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ABSTRACT

The purpose of this dissertation is to develop further
the theory and applications of quasi-normed ideals of
bounded linear operators on Banach spaces. The theory was
initiated by R. Schatten, A. Grothendieck and A. Pietsch.

In Chapter I we present some basic results needed for this
theory. Some questions of Pietsch [32] concerning the ideal
of finitely approximable operators are answered.

In Chapter II ideals of nuclear type operators and theilr
adjoints are studied. We show that the ideals of regular
(p,r,s)-integral operators can be obtained by maximizing the
ideals of (p,r,s)-nuclear operators.

In éhapter ITTI the product and quotient of two quasi-
normed ideals are introduced. It turns out that the con-
jugate ideal of a product ideal is a quotient ideal. This
fact allows us to compute the adjoints of several specific
ideals. We also provide some concrete examples and give a

proof of the converse of a classical result of Grothendieck.

iv



In Chapter IV we investigate some classes of operators

with the aid of s-numbers on Banach spaces. In particular,

an ideal of compact operators on Hilbert spaces is con-

structed to give a simple direct proof of the result of
A. Brown, C. Pearcy and N. Salinas [1].



CHAPTER O
INTRODUCTION

The theory of quasienormed ideals on Banach spaces,
as most abstract mathematical theories, began with the
study of particular interesting examples. The classes of
nuclear and absolutely summing operators were among the
first examples of normed ideals. These classes of operators
were investigatéd from the standpolint of tensor products by
Schatten [39] and Grothendieck [13]. The appearance of
Pietsch's book [28] indicated that those classes of oper-
ators could be studied without the notion of tensor product.

Since the appearance of [28], various special classes
of operators between Banach spaces have been widely studied,
generallized, and applied. 1In particular, in the paper [21]
Lindenstrauss and Pelczyﬁski demonstrated the power of the
notion of p-absolutely summing operators in investigating
the subspace structure of Banach spaces. For other results
characterizing the structure of certaln Banach spaces in

terms of the behavior of various classes of operators, see

1



[12}, [19], [41]. Recently, Pietsch,in his prebook [32],

sketches the outline of 1deal theory on Banach spaces.

We follow [12] and [32] to further develop this theory

and applications. We attempt to provide a unified approach.
In the remainder of thils chapter, we provide the basic

definitions, notations and some important theorems which

will be used through this paper.

§0.1 Fundamentals and Notations

All spaces we conslder here are Banach spaces unless
otherwise stated. For each Banach space E , we denote
by UE
measure W 1s a function, defined on a o-algebra I of

the unit ball ({x € E:||x|| < 1} of E . A positive

some set Q , whose range is in [O,»] and which is count-

ably additive. 1In particular, p 1is called a probabllity

measure if u(q) =1 .

If Q 1is a topological Hausdorff space, then a finite
Borel regular measure ¢ on Q 1s defined as a positive
measure on the 0-algebra of the Borel sets contained in Q
such that W(B) = sup{u(K)|K € B , K compact] for all Borel
sets B cq .

If A 1is a compact Hausdorff space, then C(A) 1is the
Banach space of all scalar valued continuous functions on A
equipped with the supremum norm. A continuous linear func-

tional @ on C(A) 1s called a Radon measure on A . The




Riesz representation theorem establishes a one-to-one cor-
respondence between positive Radon measures and finite
Borel regular measures on A by the integral
LE, 0> = IAf(a)dp(a) .

For each positive measure M , we denote by
Lp(u) = LP(Q,Z,u) » 1 < p< o, the Banach space of equi-
valence classes of measurable functions on the measure space
(Q,Z,u) whose pth powers are integrable (resp. are essen-
tially bounded if p = « ) and with norm

J]f(x)pdu iIf 1<p<m

el =

ess. sup |f(x)| if p = .
If (T,Z,4) 1s the discrete measure space on a set
T' with u({x}) =1 for every x € I' , we denote Lp(u)

by £ _(T') i.e. the Banach space of all scalar-valued func-

p(
tions f on the set I for which

1t Py <o it p<a
Nl =4

sup|f(a)]| < = if p=o .
Q

-

If T 1s the set of all positive integers, we also
denote zp(r) by Ay s while zg will denote zp(F) with
' =1(1,2,+,n} , n < =,

The subspace of ¢ _(I') consisting of those functions
which vanish at infinity is denoted by c ('Y (resp. c

if T 1is the set of positive integers).



Furthermore, if (E r 1s an indexed family of

a]as
Banach spaces, we denote by (@® E_ ) , 1 <p < o (resp. by
acT &P =

( @rEG)W) the Banach space consisting of all functions
o€

- , |y
X = {xa]a£F with x € E, ftor all o and agr"x“"Ea< oo

a
(resp. supHxa“E < ») under the obvious norm.
ael’ a

By operator, or map, we will mean a bounded linear
operator. The collection £(E,F) of all operators from
E into F 1s a Banach space equipped with the norm

|7 = sup x| .

erE
For each Banach space E , we denote by IE the
ldentity map of E . A projection P 1s an element of

£(E,E) such that P> = P .

A subspace 1s a closed linear subset. If M 1s é sub-

space of E , Jﬁ denotes the injection map from M 1into

E . For each subspace N of E , QS denotes the canonical
1
mapy ¢rom E onto the quotient space E/N . By E we

mean the space of all continuous linear functionals on E
with ||f}| = sup |<x,£>| for f e E .
erE
For T € £(E,F) , the dual operator T' of T 1is the
element of £(F',E') defined by <T'b,x> = <b,Tx> for all
beF ,xekE.

For each x € E , let JEx:a + <x;a> , then JE is

an operator for E 1nto the bidual space E" and




|lggxll = x| . Jg 1s called the canonical injection. The

space E 1s called reflexive 1if JE is onto.

An operator T € £(E,F) 1is called finite, written
T € ¥(E,F) , 1if T has finite dimensional-range. An
operator T € Z(E,F) if and only if there are elements
1
81,89, °°",8, € E and elements Yy:¥ps ** sy, € F such that

n

™ = X <x,ai>yi for x € E . We usually write
i=1
n

T= ¥ a,®y, .

IS

For each finite operator T = a;® x; € ¥(E,E) , the

i=1

trace of T 1s defined by Tr(T) = g <x;y,a;> . It is easy
to see that Tr(T) 1is well definedizid Tr(T) = Tr(T') =

= Tr(JgT) for T e ¥(E,E) . Moreover, if T e F(E,F) and
S e £(F,E) , then Tr(ST) = Tr(TS) .

An operator T € £(E,F) 1is finitely approximable.

denoted by T € C(E,F) , 1f T belongs to the closure of
% (E,F) under the operator norm ||| . An operator T e £(E,F)

is compact, respectively, weakly compact if T(UE) is re-

latively compact, respectively, relatively weakly compact.
We use K(E,F), [W(E,F)] for the set of all compact
[weakly compact] operators from E to F . An operator

T ¢ £(E,F) 1s completely continuous if for each weakly con-

vergent sequence (xi) €e B, (Txi) is norm convergent. The

class of completely contilnuous operators is denoted by



V(E,F) .

§ 0.2 Some Geometric Properties of Banach Spaces

A Banach space E has the approximation property (a.p.,

in short) if for each compact set A c E there 1s an oper-
ator S e ¥(E,E) such that {[(Ig- S)(x){| <1 for x e A .
If S can be chosen so that ||S|| < 1, then E is

said to have the metric approximation property (m.a.p., in short).

It is very easy to prove that E has a.p. if and only if
K(F,E) = C(F,E) for every F . For numerous equivalent
formations of the approximation property for a Banach space,
see [13].

The following remarkable result was demonstrated by
Enflo [6]. It also provided a negative solution of the

famous basis problem in Banach spaces.

0.2.1 Theorem. There is a Banach space which does not have

the approximation property.

A Banach space F has the extension property if for

each T € Z(M,F) , M a subspace of E , there is an
operator T € £(E,F) with T, = TJﬁ and ||T || = |IT| for

any Banach space E .

0.2.2 Theorem. For each set T , g (I') hasthe extension pro-

perty.



(o o]
.

0.2.3 Theorem. For each Banach space E , JE.x » X,a>
is an injection map from E into the Banach space £ (U ,)

with [|Jgll = 1 -

A Banach space E is sald to have the lifting property

if to each operator T e £(E,F/N) and each number e > O ,
there is an operator T € £(E,F) with T = QET and
\T|l < (1+e)||T,|| where N is a subspace of an arbitrary Banach

space P

0.2.4 Theorem. For each set I, the Banach space 4,(T)

has the l1ifting property.

0.2.5 Theorem. For each Banach space E , the map

Q%:(Xx) * £ Ax 1s a surjection from £,(Up) onto E with

erE

1 ,
legh =1 -

Finally, we also need the "Principle ot Local
Reflexivity" established by Lindenstrauss and Rosenthal [22]

(see also [18]).

The Principle of Local Reflexivity

Let E be a Banach space (regarded as a subspace of

1t
E ). Let U and V be finite dimensional subspace of

1t 1
E and E , respectlively, and let € > O . Then there
exists a one-to-one operator T:U -+ E with T(x) = x for

all xe€e ENU, £f(Te) = e(f) for all ee¢ U, f € V and



It <1 + e .

§ 0.3 Certain Classes of Operators

In this section we give four fundamental classes of
operators which were studied in detail by Grothendieck [13]

and Pietsch [28].

0.3.1 Definition. An operator T e £(E,F) 1is called

]
nuclear if there are elements a, € E and elements Yy € F

with % le llllv,ll < + e« such that T has the form
n=1 ‘

[s,¢]
Tx = £ <x,an>yn for x € E . For each nuclear operator
n=1

T , we set v(T) = inf{ T |ja ||lly,l| < ) where the infimum
n=1

is taken over all possible representations of T . We denote

by N(E,F) the set of all nuclear operators from E into

F . The space N(E,F) 1s a Banach space under the norm v .

0.3.2 Definition. An operator T e £(E,F) 1is called in-

tegral if there i1s a number p > O such that
|Tr(TA)| < P||A}} for A € F(F,E) .
We set 1(T) = inf p . The collection I(E,F) of all

integral operators forms & Banach space under the norm 1 .

0.3.3 Definition. An operator T e £(E,F) is called

absolutely summing if there is a number p > O

n n
E ||Tx;l| < o supl Z_|<x;,a>]:|la]l < 1] for all finite sets
i=1 - i=1 -

-{xlsxex"'sxn} cCE.



We set 7(T) = inf p . The collection II(E,F) of all
absclutely summing operators from E into F forms a

Banach space under the norm T .

0.3.4 Definition. An operator T € £(E,F) 1is called quasi-

nuclear if there is a sequence of linear functionals

! . 0 00
a, € E with nilnan” < + «» such that ||Tx|| S.n§l|<x,an>\

for x € E .

[¢.¢]
We set vQ(T) = inf{ ¢ ”an”] where the infimum is taken
n=1

over all sequences [an} with the above property. The cnllec-

tion NQ(E,F) of all quasi-nuclear operators forms a Banach

Q

space under the norm v % .

0.3.5 Theorem. The product ST of two absolutely summing
operators T € IN(E,F) and S e N(F,G) is nuclear and

v(ST) < m(s)m(T) .

For other basic and important properties of N(E,F),

I(E,F), N(E,F) and NO%(E,F) , see [27] and [28].




CHAPTER I
QUASI-NORMED IDEALS OF OPERATORS

In this chapter we present some results concerning the
theory of quasi-normed ideals of operators on Banach spaces,
essentially continulng a study initiated by R. Schatten,

A Grothendieck and A. Pletsch. For the sake of complete-
ness we include the basic definitions and some useful known
results from the recent works [31], [12] and, in particular,
the pre-book of Pietsch [32].

