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DIFFERENTIAL SENSITIVITY TO EMS ALKYLATION 
DURING SPERMATOGENESIS IN THE HONEYBEE

INTRODUCTION

During the  course  of  mutagenic s tu d ie s  with EMS, both in 

Dr. W. R. Lee 's  l a b o ra to ry  a t  Louisiana S t a t e  U n ivers i ty  and in  s im i la r  

s tu d i e s  c a r r i e d  ou t  by o th e r  i n v e s t i g a t o r s ,  the  mutagenic e f f e c t i v e ­

ness o f  EMS has been found to  be dependent upon the  germ c e l l  s tage  

t r e a t e d .  A much higher  mutation f requency has been observed in the 

progeny from germ c e l l s  which were in  l a t e  spermatid s tages  o f  spe r ­

matogenesis during t rea tm en t  than in  those  t r e a t e d  in premeiotic  

s ta g e s .  However, n e i th e r  the  s p e c i f i c  period dur ing which developing 

sperm c e l l s  a r e  s e n s i t i v e  to EMS a l k y l a t i o n  nor the  f a c t o r s  causing 

t h i s  s p e c i f i c i t y  o f  response has been i d e n t i f i e d .

Since  spermatogenesis  in  Drosophila is  cont inuous,  a s in g le  

t rea tm en t  w i l l  a f f e c t  c e l l s  a t  each s ta g e  of  development.  By mating 

males success iv e ly  to  a s e r i e s  o f  v i r g i n  f e m a l e s , i t  i s  p o ss ib le  to 

sample sperm c e l l s  t h a t  were exposed to the  a lk y l a t i n g  agent  in  suc­

c e s s iv e ly  e a r l i e r  s tag e s  of  development. Retained a lkyl groups in 

mature sperm c e l l s  t r a n s f e r r e d  to the female a r e  i d e n t i f i e d  by t h e i r  

rad io n u c l id e  l a b e l .

Using t h i s  sampling procedure,  the  rad io n u c l id e - la b e le d  alkyl  

groups r e t a in e d  from the  e a r l i e s t  s tag e  u n t i l  sperm c e l l  matura t ion  

were measured by Sega e t  a l .  (1972). They have shown t h a t  the  number of
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a lk y la t i o n s  r e t a in e d  u n t i l  sperm c e l l  m atura t ion  i s  c o r r e l a t e d  with 

change 1n mutat ion frequency f o r  c e l l s  t r e a t e d  in success ive ly  e a r l i e r  

germ c e l l  s t a g e s .  This procedure developed f o r  Drosophila g ives  no 

information on the amount o f  i n i t i a l  a l k y l a t i o n  and subsequent removal 

o f  the  alkyl  group in  immature germ c e l l  s t a g e s .  In a d d i t i o n ,  i t  i s  

q u es t ionab le  whether t h i s  procedure can be used to  p r e c i s e ly  d i s t i n g u i s h  

between a lk y la t i o n  o f  the l a t e  spermatid and mature sperm s tages  o f  

spermatogenesis .  Delimit ing more a c c u ra te ly  the  periods dur ing which 

germ c e l l s  a r e  most s e n s i t i v e  to  a lk y l a t i o n  would be a major s tep  toward 

c o r r e l a t i n g  t h i s  s e n s i t i v i t y  with probable s p e c i f i c  metabol ic  v a r i a ­

b i l i t y .

A s tudy o f  d i f f e r e n t i a l  s e n s i t i v i t y  to  a lk y l a t i o n  during 

spermatogenesis  in  the  honeybee was i n i t i a t e d  to determine,  as  accu­

r a t e l y  as  p o s s ib le ,  the s tage  o r  s tages  o f  sperm c e l l  development when 

the  DNA i s  most s e n s i t i v e  to EMS a l k y l a t i o n .  The honeybee, Apis 

m e l l i f e r a , was chosen as  th e  experimental organism f o r  t h i s  study be­

c au se ,  u n l ik e  Drosophi la ,  spermatogenesis  in  the  male honeybee i s  

de te rm ina te .  During pupal development the  germ c e l l s  in  a d rone 's  

t e s t e s  a l l  go through the  success ive  s tages  o f  spermatogenesis in  an 

a lmost  synchronous fash ion  (Hachinohe and Onish i,  1952). At l e a s t  

10 m i l l i o n  c e l l s ,  uniformly in  e i t h e r  prem eio t ic ,  m e io t ic ,  immediately 

pos tm eio t ic ,  e a r ly  spermatid,  l a t e  spermatid ,  maturing spermatozoan, 

o r  mature sperm s tages  can be obtained from a s in g l e  drone honeybee. 

Because o f  t h i s  quasi-synchronous c e l l  d iv i s io n  dur ing spermatogenes is,  

i t  i s  p o s s ib le  to make a d i r e c t  de termina tion  o f  r e l a t i v e  EMS a l k y l a ­

t io n s  per u n i t  o f  DNA during s p e c i f i c  s tages  o f  sperm c e l l  development. 

I t  w i l l  be shown t h a t  DNA from those  honeybee germ c e l l s  which have
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j u s t  completed melosls  but have not y e t  begun sperm t a i l  development 

i s  most s e n s i t i v e  to i n i t i a l  EMS a l k y l a t i o n .  A decrease  1n i n i t i a l  

a lk y l a t i o n  l e v e l s ,  through time a f t e r  i n j e c t i o n ,  occurs  during spermelo- 

genes is  but  does not occur during immediately premeiotic  spermatogenic 

development. Some po ss ib le  c a u sa t iv e  f a c t o r s  f o r  these  d i f f e r e n c e s  

a r e  d iscussed .

