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FOREWORD

The title of this dissertation refers more to the
latter two chapters than to the work as a whole. Chapter I
glves an exposition of the topology of Z-sets and capsets in
Q , such as developed by Anderson in [2], [3] and |4]. How-
ever, the proofs and organization are rather different, and
various simplifications have been made. Most of what is
new in this chapter has been included in the Master's Thesis
of the author [15].

An alternative treatment on Z-sets cén be found in

Chapters T and II of T. A. Chapman's Notes on Hillbert Cube

Manifolds (unpublished).

Chapters TI and TTI consist entirely of new material.

My first acquaintance with Infinite-Dimensional Topology
was through a course taught in "Texas-style" by Professor
R. D. Anderson during his stay in Amsterdam in 1970-1971.
I feel very much indebted to him for this most inspiring
introduction to his field. Several proofs in Chapter I

resulted from work I did for this course.

it
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The material for Chapters II and III was developed
during my stay in 1972-1974 at LSU, under partial support
of NSF grant GP 34635X . I received much help and en-
couragement - in the form of discussions, suggestions, com-
ments and readings of varlous versions of the manuscript -
from Professors R. D. Anderson, D. W. Curtis and R. M. Schori.
Finally, I wish to thank the typist, Monica Loftin,

for the excellent job she has done.
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ABSTRACT

The Hilbert cube Q is the countable infinite product

of intervals I” - where I = [-1,1] , topologized by the
product topology and furnished with a suitable metric. Points
of Q are denoted by x = (Xi)i , with x; € T . We con-
sider the'following subsets of Q :

1. The pseudo-boundary B(Q) = [x| for some i, \xi\ =1} .

2. TIts complement s = (-1,1)° which is called the pseudo-
interior of Q . It 1is shown by R. D. Anderson that s
is homeomorphiv to (%) 4,

3. The closed subsets K of @Q such that for each € > O

there exists a map f:Q #® Q-K with d(t,id £ € . These

Q)
are called Z-sets.
In Chapter I, certain well-known theorems about these
subsets are proved. We mention especially:

1. The Homeomorphism Extension Theorem: any homeomorphism

between two Z-sets in Q can be extended to an auto-
homeomorphism of Q .

2. The non-empty Z-sets are exactly those closed subsets of
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Q which can be mapped by an autohomeomorphism of @
onto a set which projects onto a point in infinitely
many coordinates.

3. A topological characterization of the pseudo-boundary.

Let 2X be the space of all non-empty compact subsets
of a metric space X and let C(X) be the space of non- .
empty compact connected subsets, both with the Hausdorff
metric d; which is defined by dH(A,B) = inf{e|A < U_(B)
and B < U_(A)} . D. W. Curtis and R. M. Schori showed
that 2X = Q for X a non-degenerate Peano continuum, and
that C(X) ® Q for X a non-degenerate Peano continuum
without free arcs. 1In particular, it follows that
X = C(X) = q if X ¥ Q or X is a compact connected
Q-manifold. Also, we have 2I = Q , which was proved earlier
by Schori and West.

In Chapter II, it is shown that the collection of non-
empty Z-sets in Q (or in a compact connected Q-manifold M)
is a topologlical pseudo-interior for oQ (or 2M) . As a

bo

corollary one obtains that 2 % 4, , and that oM ~

o
for M a conmnected zg-manifold. Corresponding results are
obtained fof the collection of non-empty Z-sets in (Q) or
C(M) , and also 1t follows that C(%,) = 4, and that

c(M) = L, for M a connected g,-manifold.

In Chapter TIII, it is shown that the collection of



V1l

topological Cantor sets in the interval I and the collection
of non-empty zero-dimensional subsets of I are topological

pseudo-interiors for EI .



INTRODUCTION

By the Hilbertcube Q we mean the countable infinite

product of intervals I~ or [-1,1]° with the product
tqpology. If x = (xi)121 and y = (yi);zl are two points

of Q , then their distance d(x,y) is defined as

-1 . .
21212 -|xi-yil . By the pseudo-interior of Q we mean
the subset s = (-1,1)° ; its complement Q-s is called the

pseudo-boundary B(Q) or BQ of Q . It is easily seen

that s 1s a dense Gy in Q . Anderson proved in [1]
that s 1s homeomorphic to the Hilbertspace 22 . The
complement B(Q) 1is also dense in @ , so the pseudo-
boundary of Q 1s only a restricted infinite~dimensiona1
analogue of the boundary of a tinite-dimensional n-cell.

We consider two classes of subsets of Q , viz. 7Z-sets
and capsets. Both concepts have played an important role
in I-D topology and especially Z-sets are the focus ot con-
tinued interest. K 1is a Z-set in Q 1f for every e
there exists a map f:Q »+ Q-K such that d(f,id) < ¢

(where 1id denotes the identity-mapping; sometimes we shall



X
The following facts are easy to verify:

write id, instead of id for the identity-mapping on X).

1) The property of being a Z-set in @ 1is topologically
invariant, i.e., invariant under autohomeomorphisms of
Q .
2) A closed subset of a Z-set is a Z-set.
3) A finite or closed countable union of Z-sets 1s a Z-set.
L) Examples of Z-sets are compact subsets of s and closed
subsets of Q which project onto a point in infinitely
many coordinates. For there exist maps f of Q into
itself whose image f£(Q) 1is disjoint from such a set,
and such that £ leaves the lower-numbered coordinates
unchanged.
The detfinition of Z-set can be generalized for a larger class
of spaces, in particular for Q-manifolds and (manifolds of)
infinite-dimensional topological vector spaces. 1In
Geoghegan-Summerhill [11] a version of Z-sets for Euclidean
spaces 1s introduced. See also the remarks after Lemma I1I.1.
Corollary I.9 and Theorem T1.10 state the two most important
facts about Z-sets: that (1) any Z-set in @ can be mapped
by an autohomeomorphism of Q onto a subset which projects
onto a point in infinitely many coordinates, and that (2)
any homeomorphism between two Z-sets can be extended to an
autohomeomorphism of Q

A capset is a subset of Q which is equivalent to



B(Q) wunder an autohomeomorphism of @ . In Chapter I

more practical characterizations will be given. It is

a key observation that there exlst capsets which are

entirely contained in s (Proposition I.7). Other useful
facts are that for any capset M and any Z-set K , M-K 1s
a capset (Corollary I.13) and that the union of a capset with
a countable number of Z-sets is again a capset (Proposition
I.15). One use of capsets is to show that certain spaces

are homeomorphic to L5 by exhibiting an embedding into @
with a capset as remainder. ;This principle will be applied
in Corollaries I1.3 and II.5.

In Chapter T the most important facts about Z-sets and
capsets in Q will be proved. Our treatment is rather dif-
ferent from previous ones (most theorems from Chapter T have
appeared originally in elther of Anderson's papers [1] - [U4]).
The several stages in the proof of the Homeomorphism Extension
Theorem for compact subsets of s are entirely standard.
However, the autohomeomorphism of @ which maps B(Q) into
s (Proposition T.7) is obtained by a direct geometrical
construction, and requires very little preliminary work.

This causes changes in the entire organization.

At the end of the chapter several alternative def'ini-

tions of Z-set, equivalent for @ and u or £2 ,  will

be given (Theorem I.18).



For X a metric space, the hyperspace 2X of X 1is

the collection of non-empty compact subsets of X (for

X

non-compact X , in other treatments 2 is sometimes

understood to be the collection of all non-empty closed

subsets), with metric dy(A,B) = inf [e|A c U (B) and

Bc U, (A)) , where U, (Y) denotes the e-neighborhood of

the set Y . If d and d' induce the same topology on
! X

X then dH and dH 2

This metric 1s called the Hausdorff metric. By C(X) we

induce the same topology on

denote the subspace of oX consisting of all non-empty sub-

continua of X . We have the following:

X

Theorem A (Curtis-Schori- [9]). 2% 1s homeomorphic to the

Hilbert cube iff X 1s a non-degenerate Peano-continuum,

Theorem B (Curtis-Schori [9]). C(X) is homeomorphic to Q

1ff X 1s a non-degenerate Peano-continuum without free

arcs (i.e., not having a topological open interval as an

open subset).

Remark 1. In [16], Schori and West proved Theorem A tor

the case X I . This result is used in the proot ot the

Il

general case.

Remark 2. It 1s easily seen that the hyperspace of non-
empty subcontinua of an interval, C(I) , is homeomorphic

to a two-cell.



In Chapter II, we ldentify pseudo-interiors for 2X
and C(X) , where X 1s a Hilbertcube (Theorem II.2) or

a compact connected Hilbertcube manitold (Theorem IT.4);
viz. the collection of non-empty Z-sets in X for 2X and
the collection of non-empty connected Z-sets for C(X) .
The proofs rest on the aforementioned results of Curtis and
Schori, and for the case where X 1is a manifold also on
the Triangulation Theorem for Q-manifolds [8]. As a corollary
we obtain that, for X = L, or X an f,-manifold, both

X and C(X) are homeomorphic to Lo (Corollary II.3 and
1I1.5).

In Chapter 11T, we prove that both the collection of
topological Cantor sets in T and the collection of non-
empty zero-dimensional closed subsets of I form pseudo-
interiors for 2T (Theorem TII.4). Here we use Schori-West
[(167.

Unfortunately, the author has been unable to generalize
the above results,even for finite graphs instead of T .

It might be worth mentloning that the proofs of Chapter TI

have very little in common with those of' Chapter 1717.




CHAPTER I
HILBERTCUBE TOPOLOGY

Preliminaries. For each n > O , we can write

_ 0 _ .
Q=1"xQu , where Qu .5 =Th ,I; - By ppie>1

we mean the projection onto the nth coordinate; by

n

1
pn:Q + 1% the projection onto the first n coordinates.
Note the difference between 1% and ln . For any non-
empty subset C of N, we write QC = nheCIn s and

o o . . . . i
sg = 11 _oI,, where I~ is the combinatorial interior of

In s and pC:Q - QC the projection onto QC . The end-

faces w; and w; are the sets {x e Q|xn = 1} and

(x € Q|x, = -1} respectively. Trivially B(Q) is the

union of all endfaces of Q . We call a subset K of Q

deficient in the nth

coordinate if pn(K) is a point. We

call K infinitely deficient if K 1is deficient in in-

flnitely many coordinates.
Homeomorphisms are always understood to be onto. We
write sometimes "X = Y" instead of "X is homeomorphic

~ 1
to Y" , and ”(X,X') = (Y,Y )" 1instead of "there exists

6




a homeomorphism h:X , Y such that h(X') =Y " . The
distance between two maps or homeomorphisms f and g:X =+ Y ,
where Y 1is compact metric, is defined as d(f,g) =

sup d(f(x),g(x)) . If f 1is a homeomorphism, then obviously
xeX

a(f,id) = d(r1,1d) and d(g,h) = d(gf,hf) . For £:X + X ,
we sometimes say that f is small (or e-small) inétead of
"d(f,idx) is small (or less than €)" . The space of auto-
homeomorphisms of a topological space X 1is denoted by
H(X) .

