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Abstract

In this thesis work Deligne’s spectral sequence Ep,q
r with integer coefficients for the

embedding of the Siegel modular variety of degree two and level three, A2(3), into

its Igusa compactification, A2(3)∗ is investigated. It is shown that E3 = E∞ and

this information is applied to compute the cohomology groups of A2(3) over the

integers.
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Introduction

For a positive integer n the Siegel upper-half space of degree n, Sn, is defined to

be the space

Sn = {τ ∈ Mn(C)| tτ = τ, Im τ > 0}.

The symplectic group Sp(2n,R) acts on Sn in the following way:

γ =




A B

C D


 : τ 7→ (Aτ + B)(Cτ + D)−1

where γ ∈ Sp(2n,R) and τ ∈ Sn.

A Siegel modular variety An(Γ) of degree n is defined as the quotient space

Γ\Sn of the Siegel upper-half space by the action of an arithmetic subgroup Γ

of symplectic group Sp(2n,Q). Of particular interest are those Siegel modular

varieties for which the arithmetic group Γ is a principal congruence subgroup

Γn(m), in which case the corresponding variety is called the Siegel modular variety

of degree n and level m, denoted by An(m). These varieties are important from

various perspectives:

1. They naturally occur as the moduli space of principally polarized abelian

varieties with level structures.

2. Automorphic forms for the group Sp(2n,R) and its metaplectic covering

typically appear as sections of vector bundles over these spaces.

3. One has

H∗(Γ\Sn,Q) ∼= H∗(Γ,Q).
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The isomorphism still holds over the integers if the group Γ is torsion-free.

Therefore this is a way to compute the cohomology of certain arithmetic

subgroups of Sp(2n,Q).

Although there is a substantial amount of information on the Siegel modular

varieties, these spaces are still poorly understood. In fact we know the rational

(co)homology of only a few of them. The known cases are the following:

- degree 1: These are better known as modular curves (the symplectic group

of degree 1 is just the special linear group). The topological properties of

these curves is studied in the nineteenth century and the arithmetic of them

is a current topic of research.

- degree 2, levels 1 and 2: Results are due to R. Lee and S. Weintraub

([10],[11]). They also computed the Hodge numbers for the Igusa compacti-

fication of A2(4) in [13].

- degree 2, levels 3 and 4: J. Hoffman and S. Weintraub computed the

rational cohomology of A2(3) in [7] and A2(4) in [6].

- degree 3, level 1: The rational cohomology is computed by R. Hain in [5].

In this work, the main result is the determination of the integral cohomology of

A2(3). Much of the work in this direction is done in [7] and [8]. The latter paper

contains information about integral cohomology of A2(3), and in fact the only

cases left open by this work is the determination of torsion parts in H3(A2(3),Z)

and H4(A2(3),Z). The types of the torsion parts of these groups are also given in

[8]. According to this the torsion part of H3(A2(3),Z) may have elements of order

divisible by 2 or 3 and the torsion of H4(A2(3),Z) may have elements of order

2



3 only. Our computations agrees also with the existing results on other integral

cohomology groups. We can summarize our main result in this work as follows:

Hq(A2(3),Z) =





Z q = 0;

Z21 ⊕ Z/2⊕ (Z/3)10 q = 2;

Z139 ⊕ (Z/2)15 ⊕ (Z/3)35 q = 3;

Z81 q = 4;

0 otherwise.

(1)

The method we use to determine the integral cohomology groups is specific to

the case A2(3). In this special case, Deligne’s integral spectral sequence

Ep,q
2 = Hp(D[q],Z) ⇒ Hp+q(A2(3),Z)

degenerates at E3, where D[0] = A2(3)∗ is the Igusa compactification of A2(3) and

D[q] is the disjoint union of q by q intersections of the components of the boundary

A2(3)∗ − A2(3). Once we know this fact the computations of cohomology groups

of A2(3) are fairly easy, because the differentials of this spectral sequence, which

are Gysin homomorphisms, can be easily implemented, as matrices of intersection

numbers of cycle classes, in a software. One has to find, of course, a set of gener-

ators for H∗(A2(3)∗,Z), in terms of dual cycles, and has to know the intersection

numbers of certain cycle classes to do this. Fortunately this tedious task is carried

out by J. Hoffman and S. Weintraub [7]: the cohomology groups Hp(A2(3)∗,Z) are

free of ranks 1, 0, 61, 0, 61, 0 and 1 for p = 0, 1, . . . , 6 ([7, theorem 1.1]) and one

can choose a generator sets for H2 and H4 using cycle classes of components of

the boundary and Humbert surfaces. This is another factor making the computa-

tions easier because the incidence geometry of these subvarieties is explained by a

combinatorial topology called Tits building with scaffolding.
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The article [7] sets as a background for this thesis work and much of the infor-

mation is taken from it. In the next chapter we go over briefly the basic definitions

about Siegel modular varieties and basic facts about A2(3). Second chapter in-

cludes the proof of the degeneracy of the Deligne’s integral spectral sequence and

the main result.

4



Chapter 1
The Siegel Modular Variety of Degree
Two and Level Three

The background material for this chapter is [7], [8] [9] and [14]. All of the informa-

tion related to the Siegel modular variety of degree 2 and level 3 is coming from

first two.

1.1 Siegel Modular Varieties

The set of n by n complex symmetric matrices with the positive-definite imaginary

part, is called the Siegel upper-half space of degree n denoted by Sn which is the

n-dimensional version of the upper-half plane S1:

Sn = {τ ∈ Mn(C)| tτ = τ, Im τ > 0}.

