGCAGTTTACGGGAGGAAGAA 

       AP011615.1     GGTTTAGAAGACTTAACCGAGGAATATGCAGACCTCACCGAAAAAATTGTTCATGGTATGGACAACCTTAGTAGTTTACGGGAGGAAGAA 

NZ_ACSK02000570.1     GGTTTAGAAGACTTAACCGAGGAATATGCAGACCTCACCGAAAAAATTGTTCATGGTATGGACAACCTTAGTAGTTTACGGGAGGAAGAA 

NZ_CAFN01000673.1     GGTTTAGAAGACTTAACCCAGGAATATGCAGACCTCACCGAAAAAATTGTTCATGGTATGGACAACCTTAGCAGTTTACGGGAGGAAGAA 

       AF371369.1     CATCTGGAAGAGGCCACGCACGAATCCGCACAGCTCACCCACAAACTGGTGAAGGGCATGGAAAACCTCAGCCAGCTCCGTGAGGAAGAC 

      NC_011729.1     CGTTTAGAAGATGCAGTCCACGAATACACCGAAATCACCAAAAAGATGATTAAAGGGCTAGATAATTTGAGCCGTTTACGAGAAGAAGAT 

      NC_011884.1     CACCTGGAAGAGGCCGCCCATGAATCCGCACAGCTCACCCACAAACTGGTGAAGGGCATGGAAAACCTCAGCCAGCTCCGTGAGGAAGAC 

      NC_014501.1     CGTTTAGAAGATGCCGTCCACGAATATACTGAAATCACCAAAAAGATGCTCAAAGGGCTGGATAATTTAAGCCGCTTGCGGGAAGAAGAT 

NZ_ALVY01000193.1     AGTATTGAAGATACTACCTGTGAGTATATTGAGCTAACTAAAAAATTACTTAAAGGTATTCAAAATTTAAGGGAGTTGAGAGAAAGTGAC 

      NC_019745.1     ---------------------ATGCTTACAGATCTA---GCCGAACTTTGGCAACGTGGTGAAGTTTTTAGCCGTTTGCGCGAAGAAGAC 

NZ_AFJC01000008.1     ------------------ATGGTAACGACAGAGCTAACCCAAAAACTGGTCAAGGGCGTCGAGATTTTCACCCGCCTGCGGGAGGAAGAT 

NZ_AOCI01000120.1     AAACTGGAAGATTTTACCCAAGATTATCTAGAATTAACTCAGAAAAATCTCAAAGGGTTAGACAATCTCAAACGAGTTAAAGAAGAAGAT 

      NC_010296.1     AAACTGGAAGATTTTACCCAAGATTATCTAGAATTAACTCAGAAAAATCTCAAAGGGTTAGACAATCTCAAACGAGTTAAAGAAGAAGAT 

       AM778949.1     AAACTGGAAGATTTTACCCAAGATTATCTAGAATTAACTCAGAAAAATCTCAAAGGGTTAGACAATCTCAAACGAGTTAAAGAAGAAGAT 

    NZ_HE973143.1     AAACTGGAAGATTTTACCCAAGATTATCTAGAATTAACTCAGAAAAATCTCAAAGGTTTAGACAATCTCAAACGAGTTAAAGAAGAAGAT 

    NZ_HE972538.1     AAACTGGAAGATTTTACCCAAGATTATCTAGAATTAACTCAGAAAAATCTCAAAGGTTTAGACAATCTCAAACGAGTTAAAGAAGAAGAT 

    NZ_HE973089.1     AAACTGGAAGACTTTACCCAAGATTATCTAGAATTAACTCAGAAAAATCTCAAAGGTTTGGACAATCTCAAACGAGTTAAAGAAGAAGAT 

NZ_CAIQ01000501.1     AAACTGGAAGATTTTACCCAAGATTATCTAGAATTAACTCAGAAAAATCTTAAAGGTCTAGACAATCTCAAACGAGTTAAAGAAGAAGAT 

    NZ_HE972766.1     AAACTGGAAGATTTTACCCAAGATTATCTAGAATTAACTCAAAAAAATCTCAAAGGTTTGGACAATCTCAAACGAGTTAAAGAAGAAGAT 

    NZ_HE973252.1     AAACTGGAAGATTTTACCCAAGATTATCTAGAATTAACTCAGAAAAATCTCAAAGGTTTAGACAATCTCAAACGAGTTAAAGAAGAAGAT 

    NZ_HE973368.1     AAACTGGAAGACTTTACCCAAGATTATCTAGAATTAACTCAGAAAAATCTCAAAGGTTTGGACAATCTCAAACGAGTTAAAGAAGAAGAT 

    NZ_HE973582.1     AAACTGGAAGACTTTACCCAAGATTATCTAGAATTAACTCAGAAAAATCTCAAAGGTTTAGACAATCTCAAACGAGTTAAAGAAGAAGAT 

    NZ_HE973750.1     AAACTGGAAGATTTTACCCAAGATTATCTAGAATTAACTCAAAAAAATCTCAAAGGTTTGGACAATCTCAAACGAGTTAAAGAAGAAGAT 

NZ_ANKQ01000002.1     AAACTGGAAGATTTTACCCAAGATTATCTAGAATTAACTCAGAAAAATCTCAAAGGTTTAGACAATCTCAAACGAGTTAAAGAAGAAGAT 

NZ_CAIP01000427.1     AAACTGGAAGATTTTACCCAAGATTATCTAGAATTAACTCAGAAAAATCTCAAAGGTTTAGACAATCTCAAACGAGTTAAAGAAGAAGAT 

      NC_019689.1     CGCCTTGAAGATGTGAGCCACGAGTACACCGAACTAACTAAAAAAGTCCTTCAAGGCATTGAAAATCTAAGTCGCTTGCGAGAGGAAGAT 

       AY030295.1     CGCCTTGATGACGCCACCGAGGAGTATACCGAACTTATTAAAAAGATTGTCAAAGGAATTGAAAATTTAAGTCGCCTGCGAGAAGAAGAC 

       CP003265.1     GGGTTAGAAGAAAATCTCCATGAAACCCTAGATTTTACTGAAAAATTTCTCTCTGGCTTGGAAAATTTGCAGGGTTTGAATGAAGATGAC 

                      ---------------------gattatctagAatTa---caaaAaattctcaaagGtttggAcaatcTcaaacgagTtaaaGAagaaGAt 
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                               G__   s__   k__E__   v__y__r__E__d__K__i__   L__Y__h__F__         v__   k__       

   ABYK01000001.1     ATTATCGTTGGGGTCACACCCAAAGAAGCAGTTTATCAGGAAGATAAAGTCACCCTTTATCGTTTTGAACCCAAAGTCAAAAAA------ 

    NZ_CM001632.1     ATTATCGTTGGGGTCACACCCAAAGAAGCAGTTTATCAGGAAGATAAAGTCACCCTTTATCGTTTTGAACCCAAAGTCAAAAAA------ 

       AP011615.1     ATTATCGTTGGGGTCACACCCAAAGAAGCAGTTTACCAGGAAGATAAAGTCACCCTTTATCGGTTTGAACCCAAAGTCAAAAAA------ 

NZ_ACSK02000570.1     ATTATCGTTGGGGTCACACCCAAAGAAGCAGTTTACCAGGAAGATAAAGTCACCCTTTATCGGTTTGAACCCAAAGTCAAAAAA------ 

NZ_CAFN01000673.1     ATTATCGTTGGGGTCACACCCAAAGAAGCAGTTTATCAGGAAGATAAAGTCACCCTTTATCGTTTTGAACCCAAAGTCAAAAAA------ 

       AF371369.1     ATTGAGGTGGGGGCCACTCCCAGGGAGGTGGTTTTCCAGGAGGATAAGGTCAAACTCTATCGCTTCAAATCACCCGTTGATCAGAAAAAG 

      NC_011729.1     ATTGAAAGCGGTGTATCTCCCAAAGAAGTAGTTTATCAAGAGGATAAAGTTGTCCTCTATCGGTTTAAATCTCAAGTTGAACAT------ 

      NC_011884.1     ATTGAGGTGGGGTCCACTCCCAGGGAGGTGGTTTACCAGGAGGATAAGGTTAAACTCTATCGATTTAAAGCTCCAGCTAACCAGGGAAAA 

      NC_014501.1     ATTCAAAGCGGCGTATCAGCTAAAGAAGCCGTTTATAAAGAGGATAAAGTCATCCTCTATCGGTTTACCCCTCAAGTGGCGCAA------ 

NZ_ALVY01000193.1     ATTGAAATTGGTATAACTCCTAAAGAAGTAATTTACCAAGAGGACAAAATGTTACTCTATCGCTTTAAGCCAATGGTAGAAAAC------ 

      NC_019745.1     AATTTAATAGGAGTCACGCCGAAGGAAGAAATCTACCGCGAAGATAAGGTGGTGTTGTATCGCTTTACTCCACAAGTGAAAAAT------ 

NZ_AFJC01000008.1     ATTCAAGTCGGGGTGACTCCCAAGGAAGAAGTTTACCGGGAAGATAAGGTACTGCTGTACCACTTCTCGCCGAAAGTTGAGCAT------ 

NZ_AOCI01000120.1     ATTCAGTGTGGAGTATCGGAAAAAGAAGCAGTTTATCGGGAAGATAAAATCATTCTCTACCACTTCAAACCCGTGGTCGAAAAA------ 

      NC_010296.1     ATTCAGTGTGGAGTCTCGGAAAAAGAAGCAGTTTATCGGGAAGATAAAATCATTCTCTACCACTTTAAACCCGTGGTCGAAAAA------ 

       AM778949.1     ATTCAGTGTGGAGTATCGGAAAAAGAAGCAGTTTATCGGGAAGATAAAATCATTCTCTACCACTTCAAACCCGTGGTCGAAAAA------ 

    NZ_HE973143.1     ATTGAGTGTGGAGTCTCGGAAAAAGAAGCAGTTTATCGGGAAGATAAAATCATTCTCTACCACTTTAAACCCGTGGTCGAAAAA------ 

    NZ_HE972538.1     ATTGAGTGTGGAGTCTCGGAAAAAGAAGCAGTTTATCGGGAAGATAAAATCATTCTCTACCACTTTAAACCCGTGGTCGAAAAA------ 

    NZ_HE973089.1     ATTCAGTGTGGAGTCTCGGAAAAAGAAGCAGTTTATCGGGAAGATAAAATCATTCTCTACCACTTTAAACCCGTGGTTGAAAAA------ 

NZ_CAIQ01000501.1     ATTCAGTGTGGAGTCTCGGAAAAAGAAGCAGTTTATCGGGAAGATAAAATCATTCTCTACCACTTTAAACCCGTGGTCGAAAAA------ 

    NZ_HE972766.1     ATTCAGTGTGGAGTCTCGGAAAAAGAAGCAGTTTATCGGGAAGATAAAATCATTCTCTACCACTTTAAACCCGTGGTCGAAAAA------ 

    NZ_HE973252.1     ATTCAGTGTGGAGTCTCGGAAAAAGAAGCAGTTTATCGGGAAGATAAAATCATTCTCTACCACTTTAAACCCGTGGTTGAAAAA------ 

    NZ_HE973368.1     ATTCAGTGTGGAGTCTCAGAAAAAGAAGCAGTTTATCGGGAAGATAAAATCATTCTCTACCACTTTAAACCCGTGGTTGAAAAA------ 

    NZ_HE973582.1     ATTGAGTGTGGAGTCTCGGAAAAAGAAGCAGTTTATCGGGAAGATAAAATCATTCTCTACCACTTTAAACCCGTGGTTGAAAAA------ 

    NZ_HE973750.1     ATTCAGTGTGGAGTCTCGGAAAAAGAAGCAGTTTATCGGGAAGATAAAATCATTCTCTACCACTTTAAACCCGTGGTCGAAAAA------ 

NZ_ANKQ01000002.1     ATTGAGTGTGGAGTCTCGGAAAAAGAAGCAGTTTATCGGGAAGATAAAATCATTCTCTACCACTTTAAACCCGTGGTCGAAAAA------ 

NZ_CAIP01000427.1     ATTCAGTGTGGAGTCTCGGAAAAAGAAGCAGTTTATCGGGAAGATAAAATCATTCTCTACCACTTTAAACCCGTGGTTGAAAAA------ 

      NC_019689.1     ATTGAAATCGGCGCTACGCCTAAAGAAGCGGTTTACAAAGAGGATAAAGTGATTCTATACCGCTTCAAGCCGATGGTCGAGCAG------ 

       AY030295.1     ATCGAAATTGGTGTCACTCCCAAGGAAGCTGTCTATCGCGAGGAAAAATTGACTTTGTACCACTTTCAATCAACGGTACAGAAG------ 

       CP003265.1     ATCCAGGTGGGCTTTACCCCCAAAGAAGCAGTTTACCAGGAAGATAAGGTTATTCTTTACCGTTTCCAACCGGTGGTGGAAAAT------ 

                      AttcagtgtGGagtctCggcaAaaGAaGcagTtTatcggGAaGAtAAaaTcattcTcTAcCacTTtaaacCcgtgGtcgaaaAa------ 
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                         f__      P__l__L__m__V__Y__A__L__V__N__R__P__y__m__V__D__L__Q__      R__S__L__V__A__N__ 