One convenient property of the Hilbertcube is stated in

the following

Proposition I.1 (Mapping Replacement Theorem). Let f:X =+ Q

be a map from a separable metric space into the Hilbertcube.

Then for each € > O, there exists an embedding £:X*Q

such that f (X) is an infinitely deficient subset of s

and d(f',f) < € .

Proof. It is well-known that every separable metric space

can be embedded in s . So let g:X -+ s be any embedding.
Define, for 6 € (0,1) and M any integer and

x e X, fM,()(x) = (ﬁ-plf(X),---,6-pr(X),plg(X),O,pgg(X),O,"').

Then f is an embedding because g 1is, and f is

M,d M,
e-close to f if M is sufficiently large and & suf-

ficiently close to 1 , Dbecause in that case f and M. 5
2



"almost" coincide in the most significant coordinates.

For several constructions in this chapter, we obtain
a homeomorphism with certain properties as a limit of in-
ductively constructed homeomorphisms. We can ensure con-

vergence to a homeomorphism if at each stage the next homeo-

morphism can be chosen arbitrarily close to the identity.
More formally, let (fi)i be a sequence of maps f;:X + X
such that the sequence fl,f 3°f f ++ has a con-
tinuous limit; then the limit is denoted Lﬂifi and is

called the infinite left product of the sequence (fi)i .

We have the following theorem (due to Fort [10] 1in a slightly

different form):

Theorem I.2 (The Convergence Criterion). Let X be a com-

pact metric space and let (hi:X - X)i be a sequence of

autohomeomorphisms. Then Ll'llihi is a homeomorphism if for
any 1 (1) d(hy,;,1d) <2”" and

-1
(2) d(hy,1,1d) < 377 -inf{d(hye -+ ohy(X),ho -+ ohy(¥))]
la(x,5) > 2/1) .

Proof. Convergence to a continuous limit is ensured by the

Cauchy condition d(h; id) < o-1 , which is equivalent to

i+1?

e« o h.o,h,0o ¢.. oh < 2™t . Because X 1is compact,

i+1° 10 1)
the only other thing we have to show is that Ll’lihi is

d(h

one-to~-one. This follows from (2) since points which are



at least 1/i apart are prevented from being mapped onto
the same point in the limit by the size-restrictions on

Dy asBygos " -

The Homeomorphism Extension Theorem for Compact Subsets of s

Eventually we want to prove the Homeomorphism Extension
- Theorem for Z-sets (Theorem I.1l0). For this we will need

the concept of basic core set (bcs), to be defined later.

It will be seen that any two basic core sets are equivalent
under an autohomeomorphism h e H(Q) .
The proof of the general Homeomorphism Extension
Theorem is broken up in the following steps:
1) A Homeomorphism Lixtension Theorem for compact subsets
of s (Proposition I.5).
2) It is shown that (Q,BQ) 1s homeomorphic to (Q,M) ,
where M is a basic core set (Proposition I.7).
3) It is shown that for a bes M and any Z-set K ,
(Q,M) =
(Q,BQ) = (Q,BQ-K) (Proposition I.8). (In fact, a

(Q,M-K) , and as a consequence that

weaker version of 1.8 would suffice, but later on we will
need the stronger statement.)
Comhining the above results one can easily obtain the

general version of ihe Tomeomorphism lxtension Theorem.,

Lemma T.3 (Anderson [11). Tet K Dbe a compact subset of




s , N a positive integer and € &a positive real number.

Then there exists a homeomorphism :Q -+ Q such that

(1) for some n > N , pn(m(K)) is a single point in (-1,1) ,

(2) d(®,id) < € and (3) for any endface

W= {x|x; =1} or {(x|x; = -1} , ®(W) = W and therefore
P(BQ) = BQ .

Proof. The set K is contained in a cube K = nh[an’bn] cs .

Let n > N be so large that for any x,y € Q , 1if

1

!
pn_l(x) = pn_l(y) then d(x,y) < € . PFirst we find a homeo-

morphism h such that any line in the direction of the nth

1
coordinate intersects h(K ) in at most one point. Let, for

any m > n , hm be a PL autohomeomorphism of the 2-cell

In X Im as indicated in Figure 1.1 below, which deforms

n ig. T.1



Ll

[an,bn] X [am,bm] into a slanted figure such that hori-
zontal intersections with it have diameter < o™ | and
which leaves the xn-coordinate unchanged. Define

h(X) = (xl’""xn’yn+1’yn+2"") s Where (Xn:ym) =
hm(xn,xm) .
any m >n , by the definition of hm s the intersection

Obviously h 1is a homeomorphism, and, for

of h(K') with any interval in the x -direction has dia-

meter at most 2™ ., Hence the intersection is a point.
For the second and last step we construct a g e H(Q)

which maps h(K') into the hyperplane pgl(o) . On any

interval in the x -direction L, = [y‘m £n = Y = xm} ,

g will act as fq:[-l,l] - [-1,1] , where fq is a PL

homeomorphism which maps [-1,q] linearly onto [-1,0] and

[@q,1] 1linearly onto ([0,1] , and where q ¢ (-1,1) will

_ +n-1
be specified later. We write Q = I X Qn+l X In s and

X = (Q,xn) , Where £ e od X Q . Let ﬁ be the pro-

n+l

Jection of h(K') on It x Q.7 - We define r iR - (-1,1)
A

by F'(x) =y , where y € (-1,1) is the unique point such

A '
that (x,y) ¢ h(K ) . By Tietze's lemma, ¥ can be ex-

.. rh=1 . A
tinded to F:I X Qq ”? (-1,1) . Define g by g(x,xn) =
(x,fF(Q)(xn)) (see Figure I.2)., Then ¢ 1is one-to-one onto
because g leaves intervals Lx invariant and is one-to-one

onto on each LX . Turthermore



n>

1 -
n-
€T T X Qppy R - h(K )
————————
e———-——-———

4

Fig. I.2

57 DU

g(h(K')) is a subset of the hyperplane [xn: 0} and goh

1s e-close to idQ because 1t does not alter the first n-1
coordinates of any point. Finally, from the construction 1t
follows that X, ok 1 irr p10ﬂ°h(x) ok 1 . 'herefore

® = goh 18 the desired homecomorphlom.

Corollary I.4. Let K be a compact subset of s and ¢«

a positive number. Then there exists a homeomorphism

£:Q » @ such that f(BQ) = BQ and f(K) is infinitely
deficient.

Proof. We can write Q = ILQ where C, N C, = ¢ and
£rool 170y i 3

UiCi = N . We can apply Lemma I.3 to each of the copies

Q: of Q and the compact subsets P, (K) of s, and
i ‘i i
obtaln a homeomorphism f.:Q, = Q, such that £.(P. (K))
1°7C C ir e,
i i i
is deficient in some coordinate n; € Ci . Then the homeo-

X ) maps K

morphism f:Q * Q@ defined by Py of(x) = £,
i i



onto a set of infinite deficiency. Moreover f 1is e-close
to the identity mapping if the maps fa are sufficiently

i
close to the identity.

Proposition I.5. Let f:K » £(K) be a homeomorphism bet-

ween two compact subsets of s such that d(f,id;) < e .

——— S ——————— b—— —

which maps B(Q) onto B(Q) such that d(f ,id) < e .

- Proof. The idea of the proof is basically due to Klee [14],
and modified by Barit [6] as to satisfy the smallness con-
dition. Let d(f,1idy) = €; < € and let 6 = (e - € )/5 .
Since there exist autohoweomorphisms of Q which map
K U £(K) onto a subset of s of infinite deficiency and
which are arbitrarily close to the identity, we may assume
that K U £(X) ¢ @ x {0} , where C is such that
d(pc,id) < & . For convenience of notation however, we shall
write Q x Q@ instead of QC x QVC put keep in mind that
the second copy of Q has a small diameter. We write
pI(x,y) = x and pyp(%,y) =y . Instead of py(K) and
pI(f(K)) we write K and f(K) . The extension f will
be a composition hélh3h1 . (See I'igure T1.3.)

For the construction of hl , apply Tietze's theorem
to each of the functilons piOf to obtain a function

£:Q + 8 which is an extension of f:K - f(K) . Let, for

any point x e (-1,1) , wx:[-l,l] + [-1,1] Dbe the PL map
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Fig, I.3
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which maps [-1,0] 1linearly onto [-1l,x] and [O,1]
linearly onto [x,1] . Let, for x ¢ s , F :Q » Q be
defiued by pin(y) = ¢&i(yi) . Now define

hy:Q x @+ Q x Q by hl(x,y) = (x,Ff*(x)(y)) . Then on
each set {x} x Q , h, 1is equal to Ff*(x) and maps (x,0)
onto (x,f*(x)) . In particular K 1is mapped onto the
"graph" of f . Furthermore d(hl,ideQ) <& . For h,

we use a similar construction, except that f 1s replaced

and f by an extension of id, to a map 1d"

by id K

K
from Q i1nto s .