The real symplectic group of degree n, Sp(2n,R) consists of all real square matrices

X of dimension 2n satisfying

tX




0 In

−In 0


 X =




0 In

−In 0




where In is the identity matrix of dimension n. This means that if

X =




A B

C D




then the square-blocks, A,B, C and D must satisfy the following relations:

tAC = tCA, tBD = tDB and tAD − tCB = In

The group Sp(2n,R) acts on Siegel upper-half space Sn (see [14]), the action is

given by

X · τ =




A B

C D


 · τ = (Aτ + B)(Cτ + D)−1 (1.1)
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for τ in Sn and for X =
(

A B
C D

)
in Sp(2n,R) where A, B, C and D are the n

by n portions of X. Actually the more is true:

Proposition 1.1. 1. The action of Sp(n,R) on Sn is transitive

2. The group Aut(Sn) of biholomorphic automorphisms of Sn is isomorphic to

Sp(2n,R)/± 1.

The proof can be found in [14]. Observe that in dimension one we have a more

familiar situation namely the action of SL(2,R) = Sp(2,R) on the upper-half plane.

It can be easily proved that the isotropy group

Iso(
√−1In) := {M ∈ Sp(2n,R) : M · (√−1In) =

√−1In},

which is a maximal compact subgroup of Sp(2n,R), is isomorphic to the unitary

group

U(n) := {X ∈ GL(n,R) : X tX = In}.

Therefore Sn is a homogeneous space

Sn
∼= Sp(2n,R)/U(g).

Next we consider the quotient space Γ\Sn of Sn by arithmetic subgroups of

Sp(2n,Q). These quotient spaces are, in general, called Siegel Modular Varieties.

They actually are quasi-projective varieties by a theorem of W. Baily and A. Borel

[1].

Definition 1.2. A subgroup Γ of Sp(2n,R) is called an arithmetic subgroup if

(i) Γ is contained in Sp(2n,Q).

(ii) for a rational faithful representation ρ : Sp(2n,Q) → GL(m,Q) the image

ρ(Γ) is commensurable with ρ(Sp(2n,Z).
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Commensurable, here, means that ρ(Γ) ∩ ρ(Sp(2n,Z)) has finite index in both

ρ(Γ) and ρ(Sp(2n,Z)).

The action of any arithmetic subgroup Γ of Sp(2n,Q) on Sn is properly discon-

tinuous. This means that for all τ ∈ Sn there exists a neighborhood U of τ in Sn

such that {M ∈ Γ : M ·U ∩ U 6= ∅} is a finite set. This is a direct consequence of

the following more general fact:

Lemma 1.3. Let G be a topological group and K be a compact subgroup. Any

discrete subgroup Γ of G acts on G/K (with quotient topology) properly discontin-

uously.

By a theorem of Cartan [3] we have the following corollary.

Corollary 1.4. For any arithmetic subgroup Γ of Sp(2n,R) Γ\Sn admits a canon-

ical structure of a normal analytic space with the following universal property: a

map f : Γ\Sn → X into an analytic space X is holomorphic if and only if the

composition f ◦ p : Sn → X is holomorphic, where p is the projection map.

If an arithmetic subgroup Γ acts without fixed points, the quotient space turns

out to be smooth. Not all arithmetic subgroups of Sp(2n,R) act fixed point freely

on Sn. However the fact that an arithmetic subgroup Γ has a subgroup Γ′ of finite

index implies that Γ\Sn can only have finite quotient singularities.

The principal congruence subgroups,

Γn(m) = {X ∈ Sp(2n,Z)| X ≡ I2n mod m},

act without fixed point for m ≥ 3 hence the resulting Siegel modular variety, of

degree n and level m, is smooth as a complex manifold for m ≥ 3. Although the

action of Γ2(2) is not without fixed points the Siegel modular variety of degree 2

and level 2 is still smooth.
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The notation An(m) is used to denote the Siegel modular variety of degree n

and level m. Our main object of study in this work is A2(3) and it is birationally

isomorphic to the Burkhardt quadric: the subvariety of the projective space P4C

defined by

J4 = Y 4
0 − Y0(Y

3
1 + Y 3

2 + Y 3
3 + Y 3

4 ) + 3Y1Y2Y3Y4. (1.2)

The Siegel modular variety of degree n and level m is the moduli spaces of n

dimensional complex abelian varieties with level structures.

1.2 Compactification of Siegel Modular

Varieties

There are several types of compactifications of Siegel modular varieties. Let Γ be

an arithmetic subgroup of Sp(2n,R).

Satake Compactification (Γ\Sn)sa: Satake compactification is the oldest

compactification of Siegel modular varieties, constructed by I. Satake. The idea

is a generalization of compactification of modular curves, which are also Siegel

modular varieties of degree 1. It is proven by Baily and Borel that, with a suitable

topology, this is a projective variety. However, unlike the 1-dimensional case it

is no longer non-singular and the serious nature of the singularities restricts the

usefulness of it by algebraic means.

Borel-Serre Compactification (Γ\Sn)bs Borel-Serre compactification of a

Siegel modular variety is a manifold with corners which is obtained by a process

called blowing up the Tits building. Using this Borel and Serre give a formula for

the virtual cohomological dimensions:

c = vcd(Γ) = dimR(Sn)− rank(Sp2n) = n2.

as well as the duality theorem, [2, theorem 11.5.1],

H i(Γ,Z) ' Hc−i(Γ, I)

8



where I = Hc(Γ,Z[Γ]) is the dualizing module of Γ which is isomorphic to Z.

Toroidal Compactification (Γ\Sn)∗ First constructed by Igusa on Siegel

modular varieties of degree 2 and generalized by Mumford and his coworkers to lo-

cally symmetric domains. Toroidal compactification generally depends on a choice

of a fan, but in the case of degree 2 Siegel modular varieties there is essentially a

unique choice and referred also as Igusa compactification. When Γ(m) is torsion-

free, this is a smooth, projective variety and the boundary

∂A2(m) = A2(m)∗ −A2(m)

is a divisor with normal crossings. The toroidal compactification A2(m)∗ may have

finite quotient singularities due to the existence of torsion in Γ(m) = Γ2(m) ⊂
Sp(4,Z). We know that Γ(m) is torsion-free if m ≥ 3 and Γ(2) has torsion. However,

A2(2)∗ is still smooth. The next section includes a geometric description of A2(3)∗.