   ABYK01000001.1     ACCCTTTCTGTACCCCTGCTAATTGTTTATGCTTTAGTCAATCGTCCCTTTATGGTAGATTTGCAAGAGGGTCGTTCCTTAGTTGCTAAT 

    NZ_CM001632.1     ACCCTTTCTGTACCCCTGCTAATTGTTTATGCTTTAGTCAATCGTCCCTTTATGGTAGATTTGCAAGAGGGTCGTTCCTTAGTTGCTAAT 

       AP011615.1     ACCCTTTCTGTACCTCTGCTAATTGTCTATGCTTTAGTCAATCGTCCCTTTATGGTAGATTTGCAAGAGGGTCGTTCCTTAGTTGCTAAT 

NZ_ACSK02000570.1     ACCCTTTCTGTACCTCTGCTAATTGTCTATGCTTTAGTCAATCGTCCCTTTATGGTAGATTTGCAAGAGGGTCGTTCCTTAGTTGCTAAT 

NZ_CAFN01000673.1     ACCCTTTCTGTACCCCTGCTAATTGTTTATGCTTTAGTCAATCGTCCCTTTATGGTAGATTTGCAAGAGGGTCGTTCCTTAGTTGCTAAT 

       AF371369.1     ACAGTCAAAACACCTATTCTGATGGTCTACGCCCTGGTAAACCGCCCCTTTATGGTGGACTTACAGGAAGATCGCTCCCTAGTGGCTAAT 

      NC_011729.1     CCTCTGCCGATTCCTTTATTGATGGTTTATGCGTTGGTAAATCGCCCTTTTATGGTAGATTTACAGGAAGGACGCTCTTTAGTCGCTAAT 

      NC_011884.1     ACGGTGCAAACACCGATACTGATGGTCTACGCCCTGGTGAACCGCCCCTTTATGGTGGACTTACAGGAAGATCGCTCCCTGGTGGCTAAT 

      NC_014501.1     CCGTTACATATCCCGTTATTGATGGTTTATGCTTTGGTAAACCGTCCTTTTATGGTGGATTTGCAGGAAGGACGCTCTTTAGTCGCTAAT 

NZ_ALVY01000193.1     CCTCTAACTATTCCCTTATTGATTGTCTACGCTTTGGTCAATCGTCCTTTTATGGTTGATCTACAGGAAAATCGTTCCTTAGTGGCTAAT 

      NC_019745.1     TTACTCAACACTCCGATTTTGATTGTTTATGCCTTAGTGAATCGTCCTTATATTGTTGATTTACAAGCAAAGCGATCGCTTGTTGCTAAT 

NZ_AFJC01000008.1     TCGCTGAATATTCCCATACTCATCGTTTACGCCCTGGTTAATCGTCCCTACATAGTCGATTTACAGGAGGGGCGATCGCTCGTTGCGAAT 

NZ_AOCI01000120.1     CCCTTCGAGATTCCCTTGCTGATGGTTTATGCTTTGGTCAATCGTCCCTACATGGTAGATTTACAGGAAGGGCGTTCTTTAGTAGCAAAT 

      NC_010296.1     CCCTTCGAGATTCCCTTGTTGATGGTATATGCTTTGGTCAATCGTCCCTACATGGTAGATTTACAGGAAGGGCGTTCTTTAGTGGCCAAT 

       AM778949.1     CCCTTCGAGATTCCCTTGCTGATGGTTTATGCTTTGGTCAATCGTCCCTACATGGTAGATTTACAGGAAGGGCGTTCTTTAGTAGCAAAT 

    NZ_HE973143.1     CCCTTCGAGATTCCCTTGCTGATGGTTTATGCTTTGGTCAATCGTCCCTACATGGTAGATTTACAGGAAGGGCGTTCTTTAGTAGCAAAT 

    NZ_HE972538.1     CCCTTCGAGATTCCCTTGCTGATGGTTTATGCTTTGGTCAATCGTCCCTACATGGTAGATTTACAGGAAGGGCGTTCTTTAGTGGCCAAT 

    NZ_HE973089.1     CCCTTCGAGATTCCCTTGCTGATGGTTTATGCTTTGGTCAATCGTCCCTACATGGTAGATTTACAGGAAGGGCGTTCTTTAGTGGCCAAT 

NZ_CAIQ01000501.1     CCCTTCGAGATTCCCTTGCTGATGGTTTATGCTTTGGTCAATCGTCCCTACATGGTAGATTTACAGGAAGGGCGTTCTTTAGTAGCAAAT 

    NZ_HE972766.1     CCCTTCGAGATTCCCTTGTTGATGGTTTATGCCTTGGTCAATCGTCCCTACATGGTAGATTTACAGGAAGGGCGTTCTTTAGTGGCAAAT 

    NZ_HE973252.1     CCTTTCGAGATTCCCTTGTTGATGGTTTATGCTTTGGTCAATCGTCCCTACATGGTAGATTTACAGGAAGGGCGTTCTTTAGTGGCCAAT 

    NZ_HE973368.1     CCCTTCGAGATTCCCTTGCTGATGGTTTATGCTTTGGTTAATCGTCCCTACATGGTAGATTTACAGGAAGGGCGTTCTTTAGTGGCCAAT 

    NZ_HE973582.1     CCTTTCGAGATTCCCTTGTTGATGGTTTATGCTTTGGTCAATCGTCCCTACATGGTAGATTTACAGGAAGGGCGTTCTTTAGTAGCAAAT 

    NZ_HE973750.1     CCCTTCGAGATTCCCTTGTTGATGGTTTATGCTTTGGTCAATCGTCCCTACATGGTAGATTTACAGGAAGGGCGTTCTTTAGTGGCAAAT 

NZ_ANKQ01000002.1     CCCTTCGAGATTCCCTTGCTGATGGTTTATGCTTTGGTCAATCGTCCCTACATGGTAGATTTACAGGAAGGGCGTTCTTTAGTAGCAAAT 

NZ_CAIP01000427.1     CCCTTCGAGATTCCCTTGCTGATGGTTTATGCTTTGGTCAATCGTCCCTACATGGTAGATTTACAGGAAGGGCGTTCTTTAGTGGCCAAT 

      NC_019689.1     CCTTTGAGCATTCCCCTCCTAATTGTTTATGCTTTGGTTAACCGTCCCTATATGGTCGATCTGCAAGAGGATCGATCCCTGGTTGCCAAT 

       AY030295.1     CAATTGAGAACTCCTGTTCTCATCGTCTACGCCTTGGTAAACCGCCCTTTTATGGTCGATTTGCAAGAAGATCGATCGCTGGTTGCTAAC 

       CP003265.1     CCCTTACCTATCCCGGTTTTAATTGTTTACGCCCTGGTAAATCGCCCCTACATGGTGGATTTGCAGGAAGGACGCTCCCTGGTGGCCAAC 

                      ccctTcgagattCCctTgcTgATgGTtTAtGCttTgGTcAAtCGtCCcTacATgGTaGAttTaCAgGaagggCGtTCttTaGTgGCtAAt 
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                      L__L__k__L__G__l__D__i__Y__L__I__D__W__G__Y__P__   R__   D__R__W__l__t__L__d__D__Y__i__n__ 