We want h3 to map the graph of f (not of f*) onto
the graph of idgy) . We use a modification of the trick
- for h, and h, : let, for x,y e (-1,1) , wx’y:[—l,l] B
[-1,1] Dbe the PL map which maps [-1,x] 1linearly onto
[-1,y] and [x,1] 1linearly onto [y,1l] . Let, for x

and y in s , I

“x,y be defined by piF

) = @ (Zi)

Z
x,y( xi’yi

for z € Q . Let id**:Q + s be an extension of idf(K) s

* ¥ -
and f :Q * s an extension of f 1 . We cannot define

h3(x,y) = (Ff**(y)’id**(y)(x)’Y) since we are not sure
whether f** and id** are sufficiently close, 1i.e.,

€qt b-close together. In other words, if d(f**,id**)
gets large then so does h3 . But, using a Urysohn func-
tion which is 1 on f(K) and O on
(yld(f**(y),id**(y)) > eq + 8} , we can replace £ and



18" vy £ and 1d* which coincide with £ and id
respectively on K, and both of which coincide with the
average of f** and id** for those x for which they

would have been too far apart (i.e., more than €qt 6) .

Weldefine ha(x,y) = (Ff+(y),id+(y)(x)’y) . Then
.

o h3hl:Q X Q » Q x @ 4is the desired extension of f .

Corollary 1.6. a) In Proposition I.5, we can furthermore

!
require that f 1s the identity out-

side Ue(K) .

b) 1n addition, if K U f(K) projects onto

a point in all but finitely many coordi~

1
nates, then for some n , f can be

constructed as the product of an auto-

U1

Proof. a) Let & = (e - el)/B instead of (e - el)/B.

homeomorphism of ™™ and id

We can accomplish a) by, in the construction of h1 and

h, , replacing £* and id by functions which coincide
with f and id on K and f(K) respectively, and
which are zero outside a é-neighborhood of K and f(K)
respectively, using suitable Urysohn functions. In the con-

struction of hg 5 © has to be replaced by m' which,

X,y X,y
if x <y, is the identity outside [x-5,y+8] , maps
[x-86,%x] onto [x-8,y] and [x,y+6] onto [y,y+6] . The

case x >y 1s treated analogously. Furthermore, the

10
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Urysohn function which regulates the "averaging out'" of
* % Rz . * % * %
f and id has to be zero if either f (x) or id (x)

is more than & away from f(K) . b) Left to the reader.

The Homeomorphism Extension Theorem for Z-sets. To prove

the general Homeomorphism Extension Theorem, we use another

copy of B(Q) . A basic core set (bcs) structured on the

core Hi[ai,bi] , where -1< a; <b; <1, 1s the set

{x € s| for all but finitely many 1, x; € [ai,bij] . Notice
that one obtains the same bes from two cores which differ in
only finitely many ay and b. . It is easy to prove, using

a coordinatewise defined homeomorphism, that any two basi

core sets are homeomorphic under an autohomeomorphism of @Q .
From the definition it follows that any basic core set is in-
variant under a homeomorphism h with h(B(Q)) = B(Q) such
that h changes at most finlitely many coordinates of any point.

It 1s easily seen that basic core sets are o-compact, e.g., the

basic core set structured on the core ["5’2 can be written
1 ‘

as Unnisn['l + = 1 - ] X H1>n 'gyg . (The set {x € s|

for all but finitely many i , x; = 0} , which is the count-

able union of finite-dimensional compacta, might be considered
as a "basic core set structured on a degenerate core"; such
sets, f-d capsets, have played an important role in Infinite-
Dimensional topology, but we will not concern ourselves with
them).

Below we will construct an autohomeomorphism h = 'I.l'l_.Lhi



of Q which maps B(Q) onto a basic core set.Convergence
to a homeomorphism will be ensured by the convergence
criterion. The proof involves two ideas:
1) The terms of the sequence (h oh, 10 +++ oh.). map any
+ i-1 171
given endface W; into higher and higher indexed end-
faces and away from lower indexed endfaces, in such a way
that in the limit the endface is mapped disjoint from all

of BQ . More explicitly, there is an 1ncreasing sequence

(W U w } is mapped

(ni)i such that for any 1 , LJ(D
successively into w: +1’W; +1,wn 410ttt by
i i+l i+2
L 4 T (i)
ny hi+l i:hi+20hi+l°hi, . We shall write h for
Lhyihy

2) By imposing come side-conditions on the hi (conditions
2) - I) below), we can accomplish that for any 1 there

exists an infinite product ni[aj’bi] c s such that hi

maps w:i L+ onto nj<n.[aj,bj] x {1} x Q. 4o

i- =i 1
hi+1ohi maps w:. I onto

i-1

Hjspi+l[aj,bj] x {1} x Qni+1+2,--- and therefore that
the limit h(i) IJ5>1 . maps w:i—1+l onto Dbzl[aj,bj]
Up to finitely many Jj , (aj)j and (bj)j will not
depend on the choice of 1 ; to be specific, 1 i < i'
then from Jj = i' on , we will get the same aI and

b. . Ti will be seen that U_}|<]‘)(W]“ Y is a basic
J i ”1-1']
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1y

core set, where any of the sets “j[aj’bj] referred to
above can be considered as the core. Adding to the

above the observation that h(i)(w; +1) 1s con-

i-1
-1 -1
tained in h(hy7o *** o h;7,)(BQ) = h(BQ) , 1t is not

hard to prove that h(BQ) = uin(i)(w; ,1) » and there-
1-1

fore g basic core set.

osition I.7. TFor every € there exists an autohomeomor-

phism h € H(Q) such that h(BQ) is a basic core set and

)

d(h,idQ) < €

Proof. Let, for the finite-dimensional cube Ii , the

faces {x\xj = + 1} be denoted by Ff,j . Let, for each

pair (i,n) such that 1> n> 1, h;,n be a PL-autohomeo-

morphism of Ii+l such that the following conditions are

satisfled:

1) d(hy ,,1d) < o-1+2

2) g, maps Uj . (Fig 5 UFp ;) into [xe Fi ]
’ < iy s 1+1,

for all k< i, |x/| < 1-271
hy, (FT,. ) 1is a product of intervals (the i+1°%
1,ni+1,n b e S

interval degenerate) and

s
on {x ¢ Ii+l,n

F 3
i.n is linear and changes only the nth and d-+1
_,.

| for all k # n,i+l, |x.| < 1.7y

h st

coordinate.

X b
Figure 1.l 1s a diagram for h] 1 and  h,, , (the gize
. s L <yl
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of the different coordinates as shown, reflects thelr

relative importance for the metric).
*

i,n X iin+2 . Notice that for each 1

Let hi,n = h

and n , hi,n(BQ) = BQ . Select, using the Convergence
Criterion, an increasing sequence (ni)i such that ng+l = nq
and the infinite left product h = Lnizlhni,ni_l+l is a homeo-
morphism. Write h, = h +1 + Regarding h<w:o+l> s

P10031
: +
observe that for x e W. ., , by Ly pioh(x) =

0
pjoho cr o hy(x) € (-1,1) for the smallest j such that

n., > 1 . This is because x 1is mapped consecutlively in

-n
{x € wr 1] , in ([x € W’
n

N for all k < n

41l < 0y gl
_ng}

< 1-2 .
1 = 2“1‘

+
for all k < ng, x| < 1-2 etc. Thus h(W 6 .,

0
By 3) and the above (see also the remarks preceding iLhe pro-

) © s

position), h(w; +l) is a product of closed subintervals
0 .
. : 1) .+
[aj,l’bj,l] of (-1,1) . By similar arguments h( )(Wni—l+l)
is a product of closed subintervals {aj,i’bj,i] of (-1,1) .

Moreover for all j > Ny aj,i = aj,l and bj,i = bj,l s

as can be seen by comparing the sets w: 41 and
i-1

o + .3 3 v«
h o hq (W +l) and their images under h,,h, joh,

1 (M

1-1°
etce.

. . (1),
The set U.h (wnj

+
st t . =
core set, structured on the core h(wno+l) nj[aj,l’bj,ll

+1) is easily seen to be a hasic
=1
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We show that this set equals h(BQ) : write h(BQ) =
h(U U W;) . For any k there is an i such that

+ - +
hy_q0 **+ o hy(W U W) < Wni_1+l . Therefore

-1, o+ +
h(BQ) < Ush(hy 40 <<= o hy )™ (W, +1)+ Conversely, W, .4 ©
i-1 i-1
BQ = (hiwlo---ohl)(BQ), and thus, for each i, h(i)w; 4 € h(BQ) .
i-1

The proof is concluded by the observation that h can

be made arbitrarily small by choosing nq large enough.

Proposition I.8. a) For any basic core set M , any Z-set

K and any € > 0O, there exists an

h € H(Q) such that d(h,id) < € and

h(M-K) =M and h 1is the identity out-

side an e-neighborhood of K .

b) For any Z-set K and any € > O,

there exists an h € H(Q) such that

d(h,id) < € and h(BQ - K) = B(Q)

and h 1is the identity outside an

e-neighborhood of K .

Proof. Obviously b) 1s a consequence of a) and Proposition

I.7. We prove a) in five steps. Let a standard n-cell in
Q Dbe any set I%fp[ai’bi] x {(0,0,-++)] , where
-1 < as < bi < 1.

Step 1. Moving K off a standard n-cell. Let

C, = nign[ai’bi] x {(0,0,°+*)} . For any & > O, there is



an f e H(Q) such that (1) d(f,id) < s , (2) £(K)nC =g,
(3) £(B(Q)) = B(Q) , (4) f changes only finitely many
coordinates, and therefore f(M) = M . For, since K 1is a
7-set, there exists a map ©:Q + Q-K with d(9,id) < 8/2 .
Let n = min(6/2,d(K,9(C,)) . Approximate ¢|C, by an
embedding m' such that d(w,w') <M and w'(Cn) is a com-
pact subset of s which projects onto O 1in all but finitely
many coordinates. Then w'(Cn) N K=@ . By Corollary I.6,

® :C  » @ (C ) can be extended to £' ¢ H(Q) with

d(f',id) < &8 and f'(B(Q)) = B(Q) and which changes only
finitely many coordinates, and which therefore maps M onto

-1

M . Then f = £ is the desired homeomorphism.

Step 2. Moving K off a given infinite-dimensional cube

12 s . Now let C = nh[an’bn] be any intfinite-dimensional

subcube of s . Then we shall show that for any & , there

exists a homeomorphism f:Q = Q satisfying (1) - (4) from

step 1 with C 1instead of Cn . TFor let N Dbe so large that
! t

pN(x) = py(y) implies d(x,y) < 5/2 . Let

Cy = niSN[ai’bi] x {(0,0,°°°)} . Applying step 1, find

g € H(Q) satisfying (1) - (4) from step 1 for C, and &/2 .