1.3 Important Subvarieties of A2(3)*

In cohomology point of view, there are important subvarieties of the Igusa com-

pactification A2(3)∗. These are the components of the boundary ∂A2(3)∗, which is

a divisor with normal crossings and the Humbert surfaces. Indeed the articles [7]

and [8] show that if we know enough about these subvarieties we can determine

the (co)homology groups of both A2(3) and A2(3)∗.

Each boundary component M of A2(3) is an elliptic modular surface over the

modular curve Γ1(3)\S1, i.e. there is a surjection π : A2(3) → Γ1(3)\S1 such

that each fiber π−1(p) over a smooth point p of Γ1(3)\S1 is an elliptic curve.

The modular curve Γ1(3)\S1 has four cusps and the fibers corresponding to those

are triangles of P1 formed by intersection of M with other boundary components

(figure 1.1).
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A Humbert surface is a subvariety of A2(m) which is the image in A2(m) of a

subvariety of S2 defined by an equation of the form

az1 + a2z2 + cz3 + d(z2
2 − z1z3) + e = 0,

where a, b, c, d and e are integers and




z1 z2

z2 z3


. The number ∆ = b2−4(ac+de)

is the discriminant of the Humbert surface. From now on we call Humbert surfaces

of discriminant 1 simply Humbert surfaces.

There are 40 boundary components, each of which is an elliptic modular surface

of level 3, and 45 Humbert surfaces, each of which is isomorphic to A1(3)∗ ×
A1(3)∗ ∼= P1 × P1.

The intersection configuration of these subvarieties is explained by the finite

geometry of P3(F3) together with the standard symplectic form

([x1, x2, x3, x4], [y1, y2, y3, y4]) 7→ x3y1 + x2y4 − x3y1 − x4y2.

where xi and yj are the Plücker coordinates of two points x and y of P3(F3). Note

that whether the symplectic product of two points is zero is well-defined. We say

that two points x and y are isotropic to each other (or one is isotropic to the other)

if their symplectic product is zero and anisotropic if not.

Now we briefly describe the correspondence between this geometry and the in-

cidence relations of the special subvarieties. We first look into the space P3(F3):

there are 40 points and 130 lines, each of which containing 4 points. For two

points l1 and l2 in P3(F3), the line passing through l1 and l2 is of the form

l1 ∧ l2 = {l1, l2, l1 + l2, l1 − l2}. There are 40 isotropic lines i.e. lines whose points

are pairwise isotropic, and 90 anisotropic ones. For each anisotropic line δ there is

a unique anisotropic line δ⊥ such that points of δ are isotropic to those of δ⊥. We

will call them anisotropic pairs. The correspondence is as follows:

10



• The points l of the projective space P3(F3) index the boundary components

D(l) of A2(3)∗ and the Humbert surfaces H(∆) are indexed by sets ∆ =

{δ, δ⊥} (this ∆ should not be confused with the discriminant) consisting of

anisotropic pairs.

• Two boundary components D(l1) and D(l2) intersect in a subvariety isomor-

phic to complex projective line P1 if and only if the points l1 and l2 of P3(F3)

are isotropic i.e. their symplectic product is zero. The intersection of compo-

nents D(li), i = 1, . . . q will be denoted by D(l1, . . . , lq).

π

D(l)

M(l)

FIGURE 1.1. A boundary component

The figure 1.1 shows the incidence relations mentioned above on a boundary

component D(l). Each line is the intersection of D(l) with another boundary

component whose index l′ is isotropic to l. As we mentioned earlier, each

boundary component D(l) is an elliptic surface over a modular curve M(l),

i.e. there is a map π : D(l) → M(l) whose generic fibres are elliptic curves

and the fibres over the cusps of M(l) are the triangles in D(l).

11



• The intersection of any four of D(l)’s is empty. Therefore the boundary com-

ponents corresponding to points l1, l2, l3 and l4 of an isotropic line h form a

tetrahedron C(h) with P1 edges (figure 1.2).

1 3D(l ,l ,l )4

2 3D(l ,l ,l )4

1D(l ,l ,l )2 3 1D(l ,l ,l )2 4

FIGURE 1.2. C(h)

• A Humbert surface H(∆), ∆ = {δ, δ⊥}, meets a boundary component D(l),

l ∈ P3(F3) if and only if l ∈ δ or l ∈ δ⊥ and in this case we denote the

intersection D(l) ∩H(∆) by S(l, ∆) (figures 1.3 and 1.4).

1S(l ,∆) 1 1 1 2 1 3 1 4D(l , l )’ D(l , l )’ D(l , l )’ D(l , l )’

FIGURE 1.3. S(l1, ∆) in D(l1)
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S(l ,∆)2 S(l ,∆)3 S(l ,∆)4S(l ,∆)1

4

3

2

1

∆)

∆)

∆)

∆)

S(l ,’

’S(l ,

S(l ,’

S(l ,’

FIGURE 1.4. H(∆), δ = {l1, l2, l3, l4} and δ⊥ = {l′1, l′2, l′3, l′4}

• For each l ∈ P3(F3) there are 12 other points of P3(F3) which are isotropic to

l and 27, anisotropic to l. Hence there are 4 isotropic lines and 9 anisotropic

lines containing l. So there are 9 S(l, ∆)’s contained in D(l).

