
Louisiana State University Louisiana State University 

LSU Scholarly Repository LSU Scholarly Repository 

LSU Master's Theses Graduate School 

2003 

Removal of sustained casing pressure utilizing a workover rig Removal of sustained casing pressure utilizing a workover rig 

Kevin Soter 
Louisiana State University and Agricultural and Mechanical College 

Follow this and additional works at: https://repository.lsu.edu/gradschool_theses 

 Part of the Petroleum Engineering Commons 

Recommended Citation Recommended Citation 
Soter, Kevin, "Removal of sustained casing pressure utilizing a workover rig" (2003). LSU Master's Theses. 
2310. 
https://repository.lsu.edu/gradschool_theses/2310 

This Thesis is brought to you for free and open access by the Graduate School at LSU Scholarly Repository. It has 
been accepted for inclusion in LSU Master's Theses by an authorized graduate school editor of LSU Scholarly 
Repository. For more information, please contact gradetd@lsu.edu. 

https://repository.lsu.edu/
https://repository.lsu.edu/gradschool_theses
https://repository.lsu.edu/gradschool
https://repository.lsu.edu/gradschool_theses?utm_source=repository.lsu.edu%2Fgradschool_theses%2F2310&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/245?utm_source=repository.lsu.edu%2Fgradschool_theses%2F2310&utm_medium=PDF&utm_campaign=PDFCoverPages
https://repository.lsu.edu/gradschool_theses/2310?utm_source=repository.lsu.edu%2Fgradschool_theses%2F2310&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:gradetd@lsu.edu


 
REMOVAL OF SUSTAINED CASING PRESSURE 

UTILIZING A WORKOVER RIG 
 

 

A Thesis  
Submitted to the Graduate Faculty of the 

 Louisiana State University and 
Agricultural and Mechanical College 

in partial fulfillment of the  
requirements for the degree of 

Master of Science in Petroleum Engineering 

in 
 

The Department of Petroleum Engineering 
 
 
 

by 
Kevin Soter 

B.S., University of Tulsa, 1993 
December 2003 

 



 ii

ACKNOWLEDGMENTS 

First and foremost, I would like to thank my parents, especially my father, for instilling in me the 
value of education and a strong work ethic.  Without my father’s motivation as a role model, I 
may never have pursued a technical career in the petroleum industry, let alone my Masters 
Degree in Petroleum Engineering.  His memory lives on through my continual striving for 
personal development. 
 
The author wishes to express appreciation to Professor Wojtanowicz for his guidance and 
assistance in the preparation of this thesis.  Further recognition is given to Professors Julius 
Langlinais and John Rogers Smith for reviewing my thesis and offering advice as part of my 
thesis review committee. 
 
I would also like to thank Shell Offshore for permission to release this thesis.  In addition, a 
special thanks and recognition to Mr. Felix Medine whose understanding and recollection of the 
operations was indispensable.  His technical expertise and assistance in obtaining pertinent 
material were invaluable to the writing of this thesis.  Without the support of Shell Offshore and 
assistance from Mr. Felix Medine, this thesis would never have been written. 
 
I would like to thank my employer, Halliburton Energy Services, for supporting my effort to 
obtain my degree through Louisiana State University.  Furthermore, Halliburton provided access 
to both technical resources and review that were instrumental in the writing of this thesis. 
 
Recognition is given for the input from many experts from various companies including, but not 
limited to, Baker Oil Tools and MI Drilling Fluids.  Much information was compiled from the 
procedures jointly developed for the 1999 workover program. 



 iii

TABLE OF CONTENTS 
 

ACKNOWLEDGEMENTS................................................................................ ii 
 
LIST OF TABLES..............................................................................................vi 
 
LIST OF FIGURES ......................................................................................... viii 
 
GLOSSARY........................................................................................................ix 
 
ABSTRACT........................................................................................................xi 
 
CHAPTER I:  INTRODUCTION ......................................................................1 

Statement of Problem.....................................................................................1 
Government Regulations ...............................................................................2 
Objective ........................................................................................................2 

 
CHAPTER II:  SUSTAINED CASING PRESSURE MECHANISMS............4 

Possible Causes of SCP .................................................................................4 
Improper Mud Displacement...................................................................4 

Mud Conditioning .............................................................................5 
Pipe Movement..................................................................................6 
Centralization.....................................................................................7 
Fluid Velocity ....................................................................................7 
Spacers and Flushes...........................................................................8 
Density Differential ...........................................................................9 

Gas Migration through Unset Cement ....................................................9 
Cement Sheath Failure...........................................................................10 

Remediation Efforts .....................................................................................12 
 
CHAPTER III: PAST OPERATIONS 1983-92 ...............................................13  

Objective ......................................................................................................13 
Background Information..............................................................................13 
1989 Workover Program Wells...................................................................14 

Well 3 .....................................................................................................14 
Original Drill ...................................................................................14 
Initial Completion............................................................................14 
May 1989 CTU Washout ................................................................14  
June 1989 Workover .......................................................................14 
October 1991 Workover..................................................................15 

Well 13...................................................................................................15 
Original Drill ...................................................................................15 
Initial Completion............................................................................16 
June 1989 Workover .......................................................................17 
April 1991 Workover ......................................................................19 



 iv

Well 10...................................................................................................20 
Original Drill ...................................................................................20 
Initial Completion............................................................................21 
July 1989 Workover ........................................................................21 
March 1991 Workover ....................................................................21 

1990 Casing Squeeze Program Wells .........................................................22 
 Well 1 .....................................................................................................22 

Original Drill ...................................................................................22 
Initial Completion............................................................................23 
September 1983 Workover .............................................................23 
April 1990 TA Operation ................................................................23 

 Well 14...................................................................................................24 
Original Drill ...................................................................................24 
Liner Tieback and Complete...........................................................24 
May 1989 Workover .......................................................................25 
August 1989 Workover ...................................................................25 
April 1990 Workover ......................................................................25 
May 1991 Workover .......................................................................25 
September 1991 Workover .............................................................26 
February 1992 P&A Operations .....................................................26 

 Well 11...................................................................................................27 
Original Drill ...................................................................................27 
Initial Completion............................................................................27 
October 1986 Workover..................................................................27 
December 1986 Sidetrack ...............................................................28 
March 1990 Workover ....................................................................28 
March 1992 Workover ....................................................................29 

 Well 15...................................................................................................29 
Original Drill ...................................................................................29 
Initial Completion............................................................................30 
July 1990 P&A Operation...............................................................30 

1989 to 1982 Findings .................................................................................32 
 
CHAPTER IV: DESCRIPTION OF 1999 RIG METHOD .............................33  

Summary ......................................................................................................33 
First Method: Termination of Inner Casing ................................................35 

Cut and Pull Casing ...............................................................................35 
Casing Cleanout:  Preparation for Pressure Isolation  
of Inner Casing Stub and Annulus ........................................................36 
Pressure Isolation of Inner Casing Stub and Annulus ..........................36 

Second Method: Window Milling Operation .............................................37 
Window Milling.....................................................................................38 
Casing Cleanout:  Preparation for Pressure Isolation  
of Lower Casing Stub ............................................................................41 
Pressure Isolation of Lower Casing Stub..............................................42 
 



 v

Casing Cleanout: Preparation for Pressure Isolation  
of Upper Casing Stub ............................................................................43 
Pressure Isolation of Upper Casing Stub ..............................................43 

Clear Fluid vs. Drilling Mud .......................................................................44 
Determination of Fluid Weights ..................................................................45 
Cement Slurry ..............................................................................................45 
1999 Summary of Findings .........................................................................46 

 
CHAPTER V:  ANALYSIS ..............................................................................48 
1989/1990 Workover Program Summary and Conclusions .............................48 

Design Concept......................................................................................49 
Milling Operations.................................................................................50 
Perforating-to-Squeeze ..........................................................................50 

Microbond Cement Squeezes..........................................................51 
FLO-CHEK Cement Squeezes .......................................................51 
Class ‘H’ Cement Squeezes ............................................................52 
Magne-Set Cement Squeezes..........................................................52 

Post 1989/1990 Workover Operations Summary and Conclusions .................52 
Squeeze Operations ...............................................................................53 

1999 Workover Program Summary and Conclusions ......................................54 
Casing Slab Evaluation ......................................................................................59 
Possible Causes of SCP – Well 11 ....................................................................61 
 
CHAPTER VI:  1999 PROGRAM REASONS FOR SUCCESS ....................64 
 
REFERENCES...................................................................................................66 
 
APPENDIX A : MMS POLICY LETTER 30 CFR 250.517 ...........................71 
 
APPENDIX B: 1999 OPERATIONS SUMMARY .........................................74 
Well 1 .................................................................................................................74 

Operations Summary .............................................................................74 
Well 2 .................................................................................................................75 

Operations Summary .............................................................................75 
Well 10 ...............................................................................................................76 

Operations Summary .............................................................................76 
Well 12 ...............................................................................................................77 

Operations Summary .............................................................................78 
Well 12 Re-Entry ...............................................................................................79 

Operations Summary (Re-Entry) ..........................................................80 
 

APPENDIX C:  STAGES OF 1999 CUT AND PULL OPERATION............82 
 
APPENDIX D:  STAGES OF 1999 SECTION MILL OPERATION ............83 
 
VITA...................................................................................................................84 



 vi

LIST OF TABLES 

Number Page 
2-1   Vertical Well Recommended Drilling Fluid Properties................6 
 
2-2   Deviated Well Recommended Drilling Fluid Yield Points ..........6 
 
2-3   Pipe Movement and Displacement Efficiency ..............................7 
 
2-4   Fluid Velocity and Displacement Efficiency.................................7 
 
3-1   (Well 13) 10 ¾-in. Bleed-off/Buildup Data: 06-01-89 ...............17 
 
3-2   (Well 13) 16-in. Bleed-off/Buildup Data: 06-01-89 ...................17 
 
3-3  (Well 13) 10 ¾-in. Bleed-off/Buildup Data: 06-30-89 ...............17 
 
3-4   (Well 13) 16-in. Bleed-off/Buildup Data: 06-30-89 ...................18 
 
3-5   (Wel1 13) 20-in. Bleed-off/Buildup Data: 06-30-89 ..................18 
 
3-6   (Well 13) 10 ¾-in. Bleed-off/Buildup Data: 03-27-91 ...............19 
 
3-7   (Well 13) 16 & 20-in. Bleed-off/Buildup Data: 03-27-91 ..........19 
 
3-8   (Well 15) 10 Hour Buildup Data from July 1990 Workover......31 
 
3-9   (Well 15) 24 Hour Buildup Data from July 1990 Workover......31 
 
3-10 (Well 15) 9 Hour Buildup Data from July 1990 Workover........31 
 
4-1   1999 WO Program Milling Assembly Dimensions ....................40 
 
4-2  WBM to Brine Cost Comparison.................................................44 
 
4-3 Mud Conditioning Time due to Contamination ..........................45 
 
4-4 Workover Fluid Design Table .....................................................45 
 
5-1 One Year 1989 Workover Results ...............................................48 
 
5-2 1989/1990 Workover Program Results .......................................49 
 
5-3 Post 1989/1990 Casing Cutter Sizing ..........................................50 



 vii

LIST OF TABLES (CONTINUED) 

Number Page 
5-4 1990 Microbond Squeeze Results................................................51 
 
5-5 1990 Flo-Check Squeeze Results ................................................52 
 
5-6 Post 1989/1990 Workover Results ..............................................53 
 
5-7 1999 Workover Program Results.................................................54 
 
5-8 XRD Analysis of Five Casing Slab Samples ..............................60 
 
5-9 Correlation of SCP to Possible Mechanisms...............................62 

 



 viii

LIST OF FIGURES 

Number Page 
4-1   Example Wellbore ....................................................................................34 
 
4-2   Typical Metal Muncher Pilot Mill............................................................35 
 
4-3  Example CIBP used during 1999 Workover Program ............................36 
 
4-4   Diverter Sub for Setting of Balanced Cement Plugs ...............................37 
 
4-5   Example 1999 WO Program Casing Stub Isolation ................................38 
 
4-6   Example 1990 WO Program Section Mill Operation..............................39 
 
4-7   Lockomatic Section Mill used during 1999 Workover Program ............40 
 
4-8   Multi-String Cutter used during 1999 Workover Program .....................42 
 
4-9 1999 Workover Program Cementing Unit Hookup.................................47 
 
5-1 Concentric Casing Slice Illustrating Mud Channel .................................55 
 
5-2 Casing Section Mill Results - Minimal Scarring of 10 ¾-in. casing.......56 
 
5-3 Slight Scarring of 10 ¾-in. Casing from Milling Operation ...................56 
 
5-4 7 and 10 ¾-in. Casing on the Rack after being Cut and Pulled...............57 
 
5-5 Close up of 7 and 10 ¾-in. Casing on the Rack.......................................57 
 
5-6 Cartoon of Casing Slice Sample Location ...............................................60 
 
5-7 Field Pore Pressure Plot............................................................................63 
 



 ix

GLOSSARY 
 

Annulus – In a borehole, the space between the drill pipe and the borehole, between tubing and 
casing, or between casing and formation 
 
Bbl (barrel) – Unit of measurement equal to 42 gallons used extensively in oilfield operations 
 
BHA (Bottomhole Hole Assembly) – Any set of tools made up to the lower workstring 
designed to accomplish a task, e.g. drill bit and drill collars, under reamer, etc. 
 
BOP (Blowout Preventers) – Large valve or set of valves that may be operated during rig 
operations to control pressure and fluids, usually in the case of an emergency situation. 
 
Bottoms up – Mud and cuttings calculated from pump rate and volume to come from the bottom 
of the hole since the start of circulation 
 
CIBP (Cast Iron Bridge Plug) – Low cost bridge plugs for general oilfield service operations 
set either hydraulically or mechanically.  The packers are built from cast iron, brass, aluminum, 
and rubber and can be set via electric wireline, slickline, coiled tubing, or workstring. 
 
Cmt (Cement) – Various portland mixtures exist to for primary cementing of casing, remedial 
cement squeezing, or in setting plugs for abandonment or sidetracking.  It can be modified to 
meet numerous applications through the use of retarders, extenders, fluid loss additives and 
accelerators.  The following are two of the API classifications set forth by API STD 10A: 

Class ‘A’ – Intended for use from surface to 6,000-ft, when special properties are not required 
Class ‘H’ – Intended for use as a basic cement from surface to 8,000-ft depth as manufactured or 

can be used with accelerators and retarders to cover wide range of well depths and 
temperatures 

 
CTU (Coiled Tubing Unit) – Continuous small diameter tubing deployed via drum that is used 
in stimulation, workover and drilling operations. Used in the place of jointed pipe. 
 
EZSV (EZ Drill®SV) – Halliburton Energy Services’ High temperature/pressure sliding valve 
cement retainers used for remedial cementing operations. The packers are built from cast iron, 
brass, aluminum, and rubber and can be set via electric wireline, slickline, coiled tubing, or 
workstring.   Generically termed ‘cement retainer’ 
 
Gal (gallons) - Unit of measurement equal to 4 quarts used extensively in oilfield operations 
 
IBP (Inflatable Bridge Plug) – Type of packer that uses an inflatable bladder to expand the 
packer element against the casing or wellbore. 
 
Logs – Any one of various Measurements taken via electric wireline of one or more physical 
quantities in or around a well. Wireline logs are taken downhole, transmitted through a wireline 
to surface and recorded. 
 



 x

MD (Measured Depth) – The length of the wellbore as measured along the casing or borehole 
wall.  This measurement differs from TVD in all non-vertical wells. 
 
MMS (Minerals Management Service) – The Federal Government’s regulatory agency that 
manages the natural resources on the nation’s outer continental shelf 
 
Neat Cement – Cement that has no additives to modify its setting times or rheological 
properties. 
 
SCP (Sustained Casing Pressure) -  With the well flowing at steady state conditions, pressure 
from all casing strings should bleed to 0 psi and remain at atmospheric conditions. If pressure 
returns, the casing exhibits SCP. 
 
Skid – The act of sliding the rig from one well slot to another on a fixed offshore platform. 
 
Spud – The beginning of the drilling process by removing rock with a drill bit, e.g. to ‘spud a 
well’. 
 
Sxs (Sacks) – Unit of measurement typically used in cementing operations.  It is equivalent to 
94-lbm sack of material unless it is a blend of cement and some other material. 
 
TD (Total Depth) – The planned end of the well as measured by the length of pipe necessary to 
reach bottom 
 
TLW (Trinity Lite Weight) – Commercial light weight cement manufactured from Portland 
cement and calcined shale 
 
TTBP (Thru-Tubing Bridge Plug) – Mechanical plug designed to be run through the 
production tubing. Usually associated to live well situations 
 
WBM (Water Based Mud) – Drilling fluid in which water or saltwater is the major liquid phase 
as well as the wetting phase. 
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ABSTRACT 

This thesis will analyze the techniques used during the 1989 and 1990 workover programs as 
well as subsequent operations in 1991/1992.  It will also present the techniques and results of the 
most recent 1999 workover program undertaken to alleviate the most persistent sustained casing 
pressure (SCP) in a mature Gulf of Mexico field.  An extensive literature review is included to 
better illustrate the complexity of the issues involved and possible SCP mechanisms. 
 
The field was drilled during the 1980’s and SCP has been prevalent in some cases previous to 
initial completion operations. Previous remedial programs resulted in limited success in reducing 
SCP previous to the most recent workover program beginning in 1999.  Critical analysis will be 
based on a review of the methods used and the results obtained.  Knowledge gained from the 
most recent 1999 workover program will be applied to evaluate the effectiveness of the methods 
employed. 
 
Programs previous to the most recent 1999 workover program were not successful in eliminating 
SCP since pressure returned almost immediately to the affected casing in most instances.  During 
the programs, perforating or cutting casing to squeeze cement into affected annuli was not 
successful at any depth.  A review of the workover attempts will rely on internal correspondence 
and drilling reports.  These will be compared to the knowledge and results gained from the 1999 
rig operations program. 

 
The objective of the 1999 workover program was to address SCP in the field with a consistent 
and effective method.  Techniques were developed by analyzing the successes and failures of 
past operations and applying aggressive remediation programs tailored to individual wellbores.  
Discussion will include improved design guidelines in hole preparation before milling and 
cementing operations, improved milling procedures, and application of a latex cement slurry.  
Even though some remedial rig work was required while operations were still ongoing, all 
indications are that the 1999 workover program was successful.   
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CHAPTER I:  INTRODUCTION 

Statement of Problem 
The Minerals Management Service (MMS) is the Federal Government’s regulatory agency that 
manages the natural resources on the nation’s outer continental shelf.  The guidelines it imposes 
act to maximize the recovery of mineral resources from federal lands while preserving the 
environment.  The MMS regulations contained in 30 CFR 250 seek to maintain a safe work 
environment in offshore oil and gas operations, and adherence to these guidelines spurred the rig 
workover programs presented in this thesis. 
 
Varying magnitudes of sustained casing pressure (SCP) exist in some of the fields of the Gulf of 
Mexico.  The sources of this pressure vary along with the particular affected casing string in the 
well.  Casing pressure does occur from thermal expansion of annular fluid in some high rate 
wells.  However, once a well is flowing at steady state conditions, the pressure from all casing 
strings should bleed through a needle valve to and remain at atmospheric conditions.  If the 
casing pressure builds up when the valve is closed, then the casing exhibits SCP.  Mathematical 
models have been developed and validated to quantify the magnitude and source of SCP (Xu and 
Wojtanowicz, 2001). 

 
According to a study performed by Louisiana State University (LSU) and funded by the MMS, 
over 8,000 wells exhibit SCP in the outer continental shelf (OCS) (Burgoyne et al., MMS/LSU 
Study).  The study is based on a database provided by the MMS with input from various 
operators.  It verifies the prevalence of SCP in the Gulf of Mexico.  Of the casing strings 
exhibiting SCP, approximately 50% were in the production, 10% in the intermediate, 30% in the 
surface, and 10% in the conductor casings.  Of the wells included in the database, approximately 
80% of all affected casing exhibit SCP less than the 20% burst pressure rating of the affected 
string.  It further divides the occurrence of SCP into two categories.  The first focuses on 
pressure occurring only on production casing resulting from mechanical problems with the 
tubing string or other operationally induced pressure.  This thesis will concentrate on the second 
category that includes SCP occurring on all outer casing strings with the exception of structural 
and drive pipes which are excluded from regulation under 30 CFR 250.517. 
 
The goal of the 1999 workover project was to address the most persistent cases of SCP in a 
particular mature Gulf of Mexico (GOM) field.  Some of the wells had been previously worked 
over to eliminate SCP between the years of 1989 and 1992, but the pressure had returned.  Future 
drilling from the platform was planned and taken into consideration while the 1999 workover 
program was being designed.  With continued use of the platform, worker safety became the 
primary concern because it could be manned for many years.  Addressing the SCP directly and 
safely while still allowing for possible future platform utility became the design driver. 
 
During the preparation of this thesis, the well names were made generic by dropping the platform 
designation and numerating the wells 1 through 15.  This was done to ensure the wells and 
analysis would remain non-field specific.  All wells referred in the previous workover programs 
are consistent with the numbering system in the most recent 1999 workover program.  
 
 



2 

Government Regulations 
Regulations contained in the MMS 30 CFR 250.517 stipulate that the casing and tubing annuli, 
excluding drive pipe or structural casing, should be monitored for pressure buildup and the MMS 
should be notified if SCP is observed.  Appendix A contains the MMS policy letter meant to 
inform lessees in the Gulf of Mexico Outer Continental Shelf (GOM OCS) of current policy 
contained in 30 CFR 250.517 regarding SCP.  The letter is dated January 13, 1994 and note that 
the referenced 250.87 regulation is now designated 250.517. 
 
According to the policy letter, departures from 30 CFR 250.517 do exist for low risk cases as 
long as proper monitoring and reporting is in place.  An automatic departure is approved as long 
as the SCP is less than 20% of the minimum internal yield pressure of the affected casing and 
will bleed down to zero through a ½-in. needle valve in less than 24 hours.  If SCP occurs on any 
one casing in the well, diagnostic testing of all remaining casing strings must be performed. 
 
Affected casings should not be bled down without prior notification of the MMS except as 
required for testing documentation.  The diagnostic tests must be repeated whenever the pressure 
increases by more 200 psi on the intermediate or production casing and more than 100 psi on the 
conductor or surface casing.   
 
If the casing pressure exceeds 20% of the minimum internal yield pressure of the affected casing, 
or if the diagnostic test shows that the casing will not bleed to zero pressure through a ½-in. 
needle valve in a 24-hour period, then the operator is expected to address the SCP.  Departures 
from 30 CFR 250.517 do exist for low risk cases as long as proper monitoring and reporting is in 
place. 
 
A denied request for departure from 30 CFR 250.517 will require the operator to respond, within 
thirty days, with a remedial plan to address the SCP.  Any approved departure is invalidated 
upon commencement of workover operations on the well.  
 
The operator is also required to maintain, and make available for government inspection, all 
records of all observed SCP.  Unsustained casing pressure less than 20% of the affected casing 
minimum internal yield pressure occurring during daily or workover operations, does not have to 
be reported.  Unsustained casing pressure exceeding 20% of the minimum internal yield pressure 
must be reported. 
 
Objective 
The objective of this thesis will be to analyze the techniques used during the workover and 
casing squeeze programs occurring between 1989 and 1992.  These operations will be compared 
with the most recent 1999 workover program to alleviate SCP in the mature GOM field.  The 
field was drilled during the 1980’s and SCP has been prevalent in some cases previous to initial 
completion operations.  
 
These remedial programs resulted in limited success in reducing, but not eliminating SCP, 
previous to the most recent workover program beginning in 1999.  Critical analysis will be based 
on a review of the methods used and the results obtained.  Knowledge gained from the most 
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recent 1999 workover program will be applied to evaluate the effectiveness of the methods 
employed. 
 
Programs previous to the most recent 1999 workover program were not successful in eliminating 
SCP since pressure returned almost immediately to the affected casing.  During the programs, 
perforating or cutting casing to squeeze cement into affected annuli was not successful at any 
depth.  A review of the workover attempts will rely on internal correspondence and drilling 
reports.  These will be compared to the knowledge and results gained from the 1999 rig 
operations program. 

 
The objective of the 1999 workover program was to address SCP in the field with a consistent 
and effective method.  Techniques were developed by analyzing the successes and failures of 
past operations and applying aggressive remediation programs tailored to individual wellbores.  
Discussion will include improved design guidelines in hole preparation before milling and 
cementing operations, improved milling procedures, and application of a latex cement slurry.  
Even though some remedial rig work was required while operations were still ongoing, all 
indications are that the 1999 workover program was successful.   
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CHAPTER II:  SUSTAINED CASING PRESSURE MECHANISMS 
 
Possible Causes of SCP 
The main roles of primary cementing are to support casing strings and to prevent fluid movement 
through the annulus or into exposed permeable formations.  The cement slurry must efficiently 
displace drill cuttings and mud from the annulus and then transition from a liquid phase to a solid 
phase.  The resulting cement sheath should be able to withstand any future stress cycles 
encountered during the life of the well.  Proper cement weight, composition, pre-job hole 
conditioning, and placement techniques must all be adequately designed in order to obtain a 
successful primary cement job.   
 
The Petroleum Industry has long recognized that the following three factors can all contribute to 
a loss in annular pressure seal: 

1. Improper mud displacement previous to primary cementing 

2. Gas influx as the cement transitions to a solid 

3. Cement sheath stress cracking during the life of a well 

Together, these three issues constitute both early and late onset mechanisms.  The focus of the 
following literature review will be to understand the issues of gaining and maintaining successful 
primary cement jobs.  If a successful primary cement job is not obtained or excessive stress 
damages the cement sheath during the wellbore’s productive life, a costly remedial workover 
program may be necessary to address SCP or other safety issues. 
 
Some alternative explanations to the slow pressure buildup in wellbores do exist.  Dusseault et 
al. (Dusseault et al., 2000) propose a hypothesis to explain a long term gas leakage mechanism.  
To summarize, a circumferential fracture can open when the radial stress is less, usually due to 
cement shrinkage, than the static porous pressure.  Differences between higher lateral stress 
gradients in the rock and the lower pressure gradients in the fracture provide for vertical fracture 
growth.  Pore blockage due to cement paste penetration and capillary effects limits gas leak off 
to formations.  Gas flow into the fractures is thought to be due to diffusion.  As the fracture 
height grows, the contact area with gas bearing formations increases.  Gas diffusion becomes 
continuous with decreased pressures at or near the surface due to gas leak off. 
 
Improper Mud Displacement 
Proper mud displacement is required to avoid mud channeling in the annulus during the primary 
cement job.  Mud channels or pockets can lead to pressure communication between zones or to 
the surface.  The factors affecting mud displacement efficiency have been studied and recognized 
for years.  Displacement efficiency is defined as the percentage of the annular volume filled with 
cement after pumping the cement slurry (Economides et al., 1998).  Maintaining formation 
integrity must be considered when maximizing the displacement efficiency.   
 
Most (Mclean et al., 1967, Martin et al., 1978, Beirute and Flumerfelt, 1977, and Haut and 
Crook, 1979) agree that: 

• Drilling mud conditioning 

• Pipe movement and centralization 



 5

• Fluid velocity 

• Spacer and flush designs (including density differences) 

all contribute to proper mud displacement and ultimately to the success or failure of a primary 
cement job.   
 
Mud Conditioning. The goal of mud conditioning is two-fold, to create a uniformly viscous 
profile in the annulus and to remove any gelled mud.  Ideal drilling fluid properties focus on 
proper yield points, plastic viscosities, fluid loss and gel strengths.  Most drilling fluids and 
cement slurries can be classified as non-Newtonian where the viscosity of the fluid is a function 
of the shear stress and shear rate.  For this reason, the bulk of research into efficient displacement 
of drilling mud has been in understanding non-Newtonian flow. 
 
