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ABSTRACT

This paper is concerned with nécessary and sufficient
conditlions on ﬁhe presehtation of a group invorderffor the
group to be the fundamental group of a 3-manifold.

 Chapter O 1s entirely dévoted:to background‘matefial
énd intioduction. | |
o Chapter I contains the development of the standard
2-complex associated with the pfesentation of a group as
weil as a proof of the isomorphism of the fundamental group
of the compley and the original group.

Chapter II introduces the ideas of ordering a presen-
tation of a group, the cycles of a presentation and the
components of a presentation. Algorithms are presented
for the oomputation of the number of cycles and the com-
ponents.

~In Chapter III the notion of a vertex manifold of an
ordered presentation is describéd. Further the Euler cha-
racteristic of the vertex maﬁifold_is computed directly from

the ordered presentation.

iv



iﬁ Chapter IV thé stendard 2-complex .of an ordered
presentation is embedded in an oriented 3-dimenSiona1.
CW;complex as a‘spiné.‘ This'3-d1mensiona1’compleX'is '
shown-to haVe at mostaone'nOn-ménifold pdint.‘ The neigh-
‘borhood of this point is_determihed by the. vertex manifold .
~and is a ball if theAveitex manifold is a sphere. |

In Chapter V the orientable conditions are relaxéd
and the results are extended to include non-orlentable |
- manifolds. | |

lThé main result can be summarized as follows: Let G
be a group with a presentation P and an ordering for. P .
Let |R| 'be the number of appearances of all geherators
in' P ; Let M be the number of cycles, |S| - the number
of generators and |Y(P)| the number of components of P .
Then the standard 2-complex associated with the presentatioﬁ
is the spine of a three-manifold if and only if
n+2|s| +2-2|v(P)| - |R| =2 .

If this condition is satisfied, the construction of

the 3-manifold is also presented.



CHAPTER O
INTRODUCTION

This paper is concerned with developing necessary
and sufficient conditions for a~group to be the fundamental
group of a 3-manifold with boundary. These cohditions will
be criteria for a presentation which is chosen for the group.
That is, conditions will be developed sufficient to guarantee
tﬁat a presentation represents a group isomorpbic to the
fundamental group of a 3-manifold. And any fundamental
group of a 3-manifold will have a preseﬁtation satisfying
these conditions. The larger question must remain unanswered
since Stallings in [1] shows it is impossible to find an
algorithm to decide whether a finite presentation of a group
definés a group isomorphic to the fundamental group of a
3-manifold. |

In [ 2] L. Neuwirth attacks this problem from the poiht
of view of conditions on the canonical 2-complex of a pre-

sentation. In this paper he restricts himself to closed



orientable 3-manifolds.

A consecutive nuﬂbering system is employed for each
chapter. That is, II.6 is the sixth numbered itém in
Chapter II regardless of whether it is a tﬁeorem or defi-
nition.

Let EV be the set of all points in Euclidean n-space
wilth distance from the origin less than or equal to one.

Let U” denote the interior of E’ , and st

the
boundary of E? . We now define the notion of CW-complex

as introduced by J. H. C. Whitehead in [3].

Definition 0.1l. A Hausdorff space X is called a CW-complex
i

o0
if X = UX
i=0

where

for each i e {0,1,2,°°°} ;

2) XO is a discrete space; |

3) ¥™\x™1 is a collection of disjoint n—cells: [e?] and
for each A\ there 1s a continuous function such that

f.  maps g homeomorphically onto e’ and

A A
£, (") e ¥
4) X has the weak topology;
5) X is closure finite, that is for each A , £, (s"™1)
.intersects a finite number of cells of dimension

n-1 or less.

Definition 0.2. Suppose A is a set of points. By an




abstract simplicial'n-simplex, c, in A 1is meant a”'
subset {ao,al,---,an] of n+l distinct elémehts of A 3
ags8qs°*ts8, are called vertices of o . By a face of ¢
is meant ahy subset of o . An abstract simpliéial.complex,
K over A , 1s a set of abstraét simplexes in ‘A such
that each simplex in K has all of its faces in K . Gilven
n+l linearly independent points po,pl,pg,“',pn in an
affine space, the geometric n-simplex spanned by
PgsPysPos ** 5P, 1is defined as {Eiio xipil Eigo A; =1 and
0< xi.g 1} . We denote the geometric h-simplex by
(po,pl,---,pn)z. Suppose K is an abstract simplicial
complex over A = {ao,a1,°--,am] . Let L be a redl vector
space having basis {bo,bl,---,bm} . Let a; be the unit
point on the vector bi . By a geometric reaiization of the
abstract simplicial complex K we mean the unionkof all
geometric simplexes (“i(l)’“i(E)""’a'(j)) for which
{al(l)’ai(2)""’a1(3)] is an abstract s1mplex in A . The
face of a geometric simplex corresponds to the abstract

face. In practice the line between abstract and geometrical

complexes blurs without incurring a loss of precision.

Definition 0.3. Let o be the'geometric simpléx spanned

n
by PgsPys°°*sP, . The point 21=O'E%I p; 1is called the
barycenter of ¢ . Each face of ¢ has a barycenter, sincé

each face of ¢ 1is again a simplex. If a and b are



barycehters of simplices a and ‘B respectively, then

we write a < b if a is a face of B . By the bary-
centric subdivision of a simplex ¢ we mean the cOmplex.

| formed by taking all simpléxes whose vertices are.bary-
centers of ¢ oOr its faces with the added condition that
if a and b are vertices of the same simplex then a < b
By the barycentric subdivision of a geometrical complex we
mean the union of the barycentric subdivisions of its com-
pohent simplexes. The process can be iterated j times

and the result is called the jth barycentric subdivision.

Definition 0.4. Tf K and I are geometrical simplicial

complexes and f 1is a continuous function with domain K
and rahgé L , then f 1is called a simplicial map if the
image of each‘vertex is a vertex and if each simplex in K
is mapped bnto a simplex in L in an affine manner. The
map f will be called piecewise linear if there is a sim-
plicial structure on K and L for which f 1is a simpli-

cial map.

Definition 0.5. If K is a geometrical simplicial complex

and I is a subcomplex of K , that is L 1s a complex
and every simplex of L 1is also in K , then by a regular
neighborhood of L in K 1is meant the subcomplex ofl K
consisting of all simplexes of K having at least one face

in L . This subcomplex is denoted by R(L,K) . The symbol



R(L,K,j) represents the regular neighborhood of L in
K when the simplicial structure on XK and L 1is taken
to be the jth barycentric subdivision.

Definition 0.6. Suppose f and g are functions from X

to Y , then f and g are said to be homotopic if there
exists a continuous function H:X x [0,1] » Y such that
H(x,1) = f(x) and H(x,0) = g(x) for each x in X . The
function H is referred to as a homotopy.

A refract of a space X onto a subset A is a con-
tinuous function r:X =+ A where r|A =:idA . A deformation
retract is a retract r that 1s homotopic to the identity
on X and if H 1is the homotopy H(a,t) = a for all a
in A and t 1in [0,1] . A deformation retract r is
called a strong‘deformation retract if the homotopy Hv has
the additional property H(x,t) is not in A, if x is

not in A and t does not equal to 1 .

Definition O0.7. Let K bé a subset of some geometrical

simplicial complex and v a point in the complex. By the
cone over K with cone point v , denoted.by C(K,v), is
meant {tv + (1-t)p|t € [0,1] , p € K and if p,q € K,

p # g then



CHAPTER I
PRELIMINARIES

There is a classical method of constructing a
2-dimensional CW-complex from a presentation of a group so
'~ that the fundamental group of the resulting complex is
isomorphic to the original group. This method of construé—
tion will be presented in this chapter along with a proof of
the fact that such an isomorphism is obtained.

By saying that P 1is a presentation of a group G we

will mean that P 1s a triple (9,S,R) ; where ¢ 1s a
homomorphism from a free group F onto G , S 1is a set
of generators for F , R 1is a subset of F with the
property that(the kernel of @ is the smallest normal sub-
group of F containing R . Each member of ‘R 1is called
a relator, and each relator is expressed as a product of
members of S or their inverses.

Let G be a group presented by o = (w,S,R) . A

typical relator r € R can be expressed as

6



e(l) e(2) ... e(lr
gaglg gaé?; | ga“r

gigi; is called an appearance and |r| 1s the number of

; where each ga(i)es,e(i) =+1 where

appearances in the relator r . For each r € R, ‘let Dr
be a distinct copy of the planar disc with center at the

origin and radius 1 . Let hr:[0,|r|] + Bd D, be defined
erix

by hr(x) —e 171 .

Lemma 1.1l. For each t € Bd Dr there is a unique
k € {0,1,2,«¢+,|r| - 1} and a unique 4 € [O,1) such that

h, (k+ts) = t .