   ABYK01000001.1     TTACTCAGTTTGGGATTAGATGTCTATTTGATTGACTGGGGATATCCTACCCGTAGCGATCGCTGGTTAACCTTAGATGATTACATCAAC 

    NZ_CM001632.1     TTACTCAGTTTGGGATTAGATGTCTATTTGATTGACTGGGGATATCCTACCCGTAGCGATCGCTGGTTAACCTTAGATGATTACATCAAC 

       AP011615.1     TTACTCAGTTTGGGATTAGATGTCTATTTGATTGATTGGGGATATCCTACCCGTAGCGATCGCTGGTTAACCTTAGATGATTATATCAAC 

NZ_ACSK02000570.1     TTACTCAGTTTGGGATTAGATGTCTATTTGATTGATTGGGGATATCCTACCCGTAGCGATCGCTGGTTAACCTTAGATGATTATATCAAC 

NZ_CAFN01000673.1     TTACTCAGTTTGGGATTAGATGTCTATTTGATTGACTGGGGATATCCTACCCGTAGCGATCGCTGGTTAACCTTAGATGATTACATCAAC 

       AF371369.1     CTGCTCAAGTTGGGCCTGGATATCTATCTGATCGATTGGGGCTATCCCGGCCGGGGCGATCGCTGGTTGACCCTGGACGATTACATCAAT 

      NC_011729.1     TTGCTCAAATTAGGCTTAGATGTCTATTTAATTGATTGGGGTTATCCGACAAGGGCAGACCGATGGTTAACCTTGGATGATTATATCAAT 

      NC_011884.1     CTGCTCAAGTTGGGTCTGGATATCTATCTGATCGATTGGGGCTATCCCGGCCGGGGCGATCGCTGGTTGACCCTGGACGATTACATCAAT 

      NC_014501.1     TTGCTCAAATTGGGCTTAGATGTTTATTTGATTGACTGGGGATATCCTACCCGTGCCGATCGCTGGCTGACATTAGATGATTATATCAAC 

NZ_ALVY01000193.1     TTACTCAAATTAGGATTAGATATTTATTTAATTGATTGGGGTTATCCTACTCGCGCCGATCGCTGGATGAATCTTGACGATTATATCAAT 

      NC_019745.1     TTGCTCAAACTCGGTGTTGATGTTTACTTAATCGATTGGGGTTATCCAAGTCGAATTGATCGTTGGCTAACGCTTGATGATTACATTAAT 

NZ_AFJC01000008.1     TTGCTAGAGCTTGGTTTGGATGTTTACCTGATTGACTGGGGCTATCCGAGTCGCGGCGATCGCTGGTTAACTCTTGACGACTACATTAAT 

NZ_AOCI01000120.1     CTGCTGAAATTAGGCTTAGATATCTACTTAATTGATTGGGGATATCCCACCAGAAGTGATCGCTGGTTAACCCTTGATGATTATATCAAT 

      NC_010296.1     CTGCTGAAATTAGGCTTAGATATCTACTTAATTGATTGGGGATATCCCACCAGAAGCGATCGCTGGTTAACCCTTGATGATTATATCAAT 

       AM778949.1     CTGCTGAAATTAGGCTTAGATATCTACTTAATTGATTGGGGATATCCCACCAGAAGTGATCGCTGGTTAACCCTTGATGATTATATCAAT 

    NZ_HE973143.1     CTGCTGAAATTAGGCTTAGATATCTACTTAATTGATTGGGGATATCCCACCAGAAGCGATCGCTGGTTAACCCTTGATGATTATATCAAT 

    NZ_HE972538.1     CTGCTGAAATTAGGCTTAGATATCTACTTAATTGATTGGGGATATCCCACCAGAAGCGATCGCTGGTTAACCCTTGATGATTATATCAAT 

    NZ_HE973089.1     CTGCTGAAATTAGGCTTAGATATCTACTTAATTGATTGGGGATATCCCACCAGAAGCGATCGCTGGTTAACCCTTGATGATTATATCAAT 

NZ_CAIQ01000501.1     CTGCTGAAATTAGGCTTAGATATCTACTTAATTGATTGGGGATATCCCACCAGAAGCGATCGCTGGTTAACCCTTGATGATTATATCAAT 

    NZ_HE972766.1     CTGCTGAAATTAGGCTTAGATATCTACTTAATTGATTGGGGCTATCCCACCAGAAGCGATCGCTGGTTAACCCTTGATGATTATATCAAT 

    NZ_HE973252.1     CTGCTGAAATTAGGCTTAGATATCTACTTAATTGATTGGGGATATCCCACCAGAAGCGATCGCTGGTTAACCCTTGATGATTATATCAAT 

    NZ_HE973368.1     CTGCTGAAATTAGGCTTAGATATCTACTTAATTGATTGGGGATATCCCACCAGAAGCGATCGCTGGTTAACCCTTGATGATTATATCAAT 

    NZ_HE973582.1     CTGCTGAAATTAGGCTTAGATATCTACTTAATTGATTGGGGATATCCCACCAGAAGCGATCGCTGGTTAACCCTTGATGATTATATCAAT 

    NZ_HE973750.1     CTGCTGAAATTAGGCTTAGATATCTACTTAATTGATTGGGGCTATCCCACCAGAAGCGATCGCTGGTTAACCCTTGATGATTATATCAAT 

NZ_ANKQ01000002.1     CTGCTGAAATTAGGCTTAGATATCTACTTAATTGATTGGGGATATCCCACCAGAAGCGATCGCTGGTTAACCCTTGATGATTATATCAAT 

NZ_CAIP01000427.1     CTGCTGAAATTAGGCTTAGATATCTACTTAATTGATTGGGGATATCCCACCAGAAGCGATCGCTGGTTAACCCTTGATGATTATATCAAT 

      NC_019689.1     TTGCTCAAACTGGGTTTGGATGTCTATTTGATTGACTGGGGATACCCCAGCAGAGCCGATCGCTGGTTAACTCTCGACGATTACATTAAT 

       AY030295.1     TTGCTGAAATTAGGTTTGGATATTTATTTGATTGATTGGGGTTACCCTACCAGAGCCGATCGCTGGCTGACTCTAGATGACTACATTAAC 

       CP003265.1     CTCCTCAAACTGGGTTTGGACGTGTATTTAATTGATTGGGGTTATCCCTCCCGGGGCGATCGTTGGTTGACCCTAGAAGATTATTTGTCT 

                      cTgCTgaaatTaGGctTaGAtaTcTActTaATtGAtTGGGGaTAtCCcaccaGaagcGAtCGcTGGtTaAcccTtGAtGAtTAtaTcaat 

                                     >>----phaC(3.1)-F----->> 
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                      G__Y__v__n__N__C__v__d__   i__                     k__i__n__L__L__G__i__C__Q__G__G__t__F__ 

   ABYK01000001.1     GGTTATATTAATAACTGTGTTGATTTTCTGCGCGATCACTATGAACTCGATAAAATCAACCTCCTAGGAGTTTGTCAGGGAGGAACCTTT 

    NZ_CM001632.1     GGTTATATTAATAACTGTGTTGATTTTCTGCGCGATCACTATGAACTCGATAAAATCAACCTCCTAGGAGTTTGTCAGGGAGGAACCTTT 

       AP011615.1     GGTTATATTAATAACTGTGTTGATTTTCTTCGCGATCACTATGAACTCGATAAAATCAACCTCCTAGGAGTTTGTCAGGGAGGAACCTTT 

NZ_ACSK02000570.1     GGTTATATTAATAACTGTGTTGATTTTCTTCGCGATCACTATGAACTCGATAAAATCAACCTCCTAGGAGTTTGTCAGGGAGGAACCTTT 

NZ_CAFN01000673.1     GGTTATATTAATAACTGTGTTGATTTTCTGCGCGATCACTATGAACTCGATAAAATCAACCTCCTAGGAGTTTGTCAGGGAGGAACCTTT 

       AF371369.1     GGTTATCTGAACAATTGCGTCGATTTTATCCGCACCAGCCATCAACTGGACAAGGTGAACCTGCTGGGCATTTGTCAGGGTGGCACCTTC 

      NC_011729.1     GGTTACATCAATAATTGTGTTGATTTTATCCGCAAACAACATAATTTAGACAAAATCAATTTATTGGGCATTTGTCAAGGGGGAACATTT 

      NC_011884.1     GGTTATCTGAACAATTGCGTCGATTTTATCCGTGCCAGCCATCAACTGGACAAGGTGAACCTGCTGGGCATTTGTCAGGGTGGCACCTTC 

      NC_014501.1     GGCTACATTGATAATTGTGTGGATTATATCCGCAAAACGCACAATATCGATAAAGTTAATCTGTTAGGCATCTGTCAAGGGGGAACTTTT 

NZ_ALVY01000193.1     GGTTACATTAATAACTGTGTCGAGGTAGTGCGAAAAAGGCATGGTTTAGAAAAGATTAATCTTTTAGGAATTTGTCAGGGAGGAGCTTTT 

      NC_019745.1     GGCTATATTAATAACTGCATCGATGTTGTCTGCGATCGCCACAACCTTGCGCAAATTAATCTTTTAGGCATTTGTCAGGGAGGAACCTTT 

NZ_AFJC01000008.1     GGCTATATCAACAACTGTGTGGATGTGGTACGCGATCGTCACAACTTAGAGCAAATCAACCTGTTAGGTATTTGTCAGGGGGGAACCTTC 

NZ_AOCI01000120.1     GGTTATGTGGATAATTGCGTCGATTTTATTCGTCAAAGTCACCATCTCGACAAAATTAATCTGTTAGGAATCTGTCAGGGGGGAACCTTT 

      NC_010296.1     GGTTATGTCGATAATTGCGTCGATTTTATTCGTCAAAGTCACCATCTCGACAAAATTAATCTGTTAGGAATCTGTCAGGGGGGAACCTTT 

       AM778949.1     GGTTATGTGGATAATTGCGTCGATTTTATTCGTCAAAGTCACCATCTCGACAAAATTAATCTGTTAGGAATCTGTCAGGGGGGAACCTTT 

    NZ_HE973143.1     GGTTATGTGGATAATTGCGTCGATTTTATTCGTCAAAGTCACCATCTCGACAAAATTAATCTGCTAGGAATCTGTCAGGGGGGAACCTTT 

    NZ_HE972538.1     GGTTATGTGGATAATTGCGTCGATTTTATTCGTCAAAGTCACCATCTCGACAAAATTAATCTGTTAGGAATCTGTCAGGGGGGAACCTTT 

    NZ_HE973089.1     GGTTATGTCGATAATTGCGTCGATTTTATTCGTCAAAGTCACCATCTCGACAAGATTAATCTCTTAGGAATCTGTCAGGGAGGAACCTTT 

NZ_CAIQ01000501.1     GGTTATGTGGATAATTGCGTCGATTTTATTCGTCAAAGTCATCATCTCGACAAAATTAATCTGTTAGGAATCTGTCAGGGGGGAACCTTT 

    NZ_HE972766.1     GGTTATGTGGATAATTGCGTCGATTTTATTCGTCAAAGTCACCATCTCGACAAAATTAATCTGTTAGGAATCTGTCAGGGAGGAACCTTT 

    NZ_HE973252.1     GGTTATGTCGATAATTGCGTCGATTTTATTCGTCAAAGTCACCATCTCGACAAAATTAATCTGTTAGGAATCTGTCAGGGAGGAACCTTT 

    NZ_HE973368.1     GGTTATGTGGATAATTGCGTCGATTTTATTCGTCAAAGTCACCATCTCGACAAGATTAATCTCTTAGGAATCTGTCAGGGAGGAACCTTT 

    NZ_HE973582.1     GGTTATGTGGATAATTGCGTCGATTTTATTCGTCAAAGTCACCATCTCGACAAAATTAATCTGTTAGGAATCTGTCAGGGGGGAACCTTT 

    NZ_HE973750.1     GGTTATGTGGATAATTGTGTCGATTTTATTCGTCAAAGTCACCATCTCGACAAAATTAATCTGCTAGGGATCTGTCAGGGAGGAACCTTT 

NZ_ANKQ01000002.1     GGTTATGTGGATAATTGCGTCGATTTTATTCGTCAAAGTCACCATCTCGACAAAATTAATCTGCTAGGAATCTGTCAGGGGGGAACCTTT 

NZ_CAIP01000427.1     GGTTATGTCAATAATTGCGTCGATTTTATTCGTCAAAGTCACCATCTCGACAAAATTAATCTGCTAGGAATCTGTCAGGGGGGAACCTTT 

      NC_019689.1     GGCTATATCAATAACTGTGTCGATTTCATCAGAGAAAAGCACGGTTTGGAGAAAATTAACCTTTTAGGGATTTGTCAAGGGGGAGCTTTC 

       AY030295.1     GGCTACATCAATAACTGTGTAGATTTCATCAGGAAAAAGCATGATTTAGACAAAATAAACCTACTGGGAATTTGTCAGGGTGGAACTTTT 

       CP003265.1     GGATATTTGAACAACTGTGTCGATATTATTTGTCAACGCTCCCAGCAAGAAAAAATTACGTTGTTAGGAGTTTGTCAGGGGGGCACATTT 

                      GGtTAtgTgaAtAAtTGcgTcGAttttaTtcGtcaaagtcaccatctcGacaAaaTtAatcTgtTaGGaaTcTGTCAgGGgGGaaCcTTt 
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                      S__l__C__Y__s__s__l__y__P__   K__v__k__N__L__v__t__M__V__t__P__v__d__F__               l__ 