Increasing the viscosity ratio between the drilling fluid and cement slurry can increase the 
displacement efficiency by creating a uniform front and avoiding the fingering of fluids.  Fluid 
loss must also be decreased to create a thinner mud cake.  Thick mud cakes may inhibit creation 
of sufficient cement-to-formation bond.  Haut and Crook (Haut and Crook, 1979) investigated 
the effects of drilling fluid condition, formation permeability, pipe centralization, rheological 
differences, flowrate, and density differences on mud channeling while neglecting pipe 
movement.  A mud immobility factor was introduced where if the type and volume of solids is 
assumed constant, then the filtrate loss becomes the dominant factor in the mud and cement 
displacement process.   
 
Sutton and Ravi (Sutton and Ravi, 1989) developed a method for predicting the real time fluid 
loss rate for cement on the drilling fluid filter cake.  An evaluation number called the slurry 
response number (SRN) was developed based on fracturing fluid loss rate theory assuming the 
filter cake is a packed bed.   
 
McLean, Manry and Whitaker (McLean et al., 1967) introduced the concept of critical yield 
strength based on the drilling fluid yield point and wellbore geometry. Lowering the yield point 
greatly improved the chances of successfully displacing the wellbore.  This property must be 
measured to determine if the static gel strength will be too rapid; and thus, too difficult to 
condition and displace.  Data from Haut and Crook’s (Haut and Crook, 1979) displacement tests 
also indicate that the maximum gel strength of mud can be approximated from the 10-minute gel 
strength.  Decreasing filtrate loss or the10-minute gel strength can increase the percentage of 
displaced mud. 
 
Beirute et al. (Beirute et al., 1991) discuss the impact of mud conditioning on cement operations 
and practical recommendations including minimizing pump shut downs, use of flushes, and 
casing movement during cementing operations to improve displacement efficiency.  In laminar 
flow, it was found that the higher the flowrate, the higher the circulatable hole.  To ensure the 
hole is properly conditioned, careful monitoring of surface pressures, flowrate, fluid properties, 
while taking into account hole geometry and temperature, should be monitored real-time and 
compared to calculated values to estimate the hole size and circulatable hole.  Once the 
circulatable hole has stabilized, the casing is ready to cement (Ravi et al., 1993 and Griffith and 
Ravi, 1995). 
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A successful primary cement design to avoid annular pressure, implemented in a troublesome 
area in the Gulf of Mexico, included casing reciprocation, conditioning mud to low yield points.    
Achieving 90% mud volume circulation prior to pumping cement was also felt imperative 
(Brady et al., 1992). 
 
Deviated wells require higher yield points and gel strengths to avoid the settling of solids on the 
low side of the hole.  A channel can form on the low side during the primary cement job in 
highly deviated wells where solids have settled.  Tests have also shown that excess water can 
channel on the high side (Keller et al., 1983).  Tables 2-1 and 2-2 list some recommended 
drilling fluid properties to optimize the primary cement job. 
 
 Table 2-1:  Vertical Well Recommended Drilling Fluid Properties 
 
 
 
 
 
 
 

Source:  1996 Halliburton Best Practices Series: Highly Deviated/Horizontal Cementing with Emphasis on 
Liner Applications 

   
 Table 2-2:  Deviated Well Recommended Drilling Fluid Yield Points 
 
 
 
 
 
 
 
 
 

Source:  1996 Halliburton Best Practices Series: Highly Deviated/Horizontal Cementing with 
Emphasis on Liner Applications 

 
Pipe Movement. There are two types of pipe movement, rotation and reciprocation, each can 
significantly improve annular mud displacement (Haut and Crook, 1979 and Crook et al., 1987).  
Rotation is generally recommended for highly deviated or horizontal wells.  Reciprocating pipe 
in highly deviated holes increases the chance of sticking the casing off bottom and dragging the 
centralizers through highly deviated hole sections.  Rotation can be done before and during the 
pumping of cement, usually without movement of stabilizers.  Table 2-3 illustrates the increase 
in displacement efficiency provided by pipe movement in a 16-lb/gal mud with a 16.7-lb/gal 
cement slurry at 4-bbl/min pump rate and 60% standoff. 
 
Tests have also proven the effects of rotation or reciprocation during the gelation period to delay 
pressure loss in cement.  Rotation was continued to static gel strengths of 1,000-lb/ft2 and did not 
delay gel strength development (Sutton and Ravi, 1991). 

Property Recommended Preferred 
Yield Point (lb/100-ft2) </= 10 2 

Plastic Viscosity </= 20 15 
Fluid Loss (cc/30 min) 15 5 

Gel Strength (10 sec/10 min) Flat Profile  

Deviation 
Angle 

(o) 

Yield Point 
@ 72oF 

(lb/100-ft2) 
45 15 
60 20 
85 28 
90 30 
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 Table 2-3:  Pipe Movement and Displacement Efficiency 
 
 
 

 
 
 
 
Source:  1996 Halliburton Best Practices Series: Highly Deviated/Horizontal Cementing with 

Emphasis on Liner Applications 
 
Centralization. Casing centralization creates a uniform flow area for cement to more readily 
displace the annulus and is essential to obtaining a successful primary cement job.  
Centralization is of great concern in deviated wells where the inner casing tends to lay or ‘sag’ to 
the low side of the hole. In a highly eccentric situation, fluid will tend to flow at a higher rate 
where the resistance is least on the wide side of the hole and bypass mud on the low side.  
Centralizer design must be tailored to the wellbore geometry, casing size and weight, hole size, 
and type and strength of centralizer to achieve sufficient standoff (Lee et al., 1986).  Lee et al., 
also report that the industry accepted standard for the standoff ratio is presently 0.67. 
 
Some early work by McLean, Manry and Whitaker (McLean et al., 1967) attempted to describe 
the displacement mechanics of mud and cement slurries using analytical models and experiments 
in eccentric annuli and found that casing standoff greater than 25% increased the likelihood of 
flow.   
 
Fluid Velocity.  Uniform displacement of drilling fluid increases with fluid velocity; however, 
the influence of casing eccentricity and fluid properties increase the chances of mud channeling.  
Turbulent flow is widely believed to be the most efficient means of displacing the wellbore 
fluids previous to pumping cement; yet, concerns of breaking down exposed formations can limit 
the flow rates.  Table 2-4 demonstrates the increase in displacement efficiency with pump rate 
assuming a 12-lb/gal drilling mud and a 16.8-lb/gal cement.  The higher shear forces tend to 
break down and circulate out more gelled or partially dehydrated drilling fluids.  Ravi et al. (Ravi 
et al., 1992) recommend designing the circulation rate and spacer so that the shear stress on the 
narrow side of the annulus is greater than or equal to the wall shear stress. 
 
 Table 2-4:  Fluid Velocity and Displacement Efficiency 
 
 
 
 
 
 
 

Source:  1996 Halliburton Best Practices Series: Highly Deviated/Horizontal 
Cementing with Emphasis on Liner Applications 

 
Early work by McLean, Manry, and Whitaker (McLean et al., 1967) found that the presence of 
turbulent or laminar flow did not in itself suggest good or bad displacement efficiency.  Lockyear 

Pipe 
Movement 

(rpm) 

Displacement 
Efficiency 

(%) 
None 65 

20 97 

Pump Rate 
(bbl/min) 

Displacement 
Efficiency 

(%) 
1 48 
4 75 
7 98 



 8

et al. (Lockyear et al., 1990) illustrated that turbulent displacements will minimize channeling of 
fluids.  They proposed that a Reynold’s number greater than 1,500 will significantly reduce 
channeling for standoffs greater than 50%. 
 
Frigaard et al. (Frigaard et al., 2001) researched the displacement of visco-plastic fluids that 
directly influence spacer design and slurry properties for mud removal during primary 
cementing.  An analytical expression has been developed for mud displacement velocities in 
eccentric annuli with a steady state front predicted under certain combinations of physical 
properties (Frigaard and Pelipenko, 2003). 
 
Smith (Smith, 1990) created an extensive cementing operations database to study the 
significance of the displacement factors, annular velocity, conditioning time, and preflush 
design, on obtaining a successful primary cement job.  Regardless of the flow regime, an annular 
velocity greater than 262.5 ft/min was found to be the most important factor in displacement 
efficiency.   
 
Spacers and Flushes.  Spacers and flushes separate incompatible drilling fluids and cement 
slurries to improve the displacement efficiency of a primary cement job.  Spacer and flush design 
depends on the type of drilling fluid being displaced, water vs. oil based, as well as density 
differences between the cement and drilling fluid.  The presence of water sensitive clays, easily 
fractured, or highly-permeable formations affect spacer design.   
 
Spacer design centers on the amount of contact time the spacer has with the pipe or formation.  
For vertical wells being displaced in turbulent flow, pumping a spacer equivalent to 500-ft of 
annular fill with a minimum of 10 minute contact time is recommended (Brady et al., 1992).  
This time will increase for highly deviated or horizontal wells.  Smith (Smith, 1990) proposed a 
spacer volume equal to the volume required to fill 980-ft of casing-to-hole annulus.  The fluid 
properties should be such that solids suspension will occur during both static and dynamic 
situations.  Inclination reduces displacement efficiency by reducing the gravitational effects and 
good spacer design is essential to mud removal (Tehrani et al., 1992). 
 
Flushes are generally un-weighted and will readily go into turbulent flow to increase the 
displacement efficiency.  Flushes in turbulent flow will tend to clean settled solids in deviated 
wellbores more readily than a viscous flush.  Viscous flushes have difficulty picking up already 
settled solids in the annulus.  Couturier et al. (Couturier et al., 1990) presented a method to 
calculate the critical rate for turbulent displacement as well as a laminar profile criterion to avoid 
distortion of the displacement profile. 
 
Crook et al. (Crook et al., 1987) used field and full scale experiments to confirm mud 
displacement in high angle wellbores can result in low side-settling of solids and can be 
prevented with proper rheological control of the drilling fluid.  There appears to be a threshold 
mud yield point below which solids channeling will occur and this yield point value decreases at 
lower deviations.  The use of low viscosity preflushes improve the displacement of settled solids. 
 
Findings from a full-scale lab experiment by Moran and Lindstrom (Moran and Linstrom, 1990) 
led to guidelines to prevent solids settling in weighted spacers during turbulent flow.  A 
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mathematical correlation was developed to predict the flowrate necessary to maintain solids 
suspension and that the settling of spacer is not a problem at hole angles of 60 degrees or less 
with annular velocities maintained at 1 ft/sec. 
 
Density Differential. To minimize channeling and facilitate a smooth fluid interface, the 
displacing cement density should be significantly higher than the mud it is displacing.  Mclean et 
al. (McLean et al., 1967) found that gravity forces, or buoyancy, help to break down the gelled 
mud when the mud is lighter than the displacing fluid.  However, when the mud is heavier than 
the displacing fluid, gravity opposes uniform displacement.   
 
Beirute and Flumerfelt (Beirute and Flumerfelt, 1977) developed a mathematical model based on 
slot flow to describe miscible displacement of mud by cement slurries in laminar flow.   
Minimizing yield stress differentials, increasing density differences, low displacement rates, and 
rheological properties of both the mud and cement all strongly influenced displacement 
efficiency.  Martin et al. (Martin et al., 1978) assumed both fluids were immiscible to develop a 
math model that indicated successful mud displacements could be obtained by simultaneously 
obtaining proper casing standoff, low thixotropic mud properties, and high density and viscosity 
differences. 
 
Gas Migration through Unset Cement 
There are more than forty chemical additives that can be added to API slurries to provide the 
desired slurry characteristics according to job specifications.  Available cement additives can be 
grouped according to 1) density control, 2) setting time control, 3) lost circulation, 4) filtration 
control, 5) viscosity control, and 6) special additives for unusual problems (Burgoyne et al., 
1986).  Cement additives exist or have been tested that can improve cement bonding and aid in 
combating gas influx (Tinsley et al., 1980, Jones and Carpenter, 1991, and Talabani et al., 1993).   
 
Gas migration through unset cement can occur as the setting cement transitions from the fluid 
phase through the gel phase and hardens.  Annular gas migration through unset cement is a 
recognized problem with a great deal of work done to identify causes and to provide solutions.  
Zhou and Wojtanowicz (Zhou and Wojtanowicz, 2001) developed a mathematical model that 
takes into account gelation, volume reduction, and compressibility mechanisms to describe 
hydrostatic pressure losses in setting cement columns.   
 
It is commonly believed that gas migration occurs when the overbalance pressure is lost due to 
the combined effects of static gel strength development and fluid loss (Carter and Slagle, 1972, 
Garcia and Clark, 1976, Levine et al., 1979 and Cooke et al., 1983).  Gelation inhibits pressure 
transfer down through the setting column to make up for water volume reduction.  Volume 
reduction is explained through water loss to permeable formations or from hydration.  Gas can 
enter the setting cement at this point and percolate to the surface leaving a permanent cement 
channel.  Sabins et al. (Sabins et al., 1980) stated that the beginning and end of the transition 
period is determined from the static gel strength measurements.  Results from their laboratory 
experiments showed that approximately 20 lb/100 sq-ft is sufficient to restrict gas flow and about 
500 lb/100 sq-ft will restrict all gas percolation.   
 



 10

Stewart and Schouten (Stewart and Schouten, 1986) proposed a cement depressurization 
hypothesis saying that at cement initial set, exothermic hydration begins and converts pore water 
to hydrates resulting in the pore pressure falling below the water phase gradient.  Results of their 
study indicated a gel strength of approximately 40 lb/100 sq-ft was sufficient to stop small gas 
bubbles. 
 
Carter and Slaigle (Carter and Slaigle, 1972) recognized that the density of the fluids was the 
first of four contributors to gas leakage.  Gas flow through the fluid cement column did not occur 
until the gas pressure was greater than the hydrostatic pressure.  When the gas pressure was 
greater than the hydrostatic pressure after initial set, a small channel could form as a pressure 
conduit.  Secondly, early setting of cement uphole due to the circulating warm fluid could block 
hydrostatic pressure and allow for formation gas influx.  Cement dehydration from fluid loss, 
bridging due to sloughing formation, and gelation of cement uphole are the final two 
mechanisms recognized as contributing to gas leakage. 
 
In order to combat the rapid reduction in pressure during the transition phase, Tinsley et al. 
(Tinsley et al., 1980) proposed gas entrainment within the cement slurry.  When the cement gels, 
the original hydrostatic pressure is trapped in the cement matrix.  Any volume decrease, due to 
hydration or loss to the formation, that follows will reduce the water pore pressure in the matrix.  
Hydrostatic pressure reduction is attributed to the low compressibility of the water phase.  
Introduction of a gas phase will increase compressibility and consequently, the pressure 
maintenance.  Watters and Sabins (Watters and Sabins, 1980) presented the results of a fifteen 
month compressible cement program to address annular gas flow in which an overall success rate 
of 85.2% was obtained. 
 
Cheung and Beirute (Cheung and Beirute, 1985) offered another explanation of the gas migration 
mechanism through gas invasion of unset cement slurry permeabilities.  They contended that 
conventional fluid-loss additives that act at the formation face were not effective at stopping gas 
influx into the cement matrix and proposed using polymeric or bridging materials to reduce 
cement mobility in pore spaces.  Sutton and Ravi (Sutton and Ravi, 1989) used math models to 
show that mud channels are the combined result of static gel strength development and downhole 
losses and not due to gas invasion of unset cement slurry permeability.  Gas migration through 
cement permeability has little effect on gas migration as proposed by Cheung and Beirute. 
 
Cement Sheath Failure 
Once placed, the primary cement sheath must set and develop sufficient compressive strength to 
seal annular flow and support the casing previous to continuation of drilling activities.  Although 
no set value exists, achieving 500 psi of compressive strength is felt as sufficient (Burgoyne et 
al., 1986). 
 
Excessive temperature changes and casing pressures, including casing test pressures, during the 
life of the well can both contribute to cement sheath failure and the resulting annular pressure.  
Some testing has (Goodwin and Crook, 1992 and Bosma et al., 1999) investigated the causes and 
limits of cement sheath failure conditions.  It has been found that internal casing pressure 
resulting in casing expansion after the cement has obtained high compressive strength can cause 
radial stress cracks.  These stress cracks can cause a loss of pressure seal generally in the lower 
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¼ to ⅓ of the wellbore.  Excessive temperature stress cracking tends to occur in the upper ⅓ to ½ 
of the wellbore.  Low compressive strength cements, between 500 and 1,000 psi, are more 
ductile and can better handle stress cycling.   
 
Microannular flow occurs when the cement sheath is excessively stressed before sufficient 
compressive strength is developed.  Many times this can occur when the casing shoe is drilled 
out or by pressure testing the casing previous to drilling out the shoe.  Proper cement cure time, 
based on accurate bottomhole temperature data, must be allowed before continuing operations.  
Documented primary cement jobs prove that rapid gelation and sufficient compressive strength 
development at the time of drill out is essential for gas control (Coker et al., 1992).   
 
Jackson and Murphy (Jackson and Murphy, 1993) used lab equipment to demonstrate the casing-
cement-formation loading effects during pressure cycling on 5-in. casing cemented inside 7-in. 
casing.  Gas flow occurred through channels created during pressure cycles greater than 5,000 
psi.  Pressurizing the 5-in. casing to 8,000 psi increased its radius by up to 0.003-in. causing a 
permanent plastic deformation to the cement sheath.  Gas was able to flow once the pressure was 
released. 
 
Bosma et al. (Bosma et al., 1999) used finite element analysis to better understand the failure 
mechanisms in various cements associated with excessive temperatures and pressures.  It was 
found that the compressive strength of the cement is not the sole design factor for proper zonal 
isolation.  Young’s modulus, Poisson’s ratio, tensile, shear, and bonding strengths are also 
required.  Ravi et al. (Ravi et al., 2002) presented a design procedure to estimate the risk of 
cement failure as a function of cement sheath, formation characteristics, and well loading.  To 
avoid debonding, cracking or plastic deformation failures, the cement design should be 
compensated for hydration volume reduction and rendered less stiff under downhole conditions. 
 
Long term gas migration can occur due to mud channeling caused by plastic-state shrinkage 
during the initial pumping and setting process.  Cement can be pumped and set without any gas 
migration but shrinkage during the setting phase can cause a weakening of the cement-to-filter 
cake bond necessary to isolate reservoir pressure.  A small fracture in the cement can develop 
that provides a gas migration conduit which can worsen as the fracture widens due to further 
dehydration of the mud filter cake. 
 
Expansive cement additives can also help prevent mud channeling problems during the post-set 
period.  Some work has been done to investigate the use of cement additives to optimize the 
contraction-expansion mechanism during cement setting to avoid micro-fractures (Talabani et 
al., 1993). 
 
Although not exhaustive, an attempt has been made to illustrate the vast amount of research, 
debate, and complexity surrounding the sources of SCP.  The occurrence of SCP is widespread 
and not localized to any area.  Each development or area will offer unique challenges and the 
following chapters analyze multiple attempts by an operator at alleviating SCP in one particular 
field.  Presently, no one solution exists that can universally address SCP. 
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Remediation Efforts 
Numerous SCP remediation techniques have been employed with varying success.  Some wells 
may only require a tubing replacement or mechanical barrier set in the tubing or casing.  The 
more difficult methods of annular squeeze cementing, casing removal, or lubricating heavy 
brines into the annulus tend to be less desirable options due to the difficulty in accessing and 
addressing the SCP and the high costs associated with such operations. 
 
The results of lab studies and post well reviews of remedial casing squeeze attempts in the Celtic 
Field abandonment project indicate four possible causes of casing vent flows (CVF) encountered 
in the field abandonment project (Watson et al., 2002).  Development of thaumasite in setting 
cement, leaking isolation tools, incomplete long term seal of source zones, and incorrect source 
detection or squeeze interval were noted as potential causes.  Some of the original cement did not 
set properly due to contamination before and during mixing, fluid influx after placement, and 
cooler than expected wellbore temperatures.  Thaumasite is a hydration mineral that develops in 
the presence of sulfate and carbon dioxide in the cement slurry and its development prevents the 
cement crystals from growing together. 
 
Improved solutions to address the CVF’s in the Celtic Field abandonments included pumping 
chemical washes ahead of the treatment, use of a permeability-sealing fluid ahead of the 
expansive cement slurry, and mechanical isolation barriers.  Improvements in abandonment 
design resulted in a 70% success, when compared to a rate of 55% from a previous program, in 
obtaining successful squeezes in twenty wells with CVF.  Of the twenty wells abandoned, eleven 
had CVF.  The improved abandonment techniques resulted in an immediate relief of CVF on 
seven wells with the remaining four wells indicating flow dissipation. 
 
An alternative solution to addressing SCP has been proposed by Carpenter et al. (Carpenter et al., 
2001) through the use of placing palletized alloy metal into the affected annulus. The metal 
would be heated and expand to seal the annulus.  Both small and large-scale physical models 
have proven the concept.  Further testing will be necessary to establish limits of the technology. 
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CHAPTER III:  PAST OPERATIONS 1983-92 
 

Objective 
The objective of this chapter is to analyze the techniques used previous to the 1999 workover 
program.  Review of operations to alleviate SCP during the 1989 workover program, the 1990 
casing squeeze program, and further operations undertaken through 1992 will be made.  The 
field was drilled during the 1980’s and SCP has been prevalent in some cases previous to initial 
completion operations.  
 
These remedial programs resulted in limited success in reducing SCP previous to the most recent 
workover program beginning in 1999.  Critical analysis will be based on a review of the methods 
used and the results obtained.   
 
None of the 1989, 1990 or 1990-1992 workover programs were successful in eliminating SCP 
since pressure returned almost immediately to the affected casing.  During the programs, 
perforating or cutting casing to squeeze cement into affected annuli was not successful at any 
depth. 
 
In 1989, Wells 3, 13, 5, and 10 were all worked over in an attempt to relieve SCP.  By 1990, all 
four wells had significant amounts of SCP returning on the 10 ¾-in protective casing.  The 1990 
workover program concentrated on squeezing cement into the affected casing annuli.  This 
program included work on Wells 1, 14, 11, and 15.  Operations between 1990 and 1992 
concentrated on two additional wells and reworked 5 of the previously worked over wells. 
 
Background Information 
The incentive for alleviating the high annular pressures stemmed from both the operator’s safety 
standards and adherence to MMS guidelines.  At the time, MMS guidelines required no SCP in 
excess of 20% of the API burst rating of the pipe.  The rig workover programs focused around 
three temporary abandonments in 1989 and again in 1990 during a four well program. These 
programs resulted in limited success in reducing but not eliminating annular pressure previous to 
the most recent workover program beginning in 1999. 
 
At the time of the 1989 and 1990 workover programs, no definitive source of the annular 
pressure was known.  Efforts to define shallow source had not been successful.  Log data 
indicated both possible shallow and deep flow sources.  The common thinking at the time of the 
workover tended toward non-isolated deep gas sands as the major source of pressure with some 
smaller shallow stringer contributing to outer casing string pressure buildups.  Some limited 
laboratory analysis indicated that two samples from differing annuli on Well 14 had identical 
composition and were of a shallower bacterial source rather than a condensate flash gas. 
 
Upon completion of the 1990 casing squeeze program, recommendations, for both the producing 
and temporarily abandoned wells, stemming from the 1989 and 1990 programs was presented.  
Selectively squeezing, minimizing perforation length, and localizing pressure testing were all 
recommended for addressing casing pressure on producing wells.  These operations should only 
be performed if there are sufficient reserves to justify the risks. 
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In 1989, four wells were worked over in an attempt to relieve SCP.  All four wells had 
significant casing pressure returning on the 10 ¾-in protective casing.  Perforate casing to 
squeeze and cut casing to circulate operations were not successful due to inability to establish 
circulation with the annulus.  Casing pressures declined but soon built back up. 
 
The 1990 workover program attempted to apply the latest technology and concentrated on 
squeezing cement into the affected casing annuli of four different wells.  Initially, deep cement 
squeezes were attempted where logs indicated poor bond.  Annular pressures were not 
successfully reduced until large cement volumes were squeezed at intermediate shoes. The 1990 
workover program succeeded in reducing annular pressures but did not bring them to zero. 
 
1989 Workover Program Wells 

 
Well 3 
 
Original Drill. The well was spudded in December, 1984.  The 20-in. was run to 1,304 ft and 
cemented with 1,000 sxs TLW and 500 sxs ‘H’ with no returns while cementing.  The 16-in. was 
run to 2,305 ft and cemented with 700 sxs TLW and 500 sxs ‘H’.  A 10 bbl freshwater spacer 
was used and the plug was bumped with 1,500 psi with full returns.  No centralizers are listed as 
being run.  
 
The 10 ¾-in. was run to 4,502 ft.  The well was drilled to 10,938 ft with the 7-in. production 
casing being run and cemented to TD.  Eighty ‘Latch-On’ Trico centralizers were run every 30-
ft. from the bottom.  A 50 bbl dual spacer was pumped ahead of the 850/2,000 sxs 17.2/17.5 ppg 
Class ‘H’ cement slurry with the plug being bumped with 2,000 psi and held for 30 minutes.  The 
7-in. casing got stuck while reciprocating but had 100% returns while pumping.  A dry hole tree 
was nippled up and tested before skidding the rig. 
 
Initial Completion. The rig was skidded back over the well in November, 1985 to complete the 
well.  The 10 ¾-in. casing had 1,150 psi.  The well was perforated, sand control run, and the rig 
was skidded.  Within a year, a total of 3 bbl mud and gas was bled from the 10 ¾-in. casing.  
Eight barrels of 16.3 ppg mud was pumped into the 10 ¾-in. casing that brought the pressure 
down to 1,110 psi. 
 
May 1989 CTU Washout. A coiled tubing unit was rigged up to wash sand from 1,750 to 
10,164 ft and could not get deeper. 
 
June 1989 Workover. The well had been off production since sanding up in March 1988.  A 
CBL indicated poor bonding except across the producing zone.  Approximately 2,000 psi had 
built up on the 7 x 10 ¾-in. annulus and builds up quickly after bleeding off.  Communication 
between the tubing and 7-in. annulus was established both previous to pulling the tubing hanger 
and once stinging out of the gravel pack packer.  The well began flowing on the 7-in. annulus.   
 
An EZSV was set above the gravel pack packer at 9,650 ft but was unable to establish an 
injection rate. The workstring was stung out and 25-bbl cement was spotted on top.  The 10 ¾-in. 
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casing was bled down from 2,250 psi.  A noise/temperature survey was run with noise stations 
taken from the 10 ¾-in. casing shoe and up to the 16-in. shoe. 
 
The 7-in. casing was perforated above the 10 ¾-in. shoe at 4,404-ft with charges designed to 
penetrate the 7-in. but not the 10 ¾-in. casing.  An unsuccessful attempt to circulate the 7 x 10 
¾-in. was made when the drillpipe pressured to 3,000 psi with no leak off.  The 10 ¾-in. casing 
was bled down from 580 psi and cut at 3,500 ft.  Circulation could not be established and the 
casing was perforated at 3,000 and 2,900 ft. 
 
The 10 ¾-in. casing was bled down from 250 psi with gas in the returns.  The casing was cut at 
4,368 ft but was unable to circulate through the cut.  A 7 ½ bbl 16.2 ppg cement plug was spotted 
at 4,500 ft. 
 
Still unable to circulate between cut at 3,500 ft and the perforations at 3,000 ft.  Cement was 
tagged at 4,410 ft and drilled out.  The casing was perforated at 8,900 ft and an EZSV was set at 
8,800 ft.  A tight spot was noticed at 8,300 ft while running the EZSV in the hole.  Twenty 
barrels of cement were squeezed below and spotted 5 bbl on top of EZSV. 
 