Proof. The restriction of h, to [O0,|r|) is one-to-one
and onto the bdundary of D, . Also, each x ¢ [O,|f|) can

~ be written uniquely as x = k+4 when k € {0,1,2,~-#,|r| -1}
and £ e [0,1) .O

For each é € S, let Cg:[O,l] + B2 be a simple
closed curve such that if he S, h £ g,

Co((0:1)) N € ((0,1)) = § and €, (0) = ¢ (0) - That s to
say we take a loop for each generator so that the intersection
of any two is a single point, say v . Let

B = U{Cg([O,l])lg € S} . We are now ready to construct the

CW-complex K(P) associated with the presentation P .

Definition 1.2. The CW-complex associlated with the presen-

tation P = (¢,%,R) denoted by K(P) , is the complex with



B as & l-skeleton and cells {Dr|r € R} attached to B in
the following manner. ILet t € Bd'Dr » then there exists
& unique integer k 'and_a unique 4 € [0,1) such that

h,.(k+4) = t . We define the attaching map A_:Bd D, + B by

Cga(k+1)(‘) if e(k+l) =1

hrlt) = Caq(ict1) (1-4) 1f e(kHl) = -1 .

The remainder of this chapter will be concerned with
showing that I(X(P)) 1s isomorphic to G . The major tools
used in demonstrating this fact are the theorem of Seifert
and Van Kampen, a generalization of this theorem and an |
assoclilated lemma. Proofs of all three are presented by
W. S. Massey in [4] and only the statements are included

here.

Theorem 1.3. (Seifert and Van Kampen [4]). Suppose U and

V are arcwise connected open subsets of X such that
X=UUVand UN YV 1is non-empty and arcwise connected.
Suppose all fundamental groups mentioned have base point
Xge UNV, and the homomorphisms ®; and ¥; » i=1,2,3
are induced by inclusion maps. Let H be any group and
'Pl ’ P2 and P3 be three homomorphisms such that the fol-

lowing diagram is commutative:



Then there exlsts & unique homomorphism o such that the

following three diagrams are commutative:

m(x) mx) mi(x)

¥y ¥o

nw)” o (V) "o
H | H 3 g

Theorem 1.4. (Massey [4]). Let X be an arcwise connected

Q
=

S
.l

topological space and x5 € X . Let {UT‘T € T) be a covering

of X by arcwise connected open sets such that for all 7 e T ,

. .
Xg € U¢ . Assume that for any two indices T ,7 € T there

exists an index T e T such that U AU ,, =U . If
T T

Uy 0, , let ¢XM:H(UX) + H(Uu) denote the homomorph%sm
induced by inclusion. Let WT:H(UT) -+ II(X) be the homomor-
phism induced by inclusion. Let H ©be any group and let
PT:H(UT) + H be any collection of homomorphisms such that if

Ux c Uu » the following diagram commutes:



10

nu, )

A

\\\‘13L§;
H
Pan
P
v

l'l(Uu

Then there exists a unique homomorphism o:II(X) + H such

that for any T € T the following diagram is commutative:

n(x)

Moreover this universal mapping condition characterizes M(X)
ﬁp’to,a unique isomorphism.
The associated lemma can be stated briefly if we assume

the notation and conditions of theorem 1.4.

Lemma 1.5. (Massey [4]1). I(X) 1is generated by
UfWT(H(UT))IT e T} .

Unless otherwise indicated, all fundamental groups will
have base point v , the vertex of K(P) . For the proof
of the;main theorem we will need a loop in (Int D.) U {h,.(0)]
which is homotopic to h, . Let h_:[0,|r|] + D, be defined

by



11

‘ _1
R

Y, (x) -

Lemma 1.6. H_ 1is homotopic to hf in Dr\{O} .

Proof. Define H:[0,|r|] x [0,1] » D, as follows;
H(x,t) = (1-t)h(x) + t B (x) .

To complete the proof we show that if x e (0,|r|) and

t >0, then O < |H(x,t)| <1 . This will guarantee that
the homotopy takes place in D\{0} , as well as to ascertain
that 1im Br c Int Dr U {hr(O)] .

| |4 - 5l
|H(x,t)| = (1-t)h_(x) + t( §-+\——T;T-__ ) (x)] =
- | s
‘hr(x') (1-t) +t(%+\x—-|-—-$—‘—l\) =
1
1 - 1 t + t ,f_:;gtil
2 x|
. y _ 1
If xe (O,|r]) and t> 0, then 0K ‘.T'r| <-%
| r

1
x - =|r ~
2l <-zt+ G-etl<1,

1
and 1l - t + ¢
2 ‘ =]

X = r
and 1—%—t+t|——z|-—|—|‘_>_|l~%t|>0. This
r



completes the proof. O

- Additional notation is required in the proofs of the
following theorems. The inclusion map from
(Int D) U {h,(0)} into KX(P) is denoted by L. « Let
P, be the image of the origin under L. . Let D; be
defined as

D, = (im £ \{p,}) U R(v,K(P),2) .

- The fact that R(v,K(P),2) is contractible to v 1is used

in the following proof.' Let ar:[0,|r|] -+ K(P) be defined
as ar(t)’= Areh (t) . We use the standard notation for the
element of N(K(P)) which contains the loop a, , that is
[ar] . We first consider the main theorem of the chapter in

the case where the relating set R 1is finite.

Theorem 1.7. If the number of relators in P is finite,

then TM(K(P)) 1is isomorphic to the group presented by P .

Proof. We will show that M(K(P)) can be presented with
generating set {[Cs]ls € S} and {[ar]|r € R} as the set
relators. The proof is by induction on the number of
relators, and we begin the induction at zero. Suppose R =
Then IIK(P)) = II(B) which is generated by {[CS]|s € S} .

Suppose R = {r} . Consider the following commutative

diagram induced by inclusion:

12

of

g .



1'I(K(P)\{p -

n(o,, )/ \‘n(K(P))

-

S~

I(Int D)

Now, II(K(P)\{p,.}) is a free group generated by {[cglls € 8},

because B 1is a deformation retract of K(P)\{p,] and Ti(B)

is a free group generated by {[CS]|s € S} . To complete

this step we must show wl is an epimorphism and ker wl =

where N is the smallest normal subgroup containing {[ar]] .
Applying Lemma 1.5 we have that N(K(P)) is generated by

im y; U im §, . Since D, is contractible, im ¥y, is the

13

identity and M(K(P)) dis generated by im §; . Therefore 1y,

is an epimorphism. »

Next, we show that [a,] € ker ¢, . By Lemma 1.6, E}
is homotopic to hr . Therefore o, s which equals Loh.,
is homotopic to g oh, . Therefore, ®,([h_ 1) = [a,] . Using
the commutativity of the diagram we have wl([ar]) =
Wl(wlfﬁr]) = We(mzfﬁr]) =1 . So Ncker {§; . Next we show
ker §; € N . ' ‘

Consider M(K(P)\{p,})/N . We have the following commu-
tative diagram in which ® is the natural homomorphism and

PO and wz are trivial.
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- (K(P)\{p,.})
/ 0 \
\n(int D) /

By the Seifert - Van Kampen Theorem, we have the following

n(K(P)\(p })/N

_n(D')

diagram which commutes;

M(x(P)\(p,)) — > T(K(P))

(K(P)\ (p,} )/

We have ker *1 < ker Pl = N . And this concludes the case

in which R has a single relator.

Suppose R # ¢ . We make the following inductive
assumptions. Choose r € R . Let y:M(B) - H(K(P)\Int Df)'
be induced by inclusion,then assume ¢ is an epimorphism
and the kernel of ¢ 1s the smallest normal subgroup of

N(B) containing ({[a,]l|r ¢ R\[r'] } . 1Inclusion maps induce

the following commutative diagram;
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- n(x(P)\ (p,.})
o _ ¥
| / Yo \,
n(s) ‘ - TI(K(P))
092 ' ‘¢2

(RPN, |r € R\ (')

First note that K(P)\Int D;, is a deformation retract
of K(P)\[prJ - Therefore @; is an epimorphism and ker ¢
is the smallest normal subgroup of II(B) containing
[[ar]|r € R\[r'] } « Also K(P)\ U {Int Drlr € R\[r'} }
is a deformation retract of K(P)\{p,|r e R\{r )}, and
we have @2 is an epimorphism and ker P5 is the smallest
normal subgroup of II(B) containing [[aﬁ]] .

Since M(X(P)) is generated by im §; U im ¢, and
P and 9, are epimorphisms, we have that im ¢O generates
I(X(P)) or equivalently, ¥, is an epimofphism. Let N
be the smallest normal subgroup of II(B) containing
[[ar]lr € R\{r'J } fhen N < ker @, U ker ¢, . Therefore
N < ker wb . To complete the proof we must show ker wo c N

Consider the following diagram where Po is the natural
homomoiphism and P, exists, 1 ='1,2 , because

1

ker @, c ker Pgy ;3



O MEE)N\RL) -
n(B) — R > N(B)/N

qoé\

o N
M(K(P))\{p,.|r € R\{r }} :

Applying‘the Seifert - Van Kampen Theorem, we get the}

following commﬁtative.diagram:

o .
N(B) — - TI(K(P))

T(B)/N

Therefore ker WO c ker Po = N . This completes the proof
of the theorem when R 1is finite.