Spermatogenesis in  the  honeybee

The male honeybee, o r  drone,  r e q u i re s  an average of  24 days 

from th e  time the egg i s  l a i d  to develop in to  an a d u l t .  During t h i s  

24 day per iod ,  the  drone completes th re e  s tages  o f  development,  a 

3 day egg s ta g e ,  a 6-1 /2  day la rv a l  s t a g e ,  and a 14-1/2  day pupal 

s tag e  (Hachinohe and Onishi,  1952; Snodgrass,  1956). On the 24th day 

the  a d u l t  drone emerges from i t s  c e l l .  The germ c e l l s  in  the t e s t e s  

o f  th e  drone complete spermatogenic development from spermatocyte 

formation through spermeiogenesis during the 14-1/2 day pupal s tage .

I have performed ex tens ive  cy to log ica l  examinations o f  pupal honeybee 

t e s t i c u l a r  t i s s u e s  which were undergoing spermatogenic development. 

T e s t i c u l a r  t i s s u e s  from both "EMS-treated" and "non- t rea ted"  drones 

were s tu d ied .  The following d e s c r ip t i o n  o f  spermatogenesis in  the  

honeybee i s  based on t h i s  study and s im i la r  co r ro b o ra t iv e  s tu d ie s  by 

o th e r  i n v e s t i g a to r s .

On the 7th o r  8 th  day o f  the  pupal s t a g e ,  approximately 17 days 

from egg l ay in g ,  the primary spermatocytes begin m eios ls .  Most o f  the  

spermatocytes  complete meiosls  w i th in  a 10 hour per iod (Hachinohe and 

Onishi,  1952), and by the 9th day o f  the  pupal s tage  a l l  gonial c e l l s
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a re  pos tmeio t ic .  Sperme1ogenes1s proceeds from the  9th to the  14th 

day o f  pupal development. The spermat ids have a spher ica l  appearance 

on the 9th day of  the  pupal s tag e  but  begin to e longa te  on about  the  

10th day. Shor t ,  I n d i s t i n c t  t a i l  f i lam en ts  and a l i g h t l y  s ta in ed  

rec ta n g u la r  head reg ion  i s  c h a r a c t e r i s t i c  of  11-12 day spermatids .

Tail  f i lam en ts  become d i s t i n c t l y  v i s i b l e  by the  13th day,and the  narrow 

elongated head region o f  the now immature spermatozoan i s  somewhat 

he teropycnot ic .  By the time the  a d u l t  drone emerges from i t s  c e l l ,  

spermeiogenesis  i s  complete,and some o f  t h e  sperm c e l l s  have passed 

through the  seminal tubules  to  the  seminal v e s i c l e s  (Rockste in ,  1964; 

Bishop, 1920).

The prem eio t ic ,  m eio t ic  and pos tmeiot ic  per iods  o f  germinal 

c e l l  development co inc ide  with d i s t i n c t  changes in  the ex terna l  

morphology of  the developing drone pupae (Jay ,  1962). The eyes o f  a 

pupa having premeiotic germ c e l l s  a r e  white  with some t ransparency .

At the  beginning of  meiosis  t h i s  t ransparency  i s  l o s t , a n d  the  eyes 

become deeply tu rb id  with white  c o lo r .  Postmeiotic  pupae have white  

eyes with shadows o f  l i g h t  pink,  g r a d u a l ly  changing to  pa le  purp le ,  

even tua l ly  to dark purple  and then  brown (Hachinohe and Onish i ,  1952).

MATERIALS AND METHODS

U n fe r t i l i z e d  eggs o f  the  honeybee develop p a r th en o g en e t ica l ly  

in to  haploid males known as  drones (Mackensen, 1951; Uoyke, 1963). All 

drones used in the p resen t  i n v e s t i g a t io n  were haploid male progeny from 

a non-mutant,  YDGkPa, hybrid queen and were, t h e r e f o r e ,  o f  maternal 

YDGkPa genotype (Harbo, Bishop, Reynolds and Harp, 1973). Using drones
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from a hybrid queen r a t h e r  than drones from an inbred queen r e s u l t s  in 

g r e a t e r  gene t ic  v a r i a b i l i t y  between t e s t  i n d iv id u a l s .  However, because 

o f  the d i f f i c u l t i e s  involved in producing drones from inbred queens 

dur ing the  f a l l  and w in te r  months o f  the  y e a r ,  i t  was necessary to use 

a hybrid queen. The colony from which th ese  drones were obta ined  was 

fed po l len  supplement (Taber,  1973) and mainta ined in  a c o n t ro l l e d  

temperature room to s t im u la te  e f f i c i e n t  brood production.

1. Drone c o l l e c t i o n :

Beginning 24 days p r io r  to  the  day o f  drone pupae i n j e c t i o n ,  

the  queen was confined  to  a 5x12 cm area  (approximately 200 drone c e l l s )  

on a drone comb. Deposi tion of  eggs in to  these  drone c e l l s  was per­

m i t ted  f o r  a 12-15 hour p e r iod ,  a f t e r  which time the queen was removed 

from th e  cage and excluded from the  drone comb. Twelve hours l a t e r  

the  queen was again  confined to ano ther  area on the  drone comb. This 

procedure was continued f o r  11 consecu t ive  days to a s su re  t h a t  drones 

in  the d es i r ed  s tages  o f  development and o f  known age would be a v a i l ­

ab le  f o r  i n j e c t i o n .

The developing drone brood, from the  egg through the  l a rv a l  

s ta g e s ,  was kept w i th in  an area  o f  the  colony from which the  queen 

was excluded.  The day before  i n j e c t i o n ,  drone pupae were t r a n s f e r r e d  

to an i n j e c t io n  board and placed in  a 34°C incuba to r .  Some YDGkPa 

drones emerged w i th in  the  confined area  o f  the  colony.  These drones 

were t r a n s f e r r e d  to small cages  and placed in  a "swarm-box" (Grout,

1966) fo r  ten  days p r io r  to i n j e c t i o n  to  a s su re  t h a t  a l l  sperm had 

migrated to the  seminal v e s i c l e s .
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2. Labeled radiochemicals:

Both t r i t i u m  labe led  EMS and carbon-14 labe led  EMS were used. 