Squeeze perforations were made at 4,550 ft and squeezed 45 bbl below EZSV set at 4,300 ft. and 
spotted 5-bbl of cement on top.  A 25 bbl cement plug was then spotted from 3,500 to 2,800 ft 
before skidding the rig.  The 7 x 10 ¾-in. annular pressure was reduced and remained at 
approximately 200 psi for around 18 months but then began drastically rising to values in excess 
of 1,500 psi. 
 
October 1991 Workover. A rig was skidded over the well and bled 550 psi from the 7-in. 
casing and got ½ bbl of mud in the returns.  Approximately 1,200 psi was bled from the 10 ¾-in. 
casing with 2 bbl mud in the returns.  The 7 x 10 ¾-in. annular pressure had been climbing at a 
rate of approximately 50 psi per week.  No bleed-down/buildup tests had been performed to 
allow the pressure to stabilize and to prevent possible pressure communication. 
 
A 40 psi gas kick was taken while drilling up cement on top of an EZSV and then again after 
drilling up the EZSV.  The wellbore was cleaned out and a 37 ft window was milled in the 7-in. 
casing from 4,440 to 4,477 ft.  No injection could be established through the 25 ft overlap into 
the open hole.  A 20 bbl 16.2 ppg cement plug was spotted from 4,477 to 4,227 ft. and WOC for 
12 hours. 
 
The 7-in. casing was cut and recovered to 845 ft with a total of 8 cuts made including one at 850 
ft.  An EZSV was set at 845 ft and cement was pumped with 6 bbl remaining on top before 
skidding the rig. 
 
Well 13 
 
Original Drill.  This well was spudded in February 1985.  A 13 ½-in. bit and 26 in. under 
reamer was used to drill to 1,235 ft.  The 20-in. casing was run to 1,228 ft, a 25 bbl seawater 
spacer was pumped, and then 950 sxs 11.5 ppg TLW followed by 500 sxs 16.2 ppg ‘H’ was 
pumped with full returns while pumping.  The casing was tested to 205 psi for 30 minutes.  No 
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centralizers were run and the casing was not rotated nor reciprocated while pumping the cement 
slurry. 
 
A 13 ½-in. bit and 20-in. under reamer were used drill to 2,885 ft.  The 16-in. casing was run to 
2,885 ft and cemented with 1,100 sxs 11.5 ppg TLW followed by 500 sxs of 16.2 ppg ‘H’.  A 25 
bbl Superflush K spacer was pumped ahead of the cement slurry.  During the pumping of the 
slurry, the P-tank line plugged from wet cement pumped from boat and had to be cleared for 1 
hour before cementing operations could resume.  No centralizers were run and the casing was 
reciprocated with 10 ft strokes.  The plug was bumped with 2,100 psi and held for 30 minutes.  
Full returns occurred while pumping the slurry and the casing was tested to 1,840 psi for 30 
minutes. 
 
A 13 ½-in. bit was used to drill to 6,425 ft while having to gas cut mud at 4,534, 5,173 and 5,540 
ft.  The 10 ¾-in. was run to 6,425 ft and cemented with 2,500 sxs of 14.5 ppg ‘H’/TLW followed 
by 500 sxs of 16.2 ppg ‘H’ after pumping a 50 bbl dual spacer.  The plug was bumped with 
1,500 psi with full returns and the casing was not rotated or reciprocated.  Trico KK-5 
centralizers were run but quantity and spacing was not listed. 
 
A 9 ⅞-in. bit was used to drill to 11,100 ft with gas cut mud occurring at 8,805, 8,921, and 
10,656 ft.  Twelve hours were spent at 10,656 ft circulating out a gas kick.  The 7-in. casing was 
run to 11,100 ft and had to circulate out 2,000 units of gas that cut the mud weight from 15.3 to 
14.1 ppg.  An 850 sxs 17.2 ppg  ‘H’ tailed by 2,000 sxs 17.5 ppg ‘H’ was pumped after a 50 bbl 
dual spacer.  The plug was bumped with 1,500 psi and had full returns during while pumping.  
Eighty-five Latch-On Trico centralizers were run every 40 ft.  The casing was reciprocated with 
15 ft strokes while circulating but stuck during the pumping of the cement slurry.  The rig was 
skidded after nippling up a dry hole tree. 
 
Initial Completion. The rig was skidded back over the well in March, 1986 for completion 
operations.  A cement bond log was run and indicated no bonding through the completion 
interval and a water sand 30 ft above the zone of interest.  Squeeze perforations below the zone 
of interest were made and four 16.2 ppg ‘H’ Neat cement squeezes totaling 293 sxs of cement 
were made.  The perforations broke down with ±1,700 to 2,200 psi test pressure. A cement bond 
log indicated that the bottom of the zone of interest was sufficiently isolated. 
 
Squeeze perforations were then made above the zone of interest and two 100 sxs 16.2 ppg ‘H’ 
cement squeezes were made.  A cement bond log was then run and indicated no improvement in 
bond.  A third cement squeeze was made with 125 sxs 16.2 ppg ‘H’ and low water loss cement.   
A cement bond log again indicated no improvement in bond. 
 
The squeeze perforations were isolated and a third set was made above them.  A total of four 
cement squeezes were made before running a cement bond log.  The log indicated 60 to 75% 
bond above the zone.   Sand control was pumped and the well was completed previous to 
skidding the rig. 
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Twelve cement squeezes totaling 1,200 sxs of cement were pumped but none were successful.  
The well was gravel packed and placed on production but only produced sand, mud and cement 
before sanding up. 
 
June 1989 Workover. Initially, pump in lines were rigged up on the 10 ¾ and 16-in. casing 
strings to monitor casing pressure.  Tables 3-1 and 3-2 summarize the initial bleed down and 
build up data and Tables 3-3 thru 3-5 summarize the pressure buildup 30 days into the operation.  
A snubbing unit was rigged up and used a 1 ¼-in. workstring to wash until the hole was clean. 
 
 Table 3-1 – (Well 13) 10 ¾-in. Bleed Off/Buildup Data:  06-01-89 
 
 
 
 
 
 
 
 
 
 
 
 
 
 Table 3-2 – (Well 13) 16-in. Bleed Off/Buildup Data:  06-01-89 
 
 
 
 
 
 
 
 
 
 
 Table 3-3 – (Well 13) 10 ¾-in. Bleed Off/Buildup Data:  06-30-89 
 
 
 
 
 
 
 
 
 
 
 

Well 13:  10 ¾-in. Casing (06-01-89) 
Initial 

Pressure 
(psi) 

Final 
Pressure

(psi) 

Bleed 
Down 
Time 
(min.) 

 
 
 

Remarks 
2,350 0  Gas w/0.25 bbl SW Returns 
2,000 1,150 3 Pump 1 bbl SW 
2,000 1,500 5 Pump 0.25 bbl SW 
1,500 0  0.25 bbl SW Returns 
2,000 0  Pump 0.25 bbl SW 

0.25 bbl Returns 

Well 13:  16 in. Casing (06-01-89) 
Initial 

Pressure 
(psi) 

Final 
Pressure

(psi) 

Bleed 
Down 
Time 
(min.) 

 
 
 

Remarks 
1,080 0  Muddy SW Returns 
800 0  Pump 3.75 bbl SW 

3.75 bbl SW Returns 

Well 13:  10 ¾-in. Casing (06-30-89) 
Initial 

Pressure 
(psi) 

Final 
Pressure

(psi) 

Buildup 
Time 
(min.) 

 
 
 

Remarks 
2,475 0   

0 200 10  
200 0  0.5 bbl SW returns 
0 680 60  
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  Table 3-4 – (Well 13) 16-in. Bleed Off/Buildup Data:  06-30-89 
 
 
 
 
 
 
 
 
 
 Table 3-5 – (Well 13) 20-in. Bleed Off/Buildup Data:  06-30-89 
 
 
  
 
 
 
 
 
A rig was then skidded over to pull the production tubing and squeeze the production 
perforations with 25-bbl 16.2 ppg of cement below an EZSV.  Squeeze perforations were made 
at 9,232 ft and squeezed below an EZSV.  A temperature survey was then run but did not find 
any anomalies. 
 
Squeeze perforations were made below the 10 ¾-in. casing shoe at 6,500 ft and squeezed with 
22.5 bbl of cement below an EZSV.  The 7 x 10 ¾-in. annulus was bled down to zero psi and 
built up to 320 psi in 30 minutes, 560 in 1 hr, and 1,760 psi in 2 hr.   
 
The casing was cut at 6,090 ft and at 6,209 ft but was unable to establish injection.  Squeeze 
perforations were then made at 6,100 ft and squeezed with 45 bbl of 16.2 ppg cement.  While 
WOC, the 7-in. casing was bled from 200 to 0 psi, 10 ¾-in. from 850 to 0 psi, and the 16-in. 
from 600 to 0 psi.  After 6 hr, the 20, 16, and 7-in. casing strings all remained at zero but the 10 
¾-in. had built back up to 490 psi.  After 9 ½ hr, the 7-in. remained at zero and the 10 ¾-in. 
increased to 700 psi and the 16-in. to 50 psi.  The 16-in. was bled to zero.  After 18 hr, the 7-in. 
remained at zero and the 10 ¾-in. had built to 1,120 psi. 
 
A 6-in. window was cut below the 16-in. shoe and recovered shavings with a trace of gas in the 
returns.  Injection could not be established with the 7 x 10 ¾-in. annulus.  An EZSV was set at 
above the window but could not establish injection.  A 5-bbl cement plug was spotted before 
skidding the rig. 
 
Testing indicated that the casing communication had been eliminated after the June, 1989 
workover operation.  However, the 10 ¾-in. casing pressure climbed to over 2,000 psi within a 
year.  Diagnostic bleed-down operations in August, 1990 bled the pressure to 1,250 psi but 
aborted after mud and abrasive material plugged the choke. 
 

Well 13:  16-in. Casing (06-30-89) 
Initial 

Pressure 
(psi) 

Final 
Pressure

(psi) 

Buildup 
Time 
(min.) 

 
 
 

Remarks 
1,040 800  Mud returns 

Well 13:  20-in. Casing (06-30-89) 
Initial 

Pressure 
(psi) 

Final 
Pressure

(psi) 

Buildup 
Time 
(min.) 

 
 
 

Remarks 
80 0   
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April 1991 Workover. The rig was skidded over the well to mill windows in the 7 and 10 ¾-in. 
casings below the 16-in. shoe and set an inflatable packer.  The 10 ¾, 16, and 20 in. casing 
strings were bled down and monitored.  The bleed-down and buildup results are listed in Tables 
3-6 and 3-7.   
 
 Table 3-6 – (Well 13) 10 ¾-in. Bleed Off/Buildup Data:  03-27-91 
 
 
 
 
 
 
 
 
 Table 3-7 – (Well 13) 16 & 20-in. Bleed Off/Buildup Data:  03-27-91 
 
 
 
 
 
 
 
 
The wellbore was cleaned out and no communication was noted between casing strings.  The 
previous 6-in. window cut during the June 1989 workover was located with a mechanical cutter 
and extended to 30 ft before the hole started taking 12.5 ppg BHC (Borehole Control) mud.  
BHC mud is a fluid system that develops gel structure for solids suspension but exhibits low 
viscosity flow characteristics.  The mud weight was cut to 11.0 ppg while multiple lost 
circulation pills including walnut and mica were pumped.  Plans were changed to attempt a 
recovery of the 7-in. casing to the depth of the 16-in. casing shoe.  A temperature log was run 
from below the 16-in. shoe and up that indicated fluid movement at the 7-in. casing window and 
up to 60-ft. above the window.  An EZSV was set and 25-bbl 16.2 ppg ‘H’ was squeezed below 
with a final squeeze pressure of 2,000 psi. 
 
The 10 ¾-in. casing was bled from 1,000 psi to zero in one minute.  The 16 and 20-in. strings 
were bled from 40 psi.  Squeeze perforations were made adjacent to the 16-in. casing shoe.  An 
EZSV was set and two 25-bbl squeezes were pumped.  Multiple cuts in the 7-in. casing were 
made but no circulation was established.  The 10 ¾-in. casing increased to 380 psi. 
 
To ensure that no channeling was occurring up the 7 x 10 ¾-in. annulus, a 50 ft. window was 
milled and de-scaled in the 7-in. casing immediately above the 16-in. casing shoe.  Pressure on 
the 7 x 10 ¾-in. annulus was monitored until it had successfully dissipated.  Two unsuccessful 
attempts were made to latch and pull the 7-in. casing before cutting and recovering it at 101 ft.  
A 9 ½-in. rotary shoe and 9-in. washpipe was used to wash hard, dehydrated mud in highly 
eccentric casing before cutting and recovering 54 ft of 7-in. casing.  The 7-in. casing was washed 
over and cut and recovered 19 ft.  The 7-in. casing was then cut two more times and recovered to 

Well 13:  10 ¾-in. Casing (03-27-91) 
Initial 

Pressure 
(psi) 

Final 
Pressure 

(psi) 

Bleed 
Time 
(min.) 

 
 

Remarks 
1,500 0 3 No fluid. Continuous blow for 1 hr observation 

0 550 120 No fluid when bled to zero. Continuous blow 

Well 13:  16 and 20-in. Casing (03-27-91) 
Casing 

OD 
(in.) 

Initial 
Pressure 

(psi) 

Final 
Pressure 

(psi) 

Bleed 
Time 
(min.) 

 
 

Remarks 
16 108 0 2 No fluid 
20 75 0  No fluid 
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and the 10 ¾-in. was de-scaled from.  A 9 ⅞-in. bit was tripped in the hole but could not work 
through damaged 10 ¾-in. casing at 155 ft.  Circulation was established up the 16-in. casing 
through the tubing placed at 2,500 ft.  A 9 ¾-in. impression block sat down at 155 ft and was 
“slightly shaved 180 degrees apart”. 
 
A 9 ⅞-in. watermelon mill was worked through the damaged area and broke through the tight 
spot.  The 7-in. casing was mechanically cut over 50 times and recovered in 4 to 15 ft increments 
at an average of 33-ft per day over a twenty day interval.  The damaged 10 ¾-in. casing was 
tagged again at 155 ft and a 9 ½-in. and 9 ⅞-in. tandem string mills were worked down to the top 
of the 7-in. casing stub.  Junk was tagged with a muleshoe at 900 ft and washed to 2,220 ft. 
 
A 6-in. bit and string mill tagged the bottom of the 7-in. window at 2,554 ft and reamed to 2,680 
ft.  A Tri-State Lockomatic descaler for 10 ¾-in. casing was run the length of the window from 
2,503 to 2,555 ft.  A cement bond log was then run from 2,100 to 817 ft inside the 7-in.  The 
centralizers were changed out for the 10 ¾-in. and logged from the 7-in. casing stub to surface. 
 
An inflatable packer was set at 2,508 ft but unable to fully inflate with 5 bbl cement.  Attempts to 
push the packer downhole were unsuccessful and the packer hung up at 1,708 ft on the way out 
of the hole.  A 5 ⅞-in. burning shoe milled over the packer from 1,708 to 1,750 ft before the 
packer was pushed downhole to 2,695 ft. 
 
A ‘Payzone Packer’ was set at 2,516 ft and inflated with 1 bbl of 16.2 ppg cement and 5 bbl 
pumped into the casing with the TOC was tagged at 2,456 ft.  A 10 ¾-in EZSV was set at the top 
of the 7-in. stub and 4 ft of squeeze perforations were made in the 10 ¾-in. casing.  Circulation 
was established between the 10 ¾ and 16-in. casing.  A 10-bbl of 16.2 ppg ‘H’ cement was 
spotted in both the 10 ¾ and 16-in. casing.  Cement was subsequently tagged at 769 ft and tested 
to 1,000 psi. 
 
The BOP stack was nippled down to pull the 10 ¾-in. casing spool.  The top 107 ft of 10 ¾-in. 
casing had parted and came out with the spool.  The 10 ¾-in. casing was then cut and recovered 
to 757 ft.  A 14 ¾-in. flat bottom mill and string mill reamed the 16-in. casing from 657 to 756 ft.  
A 16-in EZSV was set at 755 ft with 11 bbl of 16.2 ppg cement spotted on top.  The cement plug 
and 16-in. casing was tested to 1,000 psi for 30 minutes.  A dry hole tree was nippled up and the 
rig skidded.  Pressure in the 16-in. remained at zero psi and the 20-in. at approximately 75 psi.  A 
departure was filed with the MMS for the 20-in. casing. 
 
Well 10 
 
Original Drill.  This well was spudded in March 1984.  A 13 ½-in. bit was used to drill to 1,390 
ft and underreamed to 26-in.  Due to tight hole, the 20-in. was cemented at 1,348-ft with 775 sxs 
11.5 ppg TLW followed by 350 sxs 16.2 ppg ‘H’ with full returns throughout the job.   
 
A 13 ½-in. bit was used to drill to 2,580 ft and underreamed to 20-in.  One casing capacity was 
circulated before cementing the 16-in. casing at 2,556 ft with 450 sxs TLW followed by 500 sxs 
‘H’.  The plug was bumped with 1,500 psi and had full returns while cementing.  
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A 13 ½-in. bit was used to drill to 5,200 ft.   The 10 ¾-in. casing was cemented at 5,210 ft with 
1,500 sxs ‘H’/TLW followed by 500 sxs ‘H’.  A 25 bbl spacer was pumped ahead of the slurry, 
the plug was bumped with 1,500 psi and had full returns while cementing. 
 
A 9 ⅞-in. bit was used to drill the well to a TD of 10,370 ft.  Gas cut mud was circulated out at 
8,620 and 9,900 ft.  The 7-in. casing was cemented at 10,175 ft with 2,200 sxs of 17.2 ppg ‘H’ 
and the plug was bumped with 1,500 psi.  A 35 bbl dual purpose spacer was pumped ahead of 
the slurry. 
 
Initial Completion. The rig was skidded back in February, 1986 to run CBL, perforate and place 
sand control.  The rig was released March 6, 1986. 
 
July 1989 Workover. Rig was skidded over the well and bled down 10 ¾-in. casing from 1,640 
psi and recovered 5 bbl clabbered mud.  An EZSV was set at 9,250 ft but was unable to establish 
injection into the formation.   
 
Squeeze perforations were made at 9,138 ft and cemented with 25 bbl of 16.2 ppg cement 
through an EZSV set at 9,000 ft.  A temperature survey was then run from 8,700 ft to surface that 
found no anomalies.  
 
A second set of squeeze perforations were made below the 10 ¾-in. shoe at 5,260 ft.  The 
perforations were then cemented with 17-bbl of 16.2-ppg cement through an EZSV set at 5,300 
ft.  The 7-in. casing was cut at 4,900 ft but was unable to establish circulation at 2,500 psi with 
the 10 ¾-in. casing.  An EZSV was then set at 4,900 ft and 5-bbl cement was dumped on top 
before skidding the rig. 
 
March 1991 Workover.  The rig was skidded over the well to re-enter the TA’d wellbore and 
eliminate casing pressure.  The 7-in. was bled down from 30 psi, the 10 ¾-in. from 1,500 psi, the 
16-in. from 8 psi, and the 20-in. from 20 psi to zero.  After 12 hours the 10 ¾-in. casing had built 
back up to 500 psi.   
 
A 120-ft window was milled in the 7-in. casing from 4,560 to 4,680 ft.  Junk was tagged and 
worked through at 4,610 ft.  A de-scaler tool was run from the top of the window but could not 
get deeper than 4,619 ft.  A 6-in. mill tagged up at 4,622 ft and milled to 4,684 ft. 
 
Junk was tagged at approximately 4,610 ft and probably occurred during the milling of the 7-in. 
casing as the cutter blade OD became worn down.  This tended to leave a sliver of 7-in. casing 
on one side.  This was verified by crescent-shaped slivers in the returns.  The de-scaler tool 
tagged up at 4,619 ft and only able to make it to 4,622 ft.  A 6-in. flat-bottomed mill was used to 
push the trash downhole but was not completely effective inside of the 10 ¾-in. casing ID. 
 
A muleshoe was picked up on workstring and tagged up at 4,691 ft.  Six barrels of 16.4 ppg 
Class ‘H’ was pumped and WOC for 12 hr.  A successful cement test was not obtained. 
 
An inflatable packer was set with its bottom at 4,610 ft and cement was spotted and tagged at 
4,572 ft.  Began pumping past the inflatable packer at ½ bpm and 1,000 psi but unable to obtain 
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communication with the 10 ¾-in. casing.  A successful pressure test on the inflatable packer was 
not obtained.   
 
A possible leak in the 10 ¾-in. casing was diagnosed at 4,567 ft.  A 15.5 ppg mud weight could 
not be supported and had to be cut back to 12.5 ppg after milling 7 ft of window.  After the 
inflatable packer was set, 5 bbl of cement was spotted on top and 1.5 bbl was able to be squeezed 
away.  A 1,500 psi test was obtained over 12.5 ppg mud.  Pressures on the 7-in., 10 ¾-in., and 
16-in. were zero psi two weeks after the end of operations. 
 
A 5-bbl cement plug was spotted and 1.5 bbl were squeezed away.  The plug was tested to 1,500 
psi, a dry hole tree was nippled up and the rig was skidded.  All casing pressures were at zero psi 
when the rig was skidded as well as two weeks later.  Within three weeks, pressure was again 
seen on the 10 ¾ and 7–in. casings and gradually built after a few months in excess of 1,000 psi 
and 800 psi respectively. 
 
1990 Casing Squeeze Program Wells 
 
Well 1 

 
Original Drill. This well was spudded in April of 1983 with 8.7 ppg gelled seawater and drilled 
without incident to 1,305 feet in 13 ½ hours.  Upon underreaming the hole to 26 in., the 20 in. 
casing was cemented with 900 sacks of Class ‘H’/2% Econolite followed by 350 sxs of Class ‘H’ 
with partial returns.  The bit and workstring was picked up and tripped in the hole until cement 
was tagged at 1,238 ft.  Twenty-eight feet of cement was drilled out to a depth of 1,266 ft and the 
casing failed a 203 psi test due to a leaking casing head.  The casing head was subsequently 
repaired and the casing tested to 203 psi.   
 
The intermediate hole was drilled to 2,298 ft in 6 ½ hours with 9 ½-ppg gelled seawater.  The 
hole was tight and swabbed as the workstring was being pulled.  The 16-in. casing was run but 
could not get past 1,844 ft.  The casing was pulled and the workstring run to 2,292 ft.  A bottoms 
up was circulated with no gas in the returns.  Two trips with a 20-in. under reamer and a 17 ½-in. 
bit were made before running the 16 in. casing to 2,324 ft.  The 16-in. was cemented with 700 
sxs of Class ‘H’/2% Econolite followed by 500 sxs Class ‘H’.  The plug was bumped with 1,508 
psi with full returns.  The casing was set with 150,000 lb. of tension and tested to 1,508 psi for 
thirty minutes.  The shoe and forty-three feet of formation was then drilled with 10 ppg gypsum 
seawater mud and tested to an equivalent of 13.5 ppg. 
 
The well was drilled to 3,612 ft while circulating out up to 1,200 units of gas that cut the mud 
weight from 10.5 to 9.2 ppg.  The mud weight was raised to 11 ppg to drill to 4,005 feet.  Up to 
800 units of gas were circulated out with the mud being cut from 11 to 10.3 ppg.  The mud was 
weighted up to 12.9 ppg to drill to 4,500 ft but was gas cut to 11.3 ppg with up to 1,400 units of 
gas being circulated out.  The mud weight was raised to 13.1 ppg.   
 
A hole opener was run and a wiper trip was made before circulating bottoms up with 500 units of 
gas.  The 10 ¾-in. casing was run to 4,507 ft.  A cement slurry of 1,150 sxs of Class H/TLW 
followed by 500 sxs of Class ‘H’ was pumped with full returns without bumping the plug and the 
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casing was set with 225,000-lb tension.   Cement was tagged at 3,660 ft after 9 hours of waiting 
on cement.  The cement was drilled out to the float collar and the casing tested to 1,508 psi.  The 
cement was then drilled out to the shoe and 10 ft of formation was then tested to a 16.5 ppg 
equivalent. 
 
While drilling to 5,085 ft, the mud was cut from 13.9 to 12.5 ppg while circulating out up to 100 
units of gas.  A trip was made for a new BHA and three hours were spent circulating out up to 
2,300 units of gas.  The mud was cut from 14.1 to 11 ppg before shutting in the well and 
circulating through the choke to bring the mud weight up to 14.3 ppg.   
 
At 6,259 ft, the mud was cut from 14.3 to 7.6 ppg upon circulating bottoms up.  The mud weight 
was raised to 14.7 ppg to drill to 10,808 ft with the mud being gas cut many times.  The mud 
weight was increased to 15.2 ppg to drill to the total depth of 12,243 ft.  Upon running openhole 
logs and obtaining sidewall cores, the 7-in. production casing was run to 12,266 ft., a 25 bbl ‘SD’ 
spacer was pumped, and cemented with 1,600 sacks of Class ‘H’.  The plug was bumped with 
1,000 psi.  The casing was run to TD and circulated one complete circulation before the casing 
got stuck and could not reciprocate the pipe.  The casing was tested to 1,910 psi for 15 minutes 
before nippling down the blowout preventers and skidding the rig. 
 
Initial Completion.  The rig was skidded back on July 8, 1983 to test the 7-in. casing to 2,100 
psi, displace to completion fluid and complete the well.  The 20, 10 ¾, and 7- in. casings already 
exhibited SCP. 
 
September 1983 Workover. A snubbing unit was rigged up to pull and replace a velocity valve 
utilizing a 1 ¼ workstring.  The 20, 10 ¾, and 7-in casings still exhibited SCP. 
 
April 1990 TA Operation. A rig was skidded over Well 1 to address a tubing leak.  The tubing 
failed a pressure test and oil began to flow from the 10 ¾-in. casing while attempting to bleed it 
down from 1,500 psi.  Operations now began to focus on casing repair.  A prior 
noise/temperature survey indicated possible gas flow behind the pipe at 7,200 ft and virtually no 
cement bond from the 10 ¾-in. casing shoe at 4,507 ft to 8,300 ft.  Logs also indicated some 
permeability and a possible source at 7,150 ft. 
 
The 10 ¾-in. casing was squeezed at 7,140 ft above the possible shallow source at 7,200 ft. with 
50 bbl of Halliburton’s Microbond cement.  Injection pressures were established into the 
perforations at one and two barrels per minute at 1,200 and 1,400 psi respectively.  Final squeeze 
pressure on the 16.4 ppg cement slurry was 2,400 psi.  After a five day waiting period for 
expansion of cement, excessive casing pressure still existed.   
 
Another 50 bbl Microbond cement squeeze was attempted below the 10 ¾-in. casing shoe at 
4,550 ft with a final squeeze pressure of 300 psi.  Upon waiting for proper cement expansion, the 
perforations were drilled out and tested to 1,000 psi   
 
Squeeze perforations at 10,600 ft were made above the abandoned production sand and squeezed 
with 12 bbl of 16.2 ppg Microbond cement.  These squeeze perforations were then successfully 
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tested to 1,500 psi.  Upon drill out and testing of the three squeezes, each set of squeeze perfs 
held once and then failed a second pressure test. 
 
Injection was established into the previously squeezed perforations at 7,140 ft.  A 25-bbl 16.2 
ppg cement squeeze was pumped with a final pressure of 2,000 psi.  These perforations were 
successfully tested to 1,500 psi for 15 minutes.   
 
A 25 bbl Microbond remedial squeeze on the perforations at 4,550 ft was then performed with a 
final pump pressure of 2,000 psi.  Following five cement squeezes, the annular pressure was 
brought under control with the 10 ¾ in. casing pressure building to 350 psi after 15 days and 
bleeding to zero.  A kill string was run in the hole before skidding the rig. 
 
