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Abstract

A generalized one-dimensional monotone follower control problem with a noncon-
vex functional is considered. The controls are assumed to be nonnegative progres-
sively measurable processes. The verification theorem for this problem is presented.
A specific monotone follower control problem with a nonconvex functional is then
considered in which the diffusion term is constant. The optimal control for this
problem, which is explicitly given, can be viewed as tracking a standard Wiener
process by a non anticipating process starting at 0. For some parameters values,
the value function for this monotone follower control problem is shown to be C?
and for other values it is shown not to be C?. Next, a singular control problem
with constant coefficients and bounded controls appearing in both the drift and
diffusion terms is shown to be equivalent to an optimal stopping problem. Lastly,
other various singular control problems are considered for both smoothness of their

value functions and existence of their optimal control processes.

v



Chapter 1. Introduction

This thesis is concerned with one-dimensional optimal control problems of the
monotone follower type with an infinite horizon functional in which the payoff is
not convex. Problems of the type considered in this thesis but with convex payoffs
have been studied by authors such as Bather and Chernoff [4], Benes, Shepp and
Witsenhausen [5], Fleming and Soner [9], and Karatzas and Shreve [11, 12]. For
the nonconvex monotone follower problem in this thesis, the existence and nature
of both the optimal control and the optimal state process will be discussed. The
smoothness of the value function will be investigated. In the case where the value
function is C?, an explicit expression for it is obtained. We also show that for some
choices of the parameters of the problem, the value function is not C2. This is a
behavior not encountered in monotone follower problems with convex payoffs (e.g.
in [5, 9]) in which the value function is always C2.

Next, an optimal stopping problem equivalent to a singular control problem
with the control appearing in both the drift and diffusion terms and with constant
drift and diffusion coefficients is derived. Such equivalence is shown in [12] for
the monotone follower problem where the control appears only in the drift term.
Also, some singular control problems are considered to examine the existence of
optimal controls and smoothness of the value function. Lastly, various singular
control problems are considered for both smoothness of their value functions and
existence of their optimal control processes. Some of these problems are variations

of the monotone follower control problem dealt with in this thesis.



A typical stochastic control problem is now presented. Consider a stochastic

differential equation

dX(t) = f(t, X(t),u(t, X (t)))dt + g(t, X (t), u(t, X (t)))dW(t), X(s) ==z, t>s
(1.1)
where x, X (t), f(t,z,u), g(t, z,u) are real valued, and W (¢) is a standard 1-dimensional
Brownian motion. The drift and diffusion functions f(t,z,u), g(t,z,u) respec-
tively are assumed to be sufficiently smooth. The function u(¢, x) is called a control
function and it belongs to a set U of admissible control functions. Let X**(¢) be a
solution for the equation above. For a real valued function G(x), write the expecta-
tion EG(X**(t)) as E**G(X (t)). A functional V*(s, z), called the cost functional,
arising from the choice of the control function u up to an instant 7 < oo is defined

as

Vi(s, z) = B (/ k(r, X (r), u(r, X (r)))dr + M(T,X(T))) a9

The integrand in V*(s, z) represents the running cost of the process X (¢) and the
second term represents the cost of stopping the process X (¢) at the instant 7. The
stochastic control problem is to find a control function u* € U so that the solution
to the stochastic differential equation gives rise to a minimal value of V*(s, z) over
all possibilities arising from other controls v € ¢. Other control problems arising
from maximizing V*(s, x) can also be considered.

It can be shown, as for example in Oksendal [16], that under some assumptions
on the functions f,g,k, M and the set U, the minimal cost V% (s, z) satisfies a

Hamilton-Jacobi equation

mi[1]1 (LV*(s,z) + k(s,z,u)) =0, s<T,z€R
ue

with the end condition V*(7,z) = M (7, x) for 7 < oo, where U C IRis the range of



the control functions in U, and L is the generator of the stochastic process X (¢),
that is,
0o 1 0?

0
_ Lo
L= 55 + 59 (s,a:,u)ax2 +f(s,x,u)ax.

A control u* giving rise to the minimal cost V**(s, z) is called an optimal control
of the stochastic control problem.

If the Hamiltonian H(s,z,u) = LV"(s,x) + k(s, z,u) in the Hamilton-Jacobi
equation is linear in the control variable u, the control problem is said to be
a singular control problem. When the range U of the controls is unbounded, the
optimal controls may take on infinite values or impulses. This causes the underlying
stochastic processes X (t) to have instantaneous jumps.

A more special class of control problems we will consider is as follows. Let
W (t) be a standard Brownian motion and £(t) be an adapted, nondecreasing, and
left-continuous process with £(0) = 0. The singular stochastic control problem of
minimizing

Vi) = B [ / “h X @)+ [ Fedew) + g(X ()

(0,7)

over processes £(t) where h(-,-), f(-) and g(-) are given functions, and X () satisfies
X{t)y=z+W(t)—£&(), 0<7,z€R

is called the monotone follower control problem (cf. [12]). The relation between
this formulation and the formulation in (1.1)-(1.2) will be explained in Chapter 2.
The control is said to be inactive if d€(¢) = 0 and it is active otherwise.

In monotone follower problems, the optimal process can be characterized by its
behavior on two regions in the time-space set, an open region of inaction and its

complement, a closed region of action. When the state is in the inaction set, no



further action by the control is necessary. On the other hand, when the state is in
the action set, an impulse control is applied for enough time to take the process
to the nearest point of the common boundary. Such problems with A(t,-) and g(-)
convex have been the subject of study in Bather and Chernoff [4], Benes, Shepp
and Witsenhausen [5], Karatzas and Shreve [11, 12] among others. In this thesis,
we consider the above problem with h(t, z) = e **(1 —e*"), a nonconvex function
of z, f(t) = Xe *, g(t) =0 for all £ > 0 and constants A, a > 0.

Another problem in this thesis is an optimal stopping problem. An opti-
mal stopping problem (cf. [16]) is concerned with finding the optimal (mini-

mal/maximal) value of

U'(s,z) = E*° (/sTk(r,X(r))dT—i- M(T,X(T))) )

over all stopping times 7 with respect to a Brownian motion W (¢). The process

X () satisfies a stochastic differential equation
dX(t) = f(t, X(t))dt + g(t, X (t))dW (t), X(s) ==z, t>s.

In the case of minimization, U” will be called the stopping risk of the problem.
In this thesis, for a generalization of the monotone follower control problem in
Karatzas [12], an equivalent optimal stopping problem is found.

Optimal stopping problems arise in many decision problems. The main concern
is to stop the process when the reward (or cost) function which depends on the
process, becomes maximal (or minimal). At each moment a decision has to be
made of either stopping the process or continuing it in the hope of obtaining a
bigger reward (or smaller cost, respectively). This is done by choosing an optimal

stopping time up to which the reward (or cost) is measured. As in singular control



problems, the optimal stopping time partitions the time-space set into an (open)
optimal continuation set and its complement, the optimal stopping set.

The equivalence between an optimal control problem and an optimal stopping
problem was observed among others by Bather and Chernoff [4, 6], Karatzas [12],
and Ocone and Weerasinghe [15] where the control appears either in the drift or
the diffusion term (but not in both terms). It was observed that the continuation
region in the stopping problem ought to be the region of inaction in the control
problem. One of the benefits of this equivalence is that bounds of the continuation
region of the stopping problem translate into bounds on the region of inaction of
the control problem. In [12], the optimal stopping risk is equal to the gradient of
the value function of the optimal control problem. In [16], the optimal stopping
value is equal to the second derivative of the optimal value function.

In the singular control problem considered by Ocone and Weerasinghe [15], the
diffusion control processes are bounded and the controlled functional is nonconvex.
In this paper, they obtained the boundaries of the region of action of the control
problem by transforming it to its equivalent stopping problem.

Going back to optimal control problems, Dorroh, Ferreyra and Sundar [8] con-
sidered one class of problems with the control appearing both in the drift and
diffusion terms as in (1.1). The positive control functions are bounded above and
away from 0. They used a parameterization of time technique for the singular
control problem in 1 dimension to obtain an extended problem in 2 dimensions in
which the controls can be assumed to be bounded.