   ABYK01000001.1     AGCCTCTGCTACAGTTCCCTATATCCCGAAAAAGTGCAAAACCTCATCACCATGGTTGCGCCAGTCAACTTTGATATGCCAAATACCCTG 

    NZ_CM001632.1     AGCCTCTGCTACAGTTCCCTATATCCCGAAAAAGTGCAAAACCTCATCACCATGGTTGCGCCAGTCAACTTTGATATGCCAAATACCCTG 

       AP011615.1     AGCCTCTGCTACAGTTCCCTATATCCCGAAAAAGTGCAAAACCTAATCACCATGGTTGCGCCAGTCAACTTTGATATGCCAAATACCCTC 

NZ_ACSK02000570.1     AGCCTCTGCTACAGTTCCCTATATCCCGAAAAAGTGCAAAACCTAATCACCATGGTTGCGCCAGTCAACTTTGATATGCCAAATACCCTC 

NZ_CAFN01000673.1     AGCCTCTGCTACAGTTCCCTATATCCCGAAAAAGTGCAAAACCTCATCACCATGGTTGCGCCAGTCAACTTTGATATGCCAAATACCCTG 

       AF371369.1     AGCCTGTGCTACAGCTCCCTCTATCCGGATAAGGTGAACAATCTGGTCGTGATGGTGGCCCCCGTGGACTTTCATCAACCCGAAACCCTG 

      NC_011729.1     AGCGTTTGCTACAGTGCAATTTACCCCGAAAAGGTGAAAAATCTCATCGTCATGGTTGCTCCCATTGATTTTCGGATGCCCGGCACGTTA 

      NC_011884.1     AGCCTTTGCTACAGTTCCCTCTATCCGGATAAGGTGAACAATCTGGTCGTGATGGTGGCCCCCGTGGACTTTCATCAACCCGAAACCCTG 

      NC_014501.1     AGCGTTTGTTATAGTGCCCTTCACCCTGAAAAGGTGAAAAATCTAATTGTGATGGTTGCTCCCATTGATTTTCGGATGCCGGGTACGCTG 

NZ_ALVY01000193.1     AGTCTTTGTTATAGCGCTATTTACCCAGAAAAGGTTAAAAATCTCATTGTCATGGTTACTCCCGTAGATTTCCATATTCCTAATGCTTTT 

      NC_019745.1     AGCCTTTGCTACAGTGCGCTTTACCCAGCGAAGGTAAAAAACCTGATTGTGATGGTTACGCCTGTTGATTTCCATACTCAAGAAGGGCTG 

NZ_AFJC01000008.1     AGCCTCTGCTACAGTTCCCTTTACCCCGAGAAGGTAAAAAACCTGATTACTATGGTCACCCCCGTCGATTTTCACATCAATGAGGGACTC 

NZ_AOCI01000120.1     AGTTTATGCTATAGTTCCCTCTATCCCGATAAGGTAAAAAATCTGGTGACAATGGTGACACCGGTGGACTTTTATCAAACCGAGACCCTC 

      NC_010296.1     AGTTTATGCTATAGTTCCCTCTACCCCGATAAGATAAAAAATCTGGTGACAATGGTGACACCAGTGGACTTTTATCAAACCGAGACCCTC 

       AM778949.1     AGTTTATGCTATAGTTCCCTCTATCCCGATAAGGTAAAAAATCTGGTGACAATGGTGACACCGGTGGACTTTTATCAAACCGAGACCCTC 

    NZ_HE973143.1     AGTTTATGCTATAGTTCCCTCTATCCCGATAAGGTAAAAAATCTGGTGACAATGGTGACACCGGTGGACTTTTATCAAACCGAGACCCTC 

    NZ_HE972538.1     AGTTTATGCTATAGTTCCCTCTATCCCGATAAGGTAAAAAATCTGGTGACAATGGTGACACCGGTGGACTTTTATCAAACCGAGACCCTC 

    NZ_HE973089.1     AGTTTATGCTATAGTTCCCTCTATCCTGATAAGATAAAAAATCTGGTGACAATGGTGACACCGGTGGACTTTTATCAAACCGAGACCCTC 

NZ_CAIQ01000501.1     AGTTTATGCTATAGTTCCCTCTATCCCGATAAGATAAAAAATCTGGTGACAATGGTGACACCGGTGGACTTTTATCAAACCGAGACCCTC 

    NZ_HE972766.1     AGTTTATGCTATAGTTCCCTCTATCCCGATAAGGTAAAAAATCTGGTGACAATGGTGACACCGGTGGACTTTTATCAAACCGAGACCCTC 

    NZ_HE973252.1     AGTTTATGCTATAGTTCCCTCTATCCCGATAAGGTAAAAAATCTGGTGACAATGGTGACACCAGTGGACTTTTATCAAACCGAGACCCTC 

    NZ_HE973368.1     AGTTTATGCTATAGTTCCCTCTATCCTGATAAGGTAAAAAATCTGGTGACAATGGTGACACCGGTGGACTTTTATCAAACCGAGACCCTC 

    NZ_HE973582.1     AGTTTATGCTATAGTTCCCTCTATCCCGATAAGGTAAAAAATCTGGTGACAATGGTGACACCGGTGGACTTTTATCAAACCGAGACCCTC 

    NZ_HE973750.1     AGTTTATGCTATAGTTCCCTCTATCCCGATAAGGTAAAAAATCTGGTGACAATGGTGACACCAGTGGACTTTTATCAAACCGAGACCCTC 

NZ_ANKQ01000002.1     AGTTTATGCTATAGTTCCCTCTATCCCGATAAGGTAAAAAATCTGGTGACAATGGTGACACCGGTGGACTTTTATCAAACCGAGACCCTC 

NZ_CAIP01000427.1     AGTTTATGCTATAGTTCCCTCTATCCCGATAAGATAAAAAATCTGGTGACAATGGTGACACCGGTGGACTTTTATCAAACCGAGACCCTC 

      NC_019689.1     AGTCTATGCTACTCTTCCCTTTATCCCGAAAAGGTGAAAAATTTAATCGTCATGGTTGCGCCAGTAGATTTTAACATGCCCAACACCTTG 

       AY030295.1     AGCCTTTGCTATAGCGCTATCTATCCCGAAAAGGTCAAAAACCTGATCGTAATGGTTACGCCTGTTGATTTTCAAATATCAGATTCACTG 

       CP003265.1     AGCCTGTGTTACGCTTCTCTATTCCCGGATAAGGTTAAAAATTTGGTGGTGATGGTGGCTCCGGTGGACTTTGAACAACCCGGTACTTTA 

                      AGttTaTGcTAtagttCccTctatCCcGatAAggTaaAaAAtcTggTgacaATGGTgaCaCCggTggAcTTttatcaaaccgagacccTc 
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                      L__         g__G__C__s__l__G__   e__A__l__D__i__D__L__   v__d__   m__G__N__i__P__G__D__f__ 

   ABYK01000001.1     TTAAATGCGCGGGGAGGCTGTACATTGGGACCGGAAGCCATAGATGTTGACCTCATGGTTGAGGCTTTAGGTAACATTCCCGGCGACTAT 

    NZ_CM001632.1     TTAAATGCGCGGGGAGGCTGTACATTGGGACCGGAAGCCATAGATGTTGACCTCATGGTTGAGGCTTTAGGTAACATTCCCGGCGACTAT 

       AP011615.1     TTAAATGCGCGGGGAGGCTGCACATTAGGACCCGAAGCCGTAGATATTGACCTCATGGTTGAGGCTTTAGGTAACATTCCCGGCGACTAT 

NZ_ACSK02000570.1     TTAAATGCGCGGGGAGGCTGCACATTAGGACCCGAAGCCGTAGATATTGACCTCATGGTTGAGGCTTTAGGTAACATTCCCGGCGACTAT 

NZ_CAFN01000673.1     TTAAATGCGCGGGGAGGCTGTACATTGGGACCGGAAGCCATAGATGTTGACCTCATGGTTGAGGCTTTAGGTAACATTCCCGGCGACTAT 

       AF371369.1     TTGAATATGCGTGGTGGTTGCACCCTGGGGGCGGAAGCGATCGATGTGGATTTGATGGTGGATGCCCTGGGCAATATTCCGGGTGATTTT 

      NC_011729.1     TTAAATATGCGAGGAGGCTGTACTATAGGCGCAGAAGCCCTAGATGTGGATTTAATGATAGATTCAATGGGGAATGTGCCGGGAGATTAC 

      NC_011884.1     TTGAATATGCGCGGTGGTTGCACCCTGGGGGCAGAAGCGATCGATGTGGATTTGATGGTGGATGCCCTGGGCAATATTCCGGGTGATTTT 

      NC_014501.1     TTAAATATGCGGGGAGGATGTACCATCGGCAACGAGGCGCTTGATGTGGATCTGATGATCGAGGCGATGGGAAATGTGCCCGGGGATTAC 

NZ_ALVY01000193.1     CTCAACATTCGTGGAGGCTGTAGTCTAGGTAAGGATGCTCTGGATGTAGATTTAATGGTGGATGCTTTGGGAAATATTCCCGGAGATTGG 

      NC_019745.1     CTCAACGTTTGGAGTGGCTGTACGCTAGGCGCAAAAGCTCTAGATGTGGATCTAGCGATTGATACTTTGGGGAATGTTCCTGGCGACTGG 

NZ_AFJC01000008.1     CTCAATGTTTGGGGTGGATGCACTCTGGGGTCAAAGGCTGTAGATATCGATTTAATGGTGGATACTCTGGGGAACATTCCCGGCGACTTC 

NZ_AOCI01000120.1     TTAAATATGCGCGGGGGGTGTTCCTTGGGAGCCGAAGCATTAGACATCGATTTAATGGTAGATACTATGGGCAATATCCCGGGAGATTTT 

      NC_010296.1     TTAAATATGCGCGGGGGGTGTTCCTTGGGAGCCGAAGCATTAGACATCGATTTAATGGTAGATACTATGGGCAATATCCCGGGAGATTTT 

       AM778949.1     TTAAATATGCGCGGGGGGTGTTCCTTGGGAGCCGAAGCATTAGACATCGATTTAATGGTAGATACTATGGGCAATATCCCGGGAGATTTT 

    NZ_HE973143.1     TTAAATATGCGCGGGGGGTGTTCCTTGGGAGCCGAAGCATTAGACATCGATTTAATGGTAGATACCATGGGCAATATTCCGGGAGATTTT 

    NZ_HE972538.1     TTAAATATGCGCGGGGGGTGTTCCTTGGGAGCCGAAGCATTAGACATCGATTTAATGGTAGATACTATGGGCAATATCCCGGGAGATTTT 

    NZ_HE973089.1     TTAAATATGCGCGGGGGATGTTCCCTTGGTTCCGAAGCGTTAGACATCGATTTAATGGTAGATACCATGGGCAATATCCCGGGAGATTTT 

NZ_CAIQ01000501.1     TTAAATATGCGGGGGGGATGTTCCTTGGGTTCCGAAGCATTAGACATCGATTTAATGGTAGATGCTATGGGCAATATCCCGGGAGATTTT 

    NZ_HE972766.1     TTAAATATGCGCGGGGGGTGTTCCTTGGGAGCCGAAGCATTAGACATCGATTTAATGGTAGATACTATGGGCAATATCCCGGGAGATTTT 

    NZ_HE973252.1     TTAAATATGCGGGGGGGATGTTCCTTGGGTTCCGAAGCATTAGACATCGATTTAATGGTAGATGCTATGGGCAATATCCCGGGAGATTTT 

    NZ_HE973368.1     TTAAATATGCGCGGGGGGTGTTCCCTGGGTTCCGAAGCGTTAGACATCGATTTAATGGTAGATACCATGGGCAATATCCCGGGAGATTTT 

    NZ_HE973582.1     TTAAATATGCGCGGGGGGTGTTCCTTGGGAGCCGAAGCATTAGACATCGATTTAATGGTAGATACTATGGGCAATATCCCGGGAGATTTT 

    NZ_HE973750.1     TTAAATATGCGCGGGGGGTGTTCCTTAGGAGCCGAAGCATTAGACATCGATTTAATGGTAGATACTATGGGCAATATCCCGGGAGATTTT 

NZ_ANKQ01000002.1     TTAAATATGCGCGGGGGGTGTTCCTTGGGAGCCGAAGCATTAGACATCGATTTAATGGTAGATACCATGGGCAATATTCCGGGAGATTTT 

NZ_CAIP01000427.1     TTAAATATGCGCGGGGGGTGTTCCTTGGGGTCCGAAGCATTAGACATCGATTTAATGGTAGATGCTATGGGCAATATCCCGGGAGATTTT 

      NC_019689.1     CTCAACATGCGCGGAGGCTGCACCCTTGGGGCAGAAGCTTTGGATGTGGATCTGATGGTCAAGAGCCTGGGCAATATTCCTGGCGATTTT 

       AY030295.1     TTGTACATGCGCGGCGGCTGCACTCTCGGAGCGGAAGCTTTAGATATTGATTTGATGGTAGATTGTTTGGGCAATATTCCTGGCGATTTC 

       CP003265.1     TTGAACGCCCGGGGAGGCTGTACCTTGGGAGCCGAAGCAGTAGATATTGACTTAATGGTGGATGCCATGGGCAATATTCCAGGGGATTAT 

                      tTaaAtatgcGcgGgGGcTGtacctTgGGagccgAaGCatTaGAtaTcGAttTaatGgTagAtactaTgGGcAAtaTtCCgGGaGAtTtt 
 