Well 14 
 
Original Drill. This well was spudded in February, 1982.  The conductor hole was drilled with a 
17 ½-in. bit and underreamed.  The 20-in. casing was set and cemented at 1,116-ft. with 750 sxs 
TLW and 350 sxs ‘H’ with returns lost during the last 100-bbl.  The casing was pressure tested to 
203 psi on an unknown mud weight. 
 
The surface hole was drilled with a 12 ½-in. bit and underreamed to 20-in.  The 16-in. casing 
was run and cemented to 3,586-ft. with 1,600 sxs TLW and 800 sxs ‘H’ with full returns 
throughout job.  The casing was tested to 500 psi on 10 ppg mud. 
 
Upon drilling out the 16-in. casing shoe, gas was encountered at 3,793 ft. to 4,484 ft.  The 11 ¾-
in. casing was run and cemented to 5,850 ft and cemented with 16.2 ppg Class ‘H’.  Had full 
returns while pumping but did not bump the plug.  No centralizers were run and the pipe was 
neither rotated nor reciprocated.  The mud was circulated for 30 minutes while the casing was on 
bottom.  The cement cured for over 60 hours while installing the wellhead, testing BOP’s and 
performing rig maintenance.  The 11 ¾-in. casing was then tested to 1,520 psi with 13.2 ppg 
mud. 
 
A 9 ⅞ in. bit and 12 ¼-in under reamer was used to drill this section.  Gas was encountered from 
6,929 ft. to the 9 ⅝-in. casing point at 9,682 ft with the mud weight being eventually raised to 
16.5 ppg.  A 9 ⅝-in. liner was run from 5,417 ft to 9,682 ft and cemented with 2,000 sxs Class 
‘H’ cement.  A tight spot was encountered at 800-ft with a mill being worked from 676 ft to 902 
ft.  The 9 ⅝ in. liner top was squeezed with 500 sxs Class ‘H’ neat with the liner top being tested 
to 2,100 psi for 30 minutes. 
 
The hole was deepened and evaluated to 12,440 ft.  Gas cut mud and lost circulation hampered 
the operation until the well was plugged back. 
 
Liner Tieback and Complete. In August, 1986 the 9 ⅝-in. liner was tied back and the well was 
completed.  Difficulty was experienced while cleaning out the wellbore and could not sting the 
tieback into the liner.  Hard barite was drilled out from 4,497 ft until tagging up at 9,503 ft.  A 
tandem tie-back mill encountered tight spots at 5,379 ft and 5,410 ft.  
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The tieback was displaced and cemented with 110 sxs of 17.2 ppg cement but the plug did not 
bump.  Very little cement was placed between the tieback and intermediate casing and most was 
found at the liner top.   A total of 9 ½ days transpired previous to drilling out the cement due to 
wellhead and BOP problems.  Very hard cement was then tagged at 5,101 ft and drilled to 5,428 
ft.  The liner was then tested 2 ½ days later with 2,500 psi for 30 minutes on 17.5 ppg mud.  It 
was also underbalance tested to 2,350 psi for one hour.   
 
The cement bond log indicated no bond through the completion sand requiring two sets of 
squeeze perforations. One squeeze below the pay zone placed 7 bbl 16.2 ppg Class ‘H’ Neat into 
the casing at 800 psi and tested to 500 psi.  The second set of squeeze perforations above the pay 
zone were squeezed three times without success with a total of 220 sxs Class ‘H’.  A fourth 
squeeze of 100 sxs Class ‘H’ was pumped at 1 bpm and 1,000 psi and slowed to ¼ bpm at 1,500 
psi.  This squeeze was tested to 2,200 psi and broke back to 400 psi in 5 minutes.  A fifth 
squeeze of 100 sxs Class ‘H’ was pumped at 1 bpm and 1,500 psi but did not test. 
 
A cement bond log was run and indicated sufficient cement bond above the proposed production 
perforations.  The decision was made to commence completion operations. 
 
May 1989 Workover. The original objective of a workover in May, 1989 was to address a 
tubing leak; however, casing damage was found and isolated.  A noise and temperature survey 
indicated damage in the 9 ⅝-in. casing across from the ‘B’ Sand as well as a temperature 
anomaly at 3,000-ft.  A leak was finally located at 7,720-ft and isolated behind a packer. 

 
August 1989 Workover. An attempt was made to replace the gravel pack in August of 1989 but 
operations were ended after two unsuccessful attempts at getting the gravel pack assembly past 
the casing damage at 7,720-ft.  Two cement plugs were spotted, an EZSV was set and a 2 ⅞-in. 
kill string was run. 
 
April 1990 Workover.  First, a cement squeeze at the 11 ¾-in. shoe was performed with 30 bbl 
Class ‘H’ and a final pressure of 2,500 psi.  Secondly, a total of 6 50-bbl squeezes were 
performed at the 16-in. shoe into the 11 ¾-in. x 9 ⅝-in. annulus.  Various cement formulations 
were used with both 16.2 ppg and 15.3 ppg slurries pumped at up to 3 bpm and 1,800 psi. 
 
During the subsequent cleanout operations, a tight spot was found at 7,749 ft and ultimately 
diagnosed as parted casing.  Consequently, a 7-in. scab liner was run to 8,562 ft. Estimated TOC 
in the 9 ⅝-in. x 7-in. was calculated at 6,410 ft after 1,285 sxs 16.0 ppg cement without bumping 
the plug.  The 7-in. liner was tested to 3,550 psi with 14-ppg mud after 45 hours WOC.  A 
bradenhead squeeze was then performed with 90 bbl of Class ‘H’ on the 7 in. liner.  Upon 
monitoring the casing, it was decided that the casing pressure was successfully reduced and sand 
control was pumped to put the well on production. 
 
May 1991 Workover. In May of 1991, a workover to eliminate casing pressure was performed.  
Operations involved perforating and squeezing the 7-in. and 9 ⅝-in. casing strings with Magne-
set cement immediately above the producing sand. The first squeeze was attempted with 100-sxs 
at 1.5-bpm and 1,500 psi.  Injection gradually slowed to 0.25-bpm at 1,300 psi and over 
displaced.  The first squeeze failed a 1,000 psi test. A second 100-sk. Magne-set squeeze was 
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pumped at 2,100 psi and 1 bpm and into the squeeze perforations at 2,000 psi. A successful 
pressure test to 1,500 psi for 30 minutes was obtained.  Finally, a 2 ⅞-in. kill string was run 
previous to rigging down the equipment. 
 
A cement bond log run during this workover indicated cement from 950-ft. to 3,582-ft in the 9 
⅝-in. x 7-in. annulus from the April, 1990 bradenhead squeeze.  Bleed-down and build-up 
diagnostics were implemented to evaluate the squeeze operation.  The squeeze resulted in a 9% 
decrease in the 16-in. x 11 ¾-in. annulus and a noticeable 85% decrease in the 11 ¾-in. x 9 ⅝-in. 
annulus.  However, the 9 ⅝-in. x 7-in. annular pressure increased after the job.   
 
September 1991 Workover. This workover intended to address a temperature anomaly above 
the 16 in. shoe that may indicate an annular pressure source.  The work consisted of perforating 
the 7-in., 9 ⅝-in., and 16-in. casing strings and pumping acid through the perforations to enhance 
communication previous to squeezing cement.   
 
During the operations, an injection rate could not be achieved upon perforating, requiring a 
second perforating run.  A 12%-3% HCl-HF acid blend was pumped ahead of the first 37 bbl 
Magne-set cement slurry.  No running squeeze was obtained so a second 37 bbl Magne-set slurry 
was pumped.  Due to mechanical problems, only 22 bbl was pumped and achieving a final 
squeeze pressure of 1,500 psi. 
 
A post-workover bleed down/build up performed on the 16-in. resulted in 10-gal mud with the 
pressure dropping from 845 psi to 90 psi in 40 minutes.  The pressure built back to 183 psi in one 
hour and up to 336 in 24 hr.  Within three months, the 16-in. was 1,100 psi, 7-in. at 34 psi, 9 ⅝-
in. at 135 psi, 11 ¾-in. at 485 psi, and the 20-in. remained at 0 psi.  
 
February 1992 P&A Operation. Upon cleaning out the wellbore, a 60-ft. window was milled in 
the 7-in. casing from 6,016 to 6,076 ft. and a 30-ft. section was milled in the 9 ⅝-in. from 6,026 
to 6,056 ft.  The mill used to mill the outer string consisted of a milling tool with modified arms 
and under reamer that opened to the ID of the outer string for stability.  Three sets of cutter arms 
were needed to mill 20-ft of window in the 9 ⅝-in. casing.   
 
A 30-bbl S-Mix cement slurry was pumped and tested to 1,000 psi to isolate this window.  S-Mix 
is a Shell-patented cement slurry that essentially converts mud into cement through the addition 
of soda ash and caustic activators immediately before pumping the slurry.  Large amounts of gas 
cut the mud and needed to be circulated out previous to cementing. 
 
An 80-ft. window was then milled in the 7-in. casing from 2,847 to 2,927-ft.  A 60-ft. window in 
the 9 ⅝-in. was then attempted but difficulties in making the cutout resulted in a 4-ft. window 
being milled and a further 32-ft. being milled under-gauge leaving a sheath behind.  One more 
run through this section was necessary with cutter arms that opened to the ID of the 11 ¾-in. 
casing.  The window was extended to a total of 50-ft. from 2,856 to 2,906 ft. 
 
A cut out was attempted in the 11 ¾-in. casing at 2,861 ft but failed due to cutter arm damage.  
Another cut was made 5 ft below but it appeared that the 5 ft section had fallen.  Circulation was 
achieved in the 11 ¾ x 16 in. and 9 ⅝ x 11 ¾ in annulus.  Forty barrels of S-Mix was pumped 
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into the 11 ¾ x 16 in. and 23 bbl was pumped into the 9 ⅝ x 11 ¾ in. annulus.  The casing 
pressure was then monitored.  The pressure on the 16 in. continued to rise.   
 
A cement plug was set at 2,500 ft and the 7 in. casing was recovered to 950 ft.  An EZSV was set 
at 947 ft with 50 ft of cement on top.  The 9 ⅝ in. casing was recovered to 880 ft with an EZSV 
set at 878 ft with 50 ft of cement on top.  A 42 ft section was then milled in the 11 ¾ in. from 
780 to 822 ft.  Two 15 bbl barite plugs and Class ‘A’ cement was set in the window.  The 11 ¾ 
in. was then recovered to 780 ft and an EZSV was set at 774 ft with 50 ft of cement on top. 
 
Well 11 
 
Original Drill.  This well was spudded in December, 1984.  The 20 in. casing was run to 1,305 
ft and cemented with 700 sxs 11.5 ppg TLW followed by 500 sxs 16.2 ppg ‘H’ while being 
reciprocated with 10 ft strokes.  Partial returns were obtained during cementing and no 
centralizers were run.  The casing was tested to 203 psi with 9.5 ppg gelled seawater.   
 
The 16-in. casing was run to 2,302 ft with 5 latch-on Trico centralizers every 60 ft and cemented 
after pumping a 25 bbl Superflush spacer with 700 sxs 11.5 ppg TLW followed by 500 sxs 16.2 
ppg ’H’ with partial returns.  The casing was reciprocated with 10 ft strokes while losing mud to 
formation and packing off.  The plug was bumped with 2,000 psi and held for 30 minutes.  The 
casing was tested to 1,840 psi and the formation was tested to a 14.0 ppg equivalent. 
 
While drilling to 4,305 ft, 2,035 units of gas was circulated out with the mud weight cut from 
13.3 to 9.2 ppg.  The mud was weighted up to 13.5 ppg but the well still flowed.  Up to 2,168 
units of gas was circulated out while weighting back up to 13.4 ppg.  The 10 ¾-in. casing was 
run to 4,305 ft with an unknown amount of Trico KK-5 centralizers and cemented with 1,450 sxs 
14.5 ppg ‘H’/TLW followed by 500 sxs of 16.2 ppg ‘H’ with no returns.  The plug was bumped 
with 1,508 psi and held for 30 minutes.  The formation was tested to a 17 ppg equivalent before 
drilling out. 
 
While drilling at 6,971 ft, the mud weight was cut from 15.8 to 13.5 ppg with 1,500 units of gas.  
At 8,158 ft, the mud was cut from 16 to 11.5 ppg with 1,200 units of gas and again to 12.9 ppg at 
8,573 with 1,600 units of gas.  While drilling from 9,054 to the 7-in. casing point, the mud 
weight was cut multiple times from gas influx.  The 7-in. casing was circulated and reciprocated 
while obtaining 180 units of gas in the returns.  Trico KK-5 centralizers were run one per joint 
for the first 80 joints.  A 50 bbl dual purpose spacer was pumped ahead of 850 sxs 17.2 ppg 
‘H’/1,800 sxs 17.5 ppg ‘H’ cement was pumped and the plug was bumped with 2,000 psi and 
held for 30 minutes before nippling up the dry hole tree and skidding the rig. 
 
Initial Completion. In November, 1985, a rig was skidded over the well to complete it.  The 10 
¾-in. casing was bled from 1,350 psi while the 20, 16, and 7-in. casing were all at zero psi.  A 
tight spot was found at ±8,000 ft.  A CBL was run indicating good bond around the zone of 
interest.  Sand control was placed and the rig was skidded. 
 
October 1986 Workover. A rig was skidded to pull the completion and replace the gravel pack.  
While burning over the gravel pack assembly, an obstruction was tagged at 8,946 ft.  The casing 
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was milled to 8,977 ft until pieces of casing were recovered.  Bad casing was diagnosed from 
8,935 ft and down with a window cut from 8,949 to 8,961 ft.  A cement retainer was set at 8,910 
ft and 13 bbl of 16.2 ppg Class ‘H’ Neat cement squeezed below.  15.2 ppg zinc bromide kill 
weight fluid was left in the hole with a kill string hung-off.  
 
December 1986 Sidetrack. In early December, a rig was skidded to location and the well was 
sidetracked.  The first sidetrack was abandoned due to stuck drill collars.  A 5-in. liner was run 
and cemented with 100 sxs of 17-ppg Class ‘H’ after pumping a 20 bbl dual purpose spacer.  The 
plug was bumped with 1,900 psi.  The well was perforated and sand control was placed previous 
to skidding the rig. 
 
March 1990 Workover.  This workover was intended to relieve 7 x 10 ¾-in. annulus casing 
pressure of 2,180 psi and return the well to production.  The well had been producing on a 
reduced choke size due to sand production.   
 
The 10 ¾-in. casing was bled down from 2,200 psi while the 7, 16, and 20-in. casing remained at 
zero psi.  Squeeze perforations in the 7-in. casing at 6,836 ft were made and 20 bbl of Microbond 
cement were pumped with a final pressure of 500 psi.  No squeeze was obtained and the rig was 
skidded.  In less than a month, the rig was skidded back and 1,050 psi was measured on the 10 
¾-in. casing. 
 
Squeeze perforations were made at 4,350 ft, the base of the 10 ¾-in casing shoe, and 100-bbl 
Flo-Check cement was pumped.  No squeeze was obtained with the final pump pressure of 1,600 
psi.  Some reduction in surface pressure was obtained.  The 10 ¾-in. was pressured to 1,100 psi, 
1,600 psi maintained on the drillpipe, and 1,200 psi on the 2 ⅞ x 7-in. annulus for 12 hours.  The 
cement was drilled out and the squeeze failed a 500 psi pressure test. 
 
A second 100 bbl Flo-Check cement squeeze was pumped and succeeded in obtaining a squeeze 
at 2,500 psi.  The drillpipe was pressured to 2,500 psi, the 10 ¾-in. maintained to 1,100 psi, and 
the 2 ⅞ x 7-in. annulus to 1,500 psi for 12 hours.  The surface pressure was reduced to 700 psi 
and was adequate for MMS departure approval.  The pressure was bled off, the cement was 
cleaned out of the wellbore, and a kill string was hung off previous to skidding the rig off. 
 
The rig was skidded back and the squeeze perforations at 4,350 psi failed a pressure test to 1,500 
psi.  An EZSV was drilled up at 6,696 ft before hanging off a kill string and skidding the rig. 
 
Further downhole operations were deemed too dangerous and economics did not justify further 
remedial work.  In order to comply with MMS regulations, operations centered on adequately 
plugging the perforations at the 10 ¾-in. casing shoe. 
 
About one month after moving off, the rig was skidded back and injection was established into 
the perforations at 4,350 ft before locking up with 4,000 psi.  Sixteen barrels of mud acid was 
then pumped into the perforations and the well started flowing on the drillpipe and 7-in. casing.  
Both 25 bbl of 13 ppg and 7 bbl of 14.7-ppg Magne-set cement were mixed and pumped at 2 
bpm and 2,300 psi while not obtaining a squeeze.  Two hesitation squeezes were then performed 
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with a final pump pressure of 1,650 psi.  Pressure was held on the squeeze while WOC for 12 
hours.   
 
The pressure was released and WOC for a further 12 hours before drilling out the cement.  By 
pumping in at 1 bpm and 800 psi, an attempt to test the squeeze failed.  Three 20-bbl Neat 
cement squeezes were pumped without obtaining a squeeze.  Attempted to test squeezes but was 
able to pump at 2,000 and 2,150 psi at 1 bpm. 
 
Two further 20 bbl Magne-set squeezes were pumped.  On the final squeeze, 8-bbl of cement 
was left in the casing.  A total of 6 hr WOC before a successful test on the cement to 2,300 psi 
for 15 minutes was made.  The kill string was hung off before skidding the rig. 
 
Within months, the 10 ¾-in. casing pressure began building.  A bleed down/build performed in 
April of 1991 bled gas as the pressure decreased from 982 psi to 0.  Pressure continued to 
increase to values in excess of 1,000 psi. 
 
March 1992 Workover. The rig was skidded over the well in March of 1992 to re-enter the 
wellbore and eliminate casing pressure.  The 7-in. casing had 16 psi, the 10 ¾-in. had 1,370 psi, 
and the 16-in. casing had 720 psi.  The 7-in. casing was tested to 3,000 psi before pulling the kill 
string.  
 
The objective of this workover was to attempt a ‘suicide’ squeeze in the 7 x 10 ¾-in. casing 
annulus by milling windows with a #5 Lockomatic with 7 ¼-in. blades.  A 2-ft window was 
milled in the 7-in. casing at 4,308 ft MD immediately above the 10 ¾-in. shoe.  An unsuccessful 
attempt to circulate was made before milling a second 2-ft window at 4,008 ft.  A second 
unsuccessful attempt to circulate was made before extending the window to 4,023 ft for a total of 
15-ft. 
 
The casing was de-scaled with a 9.7-in. Tri-State descaler and 6 ½ bbl of experimental poly 
plastic (polyactalate) resin was spotted in the window.  The resin plug was tested to 1,500 psi 
and held this pressure for 12 hrs.  The kill string was hung off before skidding the rig.  
 
Results of the March 1992 resin job were limited.  The pressure previous to the workover was 
rising at a rate of 75 psi/week and was at 1,450 psi immediately before commencement of 
operations.  After the resin job, one bleed down was performed with the pressure stabilizing at 
approximately 675 psi.  It was theorized that further bleed-downs were necessary since the 
trapped pressure was not completely bled down.  The resin is also recommended to be squeezed 
in a clear fluid system rather than spotted in a mud system. 

 
Well 15 
 
Original Drill. This well was spudded in November, 1984.  A 13 ½-in. hole was drilled with 8.7 
ppg gelled water to 1,467 ft.  It was underreamed to 26-in. before running 20-in.casing to 1,466 
ft.  The casing had to be circulated and washed down from 695 to 736 ft.  The 20-in. was 
cemented with 950 sxs TLW/500 sxs ‘H’ with full returns.  A 203 psi test was made after 9 hrs 
WOC. 
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A 13 ½-in. bit was again used to drill to 2,823 ft and the hole was underreamed to 20-in.  The 16-
in. casing was run and cemented to 2,823 ft with 900 sxs TLW/500 sxs ‘H’.  The plug was 
bumped with 1,840 psi and had full returns while cementing.  The casing was reciprocated while 
pumping cement and latch-on centralizers were run 1 per joint for the first 6 joints. 
 
A 13 ½-in. bit was used to drill to 5,534 ft before running and cementing the 10 ¾-in. casing to 
TD with 2,000 sxs TLW/H followed by 500 sxs ‘H’.  Two bottoms up were circulated prior to 
pumping cement.  A total of 10 Latch-on centralizers were run at 1 per joint for the first 8 joints 
and then two at the shoe between the 10 ¾ and 16-in. casing strings.  The casing was stuck after 
tagging bottom and was unable to reciprocate.  The plug was bumped with 1,508 psi and 
received 35 bbls of cement at surface.  The spacer was damaged beyond use due to weather and 
was unable to receive a replacement spacer in time for the cement job. 
 
Upon testing the shoe and formation to a 17 ppg equivalent, a 9 ⅞-in. bit was used to drill to a 
TD of 11,737 ft while encountering gas cut mud from 9,464 ft.  Open hole logs were run and 
sidewall cores were recovered before running the 7-in. casing to 11,564 ft.  Over 300 units of gas 
was recovered upon circulating the first of two bottoms up and the mud weight was cut back 
from 15.8 ppg to 14 ppg.  Eighty Latch-on Trico centralizers were run every 30 ft.  The cement 
slurry pumped consisted of 850 sxs ‘H’/19.2 ppg Hi-Dense followed by 2,200 sxs 17.2 ppg ‘H’ 
with Gas Check additive.  The plug was bumped with 2,000 psi and held for 30 minutes.  The rig 
was skidded. 
 
Initial Completion. In March of 1986 the rig was skidded back to clean out and complete the 
well.  A bit and scraper tagged up ±50 ft high from the float collar.  The casing was tested to 
3,000 psi with 15.5 ppg mud and again to 4,500 psi with 8.6 ppg seawater.  A cement bond tool 
was run and indicated ‘very good’ cement above, thru, and below the zone of interest.  The well 
was perforated, sand control pumped, and tubing run before the rig was skidded. 
 
July 1990 P&A Operation.  Well 15 was to be abandoned by first attempting to reduce the 
annular press with a deep squeeze at the shallowest hydrocarbon source.  If pressure remained, 
operations would continue by milling and under-reaming below the 10 ¾-in. shoe.  An openhole 
packer would then be set and the openhole section would be cemented.  After milling the first 26 
ft of 7-in. casing, the mill could not re-enter the lower 7-in. casing stub.  It was theorized that this 
casing misalignment indicated massive hole washout in the vicinity. 
 
The rig was skidded over the well for abandonment operations.  The 20-in. casing was bled from 
440 psi and then filled with 8 bbl of seawater.  The 16-in. was bled from 180 psi and filled with 
less than 1 bbl seawater.  The 10 ¾-in. was bled from 550 psi to 200 psi before getting fluid in 
the returns.  No communication was observed between casing strings.  Within 24 hours, pressure 
had built up on the 20-in. to 440 psi, 360 psi on the 16-in. and the 10 ¾-in. was back up to 1,287 
psi. 
 
An EZSV was set at 9,450 ft.  A temperature and noise log was run from 9,350 ft and 9,260 ft 
respectively.  Excessive drag was noticed at 9,100 ft while TIH with 4 ½-in. guns.  After making 
a bit and scraper run to the EZSV, squeeze perforations were made at 9,350 ft.  Fifty barrels of 
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16.2 ppg ‘H’ cement was mixed and pumped with 45 bbl squeezed below an EZSV set at 9,300 
ft and 5 bbl spotted on top. 
 
Bleed off tests were performed on the 10 ¾-in., 16-in. and 20-in. casing.  See Tables 3-8, 3-9, 
and 3-10 for a summary of the results.  Casing pressures were bled to zero and shut-in for build 
up.  The 20-in. casing would not bleed off and began to flow at 0 psi. 
 
 Table 3-8 – (Well 15) 10 Hour Buildup Data from July 1990 Workover 
 
 
 
 
 
 
 
 

Table 3-9 – (Well 15) 24 Hour Buildup Data from July 1990 Workover 
 
  
 
 
 
 
 
 
 

Table 3-10 – (Well 15) 9 Hour Buildup Data from July 1990 Workover 
 
 
 
 
 
 
 
 
 
A window was cut in the 7-in. casing from 5,535 to 5,552 ft.  The window was then 
underreamed.  The hole started taking fluid while cutting the window so the mud weight was cut 
back from 15.7 to 14.7 ppg and ultimately down to 13.9 ppg mud while underreaming.  The 
window was extended down to 5,561 before losing contact with the 7-in. casing.  Plans to fish 
the 7-in. casing were abandoned and a bridge plug was set at 4,000 ft with 5 bbl 16.2 ppg ‘H’ 
cement placed on top. 
 
A Tri-State cutter made a cut in the 7-in. casing at 2,900 ft but was unable to neither establish 
circulation nor pull the casing free.  Another cut was made at 1,031 ft and was able to latch and 
pull the 7-in. casing free after circulating on casing volume.  Two joints of casing were then 

Well 15:  10 Hour Buildup 
Casing

OD 
(in.) 

Initial 
Pressure

(psi) 

Final 
Pressure

(psi) 
10 ¾ 250 25 
16 160 12 
20 146 110 

Well 15:  24 Hour Buildup 
Casing

OD 
(in.) 

Initial 
Pressure

(psi) 

Final 
Pressure

(psi) 
10 ¾ 25 20 
16 12 0 
20 110 225 

Well 15:  9 Hour Buildup 
Casing

OD 
(in.) 

Initial 
Pressure

(psi) 

Final 
Pressure

(psi) 
10 ¾ 20 72 
16 0 12 
20 225 315 
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backed off and a cut was made at 2,965 and 2,198 ft after running a free-point tool.  Three joints 
of casing were backed off and another cut and recovery was made at 1,754 ft.  A cut was made at 
2,272 ft and 1,976 ft.  The 7-in. casing was recovered to 1,976 ft and washed over to 2,031 ft. 
 
Progress was too slow so perforations were made at the 16-in. shoe at 2,825 ft but was unable to 
establish injection.  A second set of perforations was made at 2,870 ft and an injection rate of 3 
bpm was made at 500 psi.  An EZSV was set at 1,970 ft and 85 bbl of 16.2-ppg ‘H’ cement was 
squeezed below, leaving 5 bbl on top.  The 10 ¾-in. was tested to 1,500 psi. 
 
The 20-in. was bled down from 100 psi and in 1 hour had built up to 10 psi.  Squeeze 
perforations were made at the 20-in. shoe at 1,500 ft and 2 bpm at 1,000 psi injection was made.  
An EZSV was set at 1,400 ft with 45 bbl 16.2 ppg ‘H’ squeezed below and 5 bbl left on top.  The 
casing was tested to 1,500 psi before skidding the rig. 
 
1989 to 1982 Findings 
The following summarizes the learnings from operations between 1989 and 1982; however, 
Chapter 5 will study the findings in more detail.  Analysis of these operations led to the 
improvements described in Chapter 4 during the 1999 workover program. 
 
In summary, the four wells worked over in the 1989 workover program were exhibiting SCP 
within one year of the workover.  This program centered on perforating, cutting, and squeezing 
operations with Class ‘H’ cement.  Generally, it was not successful in eliminating SCP between 
the production and protective casing strings due to a failure to establish circulation with the 
annulus.  The greatest success in addressing SCP appears to have been within the most easily 
accessible 7-in. casing.   
 
During the beginning of the four well 1990 casing squeeze program, Halliburton’s Microbond 
cement was used and focused on possible deep source gas sands.  Following the Microbond 
squeezes, a Flo-Chek cement slurry was applied but had little to no success in reducing casing 
pressures.  Various Class ‘H’ and accelerated CaCl2 cement squeezes were attempted with 
limited success.  Magne-Set cement was also used but the pressure continued to rise one year 
after the squeezes.  
 