The ideal theory in the ring £(H) of bounded linear
operators on an infinite dimensional separable Hilbert space
H was first studied by J. W. Calkin[2]. It was shown that
any two-sided ideal A(H) in the ring £(H) 1s sandwiched,
by set inclusion, between the maximal ideal K(H) of all
compact operators and the smallest ideal &F(H) of all finite
rank operators. The most important ideals in the ring £(H)
are the ideals Sp(H) » (0< p< w), introduced by
Von Neumann and R. Schatten [37]. The ideal Sp(H) consists

of all compact operators with Trace[(T*T)p/g] <o oy

10



Ideals of operators on Hilbert spaces have been exten-
sively studied, see e.g. [9], [11] and [38].

For an ideal theory on arbltrary Banach spaces, 1t is
useful to consider the class of all operators between
Banach spaces. Following Pletsch [31], we let £ denote
the class of all bounded llnear operators between arbitrary
Banach spaces and #£(E,F) the set of all such operators
between specific Banach spaces E and F . We say that a
subclass A of £ 1s an ldeal of operators if for each
component A(E,F) = AN £(E,F) , one has the following
properties:

1) If ac¢® and ye F, then a® e A(EF) .

ii) A(E,F) 1is a linear subspace ofl Z(E,F) .

iii) If S e £(G,E) , T € A(E,F) and R e £(F,H) then

RTS ¢ A(G,H).
It 1s easy to see that the class & of all finite oper-

ators forms the smallest ideal.

Remark. We could also consider ideals of operators defined
only on a certain class of Banach spaces, for example, the
class of all finite dimensional Banach spaces. In case this
class consists of one single Banach space E , we obtain the

usual ideal concept in the ring £(E) .

Several important ideals which have been studied during

the past five decades are K: compact operators;

11




W: weakly compact operators, V: completely continuous

operators (see [5]), S_: strictly singular operators and

gt
S,: strictly consingular operators (see [{26]). The ideals

W, V, S, and S, all contain K and V(H) = S (H) = S (H) =

= K(H) for each Hilbert space H .

§ 1.1 Quasi-normed Ideals of Operators

The study of the ideal Sp(H) , and, in particular, the
«isolation of the trace class Sl(H) and Hilbert-Schmidt class
SQ(H) of operators on Hilbert space was the main achieve-
ment in the monograph [38], [39] by R. Schatten. Grothen-
dieck in his remarkable memoir [13] extended the theory of
tensor products of Banach spaces (and of locally convex
spaces). In this framework, Grothendleck introduced the
notions of nuclear and "semi-intégrale & droite" operators.
Later, A. Pietsch, using ideas of Grothendieck but without
using notions from tensor products, introduced and studied
classes of operators (called p-nuclear and p-absolutely
summing operators) in his series of papers [27], [28], [30].
For another study of those classes of operators treated by the
theory of tensor product, we refer to the papers [36], [37]
by Saphar.

For the study of certain classes of operators, Pietsch
introduced the notion of ideal norm, which was similar to

the ®-norm of Grothendleck and Schatten.

12



1.1.1 Definition. A function a from an ideal A to the

non-negative real number 1s called an ideal quasi-norm if

one has the following propertiles:
i) If a e E and y e F, then oa(a8y) = Naliliwll -
ii) There is a p > 1 for which
a(s+T) < pl[a(8) + o(T)] for S,T € A(E,F) .
1ii) If S e £(G,E) , T ¢ A(E,F) and R e £(F,H)
then RTS ¢ A(G,H) and a(RTS) < |IRla(T)|iS|l -
If it is possible to take p =1 1in 1i) we obtain an

ideal norm.

If the condition 11) is replaced by
ii') There is p with 0 < p <1 for which
a(s+T)P < o(s)P? + a(T)P for S,T ¢ A(E,F) ,

a 1is called a p-ideal norm on A .

It is easy to show that any p-ideal norm is an ideal
quasi-norm.
An ideal A together with an ideal quasi-norm [ideal

norm] a 1is called a guasi-normed ideal [normed ideal] and

denoted by [A,a]

It follows from the definition that all components
A(E,F) of a quasi-normed ideal [A,a] .are quasi-normed
spaces equipped with the quasi-norm a« . We say a quasi-
normed ideal [A,a] 1is complete if each component A(E,T)

is a complete topological vector space with topology induced
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by the quasi-norm o . A complete normed ideal is simply

called a Banach ideal.

It is easy to see that [&,|| ||} 1is a normed ideal.
Also, [C,|| |1, [Ks|| i1, [W,|| §1 and [ |1 are Banach
ideals. If we denote by N , I, Il and NQ the class of
all nuclear, integral, absolutely summing and quasi-nuclear
operators respectively, then [N,v], [I,i], [I,7] and
[NQ,vQ] are Banach ideals.

We now give some elementary properties of a quasi-norm

1.1.2 Lemma. If a 1is a quasi-norm on an ideal A , then

IT| < a(T) for all T e A .

Proof. Let T ¢ £(E,F) and S = g'® x € £(G,E) with

e ea , Hg'“ =1 and |x|| =1 . Then |S||=|x| =1.
Furthermore, TS = g'® (Tx) , hence
Izx|) = fexllle’ | = lle'® || = TS| = a(TS) < a(D)|S| = a(T) -

1.1.3 Definition. Two ideal quasi-norms aq and oy de~

fined on an ideal A are equivalent if there is a p > O

such that ay(T) £ pa,y(T) and o5(T) < pay(T) for all

T e A

We now give a generalization of a result by R. Schatten

[38].
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1.1.4 Theorem. Let A be an ideal. Then any two quasi-
norms with respect to which A is a compléte quasi-normed

ideal, are equivalent.

Proof. Let [A,aq] and [A,a,] Dbe two complete quasi-

normed ideals. We define the mapping :A(E,F) » A(E,F) by

¥(T) =T for all T e A(E,F) . Let (T ] converge to T

in [A(E,F),a;] and {¥(T,)} converge to S in [A(E,F),as5]
then from Lemma 1.1.2, 1im|T -T|| < 1im oy (T, -T) = O and

1im||T -S| = Lim||4 (T )-S|| < 1im ay(T,-S) = O . Hence T =S,
which means ¢(T) = S and § is closed. If a; and a,

are not equivalent, there exist Banach spaces En s F and

v n
operators T _:E -+ F,  with al(Tn) > n and “E(Tn) = lg .
n
[o¢]
Let E = (@En)op and F=(@F ), , and let T = nElJnTnQn
where Qn:E + B, denotes the canonical projection and

Jn:Fn¢—>F‘ denotes the canonical injection. Also let
Pn:F - Fn be the canonical projection and In:Enc-?E be

0
the canonical injection. Then a (T) = as( £ J.T Q. )
2 2 £ 9n"n%

o0}

< T ap(igTy) < P Iglep(T)log) = 6

8
-

§—2<+°° and

n=1

o)

T e Ay(E,F) . But, T =P TI  and so a(T) = ||P[ley(T)|T,]
> al(PnTIn) = ay(T,) > n . That is, ay(T) = = . This

contradicts the closed graph theorem (on A(E,F)).

1.1.5 Theorem. If [A,a] 1s a Banach ideal, then N c A .

Also, ||IT{| < «(T) < v(T) for any operator T .




Proof. If T e N(E,F) then for each € > O there is

a representation T =

M8 -
o)

0
o® ¥, such that nzl“an""ynu

n=1

<v(T) +e€ . Let T =
™ n

a®y and let m > p » Then
1 D n

s

m m m
(T -T)=a( £ a8y )< T alaey )= = lallv.ll
m p) (n=p+l n n ~ n=p+1 n n n=p+l" n n

that 1is, (Tm) is a~Cauchy. Since [A,a] 1is a Banach ideal,
there is an operator S € A(E,F) such that a(S-Tm) -0 .
Hence ||S-T || » O by Lemma 1.1.2. But ||T-T || » O since

Il <v. Thus S =T . This proves that T e A(E,F) and

a(T) < T a3, v,) = Ellagllivyl < v(T) + e
If T ¢ N(E,F) , v(T') = + » and there is nothing to

prove.

To investigate the relationship between the ideal norm
(quasi-norm) and ®-norm (®-quasi-norm) of Grothendieck, we

need the following terms used by Pietsch in [32].

1.1.6 Definition. An ideal quasi-norm is said tb be ele-

méntary if it is defined only on the class of all operators

between finite dimensional Banach spaces, called elementary

operators. An ideal quési—norm @ on an ideal A is called
an extension of the elementary norm @ , if the restriction

of a to elementary operators agrees with @ .

Remark. Since for two arbitrary finite dimensional Banach
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spaces E and F , £(E,F) can be identified with the
algebraic tensor product E'® F , there 1s a one-to-one
corfespondence between elementary quasi-norms [norms] and
®-quasi-norms [®-norms]. Moreover, any ideal quasi-norm

cen be considered as the extension of some ®~quasi-norm.

1.1.7 Definition. Let o and 'a2 be extensions of the
same elementary quasi-norm @ on an ideal A . We say Qq

is coarser than G Or Oy is finer than 0q if

a;(T) > ay(T) for all T e A .

1.1.8 Theorem [32]. For each elementary quasi-norm @ ,
there exists an ideal quasi-norm ¢+ (respectively, @)
on the ideal & of finite operators so that ¢+ (respec-

tively, @) 4is the coarsest (the finest) extension of #& .

Proof. Every T € 3(E,F) can be written in the form T = BSA

with X, Y finite dimensional Banach spaces and A € £(E,X) ,
Be £(Y,F) and S e £(X,Y) . We set g (T) = inf{||B|&(S)||Al]} »
where the infimum is taken over all such representations of

T . It is clear that ¢+ is an ideal quasi-norm with

gt > # and for every extending ideal norm o of @ on &,

we have ¢+ > a. On the other hand, for each T € F(E,F)

and finite dimensional spaces X and Y , A € £(X,E),

Al <1, Be £(F,Y),||B| <1, we set g7 (T) = sup{@(BTA)]} ,

where the supremum is taken over all finite dimensional spaces
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X, Y and operators A, B . Then @ 1is an ideal quasi-
norm on ¥ and @ < @ . For each extension a of #

on ¥ , we have # < a .

1.1.9 Definition. A quasi-norm a on the 1deal &F 1is said

to be upper semi-continuous, respectively, lower semi-

continuous if a+ = qa , respectively, a = a .

It is easy to see that | || and ™ are both upper and
lower semi-continuous. The integral norm i 1is lower, but
not upper semi-continuous. The nuclear norm v 1is neither

upper nor lower semi-continuous.

Remark. The upper semi-continuity of a quasi-norm o will
play a crucial role in differentiating between the conjuga-

tion and adjoint operations in Section 1.2.

Finally, we end this section with some more results of
Pietsch [32] which will be used to classify the guasi-normed

ideals.

1.1.10 Definition. Two quasi-normed ideals [A,a] and

[B,B8] are elementary, respectively, finitely equivalent if

the ideal quasi-norms a and B agree on all elementary,

respectively, filnite operators.

The collection of all quasi-normed ideals can be par-

tially ordered by the relation [A,a] < [B,8] if and only
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if AcB and a(T) > B(T) for all Te A .

1.1.11 Definition. A complete quasi-normed ideal ([M,m]

is called minimal, repsectively, maximal if for each quasi-
normed ideal [A,a] which is elementary equivalent to

[M,m] , we have [Mm] c [A,a] , respectively, [A,a] ¢ [M,m].

Pietsch has observed [32] that an application of Zorn's

lemma yields the following result.

1.1.12 Theorem. For each quasi-normed ideal [A,a] , there

[Amin’umin]

exists a minimal quasi-normed ideal and a

max amax]

maxlimal ideal [A s which are both elementary equi-

valent to [A,a] .