We are now in position to prove the theorem in the

generglized situation which can be stated as follows:

Theorem 1.8. The group presented by P is isomorphic to
n(x(e)) .

Proof. We need to show that II(K(P)) is the homomorphic
image of M(B) where the kernel of the homomorphism is the
" smallest normal subgroup generated by {[ar]|r € R} . Let

A = {pr|r € R} . For each subset T of A such that A\T

16



is finite, define Up = K(P)\T . Then {UT|A\T is finite]}
forms an open cover of K(P) consisting of arcwise con-
nected sets. Further if A\T énd A\T' are finite, then
so 1s A\IUT' and we have Up\Upi = Uppr . In other

words this cover satisfies the hypothesis of the generalized
Selfert - Van Kampen Theorem.

We note that Up has for a deformation retract the
complex ’K(P'), where P' is some presentation with a finite
number of relators. Therefore HG%P) is the homomorphic
image of M(B) , say op:I(B) » N(U;) and ker op 1s the
smallest normal subgroﬁp of II(B) containing
[[ar]lpr.e A\T} . If ﬁ cU.1 , inelusions induce the

T T
homomorphisms in the following commutative diagram:

I(u
W)
® n(x(p))
TT
1
H(UTI ) T
Since B 1s a deformation retract of UA we need
only show WA:HCHX)-* N(K(P)) is an epimorphism and
ker ¢A is the smallest normal subgroup of Hﬁ&x) con-
taining {[ar]|r € R} . We can conclude that wA is an
epimorphism since M(K(P)) 1is generated by
U{im WT\A\T is finite} and ¥p ¢ 1s an epimorphism for
>

17



18

each T . Further {[aa]\r € R} c ker ¢A since each
[a,] 1ies in ker ¢y for some T . Finally, by applying
Theorem 1.4 we see that N , the smallest normal subgroup

of TI(U containing {[ar]lr € R} , contains ker by

a)
This completes the proof. O



CHAPTER II

Three ideas are introduced and developed in this
chapter; %he ordering of a presentation of a gfoup, the
cycles of an ordered presentation and the components of
a presentation. The development of these ideas include
algdrithms for counting both the cycles and the componénts.
FPirst, the orderinglof a presentation will be defined.

We will be concerned with only finite presentations,
that is a presentation P = (¢,3,R) where both the gene-
rating set S and the set of relators R are finite. We
will use the symbol |S| to denote the number of generators.
If X e § we will let 1X| be the number of appearahces
of X 1in all the relaﬁors, and |R| be the number of

appearances of all generators in R .

Definition 2.1. By an ordering of a generator X 1is meant

a one~to-one function from {1,2,3,---,|X|] to the set of

appearances of X .

Definition 2.2. By an ordering of a presentation

1Y



P =(¢,S,R) is meant a collection of orderings containing

one for each X € S .

In'practice we indicate the appearande of X wﬁich

is the image of J by the subscript J . For example,

-1.,-1

Y ",XXY} , then

1

consider the presentation P = {X,Y|XYX

-1
¥y

‘one ordering for P can be represented as [X,Y]X1Y2X4'
X2X3¥-} .
With each presentation we associate a set of points
A(P) , consisting of four points for each appearance of
each generator in S , that is A(P) consists of 4iR|
points. If the generator X has a j-th appearance, we name
four of the points of A(P) Xpj-1 ¢ ¥pj » Eéj_l and Eéj .
Suppose some member of the relators, say r , has in
it the i-th appearance of X and the j-th appearance of
Y . 'Then if thé appearance of X 1is physically next to
and preceding the appearance of Y , or, if the appearance
of X 1is the last in r while the appearance of Y is
the first, then we will say Xi is followed by Yj . If
the appearances have negative eiponents then these will be
included, and we could write for example Xil is followed
by Ygl . We make the additional agreement that if an
appearance of X is followed by an appearance of X they

both have the same exponent. We can now define a relation

T on A(P) which will depend on the ordering chosen for P .

20
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Definition 2.3. Let P be a presentation with an ordering.
Let T be a subset of A(P) x A(P) defined as follows:

If r €e R and the i-th appearance of X 1s followed by the
J-th appearance of Y in r then two pairs of A(P) x A(P)

are selected for T according to the following scheme:

Table 2.4. .
(1) if X; 1is followed by Yy then (%54,¥p4) »

(Xp3.129p5-1) € T

(2) if X, is followed by Ygl

then

i (%p15¥05-1) >

(XZi’yEJ) e T

-1 ) ST
(3) if X;© 1s followed by Yj then (xgi’yzj-l) ’

(¥p1-129p5) € T

(&) ir x7t -l

is followed by YJ then (Egi,ygj) ,
(¥p5-12¥p5.1) ¢ T -

!
We now define a relation T on A(P) which does not

depend on the ordering.

Definition 2.5. For each X € S and for each

ie {1,2,3,-++, |X|) the pairs (xg,xg) R (Eé,ié) > (xy5%e)

v(iﬁ’EB)’.'.’(x2|xl’xl) and (Eé‘xl,fl) are included in T .

Definition 2.6. A member of T and a member of T  are.

sald to form a link if one of the entries of the pair from

!
T 1is identical to one of the entries of the pair from T .
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Two members, a and b, of TuT' are’'said to be

finitely linked if there is a subset [al,az,-e-,an} of

]
T such that a =a, a, = b and a; and ay

a link for each 1 = 1,2,3,+¢+,n-1 .

1 form

By way of an example, if (Eé,ié) is in T and
(y2;§3)' is in T , then they form a link. If (x2,x3)
. |
isin T and (y3,x2) is in T , then these two form

a link as well.

Lemma 2.7. Each member bf Tg forms a link with eXactly

two members of T .

Proof. It is clear from the definitions of T and T’

that a member of A(P) appears in exactly one member of

T ‘ahd exactly one member of T' . Therefore if (a,b) 1is

‘a member of Tl we know that a appears in exactly one

pair of T and this pair forms a link with (a,b) . Simi-
larly the pair of T having b as an entry forms a link.
with (a,b) . PFurther these two pairs in T must be distinct
owing to the fact that two appearances of X , one following

the other, cannot have different exponents. O

Lemma 2.8, Each member of T forms a link with exactly

two members of T .

-

Proof. If (a,b) 1is a member of T then there 15 a unique
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member of T which contains a and a unique member of
T which contains b . For the same reasons as in the
proof of Lemma 2.7, these two pairs from T are necessarily

distinct., O

Lemma 2.9. The relation of finitely linked is an equi-

valence relatlon on TUT' .

Proof. By Lemmas 2.7 and 2.8 each member of TUT ~ forms
a link with another mémber of TUT' and therefore is
finite.ly‘_linked to itself by a chair consisting of three
pairs. |

The relation 1s immediately seen to be symmetric by
revising the order of the chain. And transitivity follows

by taking the union of two chains, where the last member

of one is identical to the first of the other. [

Definition 2.10. By a cycle of an ordered presentation we

will mean an equivalence class of the relation finitely

linked on TUT .

Theorem 2.11. Suppose Z 1s a cycle, then there is an

ordering on the members of Z , say Z = {al,az,---,an]

such' that ay and 841 form a link for each 1i=1,2,°*°*°,n-1

and a

n and «al form a link.

Proof. The set A(P) 1is finite, and so, each cycle of



TUT' is finite. Let a; € T Dbe any element of a cycle

Z . By Lemma 2.8, a; forms a link with exactly two pairs
in T' . Choose one of these pairs for ay . ~Applying
Lemmav2.7_we have that ay forms a link with exactly two
pairs in T . One of these 1is 8y ~and we name the other
a3 ..vIterated a finite number of times this process exhausts

the members of Z . PFurther the last pair, a, s must form

a link with a, . O

In any applicaﬁions of theAreéults of the latter chap-~
ters, it will be necessary to count the cycles of an ordered
presentation. Therefore it will be advantageous to have a
- process of counting, which can be programmed. One approaéh
is to adapt a technique used in Graph Theory to count the
components of a gfaph¢ This technique is based on a matrix

which we now define.

Let W be a simplicial complex with n vertices,

Vl’vz,o.o’v

n - Let D= (di,j) be the n by n matrix

"defined by setting di 3 =vl if <Vi’vj> is a simplex in
. 2
o .

il

W , otherwise set d. .
i,

k

Lemma 2,12. If D™ = (b; .), then b, 3 is the number of

i,J ’
paths in W with initial point ny and terminal point nJ

which crosses k-1 , not necessarily distinct, vertices.

Proof. The argument is by induction on k , and the case



when k=1 1is just a rephrasing of the definition of D .
Assume that the theorem is true for all values of k <q .
Let di,j s bi,j and Ci,j be the entries in the 1fth row
and the j-th column of D, DY and p3™1  yespectively.