During the 1990 squeeze program, two methods were considered when addressing SCP in wells 
to be abandoned.  The first was to mill windows in casing at strategic points and fill the void 
with cement.  The second method was to perforate and squeeze at affected casing shoes.   
 
Milling and underreaming operations at the intermediate casing shoe were abandoned in mid-
1990 when trouble was encountered while milling and the lower stub fell away.  It could not be 
re-entered.  Damage to outer casing strings during milling operations was suspected; as a result, 
section milling operations were re-evaluated with blades sized to mill both the larger collars as 
well as the thinner tube. 
 
Some of the learnings from the 1989/1990 program were incorporated into operations between 
1990 and 1992.  It concentrated on removing affected casings when possible and applying 
improved squeeze techniques or different cement recipes. 
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CHAPTER IV:  DESCRIPTION OF 1999 RIG METHOD 
 
Summary 
To comply with MMS regulations, the operator put a workover rig on location in 1999 to address 
SCP.   Several scenarios were considered in an attempt to alleviate the SCP from numerous 
annuli of multiple wells on the platform.  In particular, proper application of various cementing 
designs and other pressure isolation methods were studied.  Any opportunities to use large OD 
coiled tubing were also reviewed.  Because some casing recovery was expected, the use of coiled 
tubing was not cost-effective. 

 
This chapter highlights the rig remediation techniques developed for use on twelve wells during 
the 1999 workover program.  The affected casing strings vary from the 7-in. production casing to 
the 16-in. surface pipe or 20-in. conductors.  Some wells presented opportunities for different 
approaches or varying combinations.  The preferred approach was to attempt pressure isolation at 
the greatest depth possible.  Then, according to MMS guidelines for plugging and abandonments, 
most wellbores were prepared for abandonment to the point of, but not including, blowing 
conductors and other surface pipes before platform removal.   

 
Each well presented its own unique operational difficulties.  However, a general strategy was 
developed based on depth considerations and the particular casing annulus exhibiting SCP.  
Intervening as deeply as possible was the preferred method.  This allowed for future remedial 
work if the present operations did not succeed as well as maximizing the hydrostatic pressure 
available to killing any pressure.   Casing shoe integrity and casing burst characteristics were the 
limiting factors considered when fluid weights and test pressures were chosen during the 
operation. 
 
The first thing to consider was the number of casing strings with sustained pressure and all 
associated cuts and plugs to properly abandon the well in accordance to MMS guidelines.  This 
included depth consideration for cement plugs to isolate terminated stubs, milled windows and 
associated cement plugs, as well as any surface cement plugs in preparation for permanent 
abandonment.  This minimum depth was compared to the 10 ¾-in. casing shoes or other 
maximum accessible depth. 
  
Initial cuts in the 7-in. production casing were made at approximately 2,000-ft. MD, which was 
between the 10 ¾-in. intermediate and 16-in. casing shoes. No cuts below the 10 ¾-in. casing 
shoe were attempted during this operation.  Deep cuts were attempted so that kill weight fluid 
could be circulated into the annulus through the cuts before pulling. Even if circulation was not 
established, it was hoped that if communication were opened with the annulus, the kill weight 
fluid would aid in suppressing pressure. 
 
An initial deeper cut using a mechanical cutter was made first and then on the same trip, a 
shallower cut 40 to 100-ft. was made below the hanger.  So that the first section of casing could 
be cut and pulled, a second shallow cut was necessary immediately below the casing hanger.  
The shallow cut released tension on the hanger to facilitate its removal.  Many times the hanger 
would have to be jarred out of the bowl when the tension was released.  Once the shallow cut 
was made and the hanger was removed, an attempt was made to pull the section of casing.  Many 
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times the casing would not pull free, so casing stretch was then calculated and cuts were made 
accordingly. At times, it was necessary to pull the sections 20 to 40-ft. at a time. 
 
Initially, a cement bond log was to be run to estimate the top of cement in the annulus of the 7-in. 
casing. The casing was then to be cut above this log-estimated top of cement. However, during 
the course of the program, a reliance on calculated pipe stretch became the preferred method.  It 
was found that even though the cement bond log indicated little cement bond, there was still 
enough cement and/or dehydrated mud to hinder any pull attempts with the rig.  Ultimately, a 
rough estimate of the top of cement was made from the reported volumes of cement pumped 
during initial cementing operations, whether or not returns were lost during pumping, and if 
cement returns occurred at surface, as well as any available cement bond log tops.  From this, a 
crude calculated top of cement was assumed, taking into account annular volumes and openhole 
washout.   
 
Past workover attempts were studied, and 
some improvements were made to the 
procedures.  Two main approaches to 
accessing and alleviating SCP were adopted 
during the 1999 workover program.   
 
The first method involved terminating the 
affected casing string as deeply as possible 
inside the outer casing without extending 
below the 10 ¾-in. casing shoe.  
Terminating the casing as deeply as 
possible, maximized the room available for 
possible future intervention and provided the 
hydrostatic advantage of the longer fluid 
column. 
 
The second method involved milling a 120-
ft. foot window and isolating both the lower 
stub and upper stub with cement plugs.  This 
method was attempted in cases where the 
inner casing string could not be 
economically or feasibly removed to a 
necessary minimum depth to address 
annular pressure.  For instance, if drilling 
reports indicated the inner casing was 
cemented in place with cement to surface, or 
if a cement bond log indicated too shallow 
of a top of cement, a window milling 
procedure was planned. 
 
Discussion of preferred fluid systems and weights, as well as a brief description of the cement 
slurry properties, will be presented after both methods of pressure isolation. 

TD

26-in. DP 

20-in. casing 

10 ¾-in. casing 

16-in. casing 

 

 

7-in. casing 

7-in. x 10 ¾-in. 0 psi 

7-in. - 0 psi 

Abandoned Zone 

16-in. x 20-in. - 0 psi 

Figure 4-1:  Example wellbore 
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First Method:  Termination of Inner Casing  
The following example is of a typical ‘cut and pull’ or ‘termination of inner casing’ operation in 
7-in. 29-lb/ft casing inside 10 ¾-in. 45.5-lb/ft casing.  Refer to Appendix C for well schematics 
that illustrate the following sequence of events.   
 
This is the preferred method when the affected casing annulus is not cemented or removal is not 
otherwise restricted.  Fig. 4-1 illustrates a typical wellbore before this workover program. 
  
Cut and Pull Casing  
Upon gaining access to the wellbore, the mud was circulated out to kill weight fluid.  A trip in 
the hole with the workstring and a mechanical cutter was then made to cut the 7-in. casing in an 
attempt to circulate kill weight fluid down the casing and into the annulus if possible.  When the 
deep cut was made, the well was verified to be dead before the cut immediately below the hanger 
was made.  When a successful shallow cut was made, the pumps were rigged down and the 
workstring was pulled out of the hole.  The shallow cut released tension on the hanger allowing it 
to be removed along with the first 40 to 50-ft. of casing down to the shallow cut.  
 
A spear and grapple set to catch 7-in. 29-lb/ft casing was then picked up on workstring and 
tripped into the hole to spear into the 7-in. casing.  An attempt to establish circulation was not 

made until there was casing movement in order to 
avoid packing mud or sediment in the annulus.  Once 
the pipe was moving, it was reciprocated while mud 
was circulated in the hole.  The casing was picked up 
and pulled out of the hole to recover the casing to the 
deeper cut.  
 
If the affected casing could not be cut and pulled, 
contingent stretch calculations were performed to make 
a cut as deeply as possible.  A spear and grapple set to 
catch the affected casing was picked up and speared 
into the stub to provide casing movement.  Mechanical 
cuts were then made at depths calculated from stretch 
to not be restricted behind pipe. 
 
Sometimes it was necessary to pilot mill immediately 
below the casing hanger or from the deepest successful 
casing cut and recovery.  The pilot mill similar to the 
one illustrated in Fig. 4-2 contained carbide inserts to 
increase penetration rates and mill life.  This ‘Metal 
Muncher’ pilot mill is specifically designed to mill 
various pipes including casing and liners.   The blade 
design creates small cuttings for ease in removal and is 
run in conjunction with a shock sub and drill collars to 
provide weight.  The weight on mill and rotating speed 
are determined by penetration rate, torque, and hole 
cleaning. 

Figure 4-2: Typical Metal 
Muncher Pilot Mill 
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Initially, some balling of metal cuttings occurred at or around the bell nipple but a combination 
of mud conditioning and the use of a mud trough, built in conjunction with the rig contractor, 
minimized any delays from milled cuttings.  The open-top trough was introduced after the third 
well in the program encountered approximately 40 hours of trouble time cleaning the mud 
flowlines of metal cuttings.  Few problems from plugged return lines were encountered upon 
switching to the open-top mud troughs and removing all sharp bends or obstructions. 

 
Casing Cleanout: Preparation for Pressure 
Isolation of Inner Casing Stub and Annulus 
Once the casing was cut and pulled, a trip in the 
hole to the 7-in. casing stub with a bit and scraper 
sized for the outer 10 ¾-in. 45.5 lb/ft casing was 
made.  The bit and scraper was worked from the 
casing stub up through the top of the proposed plug 
location. A minimum of one bottoms up was 
circulated out to clean the hole before pulling out of 
the hole with the bit and scraper. 
 
Whenever possible, a bottom was set to avoid 
cement contamination from gas or other fluids 
migrating through the setting cement.  A cast iron 
bridge plug (CIBP), similar to the one shown in Fig. 
4-3, was the preferred method.  It had both slips and 
sealing elements rated to 5,000 psi differential and 
up to 300oF and was usually set on the workstring 
inside the proposed casing stub before milling or 
pulling operations.  The CIBP was then pressure 
tested, resulting in a pressure loss of no more than 
10% during a 15-minute time period, which verified 
proper setting. 
 
When cementing in a water-based mud 
environment, a diverter sub, similar in design to the 
one pictured in Fig. 4-4, was then picked up on 
workstring and tripped in the hole to the planned top 
of cement and rotated into the hole throughout the 

plug interval. The tool has an axial flow pattern for efficient removal of mud cake or trash from 
the casing.  Upon switching from a water-based mud system to gelled brine in October of 2001, 
the diverter sub run was removed from the program. 

 
Pressure Isolation of Inner Casing Stub and Annulus 
Upon proper casing preparation, the workstring was tripped into the hole down fifty feet inside 
the 7-in. casing stub. The annulus was closed and injection rates were established before cement 
was mixed.  A spacer was pumped ahead of the latex cement. 

 
The latex cement was mixed, pumped, and then displaced to balance the cement plug inside and 
outside of the workstring.   

Figure 4-3:  Example CIBP used during 
1999 Workover Program 
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Example calculation (7-in. 29 lb/ft stub x 10 ¾-in. 45.5 lb/ft):  
7-in. 29-lb/ft Capacity:  50 ft * 0.0371 bbl/ft           = 1.86 bbl 
10 ¾-in. 45.5 lb/ft Capacity: 50 ft*0.0961 bbl/ft      = 4.81 bbl   

Total Volume               = 6.67 bbl 
 

Cement volume calculated to leave 50-ft. cement in 7-
in. casing stub and 50-ft. cement in 10 ¾-in. casing:  
[(1.86 + 4.81) bbl* 5.615 ft3/bbl]/1.20 ft3/sk ~ 32 sacks  

 
The workstring was then slowly picked up, 30 to 50 ft. per minute, four stands out of the cement 
plug. The workstring annulus was closed and pressure applied to attempt to squeeze a maximum 
of 2-bbl of cement around the 7-in. x 10 ¾-in. casing annulus.  This left a minimum of 20 ft. of 
cement in the 10 ¾-in. casing.  Before the squeeze pressure was released, a final squeeze 
pressure was established and recorded. 
 

Either one and one half tubing volumes was 
then reverse circulated, or until no cement was 
in the returns, without exceeding a pump 
pressure that could possibly break down any 
exposed casing shoes.  The casing was then 
pressured to the final squeeze pressure 
determined earlier.  The final squeeze pressure 
was held while waiting on the cement to cure 
for a minimum of twelve hours before the 
workstring was pulled out of the hole. 
 
Next, a bit and scraper for 10 ¾-in. 45.5-lb/ft 
casing was run to the top of the cement plug.  
If the top of cement was above a minimum 
depth necessary to place all subsequent 
isolation plugs, the top of cement was dressed 
off to that minimum depth.  The scraper was 
worked and a bottoms up was circulated before 
pulling out of the hole with the bit and scraper. 

 
A 10 ¾-in. CIBP was then picked up and tripped in the hole on workstring and set after tagging 
the cement plug and picking up around ten feet.  Once the CIBP was set and tested, 100-ft. of 
cement was then spotted on top.  Fig. 4-5 is an example ‘cut and pull’ operation illustrating the 
cement and mechanical isolation of the terminated casing stub. 
 
Second Method:  Window Milling Operation 
One primary concern when milling concentric strings of pipe is breaching the outer barrier with 
the mechanical cutters.  Great care was taken to avoid compromising the next larger casing both 
when cutting to recover a casing string as well as during any window milling operation.  This is a 
very difficult proposition when invariably a cut is made at a point where the inner casing is 
eccentric in relation to the outer tube.   

Figure 4-4:  Diverter Sub for Setting of 
Balanced Cement Plugs 



 38

To help minimize this effect, cutters were optimized to the outer diameter they were cutting.  
Previous milling operations may only have one size cutter large enough to mill up the tube and 
collar in one run. This minimized tripping time but compromised casing integrity. During this 
operation, two cutter sizes were used on every casing when a window ‘cut-out’ was made:  one 
specifically sized to cut the tube, and a larger cutter for the casing collars.  The chances of 
cutting into the next larger casing were minimized to the length of each collar, which can be 
considered a significant improvement from previous operations. 
 
Another precaution was the alteration of the cutters to have cutting material only on the lower 
end of the blades. This was done to avoid unnecessary wear on the outer casing string. 
 

Window Milling 
The following is a summary of a 
typical 120-ft. window milling 
operation in 10 ¾-in. 45.5 lb/ft 
casing in which three sizes of 
cutters were used.  Refer to 
Appendix D for well schematics 
that illustrate the following 
sequence of events.  The 
wellbore schematic in Fig. 4-6 
illustrates the window milling 
procedure and can also be used 
as a reference. 
 
Whenever possible, a bottom 
was set to avoid cement 
contamination from gas 
migrating through the setting 
cement or if the wellbore fluid 
and cement had a 2-lb/gal or 
greater density difference.  The 
preferred method was setting a 
CIBP between 100 and 200-ft. 
deeper than the proposed top of 
inner casing stub.  The bridge 
plug was then pressure tested to 
a nominal pressure, depending 
on the burst capabilities of the 
surrounding casing, to verify 
proper setting.   

26-in. DP 

20-in. casing 

10 ¾-in. casing 

16-in. casing 

•100-ft. latex cement on CIBP 
•CIBP +50-ft. above 7-in. stub 

• Latex cement on CIBP – 50-ft. in 
7-in. and 50-ft. in 10 ¾-in. 

• 7-in. CIBP 50-ft below 7-in. stub

7-in. casing

Abandoned Zone 

TD 

ML 

Figure 4-5:  Example 1999 WO Program 
Casing Stub Isolation 
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The use of the CIBP was not meant 
to act as a long-term pressure seal 
when not used in conjunction with a 
cement plug; rather, it was used to 
aid in obtaining a suitable cement 
job. It is felt that long-term 
degradation could occur to the CIBP 
rubber elements from constant 
exposure to the wellbore 
environment (mainly temperature).  
If the wellbore fluid and cement 
density was greater than 2-lb/gal, 
contamination of the cement by 
mixing with the drilling mud could 
occur and jeopardize the cement 
integrity. The bottom was also set far 
enough into the stub to allow debris 
to fall out of the way from any 
milling operation.   

 
The following 10 ¾-in. ‘cutout’ 
section milling bottomhole assembly 
(BHA) was used to cut a window in 
the tube of the 10 ¾-in. 45.5 lb/ft 
casing immediately below a casing 
coupling.  Other milling assembly 
sizes for the various casing sizes 
encountered during the project are 
listed in Table 4-1.   

 
• 9 ¾-in. stabilizer 
• Section mill with maximum expansion of 11 ½-in. 
• 9 ⅝-in. OD string mill 
• 7 ¼-in. OD cushion sub 
• Drill collars 
 

An example Lockomatic section mill is illustrated in Fig. 4-7.  The arms of the Lockomatic 
section mill lock into the open position to ensure full gauge milling.  It can be run with a 
standard drilling BHA and can be dressed with various cutting knives.  
 
A minimum of four ditch magnets for cleaning the mud system were used in the surface return 
lines.  Attempts were made to remove any restrictions, obstructions, or sharp bends where 
applicable in the flow lines before milling operations.  

 
   
 
 

Figure 4-6:  Example 1999 WO Program 
Section Mill Operation 

TD

26-in. DP 

20-in. casing 

10 ¾-in. 

16-in casing 

•100-ft. latex cement on CIBP
•CIBP +50-ft. above 7-in. 

b

• 7-in. casing cut/recovered 
• 100-ft. latex cement on CIBP – 50-ft. 

in 7-in. and 50-ft. in 10 ¾-in. 
• 7-in. CIBP 50-ft. below 7-in. stub 

 

 

• 120-ft. window milled in 10 ¾-in 
casing 

• 100-ft. latex cmt on IBP- 50-ft. in 10 
¾-in. and 50-ft. in 16-in.  casing 

• IBP +50-ft. above 10 ¾-in. stub 

 

7-in. casing 

Abandoned 

M
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Figure 4-7: Lockomatic Section Mill used during 
1999 Workover Program 

 Table 4-1:  1999 WO Program Milling Assembly Dimensions 
 
 
 
 
 
 
 
 
The tools were made up and tested at the rotary before tripping in the hole.  The tools were 
passed through the entire length of the proposed window milling section to verify no obstructions 
were present.  The assembly was 
picked up to top of the proposed 
section while the depths of all 
collars in the proposed window were 
noted.  The collars were noted from 
blade resistance as they dragged past 
a collar at low pump rates through 
the tool. The low pump rates 
allowed for the blades to extend 
without beginning a cut. 
 
When the proposed cutting zone was 
verified to be clear of obstructions, 
the pumps were idled while slacking 
off.   When the weight indicated a 
collar near the desired window 
depth, the assembly was slacked off 
2 to 3 ft. below the collar so that the 
window could be cut out.   
 
To begin milling the cutout window, 
the mill was rotated while increasing 
the circulation rate.  The tool was 
rotated several minutes before 
slacking off and then slacked off in 
¼-in. increments for the first 12 to 
18 in. Cutout times varied 
depending on tool pressure, but 
adequate time was taken in cutting 
out the window to ensure a smooth 
cutout.  Circulation rates for proper 
tool function depended on the mud 
weight being used.   
 

Casing 
Size 
(in.) 

Cut-Out
Mill 
(in.) 

Section  
Mill 
(in.) 

Coupling 
Cut Mill 

(in.) 
7 7 ½ 7.38 7.63 

10 ¾ 11 ½ 11 ¼ 12 
16 16 ¾ 16 ½ 17 ¼ 
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When the cutout window was complete, the BHA was pulled out of the hole and the 11 ½-in. 
section mill was laid down.  A section mill BHA with ‘mill-down’ blades (maximum expansion 
of 11 ¼-in.) was then picked up. The BHA was as follows: 
 

• 9 ¾-in. stabilizer 
• Section mill with maximum expansion of 11 ¼-in. 
• 9 ⅝-in. OD string mill 
• 7 ¼-in. OD cushion sub  
• Drill collars 

 
A minimum of four ditch magnets were again used for cleaning the mud system, and the tools 
were made up and tested at the rotary before tripping in hole.  The window was located from the 
previous window ‘cutout’ run, and section milling of the tube began.  Milling was stopped at 1 to 
2 ft. above the next deeper coupling.   
 
Higher weights and rotary speeds were sometimes needed to achieve the best milling results. The 
string mill and section mill were worked to the upper stub to help prevent cutting buildup at that 
point, and to assist in hole cleaning. The recommended milling fluid parameters were sufficient 
to clean the hole; however, the actual rate of penetration varied due to hole cleaning and the 
hardness of cement behind the casing.  
 
Upon reaching the next deeper coupling, the 11 ¼-in. section mill BHA was pulled out of the 
hole.  The 11 ¼-in. mill-down blades were changed out to a set of ‘coupling cutout’ blades with 
a maximum expansion of 12-in. and the tool was tripped back in the hole to the bottom of the 
window. 
 
This milling procedure with the 11 ¼-in. and 12-in. mill-down blades was repeated until a 120-ft. 
section was completed.  The milling assembly was then pulled out of the hole and laid down in 
preparation for cementing operations.   
 
Casing Cleanout:  Preparation for Pressure Isolation of Lower Casing Stub 
The first step in preparation for pressure isolation of the lower casing stub was to trip in the hole 
with a bit and scraper sized for the milled casing along with a Lockomatic under reamer dressed 
with blades for the next larger casing.  This trip was used to clean the greater portion of the 
cement and dehydrated mud from the casing wall.  The outer casing was cleaned throughout the 
milled region, and a minimum of one bottoms up was circulated to clean the outer casing before 
a cement plug was pumped.  The bit, scraper, and Lockomatic under reamer tool was then pulled 
out of the hole. 
 
The Lockomatic under reamer tool was laid down, and a Multi-String Cutter (MSC) tool, 
pictured in Fig. 4-8, for the next larger casing was picked up and run in the hole with a bit and 
scraper sized for the inner casing. This tool was used to polish off the casing throughout the 
milled area of the casing to increase the bonding characteristics of the cement to casing.  A 
minimum of one bottoms up was circulated to clean the outer casing before the cement plug was 
pumped.  The bit, scraper, and MSC tool were then pulled out of the hole. 
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Initially, the MSC tool run in tandem with a bit and scraper for the 10 ¾-in. 45.5-lb/ft casing was 
the second outer casing cleanout trip.  This run was removed from the program in favor of a 
single cleanout run with Lockomatic underreamer tool.  This was done for two reasons:  first, the 
Lockomatic underreamer was found to provide sufficient cleaning of the casing walls without the 
need for the MSC run, and second, the outer casing was being exposed to unnecessary wear. 
 
Pressure Isolation of Lower Casing Stub 
During a window milling operation, the next 
trip in the hole with the workstring was to 
the previously placed artificial bottom set 
inside the inner casing stub.  A heavy mud 
was spotted to help minimize any cement 
contamination from the swapping of light 
and heavy fluids in the wellbore. The mud 
was generally a 15.7-lb/gal mud which put 
the fluid to cement weight differential (15.6-
lb/gal latex cement) well within the 
recommended 2-lb/gal. This plug was 
spotted to the bottom of the expected cement 
plug in the inner 10 ¾-in. casing stub. 
  
Upon spotting heavy fluid, the workstring 
was placed at the proposed cement plug 
bottom.  The annulus was closed and 
injection rates were established before the 
cement was mixed.  Typically a 25-bbl 
spacer was then pumped ahead of the latex 
cement slurry, but in casing strings greater 
than 10 ¾-in., a 50-bbl spacer was pumped 
to verify proper displacement.  
 
Necessary cement volumes were calculated 
to leave 50 ft. of cement in the inner casing 
stub and 40 ft. in the stub annulus.  The 
cement plug was displaced and balanced 
inside and outside the workstring. 

 
Example calculation (10 ¾-in 45.5 lb/ft stub x 16-in 84 lb/ft):  
16-in. 84 lb/ft Capacity: 40 ft*0.2188 bbl/ft  = 8.75 bbl 
10 ¾-in. 45.5 lb/ft Capacity: 50 ft * 0.0961 bbl/ft  = 4.80 bbl   

Total Volume   =13.55 bbl 
 
Cement volume calculated to leave 40-ft. cement in 16-in. 
casing and 50-ft cement in 10 ¾-in. casing stub:  [(8.75 + 
4.80) bbl* 5.615 ft3/bbl]/1.20 ft3/sk ~ 65 sacks  
 

Figure 4-8: Multi-String Cutter used during 
1999 Workover Program 
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When the cement plug was spotted, the workstring was slowly picked up four stands at 30 to 50-
ft. per minute.  The annulus between the workstring and inner casing annulus was closed and 
pressured in an attempt to squeeze a maximum of 4-bbl of cement into the 10 ¾-in. x 16-in. 
casing annulus.  Squeeze pressure varied based on burst characteristics of the casing.  A final 
squeeze pressure was established, and then released. 
 
One and a half tubing volumes was then reverse circulated or until there was no cement in the 
returns, without exceeding 80% of final squeeze pressure.   

 
Sample workstring volume calculation:  4 ½-in. 16.60-lb/ft S-135 
XH at 2,100-ft:  1 ½ tubing volume = 1.5*(0.0139 bbl/ft)*(2,100-ft) 
= ±44 bbl 

 
After the hole was circulated clean, the casing was re-pressured to the final squeeze pressure 
determined earlier.  The final squeeze pressure was held while waiting on the cement to cure for 
a minimum of 12 hours.  The pressure was then released before pulling out of the hole. 

 
Casing Cleanout: Preparation for Pressure Isolation of Upper Casing Stub 
The next trip in the hole was with a bit and scraper for the 10 ¾-in. 45.5-lb/ft casing run in 
tandem with an MSC tool for 16-in. 84 lb/ft casing.  The MSC tool’s arms locked out; the same 
tool was used in milling the inner casing, but the blades were changed out to protect the outer 
casing.  The 16-in. casing was cleaned from the top of the 120-ft. window down to the top of 
cement.  The top of cement was tagged for depth control.   The MSC tool was worked through 
the window and a bottoms up was circulated to clean the 16-in. casing before the annulus was 
isolated around the upper 10 ¾-in. stub. 
 
Pressure Isolation of Upper Casing Stub 
An inflatable bridge plug was run in on workstring and set 10 ft. above the top of cement for use 
as an artificial bottom. This bottom was again used to help prevent gas migration and to 
minimize any mud contamination of the cement slurry.  An inflatable bridge plug was needed to 
pass through the smaller 10 ¾-in. 45.5-lb/ft casing and set in the larger 16-in. 84-lb/ft casing.  
The inflatable bridge plug was tested with a resulting pressure loss of no more than 10% during a 
15-minute time period to verify proper setting. 
 
When water-based drilling mud was being employed, a diverter sub was picked up and tripped in 
the hole to the planned top of cement at ±100 ft. above the inflatable bridge plug.  The plug 
interval was cleaned by washing and rotating into the hole.  The casing was then displaced with 
8.6-lb/gal filtered seawater, and the well was monitored for flow to serve as an underbalance test. 
 
A 25-bbl spacer was pumped before the latex cement was mixed and pumped to place 100 ft. of 
cement in 16-in. casing.  Fluid was pumped behind to balance cement plug inside and outside the 
workstring.  The workstring was again slowly picked up four stands at 30 to 50-ft. per minute.  
One and one-half tubing volumes was reverse circulated or until there was no cement in the 
returns.  Pressure was held on the cement while waiting a minimum of 12 hours for the cement to 
cure. 
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Clear Fluid vs. Drilling Mud 
Initially, a water based drilling mud was used under the assumption that it was a cheaper 
alternative to clear fluids and would have superior cuttings lifting capabilities. Table 4-2 is a 
comparison between the initial costs per barrel of mud and equivalent weight clear brine. 
 
 Table 4-2:  WBM to Brine Cost Comparison 
 
 
 
 
 
 
 
  
During both milling and casing cutting operations, a significant amount of fluid conditioning 
time was required to maintain proper mud properties.  While milling, not only were considerable 
amounts of metal being lifted, but also large amounts of annular material like cement and 
dehydrated mud from the initial cementing operation on the respective casing string.  These 
cuttings adversely affected the desired mud characteristics. 
 