1.1.13 Theorem. [Amin,amin] = [GQE%] where J(E,F) 1is the

completion of &(E,F) with respect to the quasi-norm at .

1.14 Corollary. Every minimal quasi-normed ideal is con=-

tained (as a point set) in the normed ideal [K,| ||] .

1.1.15 Theorem. T € [Amax(E’F),amax] if and only if there
is p > 0 such that o(VIU) < p||V||jUll for arbitrary finite
dimensional Banach spaces X and Y and all operators

Ue £(X,E) and V e £(F,Y) . In this case, o"8X = dinf p .

Proof. Let o"@*(T) = sup a(VIU) . It is easy to show that
Ivil=l1ull=1

the collection of 81l T:E + F such that o™®*(T) < +



forms a complete quasi-normed ideal with ideal quasi-norm

amax . Furthermore, for any quasi-normed ldeal [B,B8]

which is elementary equivalent to a , we have

oeX(7) = TU) sup B (VTU) < B(T) -

1 R e

§ 1.2 Associated Quasi-normed Ideals of [A,q]

For any quasi-normed ideal of operators [A,a] , we
can assoclate the following normed ideals.

i) The conjugate ideal [A8,aB]1: AB(E,F) is the class

of all operators T € £(E,F) for which there is a p > O
such that for any U € J(F,E),|Trace UT| < pa(U) . Here
o (T) = inf p .

ii) The adjoint ideal [A*,a*]: A*(E,F) is the class

of all operators T € £(E,F) for which there is a p > O
such that for all finite dimensional Banach spaces X, Y
and for all operators V e€ £(X,E) , U e £(Y,X) and W e £(F,Y)

|Trace Wwrvu| < p|W||Vla(U) . Here o (T) = inf ¢ .

It is easy to show that [AA,QA] and [A*,a*] both
are Banach ideals. Thus, the operations A and * essen-
tially depend on the quasi-norm o« “restricted to the ideal

F .

1.2.1 Theorem. Two quasi-normed ideals of operators are
elementary, respectively, finitely equivalent if and only if

they have the same adjoint, respectively conjugate ideal.



The proof follows from the definitions.

1.2.2 Theorem. If a 1is an upper semi-continuous quasi-~

norm on the ideal ¥ , then [AB,al] =a",a"] .

Proof. That [AA,aA] c [A*,a*] is immediate from the
definition. To seelthe other inclusion, let T € A*(E,F)

and let U e F(F,E) . Since a 1s upper semi-continuous,
there are finite dimensional spaces X and Y , operators

Ve £(F,X), U € £X,Y) , We £(Y,E) such that '
Wile (U, )W)l € a(U) + e . Hence |Trace(UT)| = |Trace (W4, VT)| <
<o (TVa(U ) |IW]l < o (T) (a(U)+€) , therefore, T e AL(E,F)

and of(T) < o' (T) .

1.2.3 Corollary. For any ideal quasi-norm a ,
CHEER A

We have been unable to prove the converse of 1.2.2.
In general, however, we have the followlng result of

Pietsch [31] (see also [12]).

1.2.4 Theorem. Let T e £(E,F) . If E and F both have

m.a.p. then a*(T) = oa®(T) for any ideal quasi-norm a .

l1.2.5 Corollary. For any ideal quasi-norm a , aA* = a**

1.2.6 Corollary. For any upper semi-continuous quasi-norm a ,

*
LTV
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1.2.7 Theorem [31]. If [A,a] 1s a quasi-normed ideal,
* ¥ ¥* ¥
then [A,a]l ¢ [A ,a ] .

W T v U
Proof. Consider the diagram Y 4+ E < F =+ X » Y with X, Y

finite dimensional, we have |Trace(VIWU)| < aA(U)a(VTW) =
= o (U)a(VTW) < o(T)||V]la" (U)|W]| - Hence a  (T) < a(T) -

* %

A normed ideal [A,a] 1is perfect if [A,a] = [A**,a ]

The following result is contained in [31].

1.2.8 Theorem. For each quasi-normed ideal [A,a] , the
following are equivalent.

i) There is a quasi-normed ideal [B,a] such that
[A,a] = [B,a']

1i1) [A,a] 1is perfect.

iit) [A,a] is maximal.

1.2.9 Corollary. o 1s lower semi-continuous if and only if

¥* %
(o8 = & .

1.2.10 Theorem [12]. Let T € £(E,F) . If E or F has
m.a.p., then aAA(T).S a(T) , with equality when a 1is

perfect.

To any quasi-normed ideal ([A,a] , it is natural to

consider the following ideal, called the dual ideal [A',a']:

An operator T € A'(E,F) if and only if 7' € A(F',E') .

Here a'(T) = a(T') . We say that a quasi-normed ideal

22
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[A,a] is symmetric if A c A . If [A,a] = [A ,a']
then [A,a] 1s said to be fully symmetric. It is well-

known that [N,v] and [I,i] are symmetric, while ([I,7]
is not symmetric. Examples of fully symmetric normed
ideals are [& | |1, [K ] |1, (W, ] and [ ||] -
Pietsch asked in [32] if the ideal [C,|| ||] of finitely
approximable operators is fully symmetric. The answer 1is
affirmative and is an easy application of the principle of

local reflexivity.
1.2.11 Theorem. The ideal [GC,|| || is fully symmetric.

Proof. It is clear that C ¢ C' . To see the other direc-

t
tion, let T e C (E,F) . By definition, T e C(F ,E ) and
thus T 1s compact. Let en -+ 0 and choose yg,'-°,yﬂ € F
n

such that if x € E,HX”‘S 1, then there are yg with

“y? - Tx|| < €, - Let {Ln} be a sequence of finite rank
operators such that ||L - T'|| » 0 and let

n n ) Tt ) .
2, = [yys°sY ,Ln(E)] cCF . Then, by the principle of

local reflexivity, there exists thzn + F such that
n n . !
Wl £1+¢€, and V y; =y; . We claim that |V L - T|| » O .
Indeed, let x ¢ E and |x|| <1, choose yg such that
n ! ! n
\x - yjll < e, » then |V Lox - Tx|| < [|[V,Lx - yyfl +

+I¥] - Tx|| <V Ix - VRl + e,

<@+ e - vl + e



el

< (1 + e )(x - Tx|| + |Tx - ¥7) + e,
<1+ en)(uL;‘E - T|E“ re) + e,
<@+e (L, -1 | +e) +e, .

Thus T 1s approximable by finite operators.

We also include a non-trivial result of Pletsch [31].

1.2.12 Theorem. For any quasi-norm a , a*' = a'* .

Finally, we state a duality theorem which was proved by

U. Schwarz [40].

1.2.13 Theorem. If E' and ¥ have m.a.p., then each

S € A*(F,E") defines an a-bounded linear functional of
norm a*(S) by the formula <T,S> = Trace ST . Thus,
[A*(F,F"),a*] and [Amin(E,F):a]' are isometrically iso-

morphic.

§1.3 Injective and Projective Quasi-normed Ideals

We next define four new quasi-normed ideals from a given
quasi-normed ideal [A,a)] ; these formations arise from the
theory of tensor product of Banach spaces.

i) Right injective envelope of [A,a] , denoted

[A\,a\]:T € A\(E,F) 1if and only if J;oT e A(E,2~(U ,)) and
F

o\ (T) = a(J; oT) where J; is the canonical injection of F

into #7(U ,) .
F
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ii) Left injective envelope of [A,a] , denoted
1 1
[/A;/al: T € /A(E,F) if and only if ToQy € A(4™(Ug),F)

and /a(T) = a(ToQ%) » Where Q% is the canonical sur-
jection of 44 (Ug) onto E .
i11) Right projective envelope of [A,a] , denoted
1
[A/;a/1: T e A/(E,F) 1if and only if there is S e A(E, 4 (Ug))

with T = Qo S and o/(T) = a(S) .

iv) Left projective envelope of [A,a] , denoted

[\&,\a]:T € \A(E,F) if and only if there is S e A(47(U ,),F)
E

with T = SeJp and \a(T) = a(s) .

Remark. The right injective envelope, respectively, left
injective envelope, of [A,a] was called the injective hull,

respectively, the projective hull by A. Pletsch.

1.3.1 Definition; A quasi-normed ideal [A,a] is right in-

jective, respectively, left injective, right projective,
respectively, left projective, if [A,a] = [A\,a\] ,

respectively, [A,a] = [/A,/al, [A,a]l = [A/;a/] , respectively,
[Aya] = [\A:\a] .

The following theorem is immediate from the definitions.

1.3.2 Theorem. 1) [(/A) ,(/a)'1 = [(A" )\, (a')\]
1) ()L (@)1 =1/6a"),/(a')]
11) [/ (/) 1 = [(8%)/, (a")/]
1) [N ()T = [\NA") N\ ()] .



It is easy to verify that the ideals F and K are

both right injective and left injective. Pietsch asked in

[32] if the ideal [C,| ||] 1s eilther right or left injective..

The answer to both questions 1s negative and is an easy

application of Enflo's result [6] that C # K .
1.3.3 Theorem. The ideal [C,| ||] is not right injective.

Proof. Let T e £(E,F) . Since zm(UF:) has a.p.,

JgoT € C(E,zm(UF,)) if and only if JpoT € K(E,L“(UF,))
if and only if T € K(E,F) . Thus if C 1is right injective,

then C = K which contradicts Enflo's result.
1.3.4 Theorem. The ideal [C,| ||] is not left injective.

Proof. Let T € £(E,F) and Q a canonical surjection.

From the full symmetry of C (Theorem 1.2.11) we have
Tq € C(21(Uy),F) if and only if (1Q)' € C(F ,I_(W)) -
Since L _-spaces have a.p., the following are equivalent:
1) (Ta)' € K(F',L_(u)); 11) T € K(F,E) ,
11i) T € K(E,F) . Indeed, we need only show 1) implies ii):
since Q' is an isometry and Q'T'(UF,) is relatively

compact, for each sequence (xn) € Q'T'(U ) » there are

subsequences (xn ) and x, such that x = =+ x/ and

m m
1 1 [ Eengrunts arnd
x, =QT (ym) . This implies x_ € Q R(T ) > hence
m
12 ' t . 1T 1
Q l(xn Yy =T (ym) tends to Q 1(x°) € R(T ), so T (ym)

m
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clusters and T' € K. Thus C 1s not right injective

since C # K .

Finally, for each quasi-normed ideal [A,a] , we

associate another new gquasi-normed ideal [AR,GB] s called

the regular envelope of [A,a]l , as follows: T € AR(E,F)

!
if and only if JT e A(E,F ) and a“(T) = a(JgT) , where

Jn ¢ F F" is the natural injection. A quasi-normed

F
ideal [A,a] 1s regular if and only if [AR,aR] = [A,a]

It is known that [&,|| |1, [K,)| |1, [I,1], [TL7] and [&£,] ||]
are regular. The regularity of [C,| ||] was asked by

Pietsch in [32].

1.3.5 Theorem. The ideal ([C,| ||] is regular.

t L !
Proof. If JpS e C(E,F ), then (JpS) € C(E ,F ) .
LI}

e
Since there is a norm one projection P from F onto

1 1

1 1t t1 1 rt Tt 1
F with S = PJ FS , it follows that S. e C(E ,F ).
Thus S e C(F',E') and S e C(E,F) since C is fully

symmetric.

Analyzing the proof of the above theorem, we can see
that any fully symmetric quasi-normed ideal of operators 1is

regular.

1.3.6 Theorem. A quasi-normed ideal of operators is fully

symmetric if and only if it 1s regular and symmetric.