N

Then g(K) is disjoint from an open neighborhood of g » and

in particular disjoint from a set

. 1
“iSN[ai’bi] X nN<i§M[ai’bi] X Qg - Let h Dbe a map,

affecting only the N+1th until the Mth coordinate, which

<3
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maps T yla;,04] x Tycsanl®3:03] X Quy  onto

ni<M[ai;;i] X Quiq - Tﬂgn hg(K) is disjoint from C ,

hé_ is 8-close to the identity, maps B(Q) onto B(Q) and
changes only finitely many coordinates and therefore maps M
onto M . Therefore f = hg 1s as desired.

Step 3. f = id outside a small neighborhood of C .

According to Corollary I.6 we may suppose that g is the

identity outside a small neighborhood of CN . The same can

be accomplished for h by making use of Urysohn functions

Na 1 pe 0

as in the proof of Proposition I.5: Let r:I

outside a small neighborhood of ni<N[ai’bi] and 1 on
. +M-N M-N

n1<N[ai,bi] . Let {:I » T

(R |
which maps nN<i<M[ai’bi] onto nN<i<M[ai’bi} . Write

be a PL homeomorphism

X = (XpXppsXppp)  where xy = (xps e cXy) o oxpy o= (Xyggs Xy

and  Xqyp = (XM+1’XM+2’...) . Define

t
chosen sufficiently large, then f = h'og is the identity

outside an arbitrarily small neighborhood of C .

Step 4. f = id outside a small neighborhood of K . It is
also possible to find an f € H(Q) , satisfying (1) - (4)
of step 1 for ¢ and any & > 0 , such that f 1is the
identity outside an arbitrarily small neighborhood of K N C
Let {C(l),---,C(n)] be some '"canonical" decomposition of

C into small closed subcubes. Supposge C(l),---,c(k) are

the subcubes that intersect K . Construct fl, such Lhat



1
fl(K) n C(l) =g , say d(fl(K),C( ))= 6, . Construct f,
such that d(f,,1d) < 8,/2 and f£,f (K) N ¢(®) = g . Then
we still have f,f, (K) N c(1) = @ . Working our way through
C(3) - C(k) we get the desired homeomorphism.

Step 5. Moving K off countably many cubes in s . Let

M= U;M; De any basic core set, where (Mi)i is an in-
creasing sequence of geometrical cubes. Let hy € H(Q) have
the properties (1) - (4) of step 1 for €/2 and M, , and
such that h; 1is the identity outside U_(K) . Let

6, < min(e/u,% + d(h; (K),My)) Dbe small enough with regard to
the Convergence Criterion. Let h, € 11(Q) satisfy (1) - (4)
of step 1 for 62 and M, , and be equal to the identity
outside U_(K) N hl(Ue/E(K)) (which is a neilghborhood of

hy (K) ). Then d(hgh;(K),Mp)> 1/2-d(hy (K),M;). For the
.o-n+l 2—1)

’ 26y 1

and sufficiently small for the convergence criterion, and we

inductive step, we let & < min(e-Q'n,él

let h_ =~ satisfy (1) - (4) from step 1 for (h _4* *** *hy)(K)
and Mn and b and we let h, be the identity outside

41 (K) - Then h = LILh, has

n s

U_(K) N h o -+« oh(U
€ n-1 1T c .0

distance less than € to idQ and is the identity outside
UE(K) . For any point x not in K , h 1s equal to some
finite composition hno s ohl which changes only finitely
many coordinates of x . Therefore h maps M-K into M

and maps Q - (MUK) into Q-M . Tinally, h(K) has positive



distance to every set M; , and therefore h(Ky n M =6 .

But then h(M-K) = M , and we have proved a).

Corollary I.9. A closed subset K of Q 1is a Z-set in Q

iff there is an h € H(Q) which maps K onto a set of

infinite deficiency.

Proof. By Proposition I.8 b), K can be mapped into s ,
and by Corollary I.4, the image of K can be made intinitely

deficlent subsequently.

Theorem I.10. Let f:K - f(K) be a homeomorphism between

!
two Z-sets in Q . Then there exists an f in H(Q) which

1s an extension of f . Moreover, if d(f,idK) = €, < € then

t

) 1
f can be chosen in such a way that d(f ,id < ¢ and

can be chogen in Q)

1s the identity outside an e€-nelghborhood of X .

Proof. Let & = (e-el)/6 . Let g e H(Q) map B(Q) -(K u f(X))
1

onto B(Q) and be 8-close to the identity. Then d(gfg ,idK) <
€t 26 . Let h Dbe an autohomeomorphism of Q@ which extends
gfe™L:g(K) » gf (K) such that d(h,idy) < €y + 38 and h is

the identity outside U€1+36<K) (which set contains

' -1 '
g (U, +6(K))) . Let f =g ~hg , then f has the required
1

properties.

Capsets. In [3], R. D. Anderson introduced the concept of

capset (in Theorem I1.12 below, it will bLe shown that R(Q)
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and any basic core set are capsets. For the closely related
but more general concept of (G,X)-skeletold, introduced at
about the same time, see Bessaga—PeIczyﬁski [6]. A subset
M of Q is a capset (for Q) if M can be written as a
countable increasing union UiMi of Z-sets such that for
each € > 0, n> 0 and for each Z-set K in @ there
exists an m > n and an h e H(Q) such that h(K) c M,

d(h,id) < € and thn = idMn . Obviously the concept of
capset i1s topologically invariant. We remark in passing that
the property of being a capset, as well as that of being a
Z-set, can be defined for subsets of' s or Lo s and that
many of the theorems about Z-sets and capsets remain valid.
There exists a finite-dimensional analogue, viz. f-d capsets

(see Anderson [3]). These were already briefly touched upon

at the discussion of basic core sets.

Theorem I.1l1l. Uuppose M and N are two capsets in Q .

Then for each € > O there exists an h e H(Q) such that

h(M) = N and d(h,idQ) < €
Proof. Let the decompositions M = UiMi and N = UiNi

satisfy the conditions in the definition of capset. We construct

-1 1

h as a composition ---g2 oheogi oh Without further

1

mentioning, it is understood that at each stage the next

homeomorphism is constructed in accordance with the con-



vergence criterion.

Applying the definition of capset for N , we can find
h, € H(Q) such that for some ny , hy(My)c an . Since
hy (M) 1s a capset we can find g, € H(Q) such that for

-1

some ml,gl(an) c hl(Mml) or equivalently g3 hl(Mml) - an

and such that moreover gq|h;(My) = gil‘hl(Ml) = id . Then,
1

since hl(Ml) c an » also g"h (Ml) c an . Construct h,
-1 .
such that for some Noshsogy Ohl(Mml) c Nn2 and hg‘an = id
. -1 -1
Then agaln hyogy °h1(Mm1) - an and hgegiTohy (My) € an

Continuling with the inductive construction of maps
gg,h3,g3,--~ ¢ H(Q) which create and preserve appropriate
incluslon-relations, we obtain a sequence of which the in-

finite left product h = Lniggloh is a homeomorphism with on

i
-1
the one hand h|Mmi = hj0g1_1°"'°hl\Mmi , and therefore

h(M, ) © N < N , and on the other hand
i i+l
-1 - .
(LA, 465 ohJ.)lmn_i id|N, , or in
other words h_l\N = “Lon,oeron )—llN and therefore
n €1 °0y 1 n, ’ i

i | i
h(M) 2 h(Mm ) © N, Together these show that h(M) = N .
i i

Theorem I.12. a) Any basic core set is a capset.

b) The pseudo-boundary is a capset.

Proof. By Proposition I.7, b) follows from a). For the

3

28
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proof of a) we use the following notion: If X is a count-
ably infinite product ni[ai’bi] s Wwhere for each 1 ,

ay < by ', then we call ni<ai’bi) the pseudo-interior

PSI(X) of X . The proof is divided into two sublemmas:

Sublemma 1. If N 1s a countable union of geometric subcubes

N; of s such that for each 1, N; < PsI(N;,;) and such

that UiNi is dense In Q , then N 1s a capset.

Proof. Obviously N 1is a countable union of Z-sets. Notice

that each N; can be written as “j[ai b ] , where for

,(j, j~’vj

each j , (a strictly decreases to -1 and (bi j)i
Ly

i,j)i
strictly 1Increases to 41 . Let a Z-set K , € > O and a
positive integer i1 be given. Tor each k > i there 1s a
coordinatewise defined homeomorphism fk:Q ongo Nk which
leaves Ni pointwise fixed. l'or sufficiently high k ,

d(fk,id < € . By applying the Homeomorphism Extension

Q)
Theorem to fk|K V) Ni we obtain the autohomeomorphism of
Q that proves the capset property for N . (This is the
only place in the proof of Theorem I.12 where we need the

Homeomorphism Extension Theorem. )

For the proof of the theorem, it clearly suffices to prove

the following sublemma.

Sublemma 2. For any bes M there exists an h e H(Q) such




that h(M) 1is a unlion of cubes as described in Sublemma 1.

Proof. Since any core can be translated coordinatewise to

any other core, it is trivial that for any two basic core

sets M and M , (Q,M) = (Q,M') . Let M Dbe the particular
bes with core [- é,%]m . Let

My = HjSi(-l+1/i,l-l/i] X Hj>iIJ. ; then M = U/M; . We will
construct h as an infinite left product Lni>2hi s which
will converge by the Convergence Criterion, aﬁg where each

hi maps Mi into PsI(Mi) » while satisfying certain side-

conditions.
Step 1. We construct h, such that h,(M,) 1is a geometrical

cube ﬂj[aj,b in PST(M?) and such that for points not

j]

in M only finitely many coordinates are changed. For such

2
an h, , hQ(M) =M, as the reader easily checks for him-

(- % _ 2-;1,% PSERE!

self. Let U, X Qi - Then (Ug)y

is a neighborhood basis for M2 . We construct h, as an
infinite left product Ijgzgfi s Wwhere fi is the product

of an autohomeomorphism of Ii

and the identity on Qi+l 5
and where f. 1s the identity outside £, _q0+°f5(U;)
We use the Convergence Criterion to make the left product
converge.