One further source of mud contamination resulted from the water based drilling mud coming into 
contact with zinc bromide. Various amounts of zinc bromide were being pumped down the 
annuli of the wells with SCP in the field to avoid rig intervention.  It was hoped that increasing 
the hydrostatic head of those annuli with SCP, would reduce the pressure to an acceptable level 
or eliminate it outright.  Increased mud conditioning time to rid the system of clabbered mud and 
added rig costs was common early in the program. 
 
As a direct result of excessive mud conditioning time, the preferred fluid system was changed 
from a water-based drilling mud to gelled brine during the second half of the program in 2001.  
A brine system does not have the zinc bromide compatibility issues of the water-based mud and 
can be sufficiently weighted up or down to suit the pressure requirements in the program.  It was 
found that sufficient hole cleaning of both metal cuttings, as well as cement and dehydrated mud, 
was obtained by the gelling of the brine with HEC and a xanthan gum viscosifier blend.  
 
If used as a carrying agent, the brine would be required to economically carry large amounts of 
iron, cement, and dehydrated mud to the surface.  A 40-yield point gelled brine was decided 
upon.  An HEC-blended system was implemented and was very effective in obtaining the 
necessary rheology to lift heavy cuttings and clean the hole. 
 
A breakdown of the mud conditioning costs due to zinc bromide and cement contamination 
incurred on four wells is included in Table 4-3.  Total rig time spent conditioning the clabbered 
and contaminated mud approached 6 days and $385,000 before the switch to a gelled brine 
system occurred in October of 2001.  This cost estimation does not include the charges incurred 
for replacing hundreds of barrels of contaminated water-based mud systems. 
 
  
 

Estimated Fluid Cost 
($/bbl) Density 

(lb/gal) WBM Brine 
10.0 25 to 30 5 
11.6 25 to 30 12 
14.0 25 to 30 115 
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 Table 4-3:  Mud Conditioning Time Due to Contamination 
 
 
 
 

 
 
 
 
 

 
   *Switched from WBM to brine fluid system 
 
Determination of Fluid Weights  
In order to determine the proper density of workover fluid, the frac gradient of the outermost 
exposed casing shoe was considered the upper available weight limit.  The equivalent fluid 
weight at the true vertical depth of the casing shoe with both proposed fluid weights and 
expected applied pressures were considered. Because most of the wells had similar casing 
programs for the 7-in., 10 ¾-in., 16-in., and 20-in. casing strings, similar proposed fluid weights 
could be standardized for each equivalent casing size. 
 
The workover fluid weight was designed to fall between the pore pressure and fracture gradient 
determined from a field-wide pore pressure plot developed during the initial drilling program as 
in Table 4-4. 

  
 Table 4-4:  Workover Fluid Design Table 

 
Attempts were made to stay closer to the pore pressure than frac gradient when possible.  All 
fluid weights were sufficient to kill encountered SCP upon proper circulation and treatment of 
casing or annular area. 
 
Cement Slurry 
The cement slurry was treated with a latex additive as shown in Fig. 4-9 to increase both the 
initial and long term bonding characteristics with the casing.  It was intended to perform during 
pressure buildup, either constant or cyclical.  Foamed cement was considered for its ability to 
maintain bond and avoid microannuli during pressure cycles.  However, it was discarded because 
of the operational and economic issues of nitrifying small batches of cement. 
 
Latex cement bonding is enhanced by improvement to the slurry’s wetting characteristics and the 
low viscosity of the slurry itself during the setting of the cement plugs.  Inclusion of the latex 

Mud Condition 
Time Well 

(hours) (days)

Average 
Day Rate 
($/day) 

Rig Cost for 
Conditioning 

($) 
12 30.00 1.25 49,951 62,439 
9 58.00 2.42 60,442 146,270 
4 9.00 0.38 64,888 24,657 
6* 44.50 1.85 81,727 151,195 

Totals 5.90  384,561 

*Depth of Concern Pore Pressure Workover Fluid Fracture Gradient 
MD/TVD Shoe (psi) (psi/ft) (lb/gal) Type (lb/gal) OB (psi) psi (psi/ft) (lb/gal) 
1,472/1,341 20-in.  635 0.4732 9.1 WBM 10.0 697 781 0.5824 11.2 
2,741/2,350 16-in. 1,308 0.5564 10.7 WBM 11.6 1,418 1,772 0.7540 14.5 
5,363/4,318 10- ¾-in. 2,852 0.6604 12.7 WBM 14.0 3,144 3,862 0.8944 17.2 
*Depth of concern is exposing the 10 ¾-in., 16-in., and 20-in. shoes to fracture gradient mud weights or 
pressures. 
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additive can lower the surface tension between the slurry and the casing and its low viscosity can 
aid in evenly displacing the wellbore fluid to help minimize cement contamination. 
 
It has been shown that a low shrinkage and highly elastic cement formulation is successful in 
providing successful pressure isolation (Parcevaux and Sault, 1984).  The damage resulting from 
thermal cycling can be detrimental to the cement/casing bond.  The resilient and ductile 
properties of various latex cements are proven to mitigate these detrimental effects (Carpenter et 
al., 1991).  Typical Portland cements tend to fail from tensile cracking as casing pressure is 
applied (Onan et al., 1993 and Bosma et al., 1999).  It was hoped that the increased cement plug 
elasticity, inherent with the latex cement slurry, would aid in continued casing bond during any 
potential pressure buildup.  If pressure were to return from below the plugs, the casing may 
balloon and risk damaging the cement to casing bond resulting in SCP buildup.  The latex 
cement is intended to ‘flex’ with the pipe but still maintain sufficient cement to pipe bonding 
characteristics. 
 
1999 Summary of Findings   
The following are bulleted findings and conclusions from the 1999 workover program.  A more 
in depth analysis is contained in the following two chapters.  
  
• Initially, some balling of metal cuttings occurred in the mud return flowline.  The use of an 

open-top surface trough, and eliminating unnecessary sharp bends, restrictions, or 
obstructions in the return lines minimized any delays due to balled cuttings. 

• To help minimize the concern of breaching the outer barrier when milling concentric strings 
of pipe, cutter sizes were optimized to the outer diameter they were cutting.  During this 
operation, two cutter sizes were used on every casing when a window ‘cutout’ was made:  
one specifically sized to cut the tube and a larger cutter for the casing collars.  

• HEC and xanthan gum blended/gelled brine with a 40-yield point was able to economically 
to carry large amounts of iron, cement, and dehydrated mud to the surface.  It did not have 
the zinc bromide compatibility issues of a water-based mud. 

• The proper density of workover fluid was determined by considering the frac gradient of the 
outermost exposed casing shoe and expected applied pressures as the upper available weight 
limit.  When possible, attempts were made to stay closer to the pore pressure than frac 
gradient to avoid breaking down the formation at the casing shoe. 

• Before any cementing operation in a water-based mud environment, proper hole preparation 
is imperative and can be done by rotating a diverter sub into the hole throughout the plug 
interval and the pumping of properly sized spacers. The diverter tool efficiently removed 
mud cake or trash to increase the bonding characteristics of the cement to casing. 

• The cement slurry was treated with a latex additive to help increase both the initial and long-
term bonding characteristics with the casing.  It was intended to perform during pressure 
buildup, either constant or cyclical.  Improvements in cementing technology should be 
considered when designing future programs. 

• Isolation of windows or casing stubs was augmented by squeezing cement into the annulus 
and holding pressure. The final squeeze pressure varied based on burst characteristics of 
casing and the established pressure previous to reversing out the workstring. 
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• Whenever possible, a ‘bottom’ was set to avoid cement contamination from gas migrating 
through the setting cement or if the wellbore fluid and cement had a 2-lb/gal or greater 
density difference.   

• CIBP was the preferred ‘bottom’ and is not meant to act as a long term pressure seal when 
not used in conjunction with a cement plug.  Long-term degradation could occur to the 
rubbers from constant exposure to the wellbore environment. 

• Although the casing was pressure tested upon completion of remedial operations, future 
recommendations might include running of a caliper log or equivalent after milling 
operations to aid in verifying that the outer casing did not sustain excessive damage that 
could compromise pressure integrity. 

 

 
 
 

Figure 4-9:  1999 Workover Program Cementing Unit Hookup 
 

Cement Information 20 bbls mix water (with additives)
5.2 gal/sk (840 gals)/(5.2 gal/sk) = 161.5 sxs
15.6 ppg (161.5 sxs)*(1.2 cu-ft/sk) = 193.8 cu-ft
1.2 cu-ft/sk = 34.5 bbls

= 97.2 ft in 20" casing

P&A Program
Cementing Unit Hookup

10 bbl 
Mixing Tank

10 bbl 
Mixing Tank

Latex and Mix 
Water

8 bbl 
Tub

Cement, Latex, and 
Mix Water to Well

P-Tank
15.6 ppg Standard 

Cement



 48

CHAPTER V:  ANALYSIS 
 
1989/1990 Workover Summary and Conclusions 
The 1990 workover program addressed casing pressure problems on the protective casing in 
Wells 11, 1, and 14 wells.  Well 14 had casing pressure on the surface casing that tended to flow 
when bled down.  Four wells from the 1989 workover program were exhibiting SCP within one 
year of the workover as evidenced in Table 5-1.  Extensive perforating, cutting, and squeezing 
operations with Class ‘H’ cement was not successful in eliminating SCP between the production 
and protective casing strings.  
 
 Table 5-1:  One Year 1989 Workover Results 
 
 
 
 
 
 
 
 
 
 
 
Table 5-2 summarizes the results of the 1989/1990 workover program.  It indicates only 
marginal success in reducing or eliminating SCP.  The data was pulled from correspondence and 
drilling reports and may be lacking some details.  For instance, pressure was only monitored for 
14 hours after operations on Well 15 in July 1990.  It indicates that the casing pressure was 
removed but no data was found to verify long term success.  The greatest success appears to be 
within the most easily accessible 7-in. casing in which pressure is indicated to have been 
removed in 2 of 3 wellbores exhibiting SCP.  Post job 7-in. casing pressures could not be located 
for a fourth well but over 1,000 psi returned within two years.  None of the first 3 wells 
exhibiting 7-in. SCP in 1989 had pressure returning within the same two years (100% success). 
 
Of 7 wells exhibiting SCP on intermediate casing in 1989, only 2 wells showed noticeable initial 
improvement.  However, both drastically rose to pre-1989 levels within months (0% success).  
Well 13 did have success in eliminating communication between the intermediate and production 
casings.  The gravel pack was replaced on Well 14 and returned to production without addressing 
the SCP. 
 
Pressure existed on the surface casing in 3 wells before 1989/1990 operations only 1 showed 
success (33%).  Well 13 appears to be the only well that the surface casing pressure was 
successfully removed.  Post job correspondence did not indicate whether the pressure was 
successfully addressed for Well 15 and Well 14 casing pressures were never remediated during 
this program. 
 
 
 
 

One Year 1989 
Workover Results on 

Protective Casing 
Well 

Number 
Pressure 

(psi) 
13 2,100 
10 1,642 
5 957 
3 120 
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 Table 5-2:  1989/1990 Workover Program Results 
 

*Casing Program includes 7-in. x 9 ⅝-in. x 11 ¾-in. x 16-in. x 20-in. 
 
Design Concept 
During the 1990 squeeze program, two methods were considered when addressing SCP in wells 
to be abandoned.  The first was to mill windows in casing at strategic points and fill the void 
with cement.  The second method was to perforate and squeeze at affected casing shoes.  The 
former operation is considered very expensive with a high probability of success while the latter 
option is cheaper with a low probability of success. 
 
The design concept centered on addressing either a deep source well below the intermediate 
casing shoe or a shallow source just below the intermediate casing shoe.  Perforate to squeeze or 
milling and underreaming options were then considered based on available data or symptoms.  
Initial operational decisions were based on the above while factoring the probability of success.  

Casing Pressures (psi) 

Before Workover Post Workover Well 
Program 

7-in. 10 ¾-
in. 16-in. 20-

in. 7-in. 10 ¾-
in. 

16-
in. 

20-
in. 

Remarks 

3 
June 
1989 
WO 

0 >500 0 0 0 +/- 
200 0 0 

Press. remained at 200 psi 
for 18 mos. but then 
drastically rose  

13 
June 
1989 
WO 

>100 >2,000 +/- 
1,000 0 0 +/-

2,000 0 0 
Communication 
eliminated. Aborted B/D 
after mud & debris returns

10 
July 
1989 
WO 

0 >1,500 0 >0 0 +/- 
250 0 0 

Clabbered mud from 10 
¾-in. Temp surveys found 
no anomalies. 

1 April 
1990 TA >500 +/-

1,000 0 0 0 +/-
1,500 0 0 

7, 10 ¾, & 20-in. all had 
SCP within 1 yr. of initial 
drill. Temp log indicated 
possible gas flow below 
10 ¾-in. shoe. 

May 
1989 
WO 

?? 0 
(11-3/4) <1,000 >0 No remedial work done to 

address SCP.  

Temp/noise log indicated 
deep damage in 9 ⅝-in. & 
anomaly above 10 ¾-in. 
shoe 

Aug. 
1989 
WO 

>100 
(9-5/8) 

>100 
(11-3/4) >900 0 

Attempted to replace gravel 
pack. Aborted due to csg 
damage. 

Csg damage @ deep zone 
14* 

April 
1990 
WO 

0  
(9-5/8) 

+/-300 
(11-3/4) 

+/-
1,000 >0 Ran 7” csg & gravel pack. No remedial work to address 

SCP. 

11 
March 
1990 
WO 

0 >2,000 0 0 0 >1,000 0 0 Pressure increased after a 
few months. 

15 
July 
1990 
P&A 

0 +/-
2,000 <400 0 NA 0 0 0 

7-in. cut/recovered to 
1,978’. Pressure 
monitored for 14 hrs after 
operation. 
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For example, a recommended plan of action would be to abandon the production zone and then 
perforate to squeeze a suspected deep source.  If annular pressure still existed, operations would 
then focus on the intermediate or protective casing shoes for milling and underreaming 
operations.  The underlying philosophy was to address SCP as deeply in the wellbore as possible 
without removing casing strings.  Casing removal would occur during future platform 
abandonment. 
 
Milling Operations 
Milling and underreaming operations at the intermediate casing shoe were abandoned as a result 
of the Well 15 workover in July, 1990.  While milling the 7-in. production casing, the lower stub 
fell away and could not be re-entered.  The thought was that an extreme washout existed below 
the intermediate casing existed. 
 
Section milling operations were re-evaluated based on damage incurred while milling windows 
with blades sized to mill both the larger collars as well as the thinner tube.  Table 5-3 
summarizes the known blade sizing pulled from drilling reports and procedures.  Damage to 
outer casing strings during milling operations was suspected on Wells 10 and 13 wells.  This is 
attributed to blade OD’s sized to the collar OD.  Furthermore, the blades only had cutting 
surfaces on the bottom and smooth on the OD.   
 
 Table 5-3: Post 1989/1990 Casing Cutter Sizing 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Perforating-to-Squeeze 
In producing wells, the number of perforations was limited in size and number. A shot density of 
4 shots per foot (spf) over 2 feet in producing wells was used extensively in the 1990 squeeze 
program.  Casing pressures were reduced sufficiently to allow for continued production. 

Well Workover 
Date 

Casing 
Size 
(in.) 

Cut-Out 
Mill 
(in.) 

Section 
Mill 
(in.) 

Coupling 
Cut Mill 

(in.) 

Underreamer 
OD 
(in.) 

15 July 1990 7 NA 8.275 NA NA 
7 Unknown NA 

10 March 
1991 10 ¾  NA NA NA Unknown 

7 8 NA NA NA 

10 ¾  Mechanical Cutter Unknown 13 April 
1991 

16 NA NA NA Unknown 

7 7 ¼  7 ½  7 7/8  NA 3 October 
1991 10 ¾  NA NA NA Unknown 

7 Unknown 7 ½ 8 1/16 NA 

9 ⅝ 9 ⅞  9 ⅞, 10 Unknown 8 ½ 

11 ¾ Unknown 13 1/16 12 ¾ 10 ⅜, 10 ½ 
14 February 

1992 

16 NA NA NA 14.936 

7 7 ¼  Unknown NA NA 
11 March 

1992 10 ¾  NA NA NA 9.7 
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Exposure of the wellbore to excessive test pressures of squeeze perforations, or other diagnostic 
testing, was localized below a retrievable test packer to avoid cement sheath stress cracking. 
 
For wells with no future utility, post squeeze pressure testing was not of primary concern.  Solely 
addressing the SCP became the primary driver.  Increasing the chances of communicating with a 
behind-pipe channel was enhanced by using a small-phased perforating gun with 12 spf over 4 
feet.  The shot density and phasing is relative to the casing size and should be adjusted to greater 
than 40% of the circumferential area.  A case study by Hart and Wilson (Hart and Wilson, 1990) 
of 37 wells in the East Texas and Texas Gulf Coast indicated a success rate of 89% when greater 
than 40% of the circumferential area was perforated.  Furthermore, a success rate of 70% was 
achieved by placing perforations across an impermeable zone.  Cleaning of perforations and 
increasing communication was obtained by pumping various acids ahead of the cement slurry.  
 
Post 1990 perforate-to-squeeze operations included the squeezing or spotting of mud acid to 
enhance behind pipe communication.  Pressure will be held for longer periods to improve cement 
injectivity. 
 
Microbond Cement Squeezes. During the beginning of the 1990 casing squeeze program, 
Halliburton’s Microbond cement was used and focused on possible deep source gas sands.  It 
was thought that its expansive nature would seal any cracks or fissures in the cement sheath 
being used as a pressure conduit.  A five-day curing time was recommended to allow for 
sufficient time for the cement to expand and seal. 
 
Deep source Microbond squeezes failed in four applications where either no surface effect was 
noticed or little pressure reduction was realized.  The program then focused around isolating the 
shallow protective casing shoe.  These shallower squeezes reduced casing pressures but the 
squeeze perforations were not able to handle the pressure tests.  Table 5-4 summarizes the results 
of Microbond squeezes. 
 Table 5-4: 1990 Microbond Squeeze Results 
 
 
 
 
 
 
 
 
Flo-Chek Cement Squeezes. Following the Microbond squeezes, a Flo-Chek cement slurry was 
applied but had little to no success in reducing casing pressures.  Flo-Chek is a cement slurry 
additive often used in the first stage of a cement squeeze to minimize downhole fluid loss.  Flo-
Chek gels on contact with any fluid containing calcium or magnesium to divert the slurry from 
the lost circulation zone (Halliburton, 1999).  Table 5-5 summarizes the results of the Flo-Chek 
squeezes.  The first squeeze with Flo-Chek on Well 11 was preceded by five mud stages to 
reduce gas migration into the unset cement.  The annular pressure was reduced slightly.  The 
second Flo-Chek application was a 30 minute hesitation squeeze that resulted in significant 
pressure reduction.  Neither set of perforations could hold the test pressures. 

1990 Microbond Squeeze Results 
Well  Squeeze Location Results 
11 Deep source sand No surface effect 
1 Deep source sand Surface flowed. Tested & failed 
14 11 ¾-in. shoe No surface effect & 11 ¾ x 16-in. communication 
1 10 ¾-in. shoe Reduced pressure. Tested & failed 
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 Table 5-5: 1990 Flo-Chek Squeeze Results 

 
Class ‘H’ Cement Squeezes. Well 14 had a five stage accelerated CaCl2 Class ‘H’ + Econolite 
cement squeeze pumped at the 16-in. shoe with four hour cure time in between stages.  This cure 
time was to allow for cement diversion.  The success of this 1,600 bbl squeeze is unknown since 
a scab liner was run and cemented without extensive testing of the squeeze.  A second 5 stage 
Class ‘H’ cement squeeze was performed on the 10 ¾-in. shoe.  Results of this squeeze are 
unknown since the perforations were never drilled out. 
 
Magne-Set Cement Squeeze. BJ’s Magne-Set cement was used in Well 11 to isolate the 
production perforations.  Magne-set is tolerant to contamination, sets rapidly, and has a slightly 
expansive character.  Multiple operational problems including inadequate horsepower, blender 
problems and crew unfamiliarity with the product may have led to a failed squeeze.  The 
pressure slowly began to build after the squeezes. A bleed down/buildup within a year bled all 
gas and the pressure bled from +/-1,000 psi to 0.  The pressure continued to rise one year after 
the Magne-Set squeezes 
 
Five cement types, Microbond, Flow-CK, ‘H’, CaCl2 accelerated and Magne-Set, were used 
during the 1990 squeeze program with six different techniques including mud pre-pump stages, 
annular back pressure, staging with inter-stage cure time, high rate pre-flushes, high/low rate 
squeezes, and hesitation squeezes.  Each squeeze resulted in very poor results for various reasons 
but large cement volumes staged near the intermediate shoe seemed to be the most effective in 
reducing, but not eliminating, annular pressures.  The downhole environment is very hostile and 
a weak point is created any time the pipe integrity is compromised.  This weak point can lead to 
a future pressure conduit. 
 
Post 1989/1990 Workover Program Summary and Conclusions 
Five of the wells that were previously worked over to address SCP were again worked over in 
1991 and 1992 and summarized in Table 5-6.  Some of the learnings from the 1989/1990 
program were incorporated into these workovers.  It concentrated on removing affected casings 
when possible and applying improved squeeze techniques. 
 
Well 3 exhibited SCP in the 7-in. production casing where it had previously indicated none.  The 
7-in. casing was removed during operations in October of 1991.  Well 14 was off production and 
unsuccessful attempts were made at reducing the 7 ⅝-in. production casing pressure but the 
casing was finally removed during a February 1992 operation. 
  
The intermediate casings again exhibited the most recurring SCP problems.  All 5 wells 
exhibited pressures in excess of 1,000 psi.  Operations only succeeded in reducing pressure on 

1990 FLO-CHEK Squeeze Results 
Well  Squeeze Location Results 
11 Five mud stages + Flo-Chek @ 10 ¾-in. 

shoe 
Inadequate surface effect 

11 Flo-Chek + 30 min. hesitation @ 10 ¾-in. 
shoe 

Reduced surface pressure. Would 
not hold test. 
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one well but the pressure increased to pre-workover levels within 8 months.  In two of the wells 
the intermediate casing was removed.  The long term success rate can be considered (0%) when 
excluding the two wells in which the casings were removed. 
 
Two of the wells exhibited 16-in. surface casing pressure previous to work and only Well 13 
indicated removal for a 50% success rate.  Both the 7 and 10 ¾-in. casings were removed in this 
operation.  The 16-in. casing pressure was reduced to 0 on Well 14 but was soon rising after 
cutting and recovering the 7, 9 ⅝, and 11 ¾-in. casings. 
 
 Table 5-6:  Post 1989/1990 Workover Results 

 
Squeeze Operations 
Well 14 was squeezed in September, 1991 to address a temperature anomaly above the 16 in. 
shoe indicating a possible annular pressure source.  The work consisted of perforating the 7-in., 9 
⅝-in., and 16-in. casing strings and pumping acid through the perforations to enhance 
communication previous to squeezing cement.  A 12%-3% HCl-HF acid blend was pumped 
ahead of the first 37 bbl Magne-set cement slurry.  No running squeeze was obtained so a second 

Casing Pressures (psi) 

Before Workover Post Workover Well 
Program 

7-in. 10 ¾-in. 16-in. 20-in. 7-in. 10 ¾-in. 16-in. 20-in. 
Remarks 

3 
Oct. 
1991 
WO 

+/- 
500 

+/- 
1,500 0 0 N/A 200 0 0 

10 ¾-in. flowed 
mud while B/D. 
Press. > to +/-
1,000 in 8 mos. 

13 
April 
1991 
WO 

0 +/- 
1,500 >100 <100 N/A N/A 0 <100 7 & 10 ¾-in. 

casings removed  

10 
March 
1991 
WO 

0 >1,000 0 0 +/- 
800 >1,000 0 0 

Press. = 0 two 
weeks after WO. 
After 3 wks, 
press. returned. 

May 
1991 
WO 

>1,000 
(7-5/8) 

>1,000 
(11-3/4) >100 0 >1,500 

(7-5/8) 
>1,000 

(11-3/4) <1,500 0 
B/D & B/U 
diagnostics to 
evaluate. 

Sept. 
1991 
WO 

>500 
(9-5/8) 

+/-100 
(11-3/4) 

+/-
1,000 0 >100 

(7-5/8”) 
<500 

(11-3/4”) 
+/- 

1,000 0 

Bled gas & 10 
gal. mud from 16-
in. Press. from 
845 to 90 psi in 
40 min. 14* 

Feb. 
1992 
P&A 

+/-200  
(9-5/8) 

<500 
(11-3/4) 

+/-
1,000 0 N/A  

(7-5/8”) 
N/A 

(11-3/4”) 
>0 

Rising 0 

7-in.> 0 psi before 
WO. 7, 9 ⅝, & 11 
¾-in. casings 
cut/recovered. 
Press. rising on 
16-in. 

11 
March 
1992 
WO 

0 >1,000 0 0 0 +/- 
600 0 0 

Press. reduced - 
not stabilized. > at 
lower rate than 
before WO 
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37 bbl Magne-set slurry was pumped.  A bleed down/buildup of the 16-in. performed after this 
workover resulted in bleeding gas and 10 gal of mud.   The pressure decreased from 845 to 90 
psi in 40 minutes.  The pressure built back to 183 psi after one hour and 336 psi within 24 hours. 
 
Forty barrels of S-Mix was pumped into the 11 ¾ x 16 in. and 23 bbl was pumped into the 9 ⅝ x 
11 ¾ in. annulus during the February, 1992 Well 14 P&A operation.  S-Mix is a Shell-patented 
cement slurry that essentially converts mud into cement through the addition of soda ash and 
caustic activators immediately before pumping the slurry.  The casing pressure was then 
monitored.  The pressure on the 16 in. continued to rise.   
 
Results of the March 1992 experimental poly plastic (polyactalate) resin job pumped on Well 11 
were limited.  The pressure previous to the workover was rising at a rate of 75 psi/week and was 
at 1,450 psi immediately before commencement of operations.  After the resin job, a bleed down 
resulted in the pressure stabilizing at approximately 675 psi.  It was proposed that further bleed-
downs were necessary since the trapped pressure was not completely bled down.  The resin is 
also recommended to be squeezed in a clear fluid system rather than spotted in a mud system. 
 
In addition to remedial work on Wells 3, 10, 11, 13, and 14 after the 1989/1990 programs, SCP 
removal operations on two additional wells were performed but have not been reviewed for the 
purposes of this thesis. 
 
1999 Workover Program Summary and Conclusions 
The 1999 workover program appears to have been effective as evidenced by the removal of SCP 
from affected casings.  All affected casing annuli, with the exception of one well, remain at zero 
psi.  Table 5-7 lists casing pressures both before the 1999 workover program as well as of April 
30, 2003.   
 Table 5-7:  1999 Workover Program Results 

*Indicates rig skidded back for remedial work during program 
**Casing program includes 7 ⅝-in. x 13 ⅜-in. x 20-in. 
***Casing program includes 7-in. x 9 ⅝-in. x 13 ⅜-in. x 20-in. 

Casing Pressures (psi) 

Before Workover Program Present (April 30, 2003) Well 
Rig M/O 

Date 7-in. 10 ¾-in. 16-in. 20-in. 7-in. 10 ¾-in. 16-in. 20-in. 