Then we have by s = D dy 4 - But Cy is the

i,t

-

number of paths from vy to Vj crossing q-1 vertices.
Since any must end in some simplex <Vt’vj> s that is for
some t , and since we sum over all possible values of t ,

- the proof is completed. [J

Lemma 2.13. If vy and vj are vertices of a simplicial

complex W , then vy and VJ belong to the same component
of W if and only if the entry'in the i-th row and j~-th

column of 'zkgik DX  is non-zero.

Proof. The statement that wv; and vy belong to the same
component of W 1is equivalent to saying that there is a
‘path in W‘ from vy . to vj crossing n-2 or fewer ver-
tices. This in tﬁrn is equivalent to the fact that the i-th

row and j-th column of some p& s 0 < k< n-1 1is non-zero.

25

Since all entries of Dk are positive, the proof is complete. O

The number of possible paths is of no consequence in
these applications and a certain elegance is attained by

suppressing this number.

Definition 2.14. Let W Dbe a simplicial complex with
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vertices Vv,,Vy,++,v, . Let D be the matrix defined
above.'_By the connectivity.matrix of W we will mean a
matrix obtained from 2&:% Dk by replacing each non-zero

entry witha 1 .

Theorem 2.15. Let W be a simplicial complex. The number

of components of W -equals the rank of the connectivity

matrix.

Proof. If vy and vy are vertices in the same component
of W the i-th row and the j-th row will have the same
entries. PFurther if the i-th and jéth rows each have a

1 for their k-th entry then they are identical,. Therefore
not only all the rows assocliated with vertices of the same
component identical, but by choosing a row from each component

a set of independent rows is obtained. It follows that

the rank of the matrix is the size of this set. O

Definition 2.16. We associate with the ordered presenta-

tion P the l-dimensional abstract simplicial complex,
called the cycle complex, having each member of TuT' as
vertices and containing a l-simplex <a,b> 1if and only if

a and b form a link.

Theorem 2.17. Let W Dbe the cycle complex of an ordered

presentation P . Then the number of cycles of P equals

the row rank of the connectivity matrix of W .
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Proof. The theorem follows immediately from the fact that
there is'a one-to-one correspondence between the éycles of

P and the components of W . O

The final concept to be introduced in this chapter is

that of components of a presentation.

Definition 2.18. Let P be a presentation. Let Y(P) be

the abstract simplicial complex, called the component complex
of P, containing two vertices x and X for each generator
X of P . The l-simplexes of Y(P) are characterized by

the following:

Table 2.19.

(1) If X; is followed by Y, then <x,y> € y(P) .

(2) If X; 1is followed by Ygl ‘then <x,y> € y(P) .
(3) If x;l ls followed by Y, then <X,7> € v(P) .
-(4) If X7t is followed by Y:_j'l then <X,y> € y(P) .

The component complex y(P) 1is independent of the
ordering on P . The number of components of y(P) will

be of interest and is denoted by |Y(D)| .

Theorem 2.20. The rank of the connectivity matrix of v (P)

equals |Y(P)| .
Proof. This fact follows immediately from Theorem 2.15.

This allows the number |y(P)| to be found by a

a sinple program tor any application.



CHAPTER III

In this chépter we introduce the idea of the Qertex
manifold, V , of an ordered presentation. The complex '
V 1is then shown to be an orientable 2-manifold. We then
show how to compute the Euler characteristic of V
directly from an ordered presentation. .In this construc-
tion we rely heavily on the notation, maps and techniques
of the construction of K(P) in Chapter T.

We begin with a group G which has a finite presen-
tation P = (¢,S,R) . For each relator r e R, let E,
be a copy of the unit ball in three spaces with center at
the origin. By assuming that the planér disc Dr s used
in the construction of K(P) , 1lies in the plane Z = O,
we have Dr regularly embedded in E. s and we can use
the attaching'map Ar to attach _Er to the bouquet of
loops B . Recalling that Bd(Dr) was oriented and is an

equatorial simple closed curve on the Bd(Er) » Wwe name the

closure of each of the disc components of Bd(Er)\Bd(Dr)

28
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by Dr and Dr s the former reserved for the component
on the right when proceeding in a positive'direction around

Bd(D,) .

Definition 3.1. The CW-Complex aséociated with P, de-

noted by, J(P) is the complex with B as a l-skeleton and

cells '{Erlr € R} attached to B by the attaching maps A,

It should be noted that not only is K(P) embedded in
J(P) , but J(P) has K(P) as a strong deformation re-

tract. We therefore have the following lemma.
Lemma 3.2. w(J(P)) 1s isomorphic to G .

Proof. w(J(P)) is isomorphic to w(K(P)) since K(P) 1is
a deformation retract -of J(P) , w(K(P)) 1is isomorphic to

G by Theorem 1.8.

We are interested in when J(P) can be embedded in
a 3-manifold, and this question leads us to consider the
boundary of a regular neighborhood of the vertex v of
J(P) . Let U= R(v,J(P),2) . By the boundary of U we
will mean the union of the 2-cells in U which miss v . We
denote this set by Bd(U) . The intersection of Bd(U) and
the bouquet of loops B consists of 2}S| points, that 1is

two for each X € S . The first of these points encountered

while proceeding from v 1in a positive direction around

29
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c, will be denoted by X while the second will be called

x . Let W, = R(x,Bd(U),4) and W_ = R(T,34(0).x) .

Two appearances in a presentation are said to form an
adjacent pair if the first member of the pair is followed
by the second member of the pair.in some reiator r . Here
again it is understood that the last member of a relator is
followed'by the first. For example, if XlYEXEl is a rela-
tor then it yields three adjacent pairs; (Xl’YE) , (Y2,X§l)
and (Xél,Xl) . The Bd(U) can be regarded as a collection
of 2-cells each regularly embedded in some Er'. There is
one such 2-cell for each adjacent pair. If (Xl:Yg) is an
adjacent pair, we name the associated 2-cell D(Xy,Y5) .

At first glance the natural association between an adjacent
palr and a disc may not be clear but it is an intrinsic part
of the construction. The disc D(Xi,Yg) intersects the
bouquet in two points, one in C, and one in Cy~. Which
of the points x, X, ¥y or ¥ belong to D(Xl’YQ) is de-
termined by the exponents of the two appearances. In this
case .D(Xl’YQ) N B = {x,7)] .. If the appearance of X had
a negative exponent then X would be in the intersection.
If the second appearance of the pailr, Y , had an exponent
of -1 then Yy would be replaced by y .

For each X € S , Wk and W_ each consists of a
collection of 2-cells. The 2-ce11§ forming W, all have the

point x as their single common point, and the 2-cells of



W_ all contain X . For any two appéarancés s 'and{ t,
X o : : .
the 2-cell D(s,t) intersects U{W_U W_|X e 8} in two
, | = _
2-cells depending upon s and t . For example,
D(Xl,Yz).ﬂ W, and D(X;,Y,) N w§_ are both 2-cells.
Further, Bd(D(Xy,Y,)) N W, 1is a l-cell with x 1in the

interior, and Bd(D(X;,Y5)) N W_ is a 1-cell with ¥ in

: y o _
its interior. The naming of the endpoints of these two l-cells

is crucial to the construction of the vertex.manifold. The
naming scheme is based on the‘relation J of Chapter&II‘,

and is presented in the following table:

Table 3.3.
(1) D(Xys¥y) Xp3.1 ¥p3 Yoy Ypj-1
-1

(8) D(Xy,¥37) Xpy1 ¥py Ypj-1 Yoy
-1 — S — -

(3) D(X37»Y4) Xp3.1 Xp3 Ypj.1 Yoj
I, S, R -

(B) DX75Y57) Fpyly Xpy Yoy Yoia1

Line (1) means that in naming the points on the boundary of
D(Xi’Yj) , arbitrarily assign x,; and x5y 7 to the end-
points of the l-cell W_ N Bd(D(Xi,Yj)) and then proceeding
around the boundary of D(Xi’Yj) beginning at x5 _q. |
passing through first x then Xy the first endpoint of

w_n Bd(D(Xi,Yj)) is named ‘izj and the second is called
v _
Yoj-1 °
Once the naming of these points is.aCcomplished, the
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next step in the construction of the vertex manifold can

be taken. For each generator X and each

je {1,2,3,°°°,|X|} attach a disc D(x,j) to W, such

that D(x,J) N W, - 1s a l-cell in the boundary of D(x,J)
and 1is thé union of two l-cells in the boundary of Wk 5

one having endpoints Xpy.1 and x and the second with
endpoints x and x2J mod(2|X|) . Similarly for each

je {1,2,3,--+,|X|) attach a disc D(X,j) to W_ along

a l-cell in the boundary of D(X,J) }which is the ﬁnion of two
l-cells in the boundary of W% one with endpoints ‘525—1
and X and the other having endpoints X and .EEJ mod(2|x|)'

Let W =1, U [UD(x,3)]d € (1,2,3,++-,|X|)] and let

W_ = W_ U [U{D(X,j)‘J € 132:3:“':|Xl]] .
X X

Lemma 3.4. W& and W_ are 2-cells.
: X

Proof. Each 2-cell D(x,j) 1s attached to W% in a one

-

to one fashion; and the only point of ‘W% which lies in

more than one of the cells of D(x,j) 1is the point x .