Let f2 be the product of the identity on Q3 and

]
a PL map on 12 , which maps (see Fig. I.5) [- %,%]L
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onto a square [- % + 62,%-£2] 2 in its own interior and
is the identity outside [- #,3]° (the first two coordinates
of Uy) . Let f3 De the product of the identity on Qy

and a PL map on 13 which shrinks [- % + 62,%-— e?]2 X

[- %,%] to a set [~ %.+ 62,% - 62]2 X [- %.+ 63,% - c3] ,
in such a way that f3 is the identity outside f2(U3) s
and 1s small enough for the convergence criterion (see

Fig. I.6). Inductively we construct the remaining f. in
a similar manner. The left product Lnifi is the desired
homeomorphism h, . Notice that we may assume that for

each x € Q and each integer 1, x. < p;jh,(x) <0 or

0 < pyho(x) £ x4

Second and Tnductive Step. Ry similar constructions, obtain
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a sufficiently small hg € H(Q) such that
h, (M) © PsI(hS(M3)) = h3(M3) c PSI(M3) . It is geometrically
obvious that we can require that h3|h2(M2) = id , and that
for each x and 1, x, S.p1h3(x) <0 or 0K pih3(x)‘§ X3
Then h3h2(M2) = h,(M,) is contained in
-1 _ _

PsI(h3h2(h2 (M3))) = h3(M3),and h3(M) M .

Inductively construct sufficiently small hi such that
hy 1(My_7) & PsI(h;(My)) < hy (M;) < PsI(M;) and such that

h,|h;_1(M;_7) = id and for each x and k ,

Il
=

X, < Pphy(x) <0 or 0 < pphy(x) < x5 and  hy (M)

Because of the condition Ip,h,(x)| < |x,| , we have
ki - k

-1 -1 _
for each 1, hy’qe---°h5"(M;) > M, . Let h = LIkh,.

-1 -1
Then h(M) = U;h(M;) < Ujh(hjZqo++0h57(My)) = U;hy (M;) and

-1 -1
Ushy (My) = Ush(hiZqe---0hy™(M;)) © h(M) , and therefore

h(M) = u;h, (M) . It is easily seen that Ush,(M;) is a

union of geometrical cubes as described in Sublemma 1.

Corollary I.13. For each capset M, each € > O and

each Z-set K there exists h e H(Q) such that

d(h,idQ) <€, h(M-K) =M and h =1id outside U_(K) .

Proof.

By the topological equivalence of all capsets and by
Theorem I.12, M 1is equivalent to a bcs under some h € H(Q) ;
since Proposition I.8 proves the corollary for basic core

sets, this completes the proof.

33



Proposition I.l4. Let f:K + f(K) be a homeomorphism bet-

ween two Z-sets in Q such that f£(K) N BQ = £(K N BQ) and

d(f,id.) < € ; then there is an f e H(Q) such that f'

extends f , f'(BQ) = BQ and d(f':idQ)'< € .

Proof. Let L € Q be any Z-set. Using the Homeomorphism
Extension Theorem, first find g, € H(Q) such that
g,(L) © s ; next find g, € H(Q) such that gygy (L) N gy (L) =
g and d(gilgggl,idQ) <e/2 . Then gllepg(L)NL=¢g.
Let & = d(gilgggl(L),L) . Since both BQ and gilgggl(BQ)
are capsets, there exists a g3 € H(Q) such that
d(g3,id) < min (¢/2,8) and gsgilgzgl(HQ) = BQ . Then
d(g3gilg2gl(L),L) > 0 and d(ngilgggl,idQ) < €

Now consider K U f(K) as a Z-set L as above. Let
d(f,1dy) =€) < e, and & = €~ . There exists a 5/U-small
® € H(Q) such that @(KU £(K)) N (KU £(K)) = ¢ and in
particular KN of (K) = g , and such that ®(BQ) = BQ .
Define £ :K U of(K) » K U @f(K) by f'|K = gof and
¥ lgor(K) = (9o£)™' . Then a(r*,iqy or(K)) < €1+ 8/
Let, by Proposition I.8, h be an autohomeomorphism of @
such that h(BQ - (KU T(X))) = BQ and d(h,id) < s/
Using Proposition I.5, let g € H(Q) be such that

a(g,1d,) < 8/4 + €y , glh(k U £7(K)) = he*h ™ n(x v £ (K))

Q)
and g(B(Q)) = B(Q) . Then h'logoh is an autohomeomorphism

+

of @ extending £ such that d(h-lgh,id) < eq + 386/ and



h_lgh(BQ) = BQ . We check the last statement:

h~ten([Bq - (kU £7(k))1 u [Ba n (kU £H(K))]
= hlg(Bq) U £F(Ba N (K U £7(K)))
= n™1(BQ) U (B N (KU £T(K)))

= BQ .

h™1gh (BQ)

1

Then ¢ o(h-l

ogeh) 1is the desired homeomorphism.

Corollary T.13 states that for any capset M and any
Z-set K , M-K is again a capset. Complementary to this

we have the following useful proposition.

Proposition I.15. The union of a capset and a o-Z-set

(countable union of Z-sets) 1is again a capset.

Proof. Let M = UM, be a capset, with [Mj)i having the
properties listed in the definition of capset. Let K = UjKi
be a countable increasing union of Z-sets.

We show that M U K 1is a capset by constructing a
homeomorphism H:Q =+ Q such that H(M U K) = M . This
homeomorphism will be an infinite left product LniGi such
that for some increasing sequence (ni>i » (1) G, 1is the

1

identity on Mni ,  (2) G;_q°*+*°Gy embeds K; ;1 1in Mni

(thus G, 1is also the identity on Gy _q°+°Gy (K5 1) )
i
and (3) Gi(M U szlKj) =M .

Let ny = 1 . For the construction of Gl sy choose, for




sufficiently large N, , an embedding rp:Kl U Mhl - an
which is the identity on M~ . Notice that o¢(K; U M, )

ny 1 1
is a Z-set because it is contained in a Z-set. By Corollary

I.13, let f € H(Q) Dbe such that f£(M - (K1 U M Y) = M
1
and let g € H(Q) be such that g(M U (K UM, )) =M.
1

Let h e H(Q) be such that h(M) = M and hf(K; UM )) =
1

hf maps Kl into M and
No

MU Kl onto M , leaving M, pointwise fixed. Observe
1

-1
gp(Ky U Mnl) 3 then G = g

that all the above homeomorphisms can be constructed
arbitrarily small.

The inductive step is similar. The reader can verify
for himself that, if appropriate size restrictions hold,
the infinite left product H of a sequence of such homeo-
morphisms Gy is an autohomeomorphism of Q mapping

MU UiKi onto M

The following two characterizations ot capsets will be
needed in Chapters II and III. The first characterization
(I.17) is known in the folklore, the second (1.18) is espe-

cially designed by the author for the proof's in Chapter TIIT.

Corollary I.16. Suppose M is a countable union of compact

subsets of Q such that

1) For every ¢ > O there exists a map h:Q + Q-M such




that d(h,id) < €

i
eand M; 1is a Z-set in »Mi+l

2) M contains a set UM, such that for each 1, M; =@

3) For each € > O, there exists an 1 and a map

h:Q + M; such that d(h,idQ) < € .

Then M 1s a capset for Q .

Proof. From 1) it follows that M 1s a countable union of
Z-sets and that every compact subset of M 1s a Z~set. We
show that UiMi is a capset. Let €,j and a Z-set K be
given. By 3) there exist 1 > j and h:Q - M; such that

d(h,id,) < €/t . By the Mapping Replacement Theorem there

Q)
exists an embedding :Q - Mi which maps Q@ onto a Z-set

in M; such that d(h,g) < €/ . Then d(g,idQ) < e/2 .

By the Homeomorphism Extension Theorem for Mi s there

exists a homeomorphism f:M; + M; which extends g'llg(K n Mj)
and such that d(f,id) < €¢/2 . Then fog:K =+ My 1is an em-
bedding of K into M which is the identity on K N Mj and
such that d(fog,id) < € . Extending fog to an e-small

F e H(Q) , we see that U;M; 1is a capset, and therefore

M as well.

Amap F = (F )t:X x T =+ X 1ig an isotopy if for each

t
telI, F,_=F(,t):X+X 1is an embedding. Below I is

t
replaced by [1,»] .

Corollary T.17. Suppose M 1is a o-compact subset ol Q

such that
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1) For every € there exists a map h:Q + Q-M such that

d(h,id) < € .
2) There exists an isotopy F = (Ft)t:Q x [1,o] » Q@ such

that F_ = id, and F|Q x [1l,o] is a 1-1 map into M .

Q
Then M 1is a capset for @Q .

Proof. Define M, = F([-1 + 1/i, 1 - 1/i]” x [1,1]) and

hgQ + My by hy(x) = F;((1-1/1)-x) . Since iig d(idQ,hi) = 0

and M 1s a Z-set in Mi+l , the conditions of Corollary

1
1.16 are satisfied.

Alternative definitions of Z-sets. Nowadays, the definition

of Z-set presented here 1s the one most commonly used in
Infinlte-~-Dimensional Topology. Thls definition is closely
related to (i1) below, which is due to Torunczyk [1/]. (v) below
is the original definitlon of Anderson [3]. Definition (vi)

1s used in Chapman's "Notes on Hilbert Cube Manifolds."

Theorem I.18. For a closed subset K of Q the tollowing

are equivalent:

(1) X 1is a Z-set.

n

(i1) For every n > O , the set {f € Q! |1£(1°) n X = &)
— n —_— d

is dense in QI (here x¥

maps from Y to X , topologized by the compact-

denotes the space of all

open topology).

(111) 'There exists an h € H(Q) such that h(K) has
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infinite deficiency.

(iv) For every € > O there exists an h € H(Q) such

that h(K) has infinite deficiency and d(h,idQ) < € .

(v) For every non-empty homotopically trivial open subset

O of Q, the set O-K 1s again non-empty and homo-

topically trivial.

(vi) For any open subset O of Q and any open cover O

of 0, there exists a map f:0 -+ O-K such that ¢

is limited by ¢ (i.e., for any x € O, {x,f(x)]

is contained in some element of @) .