Benes, Shepp, and Witsenhausen [5] solved several monotone follower type
problems, among them a finite-fuel problem of optimally tracking a standard
Wiener process by a non-anticipating process with an apriori bounded total varia-
tion. The cost functionals considered in [5] are again convex. The optimal process

whose control is bounded was characterized using the Laplace transform.



Alvarez [3] considered other singular stochastic control problems where the
functional is not necessarily convex, but in which the controlled process was re-
stricted to the positive side on the number line. Among the assumptions made in
[3] is one in which the cost functional is absolutely integrable.

In Chapter 2, a general control problem is set up together with its Hamilton-
Jacobi-Bellman equation. A verification theorem is stated in which the optimal
control and state are characterized. In Chapter 3 some facts which characterize the
crossing times of a stochastic state process over a space interval are stated. The
expectation of the exit time of the process from the interval of restriction is given.
These will be used in the investigation on the smoothness of the value functions of
some singular control problems in Chapter 6.

In Chapter 4 a special monotone follower problem with a nonconvex functional
is presented. This problem is the main subject of our study. The existence of an
optimal control process is verified and the optimal process is determined together
with its action-inaction sets. The value function is explicitly computed in the case
when it is C?. Under some assumptions on the problem’s parameters, the action
region of the optimal control is shown to be a bounded interval. Lastly, some
examples of the problem are given for certain choices of the parameters of the
problem in which the value function is C? and in which it is not C2.

In Chapter 5 a general control problem with constant coefficients and bounded
controls is transformed into an optimal stopping problem. In the control prob-
lem considered, the control appears in both the drift and diffusion terms. The
two problems are shown to be equivalent in the case the continuation set for the
stopping problem (inaction set for the control problem) is a bounded interval. The
equivalence is that the optimal stopping risk of the optimal stopping problem is ex-
pressed as a second order differential equation of the optimal value function of the

optimal control problem. Here, the value function is assumed to be a C* function.



Lastly in Chapter 6, the smoothness of the value function for several singular
stochastic control problems is investigated. A theorem due to Lions [14] will be
used to is this regard. For the nonconvex monotone follower problem, the value
function is assumed to be C?(IR). This turns out to be true under some parameter
values and not true under other parameter values. Although the theorem used here
does not guarantee smoothness of the value function of such a control problem,
it can guarantee smoothness of a similar singular control problem (with the same
dynamics and cost functional) but with bounded controls. Lastly, a theorem due to
Karatzas and Shreve [12] is used to guarantee the existence of an optimal control
process of the monotone follower control problem irrespective of the problem’s
parameter values but restricting the state process.

An example of a singular stochastic control application is a portfolio selection
problem with transaction costs and allowed consumption. In a single agent in-
vestment the portfolio consists of two assets, one risk-free low yield asset (bond)
with an investment of z(s) dollars and the other a risky high yield asset (stock)
with an investment of y(s) dollars. Let u € (0,1) be the cost of transaction from
stock to bond and let A € (0,1) be the cost of transaction from bond to stock. Let
¢(s) > 0 be the consumption rate from the bond investment. Let pi(s),p2(s) be
the prices per share of bonds and stocks respectively. These satisfy dp; = apids
and dp; = po(Ads + odw(s)) where a, A and o are positive constants. Then z(s)

and y(s) satisfy

dz(s) = lax(s) —c(s)lds+ (1 — p)dM(s) — dN(s), z(0) ==z

dy(s) = Ay(s)ds—dM(s)+ (1 —N)dN(s) + oy(s)dw(s), y(0) =y

where M(s), N(s) are the total transactions up to time s > 0 from stock to bond

and bond to stock respectively. For a fixed discount rate 8 > 0 and the utility



of consumption function [ : [0,00) — [0,00), the agent’s goal is to maximize his

discounted total utility of consumption
J(z,y;¢, M,N) = Ea;y/ e Pl(c(t))dt
0

over all progressively measurable ¢(-), M(-), N(-) such that M, N are left continu-
ous, nondecreasing, M(0) = N(0) =0 and for all ¢ > 0

(1= Naz(t) +y(t) > 0.

Let O = {(z,y) € Rz + (1 — )y > 0,(1 — ANz +y > 0}. When the utility of

consumption function I(c) is of Hara type
1
l(e)==c¢", ¢>0and vy € (0,1),
Y

the problem can be reduced to a 1-dimensional problem. In this case Davis and
Norman [7] constructed a C?*(IR) value function to the resulting 1-dimensional
problem under conditions on «, A, 0, f and 7. Fleming and Soner [9] in Chapter
8 construct an optimal strategy for the problem. The optimal action/inaction (or
transaction/no transaction) regions and optimal controls are given below.

Let r = wi—}—y be the ratio of the initial investment into bonds. Then the initial
investment into stocks is 1 — r. As part of the optimal strategy there exists a

no-transaction region

P = {(x,y)é@;r1< xf_y <r2}



with 71,79 € [—177“, ﬂ Define the sell bond region, SB and sell stock region SSt
by
SB=1(x,y)€0;,— 2 >
=< (z : T
'Y ) T+ y 2

x
SSt = {(.’E,y) € O,x—_{_y <T‘1}.

Then when (z,y) € SB the optimal strategy is to replace bonds with stocks until
the processes (z(t),y(t)) reaches the no transaction region P and analogously in
SSt, replace stocks with bonds until (z(t),y(¢)) reaches the no transaction region
P. The optimal controls (which carry out this task) M (-) and N(-) turn out to be
the local times at 0;P and 0,P respectively where

z
0P = {(@"ay) S O’x——w —Ti}

for + = 1,2 and the optimal consumption rate is

1

c(z,y) = Va(z,y) 1,

where V' is the maximized total utility of consumption.



Chapter 2. General Problem

In this chapter, a general singular control problem is stated. In a general singular
control problem, the optimal control may take on infinite values. In such a case, the
control is replaced by its direction and cumulative magnitude. A Hamilton-Jacobi
equation is derived for the value function of this problem. A verification theorem
for the Hamilton-Jacobi equation generalized from one in [9] will be stated.

Let f, g,0 : R— IR be Lipschitz continuous, with o positive and bounded away
from zero. The control set U is such that either U = Ror U = [0,00). Then
U satisfies the following forward cone property. If v € U, A > 0 then v € U.
We will consider progressively measurable controls in the following sense: Fix an
initial time ¢ € [0,%;). For t < s < t;, let By denote the Borel o-algebra on
[t, s]. Let (2, F, P) be a probability space, {F,} an increasing family of o-algebras
with Fy C F for all s € [t,t1]. A process u : [t,t;] x Q — U is Fs-progressively
measurable if the map u(r,w) for r € [t,s],w € Q2 is B; x Fs-measurable for each
s € [t, t].

A reference probability system v means a 4-tuple
v=(Q{F},P,W)

where (€, F,, P) is a probability space, {Fs} is an increasing family of o —algebras
and W(-) is a Fs-adapted Brownian motion on [t,#;]. The family {F,} is called

a filtration if F,, C F,, whenever s; < so. Let v be any reference proba-

10



bility system with a right continuous filtration {F,}. Let U = {u : R" —
U; u is progressively measurable and Lebesgue integrable} be the set of controls.