[2- H]EMS with a s p e c i f i c  a c t i v i t y  o f  326 mc/mM was custom-synthes ized
3

by New England Nuclear with  the  H s p e c i f i c a l l y  labe led  a t  C-2 o f  the 

ethyl group. The ac tua l  s p e c i f i c  a c t i v i t y  o f  the  [2-  H]EMS on the day 

o f  i n j e c t i o n  was determined to  be 269 mc/mM by using a decay c o r r e c t io n  

f a c t o r  o f  0.826. The radiochemical and chemical p u r i t y  o f  the  EMS has 

been v e r i f i e d  by Dr. C. S. Aaron using the  procedure o f  Aaron e t  a l .  

(1973).
14

[1-  CjEMS was obta ined  from Schwartz Bioresearch ,  I n c . ,  with a 

s p e c i f i c  a c t i v i t y  o f  4 .8  mc/mM. The [1-^C]EMS s p e c i f i c  a c t i v i t y  had 

prev ious ly  been determined by Sega (1971), using the procedure o f  Gee e t  

a l .  (1973),where the  amount o f  EMS p resen t  was determined by c o l o r i -  

m e t r i c a l l y  measuring i t s  a lk y l a t i n g  a b i l i t y  and r a d i o a c t i v i t y  d e t e r ­

mined using l i q u i d  s c i n t i l l a t i o n  spectrometry .

5 ml o f  anhydrous e th e r  was used to  wash the  labe led  EMS from 

the shipping v ia l  and in to  1 ml o f  Hank's Balanced S a l t .  The e th e r  

was subsequently  removed by evapora t ion .  The r e s u l t a n t  EMS so lu t io n  

was ad jus ted  to neu tra l  pH with 0.1 M NaOH and d i l u t i o n  counts  were 

made to determine m o la r i ty .  D i lu t io n  counts  taken on the  f in a l
3

H-EMS s o lu t io n  in d ica ted  approximately 5.4 mc/ml r a d i o a c t i v i t y  o r  a
140.020 M s o lu t io n .  The m o la r i ty  o f  the  C-EMS s o lu t io n  used was 

0.023 M as ind ica ted  by 0.11 mc/ml r a d i o a c t i v i t y .
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3. In je c t io n  o f  labe led  EMS:

Pupal and a d u l t  drones were in j e c te d  d o r s o - l a t e r a l l y  between 

the f o u r th  and f i f t h  abdominal t e r g i t e s  with 3 m i c r o l i t e r s  o f  a Hank's 

Balanced S a l t  s o lu t io n  con ta in ing  r a d io a c t iv e ly  labe led  ethyl methane- 

s u l fo n a te .  The i n j e c t i o n  needle used cons is ted  o f  a c a p i l l a r y  tube 

which had been drawn to a f in e  po in t  on a p i p e t t e  p u l l e r  and c a l i b r a t e d  

to 3 ±0.1 m i c r o l i t e r s .  A f te r  i n j e c t i o n ,  drone pupae were re tu rned  to  

the 34°C incubator  and a d u l t  drones to the  "swarmbox."

4. Sample c o l l e c t i o n :

T e s t i c u l a r  samples were c o l l e c te d  a t  timed i n t e r v a l s  ind ica ted  

in  Tables I and I I ,  column one. The abdomen o f  each drone pupa was 

separa ted  from th e  thorax using a p a i r  of  #4 Dumont fo rceps  and the  

t e s t i s  extruded from the  a n t e r i o r  end of  th e  abdominal c a v i ty  by p r e s s ­

ing on the  dorsal  su r face  o f  the  abdomen. A small sample of  t h i s  

t i s s u e  was placed on a c lean  s l i d e ,  f ixed  with 50% a c e t i c  a c i d ,  s ta in ed  

with  1% Orcein and squashed under a s i l i c o n iz e d  c o v e r - s l i p .  This s l i d e  

was used to  v e r i f y  the developmental STAGE of  the  germ c e l l s  sampled. 

The remaining t e s t i c u l a r  t i s s u e  was t r a n s f e r r e d  to a p iece  o f  poly­

e thy lene  and immediately f rozen  on dry i c e .  All samples c o l l e c t e d  in
3

the  'H-EMS experiment cons is ted  o f  pooled t e s t e s  from each o f  t h r e e  

d rones;  those  samples c o l l e c t e d  in  the ^C-EMS experiment co n s is ted  

o f  the  t e s t e s  from a s in g l e  drone.

Mature sperm samples were obtained in the H-EMS experiment  by 

e j a c u l a t i n g  a d u l t  drones a t  the timed i n t e r v a l s  in d ica ted  in  Table I 

and c o l l e c t i n g  the  semen in  the g la s s  t i p  o f  an inseminat ion syr inge  

(Harbo, 1973) mounted on the base o f  a Mackensen-Roberts insemination
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appara tus  (Mackensen and Tucker,  1970). The semen was then expel led  

from the t i p  In to  a drop o f  0.01M Tr1s bu f fe r  on a p iece  o f  poly­

e thylene and f rozen  on dry 1ce. As with  the  t e s t i s  samples in  t h i s  

experiment,  the  semen samples co n s is ted  o f  pooled semen from th re e  

drones.

5. I s o l a t i o n  o f  DNA:

(a) Solu t ions  used

Mercaptoethanol—5 ml of  2-mercaptoethanol added to 95 ml o f  

0.1 M Tris-HCl b u f fe r ,  pH 7 .5 ;  kept cold  and in  the  dark.

Sodium p e rc h lo ra te —1.22 g NaClO^ added to  7 ml d i s t i l l e d  

water con ta in ing  50 mg of  sodium laury l  s u l f a t e ;  made f r e s h  

d a i l y  on a per sample b a s i s .

Chloroform-octanol—a 10:1 s o lu t io n .

RNase—10 mg Worthington RNase d isso lved  in  10 ml o f  0.1 X 

Standard Sa l ine  C i t r a t e  ad jus ted  to  pH 5 with 0.1 N HC1; 

heated f o r  10 min in bo i l ing  water bath to  d e s t ro y  DNase 

a c t i v i t y .