27
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Proof. The necessity part is easy, so we only show the

sufficiency part. Let T € A(E,F) . From the symmetry of
[A,a] , we have a(T' ) = a'(T) < &(T) and a(T ) =2a (T )<
< a(T') . From the regularity, a(T) = a(JgT) = a(T"JE) <
<a(®') . Hence a(T) < a(T )< a(T) =a (T) < a(T) ,

and A=A .

§ 1.4 Normed Sequence Ideals

The theory of solid, symmetric sequence spaces has been
studied for a long time. These spaces play an important
role in the study of ideals of operators on infinite dimen-
sional separable Hilbert spaces [2], [8], [11].

Let £, be the set of all bounded sequences (x;) -

It is easy to see that 4 1is a commutative ring with norm

(x5, = Sup %51 -

1.4.1 Definition. A palr [gH] is called a normed sequence

ddeal if 4 < 4 and y a non-negative function satisfy the
following:
i) (1,0,0,***) e @ and u(1,0,0,**°) =1 .
11) If  (x4), (yi) € d, then (x;+vy;) e€aq and
Mxg+ vy
iii

) < u(xg) + ulyy) -
) For (x;) € &, and (vi) e @, (x5 ¥5) € a and
“(xiyi) < " (xj_)“oou(yi) .

iv) For each permutation o¢ of the positive integers,

if (xi) € g, then (x0<i)) € d and u(xi) = u(xo(i)) .
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We note that a normed sequence ldeal has been called
a symmetric sequence space in the literature.

The most important normed sequence ideals are [zp,u Hp] s
(1<pgw) and [e,|| |,] . The space c of all con-
vergent sequences 1s not a normed sequence ideal.

Following the standard concepts of ring theory, we
naturally consider the quotient of a normed sequence ideal

[d,u] Dby another normed sequence ideal ([B,v] .

1.4.2 Definition. Let [d,u] and ([B,v] be normed sequence

ideals, let a/B = (g € z“\ga.g B} where 8gd = {(gixi)\(xi) € d)

and the function u/v(g€) = sup u(8x) , then [&@/B,u/v] is
v(xZSl
x€

a normed sequence ideal, called the normed quotient of

[a,u] Dby [B,v] .

In particular, if ([B,v] = [zl,n ”1] , we denote
& = Ll/d and p¥ = I ”l/p , and [Z5u*] is called the

adjoint sequence ideal of [g,u] or the Kothe dual of

[a>u] .

We also consider another useful normed sequence ideal.
0

1/t-1/p 2
Let zt:p = {(xi) € Lm\nzl(n / /p|xn|)p < » , where

A
(1x_1) is the non-increasing rearrangement of X } and
n' . T /p n
1/t-1 A
let H(xi)“t:p = [nzl(n / /P|xn|)P] . Then, [tt:p’“ “t:p]

is a Banach space, called a Lorentz sequence space. We note
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I
8

zt:p c4, 1f 1< t<p

ti., 2 Lp if 1{pt>.

The following result, which is well-~known in the theory
of interpolation, 1s needed in Chapter II. We give a direct

proof.

1.4.3 Theorem. For 1< p, t<w, (zt.p) =4, , where
) t :p

1/p + 1/p' = 1; 1/t + 1/t =1 ,

o0

Proof. If (Xi) € Et':p' » then §=1|Xnyh|
n§1<n1/t' VR e Ry )
S[ O;l(nl/t'_l/p'|Xn|)p']l/p'[ ;l(nl/t—l/plyn‘)p]l/p for
n= n=

I
all (yi) € Et:p . Hence (xi) € Et:p . Conversely, let

(x5) € biip Then there 1s p > O such that

- ® 1/p
1/t-1
B Px¥l < pomex {2 (0SBl 0 DRI for () € gy

If we take vy = (nl/t"l/p')p'|xn[p'—2xn then

; (nl/t'"l/P'\X ‘)P' < p[;(n(l/t"l/P')(P"l)‘x |P"'1)P]l/p
n=1 n - 1 n

1/p'
Thus, we have [ ¢ (nl/t"l/p'|xn|)p'] < p and
n=1 -



(xj_) € 'et':pl *

Remark. It is easy to show that (zm:p)' £ lepv .

Finally, we need the following notation: If &, &, C

are normed sequence ideals and

(yi) € B we write @B cC .

(xiyi) e ¢ for

For example, Epoz

if 1/p + 1/p' = 1 . More generally, zpogs c 4,

1/p +1/s = 1/r .

(xi) € d >
p! c El
if

31



CHAPTER II
IDEALS OF NUCLEAR TYPE OPERATORS AND THEIR ADJOINTS

Since the remarkable class of nuclear operators was
introduced in the Memoir of Grothendieck [13], varilous

00
operators T e #£(E,F) with representation I A;a,8y,
i=1

have been studied by considering certain summability pro-
perties for the sequences (a;) c E (y;) € F and the
scalar sequence (xi) . Our aim in this chapter is to pro-
vide a unified construction so that the individual known
classes of operators can be clearly singled out.

In order to start the theory in as general a setting
as possible, we follow Pietsch [32] and consider three se-
quence ideals &, R, o With &Gokod Ll s, and call an
operator T e¢ £(E,F) (&,R,o#)-nuclear if there are sequences
(a;) E',(yi) c F and scalar sequence (A;) with oo()\i) € @,

(<x,a,>) € # and (<y;,b>) € »# such that T(x) = I \,<x,a;>y
i i g=1 1 i”7i

for xe€ E . Tt is easy to see the class of

N
&,Rs S
(@,R,s)-nuclear operators forms an ideal.

32
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In the following we first investigate the class of
(@sR,o)-nuclear operators when & = by O Ay
(0<t<pL®), R=4,, =145 (0O, s <=, and when

r,s = o , we consider c  instead of L)

§2.1 (t:p,r,s)-Nuclear Operators

2.1.1 Definition. An operator T e€ £(E,F) 1is called

(p,r,s)-nuclear, respectively, (t:p,r,s)-nuclear
(0 < p,r,s,t <w and 1/p + 1/r +1/s > 1) 1if there are
scalar sequence (xi) € zp , Trespectively, zt:p and

1
elements a; € E and y € F with

- l/r
e (a;,) = sup <X,a.> and
red “x”(l i= l| 1 ")
€ ( — o 1/8
c(vy) = sup_ (= |<yy,0>|%)7/° < = such that T can be
nbn<l i=1

o0

represented as Tx = g xi<x a. >yi . We denote by N

121 p,T,s ’

] the class of all (p,r,s)-nuclear,

T) = inf[”<xi)

respectively, [Nt'p r.s
. 3 >

[ (t:p,r,s)-nuclear] operators and set v Hp

er(ai)es(yi)][vt:p,r,S(T)=inf{H(xi)ut:per(ai)es(yi)}], where the

infimum is taken over all representations of T as above.

P:T,S(

Remark. If t =p , then Np,r,s = Nt;p,r,s

t>p , then Np,r,s < Nt:p,r,s
<

p, then N 2> N

t
p,Tr,s t:p,r,s

Thus, our (t:p,r,s)-nuclear operators include the
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(p,r,s)—nuclear operators of Pietsch [32].

The following theorem is immediate from the defini-

tion.

2.1.2 Theorem. If 1< r,s { o, then an operator
- A Dy B
s (E,F) has a factorization E =+ 4 + 4, * F,

F) and Dx(g) = (AjEy) with

T € Nt:p,r,

where A € £(E,4,.) » Be £(4g,

(xi) € by.p - In this case T) = inf”AuanHHBH ’

Vt:p,r,s(

where the infimum is taken over all such representations of T.

2.1.3 Theorem. If 1/p +1/r+1/s>1, t<p, then

[N is a complete quasi-normed ideal.

t:p,r,s’vt:p,r,s]

Proof. Let 1/p +1/r+1/s =1/9>1, i.e., q<1.

q q
We show that [Vt:p,r,s(T1+T2)] < [Vt:p,r,s(Tl)] +
[Vt:p,r,s(T2)]q . Indeed, for € > 0, there are sequences

(ng]) € L.y s (agk]) c E and (y[k]) © F  such that

P i
' iil)‘gk]agk] o yi witn | ()‘.ELK])”t:p <DPtep,r,s(Tx) + 1V,
Gr(agk]) S WVeip,r,s(T) + e1VT  and es(yg_k])

S eip,r,s(T) * e/ (k=1,2) . Then

(veop (Tt To) 10 < OO g e el e 4

+ “(Xg_e])Ht:p€r(a[ie])es(y:[12])]q S {[Vt:p,r,s(Tl)+€]q/p+q/r+q/s
Q/P+Q/I‘+q/s}q

+ [Vt:p,r,s(T2) + €]

q
- [[Vt:p,r,s(Tl)+€] * [vttpxr:S(TQ) + el
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a
< [Vgup,p,s(T1) * €10+ Vg, g(Tp) + €] -

2.1.4 corollary. If 1/p+1l/r +1/s =1, t<p, then

{Nt:p,r,s’vt:p,r,s] is & Banach ideal.

Remark. The diagonal operator Dx:zr - Lo for 1< r,s<
and t < p with Dx(gi) = A48y and () € fy.p 1is the

prototype of (t:p,r,s)-nuclear operator with (D

vt:p,r,s x)

= H(xi)nt:p . We will repeatedly use this remark in the

consideration of adjoint ideals.

2.1.5 Definition. For 1 < p < » , an operator T € Np p,(E,F)
— — ,oo,

is called a p-nuclear operator. This concept has been studied

by Pietsch [27] and Saphar [36]. We denote N by N_ .

p,°°,P' p

2,1.6 Definition. For O < p<1l, TeN (E,F) 1s called

Py

the pth order Fredholm operator.

These operators have been studied by Grothendieck

({13], Chapter II).

2.1.7 Theorem. An operator T € Np w o EsF) 1f and only

—————t——— s ,oo
b
i=1
(Nysll) € 45 and 1/r +1/s = 1/p and vp’w’m(T)

if T has a representation T = a;® y; with (llagl) € 2.,

- inf<°§nainr><°z°nyiuS>l/ .
1 1

The proof 1s easy so we omit it.



Remark. The space N (E,F) (0<p<1l) 1is exactly

A Pyxe,®
1
equal to E® F if E' or F has a.p. Here, the quasi-
Sr,s
_ n r 1/r n <1/

®-norm s, o 1s defined by sr’s(u) = 1nf(§“aiu ) (%“yin Y
where the infimum is taken over all the representations of

n

qop 1 i
2.1.8 Theorem. An operator T € N_ b p,(E,F) s 1/p +1/p' =1

— LN

if and only if T factors through zp .

In this case, we identify Nm,p’p, by 5p s, & class

of operators studied by Pietsch [29].

2.1.9 Theorem. The ideal [N is minimal,

t:p,r,s’vt:p,r,s]
(l1<t<p<w and 1/p+1/r +1/s>1) .

Proof. It is easy to see that

[N E,F) = [&(E,F),v ] where

(E,F),v ] :
t:p,r,s *Yt:p,1r,s t:p,r,s
n

+ .

Vt:p,r,s<T) = inf izln(xi)nt:p e (aj)e (yy) 1is the finest

extension of the elementary quasi-norm V¢:p,r,s ©OF the
LIS 0 4 ’
ideal & of finite operators.
2.1.10 Theorem. The ideal [Nm,p,p,,vm’p,p,] is not minimal.
Proof. It is easy to see that N p,p" is not contained in
L~

the ideal K of compact operators. For example, the identity

operator on § is in N but not in K .

p sP,P!
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We note that the minimal 1deal which is elementary

equivalent to N is the class of operators which

0, PP’
factor compactly through zp s denoted by Cp , See

Johnson [17].