Let a, A € IR, and ¢ : IR— IR be a continuous function. Consider the problem
of minimizing

FU(z) = B ( /0 T et (e(X (1) + Au(t))dt) (2.1)

over the set of controls u € U, where the expectation is taken with respect to
the probability measure generated by the one-dimensional process X (-) started at

x € IR given by

dX (1) = [f(X(®) + g(X(@)u(®)]di + /o (X (2))dW (t), X (0) = . (2.2)

The associated Hamilton-Jacobi equations are linear in the control variable and
in general there are no optimal controls and near optimal controls take arbitrarily
large values, [8, 9]. For this reason it is convenient to reformulate the above problem

by using the integral of |u(s)| as the control. For u € U, let 4 and & be defined by

u(s)|"tu(s) if u(s
oy | 1) i) 20 -
0 if u(s) =0

£(t) = / u(s) ds (2.4)

(i registers the direction of v and & registers the cumulative magnitude of u.) Then

11



where

2= {&(-): R" = R";£(¢) is Fr-adapted, non-decreasing,

(2.6)
left-continuous and £(0) = 0} .
Assume
u(s) € U for y a.e. s >0, (2.7)
where 7 is the total variation measure of z(-) given by the Stieltjes integral
2(t) = / a(s)de(s).
[0,)
Further, assume
E|z(t)|™ < o0, form =1,2,.... (2.8)

Let A, consisting of (£(+),4(-)) satisfying (2.3)-(2.8) be the new control set. The

problem is now defined to minimize
F(z;&,1) = E° ( /0 et (X (1)) dt + Aa(t)dg(t))) , (2.9)

with X (-) given by
dX (t) = [f(X()dt + g(X(1))a(t)dE(®)] + /o (X (£))dW (1), X(0) =z (2.10)

over all (£(+),4(-)) € A, and all reference probability systems v.
Next, we state the resulting Hamilton-Jacobi equation and the verification the-

orem for the control problem (2.9)-(2.10). Let

K={ueU;ul=1}

12



For z,p € IR, define H as

H(z,p) =supv {—g(z)p — A} (2.11)
and the operator L as
LV (z) =aV(z)— %o(m)V”(x) — f(2)V'(z) — c(z). (2.12)

Let C,(IR) be the set of continuous functions on IR with polynomial growth,
C'(IR) the set of continuously differentiable functions on R, L*®(IR) the set of

essentially bounded integrable functions on IR and Wkoo(]R) defined as follows:

loc

W/ (R) = {u € L®(R); the weak local derivatives D®u € L*(IR), a < k} .

loc

(2.13)

Definition 2.1. Let W € C,(IR) N C*(IR) with W' € W,u (IR) be given. Define
P={zeR;H(z,W'(z)) < 0} (2.14)

It is said that W is a classical solution of the Hamilton-Jacobi equation

max{LW (z), H(z, W'(z))} =0,z € R (2.15)

LW(z) =0 on P,
H(z,W'(z)) <0forz € R,

LW(z) <0forzeR

13



The verification theorem [9] below, gives conditions for a control process (£(+), (+))

to be optimal for the problem (2.9)-(2.10). Let x,— be

1 ifa=5b
0 ifa#b.

Xa=b =

Theorem 2.2 (Verification Theorem). Let W be a classical solution of (2.15).

Then for every x € IR

(a) W(z) < F(x;&,a) for any (£(),0(-)) € A, such that

lign infe " E*[W (X (t))Xr=00] = 0,

—00

where 7 = inf{t; X (¢) = oo}.

(b) Assume that W > 0 and that there exists (£*(-),a*(-)) € A, such that w.p. 1

X*(t) € P, Lebesgue a.e. t
o (X ($)W'(X7(s)) + Al a" (s)d"(s) = 0
W(X*(#)) = W(X*(t7)) = Aa" (D)€" (#7) — £ (2)]

limy o E%[e W (X*(t A T))Xr=00]] =0

with T as in (a) above and X*(-) satisfies (2.10). Then F(xz;&*,4*) = W (z).

Remark 2.3. If U = [0, 00) then K = {1} and the HJB equation (2.15) becomes

max {—g(x)V'(x) -, —%0‘(33)‘/”(,%‘) — f(@)V'(z) +aV(z) — c(x)} =0. (2.16)

14



Chapter 3. End Conditions and
Crossing Times over an Interval

This chapter contains some theorems from [1, 2, 11] stating conditions for which a
stochastic process exits a predefined bounded interval. In particular, conditions for
the probability of the process exiting a bounded interval and the expectation of the
random exit time is given. These results will be used in Chapter 6 for investigating
the smoothness of the value function of a diffusion singular control problem.

Conditions for a process starting in an interval I = (I, 7) with —co < [ <7 < o0
to exit I are given next together with an estimate of the exit time from the interval.
These are obtained in Karatzas et al. [11] and Abundo [2, 1].

Assume that a process X (-) defined on I as follows
dX(t) = b(X(t))dt + o (X (t))dW (t) (3.1)

exists in the weak sense (see Karatzas and Shreve [11]). Also assume for each z € T

o*(z) >0 (3.2)
Je > 0 s.t. /:Jj %(by()y”dy < 00. (3.3)

Define functions p(z) and v(z) by




and

v(w)=/cwp’(y) /cy %dy-

Consider the process X (¢) on the interval I. The propositions below give the

probabilities of exit of X (¢) from I and the expectation of the processes exit time.

Proposition 3.1. Let S = inf{t > 0; X (t) ¢ (I,r)}. Assume (3.2) and (3.3).
P(S < 00) =1 if and only if one of the following holds:

(i) v(r—) < 0o and v(i+) < co.
(ii) v(r—) < 0o and p(i+) = —cc.
(iii) v(l+) < 00 and p(r—) = oo.

In (i) ES < .

Proposition 3.2. Assume (3.2)and (3.3). If a weak solution of the process (3.1)

in (I,7) exists. Then
P(S=00)=1&v(l+)=v(r-) =0

and

P(S=00) <1& v(l+) < oo orv(r—) < oo.

Proposition 3.3. Assume (3.2), (3.8) and that a weak solution of the process
(8.1) in (I,r) exists.

(a) Stay within (I,7): Assume p(l+) = —o0 and p(r—) = co. Then
P(S=00)=P(supX(t)=7r) =P(inf X(t) =1) = 1.

That is the process is recurrent or P(X(t) = y for some t) = 1 for each

y €l

16



(b) Ezit to the left with probability 1: Assume p(l+) > —oo and

p(r—) = oo. Then

P(ltiTrng(t) =[)=P(supX(t) <r)=1.

(c) Ezit to the right with probability 1: Assume p(l4+) = —oco and

p(r—) < oo. Then

P(im X () =) = P(inf X (1) > 1) = 1.

(c¢) Probability strictly between 0 and 1: Assume p(l+) > —oc and

p(r—) < oo. Then

. o P =p@) i _ .,
PlimX() = 1) = 0= = 1= P(im X (1) =)

Proposition 3.4. Assume (3.2) and (3.3) and that ES < oco. Let X (0) = x where
X (-) satisfies (3.1). Then
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Chapter 4. A Monotone Follower
Problem

In this chapter we obtain new results on a monotone follower control problem.
The cost of the monotone follower problem we consider is given by a nonconvex
functional. Our results include characterizing the action and the inaction sets
and the optimal control process. Also, an explicit form for the value function of
the problem is obtained in case it is twice continuously differentiable. The value
function is shown to be a classical solution of the Hamilton-Jacobi equation of the
control problem. For certain choices of the parameters of this monotone follower
control problem, the value function is C? and for other choices of the parameters,
it is not C2. This explains why Theorem 6.1 due to Lions [14], stated in Chapter
6 does not guarantee even a C! value function for our monotone follower problem.

For any reference probability system v = (€, {F;}, P, W), the set of controls U

is:
U ={u:[0,00) = [0,00); u is integrable and progressively measurable w.r.t. v}.

T

Assume ¢(z) = 1 — e*. Consider the monotone follower problem of minimizing

over the set of controls u € U the cost

JU(z) = E® [/000 e (c(z(t)) + Mu(t)) dt|, (4.1)

18



where a, A > 0, with the process z(-) satisfying
dz(t) = —u(t)dt + dW(t), z(0) = x. (4.2)

A monotone follower problem of this type but with a convex function c(z) = z?
and with A = 1 is studied in Benes et al. [5], Fleming et al. [9], and in Karatzas
et al. [12]. In [9], the value function obtained in case the control set is (—oo, 0] is
C?. Also, the value function obtained in [5] in case the control set is [0, 00) is C?.

The value function for the problem (4.1)-(4.2) is defined as:
V() = min J"(x). (4.3)
The value function V is known [9] to satisfy the Hamilton-Jacobi equation

max {V'(x) -\ aV(z)— %V"(az) — c(:v)} =0. (4.4)

In this chapter, a solution V' (z) of (4.4) is constructed explicitly if V € C?. Then
under some hypothesis on the parameters of the problem, we prove that V =V

using Theorem 2.2.