Pronase—3 mg pronase per ml of  water ;  pre - incuba ted  f o r  1 

hour.

Phenol—equal volumes o f  0.013 M Tris-HCl b u f f e r ,  pH 7 .5  and 

phenol s a tu r a te d  with 0.013 M Tris-HCl b u f f e r ,  pH 7 .5 .

(b) Procedure

(1) The f rozen sample was removed from the  po lye thylene  and 

immediately t r a n s f e r r e d  to a ground g la s s  homogenizer.

(2) 2 ml of  mercaptoethanol so lu t io n  was added to  the
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homogenizer and the  sample was ground by hand u n t i l  

homogenization was complete.

(3) The homogenizer p e s t l e  was r in sed  with an a d d i t io n a l  1 ml 

o f  mercaptoethanol s o lu t io n  and 30 mg o f  sodium laury l  

s u l f a t e  was added.

(4) A f te r  cover ing the  homogenizer with polye thy lene ,  the 

sample was shaken f o r  1 hour a t  37°C in a Gilson Shaker 

Water Bath.

(5) The homogenate was then t r a n s f e r r e d  to a c e n t r i f u g e  tube 

having a cap. The homogenizer was r in se d  with 7 ml of  

NaClO^ s o lu t io n  and t h i s  r i n s e  was a l so  t r a n s f e r r e d  to the  

c e n t r i fu g e  tube.  A f te r  capping t i g h t l y ,  the c e n t r i f u g e  

tube and con ten ts  were shaken w el l .

(6) 10 ml o f  chloroform-octanol  was added to the  c e n t r i fu g e  

tube.  The tube was again  capped t i g h t l y  and shaken 

v igorous ly  fo r  5 min.

(7) The sample was c en t r i fu g ed  a t  8000 g in  a cooled RC2 

c e n t r i f u g e  f o r  10 min and the  upper aqueous laye r  removed 

and placed in a c lean  30 ml c e n t r i f u g e  tube.

(8) 19 ml o f  cold  ethanol was added to  the  approximately 9 .5  ml

o f  aqueous supernate .and  the  sample was cen t r i fu g ed  a t  

8000 g f o r  30 min to p e l l e t  the  p r e c i p i t a t e .

(9) The supernate  was decanted from the  tube and the  tube was

drained  wel l .

(10) 1 ml of  0.1 X Standard S a l in e  C i t r a t e  was added to the

c e n t r i f u g e  tube and the  tube r o ta t e d  to  d i s s o lv e  p r e c i p i t a t e
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on the  s id e  of  the  tube .

(11) 2.5  mg o f  t r y p s in  and 100 m i c r o l i t e r s  o f  RNase s o lu t io n  

were added. The tube was covered with polyethylene and 

again  incubated f o r  1 hour a t  37°C.

(12) 0 .6  ml o f  pronase was added and the  sample incubated a t  

37°C f o r  a t  l e a s t  3 more hours.

(13) 1 .6  ml o f  phenol was added to  the tube and the  sample 

shaken g e n t ly  by hand f o r  15 min before  c en t r i fu g in g  a t  

8000 g f o r  10 min.

(14) The upper aqueous phase was p ip e t te d  in to  a c lean  30 ml 

c e n t r i f u g e  tube and the  phenol e x t r a c t io n  repea ted .

(15) A f te r  the second phenol e x t r a c t i o n ,  the  upper aqueous phase 

o f  approximate ly  1.7 ml volume was t r a n s f e r r e d  to a c lean  

c e n t r i f u g e  tube and the  s o lu t io n  was washed 6 times with

5 ml volumes o f  anhydrous ethyl e th e r .

(16) The res idua l  e th e r  was blown o f f  with compressed a i r  before 

adding 3.4 ml o f  cold ethanol to  the aqueous sample.

(17) The r e s u l t a n t  DNA p r e c i p i t a t e  was p e l l e t e d  by c e n t r i f u g a ­

t io n  a t  8000 g f o r  30 min.

(18) A f te r  decanting the  superna te ,  the  p e l l e t  was red isso lved  

in  1 ml of  0.1 XStandard S a l in e  C i t r a t e  and f rozen  a t  0°C.

6. Determining r a d i o a c t i v i t y  per  microgram o f  DNA:

Spectrophotometr ic measurements were taken on the 0.1 X Standard 

S a l in e  Citrate-DNA s o lu t io n .  260/280 r a t i o s  f o r  these  samples were 

s im i la r  to  those  observed with commercially prepared DNA in d ic a t in g  

t h a t  most of  the  p ro te in  was being removed using t h i s  e x t r a c t io n
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procedure.  An a d d i t io n a l  check on the  e f f i c i e n c y  o f  t h i s  procedure was

made by Ms. H. Nardin and Dr. C. S. Aaron using whole Drosophila

doubly labe led  with 3H thymidine and 14C a r g in in e .  A f te r  e x t r a c t io n  no 
14s i g n i f i c a n t  C remained in  the f i n a l  s o lu t io n ,  in d ic a t in g  t h a t  most of  

the  p ro te in  was being removed using t h i s  e x t r a c t io n  procedure.

The con cen t ra t io n  o f  DNA in  the  s o lu t io n  was determined by

assuming an absorbency o f  1.00 equal to  50 ug o f  DNA per ml of  so lu t io n

1n the  spec trophotometr ic  c e l l .  Concentrat ion values c a lc u la te d  by 

t h i s  procedure were found to  be eq u iva len t  to  those  obta ined  using the  

method of  Hirschman and Felsenfe ld  (1966).