It follows that W&\{x] is a collection of punctured discs.
But for each i€ {0,1,2,:--,2|X|-2]} , x; and x;., are

in the same component of W&\{x] , since if 1 is even they
lie in the same disc D(x,i/2) , and if 1 1is odd they

lie in the same component of Wk\{x) . - Therefore W%\{x]

consists of a single component, that is W%\{x] is a singlé
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punctured disc. This shows that W_ 1s a disc. A

similar argumeht holds for 'W_ which completes the proof. O
X

Let V =3Ba(U) u (W UT_|Xx e s .
. X

Lemma'3.5. V' is a 2-manifold with boundary.

££gg£ The closure of Bd(U)\fW U'W | |X € S} 1is a collec-
tion of disjoint 2-cells. Each of these 2-cells can be
written as the closure of D(s,t)\{W_u W;|X € 3} for some
adjacent pair of appearances (s,t) f We denote this 2-cell
by ‘D'(s,t) . Then v' can be written as the union of
cells of three types: W& , W% and D'(s,t) . Further if
any two of these cells intersect they do so on a l-cell con-

tained in their boundary. It follows that v' is a 2-mani-
fold with boundary. O

. : !
Since V is a 2-manifold with boundary, Bd(V ) is

a collection of simple closed curves. Further

{yly =%, or y=%,,xe 8 and je {0,1,2,--+,2|x|-1)

J J
is contained in Bd(V') s and Bd(V')\Q is a

collectlon of open arcs.

The closure of each of these arcs is a l-cell and will be
referred to as <s,t> where s and t are the endpoints.

For each X € S and Jj e {1,2,3,°-*,|X|]

<x23"1’x23 mod(2\X|)> and &gj_l’xgj mod(2|X|)> are

34
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l-cells in Bd(V') . In fact there is a naturéi ohe-to—one
correspondence between the pairs of L ,‘rdefined in Chapter
II , and these l-cells.

The other half of the seﬁ of i-cells comprising Bd(V')
lie in the boundary of the cells of the form b'(s,t) .
Table 3.3 reébrds the naming scheme for the points on the
boundary of D(s,t) and therefore on the boundary of
D'(s,t) . The l-cells from Bd(V') 1ying.in Di(s,t) can
be read from Table 3.3. If line (1) is used for D'(S,t) s
then <x21,§éj> and <§2j—l’x23-l> are l-cells in Bd(V ) .
The important ldea is that there is a natural one-to-one
correspondence.between the pairs in the relation J -of
Chapter II and the l-cells of Bd(V') which lie in cells
of the form D'(s,t) .

Lemma 3.6. For each cycle of an ordered. presentation there
1s a simple closed curve in Bd(V') such that, (s,t) is
"8 member of the cycle if and only if <s,t> 1is contained

in the simple closed curve.

Proof. Choose a cycle from the ordered presentation. Tor
each pair (s,t) in the cycle there is a l-cell <s,t>

which is the closure of one of the components of

Bd (V' NQ .

Further, if two members, (s,t) and (s',t') of a cycle



form a link then the corresponding two l-cells <s,t> and
<s',t'> have a common endpoint. The converse of this
statement is also true, and thus sufficient to prove the

lemma. 0O

Theorem 3.7. The manifold V'  is orientable.

Proof. We have previously represented V' as the union of
cells of three types: W& » W_. and D'(s,t) . The points
xl,xz,"-,xg‘x| all 1iexin the order of their sub-
scripts around ,Bd(W%) > and the order will be used to
orient Bd(W%) . The positive direction around the boundary
will be in ascending order of subscripts. Similarly Bd(W_)
contains the points 'El?fe”"’§é|x| in order, and tﬁe
positive direction will be taken in the order of descending
subscripts.

Each disc of type D'(s,t) is contiguous to two disc
of the remaining types, and each of these will induce an
orientation on the boundary of D'(s,t) . We must show that
these two orientations agree. Fach of the four cases that
are listed in Table 3.3 must be considered. Reference to
Figure 1 will be helpful for the remainder of the proof.

The four points Xpi_19 Xois y2j s and y2j-l lie in

this order on the boundary D'(Xi,Yj) and therefore can be

used to describe direction. Since X53 Dbrecedes XQi—l‘ in

the positive direction on Bd(W;), Xoq.1 will precede Xog
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in thefpositive direction around the boundary of D'(Xi,YJ) P
and therefore on this boundary 'ﬁej' precedes 7§23_1 .

This dictates that in a positive direction about BA(W ) ,
'?23_1 precedes '§23 which agrees with the ofientatiog |
esteﬁlished on Bd(Wy) previously.

The other three cases listed in Table 3.3 will be con-
sidered briefly. The orientation on Bd(ﬁ;) imposes the
positivevdirection to the boundary of D'(Xi,YEl) in the
of the points xX55_ 1, Xpys Yo3-1 and yéj . This agrees
with the orientation which is imposed by the orientation on
Bd(W&) . The boundary of D'(Xil,YJ) intersects the two
cells W_ and W_ . Now Bd(W_) is positive from X,y q
to 'ﬁai f impartzng a negativexsense to the direction thru
‘iQi-l’ Eéi,'ygj_l and '?23 . This in turn says that
the direction from '?23_1 thru §éj on Bdﬂ%;) is positive.
On the boundary of D'(Xgl,Ygl) consider the direction
%y 15 Fpis Ypj» Ypjy - Both the orientation on Bd('Wi_)
and the orientation on Bd(Wy) induce a negative sense to
this direction. This shows that the orientation placed on
W;. and W_ for the various generators X in S can be
extended t§ all of V , which completes the proof. O

Before defining the vertex manifold the number of cem—
ponents of V must be considered. Note that the graph Y(P) ,
introduced by Definition 2.12, can be embedded in Vl SO thaf

for each X € S , the vertices x and X of the graph are



identical to the vertices x and X of V , .and if
<a,b> is a 1-simplexkin the graph, then <a,b> 1is regu-
larly embedded in D(a,b) . It follows that V' contains
Y(P) as a strong deformation retract and the number of
components of V' is the same as the number of - components
of y(P) , that is |y (P)| . |

The vertéx manifold can now be constructed. Each com-

ponent has a boundary consisting of one or more simple closed
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curves. Choose one simple closed curve C,, 1=1,2,3,+, |Y(P)],

from the boundary of each component., ILet @ be a 2~sphere
from which the interiors of |y (P)| disjoint 2-cells Dy »
i=1,2,3;"‘,\Y(P)| , have been removed. Choose an orien-
tation for V' and an orientation for Q .. A hew complex
is obtained from the disjoint union of § and v' by iden-
tifying Ci homeomorphlcally to the Bd(Di) in a manner so
that the positive direction about C; agrees with the posi-
tive direction about Bd(Di) . If Bd(V') contains more
simple closed curves than Q as boundary éomponents, then
attach a 2-cell to each of those remaining homeomorphically
along the boundary of the 2-cell. The resulting complex is

called V , the vertex manifold.

Theorem 3.8. The vertex manifold V 1is a connected, closen

orientable 2-manifold.

Proof. The vertex manifold V was constructed from che
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disjoint union of several 2-manifolds with'boﬁndary v' s
Q@ and the collection of 2-cells. The intersection of any
two of these 2-manifolds is empty or the union of disjoint
simple closed curves lying in the boundary of each. Further
if. p 1s any point lying on one of these simple closed
curves, then p belongs to exactly two of the manifolds.
Therefore ©p has a neighborhood whose closure can be written
as the union of two closed discs intersecting on a l-cell
and 1s therefore a closed disc containing p Ain the interior.
It follows that V 1is a 2-manifold.

Clearly V 1is closed sinée if any boundary component
of V remained after the identification of V' and Q ,
a 2-cell was attached to it. Since the positive direction

of C and of Bd(Di) both agreed under the identification,

i
it follows that V 1is orientable. To see that V 1is con-
nected we note that @ 1is connected and that each component

of V is attached to Q . This completes the proof. O

To determine the identity of V we compute (V) ,

the Euler characteristic of V .

Theorem 3.9. Let lR\ be the number of appearances in R

of all the generators, 1N the number of cycles, |S| the
number of generators and |Y(P)| the number of components

of V . Then x(V) is given by
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X(V) =n + 2|s| +2 - 2|y(P)| - |R| .

Proof. First we must choose a cell decomposition for V .