4.1 Existence of an Optimal Control Process

Remark 4.1. The value function V in (4.3) is bounded. In particular

— 1
0 < V(z) < —licllz=
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Remark 4.1 follows since

o
IN
=
&
IN

JO(z) (4.5)

IN

1
— . 4.
~lelz (46)

An optimal control for the problem (4.1)-(4.2) does not generally exist. But
transforming the control problem (4.1)-(4.2) as in Chapter 2 leads to a problem
for which an optimal control exists in most cases. Such existence will be proved
with the aid of Theorem 2.2. As in Chapter 2, the problem (4.1)-(4.2) transforms

into the problem of minimizing the functional
J(z;€,0) = E® (/Ooo e *(c(x(t))dt + Aﬁ(t)d&(t))) , (4.7)
where the state process z(t) satisfies the equation
z(t) =z + W(t) — &(t), for 0 < ¢, (4.8)
and the control £(t) lies in the control set = given by

2= {¢(-) : Rt — R";£(t) is Fr-adapted, non-decreasing,
(4.9)
left-continuous and £(0) = 0} .

To define a candidate optimal control system (z*(t), £5(t), 4*(t)) for the problem
(4.7)-(4.8), its inaction set P is defined following (2.14). That is

P={reRHV(x)) <0}, (4.10)

where V' is a bounded classical solution (in view of Remark 4.1), to this monotone
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follower problem’s Hamilton Jacobi equation (4.4) and

H(p) = sup{pv — Av},
veEK

and K = {1} is the set of unit controls for those controls in . Then H(p) = p— A
and P has the form

P={zeRV'(z)— <0}

Later it will be shown that there exist numbers a, b such that
P = (—00,a) U (b,00). (4.11)
Let & be defined as follows

£(t) = max [0, maxocs<i{x —a+W(s)}] forz <b (4.12)

0 for x > b,

and 4* as

0 if&(t)=0
a*(t) = (¥ (4.13)
1 if&(t) > 0.
where a < b are positive numbers to be defined later. Let the candidate for optimal

state process be

2 (t) =z + W(t) — £(1). (4.14)

Note that £:(t) increases only when z*(t) € [a, b].
Next Theorem 2.2 is used to verify that the control system (x*(¢), £5(t), 4*(t))
defined above is optimal for the control problem (4.7)-(4.8). The explosion time 7

in Theorem 2.2 is infinite because the Brownian motion W (¢) in (4.14) is finite and
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€:(t) in (4.14) is defined for all times. By Theorem 2.2, the necessary conditions

to verify the optimality of the control system (z*(t), £X(t), 4*(t)) are the following:
(a) 2*(t) € P ace. £,
(b) [yl V'(@"(s)) + NdEx(s) = .
(c) V(z*(t)) = V(z*(t+)) = Aa" (1) (& (t+) — & (1))
(d) limy_o0 E2[eV (*(£))] = 0.

Let us show that the system (z*(t),&%(t), 4*(t)) satisfies conditions (a)-(d).
Notice that £%(-) starts at zero. If x < @ or x > b then &:(¢) = 0. If a < x < b then
£:(t) = max [0, maxo<s<i{T — a + W(s)}| which is a left-continuous nondecreasing
function. This shows that & € Z. An important property of £:(-) is that it
increases only on a set of Lebesgue measure 0. If a < x < b, then £:(0") =z —a
otherwise £:(t) = 0. Thus if a < z < b, 22(07) = a. The process immediately
jumps to a. If £ < a or x > b, then X(t) = 0 and z*(t) = z + W (t) until z*(t) = a
or z*(t) = b. In this case, since z*(¢) is a Brownian motion process starting at z,

then P(z*(t) = a or 2*(t) = b) = 0 for all ¢. This shows that
z*(t) € Pae. t

and (a) is true. Part (b) is satisfied since £%(¢) = 0 when z*(t) € P and V'(z*(¢)) —
A = 0 when z*(t) € R—P. To show (¢) let x < aorz > b Fort <7 =
inf{s; x*(s) = a, b} then 2*(t) = x + W (t) is a continuous function and &}(¢) = 0.
The classical solution V also being continuous means that (c) is trivial. Now let
a < z < b. The resulting process z* jumps to a. It is thus enough to prove (c) for

t=0.Ona<zx<b, 4(0)=1and V'(z) = A so that

V(z) = Mz — a) + V(a).
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Using ££(07) = z — a and £2(0) = 0,

V(@'(0) - V(@'(0%) = V(z)-V(a) (4.15)
= Az —a) (4.16)
= \i(0)(z — a) (4.17)
= Xa(0)(£(0%) - £(0)), (4.18)

proving requirement (c).

To show (d), from Remark (4.1)
Tl —at * T 1 —at
E?le ™V (z*(t)] < E a||c||Loo.e .

So that
lim E%[e "V (z*(t))] = 0.

t—00

By Theorem 2.2 it follows that J(z;&*, 0*) = V(z).

4.2 The Value Function

This section is concerned with finding the value function (4.4) of the problem (4.1)-
(4.2) explicitly and to characterize the action set as a single interval. Assume the

following:
Al a>2/7.
A2 The Hamilton-Jacobi equation (4.4) has a solution V' € C?*(IR).
As a consequence of Remark 4.1, the equation

Vi(z) = A=0
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cannot hold on unbounded intervals. Next, we show that there exists an interval

(a, b) with a > 0 such that on (—o0,a), V(-) satisfies

aV(x)—%V”(x)—c(x) =0

V,(J)) - A < 07
on (a,b), V() satisfies
1 "
aV(x) §V (z) —c(z) < 0,
V'i(z) =A=0
and on (b, 00), V(-) satisfies
1 "
aV(z) — §V () —c(z) = 0,
Vi(z) =X <0.

That (a,b) is unique will be shown in Lemma 4.4.

Lemma 4.2. Assume that there exists an interval (a,b) such that

aV(z) —c(z) <0,

(4.19)

(4.20)

(4.21)

(4.22)

(4.23)

(4.24)

(4.25)

(4.26)

with the inequality (4.26) becoming an equality at a. Then a and b are positive.

Proof. From the fact that c(a) = oV (a), c(z) > aV(z) on (a,b).

! — 1
=T
> « lim Vieth) = Via) =aV’(a) = a)
h—0t h



So

d(a) > aX > 0.
But ¢’ is positive only on (0, 00). Therefore a > 0. O

Remark 4.3. It can be concluded from Lemma 4.2 that for the endpoint a

d(a) > al. (4.27)

This means if aX > /2/e, then there is no solution for the value function V.

Next to obtain an explicit form of the function V solve the equations (4.19),

(4.22) and (4.23), so that

V_(z), z<a
Viz) =1 Vo(z), a<z<b (4.28)
Vi(z), b<u,
where
1 xr
V_(z) = ¢y eV2® 4 ¢y e~ V2x —e 2(”/ eV2%e(y)d
( ) 2 m . (y) Y

1 T
+ eV2er / emyc(y)dy, (4.29)

Vo(z) = V_(a) + Az — a), (4.30)

+ —e‘mm/ eV2e(y)dy.  (4.31)
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By Assumption A2, the inequality (4.21) becomes an equality at both ¢ and b

giving
aVo(a) = c(a),
aVo(b) = c(b).

Using the fact that V' € C*(IR) at a and b yields the four equations

cla)/a = cre¥V? 4 cyje vV
A= ¢ V20eY?* — ¢, V200 VO,

c(b)/a = eV 4 cfem V2,

A= vV 262 — cs vV 2ae~ V2,
Equations (4.34)-(4.37) give us

e V2 c(a)/a+ A/V2a) = 2,
eV?(c(a) /o — M\/V2a) = 2,
e V2 (c(b) Ja+ AV2a) = 2,

eV?(c(b) /o — A/V2a) = 2¢}.
Using (4.38)-(4.41) the solution of (4.19) on (—o0, a) is

V_(z) = %:L) coshv2a(z —a) + \//;_oz sinh vV2a(z — a)

_ \/LZ_oz /am ¢(y) sinh \/ﬁ(x —y)dy,
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(4.33)
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(4.35)
(4.36)

(4.37)

(4.38)
(4.39)
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(4.42)



the solution of (4.22) on (a, b) is

Vo(z) = ac(a) + Az — a), (4.43)

and the solution of (4.23) on (b, 00) is

Vi (z) = ac(b) cosh vV2a(z —b) + sinh v2a/(z — b) (4.44)

A
V2a
- \/%/b c(y) sinh vV2a(z — y)dy,

with ¢ and b to be determined.