1 2-7-00 0 1,269 0 0 NA NA 0 0 
2 5-14-00 NA 0 54 0 NA 0 0 0 
3 9-25-00 NA 795 1,300 0 NA 125 0 0 

4** 7-29-01 520 505 NA 0 0 (7-5/8) 0 (13-3/8) NA 0 
5 9-24-01 100 250 0 0 NA 0 0 0 

6*** 10-5-01 NA 32 0 0 NA 0(9-5/8) 0 (13-3/8) 0 
7 10-19-01 0 1,030 0 0 NA 0 0 0 
8 11-11-01 720 1,300 168 0 NA 0 0 0 

9* 12-7-01 0 1,713 155 0 NA NA 0 0 
10* 12-9-01 898 836 89 10 NA NA NA 0 
11 1-2-02 489 176 0 0 0 0 0 0 

12* 1-20-02 83 125 86 10 NA NA NA 0 



 55

Fig. 5-1 is a powerful picture.  It is a slab cut from a section of 10 ¾-in. x 7-in. casing cut and 
pulled simultaneously in Well 11 during the latter half of the 1999 workover program.  It 
indicates possible conduits of the SCP and may provide some clues as to why previous workover 
attempts failed to address the problem.  Placing a sufficient amount of squeeze perforations and 
cement to isolate the mud channel on the high side of the hole may be feasible.  However, the 7-
in. casing is lying on the 10 ¾-in. casing on the low side of the hole.  This situation indicates a 
nearly impossible feat of injecting sufficient volumes of cement to create a pressure barrier. 
Furthermore, the extreme eccentricity of the inner 7-in. string highlights the need for the precise 
milling procedures employed during the 1999 workover program. 
 
It appears that mud channeling occurred during the initial cementing of this 7-in. casing string 
and could have contributed to SCP.  If mud is not properly displaced during the primary cement 
job, channels or pockets of mud can be strung out in the cemented annulus to help provide an 
avenue for pressure to reach the surface.  Improper displacement can be a result of any one of the 
long-recognized factors of improper mud conditioning, pipe movement, centralization, fluid 
velocities, or spacers and flushes. 
 

 
 
 
Another potential medium for SCP could be the extreme eccentricity of the pipe and the inability 
to place cement between the strings of pipe on the low side of the hole.  The lack of cement can 
prevent a suitable pressure seal from downhole pressure sources.  This only stresses the need for 
proper centralization during the initial cementing operation. 
 
Figs. 5-2 and 5-3 demonstrate the minimal scarring incurred on the outer 10 ¾-in. casing during 
a section milling operation.  This section of 7-in. casing was milled out previous to cutting the 10 
¾-in. casing and pulling both strings simultaneously.  As can be seen in the picture, the 7-in. 

Figure 5-1: Concentric Casing Slice Illustrating Mud Channel 
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casing is lying against the 10 ¾-in. casing on the low side and was not breached during the 
section mill run. Fig. 5-3 is a cut-away view showing the nicks on the ID of the 10 ¾-in. wall.  
No indication of excessive wear was seen throughout the milled section.  This attests to the 
advantages gained in tailoring the cutter size both to the collar and tube ODs during the 1999 
workover program. 
 

 
 Figure 5-2:  Casing Section Mill Results - Minimal Scarring of 10 ¾-in. casing 
 

                             
 Figure 5-3:  Slight Scarring of 10 ¾-in. Casing from Milling Operation 
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 Figure 5-4:  7 and 10 ¾-in. Casing on the Rack after being Cut and Pulled 
 

 
 
 Figure 5-5:  Close up of 7 and 10 ¾-in. Casing on the Rack 



 58

The following conclusions and learnings can be made from the 1999 workover program.  Each of 
the following items contributed to the program’s operational effectiveness: 
 
Improvements to the milling operations were made through a combination of research into the 
past operations and current best practices.  It was felt that breaching of outer casing during 
milling operations was the cause of SCP in some previously unaffected casing.  To help 
minimize the concern of breaching the outer barrier when milling concentric strings of pipe, 
cutter sizes were optimized to the outer diameter they were cutting.  During this operation, two 
cutter sizes were used on every casing when a window ‘cutout’ was made:  one specifically sized 
to cut the tube and a larger cutter for the casing collars.  
 
The proper density of workover fluid was determined by considering the frac gradient of the 
outermost exposed casing shoe and expected applied pressures as the upper available weight 
limit.  When possible, attempts were made to stay closer to the pore pressure than frac gradient 
to avoid breaking down the formation at the casing shoe. Initially, a water based mud system was 
used on the basis that this system would have superior hole cleaning characteristics.  In reality, 
too much rig time was spent circulating and conditioning the mud due to zinc, cement and 
dehydrated mud contamination.  An HEC and xanthan gum blended/gelled brine with a 40-yield 
point was able to economically to carry large amounts of iron, cement, and dehydrated mud to 
the surface.  It did not have the zinc bromide compatibility issues of a water-based mud. 
 
Before any cementing operation in a water-based mud environment, proper hole preparation is 
imperative and can be done by rotating a diverter sub into the hole throughout the plug interval 
and the pumping of properly sized spacers. The diverter tool efficiently removed mud cake or 
trash to increase the bonding characteristics of the cement to casing.  The cement slurry was 
treated with a latex additive to help increase both the initial and long-term bonding 
characteristics with the casing.  It was intended to perform during pressure buildup, either 
constant or cyclical.  Whenever possible, a ‘bottom’ was set to avoid cement contamination from 
gas migrating through the setting cement or if the wellbore fluid and cement had a 2-lb/gal or 
greater density difference.  CIBP was the preferred ‘bottom’ and is not meant to act as a long 
term pressure seal when not used in conjunction with a cement plug.  Long-term degradation 
could occur to the rubbers from constant exposure to the wellbore environment. 
 
Isolation of windows or casing stubs was augmented by squeezing cement into the annulus and 
holding pressure. The final squeeze pressure varied based on burst characteristics of casing and 
the established pressure previous to reversing out the workstring.   
 
Concern of breaking down the shallower 10 ¾-in. casing shoes due to trapping upwardly 
migrating pressure, was considered during the design phase of the 1999 workover program.  Two 
conclusions were made, the first is that the pressure seen at surface was considered to be at 
equilibrium, and the second was that all pressures seen in the 7 x 10 ¾-in. annulus would not 
exceed the fracture gradient at the 10 ¾-in. shoes.   
 
The recorded pressures had not increased for extended periods of time and were thought to be in 
equilibrium.  If pressure were to continue to build from a source deeper than the 10 ¾-in. shoe, a 
sand below the casing shoe would tend to break down before the casing shoe would. 
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Most 10 ¾-in. casing shoes in the field were set between 4,500 ft and 5,000 ft TVD with a 
corresponding fracture pressure gradient of approximately 17.3 ppg.  Regardless of the mud 
weight displaced by the 7-in. cement job, a present day worst case scenario of dehydrated mud 
annular gradients can be assumed.  For all practical purposes, a saltwater gradient of 8.6 ppg will 
be sufficient.  The highest pressure of 1,700 psi on the 7 x 10 ¾-in. casing annulus was seen in 
Well 9.  At 4,500 ft TVD, the 10 ¾-in. casing shoe exhibits a 4,048 psi [4,500 ft * (0.052 
psi/ft/ppg)*17.3 ppg] fracture pressure. This is based on fracture pressure gradient of 17.3 ppg 
from Fig. 5-7.  Assuming a saltwater gradient of 8.6 ppg with 1,700 psi on top, this equates to 
3,712 psi [1,700 psi + (8.6 ppg*(0.052 psi/ft/ppg)*4,500 ft].  The fracture pressure rating at the 
10 ¾-in. shoe [4,048 psi > 3,712 psi] has not been exceeded. 
 
In the instance of Well 3 with 1,300 psi existing on the 10 ¾-in. x 16-in. annulus, the fracture 
gradient of 14.8 ppg (Fig. 5-7 at a depth of 2,305 ft) at the 16 in. shoe was not exceeded.  A 
window cut in the 10 ¾-in. casing from 681 to 802 ft was used to address SCP in the 16-in.  
Assume 1,300 psi is trapped at 802 ft.  With an 8.6 ppg gradient, an equivalent of 1,972 psi 
[1,300 psi + (2,305 ft – 802 ft)*(0.052 psi/ft/ppg)*8.6 ppg] would be exerted on the 16-in. casing 
shoe.  This value only slightly exceeds the fracture pressure of 1,774 psi [1,972 psi > 1,774 psi] 
calculated at the 16-in. shoe. 
 
Casing Slab Evaluation 
The following is summary of chemical analysis from an annular cross section of casing cut and 
retrieved from Well 11, late in the 1999 workover program.  Figs. 5-4 and 5-5 are pictures of the 
casing upon retrieval.  A chemical analysis was performed on one casing slab in which five 
samples were taken from a two-inch thick ring of a non-centralized cemented 7 x 10 ¾-in. casing 
annulus.   
 
An obvious characteristic of the slabs is a large channel present on the thick side of the annulus 
on all samples.  A total of five samples were taken and analyzed as Fig. 5-6 indicates. The 
following analysis is pulled from information contained in e-mail correspondence from Mr. Mike 
Cowan to Mr. Felix Medine dated April 11, 2002.  
 
Results of chemical analysis indicated that samples 1 through 4 included both cement and mud 
while sample 5 contained only mud.  The percentage of cement present in Samples 1 through 4 
could not be determined since a representative cement sample was not available.  Based upon the 
amount of barite in each sample it appears that approximately 25 to 40 percent cement is present.  
Based on the mineralogy from x-ray analysis, an average of ⅓ cement per sample seems to be a 
representative amount.  The results of the x-ray analysis are listed in Table 5-8. 
 
Each sample contains a substantial amount of hematite, a.k.a. iron oxide.  It was theorized that 
the source of the hematite could be from rusting steel or possibly a component of the cement or 
mud system.  If neither the mud nor cement fluid systems contained hematite, rusting steel is the 
most likely source for hematite.   
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 Figure 5-6:  Cartoon of Casing Slice Sample Location 
 
Calcite is present in the cement slurry or it could originate from a calcium carbonate lost 
circulation material mixed in the mud.   The amount of calcite is highest in Sample 5 which also 
shows no quartz (silica/sand).  This is consistent with Sample 5 being primarily mud since quartz 
and other silicates are common to cement mineralogy.  If the cement contained silica to prevent 
strength retrogression, the common amount would be 30 to 35% by weight in cement.   
  
The cement and drilling fluid compositions were not available for analysis.  This data could have 
been used to further refine the cement content in Samples 1 through 4. 
 
 Table 5-8: XRD Analysis of Five Casing Slab Samples 

 
The mud channel shown in Figure 5-6 could be the result of either improperly displaced wellbore 
fluids or from gas channeling through unset cement.  While circulating and reciprocating the 7-
in. casing previous to the primary cement job, gas was present in the returns.  Although 
centralizers were run for the first 80 joints, none were present this shallow in the wellbore and 
this could explain the extreme eccentricity and inefficient mud displacement. 

X-Ray Diffraction Analysis Results 
Mineral Sample 1 Sample 2 Sample 3 Sample 4 Sample 5 
Barite 49% 58% 71% 64% 64% 
Hematite 33% 27% 7% 22% 23% 
Calcite 9% 6% 4% 4% 13% 
Quartz 9% 10% 17% 10% 0% 
Clays 0% 0% 0% 0% 0% 
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Possible SCP Causes – Well 11 
An attempt at highlighting the possible causes of SCP in this field has been made and applies 
only to casing that has been cemented concentrically inside a larger casing and the pressure 
source lies below the outer casing shoe and behind the cement.  Bringing the cement on the 
production casing up into the intermediate casing shoe was a common practice during the initial 
completions in this field; therefore, this analysis is relevant.  However, this analysis does not 
hold when the inner casing cement job has not been brought up into the larger casing string.  In 
this case, the SCP mechanism could simply be the migration of gas from a small stringer up the 
uncemented casing annulus to the surface. 
 
Table 5-9 is a review of initial drilling operations.  It focuses on the SCP mechanisms presented 
in Chapter 2 with the initial drilling operations documented in Chapter 3 to find a correlation 
with SCP.  This effort was reliant on drilling reports and other documentation and is inconclusive 
or incomplete where information was lacking. 
 
Using Well 11 as an example, it is felt that a lack of centralization in conjunction with 
inadequate mud properties and displacement techniques led to a lack of pressure isolation.  It is 
apparent from Fig. 5-2 that two pressure conduits exist, one in the mud channel on the wide side 
as well as along the 7 x 10 ¾-in. interface.  The casing was cut and recovered from +/-900 ft to 
surface and all was highly eccentric. 
 
A spacer was pumped ahead of the cement slurry, the plug was bumped and the casing was 
reciprocated all indicating good displacement techniques.  The deviation survey indicates that the 
well is still vertical through the 10 ¾-in. casing shoe and then slowly builds to 25 degrees 
inclination below the 10 ¾-in. shoe to TD.   

 
Mud properties from a cementing detail indicate the following mud properties previous to 
pumping cement: 

MW – 16.6 ppg 
Plastic Viscosity – 39 cp 

Yield Point – 11 1b/100 sq-ft 
Gel Strength - 2/10 lb/100 sq-ft 

Water Loss – 2.4 cc/30 min 
Displacement Rate – 11 bpm 

 
The following analysis is based on information from Chapter 2 and in particular Table 2-1.  The 
plastic viscosity value of 39 cp is higher than the recommended value of 20 cp and preferred 
value of 15 cp.  Too viscous of a mud can tend toward inefficient displacement or ‘fingering’ of 
mud through the cement slurry.  Furthermore, the yield point of 11 lb/100 sq-ft is around the 
recommended value of 10 lb/100 sq-ft but significantly higher then the preferred value of 2 
lb/100 sq-ft.  The measured water loss property of the mud was measured at 2.4 cc/30 min which 
is well within the recommended 15 and preferred 5 cc/30 min.  This low fluid loss value would 
tend to create a thinner filter cake and sufficient cement to formation bond.  The gel strength of 
2/10 lb/100 sq-ft is indicative of a thixotropic mud that can be more difficult to displace. 
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Table 5-9:  Correlation of SCP to Possible Mechanisms 

*P-tank line plugged from boat and had to be cleared for 1 hr before resuming operations 
** 12 cement squeezes pumped before putting well on line – Well sanded up 
*** 2 centralizers run at shoe between 10 ¾ and 16-in. shoes 
FR = Full Returns PR = Partial Returns NR = No Returns  BP = Bump Plug  PNB = Plug Not Bumped 
 

Displacement 
Well 

Csg 
OD 
(in.) 

Max 
SCP Returns/  

Bump Plug 
Spacers Pipe Movement Centralizers Gas influx 

20 No No returns 25 bbl SW None ??  
16 >1,000 FR/ BP 10 bbl FW Reciprocated ??  

10 ¾ >1,000 FR/BP None None 80 at 1/jt.  3 

7 ~500 FR/BP 50 bbl dual Stuck while recip 80 at 1/jt.  
20 <100 FR 25 bbl SW None None  

16* ~1,000 FR/ BP 25 bbl Sup. 
flush K 

Recip w/10 ft 
strokes None  

10 ¾ >2,000 FR/ BP 50 bbl dual None Yes - 
quantity? Gas while drlg 

13** 

7 >100 FR/ BP 50 bbl dual Stuck while recip 
w/15 ft stroke  85 at 1/jt. Gas w/csg on 

bottom 
20 >0 FR None    
16 <100 FR/ BP None    

10 ¾ >1,500 FR/ BP 25 bbl    10 

7 ~1,000 BP 35 bbl dual   Gas while drlg 
20 No PR     
16 No FR/ BP     

10 ¾ ~1,000 FR/ PNB    Circ out gas on 
bottom 

1 

7 >500 BP 25 bbl ‘SD’ Csg stuck while 
reciprocating   

20 >0 Lost rtrns last 
100 bbl     

16 ~1,000 FR     

11 ¾ <500 FR/ PNB  None None Gas while drlg 
14 

9 ⅝ >1,000 BP None None None Gas while drlg 

20 No None/PR 25 bbl SW Recip w/10 ft 
strokes None  

16 No PR/ BP 25 bbl 
Superflush 

Recip w/10 ft 
strokes 

5 Total - 1 
each 60 ft  

10 ¾ >2,000 NR/ BP 50 bbl dual 
purpose ?? Yes – 

quantity? Gas while drlg 
11 

7 <500 BP 50 bbl dual Reciprocated 80 at 1/jt. Gas w/csg on 
bottom 

20 No FR/None 25 bbl SW Reciprocated ??  

16 <400 FR/ BP 25 bbl S. 
Flush Reciprocated 6 at 1/jt.  

10 ¾ ~2,000 FR/BP (90bbl 
cmt. at surface) 

No Spacer 
(damaged) 

None – Csg 
stuck 10 at 1/jt.***  

15 

7 0 FR/BP 25 bbl dual Reciprocated 80 at 1/jt. Gas w/csg on 
bottom 
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As reported by Smith (Smith, 1990), an annular velocity greater than 200 ft/minute is 
recommended for efficient displacements.  For 7-in. inside of 10 ¾-in. 45.5 ppf casing, 11 bpm 
translates to 226 ft/min (11 bpm *20.59 ft/bbl).  This value is not in itself conclusive but does not 
indicate serious problems.  Over 1,300 psi was bled down from the 10 ¾-in. casing less than a 
year from the primary cement jobs.  Assuming that the mud dehydrated to an equivalent 8.6 ppg 
gradient of water, the 1,300 psi pressure indicates a pressure source somewhere below the 10 ¾-
in. shoe.  Information from a field pore pressure (Fig. 5-7) plot indicates a source depth of at 
least 4,700 ft and a 13.2 ppg pore pressure assuming the 1,300 psi SICP or a depth of 5,500 ft 
and 14.1 ppg pore pressure using a 2,000 psi SICP.  
 
Operations on 10 wells between 1989 and 1992 resulted in 2 initial successes but required 
remedial work on 5 wells before the program finished and 5 of these wells were re-worked in 
1999.  Four wells were considered successful in reducing or eliminating SCP.  This results in a 
20% initial success rate in reducing or eliminating SCP and a 40% ultimate success rate in 
reducing or eliminating SCP. 
 
Of the twelve wells worked over 
in the 1999 program, 3 wells 
required remedial work while 
operations were ongoing, and only 
1 well exhibited SCP upon 
completion of the program.  This 
results in a 75% initial success rate 
and a 92% ultimate success rate in 
alleviating SCP in the field as of 
April 30, 2003. 
 
Absolute certainty of SCP causes 
in this field is not known, but 
research into operations indicates 
problems with the primary 
completion as summarized above.  
What is known is that the 
improvements in operations during 
the 1999 workover program, 
mainly relying upon removal of 
sufficient casing to place a 
satisfactory pressure barrier, 
properly sized cutters to avoid 
breaching outer casing, Proper 
hole preparation previous to 
cementing operations, and cement 
placement techniques have led to 
an improved method of ‘Removal 
of Sustained Casing Pressure 
Utilizing a Workover Rig’. 
 

Figure 5-7 – Field Pore Pressure Plot 
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CHAPTER VI:  1999 PROGRAM REASONS FOR SUCCESS 
 
The following conclusions can be made from the 1999 workover program.  The underlying 
principle was to address the SCP as deeply as feasible to allow for possible future intervention.  
Each of the following items contributed to the program’s operational effectiveness.  The 1999 
Workover Program has succeeded where previous operations have failed due to the following 
four main factors: 
 
1. Relying Upon Removal of Sufficient Casing to Place a Satisfactory Pressure Barrier 

and not Relying Upon Traditional Squeeze Operations 
 
Many failed perforation or cut to squeeze operations have been documented as evidenced in the 
last chapter by Tables 5-2, 5-4, 5-5, and 5-6.  Multiple formulations and procedures were 
employed in the past with only limited success in reducing but not eliminating the pressure.  The 
1999 Workover Program relied on addressing the SCP as deeply as possible with multiple, 
extensive pressure barriers. 
 
Figures 5-1 and 5-5 are prime examples of difficulties in isolating SCP through perforation or 
cut to squeeze operations.  Although perforations or a cut can access some of the channels, all of 
the conduits may not be isolated with sufficient volumes of cement.  It is highly unlikely that any 
cement could be placed on the low side of the hole in the highly eccentric situation depicted in 
Fig. 5-1.  Previous perforate to squeeze operations may have failed due to the inability to place 
sufficient pressure barriers in the affected annulus.  

 
2. Properly Sized Cutters to Avoid Breaching Outer Casing  
 
To avoid breaching the outer casing string barrier when milling concentric strings of pipe, cutter 
sizes were optimized to the outer diameter they were cutting.  During this operation, two cutter 
sizes were used on every casing when a window ‘cutout’ was made:  one specifically sized to cut 
the tube and a larger cutter for the casing collars.  These procedural changes are a continuation 
the lessons learned while milling casing during the 1990 workover program.  
 
Initial milling operations resulted in some balling of metal cuttings in the mud return flowline.  
The use of an open-top surface trough was built in conjunction with the rig contractor to address 
the downtime due clearing clogged return lines.  Eliminating unnecessary sharp bends, 
restrictions, and obstructions in the open top return lines succeeded in minimizing any delays due 
to balled cuttings. 

 
3. Proper Hole Preparation Previous to Cementing Operations 

 
Before any cementing operation in a water-based mud environment, proper hole preparation was 
imperative.  A diverter sub was rotated into the hole throughout the plug interval previous to the 
pumping of properly sized spacers. The diverter tool efficiently removed mud cake or trash to 
increase the bonding characteristics of the cement to casing.   
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Preparation for pressure isolation of casing stubs began with a trip in the hole with a bit and 
scraper sized for the milled casing along with a Lockomatic under reamer dressed with blades for 
the next larger casing.  This trip was used to clean the greater portion of the cement and 
dehydrated mud from the casing wall.  The outer casing was cleaned throughout the milled 
region, and a minimum of one bottoms up was circulated to clean the outer casing before a 
cement plug was pumped. 
 
The preferred fluid system was altered midway through the program once it was apparent that 
excessive conditioning times were necessary to maintain proper rheological properties.  The 
initially chosen water-based mud system clabbered when milling extensive lengths of cement, 
dehydrated barite and zinc bromide.  Various amounts of zinc bromide, from a non-rig program 
attempting to avoid rig intervention, were present in some of the affected annuli.  HEC and 
xanthan gum blended/gelled brine with a 40-yield point was found to be sufficient to 
economically carry large amounts of iron, cement, and dehydrated mud to the surface without 
compromising its rheology. 
 
The proper density of workover fluid was determined by considering the frac gradient of the 
outermost exposed casing shoe and expected applied pressures as the upper available weight 
limit.  When possible, attempts were made to stay closer to the pore pressure than frac gradient 
to avoid breaking down the formation at the casing shoe. 

 
4. Cement Placement Techniques 
 
The cement slurry was treated with a latex additive to help increase both the initial and long-term 
bonding characteristics with the casing.  It was intended to perform during pressure buildup, 
either constant or cyclical.  Improvements in cementing technology should be considered when 
designing future programs. 
 
Isolation of windows or casing stubs was augmented by squeezing cement into the annulus and 
holding pressure. The final squeeze pressure varied based on burst characteristics of casing and 
the established pressure previous to reversing out the workstring.  Whenever possible, a 
mechanical ‘bottom’ was set to avoid cement contamination from gas migrating through the 
setting cement or if the wellbore fluid and cement had a 2-lb/gal or greater density difference.  A 
CIBP was the preferred ‘bottom’ and was not meant to act as a long term pressure seal when not 
used in conjunction with a cement plug.  Long-term degradation could occur to the rubbers from 
constant exposure to the wellbore environment. 
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APPENDIX A:  MMS POLICY LETTER 30 CFR 250.517  
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In Reply Refer To:  MS 5221 
 
Gentlemen: 
 
This letter serves to inform lessees operating in the Gulf of Mexico Outer Continental Shelf of the current policy 
concerning sustained casing pressure according to the provisions of 30 CFR 250.17. The following policy   -
supersedes our last Letter to Lessees and Operators dated August 5, l99l, and is intended to streamline procedures 
and reduce burdensome paperwork concerning the reporting of sustained casing pressure conditions and the 
approval process for those wells that the Minera1s Management Service (MMS) will allow to be produced with 
sustained casing pressure; 
 

1. All casinghead pressures, excluding drive or structural casing, must be immediately reported to the 
District Supervisor.  This notification by the lessee, to the District Supervisor can either be in writing or by 
telephone, with a record of the notification placed in the record addressed in paragraph 5 below, by the close of 
business the next working day after the casing pressure is discovered. 
 

2. Wells with sustained casinghead pressure that is less than 20 percent of the minimum internal yield 
pressure of the affected casing and that bleed to zero pressure through a 1/2-inch needle valve in 24 hours or less 
may continue producing operations from the present completion with monitoring and evaluation requirements 
discussed below. 
 
A diagnostic test that includes bleed down through a 1/2-inch needle valve and buildup to record the pressures in et 
least 1-hour increments must be performed on each casing string in the wellbore found with casing pressure. The 
evaluation should contain identification of each casing annulus; magnitude of pressure on each casing; time required 
to bleed down through a 1/2-inch needle valve: type of fluid and volume recovered; current rate of buildup, shown 
graphically or tabularly in hourly increments; current shut-in and flowing tubing pressure; current production data; 
and well status. Diagnostic tests conducted on wells that meet the conditions described in paragraph 2 above do not 
have to be formally submitted for approval. 
 

3. Wells having casings with sustained pressure greater than 
20 percent of the minimum internal yield pressure of the affected casing or pressure that does not bleed to zero 
through a 1/2-inch needle valve, must be submitted to this office for approval.  The information submitted fQr 
consideration of a sustained casing pressure departure under these conditions should be the same as described in the 
above paragraph. 
 

4. The casing(s) of wells with sustained casinghead pressure should not be bled down without notifying 
this office except for required and documented testing.  If the casing pressure from the last diagnostic test increases 
by 200 psig or more in the intermediate or production casing. or 100 psig or more in the conductor or surface casing, 
then a subsequent diagnostic test must be performed to reevaluate the  
well.  Notification to this office is not necessary if the pressure is less than 20 percent of the minimum internal yield 
pressure of the affected casing and bleeds to zero pressure through a l/2.inch needle valve.  The recorded results of 
the subsequent diagnostic test must be kept at the field office.  However, the results of this test must be submitted to 
this office for evaluation if the conditions as described in Paragraph 3 apply. 
 

5. Complete data on each well's casing pressure information need only be retained for a period of 2 
years, except that the latest diagnostic information must not be purged from the overall historical record that must be 
kept.   Casing pressure records must be maintained at the lessee's field office nearest the OCS facility for review by 
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the District Supervisor's representative(s). 
 

6.  The previous approval of a sustained casing pressure departure is invalidated if workover operations, as 
defined by 30 CFR 250.91. commence on the well.  Also, operations such as acid stimulation, shifting of sliding 
sleeves, and gas-lift valve replacement require diagnostic reevaluation of any production or intermediate casing 
annulus having sustained pressure. 
 

7. Unsustained casinghead pressure may be the result of thermal expansion or may be deliberately 
applied for purposes such as gas-lift, backup for packers, or for reducing the pressure differential across a packoff in 
the tubing string.  Unsustained casinghead pressure which is deliberately applied does not need to be submitted to 
this office. Unsustained casinghead pressure. as the result of thermal expansion1 greater than 20 percent of the 
minimum internal yield pressure of the affected casing or does not bleed to zero through a 1/2-inch needle valve 
needs to be submitted to this office with either of the following information: 
 

a. The lessee must report the casing(s) pressure decline (without bleeddown) to near zero during a 
period when the well is shut in, or 
 

b. With thoroughly stabilized pressure and temperature conditions during production operations, 
the lessee may bleed down the. affected casing(s) through a 1/2-inch needle valve approximately 15 - 20 percent, 
and obtain a 24-hour chart which shows that the pressure at the end of the following 24-hour period is essentially the 
same as the bleed down pressure at the start of the 24-hour period while production remains at a stabilized rate. 
 