 

193 

 

 

                      L__N__   e__F__L__   L__K__P__   Q__L__G__   q__k__Y__l__d__f__   d__                  k__ 

   ABYK01000001.1     TTAAACATCGAGTTTCTGATGTTAAAACCCCTACAATTAGGATATCAAAAATATCTCGATTTACCCGAAATCATGGGAAGTCGCGACAAA 

    NZ_CM001632.1     TTAAACATCGAGTTTCTGATGTTAAAACCCCTACAATTAGGATATCAAAAATATCTCGATTTACCCGAAATCATGGGAAGTCGCGACAAA 

       AP011615.1     TTAAACATCGAGTTTTTGATGTTAAAACCCCTACAATTAGGATATCAAAAATATCTCGATTTACCCGAAATCATGGGAAGTCGCGACAAA 

NZ_ACSK02000570.1     TTAAACATCGAGTTTTTGATGTTAAAACCCCTACAATTAGGATATCAAAAATATCTCGATTTACCCGAAATCATGGGAAGTCGCGACAAA 

NZ_CAFN01000673.1     TTAAACATCGAGTTTCTGATGTTAAAACCCCTACAATTAGGATATCAAAAATATCTCGATTTACCCGAAATCATGGGAAGTCGCGACAAA 

       AF371369.1     CTCAACCTGGAATTTCTGATGTTAAAACCGCAGCAGTTGGGCATTCAGGAATACCTGGATGTACCGGATCTGATGGACAGCCCGGAAAAA 

      NC_011729.1     CTCAATTTAGAGTTTTTGATGCTCAAACCTTTACAATTGGGTTATCAAAAGTATCTTGATTTTCCAGATATTATGGAAAATGAAAGTAAA 

      NC_011884.1     CTCAACCTGGAATTTCTGATGTTAAAACCGCAGCAGTTGGGCATTCAGAAATACCTGGATGTACCGGATCTGATGGACAGCCCGGAAAAA 

      NC_014501.1     CTGAATTTAGAGTTTTTGATGCTGAAACCGTTACAGTTGGGCTATCAAAAGTATCTCGATTTTCCCGATATTATGGAAAATGAGGATAAG 

NZ_ALVY01000193.1     CTCAATTGGGAATTTTTAATGCTTAAACCCTATCAACTAGGCATTCAGAAATACGTTGATTTTTTCAACATTATGGAAAATAAGGAACAA 

      NC_019745.1     CTCAATTTTCAATTTCTGATGCTTAAACCTTTTCAATTAGGAGTTGAAAAGTATATTAAGTTTTTAGAAAGTAGTGATTCTGAGGAAAAA 

NZ_AFJC01000008.1     CTGAATTTGGAGTTCTTGATGCTGAAGCCTTTTCAGTTAGGAGTTCAGAAGTATATTGACCTTCTGGAGAACATCGATTGTGAAAGCAAA 

NZ_AOCI01000120.1     CTCAACTTAGAGTTTCTAGAATTGAAACCTTTGCAGTTAGGTTATCAGAAATACCTCGATTTTCCTGACATCATGGAAGACGAATCAAAA 

      NC_010296.1     CTCAACTTAGAATTTCTGGAATTGAAACCTTTGCAGTTAGGTTATCAGAAATACCTTGATTTTCCTGACATCATGGAAGACGAATCAAAA 

       AM778949.1     CTCAACTTAGAGTTTCTAGAATTGAAACCTTTGCAGTTAGGTTATCAGAAATACCTCGATTTTCCTGACATCATGGAAGACGAATCAAAA 

    NZ_HE973143.1     CTCAACTTAGAGTTTCTGGAATTGAAACCTTTACAGTTAGGTTATCAGAAATACCTCGATTTTCCTGACATCATGGAAGACGAATCAAAA 

    NZ_HE972538.1     CTCAACTTAGAGTTTCTGGAATTGAAACCTTTGCAGTTAGGTTATCAGAAATACCTCGATTTTCCTGACATCATGGAAGACGAATCAAAA 

    NZ_HE973089.1     CTCAACTTAGAGTTTCTGGAATTGAAACCTTTACAGTTAGGTTATCAGAAATACCTCGATTTTCCTGACATCATGGAAGACGAATCAAAA 

NZ_CAIQ01000501.1     CTCAACTTAGAGTTTCTGGAATTGAAACCTTTACAGTTAGGTTATCAGAAATACCTTGATTTTCCTGACATCATGGAAGACGAATCAAAA 

    NZ_HE972766.1     CTCAACTTAGAGTTTCTGGAATTGAAACCTTTACAGTTAGGTTATCAGAAATACCTTGATTTTCCTGACATCATGGAAGACGAATCAAAA 

    NZ_HE973252.1     CTTAACTTAGAGTTTCTGGAATTGAAACCTTTACAGTTAGGTTATCAGAAATACCTTGATTTTCCTGACATCATGGAAGACGAATCAAAA 

    NZ_HE973368.1     CTCAACTTAGAGTTTCTGGAATTGAAACCTTTGCAGTTAGGTTATCAGAAATACCTCGATTTTCCTGACATCATGGAAGACGAATCAAAA 

    NZ_HE973582.1     CTCAACTTAGAGTTTCTGGAATTGAAACCTTTGCAGTTAGGTTATCAGAAATACCTCGATTTTCCTGACATCATGGAAGACGAATCAAAA 

    NZ_HE973750.1     CTCAACTTAGAGTTTCTGGAATTGAAACCTTTGCAGTTAGGTTATCAGAAATACCTCGATTTTCCTGACATCATGGAAGACGAATCAAAA 

NZ_ANKQ01000002.1     CTCAACTTAGAGTTTCTGGAATTGAAACCTTTGCAGTTAGGTTATCAGAAATACCTCGATTTTCCTGACATCATGGAAGACGAATCAAAA 

NZ_CAIP01000427.1     CTTAACTTAGAGTTTCTGGAATTGAAACCTTTGCAGTTAGGTTATCAGAAATACCTCGATTTTCCTGACATCATGGAAGACGAATCAAAA 

      NC_019689.1     CTTAACCTTGAGTTTTTGATGCTCAAACCCCAGCAGTTAGGAATTCAAAAATACCTTGACTTTCCAGAAGTCATGACCAGCGAAGACAAG 

       AY030295.1     CTCAATTTTGAGTTTTTAATGCTCAAACCCCGACAACTAGGAATTCAAAAATATCTAGACTTTCCCGAGATCATGCACAGCGAAGACAAG 

       CP003265.1     CTTAACCTAGAATTTCTCATGCTTAAACCCCTGCAATTAGGTTACCAAAAGTATCTTGATGTGCCCGATATTATGGGGGATGAAGCGAAA 

                      cTcAActtagAgTTtcTgatgtTgAAaCCtttaCAgtTaGGttatcAgaAaTAccTcgAttTtcctgAcatcAtggaagacgaatcaaAa 
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                      l__   N__F__l__R__M__E__K__W__I__F__D__S__P__d__   a__G__E__s__y__R__Q__f__l__K__D__F__Y__ 