4.3 Existence of the Action Set (a,b)

Write V_ on (—o0,a) in (4.29) as

Vo(z) = Iix), (4.45)

where the I; j =1,2,3,4 represent the four terms in (4.29). Now

lim [;(z) =0, (4.46)
Ir—>—00
lim Iy(z) = —— (4.47)
im I3(z) = —— :
IT——00 3 2«

and

1 xr
: _ : —V2ax — V2ay
A (B(2) + Lu(@)) = lim e <C2 * /a € c(y)dy> - (448)
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The function V is assumed to be bounded, so that the limit in (4.48) is finite giving

us

1 a
cy = \/—Q_Q/ eV2c(y)dy. (4.49)
Using the same reasoning with V' on (b, c0) gives us the constant ¢ as
+ 1 >~ Vaay
o = rdl) e c(y)dy. (4.50)

If no interval (a, b) exists for which (4.21)-(4.22) hold, it will be shown that neither
(4.20) nor (4.24) can hold on (—o00,00). First show that (4.20) is not true on

(—00,00). From (4.29)

V! (z) = 7 V2aeY?® — ;207 V2T — eV20z e_myc(y)dy

Write V' (z) = 2?21 I;(z) where I} are the terms of equation (4.51). Now

lim I;(z) =0, (4.52)
T—r0o0
lim Ij(z) = . (4.53)
e A T T Ay '
Write
I'(z) + Ii(z) = V***G(z), (4.54)
where
G(z) =V2ac; — / e*myc(y)dy. (4.55)
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Using (4.38) and the formula for ¢

G(z) = ¢ V220 (f/(% + %) - /w e V21 — e ¥)dy. (4.56)

Taking the limit and simplifying the result

A €_a2 a *° a2
1 = —V2aa — — 2 _(y+ 5) 4
wlggo G(z)=e (2 m) +e /a e dy. (4.57)

As we shall see, Assumption A1 implies that the limit in (4.57) is positive. Then

lim V' (z) = oo, (4.58)

I—r00

which is contradiction because it violates the inequality (4.20). Showing that the

limit in (4.57) is positive is the same as proving that

2

A_ e V2aa+% /oo ~(y+/%)’
— - + eVoalTs e 2) dy > 0. 4.59
>~ oo i Y (4.59)

Completing the square in (4.59) gives the equivalent inequality

A 2 1 a2 [ =2
A [ laty/3) / ~(vtv%) ¢ )
e e e > 0, 4.60
( o i y (4.60)

which after a change of variables is

)\ 2 1 a2 ° 2
A e L <a+\/;>/ ey
e e e > 0. 4.61
2 (m "5 y) e

Now Assumption A1 and the fact that A > 0 gives

A e (\/% - ?) : (4.62)
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and for any positive number p

e”2/ eV dy > VT (4.63)
» 2
Combining (4.62)-(4.63) gives
)\ 2 ]. 2 *° 2
—>e " | ——¢ e Ydy), 4.64
s> (e [ o) (4.64)

which is the condition (4.61) with p = a + /5. This finishes the proof for the
existence of the left end point a of a set, say J, on which (4.21)-(4.22) must hold.

On the set J the equation for the classical solution V' is (4.30) which is a linearly
increasing function. Since the classical solution V is assumed to be bounded on IR,
(4.21)-(4.22) cannot hold for an unbounded interval in J. The conclusion is that
J is a finite union of bounded intervals. It will be proved in Section 4.6, that J
can have at most one interval. Let the right end point for such interval be b. This

finishes the existence of the action set (a,b).

4.4 Equations for a and b

The end points of the action set (a,b) are now defined. From (4.39), (4.32) and

(4.49), an equation for a follows

Fi(a) £ —c(a) + V7 / V() dy + \% _o, (4.65)

and from (4.40), (4.33) and (4.50), an equation for b follows

A o a
Fy(b) 2 ¢(b) — V2 v2a(b=9) o, Vdy + —— = 0. 4.66
5(b) = c(b) oaf e c(y)dy N (4.66)
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Define a and b as the smallest and largest solutions of equations (4.65) and (4.66)

respectively.

4.5 The Verification Inequalities

In this section, the verification inequalities (4.20), (4.21) and (4.24) are verified.
To show that (4.20) holds on (—o0, a) take limits on the I} terms in equation
(4.51) as . — —o0

lim Ii(z) =0, (4.67)

T—r—00

i Hz) = Lc —00
i 1(0) = —c(—cc). (4.68)
lim (Iy(z) + I (2)) = ———c(—00), (4.69)

T——00 V20
where in (4.68) L’Hopital’s rule is used and in (4.69) the equation (4.49) and

L’Hopital’s rule are used. It can be concluded that

lim (V'(z) = A) = =A <0. (4.70)
In the same way

lim (V] (z) = A) = =X < 0. (4.71)

T—00

The solutions a and b in Section 4.4 satisfy
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because the classical solution V' satisfies Assumption A2 and (4.19)-(4.24). Let
¢ < a. The equation (4.65) with ¢ replacing a fails to be true only if atleast one of
the equations (4.34) or (4.35) from the C! property of V or the condition (4.49)
from boundedness of V, fails to hold. Since V' has to be bounded, (4.49) is always
true. The only possibility left is of (4.35) failing because V' cannot be differentiable

without being continuous at c. Therefore, for ¢ < a

V'(e) — A <.
In the same way for ¢ > b

V'(e) = A <.
Then for x < a or x > b,

Vi(z) =A< 0

which confirms (4.20) and (4.24).

Next, show the inequality (4.21) on (a,b). Recall that
Vo(z) = V_(a) + Mz — a). (4.72)

Then
V_(a) + X\(b—a) = V,(b). (4.73)

Using equations (4.32)-(4.33) gives a relation between a and b

W — a. (4.74)
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To show the inequality (4.21) on (a, b) means showing that

aV (a) + ez —a) —c(z) <0, z € (a,b) (4.75)
% > a. (4.76)

Using the fact that ¢ changes sign once from + to — on (0, 00), the smallest value

¢ ca)=c(a)

0 for z in the interval (a, b) occurs either at a or b. Therefore

¢(z) — cla) > min {C'(a), W} : (4.77)

The relation (4.74) and Remark 4.3 imply

c(z) — ¢(a)

PR > min{d(a),a\} (4.78)
> min{a)\ a\} (4.79)
— a\ (4.80)

4.6 Uniqueness of (a,b)

Lemma 4.4. The interval (a,b) where
Vi(z) = A=0 (4.81)

and

aV(z) —c(z) <0, (4.82)

with the inequality (4.82) becoming an equality at a and b is unique.
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Proof. Existence of such an interval has been shown under Assumptions A1-A2.
Suppose (4.81) and (4.82) hold on intervals say (a1, b;) and (as, bs) with b; < as.
Let [ 2 (a1,b1) U (ag, be). Since V is linear on I then

Via) = V(b)) _ V(as) = V(bs) _ 3

a — b ag — by

From the fact that V' is continuous and the inequality (4.82) is an equality at ay, b;

and as, b2,

V() = ac(ai), V(b)) = —c(b;) fori=1,2, (4.83)

meaning that

c(ar) = e(by) _ clag) —c(by) _ a.

a; — by as — by

Using the Mean Value Theorem there exists k1 € (a1,b;) and ky € (ag,by) such
that
d (k1) = d(ky) = al. (4.84)

If o) > v/2e~2 then this is a contradiction because I (z)| < V2e~2. Lemma 4.2
implies the end points aq, b1, as, by are positive. If al < V/2e~7 then the nature of

¢ implies that

C”(kl) > 0, (485)

C”(kz) < 0. (486)

Now using the facts that oV (z) < ¢(z) on (a1, b1) and the equalities (4.83)

, .. clar+h) =c(a)
lm) = Jim TS
V(ay +h) —V(a)

> « lim =aV'(a1) = al,

h—0t
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and

!/
cb) = hh—f(r)l+ h
S C\ghlil’(l;l+ V(bl) - }‘j(bl - h) — avl(bl) = al
%

n\
—~
=
=
N—

AN
=

(4.87)

d'(ry) < 0. (4.88)

Since ¢ = 0 at a single place on [0, 00), equations (4.85), (4.87)-(4.88) make this
a contradiction.

Therefore the pair a, b is unique. O

Remark 4.5. Lemmas 4.4 and 4.2 are still true for an array of functions say

2

T
do) = o
c(z) = arctan(z?).