A measured volume of  the  DNA s o lu t io n  was t r a n s f e r r e d  to a 

s c i n t i l l a t i o n  v i a l .  Maximum volumes f o r  the  f in a l  DNA so lu t io n s  were 

1 . 0 ± 0 . 2  ml. To s ta n d a rd ize  s c i n t i l l a t i o n  co c k ta i l  count ing e f f i ­

c iency ,  a l l  measured volumes o f  DNA s o lu t io n s  counted were between 

0.8 and 1 .0  ml. The e f f e c t  o f  t h i s  v a r i a t i o n  on the  counting e f f  -  

c iency  was determined to  r e s u l t  in  no more than 0.4% o r  0.1% e r r o r  in 

counting e f f i c i e n c y  f o r  the 3H and samples,  r e s p e c t iv e ly .  10 ml 

o f  In s tag e l*  was then added to the s c i n t i l l a t i o n  v i a l ,  the mixture  

shaken and placed in  a l iq u id  s c i n t i l l a t i o n  coun te r .  A f te r  a 24 hour 

cool-down and s t a b i l i z a t i o n  per iod ,  100 minute counts  were accumulated 

and a record s to red  on paper tap e .  Counting e f f i c i e n c i e s  were d e t e r ­

mined by in te rn a l  s ta n d a rd iz a t io n  o r  by using a predetermined e f f i ­

c iency  curve based on in te rn a l  s ta n d a rd iz a t io n  o f  a s e r i e s  o f  s im i l a r l y  

prepared s c i n t i l l a t i o n  c o c k t a i l s .

* I n s t a g e l ,  a product  of  Packard Inst rument Co.,  LaGrange, 111. ,  
i s  an emulsifying s o lu t io n  which provides both the so lven t  and f l u o r  
o f  th e  s c i n t i l l a t i o n  c o c k t a i l .
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RESULTS

The t o t a l  number o f  r a d io a c t iv e  counts accumulated on each DNA 

sample were converted to  counts per minute . Background counts  of  7.3

su b t ra c ted  from the  sample counts  per minute and th e  data recorded in 

column two o f  Tables I and I I .  The t o t a l  micrograms o f  DNA counted in 

each sample were recorded in  column t h r e e .  A lky la t ions  per  nuc leo t ide  

(column f o u r ,  Tables I and I I )  were determined from the counts per 

minute per  microgram o f  DNA as  descr ibed  in  Appendix I .  Mean a l k y l a ­

t io n s  per n u c leo t ide  ±1 s tandard  dev ia t ion*  were c a lc u la te d  f o r  each 

SET o f  samples obta ined  from drones i n j e c t e d  a t  the  same STAGE o f  

spermatogenesis  and d i s s e c te d  a t  the  same number o f  hours a f t e r  i n j e c ­

t i o n  (column f i v e ,  Tables I and I I ) .

To determine in which STAGE(S), i f  any, the  germ c e l l  DNA was 

most su sc e p t ib le  to i n i t i a l  EMS a l k y l a t i o n ,  each o f  the  2, 6 and 10 

hour SETS o f  data  was t e s t e d  f o r  p oss ib le  d i f f e r e n c e s  between STAGES 

in  mean a l k y l a t i o n s  per nu c leo t id e .  S t a t i s t i c a l l y  s i g n i f i c a n t  d i f f e r -
3

ences between STAGES occur in the two hour SETS o f  data  from the  H 

experiment (Figure 3 ) .  Both pos tmeiot ic  STAGES (19 and 22 day) e x h ib i t  

s i g n i f i c a n t l y  higher  mean a lk y la t io n s  per n u c leo t ide  (P < 0 .0 5 )  than the  

premeiotic  STAGE (15 day) .  The immediately pos tmeio t ic  STAGE (19 day) 

i s  a l so  s i g n i f i c a n t l y  higher  ( P < 0 .0 5 )  than the  meio t ic  STAGE (17 day).

3 14and 7.8 counts  per minute f o r  the  H and C d a t a ,  r e s p e c t i v e l y ,  were



No s t a t i s t i c a l l y  s i g n i f i c a n t  d i f f e r e n c e s  between p rem eio t lc ,

immediately pos tmeio t ic  and l a t e  postmeiotic  STAGES were de tec ted  in
3

the  6 and 10 hour SETS of  the  H experiment; however, the immediately 

postmeiot ic  STAGE in  these  SETS tends  to be higher  than the premeiotic 

and l a t e r  postmeiotic  STAGES. Trends in the experiment da ta  a l so  

i n d i c a t e  a h igher  level  of i n i t i a l  a lk y l a t i o n  per nuc leo t id e  in  the 

immediately postmeio tic  STAGE than in  the  l a t e r  pos tmeio t ic  STAGES.

The extreme sample v a r i a t io n  with in  SETS in  t h i s  experiment,  however, 

precludes  i d e n t i f i c a t i o n  of  p o s s ib le  STAGE d i f f e r e n c e s .

The mean a lk y la t i o n s  per n u c leo t ide  f o r  the  mature sperm
3

samples c o l l e c te d  2 hours a f t e r  i n j e c t i o n  o f  a d u l t  drones with  H-EMS 

was a t  l e a s t  two orders  of  magnitude lower than t h a t  f o r  the o th e r  

STAGES sampled a t  2 hours.  In f a c t ,  the number o f  a lk y la t io n s  per 

nu c leo t ide  d e tec ted  in t h i s  mature sperm STAGE i s  a t  l e a s t  two orders  

o f  magnitude lower than the  o th e r  STAGES throughout  the 72 hour sampling 

per iod .  These r e s u l t s  i n d i c a t e  t h a t  l i t t l e  o r  no e th y la t io n  of  sperm 

c e l l  DNA occurs  by t rea tment  of  the  mature sperm STAGE.