Some of the results of [7] which are used in order to make explicit computation

of the Deligne’s spectral sequence are the following:

Theorem 1.5. 1. The cohomology groups Hj(A2(3)∗,Z) of are given by

Hj(A2(3)∗,Z) =





Z j = 0, 6,

Z61 j = 2, 4,

0 otherwise

2. The 85 classes [H(∆)] and [D(l)] generate H4(A2(3)∗,Z).

3. The 130 classes {h1(∆), h2(∆)} and d(l) generate H2(A2(3)∗,Z) where

{h1(∆), h2(∆)} = {S(l, ∆), S(l′, ∆)} and

[d(l)] = [D(l, l′)] +
∑

i

[S(l, ∆i)]

13



The intersection numbers of some important cycle classes are given in the fol-

lowing theorem which is a restatement of lemmas 3.5-3.10 of [7].

Theorem 1.6.

D(l1) ·D(l1, l2) =





1 if l, l1, l2are pairwise isotropic

−2 if l = l1 or l = l2

0 otherwise

(1.3)

H(∆) ·D(l1, l2) =





1 if l1 ∈ δ and l2 ∈ δ⊥ or vice-versa

0 otherwise
(1.4)

D(l′) · S(l, ∆) =





1 if l ∈ δ and l′ ∈ δ⊥ or vice-versa

0 otherwise
(1.5)

H(∆′) · S(l, ∆) =




−1 if ∆ = ∆′

0 otherwise
(1.6)

(1.7)

1.3.1 The Cohomology of Boundary Components

We denote by D[q] the disjoint union of q by q intersections of boundary compo-

nents. Let D(l) be a boundary component. By [8, corollary 2.2] we know that

Hp(D(l),Z) = Hp(D(l),Z) =





Z if p = 0, 4,

Z10 if p = 2,

0 otherwise

(1.8)

The second homology group H2(D(l),Z) is generated freely by 9 cycle classes

[S(l, ∆)] and [d(l)] = [D(l, l′)] +
∑

i[S(l, ∆i)].

Each D(l, l′) is isomorphic to P1 unless it is empty and Hj(P1,Z) = Z for j = 0

or 2 and 0 for other values of j. Therefore Hj(D[2],Z) for j = 0 or 2 is free of rank

equal to the number of isotropic pairs (l, l′) of distinct points in P3(F3). There are

14



240 of them so we have

Hj(D[2],Z) =




Z240 j = 0, 2,

0 otherwise

Similarly since there are 160 pairwise isotropic triples (l, l′, l′′) of points of P3(F3),

D[3] is the union of 160 distinct points and hence H0(D[3],Z) = Z160.

15



Chapter 2
The Integral Cohomology of A2(3)

2.1 The Rational Cohomology of A2(3)

The rational cohomology groups of the Siegel modular variety A2(3) is computed

by J. Hoffman and S. Weintraub. The ranks of the cohomology groups are (as

found in [7, p.4])

rankH i(A2(3),Q) =





1 i = 0,

21 i = 2,

139 i = 3,

81 i = 4,

0 otherwise

(2.1)

which are also the ranks of the cohomology of the principal congruence subgroup

Γ2(3). The same authors have also obtained the following partial result related to

the cohomology of A2(3) with integer coefficients ([8, p.35]):

H0(A2(3),Z) = Z

H2(A2(3),Z) = Z21 ⊕ Z/2⊕ (Z/3)10 (2.2)

H3(A2(3),Z[1/6]) = Z[1/6]139

H4(A2(3),Z[1/3]) = Z[1/3]81

This means that the integral cohomology of A2(3) may have Z/3 torsion at dimen-

sion 4 and Z/2 or Z/3 torsion at dimension 3. We will see in the next section that

our computations of the integral cohomology agree with these results.

Now we briefly explain how the ranks (2.1) are computed in [7]. The first step is

to compute the ranks of H i(A2(3)∗,Q), by finding the zeta function of a variety B
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obtained by resolving the singularities of the Burkhardt’s quadric (1.2): for every

prime power q congruent to 1 modulo 3 the zeta function of B regarded as a scheme

over Fq is

Z(B/Fq, u) =
1

(1− u)(1− qu)61(1− q2u)61(1− q3u)
(2.3)

By comparison theorems in étale cohomology this gives the integral cohomology

groups of A2(3)∗, (i.e. they all are free of ranks 1, 0, 61, 0, 61, 0, 1, for dimensions

1, . . . , 6. The computation of the zeta function is a very tedious task carried out

in [7].

To compute the rational cohomology of A2(3) ⊂ A2(3)∗, Deligne’s spectral se-

quence is used:

Ep,q
2 = Hp(D[q],Q) ⇒ H∗(A2(3),Q) (2.4)

where D[0] = A2(3)∗ and D[q] is the disjoint union of the intersections of q boundary

components for q ≥ 1. The computation using the Deligne’s spectral sequence

involves determining the set of generators for all cohomology groups of A2(3)∗ by

means of cycles of A2(3) and the computation of intersection numbers of these

cycles, which is a work done in [7].

Deligne’s spectral sequence (2.4) is the Leray’s spectral sequence for an inclusion

X → X where X is a smooth variety embedded in a smooth complete variety X

as a Zariski open dense subset and ∂X = X−X is a divisor with normal crossings

and it degenerates at E3 modulo torsion. We will show, in the next chapter that,

for our special case, the Deligne’s integral spectral sequence

Ep,q
2 = Hp(D[q],Z) ⇒ H∗(A2(3),Z)

degenerates at E3 too, and this establishes our main result.
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2.2 Deligne’s Spectral Sequence over Integers

The following theorem establishes the main idea of computations of the integral

cohomology of A2(3). As in the last section we denote by D[q] the disjoint union

of intersections of q of the boundary components of A2(3)∗.

Theorem 2.1. The Deligne’s spectral sequence with integer sequence

Ep,q
2 = Hp(D[q],Z) ⇒ Hp+q(A2(3),Z) (2.5)

degenerates at level three, i.e. E3 = E∞.