Notice that Bd(U) 1is embedded in V as a strong deforma-
tion retract of V  and VABd(U) 1is topologically equi-
valent to V\V' . Now Bd(U) consists of 2|S| vertices,
2|R| 1-cells and |R| 2-cells. And V\Bd(U) consists of

a sphere with |Y(P)| holes, t§ which must be added ly (P)|-1
1-cells to produce a cell decomposition, and the n - |Y(P)|
cells which are the counterparts of the cells added to
components of Bd(V') remaining after the identification of
V and Q . 7This is a cell structure of V with

|IR| + 21 +n - |Y(P)| 2-cells, 2|R| + |Y(P)|-1 1-cells and

2|s| vertices. Therefore x(V) =n + 2|s| + 2 - 2{Y(P)|-|R| . O

The construction of V includes a number of options
which cduses speculation concerning the uniqueness of V .
The followlng theorem shows that the options do‘not effect

the net product.

Theorem 3.10. The vertex manifold V of an ordered presen-

tation P is uniquely determined by P up to a homeomorphism.

Proof. Since V 1is a closed, orientable 2-manifold, then
V 1is characterized by its Euler characteristic. Further the
X(V) is computable from the presentation. This completes

the proof. [



CHAPTER IV

In this chapter the complex J(P) 1is embedded in a
‘three-dimensional CW-Complex M such that w(M) 1is pre-
4sented by P . It is shown that M contains at most one
non-manifold point, and necessary and sufficient conditions
are found on P for M to be a 3-manifold. |

The regular neighborhood U of the vertex v in J(P)
can be expfessed as c(Bd(U),v) , the cone over Bd(U) with
cone-point v . Let 1:Bd(U) + V be the inclusion map.

Then i can be extended to 1i:c(Bd(U),v) + c¢(V,v) . Let
M' = J(P) U c(V,v) , where s e J(P) is identified to
i(s) € c(V,v) .
Let C, = c1(C,\U) , that is C, is a l-cell contained

in the generating loop Cx with endpoints in V and interior

missing U .

Lemma 4.1l. FEach point in M'\((v] U {U¥|X € 8}) 1is con-
tained in a neighborhood whose closure is'homeomorphic to

a 3-ball.‘

L1



gzggﬁ. Three types of points must be examined. Any point
in e(V,v)\V U {v]} 1s a manifold point’since c(V,vI\V U {v}
is topologically equivalent to V x (0,1) . The second type
is a point p such that p € M'\{v] U {C%|X € S} and such
that p ¢ c(V,v) . Then p 1lies in some E_, , either in
the interior or on the boundary. If p is on the boundary
of Er there is a neighborhood about p which misses the |
equator and V , and therefore p 1is a manifold point. 1In
other instance, with p in the interior, p 1is clearly a
manifold point.

The third type point is one which lies in V , say q .

Yo

If there is a neighborhood of q which lies entirely in c(V,v),

then there is a neighborhood of q whose closure is a 3-ball.
Suppose each neighborhood of g intersects Er . Then q 1s
not a member of B , and we can choose a neighbprhood of q,
say O , such that ¢1(0\c¢(V,v)) 1is a 3-ball, Onc(V,v) is

a 3-ball and the intersection of these two 1s a 2-cell in V .

Therefore c¢1(0) 1is a ball, which completes the proof. O

The next step 1s to attach 3-cells, in the form of
wedges, along each E# so that the points of E& will no
longer be non-manifold points. Let T = c¢(V,v)\V , then
R(E;,M,h)\r can be expressed as (Wk x [0,11) U W; uw_,

X
where W, x {0} =W «W,  and W, x {1)] =W_cW_. It

X

X
has been established in Lemma 3.4 that W& and W_ are
X
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both 2-cells, Let Dx be a 2-cell, and let hX:Wx - Dx
be a homeomorphism. Define

h (W, x [0,1]) U W, U W% + D, x [0,1] by 'Ex(s,t) =
(hx(s),t) . Let M=M U (o, x [0,1]]X € S} where

(s;t) € W, x [0,1] U W, UMW, is identified to h (s,t) .

Lemma 4.2. Each point of M\{v] has a neighborhood whose

closure is a 3-ball.

Proof. We can express M as the union of two sets as fol-

lows: M = CL(M\ U (D, x [0,1]|Xx e SJU (y{D, x [0,1]|X e S}) . A
point pecl(M\ U {D, x [0,1]|X € S} , except v possibly,
has a neighborhood whose closure is a 3-ball. The same is

true for each of the points in Dx X {0,1] for each X € 5 .
The intersection of these two sets is a collection of 2-mani-
folds with boundary. There is a manifold for each generaﬁor
X . If X e S, CL(M\ U {Dy x [0,11|Y € s} N D, x [0,1] 1is

actually W& U'W_ with several 2-cells in the form of strips

X .

attaching 'Bd(Wx) to Bd(W_) . Therefore each point of the
X

intersection has a neighborhood, say O , whose closure

can be written as the union of two closed 3-balls, one in
c1(u{Dy X [0,11|Y € 8)}) and one in CI1(M\ U [Dy x [0,11]|Y € S}
whose intersection is a 2-cell. Therefore the closure of O

is a 3-ball. O

Lemma 4.3. The complex M. contains K(P) as a deformation
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retract.

Proof. Each D x [0,1] has W, x [0,1] UW UW_ as

&)

a deformation retract, and since D_ x [0,1] N M'
Wy, x [0,1] U'W# U'Wf , we hav: that M is a deformation
retract of M . The regular néighborhood of v has been
written as c(V,v) , and V\BA(U) 1is a collection of open
discs, one of which may be punctured several times. There-
fore M, which can be written as J(P) U c(V\Bd(U),v)
collapses to J(P) . Now K(P) is a deformation retract
of J(P) , and therefore K(P) 1is a deformation retract

of M which completes the proof. U
The following lemma follows immediately.

Lemma 4.4. w(M) is isomorphic to the group presented by

P .

Proof. In Chapter I we established that w(XK(P)) 1is iso-
morphic to the group presented by P . TFurther, K(P) is
a deformation retract of M , and therefore w(K(P)) is

isomorphic to m(M) . This completes the proof. O

By the boundary of M , denoted by Bd(M) , we will
mean all points of M\{v} which do not have a neighborhood
topologically equivalent to Euclidean 3-space. There are

!
three sources for points in Bd(M) . The first is VAV .
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The second is a.bit more difficult to describe. Recall
' .
that D; and Dr' are the two hemispheres of the boundary
i 1 t ’
of the three cell E, . Let F, = Cl(Dr\ U {Dx x [0,1]|X e S})
Tt 11 . t
and F, = C1(D, \ U [DX x [0,11|X € S}) . Then F_ and

F . are discs which 1lie in Bd(M) . Finally,
C1(Bd(W, )\Bd(W,)) is a collection of |X| 1-cells with

endpoints x,; and X(21+l)mod(|X|)+l for 1=1,2,3,-+,|X| .
Each such l-cell will be identified as <X2i’x(2i+l)mod(|x|)+1>
depending on its endpoints. Then the third source of

boundary points are the 2-cells <x2i’x(2i+1)mod(|X|)+l> x [0,1].
For convenience we suppress mod(|X|)+1 and write simply

2i+1 , except for emphasis,
Lemma 4.5. The boundary of M 4is a closed 2-manifold.

Proof. There is only one potential non-manifold point in M ,
namely v . Therefore C1(M\R(v,M,6)) 1is a 3-manifold with
boundary. Further each component of Bd(M) is a component
of the boundary of CL(M\R(v,M,6)) . Since each component

of the boundary of a 3-manifold is a closed 2-manifold, we

have that Bd(M) is a closed 2-manifold. U

We recall that the symbols |R| , m and |Y(P)]|
respectively represent the total number of appearances in
all of the relations of R , the number of cycles of the

ordered presentation and the number of components of the graph



Y(P) . The symbol B 1is introduced to denote the number

of relations in R .

Lemma 4.6. The Euler Characteristic of the boundary of M

is given by x(BA(M)) =n - 2|Y(P)| - |R| + 2 + 28 .

Proof. 1In the proof of Theorem 3.9 a cell deéomposition of
WV'  with (=Y (P)] + 1) 2-cells in emplbyed. We use the
same one here. Also there are two 2-cells in Bd(M) for
each relator for a total of 28 . Finally there are !R}
2-cells of the form <xpi,X5i47> X [0,1] . This exhausts

the 2-cells in 'Bd(M) s and therefore,one cell decomposition
of Bd(M) has a total of (n ~ |v(P)| + 1 + |R| + 2B)
2-cells. .

| Recalling that Bd(V') is a collection of simple closed

cufves, we can exclude Bd(Vr) from the computation. This
excludes all of the vertices and all but |Y(P)|-1 l-cells

in Q and the 2|R| 1l-cells of the form ({x,; 1} x [0,1]

and [xgi} x [0,1] . Therefore ¥(Bd(M)) =

n- Y(®)] + |R| + 28 - (|y(P)| -1 +2|R|) =n - 2|y (P)| +
2 - |r| +28 .0 |

In order to identify Bd(M) , it is necessary to de-
termine how many components it has. First, consider the

closure of BA(M\V) , which is the union of discs of the

' - ‘ .
form Fr s Fr and <x21,x(21+1)> X [O,l]‘. The various
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cells of the types F; and F;'» are pairwise disjoint.