   ABYK01000001.1     CTGCTAAACTTCCTCCGCATGGAAAAATGGATTTTTGATAGTCCCGACCAAGCCGGAGAAACCTATCGCCAATTCCTGAAAGATTTTTAT 

    NZ_CM001632.1     CTGCTAAACTTCCTCCGCATGGAAAAATGGATTTTTGATAGTCCCGACCAAGCCGGAGAAACCTATCGCCAATTCCTGAAAGATTTTTAT 

       AP011615.1     CTCCTAAACTTCCTCCGCATGGAAAAATGGATTTTTGATAGTCCCGACCAAGCCGGAGAAACCTATCGCCAATTCCTGAAAGATTTTTAT 

NZ_ACSK02000570.1     CTCCTAAACTTCCTCCGCATGGAAAAATGGATTTTTGATAGTCCCGACCAAGCCGGAGAAACCTATCGCCAATTCCTGAAAGATTTTTAT 

NZ_CAFN01000673.1     CTGCTAAACTTCCTCCGCATGGAAAAATGGATTTTTGATAGTCCCGACCAAGCCGGAGAAACCTATCGCCAATTCCTGAAAGATTTTTAT 

       AF371369.1     CTACTCAACTTCCTCAGAATGGAAAAGTGGATTTTCGACAGTCCCGATCAGGCTGGAGAAACCTATCGCCAGTTCATGAAGGACTTTTAT 

      NC_011729.1     CTGGCGAATTTTATGCGGATGGAAAAATGGATTTTTGATAGTCCGGATCAAGCAGGAGAAGCTTACCGTCAGTTTATGAAAGATTTTTAT 

      NC_011884.1     CTGCTCAACTTTCTCAGAATGGAAAAGTGGATTTTCGACAGTCCCGACCAGGCAGGAGAAACCTATCGCCAGTTCATGAAGGACTTTTAT 

      NC_014501.1     CTCACTAATTTTATGCGGATGGAAAAGTGGATCTTTGATAGTCCGGATCAAGCGGGGGAAGCTTATCGCCAGTTTATGAAAGACTTTTAT 

NZ_ALVY01000193.1     ATGCTCAACTTTTTACGGATGGAAAAATGGATCTTCGACAGCCCAGAACAGGTAGGGGAAGCTTACCGCCAGTTTCTCAAGGACTTTTAT 

      NC_019745.1     ATTATCAACTTCTTCCGCATGGAAAAGTGGATTTTCGATAGTCCCGATCTAGCTGGTGAAGCTTTTCGACAATATATGAAAGACTTTTAT 

NZ_AFJC01000008.1     CTAATCAATTTTCTCCGGATGGAAAAGTGGATTTTTGATAGTCCCGACCAAGCTGGAGAGGCTTACCGACAGTTCATGAAGGATTTCTAT 

NZ_AOCI01000120.1     TTAGTTAATTTTCTGCGTATGGAAAAATGGATTTTTGATAGTCCCGACCAAGCGGGAGAATCCTACCGACAGTTTCTCAAGGATTTCTAT 

      NC_010296.1     TTAGTTAATTTTCTGCGTATGGAAAAATGGATTTTTGATAGTCCCGACCAAGCGGGAGAATCCTACCGACAGTTTCTCAAGGATTTCTAT 

       AM778949.1     TTAGTTAATTTTCTGCGTATGGAAAAATGGATTTTTGATAGTCCCGACCAAGCGGGAGAATCCTACCGACAGTTTCTCAAGGATTTCTAT 

    NZ_HE973143.1     TTAGTTAATTTTCTGCGTATGGAAAAATGGATTTTTGATAGTCCCGACCAAGCAGGAGAATCCTACCGACAGTTTCTCAAGGATTTCTAT 

    NZ_HE972538.1     TTAGTTAATTTTCTGCGTATGGAAAAATGGATTTTTGATAGTCCCGACCAAGCAGGAGAATCCTACCGACAGTTTCTCAAGGATTTCTAT 

    NZ_HE973089.1     TTAGTTAATTTTCTGCGTATGGAAAAATGGATTTTTGATAGTCCCGACCAAGCAGGAGAATCCTACCGACAGTTCCTCAAGGATTTCTAT 

NZ_CAIQ01000501.1     TTAGTTAATTTTCTGCGTATGGAAAAATGGATTTTTGATAGTCCTGACCAAGCGGGAGAATCCTACCGACAGTTTCTCAAGGATTTCTAT 

    NZ_HE972766.1     TTAGTTAATTTTCTGCGTATGGAAAAATGGATTTTTGATAGTCCCGACCAAGCGGGAGAATCCTACCGACAGTTTCTCAAGGATTTCTAT 

    NZ_HE973252.1     TTAGTTAATTTTCTGCGTATGGAAAAATGGATTTTTGATAGTCCCGACCAAGCGGGAGAATCCTATCGACAGTTTCTCAAGGATTTCTAT 

    NZ_HE973368.1     TTAGTTAATTTTCTGCGTATGGAAAAATGGATTTTTGATAGTCCCGACCAAGCAGGAGAATCCTACCGACAGTTCCTCAAGGATTTCTAT 

    NZ_HE973582.1     TTAGTTAATTTTCTGCGTATGGAAAAATGGATTTTTGATAGTCCCGACCAAGCAGGAGAATCCTACCGACAGTTTCTCAAGGATTTCTAT 

    NZ_HE973750.1     TTAGTTAATTTTCTGCGTATGGAAAAATGGATTTTTGATAGTCCCGACCAAGCGGGAGAATCCTATCGACAGTTTCTCAAGGATTTCTAT 

NZ_ANKQ01000002.1     TTAGTTAATTTTCTGCGTATGGAAAAATGGATTTTTGATAGTCCCGACCAAGCAGGAGAATCCTACCGACAGTTTCTCAAGGATTTCTAT 

NZ_CAIP01000427.1     TTAGTTAATTTTCTGCGTATGGAAAAATGGATTTTTGATAGTCCCGACCAAGCGGGAGAATCCTACCGACAGTTTCTCAAGGATTTCTAT 

      NC_019689.1     CTATTAAACTTTATGCGGATGGAAAAGTGGATCTTTGACAGCCCCGATCAGGCAGGGGAGGCATACCGACAGTTCATGAAGGATTTTTAT 

       AY030295.1     TTGCTGAACTTTTTGCGCATGGAAAAATGGATCTTTGATAGTCCAGATCAAGCAGGGGAAGCTTATCGCCAGTTCCTTAAGGATTTCTAT 

       CP003265.1     TTGTTAAACTTTCTACGCATGGAAAAATGGATTTTTGATAGTCCCGATCAAGCGGGGGAAACTTACCGTCAATTCCTCAAGGATTTTTAT 

                      tTagttAAtTTtcTgcGtATGGAAAAaTGGATtTTtGAtAGtCCcGAcCaaGcaGGaGAatCcTacCGaCAgTttcTcAAgGAtTTcTAT 

                                                 <<----phaC(3.1)-R---<< 
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                      Q__   N__K__L__I__k__   e__v__   l__G__         V__d__L__   n__l__   m__P__i__l__N__l__Y__ 

   ABYK01000001.1     CAGGAAAACAAACTAATCAAAGGCGAAGTAATGATTGGTGATTCTCGGGTAGATTTAAGCAATATTACCATGCCAGTTCTCAACCTCTAC 

    NZ_CM001632.1     CAGGAAAACAAACTAATCAAAGGCGAAGTAATGATTGGTGATTCTCGGGTAGATTTAAGCAATATTACCATGCCAGTTCTCAACCTCTAC 

       AP011615.1     CAGGAAAACAAACTAATCAAAGGCGAAGTAATGATTGGTGATTCTCGGGTAGATTTAAGTAATATTACCATGCCAGTTCTCAACCTCTAC 

NZ_ACSK02000570.1     CAGGAAAACAAACTAATCAAAGGCGAAGTAATGATTGGTGATTCTCGGGTAGATTTAAGTAATATTACCATGCCAGTTCTCAACCTCTAC 

NZ_CAFN01000673.1     CAGGAAAACAAACTAATCAAAGGCGAAGTAATGATTGGTGATTCTCGGGTAGATTTAAGCAATATTACCATGCCAGTTCTCAACCTCTAC 

       AF371369.1     CAGGGCAATAAGCTGATCAAAAACCAGGTCAAAATTGGGGATCGGCAGGTAAATCTACTCAATCTGACCATGCCGATTCTCAACCTCTAT 

      NC_011729.1     CAAAGTAATAAATTGATTAAAAATGAGGTGGTTATTGGCAATAAACCGGTTAATTTACAAAATCTAACGATGCCGATTTTAAACCTTTAC 

      NC_011884.1     CAGGGCAATAAGCTGATCAAAAACCAGGTCAAGATTGGGGATCAGCTAGTAAATCTACTCAATCTGACCATGCCGATTCTTAACCTCTAT 

      NC_014501.1     CAAGGCAATAAGCTGATTAAAAATGAGGTGGTGATCGGCGATCAACGAGTAAATTTACAAAACTTAACCATGCCGATTTTAAACCTTTAT 

NZ_ALVY01000193.1     CAGGAAAACAAACTAATTCACAACGAGATCCAAATTGGCGATAAACGAGTGGATTTGGGACAGATACTTATGCCAGTGCTAAACTTATAC 

      NC_019745.1     CAAGAAAATAAACTTATAAAAGGTCAACTGGAGATAGGAGGAAAACGAGTACATTTAGAGAAGATTCGTATTCCAATTTTTAATATATAT 

NZ_AFJC01000008.1     CAGGGAAACAAACTGATTCAAGGTCAGGTCGAGATTGGCAACAAGCGAGTGGATCTGGGAAACATCCGCATCCCGATTTTGAACATTTAC 

NZ_AOCI01000120.1     CAGCAAAATAAACTGATTAAAGGGGAAGTGATGTTAGGAGATAAACGGGTAGATTTACACAATCTGACCATGCCAATTCTCAATCTTTAC 

      NC_010296.1     CAGCAAAATAAACTGATTAAAGGGGAAGTGATGTTAGGAGATAAACGGGTAGATTTACACAATCTGACCATGCCAATTCTCAATCTTTAT 

       AM778949.1     CAGCAAAATAAACTGATTAAAGGGGAAGTGATGTTAGGAGATAAACGGGTAGATTTACACAATCTGACCATGCCAATTCTCAATCTTTAC 

    NZ_HE973143.1     CAGCAAAATAAACTGATTAAAGGGGAAGTGATGTTAGGAGATAAACGGGTAGATTTACACAATCTGACCATGCCAATTCTCAATCTTTAC 

    NZ_HE972538.1     CAGCAAAATAAACTGATTAAAGGGGAAGTGATGTTAGGAGATAAACGGGTAGATTTACACAATCTGACTATGCCAATTCTCAATCTTTAC 

    NZ_HE973089.1     CAGCAAAATAAACTGATTAAAGGGGAAGTGATGTTAGGAGATAAACGGGTAGATTTACACAATCTGACTATGCCAATTCTCAATCTTTAT 

NZ_CAIQ01000501.1     CAGCAAAATAAACTGATTAAAGGGGAAGTGATGTTAGGAGATAAACGGGTAGATTTACACAATCTGACCATGCCAATTCTCAATCTTTAT 

    NZ_HE972766.1     CAGCAAAATAAACTGATTAAAGGGGAAGTGATGTTAGGAGATAAACGGGTAGATTTACACAATCTGACCATGCCAATTCTCAATCTTTAT 

    NZ_HE973252.1     CAGCAAAATAAACTGATTAAAGGGGAAGTGATGTTAGGAGATAAACGGGTAGATTTACACAATCTGACTATGCCAATTCTCAATCTTTAT 

    NZ_HE973368.1     CAGCAAAATAAACTGATTAAAGGGGAAGTGATGTTAGGAGATAAACGGGTAGATTTACACAATCTGACTATGCCAATTCTCAATCTTTAT 

    NZ_HE973582.1     CAGCAAAATAAACTGATTAAAGGAGAAGTAATGTTAGGAGATAAACGGGTAGATTTACATAATCTGACCATGCCAATTCTCAATCTTTAT 

    NZ_HE973750.1     CAGCAAAATAAACTGATTAAAGGGGAAGTGATGTTAGGAGATAAACGGGTAGATTTACACAATCTGACTATGCCAATTCTCAATCTTTAT 

NZ_ANKQ01000002.1     CAGCAAAATAAACTGATTAAAGGAGAAGTAATGTTAGGAGATAAACGGGTAGATTTACATAATCTGACTATGCCAATTCTCAATCTTTAC 

NZ_CAIP01000427.1     CAGCAAAATAAACTGATTAAAGGGGAAGTGATGTTAGGAGATAAACGGGTAGATTTACACAATCTGACCATGCCAATTCTCAATCTTTAT 

      NC_019689.1     CAGGAAAATAAACTCATTAAAGGGGAAGTGATGCTCGGCGATAAGCGAGTGGATCTAAAAAACGTGCGGATGCCAGTCTTGAACCTTTAC 

       AY030295.1     CAAGCAAATAAACTTATCAAGGGAGAGGTAACCATCGGAGATAAACAAGTCAATTTAGGTAACATTCGCATGCCTGTACTGAATCTTTAC 

       CP003265.1     CAACAAAATAAATTGATCAAAGGGGAAGTGATGATTGGCGATCGCCTGGTGGATCTGCATAATTTGACCATGCCCATATTGAATTTATAT 

                      CAgcaaAAtAAacTgATtaAaggggAagTgatgaTaGGagataaaCggGTagATtTacacaAtcTgaccATgCCaaTtcTcAAtcTtTAc 
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                      A__e__   D__H__L__V__   P__   S__S__   A__L__      Y__i__      t__   d__Y__         a__F__ 