8. Subsea wells with remote monitoring capability must be monitored, analyzed, and reported as 
described above.  If the casing valve(s) must be operated manually the monitoring, analyzing, and reporting 
frequency is 2 years at a maximum. 
 

9. Should a request for a departure from 30 CF~ 2~0.87 result in a denial, the operator of the well will 
have 30 days to respond to the MMS District Office with a plan to eliminate the sustained casinghead pressure. 
Based on well conditions, certain denials may specify a shorter time period for corrections. 
 
If there are any questions regarding this matter, please contact Mr.  B. J. Kruse at (504) 736-2634. 
 

Sincerely, 
 
(signed) 

 D. J. Bourgeois 
 Regional Supervisor 
 Field Operation 
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APPENDIX B:  1999 OPERATIONS SUMMARY 
 

The following is a summary of the rig operations performed during the 1999-2000 workover 
campaign.  A total of twelve wells were worked over but only the following four wells are 
presented to illustrate representative operations. 
 
Well 1 
This well was drilled and completed in 1983 and was temporarily abandoned from the producing 
formation with five EZSV’s.  The shallowest EZSV was immediately above the 10 ¾-in. casing 
shoe.  A workover was planned to replace leaking tubing but during preliminary work, the 10 ¾-
in. casing began to flow.  Multiple cement squeezes were attempted but none seemed to bring the 
pressure under control.  Hydrocarbon reserves could not justify further work and it was 
subsequently temporarily abandoned in 1990.  The objective of the present operations is to cut 
and recover the 7-in. and 10 ¾-in. casing as deeply as possible.  Set 10 ¾-in. and 16-in. CIBP’s 
and spot cement in accordance to CFR Title 30, Section 250.702 regulations.  The following two 
tables summarize the casing pressures previous to beginning of operations as well as a summary 
of design considerations: 

CASING PRESSURES 
 

 
 
 
 
 
 
 
 

PRESSURE PROFILES 

* Depth of concern during operations is exposing the 10-3/4-in. shoe to fracture gradient mud weights or pressures. 
 
Operations Summary 
The workover rig was moved on and rigged up beginning on January 8th, 2000.  The 7-in. 26 ppf 
casing was cut, pulled and laid down from 1,699-ft.  Sixty cu-ft of latex cement was squeezed 
into and around the 7-in. casing stub while holding 250 psi.  Pressure was held on the squeeze for 
twelve hours with the top of cement subsequently being tagged at 1,591-ft. 
 
A CIBP was then set at 1,584-ft and tested to 1,000 psi.  An under balance test was performed 
and a 60 cu-ft latex cement plug was then spotted with 1,000 psi held on it for 12 hours.  The top 
of cement was then tagged at 1,450-ft.  
 
Upon isolating the 7 x 10 ¾-in. annulus, the 10 ¾-in. casing was then cut, pulled, and laid down 
from 838-ft.  Sixty cu-ft of latex cement was then squeezed onto and around the 10 ¾-in. casing 
stub while holding 500 psi on cement for twelve hours. The top of cement was tagged at 808-ft 
indicating that some cement was squeezed into the 10 ¾ x 16-in. annulus.   
 

 
 

CASING 

 
OD 
(IN.) 

 
WEIGHT 
(LB/FT) 

 
GRADE/ 

CONNECTION 

CURRENT 
PRESSURE 

(PSI) 

INTERNAL 
YIELD 
(PSI) 

20% 
INTERNAL 

YIELD (PSI) 
Drive Pipe 26   0   

Surface 20 94.0 X-52 0 2,110 422 
Intermediate 16 75.0 X-52 0 2,630 526 
Intermediate 10 ¾ 45.5 K-55 STC 1,269 3,580 716 
Production 7 26.0 N-80 LTC 0 7,240 1,448 

*DEPTH OF CONCERN PORE PRESSURE WORKOVER FLUID FRACTURE GRADIENT 
MD/TVD DESCRIPTION PSI PSI/FT PPG TYPE PPG OB (psi) PSI PSI/FT PPG 
4,507/4,352 10 ¾ in. SHOE 3,047 0.676 13.0 WBM 14.0 200 4,078 0.905 17.4 
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A CIBP was then set in the 16-in. casing at 778-ft and tested to 1,000 psi.  A 120 cu-ft latex 
cement plug was then spotted with 500 psi applied to the cement for twelve hours.  The top of 
cement was then estimated at 678-ft.  
 
Both the 16-in. and 20-in. casing had no pressure on them.  The rig was then rigged down and 
moved to well 10 on February 07, 2000.   
 
Well 2 
The well is presently temporarily abandoned with an EZSV at 6,352-ft.  The 10 ¾ x 16-in. 
annulus has sustained pressure (See table below).  The objective of the workover is to relieve 
sustained casing pressure from the 10 ¾ x 16-in. casing annulus, mill approximately 120-ft of 10 
¾-in. casing and set an inflatable bridge plug in the 16-in. casing with approximately 40 ft of 
cement below and 100’ of cement on top.  Next, mill the 10 ¾-in. casing, cut and recover 16-in. 
casing to 700-ft, set a 20-in. CIBP, and spot 200-ft of cement on top. 

 
CASING PRESSURES 

 
PRESSURE PROFILES 

*DEPTH OF CONCERN PORE PRESSURE WORKOVER FLUID FRACTURE GRADIENT 
MD/TVD DESCRIPTION PSI PSI/FT PPG TYPE PPG OB (psi) PSI PSI/FT PPG 
2,645/2,620 16-in. shoe 1,512 0.5772 11.1 WBM 12.0 123 2,030 0.7748 14.9 
1,305’/1,305’ 20-in shoe 577 0.4420 8.5 WBM 10.0 102 746 0.572 11.0 

* Depths of concern during operations is exposing the 16 & 20-in. shoes to fracture gradient mud weight or pressure. 

Operations Summary 
Work began on March 24, 2000 by nippling down the tree and nippling up the BOP's.  An 
inflatable packer was set to test the BOP’s and then recovered.  Next, a 10 ¾-in. CIBP was set at 
2,600-ft and the 10 ¾-in. casing was section milled from 2,239 to 2,352-ft.  A 160 cu-ft latex 
cement plug was spotted on the CIBP in the 10 ¾-in. casing with 1,000 psi being held on it for 
12 hours. 
 
An inflatable packer for 16-in. casing was set at 2,335-ft and tested to 1,000 psi for 15 minutes. 
213 cu-ft of latex cement was spotted on top of the inflatable packer to 2,143-ft.  A CIBP was set 
at 900-ft and tested to 1,000 psi for 15 minutes. 
 
The 10 ¾-in. casing was then milled to 800-ft and the 16-in. casing was tested to 1,000 psi for 15 
minutes.  The 16 ¾-in. 5M BOP’s were nippled down and 21 ¼-in. 3M BOP’s were nippled up 
and tested before cutting the 16-in. casing at 750, 125, and 69-ft.  The 16-in. casing could not be 
pulled so a window was section milled in the 16-in. casing from 559 to 750-ft.  191 cu-ft of latex 
cement was pumped into the 10 ¾, 16, and 20-in. casings from 878 to 716-ft and held 350 psi for 
12 hours on the cement.   
 

 
CASING 

OD 
(INCHES) 

WEIGHT 
(LB/FT) 

GRADE/ 
CONNECTION 

CURRENT 
PRESSURE 

(PSI) 

INTERNAL 
YIELD 
 (PSI) 

20% 
INTERNAL 

YIELD (PSI) 
Surface  20 94.0 X-52 0 2,110 422 
Intermediate 16 84.0 K-55 BTC 54 2,980 596 
Intermediate 10 ¾ 45.5 NT-80H STC 0 5,210 1,042 
Production N/A N/A N/A N/A N/A N/A 
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An inflatable packer for 20-in. casing was set at 700-ft but would not test.  The inflatable packer 
was retrieved and an RTTS test packer was set inside the 16-in. casing.   The 16 and 20-in. 
casings were tested from 540-ft to surface to 500 psi for 15 minutes.  The RTTS packer was 
retrieved and a 359 cu-ft of latex cement was spotted in the 16 and 20-in. casings from 716 to 
524-ft.  Seven barrels of cement were squeezed away and held 500 psi for 12 hours with the top 
of cement subsequently tagged at 552-ft.  Finally, 70 cu-ft of 15.6-ppg neat cement was mixed 
and pumped with an estimated TOC at 495-ft. A dry hole tree was nippled up and the rig was 
skidded to well 12.  The 20-in. casing had 0 psi on it. 
 
Well 10 
The well was drilled in the spring of 1984.  No future utility was seen for the wellbore and it was 
subsequently temporarily abandoned during a July, 1989 workover from the producing formation 
The well was re-entered in March of 1991 to address SCP in the 7-in. casing, 7 x 10 ¾-in., 10 ¾ 
x 16-in., and 16 x 20-in. annuli all having sustained pressure (See table below). 
 
The objective of the present operation was to relieve the SCP from the 7-in. casing, 7 x 10 ¾-in., 
10 ¾ x 16-in., and 16 x 20-in. casing annuli by cutting and recovering the 7-in., 10 ¾-in., and 16-
in. casing as deeply as possible.  CIBP’s would then be set as mechanical barriers with cement 
squeezed into each casing stub.  Spot surface cement plug and skid the rig. 

 
CASING PRESSURES 

 
CASING 

OD 
(IN.) 

WEIGHT 
(LB/FT) 

GRADE/ 
CONNECTION 

CURRENT 
PRESSURE 

(PSI) 

INTERNAL 
YIELD 
 (PSI) 

20% 
INTERNAL 

YIELD (PSI) 
Drive Pipe 26   0   
Surface  20 94.0 X-52 10 2,110 422 
Intermediate 16 84.0 K-55 STC 89 2,980 596 
Intermediate 10-3/4 45.5 K-55 STC 836 3,580 716 
Production 7 29.0 N-80 AB Mod 898 8,160 1,632 

 

PRESSURE PROFILE 
*DEPTH OF CONCERN PORE PRESSURE WORKOVER FLUID FRACTURE GRADIENT 

MD/TVD DESCRIPTION PSI PSI/FT PPG TYPE PPG OB (psi) PSI PSI/FT PPG 
5,210/4,347 10 ¾ -in. SHOE 2,871 0.6604 12.7 WBM 14.0 294 3,888 0.8894 17.2 
2,556/2,312 16-in. SHOE 1,274 0.5512 10.6 WBM 11.6 120 1,731 0.7488 14.4 
1,348/1,284 20-in. SHOE 601 0.4680 9.0 WBM 10.0 67 740 0.5720 11.0 

* Depths of concern during operations is exposing the 10 ¾, 16, and 20-in. shoes to fracture gradient mud weights or 
pressures. 

Operations Summary 
Work began February 07, 2000 by bleeding down the 7-in. and 10 ¾-in. casing strings to 0 psi.  
Since the 7-in. casing had pressure, a compression plug was set at 1,017-ft to act as a secondary 
pressure barrier in order to safely nipple down the tree and tubing spool. An adapter spool and 
riser were then nippled up before setting a retrievable bridge plug at 310-ft.  The blowout 
preventers were then nippled up and tested and the retrievable bridge plug was recovered. 
 
The 7-in. casing was cut and recovered at 2,069-ft with a sixty cu-ft latex cement plug spotted in 
the 7-in. and some cement was squeezed into the 7 x 10 ¾-in. annulus from 2,068 to 1,985-ft.   
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A CIBP was set at 1,940-ft to act as a mechanical bottom with a 60 cu-ft latex cement plug 
spotted on top from 1,940 to 1,829-ft.  The plug and 10 ¾-in. casing was then pressure tested to 
2,000 psi. 
 
The 10 ¾-in. casing was cut and recovered as deeply as possible at 711-ft.  The 10 ¾-in. casing 
was then milled to 1,051-ft and an 88 cu-ft latex cement plug was spotted from 1,101 to 1,001-ft.  
An EZSV was set at 987-ft with 15.65-bbl of latex cement squeezed below and the EZSV tested 
to 500 psi. Final pressure isolation of the 16-in. casing was obtained by setting a 120 cu-ft latex 
cement plug from 980 to 882-ft. 
 
The 16-in. casing was recovered to 738-ft and a 161 cu-ft latex balanced cement plug was 
spotted at 791-ft. However, cement was not tagged as expected at 691-ft.  An EZSV was then set 
at 650-ft.  The blind rams were closed to pressure up the 20-in. casing to test the EZSV.  At 940 
psi, the pressure dropped and was able to inject at 1 BPM at 500 psi.  No pressure was noted on 
the drive pipe gauge.  
 
In order to isolated source of leak, an inflatable packer was tripped in the hole to test the casing.  
The casing tested down to 634-ft; however, a hole was indicated in the 20-in. casing at 
approximately 650-ft.  Although no formal explanation for the casing leak was put forth, this is 
the approximate depth that the CIBP was set and casing integrity may have been compromised 
during pressure testing of the EZSV.  Subsequently, 32-bbl of standard cement was circulated 
into the 20 x 26-in. annulus and a 60 cu-ft neat cement plug was left in the 20-in. casing from 
650-ft to a tagged top of cement at 554-ft. 
 
Upon verification of zero pressure on all casing strings, the blowout preventers and riser was 
nippled down; a dry hole tree was nippled up and the rig was moved off on March 24, 2000. 
Another well was recompleted before returning to plug and abandonment operations on well 12. 
 
Well 12 
This well was temporarily abandoned from the producing sand with a TTBP during a previous 
workover operation.  The 2 ⅞ x 7-in., 7 x 10 ¾-in., 10 ¾ x 16-in. and 16 x 20-in. casing annuli 
all had sustained pressures of 83, 125, 86, and 10 psi respectively as of January 2000. 
 
The objective of the workover program was to permanently plug and abandon the producing 
sand perforations.  Further steps would be taken to relieve SCP from the 7-in. casing, 7 x 10 ¾-
in., 10 ¾ x 16-in. and 16 x 20-in. casing annuli by cutting and recovering the 7-in., 10 ¾-in., and 
16-in. casing strings.  The well would be abandoned in accordance to CFR Title 30, Section 
250.702 regulations.  

 
CASING PRESSURES 

 
 

CASING 

 
OD 
(IN.) 

 
WEIGHT 
(LB/FT) 

 
GRADE/ 

CONNECTION 

CURRENT 
PRESSURE 

(PSI) 

INTERNAL 
YIELD 
(PSI) 

20% 
INTERNAL 

YIELD (PSI) 
Surface  20 94.0 X-52 10 1,993 399 
Intermediate 16 109.0 K-55 STC 86 3,950 790 
Intermediate 10-¾ 45.5 K-55 STC 125 3,580 716 
Production 7 29.0 N-80 LTC AB M 83 8,160 1,632 
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PRESSURE PROFILE 

*DEPTH OF CONCERN PORE PRESSURE WORKOVER FLUID FRACTURE GRADIENT 
MD/TVD DESCRIPTION PSI PSI/FT PPG TYPE PPG OB (psi) PSI PSI/FT PPG 
1,472/1,341 20-in. SHOE 635 0.4732 9.1 WBM 10.0 697 781 0.5824 11.2 
2,741/2,350 16-in. SHOE 1,308 0.5564 10.7 WBM 11.6 1,418 1,772 0.7540 14.5 
5,363/4,318 10 ¾ in. SHOE 2,852 0.6604 12.7 WBM 14.0 3,144 3,862 0.8944 17.2 

*Depth of concern is exposing the 10 ¾, 16, and 20-in. shoes to fracture gradient mud weights or pressures. 

Operations Summary  
Previous to moving the rig to well 12, electric line was rigged up to cut the production tubing.  
The rig was then skidded over the well on May 14, 2000.  Upon nippling down the tree and 
nippling up the blowout preventers and testing the BOP’s, the rig was unable to pull the 2 ⅞-in.  
production tubing.  It was necessary for electric line to cut the tubing.  Seven-bbl of latex cement 
was then spotted down the production tubing and into the 7-in. casing at the tubing cut with 
1,000 psi held for 12 hours. The production tubing was then pulled out of the hole and laid down.   
 
The workstring was then tripped in the hole and tagged the cement.    The 14-ppg mud was then 
circulated and conditioned before testing the cement plug to 1,000 psi for 15 minutes.  A 7-in. 
CIBP was then set at 8,000-ft to serve as a mechanical bottom and tested to 1,000 psi for 15 
minutes.  The blowout preventers were then nippled down and the tubing spool removed.  The 
blowout preventers were then nippled up and tested in preparation of cutting the 7-in. casing. 
 
In order to relieve tension on the casing slips, a cut in the 7-in. casing was made 50-ft below 
slips.  A mechanical cut was then made at 3,600-ft and the 7-in. casing was pulled.  Forty-eight 
cu-ft of latex cement was spotted at 3,700-ft. The casing was pressured to 1,000 psi for 12 hours 
to squeeze cement around the 7-in. casing stub and into the 7 x 10 ¾-in. annulus. The top of 
cement was tagged at 3,572-ft.  
 
A 10 ¾-in. CIBP was then set at 3,537-ft and tested to 1,000 psi for 15 minutes to act as a 
mechanical bottom. Ten barrels of latex cement was then spotted on the CIBP and the cement 
plug was tested to 1,300 psi for twelve hours.  The estimated top of cement was at 3,431-ft.  
 
The well was then displaced to 11.6 ppg water based mud.  The blowout preventers and 7-in. 
casing head were nippled down.  The blowout preventers were then nippled up and tested.  In an 
attempt to relieve tension on the casing, a cut was made in the 10 ¾-in. casing at 88-ft but was 
unable to pull the hanger free.  Another cut in the 10 ¾-in. casing was made at 44-ft and the 
casing was recovered to this depth.  A 10-¾-in. CIBP was then set at 1,000-ft to act as a bottom. 
 
The 10 ¾-in. casing was then milled to 776-ft and 7.1 bbls of latex cement was then pumped in 
the 16-in. casing from 774 to 740-ft.  Five hundred psi was then held on the casing and plug for 
twelve hours to squeeze 6.1 bbls into 10 ¾ x 16-in. annulus.  The top of cement was 
subsequently tagged at 769-ft. 
 
A 16-in. CIBP was set at 726-ft to act as a mechanical bottom and tested to 500 psi for 15 
minutes. Ten and one half-bbl of latex cement was then spotted on the CIBP with 500 psi being 
held on it for twelve hours.  The top of cement at 674-ft was tested to 500 psi for 15 minutes.    
The wellbore was then displaced to 10.3 ppg water based mud before nippling down the blowout 
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preventers. The 10 ¾-in. casing head was also nippled down and blowout preventers were then 
nippled up and tested.  
 
In order to relieve tension in the 16-in. casing and to verify the hanger would pull free, the 16-in. 
casing was cut 50-ft below the slips and pulled out of the hole. Unsuccessful attempts to cut and 
recover the 16-in. casing were made at 665, 342, and 164-ft.  Finally, a cut and recovery was 
made at 122-ft.  The next section to 164-ft was speared and recovered. Further cuts in the 16-in. 
casing were made at 203 and 184-ft.  The casing was then recovered to 184-ft.  
 
A pilot mill was then picked up to mill the 16-in. casing from 184-ft to 205-ft.  While pilot 
milling, the well started losing fluid to the 26-in. shoe via a hole in the 20-in. casing at around 
204-ft.  A cement squeeze was made in the 20-in. casing at 204-ft with 65 bbls of 12 ppg 
standard cement. After waiting on the cement for 12 hours, the squeeze was tested to 150 psi but 
bled to 20 psi.  Another cement squeeze was made in the 20-in. casing with 45-bbl of 14 ppg 
standard cement.   
 
After waiting on the cement for 12 hours, the cement was drilled from 203-ft to 205-ft.  The 
squeeze was tested to 300 psi and bled to 250 psi in 20 minutes but was considered satisfactory. 
The cement was subsequently drilled to 225-ft.  
 
A window was section milled in the 16-in. casing from 548 to 608-ft.  Forty-bbl of latex cement 
was then spotted from 621 to 460-ft with pressure held on the cement for 12 hours.  Four and 
one-half-bbl were squeezed into the 16 x 20-in. annulus with the top of cement being tagged at 
485-ft.  The plug was successfully tested to 250 psi with pressure bleeding to 225 psi in 15 min.   
 
The wellbore was finally displaced to 8.6 ppg seawater previous to nippling down the blowout 
preventers and nippling up a dry hole tree.  The 20-in. casing had 0 psi before skidding the rig. 
 
Well 12 – Re-entry 
This well was abandoned earlier during this workover program in June of 2000.  The 20-in. and 
20 x 26-in. casing annuli have sustained pressure of 168 psi returning as of September, 2000. 
 
The objective of this operation is to re-enter the wellbore by drilling up the cement in the 16-in. 
casing from 485 to 621-ft.  The 16-in. casing would be section milled to approximately 658-ft.  
An inflatable bridge plug would then be set above the 16-in. casing stub at approximately 650-ft 
with 200-ft of cement spotted on the inflatable bridge plug to plug and abandon the well in 
accordance to CFR Title 30, Section 250.702 regulations.  

 
CASING PRESSURES 

 
 

CASING 

 
OD 
(IN.) 

 
WEIGHT 
(LB/FT) 

 
GRADE/ 

CONNECTION 

CURRENT 
PRESSURE 

(PSI) 

INTERNAL 
YIELD 
(PSI) 

20% 
INTERNAL 

YIELD (PSI) 
Drive Pipe 26   168   
Surface  20 94.0 X-52 168 1,993 399 
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PRESSURE PROFILES 
*DEPTH OF CONCERN PORE PRESSURE WORKOVER FLUID FRACTURE GRADIENT 

MD/TVD DESCRIPTION PSI PSI/FT PPG TYPE PPG OB (psi) PSI PSI/FT PPG 
738/706 26-in. SHOE 312 0.442 8.5    390 0.553 10.6 

1,472/1,341 20-in. SHOE 635 0.4732 9.1 WBM 10.0 697 781 0.5824 11.2 
*Depth of concern is exposing the 26 and 20-in. shoes to fracture gradient mud weights or pressures. 

Operations Summary (Re-Entry) 
The rig was skidded back over well 12 on September 25, 2000.  Mud was circulated in and 
conditioned to 14 ppg.  The dry hole tree was nippled down and blowout preventers were nippled 
up.   In order to test the blowout preventers, an inflatable packer was set at 75-ft.  The blowout 
preventers were tested and the inflatable packer was latched and pulled out of the hole. 
 
A 14 ⅝-in. cement mill was tripped in the hole and the cement was tagged at 475-ft.  The mud 
was circulated and conditioned down to 10.8 ppg before milling cement from 475 to 586-ft. The 
14 ⅝-in. cement mill was pulled out of the hole and laid down.  A 14 ½-in. rock bit was picked 
up to drill cement from 586 to 608-ft.   This bit was pulled out of the hole and laid down.  A 14 
⅜-in. cement mill and 17 ½-in. under reamer with a 12-in. body were made up to under ream and 
clean the 20-in. casing from 552 to 604-ft.  The under reamer and mill were then laid down.  
 
The next trip in the hole was with a 12 ¼-in. diamond point mill to mill cement to 617-ft. This 
diamond point bit was laid down and a 14 ½-in. rock bit was picked up. Attempts were made but 
unable to get inside 16-in. casing stub at 608-ft.  Subsequently, this bit was pulled out of the hole 
and laid down in favor of a 9 ½-in. rock bit.   This bit tagged cement at 612-ft and drilled to 630-
ft. The casing was washed and reamed from 630 to 672-ft and cement was drilled from 672 to 
674-ft.  The 9 ½-in. rock bit was pulled out of the hole and laid down. 
  
A section mill was picked up to mill the 16-in. casing from 608 to 621-ft.   The mill was changed 
out and tagged up at 618-ft.  Little headway was made and the mill was pulled out of the hole at 
619-ft.  A 14 ½-in. bit was picked up and used to washed and reamed from 618 to 655-ft.  
Cement was then drilled from 655 to 672-ft before pulling out of the hole and laying down the 14 
½-in. bit.  An under reamer and string mill were then used to under ream the 20-in. casing from 
548 to 618-ft before pulling out and laying down the under reamer.  
 
The 16-in. casing tube was then section milled from 618 to 631-ft.  Upon changing out the 
section mill, the casing collar was milled from 631 to 636-ft.  The blades were again changed 
back to mill down the 16-in. tube from 634 to 643-ft.  The casing was then washed and reamed 
from 549 to 640-ft with an under reamer.   Finally, a descaling bottom hole assembly was then 
used to clean the 20-in. casing from 555 to 635-ft before laying down the assembly.  
 
An RTTS packer was set at 517-ft to test below the packer to 300 psi.  The pressure bled to 260 
psi in 15 minutes. It was again tested to 350 psi and bled to 320 psi in 15 minutes.   The RTTS 
was pulled out of the hole and laid down.   
 
The workstring was tripped in the hole to 654-ft and 12-bbl of 15.6 ppg latex cement was 
pumped into the 16 and 20-in. casing. An RTTS was then tripped in the hole and set at 350-ft to 
pressure up to 350 psi in an attempt to squeeze the cement into the 16 x 20-in. annulus to isolate 
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the lower window section.  Pressure was trapped while waiting on cement for twelve hours.  The 
pressure bled from 350 to 75 psi. The RTTS was released, pulled out of the hole and laid down.  
 
An 11 ¾-in. multi-string cutter was tripped in the hole on workstring and tagged the top of 
cement at 622-ft. The 20-in. casing was then cleaned from 549 to 617-ft.  An inflatable bridge 
plug was then set at 601-ft and tested to 250 psi.  The workstring was then tripped in the hole to 
the inflatable bridge plug at 601-ft and 40-bbl of latex cement was pumped from 601 to 447-ft. 
An RTTS was then run and set at 345-ft to pressure up to 350 psi in an attempt to squeeze 
cement into the 16 x 20-in. casing annulus to isolate the upper window section.  This pressure 
was trapped for twelve hours but bled from 350 to 0 psi.  
 
A trip in the hole was then made and tagged the top of cement at 483-ft.   The blowout 
preventers were nippled down and a dry hole tree was nippled up.  The 20-in. casing had 0 psi on 
it.  The rig was skidded. 
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APPENDIX C: STAGES OF 1999 CUT AND PULL OPERATION 
 

STEP I AND II:  HOLE PREPARATION 

• Spot Cement and Squeeze 
• Set CIBP and Spot Cement 

• Remove 7-in. (Cut/pull or Pilot Mill) 
• 10 ¾-in. Bit/scraper Run 

10 ¾-in. Casing 

 

7-in. Casing 

Abandoned 
Zone  

Bit/Scraper 

10 ¾-in. Casing 

 

7-in. Casing 

Abandoned 
Zone  

• 7-in. Bit/scraper Run 
• Set Mechanical Bottom (CIBP) 

CIBP 

10 ¾-in. Casing 

 

7-in. Casing 

Abandoned 
Zone  

100-ft cmt CIBP w/cmt on 
top 

STEP III:  CEMENT PLACEMENT 
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APPENDIX D:  STAGES OF 1999 SECTION MILL OPERATION 
 

STEP I AND II:  HOLE PREPARATION

• 7-in. Bit/scraper Run 
• Set Mechanical Bottom (CIBP) 

10 ¾-in. Casing 

 

7-in. Casing 

Abandoned 
Zone  

CIBP 

• Mill 120-ft Window (3 Cutter Sizes) 
• 10 ¾-in. Underreamer Run 

10 ¾-in. Casing 

 

7-in. Casing 

Abandoned 
Zone  

120-ft 
Window Underreamer 

Run 

• Spot Cement and Squeeze 
• Underream 10 ¾-in. Csg 
• Set IBP and Spot 100-ft. Cement 

10 ¾-in. Casing 

7-in. Casing 

Abandoned 
Zone  

100-ft cmt IBP w/cmt on 
top 

STEP III:  CEMENT PLACEMENT 
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