A l i n e a r  r eg re s s io n  a n a ly s i s  was performed on the  data  o f  each 

i n j e c t i o n  STAGE to t e s t  fo r  general downward t re nds  through time a f t e r  

i n j e c t i o n .  Values fo r  a lk y l a t i o n s  per n u c leo t ide  o f  each sample r e p r e ­

sented the  Y a x i s  and time a f t e r  i n j e c t i o n  a t  which the  sample was 

taken (SET number) the  X a x i s .  To t e s t  the hypothesis  t h a t  values  fo r  

s lope (b) of  the r eg re s s io n  l i n e  c a lc u la ted  f o r  each STAGE were s t a t i s ­

t i c a l l y  equal to ze ro ,  a t - t e s t  was used in  which
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where Zx2 = EX2 - (ZX)2/ n

Zy2 = ZY2 -  (ZY)2/ n  

Zxy = ZXY -  ZXZY/n

and s 2 = -  ( , » y , ) ,V » 2
y.x  n - 2

No s i g n i f i c a n t  l i n e a r  r e g re s s io n  could be de tec ted  in  those 

i n j e c t i o n  STAGES which were sampled through only 24 hours a f t e r  i n j e c ­

t i o n .  Slopes f o r  the  r e g re s s io n  l i n e s  of  the immediately postmeiotic  

and l a t e  postmeiot ic  STAGES sampled beyond 24 hours were negat ive  and

s i g n i f i c a n t l y  g r e a t e r  in  s lope than zero r e g re s s io n  l i n e .  The s lope  of
3the  r e g re s s io n  l i n e s  in  the H experiment 15 day and mature sperm 

STAGES, which were a l s o  sampled beyond 24 hours a f t e r  i n j e c t i o n ,  were 

not s i g n i f i c a n t l y  d i f f e r e n t  than zero r e g re s s io n  l i n e  s lope .

Regression l i n e s  c a l c u l a t e d  with the  t h e o r e t i c a l  equat ions  

determined by l i n e a r  r e g re s s io n  a n a ly s i s  have been p lo t t e d  f o r  the 

15 day, 19 day,  22 day and the mature sperm STAGES (Figures  4 ,  5,  6 

and 7, r e s p e c t i v e l y ) .  Mean a lk y la t i o n s  per n u c le o t id e  ±2 sd f o r  each 

SET o f  data  used to c a l c u l a t e  the equations  f o r  th e se  reg re s s io n  l i n e s  

were a l so  p lo t t e d .  My d i scu s s io n  o f  STAGE d i f f e r e n c e s  in i n i t i a l  

a lk y l a t i o n  l e v e l s  and in  lo ss  o f  a lk y l a t i o n s  per n u c le o t id e  through 

time a f t e r  i n j e c t i o n  i s  based,  p r im a r i ly ,  upon the  s t a t i s t i c a l l y  s i g ­

n i f i c a n t  d i f f e r e n c e s  dep ic ted  by Figures 5 and 6.

A comparison of  " i n i t i a l "  2 hour and " f i n a l "  72 hour l e v e l s  o f  

a lk y l a t i o n  f o r  those s tages  sampled beyond 24 hours a f t e r  i n j e c t i o n  

was made using a t - t e s t



where X = EX/N
A

Y = EY/Ny

The r e s u l t s  o f  t h i s  t e s t  i n d i c a t e  a s i g n i f i c a n t  decrease  

( P < 0.05) in the i n i t i a l  a lk y l a t i o n  per nuc leo t id e  level  a f t e r  72 hours
O

only f o r  the 19 and 22 day (pos tm eio t ic )  STAGES o f  the H experiment.  

These a r e  the same STAGES in  which l i n e a r  r e g re s s io n  a n a ly s i s  shows a 

general  downward t rend  in  a l k y l a t i o n s  per  n u c leo t id e  from 2 through 72 

hours a f t e r  i n j e c t i o n .

In add i t io n  to  the  above s t a t i s t i c a l  an a ly se s ,  a s tepwise r e ­

g re s s io n  a n a ly s i s  was a l s o  performed in  which l i n e a r ,  quad ra t ic  and 

cubic e f f e c t s  were evaluated  to determine the b es t  equation f o r  pre­

d i c t i n g  the a lk y l a t i o n  per n u c leo t id e  leve l  based on time a f t e r  i n j e c ­

t i o n .  The b es t  r eg re s s io n  equat ion  fo r  each STAGE, as  in d ica ted  by 

t h i s  a n a l y s i s ,  i s  shown in  Table I I I  along with  the  R va lue  in d ica t in g  

degree o f  f i t n e s s .
14Due to the extreme v a r i a b i l i t y  in  the  C experiment and the

3
lack  of  a s u f f i c i e n t  number o f  da ta  po in ts  in  the  H exper iment,  i t  i s

u n l ik e ly  t h a t  the equations der ived  from my data  adequate ly  d esc r ib e

the ac tua l  shape o f  the curves  f o r  any o f  the  STAGES sampled. The 15,

19 and 22 day STAGES o f  the 3H experiment were the  only STAGES having
2s u f f i c i e n t l y  complete data  to  y i e ld  R values  of  0.88 o r  g r e a t e r .  

Equations derived f o r  the  15 and 19 day STAGES were quad ra t ic  and the
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equation der ived f o r  the 22 day STAGE was cub ic .  This in d ic a te s  t h a t  

the general downward trend in a l l o c a t i o n s  per  n u c leo t ide  through time 

fo r  these  STAGES a c t u a l l y  occurs  with n o n - l i n e a r i t y .

DISCUSSION

Sample v a r i a b i l i t y

V ar ia t ions  in  sample counts  per minute per microgram of  DNA 

w ith in  most o f  the  SETS l i s t e d  in  Tables I and I I  preclude id e n t i fy in g  

s i g n i f i c a n t  d i f f e r e n c e s  in  the  l e v e l s  o f  a l k y l a t i o n ,  e i t h e r  between 

i n j e c t i o n  STAGES o f  s p e c i f i c  SETS o r  between SETS o f  a s p e c i f i c  i n j e c ­

t i o n  STAGE. No c o n s i s t e n t  t rend  in  the  v a r i a t i o n  o f  sample groups

rep re se n t in g  a p a r t i c u l a r  STAGE or  time a f t e r  i n j e c t i o n  was found. A
14comparison of the va r iance  among the  C experiment samples with the

3
v ar iance  among the H experiment samples o f  comparable STAGE shows, 

however, t h a t  the var iance  f o r  the  experiment i s  s i g n i f i c a n t l y
3

g r e a t e r  than the var iance  f o r  the  H experiment (F** = 7 .12;  P < 0 .05 ) .  