Remark. Figiel [7] modified Johnson's results and gave
necessary and sufficient conditions on a Banach space Z
so that every approximable operator by operators of finite
rank admits a compact factorization through Z and every
compact operator admits a factorization through a subspace

of 7 .

§ 2.2 The Maximalization of [Np,r,s’vp,r,s]

. . max max
To find the maximal ideal [Np,r,s’vp,r,s]

we define

a new class of operators.

2.2.1 Definition. An operator T € £(E,F) is (p,r,s)-inte-

gral (1/p + 1/r +1/s =1, 1 { p,r,s < @) if there is a

measure space (Q,Z,u) such that the following diagram is

commutative
(*) A B
L. (u) —1\7;-—) Loy (W)

where A, B are bounded and M? is the operator given by

the multiplication of a function ¥ e Lp(p) . We denote
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by Ip s g the class of all (p,r,s)-integral operators
2L

and set ip,r,s(T) = inf ||A||||Mel|lBll where the infimum is

taken over all measure spaces (Q,z,u) and operators A, B

2.2.2 Theorem. [T is a Banach ideal.

p,r,s’Tp,r,s)

The proof follows in the same fashion as proposition 1

of Kwapien [19].

2.2.3 Theorem. In the case s' < r , the factorization (%)

is equivalent to the following

T
E .-—_—_§ F

Lr(v)_—TT_—; le (\))

where VvV 1is a probability measure , J the canonical in-

jection and Al and B1 are bounded.

P
Proof. Let dv = “:“p di  and define A,:E -+ Lr(v) by

sen @) ||/ TA(x) and By:L,(v) » F by

H

Al(x)
Bl(g)

B(|?\p/8'g) . It is easy to see ByJA; =T and
I|A4 < lalllie =, IB1ll < HBHHVH_p/S' - Hence ||A|l||B,||

< Hallislliel -
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Remark. T is the class of p-integral operators,

p,©,p'

studied by A. Pietsch [27]. 1In this case, we denote
Ip’m,p, by Ip .
2.2.4 Theorem. 1) Np,r,s(E’F) c Ip,r,s(E’F) and
Vp,r,s 2 ip,r,s"

ii1) If E or F has m.a.p. and T € N (E,F) ,

p,Tr,s

then Vp,r,s(T) = ip,r,s(T)

iii) [Np,r,s’vp,r,s] and [Ip,r,s’ip,r,s] are ele-

mentary equivalent.

Proof. i) and 1i1) are easy. The proof of ii) follows from

the argument of Theorem 36 in Persson and Pietsch [27].

2.2.5 Definition. An operator T € £(E,F) 1s called regular

L)

rl € Ip,r,S(E,F ) . We

R
(E,F) and define ip,r,s(T) = ip,r,s(JFT) .

(p,r,s)-integral if and only if J

R
p,Tr,Ss

write T € I
R R
We note that [Il,il] = [I,i] .

R oR ] —

Question. Find p,r,s so that [Ip,r,s’lp,r,s = [Ip,r,s’ip,r,s]

Recently, Johnson and Figlel have observed that

[Ty517] # [11’11

R
From Theorem 2.2.4 and the fact that Ip,r,s D Ip,r,s
it is conceivable that IR = nmax . To give an

p,r,s p>Y,S
affirmative answer of this conjecture of Pietsch [32], we

need the concept of ultraproducts of Banach spaces,



developed by Dacunha - Castelle and Krivine [4].

Let (Ei)iel be a family of Banach spaces over an
arbitrary index set I . The collection of all bounded
families (xi)ieI , X; € E; , forms a linear space, de-
noted by £ (E;)je1 - |

If U is an ultrafilter on I tending to infinity,
then the limit xu(xi) = lém |x;ll always exists and g (E;)
is a semi-normed linear space under the semi-norm xu .

We denote by (Ei)u the quotient space zm(Ei)iel/Cu(Ei) s
where Cu(Ei) = {(x4) € zm(Ei):xu(xi) = 0} and (Ei)u is

called the ultraproduct of the Banach spaces (E with

i)ieI
respect to the ultrafilter Y .

If <Fi)ieI is another family of Banach spaces and
(Ti)ieI is a uniformly bounded family of operators
T; € £(Ei,Fi) , then an operator (Ti)u from (Ei)u into
(Fi)u can be defined in a natural way by (Ti)u(xi)u = (Tixi)u

and (Ti)u is called the ultraproduct of the operators

(Ty)jc7 With respect to the ultrafilter ¥ .

If E,F are Banach spaces, we denote by M the family
of all finite dimensional subspaces M of E and 7 the
family of all finite codimenslonal subspaces of F . If we
take the set I as the collection of all pairs 1 = (M,N) ,
MeM, Ne N, then there exists an ultrafilter Y on I
such that %Y contalns the sections

J(io) = {1t e I:1i=(MN), MDM, Nc No} tf'or each
o

40
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1 = (M,N)el.

F.-E

If we set E, =M, F, = F/N and T, = QyTJy for

i i
i=(M,N) € I, we have the following lemma of Pietsch [33].

2.2.6 Lemma. If T € £(E,F) , then there exlsts operators

T e £(E, (Ey),) and Q€ ( (Fy)poF ) with |IJ)] <1 and
lQll <1 such that J;T = Q(Ti)uJ .

R .R
[Ip,r, S,lp: I‘,S]

also need the following lemma of [20].

In order to show that is maximal we

2.2.7 Lemma. Suppose for each 1 ¢ I , Ti € £(E,F) is such

that 1 . o(Ty) <1, then 1 ((Ty)y) <1 .

Proof. By assumption, we have

M
Ay £y B; |
T;:Ey 3 Lo(Qgouy) 0 L, (Qgs8yg) #7 Fy with ||l <1+ e,

IBsl <1 +€ and M is the operator given by multipli-

1 £

i
cation of a positive function f, with Hfi“L <1
p
(1/p = 1/s' - 1/r) . By passing to the ultraproduct, we
A M B 4

have (Ei)u I (Lr(ni’“i))u I (Ls,(ﬂi,ui))u I (Fi)u with
Al <1+ €, ||B]l <1+ € and |M| <1 . According to
Dacunha - Castelle and Krivine [4], (Lr(Qi,pi))u and
(LS,(Qi,ui))u are identified respectively with the spaces
Lr(nl’pl) and L, (Qpsip) -

In the case r = s' , the proof is attalned, since

(Ti)u is factored through an L, -space.



L2

In the case s' < r , we have to show 1 M) 1.
p:r:S -

In fact, <Lr(ni’“1))u and (LS,(Qi,pi))u are lattices
with the order defined by f < g 1if and only if there
are representatives (f;) and (gi) of f and g such

that f; < gy for 1 e I . It follows that M = (Mfi)u

is a positive operator from Lr(nl,ul) into LS'(Qg,pg)

with |M|| < 1 . Since M admits a factorization

v Mp
Lr(Ql’ul) ? Lr(og’ug) -+ Lst(ﬂg’pg) with |[vi| < M| < 1

and ||fll, <1, c(M) <1 . The case s' < r follows

i
P.T,
in a similar fashion.

] = [nmeX max .

R R
2.2.8 Theorem. [I ,1 p,r,s’Vp,r,s

p,r,s” P,T,S

Proof. Let T € £(E,F) be such that for finite dimensional

subspaces X and Y and U e £(X,E), V e £(F,Y) ,

R R
p,r,s p:r:S(T) S 1.

For each i = (M,N) , the operator T, = JMTQN from

1 (VIU) < 1 we claim that 1

M into F/N has i Ti).ﬁ 1 . By Lemma 2.2.7, we can

P:T,S(
obtain the operator (Ti)u from (Ei)u into (Fi)u » where

E; =My 5, Fy = F/N with ip’r,S(Ti)u <1

From Lemma 2.2.6 there are norm < 1 operators

1t
J:E - (Ei)u and Q:(Fi)u + F such that JpoT = Q°(Ti)u°J .
R .
Hence we have ip,r,s(T) = lp,r,s(JFoT)‘S 1.
Remark. We note that tgz)p' = Tp the class of operators
——————— 1

which factor through Lp(u) for some measure space (Q,Z,d) [19].



§ 2.3 Adjoint Ideals of (t:p,r,s)-Nuclear Operators

In this section a concrete representation of the

*

p,r,s°Vp,r, ¢] and respectively,

adjoint ideals [N

*

[Nt :p,r,8*Vt:ip, T, g] will be given.
We first suppose T € N (E,F) where
p,r,s ‘
1/p +1/r +1/s > 1 , p> 1 . Consider the diagram
D
n V_T_U pn » p
4o, *ESF 440+ 4y,
! n \n

where V :a < (<a,X,>) 7 > D)\:(gi)i=l (xlgl) and

=1
Uiy = <<y’bi>)2=l . Then we can write TVDXU g x 405 OTX,

and |Trace (UTVD, ) | Trace (TVD, U) |

W=

- |i§1xi<Txi,bi>\ < vp,r’S(T)vp’r,S(DX)HUHHVH

Mplollivll . Hence,

n 1/p! .
p ] ¥* R
(iEl‘<Txi’bi>| ) < vp,r,s(T)es(xi) €r(bi)

*
Vp,r,sll (A1

This leads us to the following definition of Pietsch [32].

2.3.1 Definition. An operator T € £(E,F) is called

(p,r,s)-absolutely summing; O < p,r,s < « , 1/r + 1/s > 1/p,
if there is a constant p Z'O such that for each finite

]
sequence (Xi)g , € E and (b.)g .1 € F , we have

Z |<Tx,,b >\p 1/p <P e (x4)e (b
1 1

the class of all (p,r,s)-absolutely summing operators and

5) We denote by Hp .
3 3
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set T (T) = inf p , p satisfying the above. The
PsTyS

class of (t:p,r,s)-absolutely summing operators are de-

fined similarly by considering (<Tx1’bi>) € Et-p .

2.3.2 Theorem. For 1 < p,r,s { o

1) [ﬂp r, S,vp,r, ] is a Banach ideal

ii) [Np r s’\)p r, ] = [% ,S r’ p' S,r] .

Proof. 1) is easy. To prove ii), we have seen

»
No,r,s © npl,s,r and Wp',s,r(T) Vp,r, <(T) . To see the
other direction, let T € np' (E,F) and consider the
3S, T

following diagram

v

A

with X, Y finite dimensional, U, V bounded and

D = lzlxib ;® x; such that || (xg)llpreg(x;)en(by) < vy 1 o(U) + € .
Then |Trace (UATB)| = ‘iglxi<ATBxi,bi>|

SN s, w (TIAIIBIE g (x4 )€, (by)

< Tor e, r(DIAI (v, o (U)+ €)||B| . Hence T e Np,r . and

Vo, r,s (T S Tpr g, (T)

2.3.3 Theorem [32]. 1) T € Hp o(EsF) 1if and only if




bs

there is p > O such that

< P sup { z |<xi,a>|r]l/r for
flall<1 i=1

n
1/p
{ £ Imx.||P)
g P3Y
xl,xz,'°',xn € E .

i1) T e Hp w. g(EsF) 1if and only if there is P > O
3 3 —

P sup { 2 |y,bi>|s}1/s for

— lvlia

such that [I%“‘I"'bi\\p}l/lo

b,,b ---,bn e F .

1’72

The proof is easy by using the Hahn-Banach theorem.

Remark. 1) np r.w 18 the class of (p,r)-absolutely
3 3

summing operators in the sense of Mltiagin and PeXczyhski

[24], and Hp,p’m
operators denoted by np and studied by Pietsch [30].

is the class of p-absolutely summing

ii) “p,w,p and nl,p,p' are the class of p'-strongly

absolutely summing operators, respectively, the class of

Cohen p-nuclear operators [3]. We write ﬂp o,p = D and
3 3

p'
rL-L:p:p' - Jp ’

Since Ip,r,s and Np,r,s are elementary equivalent,

we have

*
2.3.4 Theorem. [1I ., o) p r, 5] [np ,r’Wp',s,r] . 1In
*
particular [Ip,lp] = [np,,vp,] .