4.7 Solutions for a and b.

Here some examples of solutions of equations (4.65)-(4.66) are given. The equa-
tions (4.65)-(4.66) for a and b sometimes do not have a solution either when the
assumptions are not satisfied or when the bounds in Remark (4.3) are not satisfied.
For various values of the parameters of the monotone follower problem, the graphs
below represent the functions F and F5 in the equations (4.65)-(4.66) for a and b

respectively.

35



Example 4.6. Let a =1 and A = 0.1. Assumption A1 is satisfied. The relevant

solutions are a = 0.58678,b = 1.51763.

Graph for Fp Graph for F;

0.4

0.4
0.2

0.2
0

0
0.2

0.2

4 -2 0 2 4 6 4 2 0 2 4

Figure 4.1: Parameter values: « =1, A =0.1.

Example 4.7. Let a« =1 and A = 1. Assumption A1 is still satisfied but there are
no solutions for a and b. This implies that Assumption A2 does not hold, that is,

there is no C? value function to the monotone follower control problem with these

parameters.
G aph for F; G aph for F;
1
1
0.8
0.8

0.4 S ' : _ \/

Figure 4.2: Parameter values: o =1, A = 1.
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Example 4.8. Let a = 0.2 and A = 4. Then Assumption A1 is not satisfied and

equations (4.65)-(4.66) have no solutions.

G aph for F; G aph for F;

1.6

1.8
1.4

1.6
1.2

1.4
1

1.2
. 0.8

N
4 -2 0 2 4 6 4 2 0 2 4

Figure 4.3: Parameter values: a = 0.2, A = 4.

Example 4.9. Take o close to the minimum allowable value in assumption A1
and let o = %+0.001 and X = 0.1. Then Assumption A1 is satisfied and equations
(4.65)-(4.66) have solutions. For these parameters, the monotone follower control

problem has a C? value function. The relevant solutions are a = 0.63417,b =

1.61325.
G aph for F; G aph for F;

0.4

0.4
0.2

0.2
0

0
-0.2

\/
0.4
4 -2 0 2 4 6 -4 -2 0 2 4

Figure 4.4: Parameter values: o = 2 4 0.001, A = 0.1.
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Example 4.10. Let a = %—i— 0.001 and A = 1.5. Then Assumption A1 is satisfied
but equations (4.65)-(4.66) have no solutions. For these parameters, the monotone

follower control problem does not have a C? value function.

Graph for Fg Graph for F;

1.2

1.2
1

1
0.8

0.8
0.6

0.6
\/ 0. 4

4I20 2 4 s By -2 0 2 4

Figure 4.5: Parameter values: o = 2 4 0.001, A = 1.5.

Remark 4.11. In Examples 4.7 and 4.10, there are no solutions to equations
(4.65)-(4.66). The reason is because the product aX is not small enough as noted
in Remark 4.3.
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Chapter 5. Optimal Stopping
Problem: Bounded Case

In this chapter, an equivalent optimal stopping problem to a singular optimal con-
trol problem stated in [8] will be presented. Here, in the optimal control problem,
the control appears in both the constant drift and constant diffusion terms and the
control process has its range as a bounded set. The equivalence will be shown un-
der the assumption that the value function for the control problem is in C*(IR) and
in case the continuation set for the stopping problem (inaction set for the control
problem) is a bounded interval. The equivalence expresses the optimal stopping
value of the optimal stopping problem as a second order differential equation of
the optimal value function of the optimal control problem. This control problem is
a generalization of the monotone follower control problem in Karatzas [12] where
the control appears in the drift term. It is also a generalization of the singular
control problem in Ocone [16] where the control appears in the diffusion term.
Next, the control problem is defined from which an optimal stopping problem
is derived. For any reference probability system v = (Q, {F,}, P, W), let U = {u :
IR" — [0, M]; u is progressively measurable w.r.t. » and M > 0} be the control

set. Consider the problem of minimizing over U/ the cost functional
J(z,u) = E* {/ e (e(X(t)) +u(t)) dt|, (5.1)
0
such that for constants 3,7,0 > 0, > 0 and ¢ € C*(IR) the state process X (t)
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satisfies

dX (t) = [8 + yu(t)]dt + /o + pu(t)dW (t). (5.2)

The value function V' (z) = minyey J(x, u) for this problem satisfies (c.f. [9]) the

Hamilton-Jacobi equation:
0<u<M

1 1
inf {u [iuV" +V' + 1] + 50‘/” + 8V —aV + c} =0, (5.3)

under the assumption that V € C?(IR).
Assume that V € C*(IR). To define the equivalent optimal stopping problem
to (5.1)-(5.2), first a differential equation whose solution is the stopping problem’s

minimized value V(x) is obtained. Define a function V' (z) by
I/ 1 " !
V(@) = V(@) + V(&) + 1,

and a set G by

G = {x €eR %uV"(m) +V'(z)+1< 0} (5.4)

= {zeRV(z)<0}. (5.5)
It follows from (5.3) that on G
MV + %av" + BV —aV +c=0. (5.6)
Differentiating (5.6) with respect to z and multiplying the result by 7 gives

1
MAV' + 507‘/’” + V" —ayV' +dy =0. (5.7)
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Differentiating (5.6) twice with respect to z and multiplying the result by $u gives

1 — 1 , 1 1 1
§MMVI, + ZILI,O'V“) + EMBV’II _ EMO!VII + 5/JICII — 0. (58)

Combining equations (5.7) and (5.8) and using the definition of V gives

1 = — = 1
5(0+,LLM)V”+(5+M7)VI—(1V+Euc"-i-c"y—i—a:(). (5.9)

Upon inspection of equation (5.9), define an optimal stopping problem:

V(z) = (I)IS1£ E* [/OT e <%,uc"(Y(t)) + (Y (t)y+ a) dt] : (5.10)
where the process Y (t) satisfies
dY (t) = [B + Myl dt + /o + pMdW (t), Y(0) =z (5.11)

and 7 is a stopping time with respect to the filtration generated by W (t) above. It
will be shown in Proposition 5.3 that V(z) satisfies the differential equation (5.9).

First a related result is proved.

Proposition 5.1. Let Y (t) be the process satisfying

dY (t) = [+ M~y|dt + /o + uMdW (t),Y(0) = . (5.12)

Let a > 0 and define the ezit time 7 by 7° = inf{t > 0; |Y'(¢)| > a}. Then V,(z)

defined as

Vu(z) = E* UOT e o (l,uc”(Y(t)) +d(Y(t)y+ a) dt} (5.13)
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on [—a,al is the unique solution to the second order ordinary differential equation

1 1
5(0 +uM)V" + (B+ My)V' —aV + §,uc" +cdy+a=0. (5.14)

with V(—a) =V (a) = 0.

Proof. Let x € Rand let n(z) denote the integral in (5.13) and F; = o{W(s); s <
t}. Then V,(x) = E®n(z). Using the Markov Property of Y (¢):

E*Vo(Y (1) = Va(2) E*EY (Y (t)) — E*n(x)

4 t
BB EY)FE] - E)
t
_ Em(Y(2t) - Bon(a)
4
Yo .
= _E° / e (yw”(Y(r)) +d (Y (r))y+ a) dr] :
Taking ¢ — 0
I/ 1 11 /
AypVa(z) = — (iuc () + (z)y + a) , (5.15)
which translates to
1 == 5/ = ]. " !
§(a+,uM)Va+(,3+M’y)Va—aVa+i,uc +cdy+a=0. (5.16)

The conditions V,(—a) = V,(a) = 0 are obvious since 7% = 0.

Conversely, applying Ito’s rule to e V(Y (t)) gives

dle V(Y ()] = e |L(o+ M)V, (Y (1) + (B+ M)V, (Y (1) — aVa (Y ()| dt

+e V(Y (t))v/T + pMdW (¢). (5.17)
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Let z € IR Using (5.14)

x

V) =Vale) — [ e (ue) + 0Oy +a)

+ / et fo UMV (Y (0))dW (1),  (5.18)

where 77 is the exit time of the process Y (¢) from (—a,a). Using Y (7¥) = a and

V4(a) = 0, and taking E®

Vo(z) = B [ /0 gt (%uc”(Y(t)) F Y () + a> dt] . (5.19)

O

Remark 5.2. In Proposition 5.1, it is possible to replace without loss of generality
the even interval [—a,a] with an uneven interval say [p,q] and the exit time T

from [—a, a] with 7, from [p, q].