But each disc of the form <x21,x(21+1)> x [0,1] 1is

attached, along the l-cells {xj } x [0,1] , to cells of

the type F; or F;' . This provides a connecting link

between certain of these pairs. Which of these 2-cells are

so connected is readable from the ordered presentation in

the following manner. If Xi is an appearance in r and

X(i+l)mod(|X|)+1 is an appearance in s then F; and F;'

w?ll be co?nected by the disc <x21’x(2i+1)mod(‘x|)+i>x [0,11.

Fr and FS will be similarly joined if Xi is an

appearance in r and Xzi+1)mod(|xl)+l is an appearance

in s . F;' and F;' will be joined by if X;l is an

appearance in r and X(i+1)mod(|X])+l is an appearance in
- Ml

s . Finally, Fr and FS will be connected in this fashion

whenever Xil and Xz%+1)mod(|X|)+l are in r and s

respectively.

Once again a matrix can be employed to determine the
number of components 6f a complex. Let H be the 28 .by
2 matrix with each row and column associated with one of
the discs of the types F; or F;t . Each entry is zero
except where the row and column represent discs which are

connected by some <x21,x21+1> X [0,1] , in which case the

entry is one.

Lemma 4.7. The number of components of C1(Bd(M)\V) is
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528 -1pk

the row rank of the adjusted matrix kel ] .

Proof, This is an immediate consequence of Theorem 2.10. O

This does not determine the components of Bd(M) as
yet, due to the facts that one component of C1(Bd(M)\V)
may not be attached to @ or may be attached to Q along
several simple closed curves. That is Bd(M)\(Bd(M) n V)
consists of Q , a 2-sphere with \Y(P)\ holes, and a col-
lection of 2-cells. Then of course each component of
Cl(Bd(M)\V) which is attached to @Q reduces the number
of component of Bd(M) by one from the number of components
of Cl(Bd(M)\V) . To compute the number of compohents of
Bd(M) , it must be determined by inspection if the numbers
of components of C1(Bd(M)\V) is reduced by Yy(P) or
fewer by attaching @ . ' ' |

Since (Bd(M)) and the number of components of Bd(M)
are both computable, all that is required to determine the
identity of Bd(M) is to determine whether or not Bd (M)

is orientable. First the orientability of M 1is considered.
Lemma 4.8. The complex M is orientable.

Proof. Theorem 3.8 includes the fact that V 1is orientable.

Further an orientation on V induces an orientation on
c(V,v) , M can be realized from c(V,v) by attaching

|| handles to c(V,v) , one for each generator, in an
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orientation preserving manner, and then attaching 8
cells so that each intersects c(V,v) and the handles along

an annulus. It follows that M 1s orientable. (J

Lemma 4.9. The boundary of an orientable 3-manifold with

boundary is orientable.

Proof. Let N Dbe an orientable 3-manifold with boundary.
If Bd(N) is not orientable then Bd(N) contains a copy
of a Moibus band. Since N is orientable, R(C,N,c) a
torus. But this is a contradiction since

R(C,Bd(N),0) < Bd(R(C,N,0)) and the boundary of a torus

cannot contain a Moebius band. O

Lemma 4.10, Bd(M) is orientable.

.22993' Let. Tﬁ = R(v,M,0) . Then Cl(M\rf) is an
orientable 3-manifold. Further Bd(M) 1is a cémponent of
BA(CL(MT )) . Lemma 4.9 implies that BA(CL(M\T'')) is
orientable, and therefore Bd(M) being a component is

orientable. I

At this point, beginning with an ordered presentation
P, we can construct an orientable three dimensional cell
complex M such that m(M) is presented by P, and v
is the only possible non-manifold point of M . Further,

necessary and sufficient conditions for M to be a 3-mani-
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fold with boundary can now be given.

Theorem 4.11. M 1is a 3-manifold with boundary if and

only if X(V) = 2, that is V is a sphere.

Proof. Tt is clear that if V 1is a 2-sphere then since
c(V,v) is a 3-ball, M is a manifold. On the other

hand, if M is a manifold, then V is a manifold with
spine v , that is U collapses”"to v . Then all regular
neighborhood of v must be a ball, it follows that U is

a ball aﬁd V is a 2-sphere. (O

An interesting, but known, fact can be stated as a
corollary. If BAd(M) 1is also a 2-sphere then be adding
a ball to M a 3-manifold with empty boundary is obtained
with fundamental group presented by P . From the equation
X(V) = x(Bd(M)) the fact that |S| = B can be inferred.
Which says that the number of generators must equal the
number of relators if a closed manifold is to be produced

in this manner.



CHAPTER V

We now have necessary and sufficient conditions on an
ordered presentation, P , for the complex, K(P) , to be the
spine of an orientable 3-manifold with boundary. In this
chapter we relax the orientability condition. The tech-
niques and construction of Chapters II, III and IV éré
modified so that the resulting manifold may he non-orient-
able. We begin by introducing the notion of an oriented pre-

sentation.

Definition 5.1. By an orienting function for an ordéred

presentation, P = (9,S,R) , we mean a function 0:5 =+ {1,-1]} .
By an oriented ordered presentation P , we mean an ordered

presentation P and an orienting function.

If P is an oriented ordered presentation then the CW~-com-
plex associated with P , K(P) , is not altered from that defined
in Definition 1.2. Similarly the CW-complex J(P) as given in De-

finition 3.1 remains unchanged. In fact, the first change in the
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construction occurs in the naming scheme fdr four points
on Bd(D(s,t)) were s and t are an adjacent pair.

The naming scheme for the orientable case was presented
in Table 3.3. We now list the changes which need to be

made to introduce non-orientability.

Table 5.2.
! — ) —
(1°) DX;,Yy) Xpyy Xpy Vo1 Yoy
-1 _ _ — _
'y, -1 =1y =— —
(47) DY) Xoyy Xpy Ypya1 Yoy

Table 5.2 presents the‘adjustments to Table 3.3. There
are corresponding adjustments to Table 2.4 which can be

stated as follows:
Table 5.3.

(1) if X; 1is-followed by Yy then (x21-1;§2j)’

(%p1:905.1) € T -

. -1 . —

(3) if X;© is followed by Yj then Cizi-l’yzj-l)’
(¥p159p5) € T -
) -1, -1

() 4if X~ is followed by Y5 then Cigi_l,ygj),

(Xp3s¥p53) € T

These adjustments are applied depending on the value
of the orientating function. If O6(X) =1 and 6(Y) =1

then Table 3.3 and Table 2.4 are used as they stand. If

&X) =1 and 6(Y) = -1 , substitute 3' and &' for 3 and



4. And if 6(X) = -1 and 6(Y) = -1 substitute 1' and
4' for 1 and 4. What we accomplish by making these sub-
stitutions is a réversing of the orientation.on Bd(W;)

if 6(X) = -1 .- That is, the discs W; and W._ are now
constructed in the same fashion as Chapter IIIj(with the
result being that the order of ascending subscripts of the
points X, on Bd(Wy) and the points y; on BdOWy) are
in different directions if 6(X) # 6(Y) . We now investi-

gate the result of these changes.

Lemma 5.3. Let P Dbe an oriented ordered presentation and
V' be the cell complex constructed as in Chapter III, uslng
the appropriate substitutions from Table 5.2, then V' is

orientable.

Proof. The boundaries of the regular neighborhoods of x

and x¥ , for each X € § are oriented as follows: The

points xl,xz,x3,"',x‘x| appear in this order on _Bd(W;) .

We take as the positive direction the direction of increasing

subscripts. The points 'il,ié,ié;---;ilxl appear in this
order on Bd(Wé) . If @(X) =1 the positive direction
around Bd(W?) is taken in the direction of descending
subscripts. If 6(X) = -1 , the positive direction around
Bdﬁ@i) is taken in the direction of ascending subscripts.
Now each of the regular neighborhoods of the points [yly = X

or y=X,Xe S} is oriented. Whenever one of these neighbor-

53



hoods is contiguous to a disc 'D'(s,t) it induces an
orientation on D'(s,t) . Then each disc D'(s,t) “has
orientations induced upon it from two-sources,. We need
to show that these two agree and each of the substitute
naming schemes, 1', 3', and'h', must be examined with re-
gard to this agreeing. If the manifold is constructed
using Table 3.3, we have already established the theorem

in Theorem 3.7.

Case»l. Suppose the four points to be named on
Bd(D'(Xi,Yj))' are named using 1 of Table 5.2. Proceeding
around Bd(D'(Xi,YJ)) we encounter, in order, the points
Xoq_12 Xois yéj—l’ and .§2j . Since we are employing 1'
we know 6(Y) = -1 . 1In which case Bdﬂag) 1s positive
in the direction of ascending subscripts. Therefore the

orientations induced on Bd(D'(Xi,YJ)) agree.