From the maximality of [IR 1R 1,

we have
P,r,s’ p,r,s-




* *
2.3.5 Theoren. [np,r,s’vp,r,s] =

k.3 *
particular [ﬂp,Wp] = [Igv:igl]

2.3.6 Theorem. [ﬂé r.s 8
———— L

2.3.7 Theorem.

’'p,T,s8

Similarly, we can state

We note that the class nt‘p r.o nas been studied by
. 3 3

[N

K. Miyazaki [25].

N

D,T,S and their associated ideals (1 < p,r,s < ®
3 3 -
1/p +1/r + 1/s = 1) .
b N N* * ¥
a ¢ a,b,c a,b,c Na,b,c
R
poor s Nors Wisr Tprys
00 ! B T
PP p Ipr p
P e p! N IR
p np' p
1 R 1
p' P oo (Npl) Dpl (Ipl)

*

]

R

p',s,r’ip',s,r

R

p',s,r’ip',s,r

R

R

Finally, we summarize in a table the Banach ideals

and

In

»*
t:p,r,s’vt:p,r,s] B [nt':p',s,r’vt':p',s,r

]
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CHAPTER III
PRODUCT AND QUOTIENT IDEALS

In this chapter, we Introduce the product and quotient
of two quasi-normed ideals ([A,a] and [B,B] . It turns
out that the conjugate ideal of a product ideal 1s a quo-
tient ideal. We also provide some examples and give a

prootf of the converse of a classical result of Grothendieck.

§ 3.1 Product Ideals

Let [A,al, [B,B] be two given quasi-normed ideals.
We denote by BoA the class of all operators T € £(E,F)
such that there i1s a Banach space G and operators
U e A(E,G), V€ B(G,F) such that T = VoU . We set
(Boa)(T) = inf B(V)a(U) .

3.1.1 Theorem. [BoA,Bo@] 1is a quasi-normed ideal.

t
Proof. If &g € E and y € F , then a ® y factors

through an one-dimensional Banach space G and

(Boa)(a®y) < a(18y)B (a®l) = |lallllyll . On the other hand,

L7



lallllyll = lla®y]l < li1ey||ljanl]] < a(18y)P (agl) . Hence
(Boa) (a®y) = [allll¥ll -

Let Ty, T, € BoA(E,F) and suppose T; has an
(A,B)-factorization (U,,V;) through the space Gy ,
(1=1,2) . Write G =(G1@mG2LJand let P; be the projection
of G onto Gy , then (Uj+ Uy, V3Py + V,5Py) 1s an
(A,B)-factorization of T+ T, through G .

To see that Bog 1s a quasi-norm, we let € > 0,
then there is an (A,B)-factorization (Ui’Vi) of Ty
through Gy (i=1,2) such that B(V,)a(U;) < (Boa)(Ty) + /4
Then (Boa)(Ty+ T,) < B(VyP+V,P,)a(Uy+U,) < 2B (V4 Py +V,P5)
max (a.(Uy ),a(Us))

If we take a(Uy) = a(Uy) , then
(Boa) (T{+T,) < 2[B(Vy) + B(V5)la(Uy)
= 208 (Vy)a(Uy) + B(V,y)a(U,y)] < 2 (Boa)(Ty) + (Boa)(T,) + €/2]
- o[ (Boa)(Ty) + (Bow)(Tp)] + € .

It is easy to show that if S e £(G,E) , T € B°A(E,F)
and R e £(F,H) , then RTS € B°A(G,l) and

(Boa) (RTS) < [[Rl(Boa)(T)Is] -

Remark. In general, we are not able to show that Boa 1is

a norm even if both &« and 8 are ildeal norms.

We now give an example of a product ideal. Using the
same techniques as in the proof of Proposition 2 in [19] by

Kwapien, we obtain the following result.

L8
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3.1.2 Theorem. [np,r,s’wp,r,s] = [ﬂsoﬂy,vsowr] where
1/p=1/r+1/s <1 &and 1<r, s <o,

To prove our theorem, we need a lemma.

3.1.3 Lemma. If 1/p=1/r+1/s<1,1<r, s<o and

a,b are positive real numbers, then

1 r.r S
1321— = inf (tra + bs ) .
p 0< t<oo st

The proof is easy, so we omit it.

Proof of Theorem. Let T € Hp r s(E;F) . We consider the
=3

following diagram

E T 5 F
'
I 25
Dy
with U:y = (<y,bi>)i<n s (bi)i<n cF 5 V' :b - (<xi,a>)i<n,
(3)1cn SE and D, (23) = (\y84)yqn » () € 20, . Then
|Trace (D, UTV) | = )1glxi<Txi,bi>|‘s Wp’r’s(T)HAHHBva,,S,r(DX)

= Wp,r,s(T) € (by) er(xi)u(xi)np, . Taking the supremum
over (A;) with “(xi)np, <1, we have

(1<, o> PP Cmy (D (g e (b))

L9



By Lemma 3.13, we have

t™Ms

i=1
Let Kl c E' and K2 < F" be the weak-star closure
of the extreme points of the closed unit balls and set
!
K=K x K, . For (a,b) € Ex F , 1let f(x,b) € C(K)
be given by

1t

flepy ey ) = B lna| + B))<ey' >0

Let A ©be the closed convex hull of
f( ,b) € C(K) : |<Tx,b>| = 1} and
= {f e C(K): f(t)([wp r, (T TP} . Then A and B are
disjoint convex sets with B open; in fact, if ¢
(x4,04)
satisfies |<Txi’bi>‘ =1, 1=1,2,°**sn , 0 <2y <1 and

n
z Ay = 1, then

i=1

n n 1
1= izlxi\@xi,bplp = i§l|<T(x:iL/r s (Y% b,)>|P
<O o s (MIPIEREL0YT %)™ + @) 0]/® 0,)1%)

n
p - [ ]
< Ty, ()] (2,307 )ek [iilxif(xi’bi)](a,y )

By the separation theorem for convex sets and the Riesz

theorem, there 1s a probability measure ¢ on K such that

[Vp r, S(T)]‘p < o(f) for fe A . This gives

p,r (T) £ %)XK|<x,a>|ro(da,dv) + (%)IK!<b,v>|so(da,dv)

<ty , 0,518 < [my L (T IPCEN e, (x)17 + B)eg(4)1%) .

50
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whenever |<Tx,b>| = 1 . Replacing x,b by tx and

£~ 1o respectively and applying Lemma 3.13, we obtain

W;?r,s(T)‘S (IK|<x,a>|rdg)P/r(IK‘<b’V>!Sdc)p/s

whenever |<Tx,b>| =1, which in turn implies

/s

(*) |KTx,b>| < 7

1
p,r,s(T)(IK|<x,a>|rdc)1/r(IK|<b,v>|Sdc)

for all x e E, b € F' .

Now let V e £(E,L_(K,0)) Dbe defined by V(x)(a) =
= <x,8> on X; and V(x)(y") =0 on K, . Similarly,
let W e £(F',LS(K,Q)) be defined by W_(b)(y'') = <b,y''>
on K, and Wo(b)(a) =0 on X, . Let G =V(E) in

S
L.(K,0) and H = W (F ) in L (K,0) . By Pletsch's
t

theorem (see [30]) V e I.(E,G) , Woe N (F ,H) and L /e
wr(V) <1, WS(W ) <1 . 8ince ||vx|| = (j |<x,a>!rdc(a)) R

A o) = K !

5 1/s
and Hwobn = ([ |<b,y''>|"da(y'!)) » (*) implies
“K

|<Tx,b>]| < Wp,r,S(T)“Vx“”WOb“ ,» that is, there exists an

operator Z:G - H such that JpT = W;ZV and ||Z|| < T)

™, r,s(
tt

:F =+ F is the natural injection. Indeed,

1l

where JF

- - 1
7 1is defined by (W ) Ligovt . Let W=w2Z, then

! 1 !
Jgl = WV and 7 (W) < ”ZHWS(W;).S hzl| < Wp,r,s(T) . Hence

(Tm ) (T) < Ty 4 o (T)

On the other hand, assume T = WV , where V e I (E,G)
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t
and W e I, (F ,G') . Let X and Y be finite dimen-

sional Banach spaces, let A € £(F,Y) , Ue Np, g p(¥,X)
b B 4

and B e £(X,E) . We consider the diagram

E—2>% 5 F Y > X > E
V\, /X‘/J Ull T Uz
n
Dy

n
where U = U,D. Uy , U; € £(Y,4.) » Up € £(4,,,X) and

Dx(gi) = (xigi)iSn , (Ai) € Ly 8O that
HuallDy Ul < vpi s, #(0) + €

We have to prove that

1
|Trace UATB| < 7. (V)Tgy (W )vpi s, »(U)IANIBYI . But
n 4 ! * R
VBU, e M (45,,G) and (U;AW) e D (£,,G ) . Also I = I, .
Thus we have, |Trace UATB| = |Trace D, U;AWVBU,|
R L S B |

< ir,(DxUlAw)wr(VBUQ)IS T (WA UlDX)Wr(VBUg)

< u(xi)np,ws(W'A'Ui)vr(VBUQ)‘S vr(V)ws(w')(Vp',s,r(U)+€)"Au“BH .

3.1.4 Theorem. 1) [Bo\A,Bo\al= [\(BoA),\(Boa)]
i1) [\BeA,\Bcal] = [ (B°A)/,(Bca)/]
111) [\Bo\A4,\Bo\al = [\(BaA)/,\ (Boa)/]

Proof. 1) By definition if T e€ (Be\A)(E,F) , we can write

\ W :
T:E + G=F with Ve \A(E,G) and W e B(G,F) . However,
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00

&

1
we can factor V as E = ¢°(U ,) » G with
. _
We A(L7(U ,),G) . Thus T e \(BoA)(E,F) and
E

(Bo\a) (T) > \(Boa)(T) . Conversely if T e \(BoA)(E,F) ,
by the definition of left projectlve envelope, T can be

factored E -+ g (U ,) * F with S e BoA (4,(U ,),F) and
JE E S E

S = VoU , where Ue A(4 (U ,),G) and V ¢ B(G,F) . Hence
E
UoJg € \A(E,G) , T e (Bo\A)(E,F) and \(Boa)(T) > (Bo\a)(T) .
Statements 1i) and iii) follow in a similar manner.

3.1.5 Corollary. 1) [(“S)'°I§,(Ws)'°i§] = [\ » 60 \Tp, p, !

oM, (15) o) = (M /s T /]

111)  [(I3) o (I3), (15) o15] = [\, . /N7 /T .

!

11) [ (15)

§ 3.2 Quotient Ideals

Let [A,a] and [B,B] be two quasi-normed ideals.
We denote by B/A(E,F) the class of all operators
T ¢ £(E,F) such that for each Banach space G and U e A(F,G),
UoT ¢ B(E,G) . We also set B/a(T) = su B(UoT) .
“(U§<l
G
3.2.1 Theorem. If [A,a] and [B,B] are two normed

ideals, then [B/A,8/a] 1is a normed ideal.