All Ep,q
2 of the spectral sequence (2.5) are free and in the following chart all the

nontrivial maps ranks and (p, q) coordinates are placed.

(0, 3)
160

((QQQQQQQQQQQQQQQQQQQQ

(0, 2)
240

((QQQQQQQQQQQQQQQQQQQQ

(1, 2)
0

(2, 2)
240

((QQQQQQQQQQQQQQQQQQQQ

(0, 1)
40

((QQQQQQQQQQQQQQQQQQQQ

(1, 1)
0

(2, 1)
400

((QQQQQQQQQQQQQQQQQQQQ

(3, 1)
0

(4, 1)
40

((QQQQQQQQQQQQQQQQQQQQ

(0, 0)
1

(1, 0)
0

(2, 0)
61

(3, 0)
0

(4, 0)
61

(5, 0)
0

(6, 0)
1

The differentials of the spectral sequence

d : Ep,q
2 = Hp(D[q],Z) → Ep+2,q−1

2 = Hp+2(D[q−1],Z)

is a direct sum
∑

(−1)idi∗ of Gysin homomorphisms di∗ associated to inclusions

di : D(l1, . . . , lq) → D(l1, . . . , l̂i, . . . , lq).

The Gysin homomorphisms are easy to understand: if x is a cohomology class

corresponding to an algebraic cycle of codimension r then di(x) is the class of the
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same cycle of codimension r+1 on D(l1, . . . , l̂i, . . . , lq). As it is obvious from the

definition of the differentials, we have to fix an order “<” once and for all for the

points of P3(F3)

From the chart above, we see that there are only three complexes to be consid-

ered. The first one consists of only one nontrivial map

d : E0,1
2 → E2,0

2

which, by the remarks following the proof of [7, theorem 4.6], is injective and the

image can be completed to a basis of E2,0
2 = H2(A2(3)∗,Z). The other complexes

are labeled S• and T • in [7, p.34]. Here we keep the same notation are write d•S

and d•T for the differentials:

S• : 0 → E0,2
2

d1
S−→ E2,1

2

d2
S−→ E4,0

2 → 0 (2.6)

T • : 0 → E0,3
2

d1
T−→ E2,2

2

d2
T−→ E4,1

2

d3
T−→ E6,0

2 → 0. (2.7)

We have canonical free bases for Ep,q
2 for (p, q) 6= (4, 0) or (2, 0). Since all Ep,q

2 are

free, by universal coefficient theorem

Ep,q
2 = Hp(D[q],Z) ' Hom(Hp(D

[q],Z),Z).

Via this isomorphism all of the maps above can be interpreted as matrices of

intersection of cycle classes. Therefore the matrix representation of the maps d1
S,

d1
T , d2

T and d3
T can be constructed easily: the entries are the intersection numbers

of the cycles indexing rows and columns and the following is how we label rows

and columns.

d1
S: the columns are indexed by D(l, l′), (l, l′) run over all isotropic pairs, l < l′

and the rows are separated into 40 groups of 10. These groups are indexed by

l ∈ P3(F3). The first one of rows corresponding to an l is labeled d(l) and the

rest 9 are indexed by 9 cycles S(l, ∆) where if ∆ = {δ, δ⊥} then l ∈ δ ∪ δ⊥.
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d1
T : the columns are indexed by D(l1, l2, l3) where l1, l2 and l3 are pairwise isotropic,

l1 < l2 < l3, the rows are indexed by D(l, l′), (l, l′) runs over all isotropic

pairs, l < l′.

d2
T : the columns are indexed by D(l, l′), (l, l′) runs over all isotropic pairs, l < l′

and rows are indexed by D(l)’s.

d3
T : a row matrix with 1 in each entry.

The construction of d2
S is not different from the others, the only difference is that

we don’t have a canonical basis for E4,0
2 = H4(A2(3)∗,Z). This causes no trouble

at all, we construct the matrix representation by indexing the columns with as

the rows of the representation matrix of d2
S and the rows with 40 D(l)’s and 45

H(∆)’s.

Remark 2.2. Note that we now represent d2
S by a 85 × 400 matrix whose rank

is 61. Moreover the Smith normal form of this matrix has 61 1’s on the diagonal

showing that d2
S is surjective.

Now we will prove theorem 2.1 by investigating each piece of the spectral se-

quence (2.5).

Proof of Theorem 2.1. Since we know that the Hp(A2(3),Z) = 0 for p ≥ 5 we

actually need to verify

Ep,q
3 = Ep,q

∞ (2.8)

only when p + q ≤ 4, therefore there are only 15 cases to check. However, to

see that (2.8) holds for the rest of the spectral sequence is elementary. It is a

consequence of biregularity of the spectral sequence (2.5) that Ep,q
3 = Ep,q

∞ for

(p, q) = (0, 0), (1, 0), (0, 1), (1, 1), (2, 0) and (2, 1). On the other hand Ep,q
2 = 0
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for (p, q) = (1, ∗), (3, 0), (3, 1) hence (2.8) holds for these values of p and q. The

remaining part that needs to be checked is when (p, q) = (0, 2), (0, 3), (0, 4), (2, 2)

and (4, 0). Since E3,0
3 = H3(D[0],Z) = 0, we have

0 // E0,2
3

// E3,0
3 = 0

0 // E0,2
4

// 0

so E0,2
3 = E0,2

∞ . Similarly we have

0 // E2,2
3

// E5,0
3 = a subquotient of E5,0

2 = 0

0 // E2,2
4

// 0

therefore E2,2
3 = E2,2

∞ . To prove E4,0
3 = 0 (therefore E4,0

3 = E4,0
∞ ) we use the fact

that the map

E2,1
2

d2
S // E4,0

2
// 0

Z400 Z61

(2.9)

is surjective. This is seen by computing the smith normal form of the matrix

representation of d2
S using Maple or any other software with matrix computation

capabilities (see the Remark 2.2 above). Because of this we have, by the following

diagram,

0 // E0,3
3

// E3,1
3 = 0

0 // E0,3
4

// E4,0
4 = 0

0 // E0,3
5

// 0
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E0,3
3 = E0,3

∞ . It remains to prove that E0,4
3 = E0,4

∞ . Since E4,1
4 is a subquotient of

E4,1
3 = 0 it is 0 itself. Similarly E5,0

5 = 0 because E5,0
2 = 0. So from the diagram

0 // E0,4
3

// E3,2
3 = 0

0 // E0,4
4

// E4,1
4 = 0

0 // E0,4
5

// E5,0
5

0 // E0,4
6

// 0

we see that E0,4
3 = E0,4

∞ and this finishes the proof of the theorem.