   ABYK01000001.1     GCCGAGAAAGATCACCTAGTCCCCCCTTCCTCTTCCCTAGCCTTAGAGGAATACATCAGC---AGTGAGGACTACACCGCCAAATCCTTC 

    NZ_CM001632.1     GCCGAGAAAGATCACCTAGTCCCCCCTTCCTCTTCCCTAGCCTTAGAGGAATACATCAGC---AGTGAGGACTACACCGCCAAATCCTTC 

       AP011615.1     GCCGAAAAAGATCACCTAGTCCCCCCTTCCTCTTCCCTCGCACTAGAGGAATACATCAGC---AGTGAAGACTACACCGCCAAATCCTTC 

NZ_ACSK02000570.1     GCCGAAAAAGATCACCTAGTCCCCCCTTCCTCTTCCCTCGCACTAGAGGAATACATCAGC---AGTGAAGACTACACCGCCAAATCCTTC 

NZ_CAFN01000673.1     GCCGAGAAAGATCACCTAGTCCCCCCTTCCTCTTCCCTAGCCTTAGAGGAATACATCAGC---AGTGAGGACTACACCGCCAAATCCTTC 

       AF371369.1     GCTGAGAAAGACCATCTCGTTCCCCCCGCTTCTTCCCTGGCTCTAGCCAAATACATCGAC---ACCCAGGATTACACGGCTAAAGGCTTC 

      NC_011729.1     GCAGAATTAGATCATTTAGTCGATCCGGCTTCGTCTAAAGCCTTAGAAAAATACGTTAAT---ACGACGGATTATATAGTTCAGTCTTTC 

      NC_011884.1     GCTGAGAAAGACCATCTCGTTCCCCCCGCTTCTTCCGTGGCTCTAGCCAAGTACATCGGC---ACCCAGGATTACACGGCTAAAGGCTTC 

      NC_014501.1     GCTGAACAGGATCATTTAGTTGATCCCGTGTCTTCTAAGGCTTTAGAAAAATATGTCAAC---AGCAGTGATTATACGCTTAAGTCTTTC 

NZ_ALVY01000193.1     GCCGAAAAAGATCATCTGGTACCACCGTTATCTTCCTTAGCCCTAGAAAAATATGTGGGT---ACTCAAGATTATACAACGCAATCGTTC 

      NC_019745.1     GCCGAGCAGGATCATTTAGTACCTCCTGCATCTTCGTTAGCGTTAGAGAAGTACGTTGCT---AGCAGCGAGTACACGGTACGTTCTTTT 

NZ_AFJC01000008.1     GCCGAGCAAGATCATCTCGTTGCTCCAGCCTCTTCCTTAGCTCTTAAGACATACATTGCT---AGCGAAGACTACACCTTGCGCTCCTTC 

NZ_AOCI01000120.1     GCAGATAAAGATCACCTTGTGCCTCCCGCTTCTTCCCTCGCTTTAGGGAATTATATCGGT---ACTTCTGACTATACCGCTTGTGCTTTC 

      NC_010296.1     GCGGATAAAGATCACCTTGTCCCTCCCGCTTCTTCCCTCGCTTTAGGGAATTATATCGGT---ACTTCTGACTATACCGCTTGTGCTTTC 

       AM778949.1     GCAGATAAAGATCACCTTGTGCCTCCCGCTTCTTCCCTCGCTTTAGGGAATTATATCGGT---ACTTCTGACTATACCGCTTGTGCTTTC 

    NZ_HE973143.1     GCAGATAAAGATCACCTTGTGCCTCCCGCTTCTTCCCTCGCTTTAGGGAATTATATCGGT---ACTTCTGACTATACCGCTTGTGCTTTC 

    NZ_HE972538.1     GCAGATAAAGATCACCTTGTGCCTCCCGCTTCTTCCCTCGCTTTAGGGAATTATATCGGT---ACTTCTGACTATACCGCTTGTGCTTTC 

    NZ_HE973089.1     GCGGATAAAGATCACCTTGTCCCTCCCGCTTCTTCCCTCGCTTTAGGGAATTATATCGGT---ACTTCTGACTATACCGCTTGTGCTTTC 

NZ_CAIQ01000501.1     GCGGATAAAGATCACCTTGTACCTCCCGCTTCTTCCCTCGCTTTAGGGAATTATATCGGT---ACTTCTGACTATACCGCTTGTGCTTTC 

    NZ_HE972766.1     GCGGATAAAGATCACCTTGTACCTCCCGCTTCTTCCCTCGCTTTAGGGAATTATATCGGT---ACTTCTGACTATACCGCTTGTGCTTTC 

    NZ_HE973252.1     GCGGATAAAGATCACCTTGTACCTCCCGCTTCTTCCCTCGCTTTAGGGAATTATATCGGT---ACTTCTGACTATACCGCTTGTGCCTTC 

    NZ_HE973368.1     GCGGATAAAGATCACCTTGTCCCTCCCGCTTCTTCCCTCGCTTTAGGGAATTATATCGGT---ACTTCTGACTATACCGCTTGTGCTTTC 

    NZ_HE973582.1     GCGGATAAAGATCACCTTGTCCCTCCCGCTTCTTCCCTCGCTTTAGGGAATTATATCGGT---ACTTCTGACTATACCGCTTGTGCTTTC 

    NZ_HE973750.1     GCGGATAAAGATCACCTTGTCCCTCCCGCTTCTTCCCTCGCTTTAGGGAATTATATCGGT---ACTTCTGACTATACCGCTTGTGCTTTC 

NZ_ANKQ01000002.1     GCAGATAAAGATCATCTTGTCCCTCCCGCTTCTTCCCTCGCTTTAGGGAATTATATCGGT---ACTTCTGACTATACCGCTTGTGCTTTC 

NZ_CAIP01000427.1     GCGGATAAAGATCACCTTGTCCCTCCCGCTTCTTCCCTCGCTTTAGGGAATTATATCGGT---ACTTCTGACTATACCGCTTGTGCTTTC 

      NC_019689.1     GCCGAAAAGGATCATCTGGTAGATCCCGAATCTTCTAAAGCACTAGAAAAATACGTGGGA---ACAGACGATTATACGGTGCGCTCCTTC 

       AY030295.1     GCAGAAAAGGATCATTTGGTACCGCCTCGGTCTTCTATCGCCCTGGAAAGGTACATTGGT---ACAACCGATTATACTGTGCGCTCTTTT 

       CP003265.1     GCGGAAAAAGACCACTTGGTGGCCCCTGCTTCTTCCCTAGCTTTGGGGGACTATTTGCCGGAAAACTGTGACTACACCGTCCAATCTTTC 

                      GCgGAtaaaGAtCAccTtGTccctCCcgctTCtTCcctcGCttTagggaatTAtaTcggt---ActtctGAcTAtAccgcttgtgctTTc 
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                      P__V__G__H__I__G__m__Y__V__S__   K__V__Q__      L__P__      I__   d__W__l__                

   ABYK01000001.1     CCTGTAGGTCATATCGGTATGTATGTCAGTGGTAAAGTACAGCGAGACCTACCCCCAACCATTGTTGATTGGTTAAAAGTGCGAGAG--- 

    NZ_CM001632.1     CCTGTAGGTCATATCGGTATGTATGTCAGTGGTAAAGTACAGCGAGACCTACCCCCAACCATTGTTGATTGGTTAAAAGTGCGAGAG--- 

       AP011615.1     CCCGTAGGTCATATCGGTATGTATGTCAGTGGTAAAGTACAGCGAGATTTACCCCCAACCATTGTCGATTGGTTAAAAGTGCGAGAG--- 

NZ_ACSK02000570.1     CCCGTAGGTCATATCGGTATGTATGTCAGTGGTAAAGTACAGCGAGATTTACCCCCAACCATTGTCGATTGGTTAAAAGTGCGAGAG--- 

NZ_CAFN01000673.1     CCTGTAGGTCATATCGGTATGTATGTCAGTGGTAAAGTACAGCGAGACCTACCCCCAACCATTGTTGATTGGTTAAAAGTGCGAGAG--- 

       AF371369.1     CCCGTGGGACACATCGGTATGTACGTTAGCGGCAAGGTGCAACGAGATCTGCCCCCGGTGATTGCGGACTGGCTCAGGAATCGGGAT--- 

      NC_011729.1     CCAGTTGGACATATTGGAATGTATGTCAGTGGAAAGGTACAAGCCACTTTACCGCCGACAATTGTAGAATGGCTCACCGCTAGAGCT--- 

      NC_011884.1     CCGGTAGGACACATCGGTATGTACGTCAGTGGCAAGGTGCAACAAGATCTGCCCCCGGTGATTGCGGACTGGCTCAGGAACCGGGAT--- 

      NC_014501.1     CCGGTGGGACATATCGGAATGTATGTGAGTGGGAAAGTTCAAAAGGATTTACCGCCAACCATTGTAGATTGGCTTAAAGCTAGGTCT--- 

NZ_ALVY01000193.1     CCTGTAGGACATATCGGAATGTATGTCAGTAGTAAGGTACAGCGAGACTTACCACAGATAATCGTAAATTGGATTAAGGCGCGATCGCTA 

      NC_019745.1     CCGGTTGGGCATATTGGTATGTATGTGAGTCGTAAAGTTCAAAAGGATCTACCTGAGGCGATCGCTGATTGGTTGAAG------------ 

NZ_AFJC01000008.1     CCAGTGGGGCACATCGGGATGTACGTCAGCAGTAAAGTGCAGCGAGACCTTCCTCCAACTATTGTCGATTGGCTTAAGATGCGGGCG--- 

NZ_AOCI01000120.1     CCCGTCGGACATATCGGAATGTATGTCAGTGGCAAAGTGCAACGGGATTTACCCCCCGCTATTAGCGATTGGTTGAAAGCAAGAGGT--- 

      NC_010296.1     CCCGTCGGACATATCGGAATGTATGTCAGTGGCAAAGTGCAACGGGATTTACCCCCCGCTATTAGCGATTGGTTGAAAGCAAGAGCT--- 

       AM778949.1     CCCGTCGGACATATCGGAATGTATGTCAGTGGCAAAGTGCAACGGGATTTACCCCCCGCTATTAGCGATTGGTTGAAAGCAAGAGGT--- 

    NZ_HE973143.1     CCGGTCGGACATATCGGAATGTATGTCAGTGGCAAAGTGCAACGGGATTTACCCCCCGCTATTAGCGATTGGTTGAAAGCAAGAGCT--- 

    NZ_HE972538.1     CCGGTCGGACATATCGGAATGTATGTCAGTGGCAAAGTGCAACGGGATTTACCCCCCGCTATTAGCGATTGGTTGAAAGCAAGAGCT--- 

    NZ_HE973089.1     CCCGTCGGACATATCGGAATGTATGTCAGTGGCAAAGTGCAACGGGATTTACCCCCCGCTATTAGCGATTGGTTAAAAGCAAGAGCT--- 

NZ_CAIQ01000501.1     CCCGTCGGACATATCGGAATGTATGTCAGTGGCAAAGTGCAACGGGATTTACCCCCCGCTATTAGCGATTGGTTGAAAGCAAGAGGT--- 

    NZ_HE972766.1     CCGGTCGGACATATCGGAATGTATGTCAGTGGCAAAGTGCAACGGGATTTACCCCCCGCTATTACTGATTGGTTGAAAGCAAGAGCT--- 

    NZ_HE973252.1     CCGGTCGGACATATCGGAATGTATGTCAGTGGCAAAGTGCAACGGGATTTACCCCCCGCTATTACTGATTGGTTAAAAGCAAGAGGT--- 

    NZ_HE973368.1     CCCGTCGGACATATCGGAATGTATGTCAGTGGCAAAGTGCAACGGGATTTACCCCCCGCTATTAGCGATTGGTTGAAAGCAAGAGGT--- 

    NZ_HE973582.1     CCGGTCGGACATATCGGAATGTATGTCAGTGGCAAAGTGCAACGGGATTTACCCCCCGCTATTAGCGATTGGTTGAAAGCAAGAGCT--- 

    NZ_HE973750.1     CCCGTCGGACATATCGGAATGTATGTCAGTGGCAAAGTGCAACGGGATTTACCCCCCGCTATTAGCGATTGGTTGAAAGCAAGAGCT--- 

NZ_ANKQ01000002.1     CCGGTCGGACATATCGGAATGTATGTCAGTGGCAAAGTGCAACGGGATTTACCCCCCGCTATTAGCGATTGGTTGAAAGCAAGAGCT--- 

NZ_CAIP01000427.1     CCCGTCGGACATATCGGAATGTATGTCAGTGGCAAAGTGCAACGGGATTTACCCCCCGCTATTAGCGATTGGTTGAAAGCAAGAGCT--- 

      NC_019689.1     CCAGTCGGTCATATCGGCATGTATGTCAGCGGCAAGGTACAGCGAGATTTGCCGCCTACAATCGTCGATTGGTTAAAGGCACGGATG--- 

       AY030295.1     CCTGTCGGTCACATTGGCATATATGTCAGCAGTAAAGTACAGCGAGATTTACCACCTATAATTGCAAACTGGTTGAATGCGCGCGAA--- 

       CP003265.1     CCCGTGGGTCATATTGGCATGTATGTCAGTGGTAAAGTACAACGGGATCTGCCCCCGGCGATCGCCCATTGGCTATCGGAACGACAG--- 

                      CCcGTcGGaCAtATcGGaATgTAtGTcAGtgGcAAaGTgCAacgggattTaCCccccgctATtggcgAtTGGtTgaaa------------ 
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   ABYK01000001.1     ---TAA 

    NZ_CM001632.1     ---TAA 

       AP011615.1     ---TAA 

NZ_ACSK02000570.1     ---TAA 

NZ_CAFN01000673.1     ---TAA 

       AF371369.1     ---TAA 

      NC_011729.1     ---TAA 

      NC_011884.1     ---TAA 

      NC_014501.1     ---TAA 

NZ_ALVY01000193.1     AATTAA 

      NC_019745.1     ---TAA 

NZ_AFJC01000008.1     ---TAG 

NZ_AOCI01000120.1     ---TAA 

      NC_010296.1     ---TAA 

       AM778949.1     ---TAA 

    NZ_HE973143.1     ---TAA 

    NZ_HE972538.1     ---TAA 

    NZ_HE973089.1     ---TAA 

NZ_CAIQ01000501.1     ---TAA 

    NZ_HE972766.1     ---TAA 

    NZ_HE973252.1     ---TAA 

    NZ_HE973368.1     ---TAA 

    NZ_HE973582.1     ---TAA 

    NZ_HE973750.1     ---TAA 

NZ_ANKQ01000002.1     ---TAA 

NZ_CAIP01000427.1     ---TAA 

      NC_019689.1     ---TGA 

       AY030295.1     ---TAA 

       CP003265.1     ---TGA 

                      ---Taa 
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A.9 Cyanobacteria PHA GC-MS Data 

Appendix Figure 3: GC-MS total ion chromatograms of cells grown under nutrient limiting conditions to induce PHA 

accumulation.  Cells were then acetone dried and subjected to methanolysis. The hydroxyalkanoate methylester 

content was assessed as described in Tan et al. Journal of Bioscience and Bioengineering. 2014;117:379-82. 