Proof. We show

a) (1) = (i1) = (v)

b) (1) = (iv) = (iii) = (1)
c) (1) = (iv)

a) (1) = (ii): Suppose K 1is a Z-set. Let t:1° = @

and ¢ > O bhe given. Let g:Q *® Q-K be such that
d(g,1dy) < e , then d(f,g°f) < e and gof (I7) « Q-K

(i1) =» (i): Suppose K satisfies (ii). Let n be
sufficiently large that p;(x) = p;(y) implies d(x,yv) < e¢/2 .
Let e:1° -+ Q be the natural embedding e(xl,---,xn) =
(xl,---,xn,0,0,---) . Tet 1:T7 + Q-K such that d(f,e) < e/2
Then d(fop;,idQ) < € and (fop;)(Q) < Q=K

(ii) = (v): et O c @ be open, non-empby and homo-
topically trivial. Since K 1s nowhere dense, 0-K 10 non-

empty. Since K 1is an ANR, we only have Lo show that all



homotopy groups of O0-K are trivial. Let n and

n-1 0-K be given. Extend f to f':In + 0, using

f:3I
homotopic triviality of O . Because K satisfies (1i),
there exists a map g:In + Q-K such that d(g,f') <€,
where ¢ < d(f (I"),Q-0) and e < d(f(31""1),K) . Then

n=1

f(In) c O-K , and if a map F:3I x I +Q 1s defined by

D=1 then the image

linear interpolation between f and g|aT
of F 1lies entirely within O~K . Since ™ is homeomorphic
to the union of itself and a cylinder 31" x I attached to
its boundary, an extension f+:In + 0-K of 1t can be con-
structed from T' and g

(v) = (i1): Let n and £:I"” + Q be given and let
€ > 0 . Vor sufficiently small 6 , d(x,x').< 5 dmplics
d(f(x),f(x')) <e-2Pl o €, for any two points x and x'
of ™ . Subdivide 17 in equal subcubes y1,~°-,9k of
diameter less than & and let Ti be Lhe i-skeleton of
this cellular subdivision. By an induction on the skeleta
-n-1

one constructs f,:T, + Q-K , where d(f|Ty,f) < €-2

and such that for any i-cell D of Ci » the diameter of

¢.o7nti-1 This can be done by

fi(D) is less than
applying (v) to an open convex set containing the image of
the (combinatorial) boundary of D . The details are left
to the reader. This completes (a).

(b): (1) » (iv) follows from the Homeomorphism

Extension Theorem and the Mapping Beplacement, Theorem, and



(iv) = (ii1) and (iii) = (i) are trivial.

(c): (i) = (vl) can be shown by embedding X in
an endface by an autohomeomorphism of @ and applying a
simple geometric argument. (vi) = (i) is trivial.

This proves the theorem.



CHAPTER II
PSEUDO~INTERIORS FOR 29 AND RELATED RESULTS

First we show (Théorem II.2) that the collection of
(connected) Z-sets in Q forms a pseudo-interior for
29 (¢(q)) by verifying the conditions of Temma T.17.
Thus we rely heavily on the facts that EQ’E Q and

£
c(Q) Q@ [9]. As a corollary, we show that 2 ° =

o
(Corollary II.3). DNext these results are generalized to

the manifold case (Theorem II.!} and Corollary IT.H).

Y we mean the space of all continuous

Notation. By X
mappings from Y dinto X endowed with the compact-open

topology.

Lemma II.1. a) The collection of Z-sets in Q 1s a G
oQ

in

b) The collection of connected Z-sets in Q

a Gy in €(Q)

|5

Proof. a) Let 21 = {K € 2Q|Hg ¢ QQ:H<Q) nNK=-=@ and

h2



d(g,idQ) < 1/i} . Obviously 2; 1is an open subset of 29
and 2 = ﬂipi is exactly the collection of Z~-sets in Q .

b): This is a direct consequence of a).

Remark. Lemma II.l has a finite-dimensional analogue. In
[11], Geoghegan and Summerhill give generalizations to

D for many infinite-dimensional notions

Euclidean n-space E
and results. In [11], Section 3, they define what they
call Zm-sets and strong Zm-sets in E? for 0<m< n-2 .
For (n,m) # (3,0),(4,1) or (4,2) , the Z -sets and
strong Zm-sets coincide. A third possible definition is:
"K 1is a8 Z;-set 1t for all 1 < m+l , the maps from i
into E™\K 1lie dense in (En)Ii " . This definition is
easily seen to imply the definition of Zn-set glven in [11]
and to be i1mplied by the definition of strong Zm-set. The
collection of Z;-sets can be written as a countable inter-

section of open sets: 1let, for all 1 < m+l , {fi]k be a

i
countable dense subset of (En)I . Let

n i R
2, = (ke 2® |Zg e (") : g(T') N K =g and
3
d(g,fi) < 1/k] . Then n 25 1 1s exactly the col-
i§m+l ’
K=1,2, -

n
* 1
lection of Zm—sets. Moreover, this set is dense in QE

. . ve s I ¢ B
since the collection of finite subsets off T is a sub-
collection of it. If m < n=3 , its intersection with

c(E") 1is also dense in C(T") since the collection of



compact connected one-dimensional rectilinear polyhedra is

a subcollection and 1s dense in C(E") .

Theorem II.2. a) The collection p of Z-sets in Q is

oQ

a pseudo-interior for

b) The collection 2, of connected Z-sets

———

in Q 1is a pseudo-interior for C(Q) .

Proof. Note that Lemma I.17 is stated in terms of the
pseudo-boundary and Theorem I1I.2 in terms of the pseudo-
interior. The maps h and (F.), which are asked for in
the lemma will map connected sets onto connected sets, so
that they prove a) and b) simultaneously.

As remarked in the Introduction, every compact subset
of s 1is a Z-set in Q . Therefore the map h:Q * s ,
defined by h(x) = (l-€)-x - ((l-€)~x],(1-e)-x?,°'-) in-
duces a map 2":2% 4 J as asked for in 1) of Lemma T.17.

We shall construct Pt so that for ‘K e 29 and
t < o the set Ft(K) will be the union of two intersecting
sets, one of which carries all informatlon about K and the
other of which is not a Z-set. Iirst we consider the case
that t dis an integer. We define a sequence ol maps

(fi):-L:Q + Q hy
£(x) = (1 = F) + (XgsevesXp350,%p5,950,%05 15,7 7) -

Obviously fi(Q) is contained in s and projects onto O



in all odd coordinates > 2i+l1 . We define another

auxiliary operator Tj C:ZQ - 2Q », where j > 1 and
, Z

<.

c e [0,2]

TJ.,C<K) = {(Xl’...’Xj‘l’xj+y’xj+l’...)| ly' _<- c and

\xj+y| <1 and (xi)i € K} .
As c¢ varies from O to 2, T o(K) is transformed
k)
continuously from K into a set which occupies the whole

interval in the jth direction. We have:

T, o(K) = K and T, (07 P (K)) = pyIT(R_y (K))

If pj(K) = {0} then ¢ = 2 can be replaced by c¢ =1

in the above formula. Now we set:

By (K) = Toyp3,1(51(K)) U Pp113 (Pogs (£1(K)))

For every K this 1s a non-Z-set since the second term

contains a subset of the form ps_l(xl,---,xj) with
. : . -1 1
-1 <x;, <1 for i=1,-++,5 . Furthermore, p21+BC§) n Fi(K) =
55 T PO . o : .
p21+3(§) n 121+3,%(I1(K)) is a translation of
fi(K) in the direction of the 21+3rd coordinate, and

therefore the first term contains all information about
XK , and Fi is one-to~one,

Before we describe ft for arbitrary t , we restrict

. V- o - .
ourscelves to K = 1 Lﬁl where 1 > 1 and n >- 1



£, (x) =
1
(l——ox LI
T)* (Xps 00 s X0450,%p347505%p3 490 05X 13205 Xp5 40150500 7)

f (x) =
1
i+ s

1
(1- —“I)°(X:"',X X 0 -
j_+ _2_ 1 2i’ 21+1, ’O’x2i+2’o’x2i+3,ijgim,o, "')
T =
1+ §<x)
1

(1_ s (x cse X
;;fg) (X5 "2 Xpy5%p5415%p1 425050505 X3 435 05Ky 40y5 05 70 *)

(l__ L] x .ou,x
—=3) (%, 019%¥01417 X o142 0s%py 4320505 05X 150, 200

(1_ 'X,".x'
—=r) " (Rqs * o Koy X0 415 X1 420 09X 0143505 X014y 2 0,05 0570 )

’(X c-ox X .
177" X015 %0447 %03 402 05 X4 42500 Xpg 50X 04 55 7

For t e (L + 222, 1 4 0 i
( =, 1 4 ?T'I—'I) s ft is defined by linear



interpolation between f 1. and f . This way

. n
L+ 2= i+ 5T

ft(Q) projects onto O in all odd coordinates > 2i + 3

1f ¢ < 141 .

For i >1 and u e [0,1] we define

Fiau(K) = T21+3,§(1 u)°Toi+s, u( itu(K))

U Tos i, 0-00°T2145,1- u(p21+5(p21+5(f1+u<K)))) :

Note that this is consistent with the previous definition

of F,(K) . We check:

1)

2)

3)

(Ft)t is continuous. Tor finite t this follows from

f
~ t

. P nd
Jsc’ a

the continuity of the operators T
pé—lop; ;3 for t 4+ « it is easily seen that Ft(K) + K .
For every K, F (K) s a non-Z-set if t is finite,
_1(

for it contains a subset of the form p; xl""’xj)

with =1 < Xy <1 for d=l,<+°,j .

F = (Ft)t is one-to-one on 2% x [O,0) : for the
determination of t from F,(K), note that t ¢ (i,i+1]
iff pj(Ft(K)) = [-1,1] for all j > 2i+5 and for no
odd j < 2i+5 . Once it is determined that t e (i,i+1],
then on that interval t 1s in one-to-one correspondence

-(1-(t-1))/2, (1~ (t-1))/2] (recalling

that p21+30ft(x) =0 for xe Q and t i+l ).

i

with p21+3oFt(K)

Finally, for t = i+u and u e (0,17 ,



F (K) N p21+3((1 -u)/2) n pgi+5(u/2) is a copy of K
in a canonical way. Note that this set does not inter-

sect the second term

I_l ]
Tos 4, 2-00° T2145,1-u (P21 15P2i 45 (F145(K)))

since the latter set projects onto O in the 2i+3rd
coordinate, and if wuw =1 also in the 2i+5th coordi-
nate.