2.3 The Main Result

In this section we simply write Hp instead of Hp(A2(3),Z).

To determine the cohomology groups of A2(3) with integer coefficients, we com-

pute the groups Ep,q
3 . They give the GrW

p+2q of, so called, weight filtration W of

Hp+q. More precisely we have

Ep,q
3 = Ep,q

∞ = GrW
p+2qH

p+q.

The fact that the weight filtration is increasing is important, because of this fact

we can completely determine the torsion parts.

Now suppose we have a sequence of maps

Zr P // Zs
Q // Zt (2.10)

given by means of matrices P and Q such that QP = 0. To find the homology

group H = ker Q/Im P , we find the smith normal form of Q, i.e. we find matrices

U ∈ GL(s,Z) and V ∈ GL(t,Z) such that the matrix V QU has all nonzero entries
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e1, e2, . . . , eu on the diagonal and the entries satisfy e1|e2| · · · |eu.

Zr P //

U−1P ÃÃA
AA

AA
AA

A Zs
Q // Zt

V
²²

Zs

U

OO

V QU // Zt

The homology of sequences

Zr P // Zs
Q // Zt and Zr U−1P // Zs

V QU // Zt

at the middle are isomorphic and we find the of the kernel: ker Q ' ker(V QU) =

Zs−u. So it remains to find the cokernel of the map

U−1P : Zr → ker(V QU) = Zs−u

which can be done by computing the Smith normal form of U−1P : if the nonzero

entries of the Smith normal form of this matrix are d1, . . . , dv with d1|d2| · · · |dv,

which appear as diagonal entries, then v ≤ u and

Coker(U−1P : Zr → Zs−u) = Zu−v ⊕ Z/d1 ⊕ · · · ⊕ Z/dv.

It is clear that we can ignore U because it is invertible and therefore P and U−1

have the same Smith normal form.

To compute E3 components of the spectral sequence we carry out the same

computations in Maple for the matrix representations of d•S and d•T . We obtain the
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following:

GrW
i H2 '




Z21 ⊕ Z/2⊕ (Z/3)10 i = 2

0 otherwise

GrW
i H3 '





Z99 ⊕ (Z/3)20 ⊕ (Z/6)15 i = 4

Z40 i = 6

0 otherwise

GrW
i H4 '




Z81 i = 6

0 otherwise

At this point we can see the ranks of and sizes of the torsion parts of the cohomology

groups. One elementary but very important detail needs to be explained here. Since

the groups GrW
i are merely the successive quotients of the weight filtration, one

cannot tell, in general, the cohomology groups explicitly from a data like the one

above. In our case, on the other hand, we are able to do it: since the weight

filtration of cohomology groups are biregular and W (H2) and W (H4) are just

one-step filtrations, we have

W i(H2) =




Z21 ⊕ Z/2⊕ (Z/3)10 i ≥ 2

0 otherwise

W i(H4) =




Z81 i ≥ 6

0 otherwise

this means that H2 = W 2(H2) and H4 = W 6(H4).

For the weight filtration H3 we have the following situation:

W 5 ' W 4 ' Z99 ⊕ (Z/2)15 ⊕ (Z/3)35 and W 6/W 5 ' Z40.

Hence H3 = W 6(H3) can be written as an extension of groups

0 → Z99 ⊕ (Z/2)15 ⊕ (Z/3)35 −→ H3 −→ Z40 → 0. (2.11)
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Since Z40 is a free, the sequence (2.11) splits. This means that

H3 ' Z99 ⊕ (Z/2)15 ⊕ (Z/3)35 ⊕ Z40.

In summary we get the integral cohomology groups of A2(3) explicitly,

Hq(A2(3),Z) =





Z q = 0;

Z21 ⊕ Z/2⊕ (Z/3)10 q = 2;

Z139 ⊕ (Z/2)15 ⊕ (Z/3)35 q = 3;

Z81 q = 4;

0 otherwise.
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Appendix

The Maple Code

The following is the Maple code of the computations. The code is supposed to

run with Maple V release 4 compiler. The little change in the code will enable it

to run with more recent versions of Maple. In the code, the grammatical rules of

programming are not strictly followed although certain conventions are adopted,

e.g. the names of processes start with an underscore character.

with(linalg): # necessary to use linear algebra package

The (Plücker) Coordinates of Points in P3F3

L := array(1..40,1..4): # the coordinate matrix to be filled:.

x1 := 0: # each row is coordinates of a point.

x2 := 0: # this matrix provides an order amongst the points

x3 := 0:

x4 := 0:

for i from 1 to 40 do

if x4 <> 1 then

x4 := x4 + 1;

elif x3 <> 1 then

x4 := -1;

x3 := x3 + 1;

elif x2 <> 1 then

x4 := -1;

x3 := -1;

x2 := x2 + 1;

else

x4 := -1;

x3 := -1;

x2 := -1;

x1 := x1 + 1;

fi;

L[i,1] := x1;

L[i,2] := x2;