Hydroxybutanoate methyl esters highlighted. 
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A.10 Electrophoresis Images of phaC PCR Detection 

Appendix Figure 4: Agarose gel electrophoresis images of cpcA and phaC colony PCR unpurified/raw reactions.  One 

percent standard agarose, 0.5x TBE running buffer, 0.5 µg ml-1 ethidium bromide, Thermo Scientific OWL Easycast 

B1A, 120V, 40 min.  Images are by strain, lanes (from left to right) are as follows for each image: 

1. 5 µl GeneRuler 1kb Plus (Life Technologies, #SM1333) 

2. 10 µl cpcA amplification of whole cells 

3. 10 µl cpcA amplification of 1 µl DMSO/TE clarified lysate 

4. 10 µl cpcA amplification of 5 µl DMSO/TE clarified lysate 

5. 10 µl cpcA amplification of 10 µl DMSO/TE clarified lysate 

6. 10 µl phaC(3.1) amplification of whole cells 

7. 10 µl phaC(3.1) amplification of 1 µl DMSO/TE clarified lysate 

8. 10 µl phaC(3.1) amplification of 5 µl DMSO/TE clarified lysate 

9. 10 µl phaC(3.1) amplification of 10 µl DMSO/TE clarified lysate 

10. EMPTY 

Note: For proper quantitation, exposure times for images were adjusted to just above saturation for the strongest signal.  

For qualitative mass comparisons across strains observe the intensity relative to the standard in each case. 

Arthrospira maxima UTEX LB2342 (CS-328) 

 

Arthrospira platensis UTEX LB2340 
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Microcoleus vaginatus PCC 9802 (FGP-2) 

 

Microcystis aeruginosa NIES-843 

 

Plectonema sp. UTEX 1541 
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Synechococcus elongatus PCC 7942 

 

Synechococcus leopoliensis UTEX 2434 

 

Synechocystis sp. UTEX 2470  
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Synechocystis sp. PCC 6803 

 

 

A.11 PHA Synthase Protein MSA (33 sequences) 

Appendix Figure 5: Multiple sequence alignment of the PHA synthase PhaC subunit of 33 cyanobacteria.  Red color 

denotes conservation between Nostoc punctiforme PCC 73102 and Xenococcus sp. PCC 7305 accessed sequences.  

Green color denotes conservation between all other sequences.  Yellow color depicts conservation between groups.  

Blue bars depict “Cyanobacterial-box” region. 
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A.12 Definition of Variables for In Vitro PHA Polymerization Models 

◦ C – Co-enzyme A 

◦ E – PHA synthase enzyme  

- Assembled PhaC·PhaE complex for Type III synthases 

- Assembled PhaC·PhaR complex for Type IV synthases 

◦ S – Substrate (hydroxyalkyl-coenzyme-A) 

◦ ES – Hydroxyalkyl-PHA synthase 

◦ E2Pn – PHA synthase dimer covalently bound to PHA polymer of length n 

◦ E2Pn
* – Lesser-active state of E2Pn (deactivated or reduced activity) 

◦ […] – Transient quanta-based concentration (e.g., molar at time t) 

◦ […]∅ - Initial concentration (i.e., […](t = 0)) 

A.13 PHA Synthase Dimerization Model Derivation 

This section details the derivation of the dimerization model used to describe lag phase behavior in 

PHA synthase unprimed in vitro polymerization models.  See section A.12 on page 206 for the definition 

of variables. 

A.13 Proposed Mechanism 

E + S → ES + C
2ES ⇌ (ES)2 → E2P2

E2Pn  +  S →  E2Pn+1  +  C
 }    →

E + S 
k1
→ 

1

2
E2P2 + C

  E2Pn  +  S 
k2
→ E2Pn+1  +  C
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A.13 Species Balances 

[E]∅ = [E] + 2[E2Pn]  (Enzyme) 

[S]∅ = [S] + [C] (Substrate) 

[C]∅ =  0 (Byproduct) 

A.13 Defined Dimensionless Variables  

X(t) =  
[S]∅− [S]

[S]∅
 (Fractional Conversion) 

θ(t) =  
[E]∅− [E]

[E]∅
 (Fractional Dimerization) 

A.13 Rate of Measurable Product Formation 

d[C]

dt
=  k1[E][S] + k2[E2Pn][S]       →       

dX

dt
=  (k1[E]∅(1 − θ) + 

k2[E]∅
2

θ) (1 − X) 

A.13 Rate of Dimerization 

d[E2Pn]

dt
=  k1[E][S]     →      

dθ

dt
=  k1[S]∅(1 − θ)(1 − X) 

A.13 Determination of Co-Dependence 

dX

dt
=
dX

dθ

dθ

dt
     →     

dX

dθ
=  
[E]∅
[S]∅

(1 + 
k2
2k1

(
θ

1 − θ
)) 

X(θ) =  
[E]∅
[S]∅

((1 −
k2
2k1

)θ − 
k2
2k1

ln(1 − θ)) 
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A.13 Transient Fractional Dimerization 

dθ

dt
=  k1[S]∅(1 − θ)(1 − X)  ≅  k1[S]∅(1 − θ)    where [E]∅  ≪  [S]∅  

 θ(t)  = 1 − exp[−k1[S]∅t]  

This step of the analysis assumes that the initial enzyme concentration is much less than the initial 

substrate concentration.  This assumption removes dependence of the fractional dimerization on the 

fractional conversion and allows for an analytical solution to this model. See Determination of Co-

Dependence section above for dependence of fractional conversion on fractional dimerization. 

A.13 Fractional Conversion Model 

dX

dt
=  (k1[E]∅(1 − θ(t)) + 

k2[E]∅
2

θ(t)) (1 − X) 

 X(t) = 1 − exp [−
[E]∅
[S]∅

(1 −
k2
2k1

)θ(t) − 
k2[E]∅
2

t]  

A.14 PHA Synthase Activity Reduction Model Derivation 

This section details the derivation of the activity reduction model used to describe biphasic behavior in 

PHA synthase primed in vitro polymerization models.  See section A.12 on page 206 for the definition of 

variables. 

A.14 Proposed Mechanism 

The proposed mechanism assumes PHA synthase complexes have formed initially.  In other words, 

this mechanism assumes the reaction has been completely primed (as was the case in the recorded data) 

using an oligo-CoA derivative prior to the polymerization reaction.  First polymerization occurs (r1), 

followed by an irreversible state change (r2), finally polymerization continues in the new enzymatic state 

(r3). 
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E2Pn + S 
k1
→ E2Pn+1 + C

E2Pn  
k2
→ E2Pn

∗

E2Pn
∗ + S 

k3
→ E2Pn+1

∗ + C

 

A.14 Species Balances 

[E2Pn]∅ = 
[E]∅

2
 =  [E2Pn] + [E2Pn

∗] (Enzyme) 

[S]∅ = [S] + [C] (Substrate) 

A.14 Defined Dimensionless Variables 

X(t) =  
[S]∅− [S]

[S]∅
 (Fractional Conversion) 

θ(t) =  
[E2Pn]∅− [E2Pn]

[E2Pn]∅
   (Fractional Reduction) 

A.14 Fractional Reduction Model 

d[E2Pn
∗]

dt
=  k2[E2Pn]     →      

dθ

dt
=  k2(1 − θ) 

 θ(t)  = 1 − exp[−k2t]  

A.14 Fractional Conversion Model 

d[C]

dt
=  k1[E2Pn][S] + k3[E2Pn

∗][S]       →       
dX

dt
=  [E2Pn]∅(k1(1 − θ) + k3θ)(1 − X) 

 X(t) = 1 − exp [−[E2Pn]∅ (
k1 + k3
k2

θ(t) + k3t)]  

A.15 PHA Synthase Irreversible Deactivation Model Derivation 

This section details the derivation of the irreversible deactivation model used to describe biphasic 

behavior in PHA synthase primed in vitro polymerization models.  See section A.12 on page 206 for the 

definition of variables. 
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A.15 Proposed Mechanism 

The proposed mechanism assumes PHA synthase complexes have formed initially.  In other words, 

this mechanism assumes the reaction has been completely primed (as was the case in the recorded data) 

using an oligo-CoA derivative prior to the polymerization reaction.  This model describes polymerization 

(r1) with simultaneous and irreversible deactivation of the enzyme (r2). 

E2Pn + S 
k1
→ E2Pn+1 + C

E2Pn  
k2
→ E2Pn

∗
 

A.15 Species Balances 

[E2Pn]∅ = 
[E]∅

2
 =  [E2Pn] + [E2Pn

∗] (Enzyme) 

[S]∅ = [S] + [C] (Substrate) 

A.15 Defined Dimensionless Variables 

X(t) =  
[S]∅− [S]

[S]∅
 (Fractional Conversion) 

θ(t) =  
[E2Pn]∅− [E2Pn]

[E2Pn]∅
   (Fractional Deactivation) 

A.15 Fractional Deactivation Model 

d[E2Pn
∗]

dt
=  k2[E2Pn]     →      

dθ

dt
=  k2(1 − θ) 

 θ(t)  = 1 − exp[−k2t]  
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A.15 Fractional Conversion Model 

d[C]

dt
=  k1[E2Pn][S]       →       

dX

dt
=  k1[E2Pn]∅(1 − θ)(1 − X) 

 X(t) = 1 − exp [−
k1[E2Pn]∅

k2
θ(t)]  

A.16 PHA Synthase Reversible Deactivation Model Derivation 

This section details the derivation of the reversible deactivation model used to describe biphasic 

behavior in PHA synthase primed in vitro polymerization models.  See section A.12 on page 206 for the 

definition of variables. 

A.16 Proposed Mechanism 

The proposed mechanism assumes PHA synthase complexes have formed initially.  In other words, 

this mechanism assumes the reaction has been completely primed (as was the case in the recorded data) 

using an oligo-CoA derivative prior to the polymerization reaction.  This model describes polymerization 

(r1), accounting for reversible deactivation of the enzyme (r2). 

E2Pn + S 
k1
→ E2Pn+1 + C

E2Pn  
k2
↔ E2Pn

∗
 

A.16 Species Balances 

[E2Pn]∅ = 
[E]∅

2
 =  [E2Pn] + [E2Pn

∗] (Enzyme) 

[S]∅ = [S] + [C] (Substrate) 

A.16 Defined Dimensionless Variables 

X(t) =  
[S]∅− [S]

[S]∅
 (Fractional Conversion) 

θ(t) =  
[E2Pn]∅− [E2Pn]

[E2Pn]∅
   (Fractional Deactivation) 
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A.16 Fractional Deactivation Model 

d[E2Pn
∗]

dt
=  k2[E2Pn]  −  k−2[E2Pn

∗]     →      
dθ

dt
=  k2(1 − θ) − k−2θ 

 θ(t)  =
k2

k2 + k−2
(1 − exp[−(k2 + k−2)t])  

A.16 Fractional Conversion Model 

d[C]

dt
=  k1[E2Pn][S]       →       

dX

dt
=  k1[E2Pn]∅(1 − θ)(1 − X) 

 X(t) = 1 − exp [−k1[E2Pn]∅ (
θ(t)

k2 + k−2
+ (1 − 

k2
k2 + k−2

) t)] 
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