Case 2., Line 3' is used from Table 5.2 to name the'
four points on 'Bd(D'(Xgl,Yj)) . Proceeding around |
Bd(D'(le;Yj)) the subscripts descend on the ¥ s and
ascend on the '§'s . Therefore the orientations on W?
and W% differ in the sense that one must be positive in
‘the direction of ascending subscripts and the other negative.
This is exactly what happens since 3' is substituted only

when O/X) # 6(Y) .
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Case 3. Line 4' of Table 5.2 is used to name the four
points on Bd(D (x‘l,Y‘l)) Notice in one direction both
the ’x s and y s are encountered in order of descendlng
subscripts. But 4' 1is used only when 6(X) =-1 . And in
this case both BdGEE) and Bd(Wy) are positive in the
order of increasing subscripts. Therefore the two orienta-
tions induced on Bd(D (X3 3YJ1)) agree. This completes

Case 3 as well as the proof. O

The number of cycles of an ordered presentation plays
a significant role in the construction of V 1in Chapter ITIT.
The number of cycles depended upon the ordering of the pre-
sentation. Now that the concept of an orientation function
has been introduced, we need to investigate it's effect on
the number of cycles and consequently on V . It is neces-
sary when there is a choice of orders and orientations for
P to be specific in our notation. Therefore if £ 1is an ord-
ering and 6 1is an orientation for P ; we denote the number
of cycles by n(g€,80) , we denote the relation T defined
in Table 2.4 by T(g,6) and similarly V. and V by
f(g,e) and V(E,0) . Further, recalling that € was a
collection of functions, one for each generator, we denote
by gx the function of § asSociated with X . We let
¥ be the orientation such that ¥(X) =1 for all X € S .

Employing this symbolism we can state the following lemma.
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Lemma 5.4. Let 7P be a presentation with ordering &
and orientation 6 . Then there is an ordering g' such

that n(£,0) = n(g ,¥) .

Proof. We define g' by defining §; for each X € S as
follows:

x| +1 -8,  if 6(X) = -1

X g, if 6(X) =1 .

There is a one-to-one function y from T(g,6) U 7' onto

T(g';?) UT defined as follows:

If (xi’yj) IG T(§,6) 1let Y((Xi:yJ')) = (xi’yj) .
If (xi,yb) € T(E,0) 1let

(%35 |y|4ang) AF O(Y) = -1
VY((Xi’E’.é) = -
| (x;,7;) if 6(X) =1 .
1t Gfi’yj) € T(g,6) let
[ Foyx)4a-10Yy) IF6(X) = -1

Y(?c'i,yj) =
Cfi’yj) if 6(X) =1

If (%;.7) € T(5,0) let
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”(Sc"i,‘ﬁj)* if 6(X) =1 and 6(Y) =1

Y((?i;Sf-J)) =

CE2|X|+1-i’yj) if 6(X) = -1 and 6(Y) = 1

‘ CE2|x|+1-i’y2|y‘+1_j) if 6(X) = -1 and 6(Y) = -1 .
1
If (xi,xj) €T let
Y((Xi;xj)) = (Xi’xj) and

| (Ei,ij) if 6(X) =1

Y {(X;,X =
Famy)) Fo|x|+1-5Fo|x|+1-1) 1T O(X) =-1.

Now a cycle of P when P 1is oriented and ordered by
E and 6 is subset of T(Y,0) UT . We claim that the
image under Y of a cycle in T(g,0) Ur' is a cycle in
T(g'fe) UT . To see this we need only take a pair from
T(g,0) énd a pair from 7' which form a link and show that
their images under Y form a link.

A pair from T(Y,0) and a pair from ' which form
a link have d common entry. But from the definition of vy ,
if two pairs have a commoh entry images in T(Y,6) and 7'

have a common entry, and therefore form a link. O

Construction of the Vertex Manifold V(g,0) . Let P
be a presentation ordered and oriented by § and 6 re-
spectively. We have constructed the 2-manifold with bound-

ary V'(g,e) which has a boundary consisting of n(g,Q)



58

simple closed curves.' The number of components of

V(g,8) , Y(P) , 1s independent of both the order and fhe
orientation. The vertex manifold, V(g,8) , is constructed
as in Chapter III. That is a simple closed curve is chosen
from each of the components of the boundary of v'(g,e) ,
and a 2-sphere Q with the interiors of |Y(P)| disjoint
discs removed is attached to v'(g,e) by identifying each
of the selected simple closed curves to the boundéry of

one of the missing discs in @ . The manifold V is then

| completed by attaching a disc to each remaining boundary
components of V'(g,ej U Q . Nothing in the new constfuction |
invalidates thé proof of Theorem 3.8, and therefore V(g,0)

is a connécted closed orientable 2-manifold.

Theorem 5.5. Let P Dbe a presentation with order g and

orientation 6 , Then there is an orientation. g' such

that V(g,0) 1is topologically equivalent to V(g',E) .

Proof. The closed 2-manifold V(§,0) characterized by

its Euler characteristic which is given by |

X (V(g,6)) = n(§,0) + 2|8| +2 - 2|y(P)] - R . And Lemma 5.4
says there is a g' such that n(g,0) = n(g‘;@) . Further,
none of the other terms in the expression for X are
dependent on 6 . Therefore ¥X(V(g,0)) = x(g’jg)) and we

prove the theorem. O



Construction of the near manifold M(Y, ) . For each

Xe S, let Fx be a 2-cell and hx be a homeomoiphism
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from F, onto W_. Let T = K(P) N W- and T, = K(P) n W, -

Let h_:W_- W. be a homeomorphism such that h_(x;) =
= .

X
=%; and h (T)) = Tz - Then attach the cell F_ x [0,1]

P
to C(V,v) by the attaching maps h :F X {0} = W% defined

1 ' — .
by hx(t,O) = h_(t) and h tFoox {1} - W, - defined by

1|

h (t,1) =h_(t) . Let M =c(V,v) u {F,|X € S} . Then a
X

X
regular neighborhood of the generating loops, R(B,K(P),a)
is topologically equivalent to a subset of M' . This sub-
 set, which we call T , can be expressed as

T = ¢(K(P) N V,v) U {Tx x [0,1]|X € 8} .
Lemma 5.6. T 1is a strong deformation retract of M .

Proof. C(V,v) collapses onto C(V',v) . Each handle,

P X [0,1] collapses onto T, X [0,1] U W, UTW- . This
: 1

leaves C(V ,v) U {Tx x [0,1]]|X € S} which collapses to

C(K(P) n V,v) U {Tx x [0,1]|X € 8} since V' collapses

to K(P)N V .

Now TN BdM' is a collection of simple closed curves,
one such curve for each relator r , say Cr . Attach a
2-cell F, to M by identifying Bd(F,) to C, . The
‘resulting complex collapses to a 2-complex which is topo-

logically equivalent to K(P) . Under what conditions can



the discs Fr be fattened. The answer to this is if

!
R(C,,BdM,4) is a annulus.

Lemma 5.7. R(Cr,BdM',M) is an annulus if and only if the
numbers of appearances of generators in R with orientation

number =1 1is even.

Proof. R(Cr,BdM',u) can be written as the union of discs

of two types. The first type is what has been called D(s,t)
where s and t form an adjacent pair of appearances in

r . The remaining discs cl(R(Cr,BdM',M)\V can each be
~expressed in the form <Xi’x2i+i> x [0,1] a subset of

Ty X [0,1] . 1In the construction, KpysXog 1> X {1} was
identified to <x21,x2i+1> with points of some subscripts
being identified. But if (X) = -1 this introduced a half
twist because of the way the points on Bd D(s,t) were named.
Each time Cr crosses & handle of a generator with orienta-

tion number -1 a half twist is added.

Suppose .M has the property that for each relator r ,
R(Cr,BdM,H) is an annulus. Then a 3~cell expressed as
H, X [0,1] can be attached to M ‘such that Bd(Hr x [0,1])=
= R(C_,BAM ,4) . Let M =M U (H, x [0,1]|r ¢ R}. O

Lemma 5.8. Each point of M\{v} has a neighborhood with

closure topologically equivalent to a 3-cell.



Proof. Each point of c(V,v)\{v]} , T, X [0,1] and F, X [0,1]
which does notlie in the discs W, , W% or the annulus
R(Cr,BdM',M) certainly has a neighborhood of the required
sort. Any point of M lying in a disc W; or W?, has
a neighborhood in C(V,v) with closure of a 3-cell as well
as a neighborhood in T. X [0,1] with closure of a 3-cell
and the intersection of these two neighborhoods is a 2-cell
in V so that their union is a 3-ball. Therefore each point
of M\ {v]} has a neighborhood in M with the closure topo-
logically equiValent to a 3-cell.

If p is a member of R(Cr,BdM',&) then p has a
neighborhood in ¥, X [0,1] and a neighborhood in Mf both

closures equivalent to 3-cells with intersection equiValent

to a 2-cell.
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