Proof. 1) If a € E' , y€ F, then Uo (agy)

= a®U(y) ¢ B(E,G) and a®y € B/A(E,F) . Moreover,




B/a(asy) = as('gggﬁ (a8U(y)) = G(SgglllallllU(Y)H < llaliliyll -
If we take U = sz with b € UF, and 2z € UG » then

B/a(a®y) > B((b®z)o (a®y)) = B[a® (y)z] = |b(y)|B (a®z)
= [o) {lalilizll = o) {ljall - Hence B/a(asy) > |ylliall .
ii) If T,S € B/A(E,F) , then U°e (T+S) = UoT+UoS € B(E,G)

for U e A(F,G) . Hence T+S € B/A(E,F) and
B/a(S+T) = sup B[Uo (S+T)] < sup [B(UeS)+B(UoT)]
a(US_(_l - c,(Us’_<_1

< sup B(UoS) + sup B(UeT) = B/a(S) + B/a(T) .
a(U)<1 a<uﬁ51

iii) If S e £(F,H) and T € B/A(E,F) , then
VoS € A(F,G) for V e A(H,G) and Vo (SoeT) = (VeS)°T € B(E,G) .
Hence SoT € B/A(E,H) and B/a(SeT) = sup B (Ve (SeT))
o,(Vgg_l
T o lste (v qep e ™) < LB IS8 (0oT) = [isl/a(r)
since a(Vbﬂéw)‘s a(V) <1 .

iv) If We £(H,E) , T € B/A(E,F) , then UoT ¢ B(E,G)
for U e A(F,G) and (UoT)oW = Uo (ToW) € B(H,G) for
Ue A(F,G) . Hence ToW ¢ B/A(H,F) and B/a(ToW)

o,?g S_lB (Uo (ToW)) < a?gggls (UeT)||W|| = B/a(T)||W|| for

1l

We £(HLE) .
3.2.2 Corollary. If [B,a] 1is complete, so is [B/A,B/a] .

Remark. i) If [A,a] € [B,8] , then B/A(E,F) = £(E,F)



ii) [B,B] c [B/A,B/a] for all [A,a] .

A classical result of Grothendieck shows that the
composition of two 2-absolutely summing operators is nuclear.

We show the converse 1is also true.
3.2.2 Lenma. I/A c A* for any normed ideal [A,al .

Proof. If T ¢ I/A(E,F) , then SoT € I(E,G) for all

S e A(F,G) . We claim that there is a constant c¢ > O such

that 1(ST) < ca(S) for any finite dimensional space G and
operator S € A(F,G) . Indeed, suppose for each n, there

are finite dimensional spaces G, . and S e A(F,G ) with
1
i(s,T) > n , and q(Sn) = =z Let S = 1Jnsn s, where

M8

n
00

Gl then a(S) < T a(3 S)) < T a(s)) <+«

J :G_+(®
non = n=1 n=1

n=1

0
and S e A(F,G) . But ST = P,ST , where Pn:(n(?lGn)oo + G,

a projection. . We thus have 1i(ST) > i(SnT) > n + o , hence
ST ¢ I(E,G) and this gives a contradiction.

Now let X, Y be finite dimensional, U € Z(X,E) ,
Ve d(F,Y) and S € A(Y,X) . Then
|Trace (USVT)| < JUllllsvT||® = julli(sVT) < c||Ulja(sV) <

< clluliffvlia(s) , so that a*(T)‘S c and Te A .

3.2.3 Theoren. Nl/n2 =1, .

]
Proof. From Grothendieck's result, we have ﬂ2 c Nl/l'l2 .
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»*
Following Lemma 3.2.2, we have Ny/I, cIl, = I, = I, .

We mention that TL°IL, # N, . Indeed if T e TyeI, ,
then T is fully nuclear in the sense of [41] and there

are nuclear operators which are not fully nuclear.

3.2.4 Theorem. 1) ﬂp = Nl/Np' = Il/Ip'

11) I, = N/ = I/, (L/p +1/p' = 1) .

Proof. i) From the multiplication theorem of Pietsch [27],

we have np c Nl/Np‘» and Hp c Il/Ip' . Also, by Lemma 3.2.2,
*
it follows that Nl/Np, c Il/Np, cN_, = np and
* - Q Q
Il/Ip, c Ip. = np . ii) sSimilarly, Ip < Nl/Np, c Il/Np,

*
c Np, I and Ip c Il/ﬂp, np, Ip .

call [B/A,B/a) the right quotient of '[B,B] by [A,a] .
We now define the following analogous class of operators.
Let ([A,a] and ([B,B] be two given quasi-normed
ideals. We denote A\B the class of all operators T such
that for each U € A(G,E) the composition ToU € B(G,F)
and set o\B(T) = sup B(ToU) . [A\B,a\B] 1is a quasi-
a(gssl

normed ideal, and is called the left quotient of [B,B] by

[A,a]

3.2.5 Theorem. 1) [(B/A)', (B/a)'] = [A'\B',a'\ﬁ']
11) [(A\B) ,(a\8)'] = [B'/a',8'/a’] .
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The proof is easy, so we omit it.
Now we are able to construct a right quotient normed

ideal which includes a case considered by Kwapien [19].

! !
3.2.6 Theorem. [Ig,r,s,ig,r,s] SRR, LIV

(1/p + 1/r + 1/s = 1) .

Proof. ILet T € Ig r S(E,F) and consider the diagram
— s+
E T - F J > G
] I
X € Y
W

1 ! ! .
with U e I (F,G) , W ¢ IL(X ,Y ) and X, Y are finite
dimensional. From Theorem 3.1.2, WAU ¢ ﬂp, S r(F,X) and

3 )

*
|Trace (WAUTB) | < 7,y o ,(WAU)T,, o .(TB)

< T T (wHaR (sl = T iR ()|l ) .

— 8

Thus (ur)' e 7o(¢',B') = 15, (¢',E') ana 1% ((ur))

p,r,s pb,r,s

<TG oo (T) - s (150)'/7 (D) < af o (T)

'
On the other hand, let T € (Ii,) /HS(E,F) and for

Ue T (F,G) , we have 1%, ((UT)') < g (U)(i})/7 (T)

Considering the diagram




v

oe]
N —> =

& G €

' U

. t
with U e N_(Y,G) and V € I.(X ,G') , we have
! 1t ] R 1 1
|Trace VUATB| = |Trace B (UAT) V | . But (UAT) e I, (G ,E )
and V e wr(x',G') . Therefore |Trace VUATB|

1

< (V) 18, (ary') < BImL (v )T () (1) e () Al -

R !
Hence 1§’r’S(T).§ 1Ry (o) .

We next establish a duality theorem that show the

relationship between product and quotient normed ideals.

3.2.7 Theorem. For normed ideals [A,a] and [B,B] ,
[ (Bon)D, (Boa)] = [B/A,B5/a] .

Proof. Let T € (BoA)®(E,F) and consider the diagram

T U V
E+F2 G-+ E with Ue A(F,G) and V € F(G,E) , 'then

|Trace VUT| < (Boa)" (T)Boa(VU) < (Boa)®(T)B (V)a (V)
= [ (Boa)2(T)a(U)IB(V) . Hence UoT e BE(E,G) for U e A(F,G)
and BA(UeT) < (Boa)®(T)a(U) . Thus T e BY/A(E,F) and
B5/a(T) < (Boa)®(T) .

On the other hand, let T e BA/A(E,F) and consider

the diagram
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E ————» F ————————9 E

N/

with U € 3(F,E) . Then as indicated in the diagram, there

exists a Banach space G and operators V ¢ A(F,G) and

We B(G,E) with U =WV and (Boa)(U) + ¢ > a(V)B(W) .
Since V e A(F,G) , VoT ¢ B3(E,G) , and so

|Trace UT| = |Trace WvT| < BA(VT)B (W) < BA/a(T)a(V)B (W)

< BA/a(T)[ (Boa)(U) + €] . Hence T e (BoA)A(E,F) and

(Boa)2(T) < (B%/a)(T)

Remark. We are not able to prove the above theorem for the
adjoint operation * 1n general. However, we have the

following corollary.

3.2.8 Corollary. If both E and F have m.a.p., then
(BoA)” (E,F) = B /A(E,F) and (Boa) (T) = B’ /a(T) for all
T .

3.2.9 Theorem. If both E and F have m.a.p. and B is

perfect ideal norm, then [ (B3/A)",(8/a)’] = [BoA,8 °a]

Proof. Since [B,B] is a perfect normed ideal
[B*OA,B*°&] _ [B***OA,B***OG] _ [(B**/A)*,(B**/a)*]
= [(&/8)", (8/0)7] .

a
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3.2.10 Corollary. If B 1s perfect and both E and F
have m.a.p., then (B.A)(E,F) 1s a Banach space under

the norm Boa .

§ 3.4 Sum and Intersection of ideals

Let [A,a]l and [B,B] be two given quasi-normed
ideals. We can form AN B and A + B by defining the
components (ANB)(E,F) = A(E,F) n B(E,F) and (A+B)(E,F
= [A(E,F),B(E,F)] , the linear span of A(E,F) and
B(E,F) in <£(E,F) .

If we set (aNB)(T) = max(a(T),B(T)} and (a+p)(T)
= inf{a(R)+B(S):T = R+S, R e A, S € B} , then it is easy
to show that [ANB,anB] and [A+B,a+B] both are quasi-
normed ideals.

If A, B are Banach ideal, then so are [ANB,anB]

and [A+B,atB] .
3.4.1 Theorem. [ (a+B)*,(a+8)*] = [a"nB,a™np™] .

Proof. If T e A N B*(E,F) , We consider the diagram

E
VT
Y

T

v

> g
e

P
Y

)



with X, Y finite dimensional spaces, then

|Trace WUTV| = |Trace (Wy+ W,)UTV|

< |Trace WyUTV| + |Trace WoUTV| < a*(T)”U”HVHa(Wl)

+ 87 (T)|u)|vIe (Wy) < max(a” (T),8" (T))IUIIVIL a(wy)+8 (W) .
Hence (a+B)*(T).§ max(a*(T),B*(T)) = (a*ﬂs*)(T) and

T ¢ (A+B)” (E,F) .

On the other hand, let T ¢ (A+B)*(E,F) . Then,
|Trace WUTV| < (a+8)" (T)|UIIVI| (a#8) (W) < (a+8)" (T Ul|V]a(w) .
Similarly, |Trace WUTV| < (a+B) (T)||U||IV|le (W) . Thus,
a*(T).s (a+6)*(T) and B*(T)|§ (G+B)*(T) . Hence
max (a (T),8" (T)) < (a48) (T) and T e (A'NB ) (E,F) .

3.4.2 Theoren. [(AﬂB)*,(aﬂB)*] =) [A*+B*,a*+B*] .

Proof. If T € (A*+B*)(E,F) » we consider the diagram

T

—
d

<
< —>

A

= &—— o
a

W

with U, V bounded and X, Y finite dimensional. Then
|Trace (WUTV)| < |Trace WUTIV[ + |Trace WUT,V|

* - »*
< a (T )aWullivil + 8 (T5)8 (Wull|vil

< (&' (1) + BT (T))||U||Viimax (a(W),B (W))



= [a(Ty) + B (To)1||UIIV (anB) (W) . Hence T e (ANB) (E,F)
and  (anB) (T) < (a™487)(T) .

Remark. We are not able to show that [(AﬂB)*,(unB)*]

= [A*+B*,u*+ﬁ*] . However, if [A,a] and [B,B] are both

* * \ H*

857 = [ (A48, (0 )T
= 1B, @8 = ()Y, (ang)”T .

* *
perfect, we have [A +B ,a

Example. For any ideals A, B 1t 1is clear that A < A+B ,
Bc A+B . In general, A+B can be distinct from either A
or B, e.g. T+ K#K or 7 . Indeed, let T:g, L5

p p

. . 1 .
be defined by Ten = 75 e, and let 1 = -+

L4 Lo be the

natural inclusion. Then i+T ¢ K or T & LA
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CHAPTER IV
QUASI-NORMED IDEALS OF OPERATORS DETERMINED BY s-NUMBERS

The nth s-number of a compact operator T on an
infinite dimensional Hilbert space H 1is defined as the
nth eigenvalue (ordered according to magnitude) of the
operator |T| = (T*T)l/2 . It is well known that the
s-numbers play an important role in the theory of operators
on Hilbert space. Indeed, s-numbers have been used to construct
(symmetric) normed ideals in the ring <£(H,H) . This work
has been compiled in the book of Gohberg and Krein [11].