L) If X 1is connected, then F,_(K) is connected since
Ft(K) is the union of two connected sets which inter-

sect in f_(K)

The following corollary answers a question posed by

R. M. Schori:

Corollary IT.3. Both the collection of compact subsets of

Lo and the collection of campact connected subsets of Lo

are homeomorphic to Lo -

Proof. According to [1], %, 1s homeomorphic to

(--1,1)oo . Thus 1t is sufficient to show that the
collection £ (or £C) of' closed (connected) subsets of

Q which are contained in s forms a pseudo-interior tor

oQ

(or C(Q) ). Since this collection is a subset of
i (20) we only have to verify condition 1) of Lemma T.17

and to show that 2 and 2, are C(g's . But the map

h

2 from the proof of Theorem I1.2 actually maps o9 gnd



c(Q) in £ and £, respectively, showing 1) of Lemma I.17.

Finally, we can write £ (£C) as a Gy Dby ni{K < QlK
is closed (and connected) and p,(X) ¢ (-1,1)) . This

completes the proof of the corollary.

We have similar results about hyperspaces of Hilbert

cube manifolds. A separable metric space M 1is a Hilbert

cube manifold or Q-manifold if M is locally homeomorphic

to Q@ . In [8],'Chapman proved that every Q-manifold M
is triangulable, i.e., M= |P| x Q , where P is a
countable locally finite complex. If M 1is compact, then
P can be chosen finite and even such that |P| 1is a com-

binatorial manifold with boundary. We denote points of

|P| x @ by (a,x) or (a,(xq);) and define the projection

meps pi(q,x) = %y and pP(q,x) = q . For a given Lriangu-

lation M = |P| x Q , a closed subset K& M is called

i-deficient if p;(K) 1is a point, and infinitely deficient

if K is i-deficient for infinitely many i . A closed

subset K of a compact Q-manifold M is a Z-set if for

every € there is a map f:M =+ M=K such that d(f,idM) < €

Only a restricted version of the llomeomorphism Extenslion

Theorem holds, since homotopy conditions have to be met.

Theorem II.4. If M 1is a compact connected Q-manifold, then

a) the collection pM of Z-sets in M 1s a pseudo-
oM

Interior for




i

b) the collection 2% of connected Z-sets in M 1is

a pseudo-interior for C(M) .

Proof. As observed above, by [8], we may write M = |P| x Q ,
where |P| is a compact finite-dimensional manifold with
boundary. Again we apply Lemma I.l17, where the M from the
lemma is 2M-;M or C(M)-p% respectively. As before one
can prove that QM and 2% are Gg-sets in 2" and C (M)
respectively. Condition 1) of the lemma is proved by the
map oM | where h(p,x) = (p, (1-€)-x) .

Let H:|P| x [1,»] » |P| Dbe an isotopy such that
H, = 1d and I (|P|) c |P|~|aP| for finite t (remember
that we assume that |P| 1is a compact manifold with boundary).
Consider the map F:2Q X [1,0] = 2@  defined in the proof
of Theorem II.2. Define, for q ¢ |P| and Kcq,
G, ({a) x K) = {H (q)) x F (K) . If L is a subset of
|P| x @ , then L can be written as a union

)

U {a} x L, . Now define G (L) = U Gt({q] x T

qepp (L) d qep (L) d

Then G = ((}t)t satisfies 2) of Lemma I.1l7. We need only
show that G (L) 1is a closed set.

From the definition of F, (X) one readily sees that
Ft(K) = XgKFt({x}) . Therefore we can write G (L) =

= ( U) L{Ht(q)} X Ft([x}) . Let (ri’yi)i be a sequence

in G,_(L) converging to (r,y) . We have to show that

&



(r,y) € G (L) . Let ry =Hg(q) and y; e Fe({x4)) 5

where (q,,%.) € L . There is a subsequence (g, ,X. )
i’71 ik i,

converging to some point (q,x) € L . Then H(q) =

= lim r, =T, and by continuity of Ft we have that
k k
y € F ({x}) . Therefore (r,y) € G, (L) .

Corollary II1.5. For any connected zé-manifold M , both
2M

the collection of compact subsets of M and the col-

lection C(M) of connected compact subsets of M are

homeomorphic to Lo

Proof. According to [8)] we can triangulate M = |P| x Lo s
where P 1s a locally finlte simplicilal complex. Of
course, now we cannot assume that iPl is a manifold with

boundary.
Let K be a compact (connected) subset of M , then
K has a closed neighborhood |P'| X &y » where P is
a finit? (connected) subcomplex of P . The collection
! P
of (e ) of compact (connected) subsets of M which are
contained in the topological interior of |P'| L is an
open neighborhood of K . Its closure in oM (c(M)) , the
set (K c M|K is compact (an? connected) and K < |P'| X Lol s
is a pseudo-interior for 2P | xQ (for C(\P'| x Q)) if

we identify with (-1,1)oo c Q . This is proved by an

2o
argument similar to that in the proof of Corollary ITI.3.



!
P (Gg ) 1s an open subset of a copy of 4, ,

Therefore ©6
showing that oM (C(M)) 1is an £,-manifold.

Next we show that 2 (C(M)) 1is homotopically trivial.
By [12], this will prove that oM (C(M)) is homeomorphic
to 4, . Let a map £ia1" + 2M (or f£:3I"” -+ C(M)) be

given. Then Y = U nf(y) is a compact union of compact
yeal

sets, and therefore a compact subset of M . Choose a
finite connected subcomplex P' of P and a compact con-
vex subset P of 4, such that Y < |P'l x D . Then
£(I") < o|P [xD (£(31") < c(|P'\ x D)) . Moreover,
2‘P'|x ? and C(lP'|xD) are contractible: define, for
ke 2l IXDixe c(p'|xp)) and for t ¢ [0,7] where T
is sufficiently large, H(K,t) to be the closed t-neighbor-
hood of K 1in éome fixed convex metric for |Pf| x D .
Then W 1s a contraction of 2|P'\x D (or C(lP'\xD)) .

SIP X D

Therefore f can be extended to T:T1" -+ c 2

(to Tt = o(|P |xD) € ¢(M)) .



CHAPTER ITT
PSEUDO-INTERIORS FOR 2T

In this chapter we show that both the collection of

wero-dimensional subsets of I and the collection ¢ of

I We use

Cantor sets in 1 are pseudo-interiors for 2
Lemma T.16. It scems reasonable that similar statements
are true for the hyperspace of more general spaces, but
the author has been unable to prove a comparable statement

even for the hyperspace of a tinite graph.

In this chapter I = [0,1]

Lemma IIT.l. a) The collection O of zero-dimensional

closed subsets of a compact metric space

X 1is a ﬂé in ZX

b) The collection ¢ of Cantor sets in

X a G, in 2 .

%

Proof. a) The collection o, = (Ac X|A 1is closed and

all components of A have diameter less than 1/n} is

an open subset of QX

For let (Ai)i » A, where A, 4 Gy,



for all 1 . We show that A ¢ @ . For every 1 there
is a component K; of A, with diameter at least 1/n .

The sequence (K,), has a subsequence (K, ) which con-
i/1 ik K

verges to a set K which is closed, connected and has
diameter at least 1/n and is a subset of A . Therefore
Ago, . b) Wewrite ¢, = (A cX|A is closed and for
all x e€ A, there is a y # x in A such that

d(x,y) < 1/n} . Since Cantor sets are exactly the compact

metric spaces which are zero-dimensional and have no iso-

lated points, it follows that ¢ = ON ﬂn Ch . We show that

X

¢, 1s an open subset of 2 let (A - A, where

1)1
Ay £ ¢, for all 1 . There is a sequence (g;); such
that Ul/n(qi) N Ay = {qi] . This sequence has a limit
point q and it is easily seen that Ul/n(q) n A= {q)

Therefore A ¢ C, -

Main Lemma TIII.2. 'There exlst arbitrarily small maps

Tae.

h: 2

Proof. The map h will be defined as a composition

F h
[ 7FSI

‘\\\\\~_~__1T‘~—_’/~,,//”

where FO8T (Finite Sequences of lntervals) is a collection

of finite sequences of intervals, to be defined later,




and FSC (Finite Sequences of Cantor sets)
is a col-
lection of finite sequences of topological Cantor sets,

which will also be defined later on. The map f will be

+
N

In the subsequent discussion we assume a fixed € < % R

discontinuous, but g, h and goh§0f are continuous.

and N 1s the largest integer such that N.e < 1 . The

mep h = gohgof will have distance less than 3¢ +to the
identity.

Step 1. The set FPFST . Let FSIn be the set of all se-

quences of n terms <[al,b1],---,[an,bn]> such that
1) 0<a; and b <1
11) 84,1 2 by » 1.e., the intervals do not overlap
111) by~ a; > 2nee” if 1< 1< n
1v) by~ a; > neet if i=1,n .

The metric on FSIn is
1

4 o 1o
pn(<[&1:bl]’"';[an,bn]>,<[al,hl],---,fan’bn]>)
' ! AR nEe N &
= m?x max (|aj-a4{,|bs-b;|) . Define FSI = U _4 FST

where N 1is defined as above. Note that for n > N ,
FSI, = @ since for any element X of FSI , the sum
of the lengths of the intervals of X 1s at least

(n-—l)-2n-e2

> (n=-1)-2¢ > 2-2¢ > 1 since ¢ <-% »  wWhereas
X 1is a collection of non-overlapping subintervals of

[0,1] . We choose the following metric on FST



J0

p(X,Y) = pn(X,Y) if {X,Y} €« FSI , i.e., if both X and
Y consist of n intervals, and p(X,Y) =1 1if for no n ,
{(X,Y}) ¢ FSI_ , i.e., if X and Y have a different number

of terms.

Step 2. The function f:2L + FST . ILet A e 2% ; then

Ue(A) s the open e-neighborhood of A , is a finite

union of disjoint subintervals of I , open relative to

I . Let f(A) =<[ay,bq], "*,[a,,b 1>, where the inter-

vals [ai,bi] are the closures of the components of UE(A) s
arranged in increasing order; e.g., if U_(A) = (ay,by) U
(by,by) then f(4) = <[ay,by],[bysbs]> , and not <[ay,b1> .
This assignment is not continuous: Let Ay = {0,2¢ + 8] .