L[i,3] := x3;

L[i,4] := x4;

od:

Lplus := proc(i,j)

local k;

k := 1;

while (k <= 40) do

if ( L[i,1] + L[j,1] - L[k,1] mod 3 = 0 and

L[i,2] + L[j,2] - L[k,2] mod 3 = 0 and

L[i,3] + L[j,3] - L[k,3] mod 3 = 0 and

L[i,4] + L[j,4] - L[k,4] mod 3 = 0 ) or

( -L[i,1] - L[j,1] - L[k,1] mod 3 = 0 and
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-L[i,2] - L[j,2] - L[k,2] mod 3 = 0 and

-L[i,3] - L[j,3] - L[k,3] mod 3 = 0 and

-L[i,4] - L[j,4] - L[k,4] mod 3 = 0 ) then

RETURN(k);

k := 41;

else

k := k + 1;

fi;

od;

end:

Lminus := proc(i,j)

local k;

k := 1;

while (k <= 40) do

if ( L[i,1] - L[j,1] - L[k,1] mod 3 = 0 and

L[i,2] - L[j,2] - L[k,2] mod 3 = 0 and

L[i,3] - L[j,3] - L[k,3] mod 3 = 0 and

L[i,4] - L[j,4] - L[k,4] mod 3 = 0 ) or

( -L[i,1] + L[j,1] - L[k,1] mod 3 = 0 and

-L[i,2] + L[j,2] - L[k,2] mod 3 = 0 and

-L[i,3] + L[j,3] - L[k,3] mod 3 = 0 and

-L[i,4] + L[j,4] - L[k,4] mod 3 = 0 ) then

RETURN(k);

k := 41;

else

k := k + 1;

fi;

od;

end:

Sprod := proc(i,j)

RETURN( L[i,3]*L[j,1] + L[i,4]*L[j,2]

- L[i,1]*L[j,3] - L[i,2]*L[j,4] mod 3);

end:

Lines in P3F3

V := array(1..130,1..4):

r := 1:

for i from 1 to 37 do

for j from i+1 to 38 do

if Lplus(i,j) > j and Lminus(i,j) > j then

V[r,1] := i;

V[r,2] := j;

if Lplus(i,j) < Lminus(i,j) then

V[r,3] := Lplus(i,j);

V[r,4] := Lminus(i,j);

else

V[r,3] := Lminus(i,j);

V[r,4] := Lplus(i,j);

fi;

r := r + 1;

fi;

od:

od:

IsBelongTo := proc(point num, line num)

if V[line num,1] = point num or

V[line num,2] = point num or

V[line num,3] = point num or

V[line num,4] = point num then

RETURN(1);

29



else

RETURN(0);

fi;

end:

Isotropic := array(1..40):

r := 1:

for i from 1 to 130 do

if Sprod(V[i,1],V[i,2]) = 0 then

Isotropic[r] := i;

r := r + 1;

fi;

od:

Unisotropic := array(1..90):

UnisotropicPairs := array(1..45,1..2):

r := 1:

s := 1:

for i from 1 to 130 do

if i <> Isotropic[s] then

Unisotropic[r] := i;

r := r + 1;

else

if s < 40 then

s := s + 1;

fi;

fi;

od;

r := 1:

for i from 1 to 89 do

for j from i+1 to 90 do

if ( Sprod(V[Unisotropic[i],1],V[Unisotropic[j],1]) = 0 and

Sprod(V[Unisotropic[i],1],V[Unisotropic[j],2]) = 0 and

Sprod(V[Unisotropic[i],2],V[Unisotropic[j],1]) = 0 and

Sprod(V[Unisotropic[i],2],V[Unisotropic[j],2]) = 0)then

UnisotropicPairs[r,1] := Unisotropic[i];

UnisotropicPairs[r,2] := Unisotropic[j];

r := r + 1;

fi;

od;

od;

The Sequence U

dU:=array(1..130,1..40):

for i from 1 to 45 do

for j from 1 to 40 do

if IsBelongTo(j,UnisotropicPairs[i,1]) = 1 then

dU[2*i-1,j] := 0;

dU[2*i,j] := 1;

elif IsBelongTo(j,UnisotropicPairs[i,2]) = 1 then

dU[2*i-1,j] := 1;

dU[2*i,j] := 0;

else

dU[2*i-1,j] := 0;

dU[2*i,j] := 0;

fi;

od:

od:

for i from 1 to 40 do

for j from 1 to 40 do

if i = j then
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dU[90+i,j] := -2;

elif Sprod(i,j) = 0 then

dU[90+i,j] := 1;

else

dU[90+i,j] := 0;

fi;

od;

od:

idU := ismith(dU):

diagonal := 1: # to count the entries of the diagonal

count := 0:

for i from 1 to 40 do

if diagonal = idU[i,i] then

count := count + 1;

else

printf(‘the number of %d on the diagonal is %d\ n‘,

diag,count);

diagonal := idU[i,i];

count := 1;

fi;

od;

printf(‘the number of %d on the diagonal is %d\ n‘,

diagonal,count);

output:
the number of 1 on the diagonal is 30

the number of 3 on the diagonal is 9

the number of 6 on the diagonal is 1

The Sequence S

dS1 col := array(1..240,1..2):

r := 1:

for i from 1 to 39 do

for j from i+1 to 40 do

if Sprod(i,j) = 0 then

dS1 col[r,1] := i;

dS1 col[r,2] := j;

r := r + 1;

fi;

od;

od:

dS1 row := array(1..360,1..2):

r := 1:

for i from 1 to 45 do

for j from 1 to 4 do

dS1 row[r,1] := V[UnisotropicPairs[i,1],j];

dS1 row[r,2] := i;

r := r + 1;

od:

for j from 1 to 4 do

dS1 row[r,1] := V[UnisotropicPairs[i,2],j];