For operators between Banach spaces, several definitions
of sequences of numbers which coincide with s-numbers in the
case of Hilbert space have appeared in the literature. Some
of these have been collected in the paper [24] of Mitiagin
and Pelczynski. Recently, Pietsch collected some important
properties of s-numbers in Hilbert spaces and gavé an

axiomatic definition of s-numbers, see [34].
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§ 4.1 Axiomatic definition of s-numbers

Following Pietsch [34], we say that a map s:T =+ (s (T))
from the ideal £ into the sequence of non-negative numbers

is an s-number function provided that the following condi-

tions are satisfied (n=1,2,--*)
1) |7 = 59(T) > 5p(T) 2 s5(T) > +*+ 2 O for T e £ .
11) s, (5+T) < s, (8) + \Tll for S,T € £(E,F)
1i1) s_(RTS) < ||Rls (T)||S|| for S e £(G,E) ,
T e £(E,F) and R e £(F,H)
iv) If dim(T) < n , then s _(T) =0
v) If dim(T) > n , then s (Ip) =1

The number s _(T) is said to be the nth s-number of
the operator T .

We note that, from iii), v), the converse of statement
iv) is also valid.

Pietsch showed that s-numbers of operators in Hilbert
space H are determined uniquely by the above axioms.

An s-number function s 1s called additive if
the following improvement of condition 1i) is made

11') s, 1(S+T) < s (8) + 5, (T) for S,T € £(E,F)
(myn=1,2,-°+) .

We will see that the additivity of an s-number function

is required to construct a quasi-normed ideal.
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Some Special s-number Functions

Let T ¢ £(E,F) , we define the nth approximation

number

a (T) = inf (||T-A)) :A € £(E,F) ,» dim(A) < n)

the nth Kolmogorov number

a (r) = inf  sup |Tx|py = inf {[lagT|))

n dim N<n erE dim N<n

the nth Gelfand number

c (T) = inf sup ||Tx|| = inf n{HTJgH]

codim M<n erEﬂM codim ML

It has been shown (see [34]) that a, d, ¢ are
additive s-number functions. It is unknown whether all

s-numbers are additive.

§ 4.1 Ideals of Operators and Ideals of Sequences

Glven an operator ideal A and two sequence ideals
# and 2 , we denote 2(A,0,2) the class of sequences
(a,) € &, for which the diagonal operator
D,:¢ + 2 with D, (8,) = (a,8,) belongs to A(@,2) . Tt
is easy to see that Z(A,Q,l) forms a sequence ideal.

In [42], Tong (also see Holub [15]) showed that

Z(N’!’p’f'q) = I'h » Where
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( 1 if 1 <{qg<p<s™
23 if 1 o
N B3p-q sp<acx
5%I 1f g=oo and 1< p< o
L 0 if g=o and p=1.

Also Garling [10] computed the sequence ideals ¢
(Mys 255 8)

and £ .
We note that the correspondence (A,O,i) - E(A P 2)
2 s
is not one-to-one in general.

On the other hand, for each s-number function s and

each sequence ideal & , we can assoclate an ideal of oper-

ators by
A; = {T e L= (s,(T)) € a4} .
We set aS(T) = || (s, (7)), -

L .2.1 Theorem. For any additive s-number function s and

a sequence ideal ¢ , [A;,q;] is a complete quasi-normed

ideal.
The proof is routine, so we omit it.

For the approximation number function a , we use

a

*p

The following result is immediate from the definition

Lp(E,F) for A% (E,F) .

of the Kolmogorov and Gelfand numbers.



4.2.2 Theorem. 1) £ \(E,F) = Ai (E,F)

p

d

ii) /zp(E,F) = A, (E,F) .

|Y
4.2.3 Theorem. [9] The mapping ¢ - A;(H,H) establishes

a one-to-one correspondence between the sequence ideals

and ideals of operators on Hilbert spaces.

It is well-known and easy to prove that every ideal
A(H,H) is contained in K(H,H) . But, given an operator
T € K(H,H) , can we assert that there exists an ideal A

other than K so that T e€ A(H,H) ? This question has

been affirmatively answered by Brown, Pearcy and Salinas {1].

The proof uses some ideas of Von Neumann-Calkin [2] and is
rather complicated and indirect.
We present an alternative direct proof. To this end,

we need the following result.

4,24 Temma. If ([B_)} is an increasing sequence with

n

[1 Jec\U 4., then there is a sequence {o_] with
B, ° o P n
n p> o ©
a # O such that T a < + o T oBf =+ o and
n n=1 % ’ n=1 * D

[anﬁn] is monotone decreasing to O .

Proof. Without loss of generality, we assume Bn > 1 for

all n . Choose N and ¢t so that 8 > 2 and
N 1 1 Nl

1 t
1
n=1
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z (H—) 1 <~% . Then, choose ry > tl and Ml > N1 such that
n



M
1 r

1,1 1,71 1 :

(5) < % (=) - < 2(x) . Again, we choose N, > M; and
z\B n=NIEn 7z ’ 2 1

N

t, > ry such that By, > 2 and 22(3—1 )t2 <+

2 1 N2 n=Ml n T

Choose ry > t2 and M2 > N2 such that
M

1,1
=(x) <
2'3 n=N

2 1.7 1
(B—) < 2(3) . 1In general, we choose
o I >

Mm > Nm > Mm—l and rm > tm > rm_1 so that

N M
m t
l1."m 1
BNm >m, pX (B—) <

n=Mm_1 N

1,1 Tl m 1
o and & (=5r) <n=zN (g;) < 2(=r)
m

Let . .
{ ty AF My 9 <Ny
k, =
J [
ry if Ny < J <M
o K. 00 Mm r o0
1\ ] 1\, m 1 1
Then % () °> L[ T () 1> z = o and
j=1 P31 T p=N_ B, =2 poy ™
oo (l)k 11w Dy 1)tm+1 o M l)r +1
z < £l ( 1+ [T ( ]
Jj=1 B; m=1 M B;' m=1 N E;
m-1
[0} [e.0] oo (¢ o]
1 1 1 2 1 2
< T - = 4+ T " < L ==+ < + o
m=1 BNm oM =1 BMm MFL = |21 Wt oy RO
7 o+l % @ 4 k.4l
Thus, letting a, = (B-) J we have I a. = I (g-) J <+ o,
v =17 g=17

ap = (E:L) J , wWhich is monotone decreasing to O , and
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1k L
lﬁ;}) +w

(o]

.Z
J=

it ™48

i

4.2.5 Theorem. If T e K(H,H) , then there exists an

ideal A # K such that T e A(H,H) .

Proof. Without loss of generality we may assume

1 1 :
. Let = then €
T € K(H,H) \ pl>JO Sp(H,H) Bn W ’ F; Co\pgolp

By Lemma 4.2.4, there is a sequence {ah] € 4 such

[o o]
that {aan} is monotone decreasing to 0 and T aB =+ = .

n=1

[o o]
Let A(T) = {S e £(H,H): £ s_(S)a B, < + »} . 3ince
oD n"n
0o (o] n
nElsn(T)aan = nzlan < +o , Te A(T) .
If dim S < + » , then sn(S) = 0 for large enough n

and so A(T) contains the finite rank operators. Also,

if R,S € A(T) , then from the additivity of S, >

aensgnszn(R+S) < aansn(R) + uthsn(S) and
“2n+132n+152n+1(R+S).5 A Bo,So, (R+S) . Thus A(T) 1is a
linear space. Also it is easy to see that A(T) 1s closed
under left and right composition by bounded linear operators.
So A(T) 1is an ideal.

o0
But, since I a B = » , there is a sequence {Yn]

n=1

[o¢]
decreasing to zero such that Ty.oapB =+ . If we write

pel D DD

o o]
T = n§18n<T)fn®yn , where (f ) and (y ) are suitable
[+,0]
orthonormal sets in H , and let T = ¥ Y _f ®y_  , then
o p=1 D'D7UD
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T € K\A(T) .

Using the recent results [16] and [35] it is easy to
generalize the above construction to include many other
classes of Banach spaces. We recall the following defi-
nition [16]: Two Banach spaces E and F form a

Bernstein pair if for any positive, decreasing null sequence

(bn) there is a T € K(E,F) such that

a, (T) (T)
(*) O<i;)f—%;—-—-5_sgpi%n——<+oo

where a (T) 1s the nth approximation number of T

L4 ,2.6 Theorem. There exists a complete quasi-normed ideal
A(T) such that A(T)(E,F) # K(E,F) whenever <E,F> 1is a

Bernstein pair.

i

Proof. By the result of Pietsch [35], if K(E,F) zp(E,F)

for some p > O , then min(dim E, dim F) < + « ., Thus
1

we may assume that a (T)) € U . Let =
y : (o (T)) c°\p>OLp et B, (1)

and let a, and Y, be as in the proof of Theorem h.2.5.

00
Let A(T) = {Se K: T a (S)aB < + o} . It is clear
ne1 P n"n
from the proof of 4.2.5 that A(T) 1is a quasi-normed ideal
with quasi-norm p(S) = T a (S)aB, - The completeness
ne1 D n
of A(T) 1is easily established.

If <E,F> 1s a Bernstein pair, then by (*) there is
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(s)
an S € K(E,F) such that inf a$

n n

> 0O and thus,

s X A(T)(E,F) .

We remark that all classical Banach spaces form

Bernstein pairs. In particular <Lp(u),L (v)> 1s a Bernstein

q
pair for all 1< p, q < » and measures u , v [16].

§ 4.3 A Special Quasi-normed Ideal

In [23], Marcus showed some relationship between the

ideals Ai s Ai s Ai and Np oo (0<PLK1) . To see
P p pie o

some other interesting results, we need a lemma first given

in [16].

4.3.1 Lemma. If szzw 4 4 is a diagonal operator de-

termined by a sequence (A;) with Xy > A5 2> ++- > 0 and

8

1
\p * 0, then a (D) = (iznlxilp) %

4 .,3.2 Theoren. N1/1+p:1,w,w(G,F) c zl/p:l(E,F) (1<p<w) for

any Banach spaces E and F .

Proof. If T e N then T has factorization

1/1+p:l,m,o ?

T

=
2
o

o
7
~

}...J




with D, ~ (r,) € zl/l+p:l and A, + O that is,

(]
bX nplx | <= . From Lemma 4.3.2, we have a (Dx) =
' L

therefore, & nP a,(D,) = % (nP iznlkil)'s nzlnp|xn| < .

n=1 n=1
Hence D.e A% (£ ,4-,) and
VY5 R
T = BD, A ¢ A2 (E,F) = &, .1(E,F) .
A /011 1/p:1

It is well-known that 4, (E,F) c N; _ o(EsF) (see
L b4

[28]). From the above theorem, we have

4.3.3 Corollary. N1/2:1,w,w(E’F) c 4,{(E,F) for Banach

spaces E, F .
Finally, we conclude by giving a general result,

4.3.4 Theorem. N (E,F) < zp(E,F) for 1< r< e .

p,r,r!

Proof. If T € N , then T has factorization through

p,r,r!

a diagonal operator D, ~ (r\;) from g, to 4. with

(Ay) € zp . But an(Dx) = A\, for n=1,2,:.- . Therefore

D, € Lp(zr,zr) and T € zp(E,F) .
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