Now, a proposition establishing that the optimal stopping problem (5.10)-(5.11)
is equivalent to the optimal control problem (5.1)-(5.2) is stated and proved. First,

define a function f : IR — IR, and a differential operator L by

10 = - (@) +a)),

2

1 0 0

Assume that

E* ooe’“t\f(Y(t))\dt < oo forallz € R (5.20)
J |
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Proposition 5.3. Suppose a function V : R— R can be found such that
(i) V e C*(R).

(i) V <0 on IR. Define G as
G={x;V(z) <0}.

(iii) E°[[;° xoc(Y (t))dt] = 0 for all z € R (Y (t) spends zero time on 0G.)

(iv) V € C*(IR\ 0G) and the second order derivative of V is locally bounded near
0G.

(v) LV — f >0 on R\ G.
(vi) LV — f =0 on G.
(vii) ¢ :==1inf{t > 0;Y(t) ¢ G} < 00 a.s. .

(viii) The family {V (Y (7)); 7 < 76} is uniformly integrable w.r.t. ,

where Y (t) is defined by

dY (t) = [+ M~y|dt + /o + uMdW (t),Y(0) = . (5.21)

Then V is the solution to the optimal stopping problem (5.10)-(5.11). That is

V() = jnf £° [— /0 Lo f(Y(t))dt] , (5.22)

where T is a stopping time with respect to the filtration generated by W (t), and the
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optimal stopping time 7 1is

0 z¢G
7(z) = 7

T« T €.

Conversely, if V is defined as in (5.22) and G as in (ii) above is an open

interval, then V is the unique solution of the equation in (vi) above.

Proof. Write V = =V, so that showing (5.22) means showing that

V(z) = sup B [ /0 Tt f(Y(t))dt] . (5.23)

0<r

Also
G ={z;V(z) > 0}.

It will be shown that if —V satisfies the assumptions of the proposition, then
V =V where V is the right hand side of (5.23).

By (i) and (iv) get a sequence of functions V; € C*(R), j = 1,2,..., such that

(a) V; — V uniformly on compact subsets in IR, as j — oo.
(b) LV; — LV uniformly on compact subsets in R\ 0G, as j — oo.

(c) {LV;}52, is locally bounded on R,

For R > 0 let
Ty = min(R,inf{t > 0;|Y (t)| > R}).

Let 7 > 0 be a stopping time and y € IR, by Dynkin’s formula (see [16])

Bl I o AT = i)+ B [T e o]
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Hence by (a), (b), (c¢), (iii) and Fatou’s Lemma

V(z) = lim E® [— /0 i e ' LV;(Y (t))dt 4 e TRV (Y (1 A TR))}

Jj—o0

v

T/\TR
E* [— / e LV (Y (t))dt + e "RV (Y (T A TR))} :
0
Therefore by (ii), (iii), (v) and (vi)
T/\TR
V() > E° { / et f(Y(t))dt] .
0
Hence by Fatou’s Lemma and assumption (5.20)

Vi) = time b [ ety
" [ /0 T f(Y(t))dt] .

v

Since T is arbitrary

V(z) > V() for all z. (5.24)

If x ¢ G then considering 7 = 0 gives

V(z)=0<V(x).

So V(z) = V(x) and the optimal time 7(z) =0 for z ¢ G.
If z € G, let {G} be an increasing sequence of open sets such that Gy C G,

G is compact for each £ =1,2,... and G = |J,—, Gi. Let

7, =inf{t > 0;Y(¢) ¢ G}, k=1,2,....
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By Dynkin’s formula (see [16]), for y € G, and (vi)

T ANTR
V(z) = lim Vj(z) = lim E® [/ —e “LV;(Y(t))dt + e * MRV(Y (14 A TR))]
j—00 j—o0 0

_ g [ /0 e LV (Y (1))t 4 e TRV (¥ (7, A TR))]

= E° [/0 e F(Y())dt + e RV (Y (7 A TR))] :
By (i), (vii) and (viii)

V() = lim E° [ /0 TkATReatf(Y(t))dHewATRV(Y(Tk/\TR))]

Rk—

~ Ee [ /O © gat f(Y(t))dt]
< V(). (5.25)

Therefore V(z) = V(z) on G. Moreover the optimal stopping time 7 is

0 z¢@G
7(z) = 7

TG T € (.

Since G as in (ii) above is an open interval, the converse is true from Proposition

5.1 and Remark 5.2. O
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Chapter 6. Other Singular
Control Problems

In this chapter, the smoothness of the value function for several singular stochastic
control problems is investigated. Theorem 6.1 due to Lions [14] will be used in
this regard. For the monotone follower problem (4.1)-(4.2), the value function
was assumed to be C?(IR). This turned out to be true under some parameter
values and not true under other parameter values. Although Theorem 6.1 does
not guarantee smoothness of the value function of the monotone follower control
problem, it guarantees smoothness of a similar singular control problem (with the
same dynamics and cost functional) but with bounded controls.

Lastly in this chapter, the monotone follower control problem (4.1)-(4.2) with
the state process restricted to a certain domain is considered. Theorem 6.7 due to
Karatzas and Shreve [12] is used to guarantee the existence of its optimal control

process irrespective of the problem’s parameter values.

6.1 Smoothness of Value Functions

In this section a smoothness theorem for the value function due to Lions [14] is
used. An investigation of the smoothness of value functions for various problems is
carried out. The theorem due to Lions [14] does not apply to the monotone follower
problem (4.1)-(4.2), yet the problem sometimes gives rise to a C*(IR) value function

as was seen in Chapter 4.
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A general control problem is now stated after which Theorem 6.1 due to Loins
[14] and its assumptions are stated. The theorem will then be applied to several
singular control problems. The theorem will show smoothness for a control problem
having the monotone follower dynamics and cost functional, but with bounded
controls. Let v = (Q, {F;}, P, W) be any reference probability system. Let U be a

closed non-empty, convex set in IR™. Define ¢/ and W**°(IR") for k > 1 as

U = {u:R" — U; u is progressively measurable w.r.t. v}, (6.1)

WHES(R") = {u € L®(IR"); the weak derivatives D*u € L*®(IR"), |a| < k}.
(6.2)

Consider the value function

V(z) = inf J%(z),

u€eU

where
J4z) = E* [ 000 F(X(t),u(t)) exp (—/0 c(X(s),u(s))ds> dt}
and
dX(t) = o(X(t),u(t))dW(t)+ b(X(t),u(t))dt, X(0) = z.
Assume

(1) ¢(-,u) € C3(R") and ||¢(-, u)||czmey < M for each u € U the control set, and

¢ = 0y5, bi, ¢, where ||| c2rr) = SUp|qi<2 [| D0| Lo (mr).-

(2) c(x,u) > a >0 for each z € R", u € U.
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(3) There exists p € C([0, 00), [0, 00)), with p(0) = 0 such that

|6(z,u) — ¢z, u)| < p(lu—u)

for each x € IR" and ¢ = 04, b;, c.

(4)

|f(@,u) = f@', u)] < ko — a'| + p(ju — o))

for each x € IR,u € U and there is a constant M such that |f(z,u)| < M for

all z € IR", v € U, and k a positive constant.

Theorem 6.1. Under Assumptions (1), (2), (3), (4), if f(-,u) is assumed to re-
main in a bounded set of W»*(IR') and if A = inf,, c(z,v) is such that X > X
(where \g depends explicitly on the L*°(IR") norms of the first and second deriva-
tives of 0, b, see Krylov [15]), then V- € Wh°(IR"). Further, under the assumptions

that there exists v > 0 such that
1 2
Z Eelcaij(xa vg)&€5 > V€] (6.3)
irjk
forall§ e R, vy € U, 0, € (0,1),>.60; =1 and a = o0, then V € W3>(IR").

Remark 6.2. If o(z,u) and b(z,u) do not depend on the state x (see Remark at

the end of Section 2 in [13]) Ay can be chosen arbitrarily as long as Ay > 0.

Remark 6.3. Observe V. € WHe(IR') N W22(IR") implies V € CL(IR'). The
first space means V' is Lipschitz continuous, hence it is absolutely continuous and
differentiable a.e. with V" being essentially bounded. The second one shows V'

15 essentially bounded and Lipschitz continuous and hence differentiable a.e. This

shows that V € C}(IR?).
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Next, the smoothness of the value function is investigated for some singular

control problems.