dS1 row[r,2] := i;

r := r + 1;

od:

od:

dS1 := array(1..400,1..240):

for i from 1 to 360 do
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for j from 1 to 240 do

if dS1 row[i,1] = dS1 col[j,1] and

( IsBelongTo(dS1 col[j,2], UnisotropicPairs[dS1 row[i,2],1]) = 1 or

IsBelongTo(dS1 col[j,2], UnisotropicPairs[dS1 row[i,2],2]) = 1) then

dS1[i,j] := 1;

elif dS1 row[i,1] = dS1 col[j,2] and

( IsBelongTo(dS1 col[j,1], UnisotropicPairs[dS1 row[i,2],1]) = 1 or

IsBelongTo(dS1 col[j,1], UnisotropicPairs[dS1 row[i,2],2]) = 1) then

dS1[i,j] := -1;

else

dS1[i,j] := 0;

fi;

od:

od:

for i from 361 to 400 do

for j from 1 to 240 do

if i - 360 = dS1 col[j,1] then

dS1[i,j] := 1;

elif i - 360 = dS1 col[j,2] then

dS1[i,j] := -1;

else

dS1[i,j] := 0;

fi;

od:

od:

idS1 := ismith(dS1):

diagonal := 1: # to count the entries of the diagonal

count := 0:

for i from 1 to 240 do

if diagonal = idS1[i,i] then

count := count + 1;

else

printf(‘the number of %d on the diagonal is %d\ n‘,

diagonal,count);

diagonal := idS1[i,i];

count := 1;

fi;

od;

printf(‘the number of %d on the diagonal is %d\ n‘,

diag,count);

output:
the number of 1 on the diagonal is 205

the number of 3 on the diagonal is 20

the number of 6 on the diagonal is 15

dS2 := array(1..85,1..400):

dS2 col := dS1 row:

for i from 1 to 40 do

for j from 1 to 360 do

if Sprod(i,dS2 col[j,1]) = 0 and

i <> dS2 col[j,1] and

( IsBelongTo(i,UnisotropicPairs[dS2 col[j,2],1]) = 1 or

IsBelongTo(i,UnisotropicPairs[dS2 col[j,2],2]) = 1) then

dS2[i,j] := 1;

else

dS2[i,j] := 0;

fi;

od;
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od:

for i from 41 to 85 do

for j from 1 to 360 do

if i - 40 = dS2 col[j,2] then

dS2[i,j] := -1;

else

dS2[i,j] := 0;

fi;

od;

od:

for i from 1 to 40 do

for j from 361 to 400 do

if i = j - 360 then

dS2[i,j] := -2;

elif Sprod(i,j - 360) = 0 then

dS2[i,j] := 1;

else

dS2[i,j] := 0;

fi;

od;

od:

for i from 41 to 85 do

for j from 361 to 400 do

dS2[i,j] := 0;

od:

od:

idS2 := ismith(dS2):

diagonal := 1: # to count the entries of the diagonal

count := 0: for i from 1 to 85 do

if diagonal = idS2[i,i] then

count := count + 1;

else

printf(‘the number of %d on the diagonal is %d\ n‘,

diagonal,count);

diagonal := idS2[i,i];

count := 1;

fi;

od;

printf(‘the number of %d on the diagonal is %d\ n‘,

diagonal,count);

output
the number of 1 on the diagonal is 61

the number of 0 on the diagonal is 24

The sequence T

dT1 col := array(1..160,1..3):

r := 1:

for i from 1 to 38 do

for j from i + 1 to 39 do

for k from j + 1 to 40 do

if Sprod(i,j) = 0 and

( Lplus(i,j) = k or

Lminus(i,j) = k) then

dT1 col[r,1] := i;

dT1 col[r,2] := j;

dT1 col[r,3] := k;

r := r + 1;

fi;
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od;

od;

od:

dT1 row := dS1 col:

dT1 := array(1..240,1..160):

for i from 1 to 240 do

for j from 1 to 160 do

if (dT1 row[i,1] = dT1 col[j,1] and

dT1 row[i,2] = dT1 col[j,2]) or

(dT1 row[i,1] = dT1 col[j,2] and

dT1 row[i,2] = dT1 col[j,3]) then

dT1[i,j] := -1;

elif (dT1 row[i,1] = dT1 col[j,1] and

dT1 row[i,2] = dT1 col[j,3]) then

dT1[i,j] := 1;

else

dT1[i,j] := 0;

fi;

od:

od:

idT1 := ismith(dT1):

diagonal := 1: # to count the entries of the diagonal

count := 0:

for i from 1 to 160 do

if diagonal = idT1[i,i] then

count := count + 1;

else

printf(‘the number of %d on the diagonal is %d\ n‘,

diagonal,count);

diagonal := idT1[i,i];

count := 1;

fi;

od;

printf(‘the number of %d on the diagonal is %d\ n‘,

diagonal,count);

output
the number of 1 on the diagonal is 120

the number of 0 on the diagonal is 40

dT2 := array(1..40,1..240):

dT2 col := dT1 row:

for i from 1 to 40 do

for j from 1 to 240 do

if i = dT2 col[j,1] then

dT2[i,j] := -1;

elif i = dT2 col[j,2] then

dT2[i,j] := 1;

else

dT2[i,j] := 0;

fi;

od;

od:

idT2 := ismith(dT2):

diagonal := 1: # to count the entries of the diagonal

count := 0:

for i from 1 to 40 do

if diagonal = idT2[i,i] then

count := count + 1;

else
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printf(‘the number of %d on the diagonal is %d\ n‘,

diagonal,count);

diagonal := idT2[i,i];

count := 1;

fi;

od;

printf(‘the number of %d on the diagonal is %d\ n‘,

diagonal,count);

output
the number of 1 on the diagonal is 39

the number of 0 on the diagonal is 1
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