P a r t  o f  t h i s  d i f f e r e n c e  in  va r iance  was due to the r e l a t i v e l y

low s p e c i f i c  a c t i v i t y  o f  the  EMS and consequent  low counts  ob-
14 +served.  36 samples in  the C experiment had a s tandard dev ia t io n

**An a n a ly s i s  o f  va r iance  f o r  data  with a s in g l e  c r i t e r i o n  o f  
c l a s s i f i c a t i o n  and unequal r e p l i c a t i o n s  was used to  t e s t  the e q u a l i ty  
of  var iances  (Stee l  and T o r r i e ,  1960, p 83 a n d p p l l 2  f f ) .

where r g = gross  counting r a t e ,  tg = gross  count ing t ime,
rb  = background counting r a t e ,  and tb  = background counting time (Wang
and W i l l i s ,  1965).

+
Standard d e v ia t io n  o f  the ne t  sample count ing r a t e  =
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which was equal to  o r  g r e a t e r  than 10% o f  the  counting r a t e .  The 

e l im in a t io n  o f  those  samples from the experiment data  reduces the  

va r ian ce  among the  remaining popula t ion to a leve l  t h a t  i s  not s i g -
3

n i f i c a n t l y  d i f f e r e n t  from the  va r iance  o f  the  H experiment a t  the  1%
14l e v e l ,  a l though the va r iance  o f  the  C experiment remains g r e a t e r  a t

the  5% leve l  (F = 2 .19) .

A g r e a t e r  v a r i a b i l i t y  between the  s in g l e  drone samples wi th in  
14SETS o f  the C experiment than between the th re e  drone pooled samples

3
w ith in  SETS o f  the H experiment would be expected i f  p a r t  o f  the  d i f ­

fe rence s  observed a r e  a l so  due to b io log ica l  v a r i a t i o n .  Such probable 

b io lo g ica l  v a r i a t i o n  may have been accentua ted  by g en e t ic  v a r i a b i l i t y  

w i th in  my t e s t  populat ion o f  drones from a hybrid queen.

I n i t i a l  a l k y l a t i o n

3
The t rend  in  the  data  from the  H experiment during the f i r s t  

10 hours a f t e r  i n j e c t i o n  i s  one o f  higher  EMS a l k y l a t i o n s  per nucleo­

t i d e  in  the immediately postmeiot ic  STAGES o f  spermatogenesis.  This 

t r e n d ,  r e in fo rc e d  by the  d e te c t io n  o f  a s i g n i f i c a n t l y  higher  mean 

a l k y l a t i o n  leve l  f o r  the  19 day STAGE a t  two hours a f t e r  i n j e c t i o n  in 

t h i s  experiment (Figure 3), suggests  t h a t  the  immediately postmeiot ic  

STAGE i s  the most s e n s i t i v e  f o r  a l k y l a t i o n  o f  the  DNA by EMS.

STAGE dependent l e v e l s  of  i n i t i a l  DNA a lk y l a t i o n  by EMS may 

r e s u l t  from several  f a c t o r s  including STAGE d i f f e r e n c e s  involving the  

whole organism, the gonial c e l l  t i s s u e ,  o r  the DNA per se .  EMS is  

a c t i v e l y  metabolized in the mouse a t  s u b s t a n t i a l l y  higher  r a t e s  than 

can be accounted f o r  by i t s  presence in  an aqueous environment
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(Cumming and Walton, 1970). Competition between a lk y la t i o n  by EMS and 

the metabolism o f  EMS may poss ib ly  l i m i t  the  amount of  a lk y l a t i o n  

w i th in  the organism. There a r e  a l so  in d ica t io n s  t h a t  the  mechanism or  

mechanisms r e sp o n s ib le  f o r  a c t i v e  metabolism o f  EMS can be enhanced 

(Cumming and Walton, 1970). I f  STAGE s p e c i f i c  enhancement o f  EMS 

metabolism o ccu rs ,  i t  could c o n t r ib u t e  to response s p e c i f i c i t y .  For 

example, the  r a t e  a t  which EMS is  metabolized in the 15 day old honey­

bee pupae may be g r e a t e r  than w i th in  the 19 day old pupae.

EMS i s  capable  o f  a lk y l a t i n g  DNA in a l l  body t i s s u e s ,  as  well 

as  nu c leo p h i l i c  s i t e s  o th e r  than those o f  the DNA molecule.  STAGE spe­

c i f i c  d i f f e r e n c e s  in competing nuc leophi les  could a l t e r  the e f f i c i e n c y  

o f  EMS a l k y l a t i o n  in gonial  t i s s u e  DNA. This v a r i a t io n  might involve 

the whole organism where a v a i l a b l e  nucleophi les  in the d i f f e r e n t  

organs and t i s s u e s  e f f e c t i v e l y  " a t t r a c t "  EMS away from gonial  t i s s u e s .  