Example 6.4. Consider the dynamics of the monotone follower problem but with

a bounded control set. Let V(x) = min,ey J*(z) where
Ju(z) = E° [ /0 et (e(e(t)) + Mut)) d (6.4)
over U in (6.1) withm =1, U = [0, M], ¢(x) =1 — e~ with the state equation
dé(t) = —u(t)dt + dW (t),£(0) = x. (6.5)

Using Theorem 6.1 (with o(z,u) = 1,b(z,u) = —u,¢c = «, f(z,u) = c(z) +
Au, p(z) = 1), the value function V is in C*(IR).

On the other hand with U = [0, 00), (giving the monotone follower control prob-
lem (4.1)-(4.2)), [ is not necessarily bounded above with respect to the u variable
(violating Assumption 4 in Theorem 6.1). Then it cannot be concluded that the
value function is C*'(IR). Under some values of a and )\, a C*(IR) value func-
tion was obtained in Chapter 4 and under some other parameter values, the value

function is not C2.

Example 6.5. Consider the minimization of

Ju(z) = E° [ /0 " etu() (X (1) dt (6.6)

over U in (6.1) with U =[0,1] or U = [0,00), X(t) =z forallt >0,z € R, f €
D(R) and f* ¢ C'(IR). Here, Assumption (6.3) in Theorem 6.1 is violated. Let

V(z) = minyey J*(x) be the value function. The Hamilton-Jacobi equation of this
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singular control problem is

sup{uV —uf(z)} =0ae. z

u€U
gives us V(z) = f*(x) and thus V ¢ C*(IR).
Example 6.6. Another singular control ezample (an exercise in [16]) in which the

value function is not in C*(IR), is as follows. Let

22 for0<z<1

Va o forxz > 1.

fx) =

The problem is to minimize
T
Ju(s,z) = B> [ / e f(X“(t))dt]
where the process X"(t) satisfies
dX*(t) = u(t)dW(t), t > s, X"(s) =z, ©>0 and W(t) € R (6.7)
the control u(-) € U with U = IR and
T =inf{t > s; X"(t) < 0}.

Let the value function be

®(s,z) = sup JU(s, x).
uel

Then ® ¢ C'.

Proof. First, the Hamilton-Jacobi equation for the problem is stated together with

a candidate for the value function. Then, a sequence of controls will be defined
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and the corresponding value functions will be shown to converge to the candidate
value functional. Lastly, the candidate value functional will be shown to satisfy
the Hamilton Jacobi equation.

The Hamilton-Jacobi equation (see [9]) is
1
max{epsf(:v) —I-V;(S,:E),EVM(S,:U)} =0. (6.8)

Define a function ¢(s,z) for z > 0,s € IR as

1.
¢(s,z) = —e 7 f(z),
P
where
R T for0<z<1
flz) =
Va  forz > 1.

Define a sequence {ux(z)} of bounded controls as follows

k for0<z<1
iy (7) =
0 forz>1

and let X} be the process (6.7) with u = ug. Define

T, = inf{t > s; Xi(t) < 0}

T = inf{t > s Xe(t) ¢ (0,1)}.

If 0 <z <1 then from Proposition 3.3(c) and Proposition 3.4,

P(limX,(t) =0) = 1—u,

7

PlimX(t)=1) = uz,

17y
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and

1
Er, = Eaz(l — ).

As k increases, Xj(t) exits the interval [0, 1] faster. In fact both Ty, 7 | s where s

is the initial time of the process. The reward to uy is

Ju(s,z) = E° [ / o f(Xk(t))dt]
= 5[ [T e O -]

Ty
+ E* [/ e_ptf(Xk(t))l{Xk(Tk):o}dt:| , (69)

so that

lim J%(s,z) = /00 e P f(1) lim P(X*(r) =1)dt +0

k—o00 k—00

o0
= / e Plrdt

= ¢(s,x).

If z > 1 observe that uy(s, z) = 0, Xy(t) = z, Ty, = oo so that

T (s,z) = E° [ / et f(x)dt]
_ %epsm)

1
= —e "z
p

= ¢(S,$).

Now showing that ¢(s, x) satisfies the Hamilton-Jacobi equation (6.8) will imply
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that ® = ¢. We will show that
_ 1
max {e P f(x) + ¢s(s, ), iqﬁm(s,x)} = 0. (6.10)
On 0 < z <1 equation (6.10) is true since
max § z(x — 1)e™"* ie"’s 0, =0
Y 2p ?

and on z > 1, equation (6.10) is true since

1
max {e‘psﬁ —e Pz, — e_”s} =
2p\/x

It can be concluded that ¢ is the optimal control and ® = ¢ ¢ C? In fact
¢ ¢ C. O

6.2 Existence of Optimal Control Processes

In this section, the existence of an optimal control for the monotone follower control
problem (4.1)-(4.2) with no restriction on the parameters, but with a restricted
process is shown. Theorem (6.7) due to Karatzas and Shreve [12] will be the used
here.

A generalized monotone follower control problem stated by Karatzas and Shreve
[12] is first presented after which Theorem 6.7 is presented. A domain of restriction
for the state process of the monotone follower control problem (4.1)-(4.2) is required
to use Theorem 6.7. Let v = (Q, {F;}, P,WW) be any reference probability system.

Consider the monotone follower control problem

v(z) = inf E [ /0 Cht @t + [ FOde®) + o) (6.11)

ge= [0,72)
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with

E = {¢(-) : R — R";£(t) is Fr-adapted, non-decreasing,
(6.12)
left-continuous and £(0) = 0} .

z(t) =2+ W(t)—£&(), € Rand 0 <t < 7, (6.13)

where 7, is a fixed stopping time with respect to W (t) for each z in (6.13). The
following assumptions are necessary in stating Theorem (6.7) due to Karatzas and

Shreve [12].

Assumptions
(a) The running cost of effort per unit time f(t) is real valued on [0, 7,].
(b) The terminal cost g(z) is continuously differentiable, with ¢'(z) non-decreasing.

(¢) The running cost per unit time h(t,x) and h,(t, ) are continuous in ¢, z with

ha(t, z) non-decreasing in z.
(d) 0<ec< f(t)<C.
(e) sup, g'(z) < f(7).
(f) h(t,z) >0, g(z) > 0.

Theorem 6.7. Under Assumptions (a)-(f) on the cost functions, there exists an

optimal process for the monotone follower control problem.

Corollary 6.8. Consider the monotone follower problem:

u€eU u€eU

V(z) = min J*(z) = min E” {/OTE e (c(z(t)) + Mu(t)) dt| , (6.14)
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where

U= {u:TR" —[0,00); u is progressively measurable w.r.t. v}, (6.15)

the cost function c¢(z) =1 — e,

dz(t) = —u(t)dt + dW(t),z(0) = x. (6.16)
and 1, = inf{t > 0;"(x(t)) < 0}. Then there exists an optimal process for this

monotone follower control problem.

Proof. When a transformation of the controls as in Chapter 2 is carried out, the

control problem transforms into

£eE

v(z) = inf E [ /0 N e “c(x(t))dt + /[0 N Aeatdg(t)] (6.17)

with

z(t) =z +W(t) —£&(t), and 0 <t < 7. (6.18)

To apply Theorem 6.7, consider h(t,z) = e *c(z), f(t) = Xe”*" and g(z) = 0.
If v € (—1/v/2,1/4/2), then 7, > 0. Otherwise 7, = 0 so that hy(t,.) is non
decreasing up to the exit time 7,. Theorem 6.7 guarantees the existence of an

optimal process to the problem (6.17)-(6.18).
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Chapter 7. Conclusions

A monotone follower control problem with a nonconvex cost function is considered
for which an optimal control is obtained. On this problem, some assumptions on
the parameters were made to ensure the existence of a single region action optimal
control. It remains to be seen what happens if some (or all) of the assumptions do
not hold. The optimal control had a single region of action because the even func-
tional changes convexity once on positive numbers. It is worthwhile investigating
how many regions of action can one have if the cost function changes convexity
more than once. An equivalent optimal stopping problem corresponding to a sin-
gular control problem has been stated. This problem needs further pursuing in the

case that both the drift and diffusion terms are not constants.
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