If 6 >0, then f(Ay) = <[0,e],[e+8,3e+8]> but if 6 < O
then f(Ag) = <[0,3e+8]> . But apart from this phenomenon

f 1s continuous in the followling sense: Let 6 < € and

I

suppose for some A,B e 27 , dH(A,B) < & , where d, de-

H
notes the Hausdorff distance (see the Introduction). Then
each gap of Ue(AUB) (including a gap consisting of one
point) corresponds to, i.e., is contained in, a gap of

U, (A) , since for & < e 1t cannot lie left or right from

U, (A) . Conversely, each gap in U.(A) which has length

> 26 corresponds to, i.e., contains, a gap of Ue(AUB)

Let f,(A) be a function from 2  to FST which is ob-

tained from f(A) by replacing each gap in U_(A) which



has no counterpart in Ué(AUB) by a degenerate gap (see

Fig. IIT.1);

— + 4 - £{a)
. . «  £(AUB)
- '_: + 4 fB(A)
- « By
lg. TIT.1

e.g., if f(A) = <[a1,bl],[a2,b2]> with anp-b; < 26 and
! 1 . ot
if U (AUB) = (ay,b,) with 0 < by - by, < & and

b b
'
0 < ay- a3 <&, then let fy(A) = <[a),~m—],[~ by

Let fB(A) eliminate the degenerate gaps thus obtained
(but not the other degenerate gaps); e.g., in the above

example fB(A) = <[a1,b2]> . Then for dH(A,B) <6 we

2



have d(fB(A),fA(B)) < & and also d(f(A),fB(A)) < & and
d(f(B),f,(B)) < & . These notations will be used in the

proof of the continuity of gohﬁof .

Step 3. The set FSC. Let C be a topological Cantor set

such that Cc I and (0,1} ¢« C and dH(C,I) < e . Let
C(a,b) Dbe the image of C under the linear map which maps
O onto & and 1 onto b . For [a,b] € [0,1] we also
have dy(C(a,b),[a,b]) < € . We define FSC, to be the

collection of all sequences of n terms <C(al’b1)"°"c(an’bn)>

such that
1) 0<a; < - <8, <1
11) 0 < bl.ﬁ cee & 'bn <1
111) ay < bi for 1 <1< n.

N

Thus the sets C(ai,b may overlap. Define FSC = U _,ISC_ .

1)
The metric of FSC 1is somewhat analogous to that on VSI:
If X = <C(al,bl),---,c(an,bn)> and Y =
! L 1 !
<C(aysby)s*5C(a,,b )> then p(X,Y) =
] U ] . e
mix dH(C(ai’bi)’C(ai’bi)) and if for no n , {X,Y] « FSC,

Step 4. The map g:FSC + ¢ . We simply let g(X) be the

union of the terms of X . Obviously g is continuous.
Notice that by the characterization of Cantor sets given

in the proof of Lemma IIT.1l, g(X) 1s indeed a Cantor set.



Step 5. Construction of hg . Prom the remark at Step 2

it 1s easlly seen that the function
@:<[aq,b 1,5 [a,,b 1> <C(aq,by)s***5C(a, ,b )> does
not yield a continuous composition go¢bf . Instead, we

construct by induction a map hn:FSIn - FSCn and set

+ n . +
h = Uj_ghy (i.e., hp

hy(X) to X if X e FSI; and 1< n) . The following

is the function which assigns

induction hypotheses should be satisfied:

i) If X = <[al,bl],-°-,[an,bn]> , then hn(X) =
| 1 1 ! : '
<C(al,bl),--~,c(an,bn)> » where a; = a; and
1
bn = bn .
11) Additivity at "large" gaps. If X can be broken

up into Y and 7 where Y = <(al,b1],~--,[ai,bi]>
and 7 = <[ai+l’bi+1]’""[an’bn]> and

2 Lo . ) v
8441 - by 2 2% then h,(X) = <C(ay,by),**sC(a,,b )>,

+ ) o L
where hS (Y) = <C(ay,by),°**,C(ay,bs)> and

+ ! ! ot
h' 1(2) = <C(a;,75b5.9)s7*sC(a,,b,)> . In par-

. . 1 t
ticular, by i) b, = b, and ay 4 = &y,4

iii) If X = <[a1’b1]"“’[ai’bi]’[bi’bi+1]’""[an"bnb )

that 1s, 1if = bi » and if Y =

8441
<[a1,b1],---,[ai,bi+l],---,[an,bn]> , and if,
moreover, hn-l(Y) =
1 tot 1
<C(a1’b1)’""C(ai’bi+l)’""C(an’bn)> , then
1 1 1 T
hn(X) = <C(al’bl)’...’C(aj,bi-i-l)’C(ai’bi'*‘l)’

! ' ' . ' 1
C(aj40s0y4p)s *5C(aub > 5 dee, 8y = a5,



!
end b, = Dby, and gh, (X) = gh,_;(Y) .

These induction hypotheses, and especially iii), will
be seen to insure contlinulty of gohgof . We give now the
inductive construction of hn:FSIn -+ FSCn .

n=1: set hl(<[a1,bl]>) = <C(ay,by)> , 1in accordance

with 1) .

n=2: let X = <[al,b1],[a2,b2]> with both bl- aq 2_62

2 . o
and b, - a, > € and with a,- by > 0. If a, = Dby then
according to iii) we have h,(X) = <C(aq,by,),C(ay,b5)> .

If a5~ by 2_262 , then according to ii), we have h,(X) =

2
2
'<c(a1,b1),c(a2,b2)> . If ap- by =t-2¢" with 0t <1,
then bi and aé are constructed as in Figure III.2 (the
pictures show what happens if t 1is large (upper pictures),
and what happens if t 1is small, (lower pictures)).
* o * *

In formulas: let X = <[al,b1],[a2,b2]> be the
result of enlarging the gap (bl’a2) symmetrically f'rom
its midpoint by a factor 1/t . Thus aZ— bI = 22 . Ye

L ¥ N * "
Note that this i1s consistent with the case 8y = bl and

2

a2-b1 2.26 - as treated above.

n + 1 : Suppose h; is already defined. Let
X = <[al,bl],'--,[an+1,bn+l]> € FSIU+1 . If for all 1 ,
- bi =0, 1.e., if all gaps are degenerate, then by

8341
repeated application of i1i) we find that for all i ,
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! large L !
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| \
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aO bO al bl
)
t Y\ !
small x '
X Vo
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Note that above and below we have dirferent

X but the same X*
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t f 2
C(aysby) = C(aqsb44) - If mix (8547~ by) > 2, then
h ,1(X) is determined by ii). If for several i ,

N 2
33417 Py 2 2€
h: s that hn+l(X) is independent of the choilce of the gap

at which X is broken up into Y and Z . So let us

then it is easily seen, using ii) for

assume that the length of the largest gap max (8,9~ Py) =
i

2

ot.e® with O0< t <1 . Let X  be the result of

widening each gap symmetrically from its midpoint by a factor

1/t , so that the largest gap of x* has width 2¢2 . Now

break up X* into Y and Z , where the gap in between

Y and Z has width 2¢° . The reader may check that Y

and Z are elements of FSIlU cee U FSIn » 1in particular

that they consist of intervals of sufficient length, noting

that since Y and Z have less terms than X , they are

allowed to consist of smaller intervals. Therefore h;(Y)

and h'(z) are defined. Let hl(Y) = <C(ay,by),***,C(aj,by)>
+ * * *

end h_(Z) = <C(ay,9sb4,9)s°->C(a8,,95b,49)> - The con-

struction of h_.,(X) from h:(Y) and h;(Z) is shown

in Figure III.3.
*

1
* L * *
C{t-a, + (1-t)-ay,t-b, + (1-t)-bn+l),---,c(t-an_

In formulas: h ,q(X) = <C(a;,t-by + (1-t)-bn

1)
1T
(1—t)-al,bn+l)> . Thus each Cantor set i1s stretched somewhat
toward C(ay,b ,q) : only a little if t is close to 1

and almost all the way if t is close to O .

Tt i1s an easy exercise to check the induction hypo-
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theses and to prove that dH(A,gohgof(A)) < 3¢ . To show

B

continuity, we refer to the functions fB and f ,

defined at Step 2. From the remarks there and the con-
tinuity of g and hg and the fact that gohgofB(A) =
goh§ofB(A) for any two A,B € 21, we easily see that

gohgof is continuous.

Let I = [{t)|t e I)c 2 . Then I" is a Z-set in
2!, since the map f:20 4 21 defined by f£(XK) = C1(U_(K))
is an €-small map from QI into QI-I* . Moreover,
I* ne = ﬂ . 'Therefore the 1nclusion of I* in'Lemma ITT.3

i1s harmless according to Corollary I.1l3.

Lemma TIT.3. The set (2%-0) U I" contains a family of

copies of Q as asked for in Lemma I.16 sub 2).

Proof. Tor Ko I , let [aK,bK] be the smallest closed

interval containing K . Define MG c 2I by
M, = iK c I|K 1s closed and [ay + (l-c)-(bK-aK),bK] c K) .
Let K€ be the image of K under a linear map which maps

a, onto a, and by onto ap + (l-c)-(bK-aK) . In
formulas: K. = {a, + (l-G)-(t—aK)|t € K} . Let h_(K)
= K. U [a; + (1—€)'(bK— aK),bK] . Then h_ 1is a homeo-

morphism of 2I onto M€ with distance < € to the

identity. Since Lemma II1I.2 and the remark on I* show

that every closed subset of (21-0) U T is a 7-set, it

T



follows that Me is a Z-set in EI . Becsguse for

-1 _ . _ I
8 < e, hy" (M) = M(e-a)/(l-a) is a Z-set in 2~ by the
same token, we see that M€ is a Z-set 1In M6 « There-
fore the family {Ml/i}i satisfies 2) of Lemma I.16, both
for M = (EI-O) UI' and for M= 2%¢ .

Combining Lemmas III.2 and IITI.3, we obtain the main

theorem of this chapter:

Theorem ITII.A. Both the collection of topological Cantor

gets and the collection g£ zero-dimensional subsets in T

are pseudo-interiors for 2I .

Finally, we mention the following conjecture:

Conjecture (R. M. Schori). The collection of finite subsets

of I 1s an fd capset for ol .
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