Cumming and Walton (1970) have in v e s t ig a ted  the metabolic f a t e  o f  EMS 

in  the  mouse,and the r e s u l t s  show ex tens ive  anatomical d i s t r i b u t i o n  o f  

EMS a l k y l a t i o n  In t h a t  organism. However, the  r e s u l t s  o f  t h e i r  study 

a l so  show t h a t  r e l a t i v e l y  s u b s ta n t i a l  q u a n t i t i e s  o f  EMS a re  d i s t r i b u t e d  

to the  t e s t i s  r a p id ly  and in  an a c t i v e  form. They suggest  t h a t  r e a c ­

t i v i t y  under co n d i t io n s  p reva len t  in the  t a r g e t  t i s s u e s  i s  a more im­

p o r ta n t  f a c t o r  in  determining gene t ic  damage than  a r e  b a r r i e r s  to d i s ­

t r i b u t i o n  w i th in  the body. Even in  the  absence of  compet i t ion between 

gonial and o th e r  t i s s u e s ,  i t  i s  p o s s ib le  t h a t  age or  STAGE d i f f e re n c e s  

in  the  t o t a l  number of  non-DNA nuc leoph i l ic  s i t e s  with in  the gonial 

t i s s u e  may be a f a c t o r  causing STAGE response s p e c i f i c i t y  with EMS, a t  

l e a s t  a t  low doses.
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The number o f  a lk y l a t i o n s  per n u c leo t id e  on the  DNA from mature 

honeybee sperm c e l l s  in samples taken 2 hours a f t e r  i n j e c t i o n  o f  a d u l t  

drones (mature sperm STAGE) was two o rde rs  o f  magnitude l e s s  than t h a t  

observed on samples o f  DNA from germinal c e l l s  in the  prem eio t ic ,  imme­

d i a t e l y  pos tmeio t ic  o r  spermatid STAGES of  spermatogenes is.  I t  seems 

probable from th e se  r e s u l t s  t h a t  EMS cannot  p en e t r a t e  to DNA in the 

sperm head. STAGE d i f f e r e n c e s  in  e i t h e r  the  membrane boundaries o f  

gonial c e l l s  o r  the  t e r t i a r y  s t r u c t u r e  o f  gonial c e l l  DNA could have 

c o n t r ib u te d  to  such STAGE response  s p e c i f i c i t y  by blocking o r  d i r e c t i n g  

e f f e c t i v e ,  i n i t i a l  EMS-DNA i n t e r a c t i o n .

The presence o f  STAGE s p e c i f i c  nuc leopro te ins  could be ano ther  

f a c t o r  in f luenc ing  c e l l  s tage  response s p e c i f i c i t y  with EMS. A t r a n s i ­

t i o n  from typ ica l  somatic o r  ly s in e  r i c h  h is tones  to  highly a rg in in e  

r i c h  h is tones  i s  known to occur during Drosophila spermatogenesis (Das, 

Kaufmann and Gay, 1964). This change in  the bas ic  nuclear  p ro te in  i s  

o f te n  followed by f u r t h e r  a l t e r a t i o n s  to protamines in  sperm heads o f  

mature sperm in Drosophila (Das, Kaufmann and Gay, 1964) and a v a r i e ty  

o f  o th e r  spec ies  (A l l f r e y ,  Mirsky and Osawa, 1955; Kihlman, 1966).

DNA which has been "n eu t ra l i ze d "  by h is tones  i s  r e a d i ly  a t tacked  

by a lk y l a t i n g  agents  (Hol laender,  1971). I t  i s  conceivable  t h a t  c e l l  

s tag e  response s p e c i f i c i t y  r e s u l t s  from changes in  nucleopro te ins  du r ­

ing spermatogenes is .  Such changes may a l t e r  the  t e r t i a r y  s t r u c t u r e  o f  

DNA or  o therwise  provide p ro te c t io n  to the DNA by blocking n uc leoph i l ic  

a t t a c k .  A cytochemical a n a ly s is  o f  nuclear  h is tones  in  the honeybee 

(Verma, 1972) has ind ica ted  t h a t  honeybee sperm c e l l s  con ta in  h is tones  

s im i la r  to  those o f  the  somatic c e l l s  and do not  show any t r a n s i t i o n s



30

to protamines. Since my da ta  i n d i c a t e  t h a t  DNA from honeybee sperm 

c e l l s  i s  p ro tec ted  from EMS a lk y la t i o n  and in  l i e u  o f  a typ ica l  h is tone  

to protamine conversion in  honeybees, o th e r  changes in  the  nucleo­

p ro te in s  may be r e sp o n s ib le  f o r  providing DNA with p ro te c t io n  from EMS 

a lk y la t i o n .

R e la t ive  d i f f e r e n c e s  through time a f t e r  i n j e c t i o n

As p rev ious ly  mentioned, a r e g re s s io n  s lope  s i g n i f i c a n t l y  d i f ­

f e r e n t  than zero could be d e tec ted  only  in  those i n j e c t i o n  STAGES which 

were sampled through a time per iod g r e a t e r  than 24 hours a f t e r  i n j e c t i o n .

Regression l i n e  s lopes  c a lc u la t e d  f o r  immediately pos tm eio t ic  and l a t e r
3

spermatid STAGES o f  the H experiment were negat ive  and s i g n i f i c a n t l y  

g r e a t e r  than zero r e g re s s io n .  The premeio tic  STAGE sampled through a 

s im i la r  t ime per iod showed no s i g n i f i c a n t  r eg re s s io n  s lope .

These r e s u l t s  i n d i c a t e  t h a t  a lk y l a t e d  groups on the  DNA mole­

cu le  a r e  being l o s t  through time a f t e r  i n i t i a l  a l k y l a t i o n  during the 

spermeiogenic per iod (18-24 days ) .  These lo sse s  may have r e su l t e d  

from enzymatic removal o f  a lk y la t e d  bases by an e x c i s io n - r e p a i r  mecha­

nism, d e s t r u c t io n  o f  the  c e l l  o r  a t  l e a s t  the  DNA o f  the  c e l l  due to 

a lk y l a t i o n  e f f e c t s ,  o r  some combination o f  the  two. No such lo s s  1s 

ev iden t  from the per iods  immediately before  and through m eios is .

The decrease  in a lk y l a t i o n s  per  nuc leo t id e  through 72 hours 

a f t e r  i n j e c t i o n  as observed in  the more h ighly  a lk y la te d  postmeiotic  

STAGES, but  not in  the  l e s s  h ighly  a lk y la t e d  premeiotic  STAGES, may 

in d ic a te  a p o s i t i v e  r e l a t i o n s h i p  between i n i t i a l  a l k y l a t i o n  l ev e l s  

and loss  o f  a lk y la te d  groups through t ime.  Such a r e l a t i o n s h i p  would


